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1. Introduction

There are three main results in the paper, Theorem 1.2, Theorem 1.4 and Theorem 1.6. 
Theorem 6.8 is also new. Throughout the paper we assume that n ≥ 2.

Alberti [2, Theorem 1] proved the following result:

Theorem 1.1 (Alberti). Let Ω ⊂ Rn be a bounded domain and let T : Ω → Rn be a 
measurable function. Then, for every ε > 0, there is a function φ ∈ C1

c (Ω) and a compact 
set K ⊂ Ω such that |Ω \K| < ε and Dφ(x) = T (x) for all x ∈ K.

Because of a certain analogy to the classical Lusin theorem, the above result is known 
as the Lusin property for gradients. Applying the result to components of a matrix-
valued measurable mapping T : Ω → Mn×n, we obtain a mapping Φ ∈ C1

c (Ω, Rn) and a 
compact set K ⊂ Ω such that |Ω \K| < ε and DΦ(x) = T (x) for all x ∈ K. However, 
the result does not provide any information about geometric properties of the mapping 
Φ : Ω → Rn. Our first main result addresses this issue and we prove that if detT > 0
a.e., then we can actually construct a C1-diffeomorphism such that DΦ = T outside an 
open set of a small measure. By GL(n) we denote the space of all real n × n matrices 
with non-zero determinant, while by GL(n)+ we denote the space of real n ×n matrices 
with positive determinant.

Theorem 1.2. Let Ω ⊂ Rn be a bounded domain and F : Ω → Rn an orientation pre-
serving diffeomorphism onto the bounded image F (Ω). Suppose that T : Ω → GL(n)+ is 
a measurable function such that 

∫
Ω detT ≤ |F (Ω)|. Then, for any ε > 0, there exists a 

C1-diffeomorphism Φ : Ω → F (Ω) with the following properties:

(a) Φ(x) = F (x) near ∂Ω;
(b) there exists a compact set K ⊂ Ω such that for every x ∈ K, DΦ(x) = T (x) and 

|Ω \K| < ε.

The condition 
∫
Ω detT ≤ |F (Ω)| is necessary. Indeed, if 

∫
Ω detT > |F (Ω)|, then by 

the change of variables formula, for ε sufficiently small, we have

|F (Ω)| = |Φ(Ω)| =
∫
Ω

detDΦ >

∫
K

detT > |F (Ω)|,

which is a contradiction. The result shows that the upper bound for the integral of 
detT is in fact necessary and sufficient for the existence of a diffeomorphism Φ as in 
Theorem 1.2.

While we use Alberti’s result in the proof of Theorem 1.2, it is just a tip of the iceberg 
as the main difficulty lies in making sure that the map is a diffeomorphism. To this end, 
we use a theorem of Dacorogna and Moser [11] about smooth diffeomorphisms with pre-
scribed Jacobians (Lemma 3.16 below), some topological arguments of Munkres [31] (see 
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Lemma 3.4 and Section 3.4), and a lot of explicit constructions of diffeomorphisms with 
prescribed properties (see Section 3.4). All diffeomorphisms are constructed rigorously.

While Theorem 1.2 tells us about diffeomorphisms with prescribed derivative outside 
a set of small measure, the next result, Theorem 1.4, is about homeomorphisms with 
almost everywhere prescribed derivative.

We say that a measurable function f : Ω → Rm, Ω ⊂ Rn, is approximately dif-
ferentiable at x ∈ Ω if there is a measurable set Ex ⊂ Ω and a linear function 
Daf(x) : Rn → Rm such that x is a density point of Ex and

lim
Ex�y→x

|f(y) − f(x) −Daf(x)(y − x)|
|y − x| = 0.

See Section 6 for more information about approximately differentiable functions.
One of the reasons why the class of mappings that are approximately differentiable 

a.e. is important is the following general form of the change of variables formula that was 
essentially proved by Federer [13] (see [20] for this particular statement and a detailed 
proof). By N(Φ, y) we will denote the number of points (cardinality) of the preimage 
Φ−1(y).

We say that a measurable mapping f : Ω → Rn defined on an open set Ω ⊂ Rn

satisfies the Lusin condition (N) if it maps sets of measure zero to sets of measure zero.

Theorem 1.3 (Federer). Let Φ : Ω → Rn be a measurable mapping defined on an open 
set Ω ⊂ Rn. Assume that it is approximately differentiable a.e. If Φ satisfies the Lusin 
condition (N), then for any measurable function f : Rn → R we have∫

Ω

(f ◦ Φ)(x)|detDaΦ(x)| dx =
∫

Φ(Ω)

f(y)N(Φ, y) dy. (1.1)

If Φ does not satisfy the condition (N), then we can redefine Φ on a set of measure zero 
so that after the redefinition, Φ satisfies the condition (N) and hence (1.1).

To be more precise, (1.1) means that the function on the left hand side is integrable 
if and only if the function on the right hand side is integrable and then we have equality.

In particular, if Φ : Ω → Rn is a homeomorphism that is approximately differentiable 
a.e. and satisfies condition (N), then applying (1.1) to f = χΦ(E), where E is measurable, 
we get ∫

E

|detDaΦ(x)| dx = |Φ(E)| (1.2)

(Φ(E) is measurable, because E is a union of a Borel set and a set of measure zero and 
homeomorphisms preserve Borel sets). In particular,
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∫
Ω

|detDaΦ(x)| dx = |Φ(Ω)|. (1.3)

If the homeomorphism Φ is Lipschitz, then DΦ must satisfy several conditions, for 
example: detDΦ cannot change sign and ∂2Φ/∂xi∂xj = ∂2Φ/∂xj∂xi (in the distri-
butional sense). Now assume that Φ is a homeomorphism satisfying assumptions of 
Theorem 1.3, i.e., Φ is approximately differentiable a.e. and satisfies the condition (N). 
What conditions must DaΦ satisfy? It is an important question, because Sobolev and 
BV homeomorphisms are approximately differentiable a.e. and they are abundant in 
non-linear elasticity, geometric problems in calculus of variations, and in the theory 
of quasiconformal and quasiregular mappings. Because of the nature of the problems 
in which they appear, understanding the relation between geometric and topological 
properties of the mapping and properties of the derivative is crucial. Our second main 
result, Theorem 1.4, answers the above question: Basically none. Indeed, Theorem 1.4
shows that we can construct a homeomorphism Φ with arbitrarily prescribed approxi-
mate derivative. This answers a conjecture from [18] in the positive. For simplicity, we 
assume that Ω is the interior of the unit cube.

Theorem 1.4. Let Q = [0, 1]n. For any measurable map T : Q → GL(n) that satisfies∫
Q

|detT (x)| dx = 1, (1.4)

there exists an a.e. approximately differentiable homeomorphism Φ : Q → Q such that 
Φ|∂Q = id and DaΦ = T a.e. Moreover,

(a) Φ−1 is approximately differentiable a.e. and DaΦ−1(y) = T−1(Φ−1(y)) for almost 
all y ∈ Q;

(b) Φ preserves the sets of measure zero, i.e., for any A ⊂ Q,

|A| = 0 if and only if |Φ(A)| = 0.

(c) Φ is a limit of C∞-diffeomorphisms Φk : Q → Q, Φk = id in a neighborhood of ∂Q, 
in the uniform metric, i.e., ‖Φ − Φk‖∞ + ‖Φ−1 − Φ−1

k ‖∞ → 0 as k → ∞.

Note that Φ cannot be differentiable in the classical sense if detT < 0 on a set of 
positive measure, because Φ is orientation preserving and hence it follows from the degree 
theory that if Φ is differentiable at x and detDΦ(x) 
= 0, then the classical derivative 
must satisfy detDΦ(x) > 0, see e.g. the proof of [21, Theorem 5.22].

It follows from (1.3) that if T : Q → GL(n) is measurable, and Φ : Q → Q is a 
homeomorphism that is approximately differentiable, satisfies the Lusin condition (N), 
and DaΦ(x) = T (x) a.e., then T must satisfy (1.4). As Theorem 1.4 shows, this is actually 
the only constraint for the mapping T .
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Some related results have been obtained earlier. The following was the main result in 
[18] (cf. [17] and Theorem 6.8 below).

Theorem 1.5. There is a homeomorphism Φ : Q = [0, 1]n → Q, Φ|∂Q = id , such that

DaΦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ a.e.

and Φ is a limit of volume preserving C∞-diffeomorphisms Φk : Q → Q, Φk = id in a 
neighborhood of ∂Q, in the uniform metric.3

Thus despite the fact that Φ is an orientation preserving homeomorphism, it can 
have negative Jacobian. In the case of Sobolev homeomorphisms the problem of the sign 
of the Jacobian had been studied in [7,8,16,22,23] and the example constructed in [8]
gave a negative answer to a Ball-Evans question [4] about approximation of Sobolev 
homeomorphisms by diffeomorphisms or piecewise linear homeomorphisms. While the 
papers mentioned above provide a large number of examples of homeomorphisms with 
unexpected properties of the derivative, these are just examples. On the other hand, 
Theorem 1.4 provides a general answer.

There has been substantial interest in finding diffeomorphisms and homeomorphisms 
with prescribed Jacobian. The first result in this line is due to Oxtoby and Ulam [32]
followed by many other papers [3,5,6,9,11,14,19,28,30,34]. It is possible if the Jacobian 
is positive and sufficiently regular, but if f ∈ Lp, p > 1, then, in general, there are no 
solutions to detDΦ = f with expected Sobolev regularity Φ ∈ W 1,np, [19] (see also 
[6,28]). On the other hand, Theorem 1.4 shows that with weaker regularity one can find 
a homeomorphism with not only prescribed Jacobian, but with arbitrarily prescribed 
derivative. To the best of our knowledge this is the first result of this kind.

Here is another reason why the class of functions that are approximately differentiable 
a.e. is natural. In the class of measurable functions f : E → R defined on a measurable 
set E ⊂ Rn of finite measure (we allow here n = 1) we define the Lusin metric

dL(f, g) = |{x ∈ E : f(x) 
= g(x)}|.

This is a metric if we identify functions that are equal a.e. It is easy to see that the space 
of measurable functions is complete with respect to the metric dL, see Lemma A.1, 
and according to Lusin’s theorem, continuous functions are dense in that space. Now, 

3 The statement of [18, Theorem 1.4] says Φk|∂Q = id , but the proof shows that Φk = id in a neighbor-
hood of ∂Q.
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if Ω ⊂ Rn is a bounded domain, Whitney’s theorem (Lemma 6.4 below) asserts that 
the closure of C1(Ω) in the metric dL is precisely the class of functions that are a.e. 
approximately differentiable. Therefore, the class of functions that are a.e. approximately 
differentiable is the counterpart of the class of measurable functions when in Lusin’s 
theorem we replace continuous functions with C1 functions.

In particular, if Q = [0, 1]n and Φk : Q → Q is a sequence of surjective, orientation 
preserving C1-diffeomorphisms that converge to a surjective homeomorphism Φ : Q → Q

in the Lusin metric, then Φ is approximately differentiable a.e. and it is easy to see (we 
leave details to the reader) that

detDaΦ(x) > 0 a. e. and
∫
Q

detDaΦ(x) dx ≤ 1.

We may again ask the same question as before: What other conditions must DaΦ satisfy?
The answer is similar to that given before: Basically none.

Theorem 1.6. Let Q = [0, 1]n. For any measurable map T : Q → GL(n)+ that satisfies∫
Q

detT (x) dx = 1,

there exists a sequence of C1-diffeomorphisms Φk : Q → Q, Φk = id in a neighborhood 
of ∂Q, that converges both in the uniform metric d and the Lusin metric dL to a homeo-
morphism Φ : Q → Q, Φ|∂Q = id , that is a.e. approximately differentiable and satisfies 
DaΦ = T a.e.

This result is a straightforward consequence of the proof of Theorem 1.4. Indeed, in 
the case detT > 0 a.e. we constructed in Section 7.2 a sequence of C1-diffeomorphisms 
Φk with properties (i)-(v) which imply that the sequence Φk converges in both metrics 
d and dL to a homeomorphism Φ with the properties listed in Theorem 1.6.

The paper is structured as follows. In Section 2 we fix the notation used throughout 
the paper. Technical results needed in the proof of Theorem 1.2 are collected in Section 3. 
This section contains a lot of explicit constructions of diffeomorphisms, including results 
about gluing of diffeomorphisms. We believe that these results can be used in other 
situations; some more general results on gluing diffeomorphisms, bi-Lipschitz maps and 
homeomorphisms, not explicitly needed here, have been moved to a separate paper [15].

Section 4 is devoted to the proof of Theorem 1.2. In Section 5 we discuss diffeomorphic 
partitions of cubes and constructions of diffeomorphisms that transfer measures between 
the cells of partitions. The material is motivated by the celebrated work of Oxtoby and 
Ulam [32], but the constructions are far more sophisticated due to required regularity and 
additional constraints. These constructions are needed in the proof of Theorem 1.4. In 
Section 6 we review basic properties of approximately differentiable functions. However, 
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Theorem 6.8, a generalization of Theorem 1.5, is new. The final Section 7 is devoted to 
the proof of Theorem 1.4. In Appendix, we prove Lemma A.1.

Except for Theorems 1.1, 1.3 and 1.5 recalled in the Introduction, we use a convention 
that well-known results needed in our proofs and results of technical character are called 
“Lemma”, “Proposition” or “Corollary”.

Acknowledgments

Piotr Hajłasz appreciates the hospitality of the University of Warsaw, where part of 
this work was conducted. His stay in Warsaw received funding from the University of 
Warsaw via the IDUB project (Excellence Initiative Research University) as part of the 
Thematic Research Programme Analysis and Geometry.

Paweł Goldstein enjoyed the hospitality of the University of Pittsburgh during his 
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2. General notation

In this section we explain most of the notation used throughout the paper. Also some 
of the notions introduced here are recalled later in the paper to make reading of this 
long paper easier.

Throughout the paper we assume that n ≥ 2. The only exception is Lemma A.1.
N and Z will denote the sets of positive and all integers, respectively.
The space of real n ×n matrices, invertible matrices and matrices with positive deter-

minant will be denoted by Mn×n, GL(n), and GL(n)+, respectively. The identity matrix 
will be denoted by I. The operator and the Hilbert-Schmidt norms of A ∈ Mn×n will 
be denoted by ‖A‖ and |A|, respectively. It is easy to see that ‖A‖ ≤ |A|.

The tensor product of vectors u, v ∈ Rn is the matrix u ⊗v = [uivj ]ni,j=1 ∈ Mn×n. It is 
easy to see that ‖u ⊗v‖ = |u ⊗v| = |u| |v|. Note that if U ⊂ Rn is open and F : U → Rn, 
η : U → R are differentiable, then

D(ηF ) = F ⊗Dη + ηDF so ‖D(ηF )‖ ≤ |Dη| |F | + |η| ‖DF‖. (2.1)

Symmetric difference of sets A and B is A � B = (A \B) ∪ (B \A).
The interior and the closure of a set A will be denoted by Å and A. Boundary of the 

set will be denoted by ∂A. We write A � B if A is a compact subset of B̊.
We say that a map between topological spaces is proper if preimages of compact sets 

are compact.
Open balls in Rn will be denoted by B(x, r). Ω will always denote an open subset 

of Rn. By a domain we mean an open and connected set.
Q will always denote the closed unit cube Q = [0, 1]n. If x = (x1, . . . , xn) ∈ Rn, 

then we define ‖x‖∞ = maxi |xi|. Q̊(p, r) = {x : ‖x − p‖∞ < r} and Q(p, r) = {x :
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‖x − p‖∞ ≤ r} denote the open and the closed cube centered at p of side-length 2r. We 
will denote with L(Q) the side-length of cube Q.

The space of k-times continuously differentiable functions with compact support will 
be denoted by Ck

c (Ω). Approximate derivative will be denoted by Daf(x). The Jacobian 
of a mapping Φ : Ω → Rn, Ω ⊂ Rn, will be denoted by detDΦ(x) or by JΦ(x).

If Ω ⊂ Rn is open, then by a diffeomorphism (homeomorphism) Φ : Ω → Rn we mean 
a diffeomorphism (homeomorphism) onto the image, i.e., diffeomorphism (homeomor-
phism) between Ω and Φ(Ω).

A diffeomorphism of a closed set A is a mapping that extends to a diffeomorphism of 
a neighborhood of A. We will use this notion mostly to discuss diffeomorphisms of closed 
cubes.

A set P is a diffeomorphic closed cube if there is a diffeomorphism Θ defined on a 
neighborhood of P such that Θ(P ) = Q. We say that P = {Pi}Ni=1 is a partition of P
if P =

⋃N
i=1 Pi and Pi are diffeomorphic closed cubes with pairwise disjoint interiors.

Important examples of partitions of Q are the dyadic partitions into 2nk identical 
cubes of edge length 2−k, for k = 0, 1, 2, . . .

A partition P = {Pi}Ni=1 of P is a diffeomorphic dyadic partition if there is a diffeo-
morphism Θ defined in a neighborhood of P and such that {Θ(Pi)}Ni=1 forms a dyadic 
partition of Q. More generally, a partition P of P is diffeomorphic to a partition P ′ of 
P ′ if P ′ = {Θ(Pi) : Pi ∈ P} for some diffeomorphism Θ defined in a neighborhood 
of P .

The space of homeomorphisms of the unit cube Q is equipped with the uniform metric

d(Φ,Ψ) = sup
x∈Q

|Φ(x) − Ψ(x)| + sup
x∈Q

|Φ−1(x) − Ψ−1(x)|,

see Section 3.6 for more details.
Lebesgue measure of a set E ⊂ Rn will be denoted by |E|. If E ⊂ Rn is measurable, 

we say that x ∈ Rn is a density point of E if |B(x, r) ∩ E|/|B(x, r)| → 1 as r → 0+. 
According to the Lebesgue differentiation theorem, almost all points x ∈ E are density 
points of E.

We say that a mapping f : Ω → Rn, Ω ⊂ Rn, satisfies the Lusin (N) condition if it 
maps sets of Lebesgue measure zero to sets of Lebesgue measure zero.

3. Preliminaries for Theorem 1.2

3.1. Linear algebra

Lemma 3.1. If A ∈ GL(n) and ‖A −B‖ < ‖A−1‖−1, then B ∈ GL(n).

Proof. Under the given assumptions ‖A−1B−I‖ < 1 and hence A−1B is invertible (the 
inverse can be written as an absolutely convergent power series). �



P. Goldstein et al. / Advances in Mathematics 460 (2025) 110020 9
Lemma 3.2. Assume T ∈ GL(n)+. Then for any ε > 0, there exists a finite family of 
matrices {Ai}Mε

i=1 ⊂ GL(n)+ such that ‖Ai − I‖ < ε for each i = 1, . . . , Mε, and

T = A1 · . . . ·AMε
.

Proof. GL(n)+ is a Lie group with respect to the matrix multiplication. According to [35, 
Theorem 3.68], GL(n)+ is connected. Then the result follows from [35, Proposition 3.18]
which says that if U is a neighborhood of the identity element in a connected Lie group 
G, then any element g ∈ G can be represented as g = u1 · . . . · uk for some k and 
u1, . . . , uk ∈ U . �
3.2. Local to global homeomorphisms

Recall that a map is proper if preimages of compact sets are compact. A local homeo-
morphism f : X → Y is a map that is a homeomorphism in a neighborhood of each point 
x ∈ X. The following result is due to Ho [24,25], see also [33, Chapter 4, Section 2.4].

Lemma 3.3. Suppose that X and Y are path-connected Hausdorff spaces, where Y is 
simply connected. Then a local homeomorphism f : X → Y is a global homeomorphism 
of X onto Y if and only if f is a proper map.

Note that in general, a local homeomorphism need not be surjective, and surjectivity 
is a part of the lemma. The main idea of the proof is to show that a proper local 
homeomorphism between path connected Hausdorff spaces is a covering map and then 
the result follows from general facts about covering spaces, see also [27, Lemma 3.1].

If f : ∂Bn → Rn is an embedding, then according to the Jordan-Brouwer separation 
theorem f(∂Bn) separates Rn into two domains, bounded and unbounded, and f(∂Bn)
is their common boundary. The example of the inward Alexander horned sphere shows 
that in general, the bounded component of Rn \ f(∂Bn) need not be simply connected.

The next result is a version of Corollary 8.2 from [31], but our proof is different and 
more elementary.

Lemma 3.4. Let f : Bn → Rn be a continuous function such that f |∂Bn is one-to-one, 
f |Bn is a local homeomorphism, and the bounded component of Rn \ f(∂Bn) is simply 
connected. Then f : Bn → Rn is a homeomorphism of Bn onto f(Bn).

Remark 3.5. The above result is true even if we do not assume that the bounded 
component of Rn \ f(∂Bn) is simply connected, but the proof requires the theory of 
Eilenberg-MacLane spaces from algebraic topology, see [27, Theorem 1.2].

Proof. Denote the bounded and the unbounded components of Rn \ f(∂Bn) by D and 
U , respectively. According to our assumptions, D is simply connected.
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Since f(Bn) is compact, it follows that ∂f(Bn) ⊂ f(Bn). On the other hand, f(Bn)
is open (because f is a local homeomorphism in Bn) and hence f(Bn) ∩ ∂f(Bn) = ∅, so 
∂f(Bn) ⊂ f(∂Bn) = ∂U = ∂D.

We claim that f(Bn) ⊂ D. Suppose to the contrary that f(x) ∈ U for some x ∈ B
n. 

Since U is unbounded and connected, there is a curve connecting f(x) to infinity inside 
U . Since f(Bn) is bounded, the curve must intersect with the boundary of that set and 
hence a point in U belongs to ∂f(Bn), which is a contradiction, because ∂f(Bn) ⊂ ∂U .

Since f(Bn) ⊂ D is an open subset of Rn, it follows that f(Bn) ⊂ D. We claim 
that the mapping f : Bn → D is proper. Indeed, if K ⊂ D is compact, then K is a 
closed subset of Rn, so f−1(K) ∩ B

n is closed and hence compact. On the other hand, 
f−1(K) ∩ ∂Bn = ∅, because f(∂Bn) ∩ D = ∅, so f−1(K) is a compact subset of Bn. 
This proves that f : Bn → D is proper. Now, Lemma 3.3 yields that f : Bn → D

is a homeomorphism onto D. That also implies that f is one-to-one on B
n because 

f(∂Bn) ∩D = ∅. Since B
n is compact, it follows that f : Bn → Rn is a homeomorphism 

onto its image. �
3.3. Gluing homeomorphisms together

Throughout the paper we repeatedly use the following observation (cf. [18, Lemma 
3.7]) and its corollary.

Lemma 3.6. Let Ω ⊂ Rn be a bounded domain and let F, G : Ω → Rn be homeomorphisms 
onto their respective images. Assume moreover that F = G near ∂Ω. Then F (Ω) = G(Ω).

Proof. Assume otherwise; without loss of generality we may assume that there is y ∈ Ω
such that G(y) 
∈ F (Ω). We can find subdomains Ω1 � Ω2 � Ω such that F = G on 
Ω \Ω1. This means that y needs to lie in Ω1 � Ω2 and G(y) /∈ F (Ω2). However, as F = G

on Ω2 \ Ω1, there is an x ∈ Ω2 with G(x) = F (x).
Since Ω2 is path-connected, we may connect x and y with a curve γ lying entirely in Ω2. 

Recall that by a well known consequence of Brouwer’s theorem on invariance of domain, 
homeomorphisms F and G map interior points to interior points and boundary points 
to boundary points. The curve G(γ) connects G(x) = F (x), which is an interior point 
of F (Ω2) with G(y), which lies outside F (Ω2) and thus G(γ) must intersect ∂F (Ω2) =
F (∂Ω2). Since F = G near ∂Ω2, G(γ) intersects G(∂Ω2). This leads to a contradiction, 
because γ ⊂ Ω2. �
Corollary 3.7. Assume Ω2 ⊂ Ω1 ⊂ Rn are bounded domains and let F : Ω1 → Rn, 
G : Ω2 → Rn be homeomorphisms onto their respective images. Assume moreover that 
for all x ∈ Ω2 in some neighborhood of ∂Ω2 we have F (x) = G(x). Then F̃ : Ω1 → Rn

given by

F̃ (x) =
{
F (x) for x ∈ Ω1 \ Ω2,

G(x) for x ∈ Ω
2
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is a homeomorphism and F (Ω1) = F̃ (Ω1).

Proof. F̃ is a local homeomorphism since F and G are homeomorphisms and F = G

near ∂Ω2. Since by Lemma 3.6 F̃ is injective and F (Ω1) = F̃ (Ω1), it follows that F̃ is a 
homeomorphism of Ω1 onto F (Ω1). �
3.4. Gluing diffeomorphisms together

Lemma 3.8 below is similar to Lemma 3.8 in [18]. However, the proof in [18] required 
the diffeomorphism to be at least of class C2. We managed to prove the results for 
C1-diffeomorphisms by using a topological argument due to Munkres [31] (Lemma 3.4
above). He used it in a similar context.

Lemma 3.8. Suppose that Φ : U → Rn is a Ck-diffeomorphism, k ∈ N ∪{∞}, defined on 
an open set U ⊂ Rn and λ ∈ (0, 1) is given. Then for any xo ∈ U there is rxo

> 0 such 
that B(xo, rxo

) � U and that for any r ∈ (0, rxo
] it is possible to find diffeomorphisms 

H1, H2 : U → Rn of class Ck satisfying

H1(x) =
{

Φ(xo) + DΦ(xo)(x− xo) for x ∈ B(xo, λr),
Φ(x) for x ∈ U \B(xo, r),

(3.1)

H2(x) =
{

Φ(x) for x ∈ B(xo, λr),
Φ(xo) + DΦ(xo)(x− xo) for x ∈ U \B(xo, r).

(3.2)

Proof. Let S(x) := Φ(xo) + DΦ(xo)(x − xo) and let β = ‖(DΦ(xo))−1‖−1. Since Φ is 
continuously differentiable, there is rxo

> 0 such that B(xo, rxo
) � U ,

‖DΦ(xo) −DΦ(x)‖ <
β

4 and |Φ(x) − S(x)|
|x− xo|

<
(1 − λ)β

4 for x ∈ B(xo, rxo
).

For r ∈ (0, rxo
], let η ∈ C∞(Rn), 0 ≤ η ≤ 1, be a cut-off function such that

η =
{

1 on B(xo, λr),
0 on Rn \B(xo, r),

and ‖Dη‖∞ ≤ 2
r(1 − λ) .

Here ‖Dη‖∞ stands for the supremum norm of |Dη|.
Now, we define

H1(x) := Φ(x) + η(x)(S(x) − Φ(x)) and H2(x) := S(x) + η(x)(Φ(x) − S(x)).

Clearly, H1,2 ∈ Ck(U ; Rn) satisfy (3.1) and (3.2). It remains to show that H1,2 are 
diffeomorphisms. To this end, it suffices to show that DH1,2(x) is invertible for all x ∈ U

and that H1,2 are homeomorphisms.
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The matrices DH1,2(x) are invertible for x ∈ U \ B(xo, r), because H1,2 are diffeo-
morphisms in U \B(xo, r). To show invertibility of DH1,2(x) for x ∈ B(xo, r), it suffices 
to show that (see Lemma 3.1):

‖DH1,2(x) −DΦ(xo)‖ < β for x ∈ B(xo, r). (3.3)

Note that |η| ≤ 1 and hence (2.1) yields ‖D(η(S − Φ))‖ ≤ |Dη| |S − Φ| + ‖DS −DΦ‖. 
Bearing in mind that DS(x) = DΦ(xo), we have

‖DH1(x) −DΦ(xo)‖
≤ ‖DΦ(x) −DΦ(xo)‖ + |Dη(x)| |S(x) − Φ(x)| + ‖DS(x) −DΦ(x)‖
= |Dη(x)| |Φ(x) − S(x)| + 2‖DΦ(x) −DΦ(xo)‖.

(3.4)

Similarly,

‖DH2(x) −DΦ(xo)‖ ≤ |Dη(x)| |Φ(x) − S(x)| + ‖DΦ(x) −DΦ(xo)‖. (3.5)

For x ∈ B(xo, r) we have |x − xo| ≤ r and hence

|Dη(x)| |Φ(x) − S(x)| + 2‖DΦ(x) −DΦ(xo)‖ ≤ 2
1 − λ

|Φ(x) − S(x)|
|x− xo|

+ 2 · β4 < β,

which together with (3.4) and (3.5) proves (3.3).
It remains to show that H1,2 : U → Rn are homeomorphisms of U onto their respective 

images.
Since the surfaces H1(∂B(xo, r)) = Φ(∂B(xo, r)) = ∂Φ(B(xo, r)) and H2(∂B(xo, r)) =

∂S(B(xo, r)) bound simply connected domains Φ(B(xo, r)) and S(B(xo, r)), and H1,2
are local homeomorphisms (because detDH1,2 
= 0), it follows from Lemma 3.4 that H1
and H2 are homeomorphisms of B(xo, r) onto Φ(B(xo, r)) and S(B(xo, r)), respectively, 
and hence H1 and H2 are homeomorphisms of U onto Φ(U) and S(U), respectively. The 
proof is complete. �

The next result shows how to connect linear maps in GL(n)+ in a diffeomorphic way.

Proposition 3.9. Fix r > 0 and θ ∈ (0, 1), and let A1, A2 ∈ GL(n)+. If

A1 (B(0, θr)) � A2 (B(0, r)) ,

then there exists a C∞-diffeomorphism H : Rn → Rn which coincides with x �→ A1x on 
B(0, θr) and with x �→ A2x on Rn \B(0, r).

In the proof we will need the following special case of the result (cf. [31, Lemma 8.1]):
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Lemma 3.10. Let A ∈ GL(n)+. Then for any r > 0 there is � ∈ (0, r) and a C∞-
diffeomorphism H : Rn → Rn such that

H(x) =
{
Ax for x ∈ B(0, �),
x for x ∈ Rn \B(0, r).

(3.6)

Proof. Let η ∈ C∞
c (B(0, 1)), η = 1 on B(0, 1/2), and let M := ‖η‖∞ + ‖Dη‖∞. For 

r > 0 and L ∈ Mn×n define f(x) := η(x/r)Lx. We have (see (2.1)):

Df(x) = 1
r
(Lx) ⊗Dη

(x
r

)
+ η
(x
r

)
L,

and hence

|Df(x)| ≤ 1
r
|Lx|

∣∣∣Dη
(x
r

)∣∣∣+ ∣∣∣η (x
r

)∣∣∣ |L| ≤ 1
r
|L| |x|MχB(0,r)(x) + M |L| ≤ 2M |L|.

In particular,

|f(x) − f(y)| ≤ |x− y|
1∫

0

|Df(y + t(x− y))| dt ≤ 2M |L| |x− y|.

First we will prove the lemma under the assumption that |A − I| < (2M)−1. Let L :=
A − I and define

HA(x) := x + η
(x
r

)
(A− I)x = x + f(x).

We have

‖DHA(x) − I‖ ≤ |DHA(x) − I| = |Df(x)| ≤ 2M |A− I| < 1,

so DHA(x) is invertible by Lemma 3.1. HA is also one-to-one, because for x 
= y we have

|HA(x) −HA(y)| ≥ |x− y| − |f(x) − f(y)| ≥ |x− y| − 2M |A− I| |x− y| > 0.

Therefore, HA is a diffeomorphism and (3.6) is true with � = r/2.
Now assume that A ∈ GL(n)+ is an arbitrary matrix. According to Lemma 3.2, we 

can write A = A1 · . . . ·Ak, where |Ai − I| < (2M)−1. Then

H := HA1 ◦ . . . ◦HAk
: Rn → Rn

is a diffeomorphism that satisfies H(x) = x for |x| ≥ r. Using simple induction and the 
fact that the diffeomorphisms HAi

satisfy (3.6) with Ai and � = r/2, one can easily 
check that
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H(x) = A1(A2(. . . (Ak(x) . . .)) = Ax

if x belongs to the set

B(0, r
2 ) ∩A−1

k (B(0, r
2)) ∩ (Ak−1 ◦Ak)−1(B(0, r

2 )) ∩ . . . ∩ (A2 ◦ . . . ◦Ak)−1(B(0, r
2 )).

Since this set is an open neighborhood of 0, it contains a ball B(0, �) for some 0 < � < r

and hence H satisfies (3.6). �
Proof of Proposition 3.9. By composing with A−1

2 and scaling if necessary, we can as-
sume that A2 = id and r = 1. Using Lemma 3.10 we can construct a diffeomorphism 
h2 of Rn such that h2(x) = A1x on B(0, �) for some � ∈ (0, 1) and h2(x) = x

on Rn \ B(0, 1). This diffeomorphism would have desired properties if we could take 
� = θ, but it may happen that � is smaller than θ. Thus assume that � < θ. To cor-
rect h2 we take a radial diffeomorphism h1 of Rn, which equals h1(x) = � θ−1x on 
B(0, θ) and is identity outside B(0, 1). As a result, h2(h1(x)) = � θ−1A1x on B(0, θ)
and h2(h1(x)) = x on Rn \ B(0, 1). This diffeomorphism has all the required proper-
ties, except that it equals � θ−1A1x on B(0, θ) instead of required A1x. To correct it, 
we take a radial diffeomorphism h3, which equals h3(x) = θ �−1x on A1(B(0, �)) and 
h3(x) = x on Rn \B(0, 1). Such a diffeomorphism exists, because A1(B(0, �)) � B(0, 1)
and h3(A1(B(0, �))) = A1(B(0, θ)) � B(0, 1). The map H = h3 ◦ h2 ◦ h1 is the desired 
diffeomorphism. �

For the proof of Proposition 3.14 we need two technical lemmata, Lemma 3.11 and 
Lemma 3.13.

Lemma 3.11 (Storage lemma). Fix � ∈ Z. Assume that V is a finite family of closed cubes 
V ⊂ Rn with pairwise disjoint interiors, and each cube V ∈ V has the same side-length 
L(V ) = 2−�. Assume that W is another finite family of closed cubes W ⊂ Rn such that∑

W∈W

|W | ≤
∑
V ∈V

|V | (3.7)

and that for each W ∈ W , L(W ) = 2−k for some k ∈ Z, k ≥ �. Then, for each W ∈ W , 
there is an isometric closed cube W̃ i.e., L(W̃ ) = L(W ), such that the cubes {W̃}W∈W

have pairwise disjoint interiors, and⋃
W∈W

W̃ ⊂
⋃

V ∈V
V.

Remark 3.12. The lemma has a practical interpretation. You can place dyadic boxes 
W ∈ W in the storage containers V ∈ V (identical and dyadic) if and only if the total 
volume of the boxes W does not exceed the total volume of the storage, and no box W
is larger than a storage container.
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Proof. Let V� := V . Divide the family W into subfamilies according to the side-length: 
W =

⋃N
i=� Wi, where Wi = {W ∈ W : L(W ) = 2−i}. Clearly, (3.7) can be rewritten as

N∑
i=�

∑
W∈Wi

|W | ≤
∑
V ∈V�

|V |. (3.8)

It follows that the number of cubes in W� is less than or equal to the number of cubes 
in V�. Thus, for each W ∈ W�, we can find W̃ ∈ V� so that the cubes W̃ have pairwise 
disjoint interiors. Clearly, W and W̃ are isometric.

Divide each of the cubes in the remaining family

V� \ {W̃ : W ∈ W�} (3.9)

into 2n dyadic closed cubes of side-length 2−(�+1). Denote the resulting family of cubes 
by V�+1. That is, each of the cubes in V�+1 has side-length 2−(�+1) and the number of 
cubes in V�+1 equals 2n times the number of the cubes in (3.9). Clearly, (3.8) implies 
that

N∑
i=�+1

∑
W∈Wi

|W | ≤
∑

V ∈V�+1

|V |,

because by removing cubes W ∈ W� from W and cubes W̃ ∈ V�, from V�, we removed 
equal volumes from both sides of (3.8). Now, we can repeat the procedure described above 
and match each W ∈ W�+1 with a suitable cube W̃ ∈ V�+1. We repeat the procedure 
by induction. The required family {W̃}W∈W will be constructed after a finite number of 
steps. �

It is a known fact that given any two points p, q lying in the interior of a smooth, 
connected manifold M , one can find a diffeomorphism of M onto itself that carries p
into q and is isotopic to identity, see [29, Chapter 4]. We need a slightly stronger folklore 
result, stating that given a finite family of points in a Euclidean domain, we can rearrange 
them in a diffeomorphic manner so that neighborhoods of these points are mapped by 
translation.

Lemma 3.13. Let {pi}Ni=1 and {qi}Ni=1 be given points in U , a domain in Rn, with pi 
= pj
and qi 
= qj for i 
= j. Then, there exists an ε > 0 and a C∞-diffeomorphism H : U → U , 
identity near the boundary, such that

H(x) = x + (qi − pi) for x ∈ B(pi, ε),

i.e., H maps by translation each ball B(pi, ε) onto B(qi, ε) with H(pi) = qi.
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Proof. Firstly, let us consider the case N = 1 and assume for simplicity that p := p1
and q := q1 can be connected by a segment γ contained in U . We choose ε > 0 so that 
the 2ε-neighborhood of γ is contained in U and find a smooth vector field X, satisfying

X =
{

0 on the set {x : dist(x, γ) ≥ 2ε},
q − p on the set {x : dist(x, γ) ≤ ε}.

Recall that a compactly supported smooth vector field X on Rn defines a one-
parameter group of diffeomorphisms {Φt : Rn → Rn : t ∈ R} called the flow of 
X, satisfying Φ0 = id , Φt ◦ Φs = Φt+s and ∂

∂tΦt = X ◦ φt for all t and s. In particular, 
Φt(x) = x for any t ∈ R and x 
∈ suppX. For more on flows of vector fields see e.g. [1, 
§21] or [35, Theorem 1.48].

If Φt : U → U is the one-parameter family of diffeomorphisms generated by X, 
then Hε

p,q := Φ1 is a diffeomorphism which acts as the translation by q − p on the ball 
B(p, ε) and maps it onto the ball B(q, ε). Moreover, Hε

p,q equals identity outside the 
2ε-neighborhood of γ.

In view of path-connectedness of Euclidean domains, any two points p, q can be con-
nected with a piecewise linear curve γ ⊂ U with vertices a0 = p, a1, . . . , am = q. Choose 
ε > 0 so that the 2ε-neighborhood of γ is contained in U and apply the construction 
from previous paragraph to each pair of points ai, ai+1 for i = 0, . . . , m − 1 to construct 
diffeomorphisms Hε

ai,ai+1
, identity outside the 2ε-neighborhood of γ, such that

Hε
ai,ai+1

(x) = x + (ai+1 − ai) for x ∈ B(ai, ε).

Then, Hε
p,q := Hε

am−1,q ◦ . . . ◦Hε
p,a1

is the desired diffeomorphism when N = 1.
For N > 1, consider firstly the case when {pi}Ni=1 ∩ {qi}Ni=1 = ∅. We can then find N

distinct piecewise linear curves γi, i = 1, . . . , N , connecting pi with qi, and an ε > 0 so 
that the 2ε-neighborhoods of γi are pairwise disjoint and contained in U and construct 
diffeomorphisms Hε

pi,qi from the previous paragraph. Diffeomorphism H = Hε
pN ,qN ◦ . . .◦

Hε
p1,q1 is the desired map.
If {pi}Ni=1 ∩ {qi}Ni=1 
= ∅, then we find a set of distinct points {si}Ni=1 ⊂ U , such that 

{pi}Ni=1 ∩ {si}Ni=1 = ∅ and {si}Ni=1 ∩ {qi}Ni=1 = ∅. From what we already proved, there 
is a diffeomorphism H1 that translates neighborhoods of pi’s onto neighborhoods of si’s 
and a diffeomorphism H2 that translates neighborhoods of si’s onto neighborhoods of 
qi’s. Then H = H2 ◦H1 satisfies the claim of the lemma. �

The next result shows in particular that if A1, A2 ∈ GL(n)+ and detA1 = detA2, 
then it is possible to find a diffeomorphism of a ball B onto A2(B) which on a large part 
of B acts like a piecewise affine map with A1 as its linear part.

Proposition 3.14. Let G ⊂ B be a measurable subset of an open ball B ⊂ Rn centered at 
the origin, and let r : G → (0, ∞) be any function. Let A1, A2 ∈ GL(n)+ satisfy
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detA2 > β detA1 for some β ∈ (0, 1). (3.10)

Then, there is a finite family of pairwise disjoint closed balls B(pj , rj) ⊂ B such that

pj ∈ G, rj < r(pj),
∣∣G ∩

⋃
j
B(pj , rj)

∣∣ > β|G|, (3.11)

and a diffeomorphism F : B → A2(B) which agrees with A2 in a neighborhood of ∂B
and

F (x) = A1x + vj for all x ∈ B(pj , rj) and some vj ∈ Rn. (3.12)

Remark 3.15. If B = B(p, R) is a ball not necessarily centered at the origin, and q ∈
Rn, but all other assumptions remain the same, then we can find balls B(pj , rj) ⊂ B

satisfying (3.11) and a diffeomorphism F : B → Rn such that F (x) = A2(x − p) + q in 
a neighborhood of ∂B and F satisfies (3.12) in each of the balls B(pj , rj).

Indeed, such a diffeomorphism is obtained from Proposition 3.14 by composing with 
the translations x �→ x − p in the domain and y �→ y + q in the target. Then in each of 
the balls B(pj , rj) we have F (x) = A1(x − p) + vj + q = A1x + wj , for some wj ∈ Rn.

Proof. Assume first that A1 = id . Let U = A2(B).
Before proceeding to details, let us describe the main idea of the proof. We begin 

by finding a finite family of disjoint closed cubes Qi ⊂ B satisfying |G ∩
⋃

i Qi| > β|G|. 
Working with cubes allows us to apply Lemma 3.11 and to find translated cubes Qi+wi ⊂
A2(B) with pairwise disjoint interiors. Then, for each i we find a finite family of pairwise 
disjoint balls B(pik, rik) ⊂ Q̊i. Clearly, the balls B(pik, rik) + wi ⊂ A2(B) are pairwise 
disjoint. After re-enumeration, we can write

{B(pj , rj)}j := {B(pik, rik)}i,k, vj := wi if pj = pik.

Choosing the balls carefully, we can guarantee (3.11). Note that the balls B(pj , rj) +vj ⊂
A2(B) are pairwise disjoint. Then we construct a diffeomorphism F that equals A2 near 
∂B and satisfies F (x) = x + vj for x ∈ B(pj , rj), which is (3.12) in the case when 
A1 = id .
Step 1. Finding cubes. Since |U | > β|B| by (3.10), we also have |U | > α|B| for some 
α ∈ (β, 1). Let F� be the family of all closed dyadic cubes (i.e., with vertices at points 
of 2−�Zn) of side-length 2−� that are contained in U . Clearly, the family F� is finite. We 
choose � large enough to guarantee that

∑
Q∈F�

|Q| > β

α
|U |. (3.13)

Let V ⊂ Rn be an open set such that
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G ⊂ V ⊂ B and |V \G| < 1
2β(α−1|U | − |G|)

(note that α−1|U | − |G| > 0).
For each q ∈ G consider the family Gq of all closed cubes Q = Q(q, 2−k), k ∈ Z, 

centered at q, that satisfy

Q ⊂ V, L(Q) ≤ 2−�, |Q| < 1
2β(α−1|U | − |G|). (3.14)

The family G̃ :=
⋃

q∈G Gq is a Vitali covering of G and Vitali’s covering theorem yields 
a finite sub-family G ′ = {Qi}N

′

i=1 ⊂ G̃ of pairwise disjoint cubes such that

N ′∑
i=1

|Qi| ≥
N ′∑
i=1

|Qi ∩G| > β|G|. (3.15)

By removing some cubes from the family G ′, we can obtain a family G = {Qi}Ni=1 (so 
N ≤ N ′) such that

β

α
|U | ≥

N∑
i=1

|Qi| ≥
N∑
i=1

|Qi ∩G| > β|G|. (3.16)

Indeed, to show this, it suffices to prove for any m the implication

m+1∑
i=1

|Qi| >
β

α
|U | =⇒

m∑
i=1

|Qi ∩G| > β|G|. (3.17)

Note that
m∑
i=1

|Qi| −
m∑
i=1

|Qi ∩G| =
m∑
i=1

|Qi \G| ≤ |V \G| < 1
2β(α−1|U | − |G|).

On the other hand, the hypothesis in (3.17) and the upper estimate for |Q| in (3.14)
yield

m∑
i=1

|Qi| >
β

α
|U | − |Qm+1| >

β

α
|U | − 1

2β(α−1|U | − |G|) = β|G| + 1
2β(α−1|U | − |G|),

and hence
m∑
i=1

|Qi ∩G| =
m∑
i=1

|Qi| −
( m∑

i=1
|Qi| −

m∑
i=1

|Qi ∩G|
)
> β|G|.

This proves the implication (3.17) and hence proves the existence of G = {Qi}Ni=1 satis-
fying (3.16). Now, (3.13) and (3.16) yield
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∑
Q∈F�

|Q| ≥
N∑
i=1

|Qi|.

Since L(Qi) = 2−k, k ≥ �, it follows from Lemma 3.11 that there are vectors wi ∈ Rn

such that the cubes Q̃i := Qi + wi have pairwise disjoint interiors and

N⋃
i=1

Q̃i ⊂
⋃

Q∈F�

Q ⊂ U.

The cubes Qi are pairwise disjoint, but the cubes Q̃i need not be.
To summarize, we constructed a family of pairwise disjoint closed cubes {Qi}Ni=1, 

Qi ⊂ B, such that ∣∣∣G ∩
⋃

i
Q̊i

∣∣∣ = ∣∣∣G ∩
⋃

i
Qi

∣∣∣ > β|G|, (3.18)

and we constructed vectors {wi}Ni=1 such that the cubes Q̃i = Qi + wi ⊂ U = A2(B)
have pairwise disjoint interiors.
Step 2. Finding balls. We will now find a finite family of closed, pairwise disjoint balls 
B(pj , rj), satisfying (3.11). For each i = 1, 2, . . . , N , let

Bi =
{
B(p, r) : p ∈ G ∩ Q̊i, B(p, r) ⊂ Q̊i, r < r(p)

}
.

Vitali’s covering theorem and (3.18) yield a finite sub-family of disjoint closed balls 
B(pik, rik), k = 1, . . . , Ni, so that

pik ∈ G, rik < r(pik), B(pik, rik) ⊂ Q̊i,

and ∣∣∣G ∩
⋃

ik
B(pik, rik)

∣∣∣ > β|G|.

For each i, the balls B(pik, rik) + wi are pairwise disjoint and contained in the interior 
of Q̃i. Since the interiors of the cubes Q̃i are pairwise disjoint, the balls in the family 
{B(pik, rik) + wi}i,k are pairwise disjoint as well. After re-enumerating, we get a family 
of balls Bj := B(pj , rj), j = 1, 2, . . . , M that satisfy (3.11) and vectors vj ∈ Rn such 
that the balls B′

j := B(pj , rj) + vj ⊂ U = A2(B) are pairwise disjoint.
Step 3. Finding the diffeomorphism F . To complete the proof in the case A1 = id , it 
remains to construct a diffeomorphism F : B → Rn which equals A2 near ∂B and 
F (x) = x + vj for x ∈ Bj for j = 1, 2, . . . , M .

Fix R1 > 0 such that BR1 := B(0, R1) � B ∩ A2(B). Let BR2 := B(0, R2) be a ball 
such that
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M⋃
j=1

Bj ⊂ BR2 � B.

Let H1 : Rn → Rn be a radial diffeomorphism such that H1(x) = x near ∂B and 
H1(x) = R1R

−1
2 x on BR2 . Proposition 3.9 yields a diffeomorphism H2 : Rn → Rn such 

that H2 = A2 near ∂B and H2 = id on BR1 . Then, H2 ◦H1 : B → A2(B) equals A2 near 
∂B and maps the balls Bj by scaling (with factor R1R

−1
2 ) onto balls in BR1 � A2(B).

Let aj := H2(H1(pj)) be the centers of the balls H2(H1(Bj)) and let bj := pj + vj be 
the centers of the balls B′

j = Bi+vj . Both families {aj}Mj=1 and {bj}Mj=1 are contained in 
U = A2(B), and Lemma 3.13 gives ε > 0 and a diffeomorphism Θ : U → U that equals 
identity near ∂U and satisfies

Θ(x) = x + bj − aj for x ∈ B(aj , ε).

Clearly, we can assume that

ε < min
j

R1R
−1
2 rj .

Since the balls

H2(H1(Bj)) = B(aj , R1R
−1
2 rj) ⊂ U (3.19)

are pairwise disjoint, there is δ > 0 such that the balls

B(aj , R1R
−1
2 rj + δ) ⊂ B (3.20)

are pairwise disjoint.
For each j = 1, 2, . . . , M , we find a diffeomorphism Hj

1 : Rn → Rn that is similar to 
H1. It is a radial diffeomorphism centered at aj , it is identity outside the ball (3.20) and it 
maps the ball (3.19) onto B(aj , ε) by scaling centered at aj with factor εR−1

1 R2r
−1
j < 1. 

Clearly, the diffeomorphism

H3 := H1
1 ◦H2

1 ◦ . . . ◦HM
1 : U → U

is identity near ∂U and maps each of the balls (3.19) onto B(aj , ε) by scaling (centered at 
aj). Now Θ ◦H3◦H2◦H1 : B → U equals A2 near ∂U and maps the balls Bj = Bj(pj , rj)
onto the balls B(bj , ε) by affine maps whose linear part is scaling by factor εr−1

j .
Finally, if H4 : Rn → Rn is a diffeomorphism similar to H3 that equals identity near 

∂U and expands the balls B(bj , ε) to B(bj , rj) = B
′
j by scaling, then the diffeomorphism

F : H4 ◦ Θ ◦H3 ◦H2 ◦H1 : B → A2(B)

is the required diffeomorphism satisfying (3.12) for A1 = id .
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Step 4. The general case. Finally, suppose that A1 and A2 are arbitrary GL(n)+ map-
pings satisfying (3.10). Then Ã1 := id and Ã2 := A−1

1 ◦ A2 satisfy det Ã2 > β det Ã1
and the construction from Step 3 yields a family of balls Bj satisfying (3.11) and a 
diffeomorphism F̃ : B → Ã2(B) such that

F̃ (x) = x + ṽj for all x ∈ Bj and some ṽj ∈ Rn.

Setting F = A1 ◦ F̃ yields the desired diffeomorphism satisfying (3.12). �
3.5. The Dacorogna-Moser theorem

The following lemma is a special case of a theorem of Dacorogna and Moser ([11, 
Theorem 5], see also [9, Theorem 10.11]), who generalized earlier results of Moser [30]
and Banyaga [5].

Lemma 3.16. Let Ω ⊂ Rn be a bounded domain and let f ∈ C∞(Ω) be a positive function 
equal 1 in a neighborhood of ∂Ω such that∫

Ω

f(x) dx = |Ω|.

Then there exists a C∞-diffeomorphism Ψ of Ω onto itself that is identity on a neigh-
borhood of ∂Ω and satisfies

JΨ(x) = f(x) for all x ∈ Ω.

Although the proofs in [9] and [11] are written only for f and Ψ ∈ Ck(Ω) for some 
k ∈ N, they clearly work for f and Ψ ∈ C∞(Ω); for a proof using Moser’s flow method
with f, Ψ ∈ C∞ see e.g. [10, Appendix, Lemma 2.3] (the first edition of the book).

The next result shows that if f is only measurable, then on a large set we can uniformly 
approximate f by the Jacobian of a smooth diffeomorphism.

Lemma 3.17. Let Ω ⊂ Rn be a bounded domain and let f ∈ L1(Ω), f > 0 a.e., be such 
that ∫

Ω

f(x) dx = |Ω|.

Then for any ε > 0 there exists a compact set K ⊂ Ω with |Ω \ K| < ε, and a C∞-
diffeomorphism Ψ of Ω onto itself that is identity on a neighborhood of ∂Ω and satisfies

|JΨ(x) − f(x)| < εf(x) for all x ∈ K. (3.21)



22 P. Goldstein et al. / Advances in Mathematics 460 (2025) 110020
Proof. By Lusin’s theorem, we can find a compact set K ⊂ Ω, such that |Ω \K| < ε and 
f is continuous and strictly positive in K. Let

m := inf
K

f and M := sup
K

f .

Clearly, ∫
K

f(x) dx = |Ω| − 2Mδ for some δ > 0.

Let Ω′ and Ω′′ be open sets such that

K ⊂ Ω′ � Ω′′ � Ω, and |Ω′ \K| < δ,

We can extend f from K to a continuous function 0 ≤ f1 ≤ M that is compactly 
supported in Ω′, so∫

Ω

f1(x) dx =
∫

Ω′\K

f1(x) dx +
∫
K

f(x) dx < |Ω′ \K| ·M + (|Ω| − 2Mδ) < |Ω| −Mδ.

Using a standard approximation of f1 by convolution, we find f2 ∈ C∞
c (Ω′), f2 ≥ 0, such 

that

|f(x) − f2(x)| = |f1(x) − f2(x)| < εm

2 for all x ∈ K. (3.22)

Since the approximation by convolution preserves the L1 norm of a non-negative function 
(by Fubini’s theorem), we have∫

Ω

f2(x) dx =
∫
Ω

f1(x) dx < |Ω| −Mδ. (3.23)

It is easy to see that there is f3 ∈ C∞(Ω) that it is strictly positive in Ω, f3 = 1 in a 
neighborhood of ∂Ω, f3 < εm/2 in K, and∫

Ω

f3(x) dx < Mδ. (3.24)

Integrals in (3.23) and (3.24) add to a number less than |Ω| and we can find a function 
f4 ∈ C∞

c (Ω′′ \ Ω′), f4 ≥ 0, such that∫
f2(x) + f3(x) + f4(x) dx = |Ω|.
Ω
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Observe that the function fε := f2 + f3 + f4 ∈ C∞(Ω) equals f3 = 1 in a neighborhood 
of ∂Ω and equals f2 + f3 in K, so

|f(x) − fε(x)| ≤ |f(x) − f2(x)| + f3(x) < εm ≤ εf(x) for all x ∈ K.

These conditions and Lemma 3.16 imply the existence of a smooth diffeomorphism Ψ :
Ω → Ω that is identity near the boundary and satisfies JΨ = fε, so (3.21) is satisfied. �
Corollary 3.18. Let Ω, Ω′ ⊂ Rn be bounded domains and let F : Ω → F (Ω) = Ω′ be an 
orientation preserving diffeomorphism between Ω and Ω′. Suppose that f ∈ L1(Ω), f > 0
a.e. and ∫

Ω

f(x) dx = |Ω′|.

Then for any ε > 0 there exists a compact set K ⊂ Ω with |Ω \ K| < ε, and a C∞-
diffeomorphism F ′ of Ω onto Ω′, that equals F on a neighborhood of ∂Ω and satisfies

|JF ′(x) − f(x)| < εf(x) for all x ∈ K. (3.25)

Remark 3.19. The condition that F is orientation preserving is necessary. Indeed, in 
view of (3.25), JF ′(x) > 0 for x ∈ K, so JF ′ > 0 on Ω, and hence JF > 0 on Ω, because 
F = F ′ on an open set.

Proof. Let

g(y) = f(F−1(y))
JF (F−1(y)) , so g(F (x))JF (x) = f(x).

It follows from the change of variables formula that g ∈ L1(Ω′), g > 0 a.e., and∫
Ω′

g(y) dy =
∫
Ω

f(x) dx = |Ω′|.

Therefore, for any ε′ > 0, Lemma 3.17 yields a compact set K ′ ⊂ Ω′, |Ω′ \ K ′| < ε′, 
and a diffeomorphism G of Ω′ onto itself that is identity in a neighborhood of ∂Ω′ and 
satisfies

|JG(y) − g(y)| < ε′g(y) for all y ∈ K ′. (3.26)

Let K = F−1(K ′). By taking ε′ ≤ ε sufficiently small, we can guarantee that |Ω \K| < ε. 
Now the diffeomorphism F ′ = G ◦F : Ω → Ω′ satisfies the claim of the corollary. Indeed, 
F ′ = F near ∂Ω and (3.26) yields
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|JF ′(x)− f(x)| = |JG(F (x))JF (x)− g(F (x))JF (x)| < ε′g(F (x))JF (x) = ε′f(x) ≤ εf(x),

whenever x ∈ K. The proof is complete. �
3.6. Uniform metric

Let us denote by

d(Φ,Ψ) := sup
x∈Q

|Φ(x) − Ψ(x)| + sup
x∈Q

|Φ−1(x) − Ψ−1(x)|

the uniform metric in the space of homeomorphisms of the unit cube Q = [0, 1]n onto 
itself. It is known that the space of homeomorphisms is a complete metric space with 
respect to the metric d. More precisely, we have:

Lemma 3.20. Let Φk : Q → Q, k = 1, 2, . . . be a Cauchy sequence of surjective homeo-
morphisms in the uniform metric d. Then Φk converges uniformly to a homeomorphism 
Φ : Q → Q, and Φ−1

k converges uniformly, and the limit is equal to Φ−1.

Proof. Obviously Φk and Φ−1
k are Cauchy sequences in the space of continuous mappings 

C(Q, Q), thus they converge (uniformly) to some Φ and Ψ ∈ C(Q, Q), respectively. To 
see that Ψ = Φ−1, fix a point x ∈ Q and pass with k to the limit in the equality 
Φk(Φ−1

k (x)) = x to prove that Φ(Ψ(x)) = x. We show that Ψ(Φ(x)) = x in an analogous 
way. �
Lemma 3.21. Assume that Φ : Q → Q is a C1-diffeomorphism such that Φ = id in a 
neighborhood of ∂Q. Then Φ can be approximated in the uniform metric d by a sequence 

of C∞-diffeomorphisms Φk
d→ Φ such that Φk = id in a neighborhood of ∂Q.

Proof. Approximating Φ by convolution with a standard symmetric mollifier ψε we ob-
tain smooth maps Φε = Φ ∗ ψε that are identity near ∂Q and converge uniformly to 
Φ on Q. Since detDΦε → detDΦ uniformly, we see that detDΦε > 0 in Q, provided 
ε > 0 is sufficiently small. This implies that Φε is a local diffeomorphism and according 
to Lemma 3.4 it is a global diffeomorphism of Q onto itself. It easily follows that Φε → Φ
in the uniform metric d. �
4. Proof of Theorem 1.2

Proof of Theorem 1.2. First, we prove the theorem under the assumption that∫
Ω

detT (x) dx = |F (Ω)|. (4.1)

The general case will then easily follow from this one.
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Let 0 < ε < |Ω| be given and fix β such that (1 − ε|Ω|−1)1/8 < β < 1.
Corollary 3.18 yields a C∞-diffeomorphism Ψ : Ω → F (Ω) and a compact set K1 ⊂ Ω

with |Ω \K1| < 1
2 (1 − β)|Ω| such that Ψ = F near ∂Ω and

|detDΨ(x) − detT (x)| < (1 − β) detT (x) for x ∈ K1. (4.2)

On the other hand, Theorem 1.1 gives us a mapping A ∈ C1
c (Ω, Rn) and a compact 

set K2 ⊂ Ω with |Ω \K2| < 1
2(1 − β)|Ω| such that

DA(x) = T (x) for x ∈ K2. (4.3)

Let G ⊂ K1 ∩K2 be the set of density points of K1 ∩K2 that belong to K1 ∩K2 and 
observe that

|G| = |K1 ∩K2| > β|Ω|.

It follows from (4.2) and (4.3) that

DA(x) = T (x) and detDΨ(x) > β detDA(x) > 0 for all x ∈ G. (4.4)

Let us interrupt the proof for a moment and explain its main idea. The idea is to find 
a finite family of balls — in the proof it will be the family {B(pij , β2/nrij)}i,j — such 
that we can replace Ψ with A(x) + τij for some τij ∈ Rn on each of the balls and the 
resulting map Φ will be a diffeomorphism. Then Φ = Ψ = F near ∂Ω and

DΦ(x) = DA(x) = T (x) for x ∈ G ∩
⋃

ij
B(pij , β2/nrij). (4.5)

Moreover, the family of balls will be constructed in such a way that the measure of 
the complement of the set in (4.5) (reproduced in the proof as (4.13)) will be less than 
ε. This will complete the proof. We will replace Ψ with A(x) + τij by a sequence of 
diffeomorphic gluing. We will glue Ψ with its affine approximation, then we will glue the 
affine approximation of Ψ with the affine approximation of A(x) +τij, which we will glue 
with A(x) + τij . To this end we will use (3.1) and (3.2) in Lemma 3.8, Proposition 3.9
and Proposition 3.14. Now, we shall return to the proof.

For any xo ∈ G, there is rxo
> 0 such that for all r ≤ rxo

, the following conditions 
hold

(a) B(xo, r) � Ω;
(b) |B(xo, r) ∩G| ≥ β|B(xo, r)|;
(c) A is a diffeomorphism on B(xo, r);
(d) DA(x) is close to DA(xo) for x ∈ B(xo, r) in the sense that

sup ‖DA(x) −DA(xo)‖ <
(
β−1/(2n) − 1

)
‖(DA(xo))−1‖−1; (4.6)
x∈B(xo,r)
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(e) there exists a diffeomorphism Ψ′
xo,r : Ω → F (Ω) such that

Ψ′
xo,r(x) =

{
Ψ(xo) + DΨ(xo)(x− xo) for x ∈ B(xo, β

1/nr),
Ψ(x) for x ∈ Ω \B(xo, r).

(4.7)

Property (b) follows from the fact that xo is a density point of G. Property (c) follows 
from (4.4). Property (d) is a consequence of continuity of DA. Finally, (e) follows from 
Lemma 3.8.

The family of balls

B = {B(xo, r) : xo ∈ G, r ≤ rxo
}

is a Vitali covering of G, so by Vitali’s covering theorem, we can choose a finite subfamily 
of pairwise disjoint balls {Bi}Ni=1 so that the measure of these balls satisfies

∣∣∣ N⋃
i=1

Bi

∣∣∣ ≥ β|G| > β2|Ω|. (4.8)

We replace Ψ with Ψ′
xi,ri in each of the balls Bi = B(xi, ri). The resulting diffeomorphism 

satisfies

Ψ′(x) =
{

Ψ(x) on Ω \
⋃N

i=1 Bi,

Ψ(xi) + DΨ(xi)(x− xi) on B′
i := B(xi, β

1/nri).

In particular, Ψ′ = F near ∂Ω.
Let r : G → (0, ∞) be such that for any p ∈ G and any 0 < r < r(p),

|G ∩B(p, r)| > β|B(p, r)| (4.9)

and there is a diffeomorphism on Rn that equals

Υ(x) =
{
A(x) on B(p, β2/nr),
A(p) + DA(p)(x− p) on Rn \B(p, β3/(2n)r).

(4.10)

Existence of such a function r is guaranteed by the fact that G consists of density points 
and by formula (3.2) in Lemma 3.8 (note that A is a diffeomorphism in a neighborhood 
of p, by (c) above).

Since xi ∈ G, (4.4) yields that DΨ(xi), DA(xi) ∈ GL(n)+ and

detDΨ(xi) > β detDA(xi).
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This is condition (3.10) from Proposition 3.14 which we want to use to modify Ψ′ on 
each of the balls B′

i. Proposition 3.14 and Remark 3.15 give a finite family of pairwise 
disjoint closed balls Bij = B(pij , rij) ⊂ B′

i such that

pij ∈ G ∩B′
i, rij < r(pij),

∣∣∣G ∩
⋃
j

Bij

∣∣∣ > β|G ∩B′
i| > β2|B′

i| (4.11)

(the last inequality follows from (b)), and a diffeomorphism Fi : B′
i → Rn such that

Fi(x) = Ψ(xi) + DΨ(xi)(x− xi) in a neighborhood of ∂B′
i,

and

Fi(x) = DA(xi)x + vij for x ∈ Bij and some vij ∈ Rn.

Note that Fi = Ψ′ in a neighborhood of ∂B′
i. Hence, if we replace Ψ′ with Fi on each of 

the balls B′
i, we will obtain a diffeomorphism F ′ : Ω → F (Ω) which agrees with F near 

∂Ω and satisfies

F ′(x) = DA(xi)x + vij for x ∈ Bij and some vij ∈ Rn. (4.12)

We will now replace the affine map (4.12) with a diffeomorphism A(x) +τij , τij ∈ Rn, 
in two steps. In the first step, we will replace (4.12) with an affine map DA(pij)x + wij

(on a smaller ball) using Proposition 3.9. Then we will replace this new affine map (on an 
even smaller ball) with a diffeomorphism A(x) +τij using formula (3.2) from Lemma 3.8.

Let us fix A1 := DA(pij) and A2 := DA(xi) and observe that in view of (4.6),

‖A1 −A2‖ < (β−1/(2n) − 1)‖A−1
2 ‖−1,

which by triangle inequality and sublinearity of operator norm implies that

‖A−1
2 A1‖ = ‖A−1

2 (A1 −A2) + I‖ ≤ ‖A−1
2 ‖ ‖A1 −A2‖ + 1 < β−1/(2n).

Therefore,

A−1
2 A1(B(0, 1)) � B(0, β−1/(2n)) so A1(B(0, β1/nrij)) � A2(B(0, β1/(2n)rij)).

Applying Proposition 3.9 yields a diffeomorphism Θij : Rn → Rn, which equals A1 on 
B(0, β1/nrij) and A2 on Rn \B(0, β1/(2n)rij). Set

Hij(x) := Θij(x− pij) + A2pij + vij ,

where vij were defined in (4.12). We have
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Hij(x) =

⎧⎪⎨⎪⎩
DA(pij)x−DA(pij)pij + DA(xi)pij + vij︸ ︷︷ ︸

ωij

on B(pij , β1/nrij),

DA(xi)x + vij on Rn \B(pij , β1/(2n)rij).

Observe that according to the definition of F ′ in (4.12),

Hij = F ′ on B(pij , rij) \B(pij , β1/(2n)rij), for all i and j.

Hence, if we replace F ′ with Hij on each of the balls Bij , we will obtain a diffeomorphism 
F ′′ : Ω → F (Ω) which agrees with F near ∂Ω and satisfies

F ′′(x) = DA(pij)x + ωij for x ∈ B(pij , β1/nrij) and some ωij ∈ Rn.

Since rij < r(pij), (4.10) gives a diffeomorphism Υij such that

Υij(x) =
{
A(x) for x ∈ B(pij , β2/nrij),
A(pij) + DA(pij)(x− pij) for x ∈ Rn \B(pij , β3/(2n)rij).

The translated diffeomorphism

Υ′
ij(x) := Υij(x) + ωij −A(pij) + DA(pij)pij =: Υij(x) + τij

satisfies

Υ′
ij(x) =

{
A(x) + τij for x ∈ B(pij , β2/nrij),
DA(pij)x + ωij for x ∈ Rn \B(pij , β3/(2n)rij).

Observe that

Υ′
ij = F ′′ on B(pij , β1/nrij) \B(pij , β3/(2n)rij).

Hence if we replace F ′′ with Υ′
ij on B(pij , β1/nrij), we obtain a diffeomorphism Φ : Ω →

F (Ω) which agrees with F near ∂Ω and satisfies

Φ(x) = A(x) + τij for x ∈ B(pij , β2/nrij) and some τij ∈ Rn.

Clearly, DΦ = DA on B(pij , β2/nrij). Since DA = T on G by (4.4), we have that

DΦ(x) = T (x) for x ∈ G ∩
⋃

i,j
B(pij , β2/nrij) (4.13)

and it remains to show that the complement of this set has measure less that ε.
Since pij ∈ G and rij < r(pij), (4.9) implies that

|G ∩B(pij , β2/nrij)| > β|B(pij , β2/nrij)| = β3|Bij |.
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Therefore, the fact that the balls Bij are pairwise disjoint, (4.11) and (4.8) give∣∣∣G ∩
⋃

ij
B(pij , β2/nrij)

∣∣∣ > β3
∑
i,j

|Bij | > β5
∑
i

|B′
i| = β6

∑
i

|Bi| > β8|Ω|.

Clearly, we can find a compact set K contained in the set (4.13) so that |K| > β8|Ω| and 
hence |Ω \K| < (1 − β8)|Ω| < ε. This completes the proof under the assumption (4.1).

Now we will prove the result in the general case, when 
∫
Ω detT ≤ |F (Ω)|. It is easy 

to see that there is a measurable map T̃ : Ω → GL(n)+ such that 
∫
Ω det T̃ = |F (Ω)|

and |{T̃ 
= T}| < ε/2. We proved that in this situation there is a C1-diffeomorphism 
Φ : Ω → F (Ω) that agrees with F near ∂Ω and satisfies |{DΦ 
= T̃}| < ε/2. Clearly, 
|{DΦ 
= T}| < ε and we can find a compact set K ⊂ Ω such that DΦ = T on K and 
|Ω \K| < ε. The proof is complete. �
5. Preliminaries for Theorem 1.4

This section consists of a series of similar lemmata of increasing complexity, whose 
aim is to prove Proposition 5.11. In this proposition we construct a particular partition 
of a diffeomorphic closed cube, which is instrumental to carry out the iteration in the 
proof of Theorem 1.4.

Essentially, the results in this section are far-reaching modifications of the construction 
of the mapping in the proof of the homeomorphic measures theorem by Oxtoby and 
Ulam, see [32, Theorem 2] for the original paper or [3, Section A2.2], [14, Chapter 7] for 
a concise treatment.

The original construction of Oxtoby and Ulam, [32,3,14], does not lead to any differen-
tiability properties of the homeomorphism, even if the measure is absolutely continuous 
with respect to the Lebesgue measure (which is the case considered by us). Therefore, 
in order to prove the a.e. approximate differentiability claimed in Theorem 1.4, we need 
essential modifications of the argument of Oxtoby and Ulam.

Lemma 5.1. Let P be a rectangular box

P = P1 ∪ . . . ∪ Pk = [0, a] × [0, 1]n−1, k ≥ 2,

represented as the union of adjacent boxes

Pi = [ai−1, ai] × [0, 1]n−1, 0 = a0 < a1 < . . . < ak = a.

If functions f, g ∈ L1(P ), f, g > 0 a.e., are such that∫
f(x) dx =

∫
g(x) dx, (5.1)
P P
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then there is a diffeomorphism Φ : P → P that is identity in a neighborhood of ∂P , and 
such that ∫

Pi

f(x) dx =
∫

Φ(Pi)

g(x) dx for i = 1, 2, . . . , k.

Remark 5.2. The lemma has a simple geometric interpretation. The functions f and g are 
densities of absolutely continuous measures μf and μg, and (5.1) means that μf (P ) =
μg(P ). Then, the lemma says that given the partition P1, . . . , Pk of P , we can find a 
diffeomorphic partition Φ(P1), . . . , Φ(Pk) of P , such that the corresponding cells have 
equal measures μf (Pi) = μg(Φ(Pi)).

Proof of Lemma 5.1. The proof will be by induction with respect to k. Thus, first assume 
that k = 2. Since 

∫
P1

f +
∫
P2

f =
∫
P1

g+
∫
P2

g, without loss of generality, we may assume 
that 

∫
P1

f ≥
∫
P1

g. Let K be a compact rectangular box in the interior of P , with edges 
parallel to the coordinate axes, such that∫

P1

f(x) dx <

∫
K

g(x) dx.

By taking K sufficiently large, we may assume that the common face of P1 and P2
intersects K.

Let X be a smooth vector field parallel to the x1 coordinate axis, non-zero in a neigh-
borhood of K, zero in a neighborhood of ∂P , and such that X points in the positive 
direction of the x1-axis whenever X 
= 0. If Φt is the one-parameter family of diffeomor-
phisms generated by X (cf. the proof of Lemma 3.13), then Φ0(P1) = P1, so∫

P1

f(x) dx ≥
∫

Φ0(P1)

g(x) dx. (5.2)

Since the common face of P1 and P2 intersects with K, X is non-zero in a neighborhood 
of that intersection. Now, from a standard compactness and open covering argument 
recalled below, we see that there is to such that K ⊂ Φt(P1) for all t > to, so∫

P1

f(x) dx <

∫
K

g(x) dx ≤
∫

Φt(P1)

g(x) dx for all t > to. (5.3)

Indeed, since Φt depends continuously on the parameter t, for any x ∈ K, there is 
a tx > 0 and εx > 0 such that for t > tx, Φ−t(B(x, εx)) ⊂ P1. Balls B(x, εx) for x ∈ K

form an open covering of K and by compactness of K, we can choose a finite subcovering 
of K, balls B(xi, εxi

) for i = 1, . . . , N . Setting to := maxi txi
, we see that for t > to for 

all x ∈ K, Φ−t(x) ∈ P1, i.e., x ∈ Φt(P1). This implies that K ⊂ Φt(P1) for t > to.
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Since the function t �→
∫
Φt(P1) g is continuous, it follows from (5.2) and (5.3) that 

there is t ∈ [0, to], such that Φ := Φt satisfies∫
P1

f(x) dx =
∫

Φ(P1)

g(x) dx and hence
∫
P2

f(x) dx =
∫

Φ(P2)

g(x) dx.

Observe that the diffeomorphism Φ equals identity in a neighborhood of ∂P , on the set 
where X = 0.

We completed the proof in the case of k = 2. Suppose now that the claim is true for 
all integers in {2, . . . , k} and we will prove it for k + 1.

Let us write

P = P1 ∪ . . . ∪ Pk︸ ︷︷ ︸
P̃

∪Pk+1 = P̃ ∪ Pk+1.

Applying the claim for two boxes, we can find a diffeomorphism Φ1 : P → P , that is 
identity in a neighborhood of ∂P and such that∫

P̃

f(x) dx =
∫

Φ1(P̃ )

g(x) dx and
∫

Pk+1

f(x) dx =
∫

Φ1(Pk+1)

g(x) dx. (5.4)

Note that the second equality in (5.4) is as desired and our diffeomorphism Φ will be equal 
Φ1 in Pk+1. However, we have to modify it in P̃ . The diffeomorphism Φ1 is orientation 
preserving and hence its Jacobian JΦ1 = detDΦ1 is positive in P̃ . Let

g̃(x) = (g ◦ Φ1)(x)JΦ1(x) for x ∈ P̃ .

The change of variables formula yields∫
P̃

g̃(x) dx =
∫
P̃

(g ◦ Φ1)(x)JΦ1(x) dx =
∫

Φ1(P̃ )

g(x) dx =
∫
P̃

f(x) dx,

and hence the pair of functions f and g̃ satisfies the assumption (5.1) on P̃ = P1∪. . .∪Pk. 
Thus, the induction hypothesis yields a diffeomorphism Φ2 : P̃ → P̃ that is identity near 
∂P̃ and such that for i = 1, 2, . . . , k, we have∫

Pi

f(x) dx =
∫

Φ2(Pi)

g̃(x) dx =
∫

Φ2(Pi)

(g ◦ Φ1)(x)JΦ1(x) dx =
∫

(Φ1◦Φ2)(Pi)

g(x) dx.

Therefore, the diffeomorphism Φ : P → P defined by{
Φ1 ◦ Φ2(x) if x ∈ P̃ ,

Φ (x) if x ∈ P ,
1 k+1
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satisfies the claim for k+1. To see that Φ is a well defined diffeomorphism, note that Φ2
is identity near ∂P̃ and hence Φ1 ◦ Φ2 = Φ1 near the common face of the boxes P̃ and 
Pk+1. Also, Φ is identity near the boundary of P . The proof is complete. �

The following corollary shows that Lemma 5.1 can be applied to diffeomorphic closed 
cubes and their partitions that are diffeomorphic to the partition in Lemma 5.1.

Corollary 5.3. Let P and its partition be as in Lemma 5.1. Let Θ : P → Rn be a 
diffeomorphism of the closed rectangular box P . Denote by P̃ and P̃i the images of P
and Pi under Θ. If functions f, g ∈ L1(P̃ ), f, g > 0 a.e., are such that∫

P̃

f(x) dx =
∫
P̃

g(x) dx,

then there is a diffeomorphism Φ : P̃ → P̃ , that is identity in a neighborhood of ∂P̃ , and 
such that ∫

P̃i

f(x) dx =
∫

Φ(P̃i)

g(x) dx for i = 1, 2, . . . , k.

Proof. Using Θ as a change of variables we can reduce the problem to Lemma 5.1. The 
induced functions on P will be

(f ◦ Θ)(x)|JΘ(x)| and (g ◦ Θ)(x)|JΘ(x)|.

Actually, we used a very similar argument in the proof of Lemma 5.1 and we leave easy 
details to the reader. �

Naturally, given a compact set K in a rectangular box P , it cannot be expected that 
P \K is diffeomorphic to a cube. However, in Lemma 5.4 we show that K can be replaced 
by another compact set K ′, with small measure of the symmetric difference |K � K ′|, 
so that P \K ′ is a diffeomorphic closed cube. We do it by approximating K with small 
balls and smoothly connecting them with thin tubes which start from one face of P , see 
Fig. 1. We will need it in Lemma 5.5 to construct a diffeomorphism as in Lemma 5.1
which additionally is identity on a large part of a given compact set.

Lemma 5.4. Let a > 0, P = [0, a] × [0, 1]n−1 be a rectangular box and F = (0, a) ×
(0, 1)n−2×{0} a fixed open face of P . If K is a compact subset of P , then for any ε > 0, 
it is possible to find a compact set K ′ ⊂ P and a diffeomorphism Ψ : Rn → Rn such that

K ′ ∩ (∂P \ F ) = ∅, |K � K ′| < ε, Ψ(P ) = P \K ′,

and Ψ = id outside an arbitrarily small neighborhood of K ′.
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Fig. 1. The compact set K ⊂ P (black) is approximated by the set K′ (grey) which consists of a finite 
number of balls, connected smoothly by thin tubes to the side F of P .

Proof. We find a finite number of disjoint closed balls Bj contained in P̊ so that |K �⋃
j Bj | < ε/2 (easy exercise) and a smooth curve γ without self-intersections which starts 

at a point of the open face F and connects all balls: the curve enters each ball once and 
leaves it at another point, except the last ball that it does not leave. We can easily 
guarantee that γ intersects ∂P only at the starting point in F .

We thicken slightly the curve γ to get a tube γε so that the measure of γε does not 
exceed ε/2. In doing so, we can guarantee that γε connects the balls and touches ∂P at 
the face F only, in a smooth manner, see Fig. 1. The desired compact set K ′ consists of ⋃

j Bj and γε. Clearly, |K � K ′| < ε.
Since K ′ is diffeomorphic to a ball connected smoothly with a thin tube to the face F

of P , the set P \K ′ is diffeomorphic to a rectangular box. Intuitively speaking, diffeo-
morphism Ψ : Rn → Rn, which maps P onto P \K ′ pushes a smooth cylinder glued to F
outside P inside this rectangular box, transforming P into P \K ′. It can be guaranteed 
that Ψ fixes points outside an arbitrarily small neighborhood of K ′. �

The next lemma is an enhanced version of Lemma 5.1. We find a diffeomorphism 
of a rectangular box onto itself which transforms measures of cells accordingly and, 
additionally, equals identity on a large part of a given compact subset K of P .

Lemma 5.5. Let P , Pi, f and g be as in Lemma 5.1. Assume that K is a compact subset 
of P and that the functions f and g satisfy the additional condition that

f = g a. e. on K. (5.5)

Then, for any ε > 0, there is a diffeomorphism Φ : P → P and a compact set K̃ ⊂ K

such that Φ equals identity in a neighborhood of K̃ ∪ ∂P , |K \ K̃| < ε and∫
Pi

f(x) dx =
∫

Φ(Pi)

g(x) dx for i = 1, 2, . . . , k.

Proof. The main idea of the proof is applying Lemma 5.4 to each Pi to eventually remove 
a set including a large part of set K and to obtain a diffeomorphic closed cube. We can 
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then use Corollary 5.3 to construct the desired diffeomorphism which transforms the 
measures of cells and equals identity near the boundary.

By removing from K a subset A with |A| < ε/2 we can assume that K̂ := K \ A is 
compact and Ki := K̂ ∩ Pi 
= Pi for all i = 1, 2, . . . , k.

Choose a sufficiently small 0 < η < ε/(2k) so that

|E| < η =⇒
∫
E

g(x) dx < min
i

∫
Pi\Ki

f(x) dx. (5.6)

(Since Ki 
= Pi, the minimum in (5.6) is positive.) Lemma 5.4 applied to each Pi, the 
compact sets Ki and the chosen η yields diffeomorphisms Ψi : Rn → Rn and compact 
sets K ′

i for i = 1, 2, . . . , k such that Ψi(Pi) = Pi \K ′
i, |Ki � K ′

i| < η, and Ψi = id
outside an arbitrarily small neighborhood Ui of K ′

i. Also, the sets K ′
i do not intersect 

any of the common faces of the partition of P and thus they are pairwise disjoint.
Since the sets K ′

i are compact and pairwise disjoint, we may guarantee that the 
neighborhoods Ui are pairwise disjoint and hence the diffeomorphisms Ψi can be glued 
together to a diffeomorphism Ψ : Rn → Rn such that Ψ = Ψi on each Pi.

Consequently, if K ′ =
⋃k

i=1 K
′
i, then P \K ′ is diffeomorphic to P by this diffeomor-

phism Ψ and hence it satisfies the assumptions of Corollary 5.3 for

P̃ = P \K ′, P̃i = Pi \K ′
i.

At this point, observe that |P \K ′| = |P \K ′| = |P̃ |, because the boundary of K ′ is 
piecewise smooth. Also, it is obvious that

P = P̃ ∪K ′ and Pi = P̃i ∪K ′
i for i = 1, . . . , k. (5.7)

We still need to define suitable functions to use in place of f and g in Corollary 5.3. 
Observe that |Ki � K ′

i| < η for each i = 1, . . . , k, yields∫
K′

i

g(x) dx ≤
∫
Ki

g(x) dx +
∫

K′
i\Ki

g(x) dx

(5.6)
<

∫
Ki

g(x) dx +
∫

Pi\Ki

f(x) dx (5.5)=
∫
Pi

f(x) dx.

Consequently, the function

f̂(x) =
k∑

i=1

⎛⎜⎝∫
Pi

f −
∫
K′

i

g

⎞⎟⎠ χP̃i
(x)

|P̃i|
(5.8)

is positive a.e. on P̃ and satisfies
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∫
P̃

f̂(x) dx =
∫
P̃

g(x) dx. (5.9)

Indeed, since |P \K ′| = |P̃ |, (5.9) follows from

∫
P̃

f̂(x) dx =
k∑

i=1

(∫
Pi

f −
∫
K′

i

g
)

=
∫
P

f(x) dx−
∫
K′

g(x) dx (5.1)=
∫

P\K′

g(x) dx.

All in all, we have checked the assumptions of Corollary 5.3 for functions f̂ and g. 
This corollary provides us with a diffeomorphism Φ′ : P̃ → P̃ , Φ′ = id in a neighborhood 
of ∂P̃ , such that ∫

P̃i

f̂(x) dx =
∫

Φ′(P̃i)

g(x) dx. (5.10)

Set K̃ = K ∩K ′ and

Φ(x) =
{
x for x ∈ P \ P̃ ,

Φ′(x) for x ∈ P̃ .

The set K̃ is clearly compact whereas Φ is a well defined diffeomorphism of P onto 
itself since Φ′(x) = x near ∂P̃ . We shall now check that Φ and K̃ satisfy all the desired 
properties. Writing ∂P = (∂P \∂P̃ ) ∪ (∂P ∩∂P̃ ), we see that Φ = id near ∂P . It follows 
immediately from the definition of Φ and P \ P̃ = K ′, that Φ = id on K ′. We can say 
even more: since ∂K ′ ⊂ ∂P ∪ ∂P̃ , Φ = id in a neighborhood of K ′ and, consequently, in 
a neighborhood of K̃.

Since Φ = Φ′ on P̃i, (5.10) yields∫
P̃i

f̂(x) dx =
∫

Φ(P̃i)

g(x) dx. (5.11)

By (5.7), Φ(Pi) = Φ(P̃i) ∪ Φ(K ′
i) and the two sets Φ(P̃i) and Φ(K ′

i) overlap on a set 
of measure zero (the image of a part of the piecewise smooth boundary of K ′

i). Hence 
(5.11) yields∫

Φ(Pi)

g(x) dx =
∫

Φ(P̃i)

g(x) dx +
∫

Φ(K′
i)

g(x) dx =
∫
P̃i

f̂(x) dx +
∫
K′

i

g(x) dx

(5.8)=
∫
Pi

f(x) dx−
∫
K′

i

g(x) dx +
∫
K′

i

g(x) dx =
∫
Pi

f(x) dx,
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as required. At last, we compute

|K \ K̃| = |A \K ′| + |K̂ \K ′| ≤ |A| +
k∑

i=1
|Ki � K ′

i| <
ε

2 + kη < ε

which finishes the proof. �
Lemma 5.6. Let Q =

⋃2nk

j=1 Qj be the dyadic partition of the unit cube Q = [0, 1]n into 
cubes Qj of side-length 2−k. Let K be a compact subset of Q and f, g ∈ L1(Q), f, g > 0
a.e. be such that∫

Q

f(x) dx =
∫
Q

g(x) dx and f(x) = g(x) for a. e. x ∈ K.

Then, for any ε > 0, there is a diffeomorphism Φ : Q → Q and a compact set K̃ ⊂ K

such that Φ = id in a neighborhood of K̃ ∪ ∂Q, |K \ K̃| < ε and∫
Qj

f(x) dx =
∫

Φ(Qj)

g(x) dx for j = 1, 2, . . . , 2nk.

Remark 5.7. The statement of the lemma is very similar to that of Lemma 5.5. The 
main difference is that the boxes in Lemma 5.5 were arranged into a single line. This 
arrangement played an important role in the proof and it is not obvious how to modify 
the proof of Lemma 5.5 to cover the situation described in Lemma 5.6.

Proof of Lemma 5.6. For 1 ≤ � ≤ n and j1, . . . , j� ∈ {1, . . . , 2k} we shall denote

Pj1...j� = [(j1 − 1)2−k, j12−k] × [(j2 − 1)2−k, j22−k] × · · · × [(j� − 1)2−k, j�2−k],

Lj1...j� = Pj1...j� × [0, 1]n−�.

The sets Pj1...j� are cubes in the dyadic partition of [0, 1]n−� and Lj1...j� are “towers” 
over cubes Pj1...j� covering [0, 1]n. In particular L1, . . . , L2k result from slicing of Q along 
the first coordinate like a toast bread into 2k sandwiches. If � = n, Lj1...jn = Pj1...jn are 
exactly the dyadic cubes Qj .

Our aim is to prove (by finite induction on �) the following claim:

For any � ∈ {1, 2, . . . , n} there exists a diffeomorphism Ψ� : Q → Q and a compact 
set K� ⊂ K such that

Ψ� = id in a neighborhood of K� ∪ ∂Q, (5.12)∫
L

f(x)dx =
∫

Ψ (L )

g(x)dx for all j1, . . . , j� ∈ {1, . . . , 2k}, (5.13)

j1...j� � j1...j�
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|K \K�| < 2�−nε. (5.14)

Note that for � = n we obtain Φ := Ψn and K̃ := Kn that satisfy the conditions of the 
lemma (because Lj1...jn are exactly the cubes Qj), so proving the above claim suffices 
to prove the lemma.

Let us first consider the case � = 1. Then

Q = L1 ∪ L2 ∪ · · · ∪ L2k =
([

0, 1
2k

]
∪
[

1
2k ,

2
2k

]
∪ · · · ∪

[
2k − 1

2k , 1
])

× [0, 1]n−1

is a decomposition of a rectangular box into a union of adjacent boxes, exactly as in 
Lemma 5.1. By Lemma 5.5 we can find a diffeomorphism Ψ1 : Q → Q and a compact 
set K1 ⊂ K such that Ψ1 = id in a neighborhood of K1 ∪ ∂Q,

|K \K1| < 21−nε and
∫
Lj

f(x)dx =
∫

Ψ1(Lj)

g(x)dx for all j ∈ {1, . . . , 2k}.

Assume now that the claim holds for some �, 1 ≤ � < n, so that there exists a diffeo-
morphism Ψ� : Q → Q and a compact set K� ⊂ K satisfying (5.12), (5.13), (5.14).

For any j1, . . . , j�∫
Lj1...j�

f(x)dx =
∫

Ψ�(Lj1...j�
)

g(x)dx =
∫

Lj1...j�

(g ◦ Ψ�)(x)JΨ�
(x)dx =

∫
Lj1...j�

g̃�(x)dx

for g̃�(x) = (g ◦Ψ�)(x)JΨ�
(x). Since Ψ� = id near ∂Q, the diffeomorphism Ψ� is orienta-

tion preserving and hence JΨ�
> 0. Since Ψ� = id near K�, DΨ� = I on K�, and hence 

f(x) = g(x) = g̃�(x) for a.e. x ∈ K�.
Now, let us fix j1 . . . j�. Note that

Lj1...j� = Lj1...j� 1 ∪ Lj1...j� 2 ∪ · · · ∪ Lj1...j� 2k

= Pj1...j� ×
([

0, 1
2k

]
∪
[

1
2k ,

2
2k

]
∪ · · · ∪

[
2k − 1

2k , 1
])

× [0, 1]n−�−1

is again a decomposition of the rectangular box Lj1...j� into a union of adjacent boxes 
isometric to that in Lemma 5.1, satisfying assumptions of Lemma 5.5 for the functions 
f , g̃�, and the compact set K�∩Lj1...j� . Therefore, we can find a diffeomorphism Υj1...j� :
Lj1...j� → Lj1...j� and a compact set K̃j1...j� ⊂ K� ∩ Lj1...j� such that Υj1...j� = id in 
a neighborhood of K̃j1...j� ∪ ∂Lj1...j� ,∫

Lj1...j� j�+1

f(x)dx =
∫

Υj1...j�
(Lj1...j� j�+1 )

g̃�(x)dx for all j�+1 ∈ {1, . . . , 2k}

and
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| (K� ∩ Lj1...j�) \ K̃j1...j� | < 2−k� 2�−n ε. (5.15)

Since the diffeomorphisms Υj1...j� are identity near ∂Lj1...j� , they agree near the 
boundary of adjacent boxes Lj1...j� and thus we can glue them to a diffeomorphism 
Υ : Q → Q, identity near ∂Q. Setting K�+1 =

⋃
j1...j�

K̃j1...j� , we see that K�+1 ⊂ K�, 
that Υ(x) = x in a neighborhood of K�+1 and that for any j1, . . . , j�+1∫

Lj1...j� j�+1

f(x)dx =
∫

Υ(Lj1...j� j�+1 )

g̃�(x)dx =
∫

Υ(Lj1...j� j�+1 )

(g ◦ Ψ�)(x)JΨ�
(x)dx

=
∫

(Ψ�◦Υ)(Lj1...j� j�+1 )

g(x)dx.

Moreover, by (5.15) we can see that

|K� \K�+1| =
∑
j1...j�

| (K� ∩ Lj1...j�) \ K̃j1...j� | < 2�−nε,

which implies that

|K \K�+1| = |K \K�| + |K� \K�+1| < 2�+1−nε.

Therefore, we set Ψ�+1 = Ψ� ◦ Υ, which is identity in a neighborhood of K�+1 ∪ ∂Q

and consequently satisfies the claim for � +1 in place of �, which completes the inductive 
step and the proof. �

Moreover, we immediately see that the diameters of the cubes Qj can be made arbi-
trarily small by taking large k. However, we have no control over the diameters of Φ(Qj). 
The next proposition corrects that.

Proposition 5.8. Let Q = [0, 1]n and K be a compact subset of Q. Assume that f, g ∈
L1(Q), f, g > 0 a.e. satisfy∫

Q

f(x) dx =
∫
Q

g(x) dx and f(x) = g(x) for a. e. x ∈ K. (5.16)

Then for any ε > 0, η > 0, there exist a diffeomorphic dyadic partition Q =
⋃2nN

j=1 Pj, 
a diffeomorphism Ψ : Q → Q and a compact set K̃ ⊂ K, with |K \ K̃| < η such that 
Ψ = id in a neighborhood of K̃ ∪ ∂Q, diamPj < ε, diam Ψ(Pj) < ε, and∫

f(x) dx =
∫

g(x) dx, for j = 1, 2, . . . , 2nN .
Pj Ψ(Pj)
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Remark 5.9. Recall that here, the diffeomorphic dyadic partition means that there is 
a diffeomorphism Θ : Q → Q such that Θ(Qj) = Pj , where Q =

⋃2nN

j=1 Qj is the 
standard dyadic partition of Q into 2nN identical cubes of side-length 2−N . In fact, the 
diffeomorphism Θ constructed in the proof will have the additional property that Θ = id
in a neighborhood of ∂Q.

Remark 5.10. The idea is to take the diffeomorphism Φ from Lemma 5.6 and then apply 
a version of Lemma 5.6 for a diffeomorphic dyadic partition to each of the sets Φ(Qj)
and the inverse diffeomorphism Φ−1 : Φ(Qj) → Qj . While we do not have control of 
the diameters of the sets Φ(Qj), after the construction described here, we will partition 
Φ(Qj) into sets of as small diameters as we wish.

Proof. Choose k ∈ N such that 2−k
√
n < ε and let Q =

⋃2nk

j=1 Qj be the dyadic de-
composition into 2nk identical cubes of side-length 2−k, so diamQj < ε. Let Φ be the 
diffeomorphism and K1 ⊂ K the compact set provided by Lemma 5.6 so that Φ = id in 
a neighborhood of K1 ∪ ∂Q, |K \K1| < η/2 and∫

Qj

f(x) dx =
∫

Φ(Qj)

g(x) dx for j = 1, 2, . . . , 2nk.

The diffeomorphism Φ is uniformly continuous in Q; let δ > 0 be such that

|Φ(x) − Φ(y)| < ε whenever |x− y| < δ. (5.17)

Let � ∈ N satisfy 2−(k+�)√n < δ and consider the dyadic partition Q =
⋃2nk

j=1
⋃2n�

i=1 P̃ij

into identical cubes of side-length 2−(�+k), so that each cube Qj is partitioned into 2n�
identical cubes P̃ij . Clearly, diam P̃ij < δ.

For any j we have, bearing in mind that JΦ > 0,∫
Qj

f(x) dx =
∫

Φ(Qj)

g(x) dx =
∫
Qj

(g ◦ Φ)(x)JΦ(x) dx,

so if we denote g̃(x) := f(x), f̃(x) := (g ◦ Φ)(x)JΦ(x),4 we have∫
Qj

f̃(x) dx =
∫
Qj

g̃(x) dx.

Observe that for a.e. x ∈ K1, f̃(x) = g̃(x). Indeed,

f̃(x) = (g ◦ Φ)(x)JΦ(x) = g(x) = f(x) = g̃(x).

4 g̃ = f is not a typo; we reverse notation of f and g for a reason.
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Applying Lemma 5.6 with Qj in place of Q, f̃ for f and g̃ for g, partition Qj =⋃2n�

i=1 P̃ij and the compact set K1 ∩ Qj yields a diffeomorphism Θj : Qj → Qj and 
a compact set K2j ⊂ K1 ∩Qj such that Θj = id in a neighborhood of K2j ∪ ∂Qj ,

|(K1 ∩Qj) \K2j | < η
2 2−nk and

∫
P̃ij

f̃(x) dx =
∫

Θj(P̃ij)

g̃(x) dx. (5.18)

Since Θj are identity near ∂Qj , they glue together to a diffeomorphism Θ : Q → Q, 
identity near ∂Q. Set

K̃ :=
⋃

j
K2j ⊂ K1 ⊂ K.

By (5.18), |K1 \ K̃| < η/2 and consequently,

|K \ K̃| = |K \K1| + |K1 \ K̃| < η. (5.19)

Moreover, Θ = id in a neighborhood of K̃. Let Pij = Θ(P̃ij).
Then, we check that∫

Pij

f(x) dx =
∫

Θ(P̃ij)

g̃(x) dx (5.18)=
∫
P̃ij

f̃(x) dx

=
∫
P̃ij

(g ◦ Φ)(x)JΦ(x) dx

=
∫

Φ(P̃ij)

g(x) dx =
∫

Φ(Θ−1(Pij))

g(x) dx,

so setting Ψ = Φ ◦ Θ−1 we get∫
Pij

f(x) dx =
∫

Ψ(Pij)

g(x) dx.

Since Θ−1 = id and Φ = id in a neighborhood of K̃∪∂Q, Ψ = id there, as well. We have 
already checked in (5.19) that |K\K̃| < η. Finally, Pij ⊂ Qj , so diamPij ≤ diamQj < ε; 
also diam P̃ij = 2−(k+�)√n < δ, so diam Ψ(Pij) = diam Φ(P̃ij) < ε by (5.17).

Note also that the partition of Q into the 2n(�+k) sets Pij is diffeomorphic to the 

dyadic partition Q =
⋃2nk

j=1
⋃2n�

i=1 P̃ij by the diffeomorphism Θ : Q → Q. �
Eventually, we will need an analogue of the previous proposition in terms of diffeomor-

phic images of cubes, which is again a consequence of the change of variables theorem.
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Proposition 5.11. Let Q = [0, 1]n and Θ : Q → Rn be a diffeomorphism of the closed unit 
cube Q. Let Q̃ = Θ(Q) and K be a compact subset of Q̃. Suppose that f, g ∈ L1(Q̃), 
f, g > 0 a.e. satisfy∫

Q̃

f(x) dx =
∫
Q̃

g(x) dx and f(x) = g(x) for a. e. x ∈ K. (5.20)

Then, for any ε, η > 0 there exists a diffeomorphic dyadic partition Q̃ =
⋃2nN

j=1 P̃j, a 

diffeomorphism Ψ : Q̃ → Q̃ and a compact set K̃ ⊂ K, with |K \ K̃| < η such that 
Ψ = id in a neighborhood of K̃ ∪ ∂Q̃, diam P̃j < ε, diam Ψ(P̃j) < ε and∫

P̃j

f(x) dx =
∫

Ψ(P̃j)

g(x) dx for j = 1, 2, . . . , 2nN .

At the end of this section, we add a technical lemma concerning connectedness of 
complements of compact sets. The proof of Lemma 5.12 explains the shape of the set K
on Fig. 1.

Lemma 5.12. Let E be a measurable subset of a domain Ω in Rn. Then, for any ε > 0
there is a compact set K ⊂ E such that |E \K| < ε and Ω \K is connected.

Proof. First, let K1 ⊂ E be a compact set such that |E \K1| ≤ ε/2.
Next, let K2 ⊂ Ω denote a finite sum of pairwise disjoint closed cubes, K2 =

⋃N
i=1 Pi, 

such that |K1 \ K2| < ε/4. In each of the cubes Pi let Ci denote the standard Cantor 
set of positive measure, such that |Pi \ Ci| < ε/(4N). Denote C =

⋃N
i=1 Ci. Finally, set 

K = K1 ∩ C.
Then K is obviously compact,

E \K ⊂ (E \K1) ∪ (K1 \K2) ∪ (K2 \K)

and K2 \K ⊂
⋃N

i=1(Pi \ Ci), thus

|E \K| ≤ |E \K1| + |K1 \K2| +
N∑
i=1

|Pi \ Ci| < ε/2 + ε/4 + Nε/(4N) = ε.

The fact that Ω \ K is connected follows from construction of the Cantor sets Ci. 
Indeed, in each of the cubes Pi the complement of the set Ci is path-connected and 
contains ∂Pi. It follows that any point p in Ω \C can be connected to a given point q in 
C by a path which intersects C in q only. Therefore the complement of any subset of C
(in particular, of K) is path connected. (The fact that Ω \K is connected follows also 
from more involved results in topological dimension theory [26, p.22 and p.48].) �
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6. Approximately differentiable functions

Definition 6.1 (Classical definition). Let f : E → R be a measurable function defined on 
a measurable set E ⊂ Rn. We say that f is approximately differentiable at x ∈ E if there 
is a linear function L : Rn → R such that for any ε > 0 the set{

y ∈ E : |f(y) − f(x) − L(y − x)|
|y − x| < ε

}
has x as a density point.

The next result provides a useful characterization of approximate differentiability, see 
[18, Proposition 5.2].

Lemma 6.2. A measurable function f : E → R defined in a measurable set E ⊂ Rn is 
approximately differentiable at x ∈ E if and only if there is a measurable set Ex ⊂ E

and a linear function L : Rn → R such that x is a density point of Ex and

lim
Ex�y→x

|f(y) − f(x) − L(y − x)|
|y − x| = 0.

If a function f is approximately differentiable at x, L is unique, and we call it ap-
proximate derivative of f at x. The approximate derivative will be denoted by Daf(x)
or simply by Df(x).

Lemma 6.3. Assume that f, g : U → R, U ⊂ Rn, are given measurable functions and 
E ⊂ U is a measurable set. If f is approximately differentiable a.e. and f = g in E, then 
g is approximately differentiable a.e. in E and

Dag(x) = Daf(x) for almost all x ∈ E. (6.1)

Proof. It easily follows from Lemma 6.2 that (6.1) is satisfied whenever x ∈ E is a density 
point of E, such that f is approximately differentiable at x. �

The next result was proved by Whitney [36].

Lemma 6.4. Let U ⊂ Rn be open. Then, a function f : U → R is approximately dif-
ferentiable a.e. if an only if for every ε > 0 there is a function fε ∈ C1(Rn) such that 
|{x ∈ U : f(x) 
= fε(x)}| < ε.

It is easy to see that if x ∈ {f = fε} is a density point of the set {f = fε}, then f is 
approximately differentiable at x and Daf(x) = Dfε(x).

The proof of the next result is similar to that of Lemma 13 in [16].
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Lemma 6.5. Let U ⊂ Rn be open. Assume that f : U → Rn is approximately differentiable 
a.e. and detDaf(x) 
= 0 a.e. Assume that V ⊂ Rn is an open set such that f(U) ⊂ V and 
g : V → Rm is approximately differentiable a.e. Then g ◦ f : U → Rm is approximately 
differentiable a.e. and

Da(g ◦ f)(x) = Dag(f(x)) ·Daf(x) for almost all x ∈ U . (6.2)

Proof. According to Lemma 6.4, there is a sequence of functions fk ∈ C1(Rn; Rn), and 
a sequence of closed sets Ek ⊂ {fk = f} such that Ek is contained in the set of density 
points of the set {fk = f}, |U \ Ek| < 1/k, and detDaf(x) 
= 0 for x ∈ Ek. Note that if 
x ∈ Ek, then Daf(x) = Dfk(x) and hence detDfk 
= 0 in Ek. It suffices to prove that 
(6.2) holds at almost all points x ∈ Ek for all k.

The mapping fk is a diffeomorphism in a neighborhood of every point of Ek and 
hence we can decompose Ek =

⋃∞
i=1 Wi into countably many compact sets Wi, such 

that f = fk is bi-Lipschitz on Wi. Clearly, it suffices to prove that (6.2) is satisfied at 
almost all points of Wi.

According to Lemma 6.4, there is a sequence of functions g� ∈ C1(Rn; Rm), and 
a sequence of closed sets F� ⊂ {g� = g} such that F� is contained in the set of density 
points of the set {g� = g}, and |V \ F�| < 1/�. Clearly, Dag(y) = Dg�(y) for y ∈ F�.

Let Mi� := f(Wi) ∩ F�. Since f is bi-Lipschitz on Wi,

∣∣∣f(Wi) \
∞⋃
�=1

Mi�

∣∣∣ = 0 implies that
∣∣∣Wi \

∞⋃
�=1

f−1(Mi�)
∣∣∣ = 0.

Therefore, it suffices to prove that (6.2) is satisfied at almost all points of each of the 
sets Zi� := Wi ∩ f−1(Mi�). This is, however, obvious because for x ∈ Zi�, f(x) = fk(x), 
Daf(x) = Dfk(x), g(f(x)) = g�(f(x)), Dag(f(x)) = Dg�(f(x)) and hence

D(g� ◦ fk)(x) = Dg�(fk(x))Dfk(x) = Dag(f(x)) ·Daf(x).

It remains to observe that since g� ◦ fk ∈ C1, and g� ◦ fk = g ◦ f on Zi�, we have that 
D(g� ◦ fk)(x) = Da(g ◦ f)(x) at all density points of Zi� and hence almost everywhere in 
Zi�. �
Lemma 6.6. Let Φ : Q → Q be an a.e. approximately differentiable homeomorphism of 
Q such that 

∫
Q | detDaΦ| = 1 and detDaΦ 
= 0 a.e. Then Φ preserves the sets of zero 

measure, i.e., both Φ and Φ−1 satisfy Lusin’s (N) condition.

Proof. By Theorem 1.3, there is a set Z ⊂ Q of measure zero and Ψ : Q → Rn such that 
Φ = Ψ on Q \ Z, Ψ satisfies Lusin’s (N) condition and (1.1) holds for any measurable 
f : Rn → R.

Since any measurable set is contained in a Borel set of the same measure, we may 
assume that Z is Borel, and thus Φ(Z) is Borel.
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Observe that whenever E ⊂ Q is measurable, so is Ψ(E). Indeed, if E′ ⊂ Q is Borel, 
then Ψ(E′ \Z) = Φ(E′ \Z) is Borel (because homeomorphisms preserve Borel sets) and 
Ψ(E′) differs from Ψ(E′ \ Z) by a subset of Ψ(Z), which has measure zero, thus Ψ(E′)
is measurable, and for any measurable E ⊂ Q there is a Borel E′ ⊃ E, |E′ \ E|=0, and 
thus Ψ(E) differs from Ψ(E′) by a subset of Ψ(E′ \ E) which has measure zero.

For any measurable E ⊂ Q setting f = χΨ(E) in (1.1) yields

∫
E

|detDaΨ(x)| dx =
∫

Ψ(E)

N(Ψ, y) dy (6.3)

Note that

• on E \ Z we have Ψ = Φ, thus by Lemma 6.3, detDaΨ = detDaΦ a.e. in E;
• since |Ψ(Z)| = 0 and Ψ−1(y) = Φ−1(y) is a singleton for y ∈ Ψ(E) \ Ψ(Z), 

N(Ψ, y) = 1 a.e. in Ψ(E);
• |Ψ(E)| = |Ψ(E \ Z)| = |Φ(E \ Z)|.

The above observations combined with (6.3) give

∫
E

|detDaΦ(x)| dx = |Ψ(E)| = |Φ(E \ Z)|. (6.4)

In particular, for E = Q we get

1 =
∫
Q

|detDaΦ(x)| dx = |Φ(Q \ Z)|,

therefore |Φ(Z)| = 0. Note also that this and (6.4) yield that

∫
E

|detDaΦ(x)| dx = |Φ(E)|. (6.5)

Assume now N ⊂ Q is a set of zero measure. Then Φ(N) = Φ(N \ Z) ∪ Φ(N ∩ Z) =
Ψ(N \ Z) ∪ Φ(N ∩ Z) ⊂ Ψ(N) ∪ Φ(Z), and since both Φ(Z) and Ψ(N) have measure 
zero, so has Φ(N). This proves that Φ satisfies Lusin’s (N) condition.

To prove that Φ−1 satisfies Lusin’s (N) condition, assume A ⊂ Q is a set of zero 
measure. We need to show that Φ−1(A) has measure zero. A priori it need not be even 
measurable.

Let A′ ⊂ Q, A ⊂ A′, be a Borel set of zero measure. Then Φ−1(A′) is Borel and thus 
measurable. Since we have just proven that Φ satisfies Lusin’s (N) condition, setting 
E = Φ−1(A′) in (6.5) we get
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∫
Φ−1(A′)

|detDaΦ(x)| dx = |A′| = 0,

and since detDaΦ 
= 0 a.e., the set Φ−1(A′) has measure zero, and so has its subset, 
Φ−1(A). �

A somewhat different proof of the following lemma can be also found in [12, Corollary 
5.1], we provide it here for convenience of the reader.

Lemma 6.7. Let U ⊂ Rn be open. Assume that Φ : U → Rn is an a.e. approximately 
differentiable homeomorphism satisfying Lusin’s (N) condition. Then Φ−1 is also a.e. 
approximately differentiable and

DaΦ−1(y) = (DaΦ)−1(Φ−1(y)) for a. e. y ∈ Φ(U). (6.6)

Proof. Since it suffices to prove (6.6) on every subdomain U ′ � U , and clearly,∫
U ′

|detDaΦ(x)| dx = |Φ(U ′)| < ∞,

we can assume that U is bounded and detDaΦ ∈ L1(U) is integrable.
Fix ε > 0 and choose η so that for any |E| < η, 

∫
E
| detDaΦ| < ε. By Lemma 6.4

and approximation of measurable sets with compact ones, we find fη ∈ C1(Rn, Rn) and 
a compact set Kη such that

fη = Φ and Dfη = DaΦ on Kη and |U \Kη| < η. (6.7)

Set

Z := {x ∈ U : Φ is approximately differentiable at x and detDaΦ(x) = 0}.

We aim to show that Φ−1 is approximately differentiable at density points of the set 
Φ(Kη \Z) and that (6.6) holds there. This suffices to prove the lemma. Indeed, by (1.2)
Φ(Z) = 0 and thus, by the choice of η,

|Φ(U) \ Φ(Kη \ Z)| ≤ |Φ(U \Kη)| + |Φ(Z)| < ε.

Consequently, approximate differentiability of Φ−1 a.e. on Φ(U) follows from arbitrari-
ness of ε.

Observe that for any y ∈ Φ(Kη \ Z), fη(Φ−1(y)) = y, detDfη(Φ−1(y)) 
= 0, and the 
inverse function theorem implies that fη is a diffeomorphism on some neighborhood of 
Φ−1(y). Denote the inverse diffeomorphism of fη restricted to a neighborhood of Φ−1(y)
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by gy so we may assume that gy is defined in By := B(y, r) for some r > 0 and fη◦gy = id
on By. In particular,

Dgy(z) = (Dfη)−1(gy(z)) for z ∈ By and gy = Φ−1 on Φ(Kη \ Z) ∩By.

Take a density point y of the set Φ(Kη \ Z) and set

L := (DaΦ)−1(Φ−1(y)) (6.7)= (Dfη)−1(gy(y)) = Dgy(y).

Since gy is differentiable at y,

lim
z→y,

z∈Φ(Kη\Z)

|Φ−1(z) − Φ−1(y) − L(z − y)|
|z − y| = lim

z→y,
z∈Φ(Kη\Z)

|gy(z) − gy(y) − L(z − y)|
|z − y| = 0,

as for z sufficiently close to y, z ∈ B(y, r), where gy is well-defined. By Lemma 6.2, this 
shows that Φ−1 is approximately differentiable at density points of Φ(Kη \ Z) and that 
(6.6) holds. As explained earlier, this finishes the proof. �
6.1. Reflection on a measurable set

Let

R :=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ . (6.8)

The main result of this section is the following theorem. It is a generalization of the main 
result in [18], which is recalled as Theorem 1.5 above.

Theorem 6.8. Let Q = [0, 1]n and let E ⊂ Q be a measurable set. Then there exists an 
almost everywhere approximately differentiable homeomorphism Φ of the cube Q onto 
itself, such that Φ|∂Q = id and

DaΦ(x) =
{
R for almost all x ∈ E,

I for almost all x ∈ Q \ E.
(6.9)

Moreover, Φ is a limit, in the uniform metric d, of C∞ volume preserving diffeomor-
phisms that are identity in a neighborhood of ∂Q.
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Remark 6.9. As detDaΦ = ±1 a.e. on Q, Lemma 6.6 implies that Φ satisfies Lusin’s 
(N) condition. It then follows from (1.2) that the homeomorphism Φ is measure pre-
serving. Moreover, by Lemma 6.7, Φ−1 is also approximately differentiable a.e. on Q
and DaΦ−1(y) = (DaΦ)−1(Φ−1(y)) for a.e. y ∈ Q. The fact that Φ is volume preserv-
ing can also be directly concluded from the fact that Φ is a limit of volume preserving 
diffeomorphisms in the metric d, see [18, Lemma 1.2].

Proof. Denote the function on the right hand side of (6.9) by λ, so (6.9) reads as DaΦ = λ

a.e. Note that

Rλ =
{
I for almost all x ∈ E,

R for almost all x ∈ Q \ E.

The homeomorphism Φ will be constructed as a limit of a sequence of measure preserving 
homeomorphisms Φj , where at almost every point the approximate derivative of Φj will 
be equal I or R; in other words, it will be equal λ(x) of Rλ(x). The main idea behind 
the construction of the sequence is as follows. If DaΦj(x) = λ(x), then x is a ‘good’ 
point. Otherwise we have a ‘bad’ point, where DaΦj(x) = Rλ(x). We want to modify 
Φj in a way that bad points will become good.

The main step in the construction of Φj+1 from Φj is based on the following idea. Let 
B ⊂ Q be the set of bad points, i.e., DaΦj = Rλ on B, and let G = Q \B, so DaΦj = λ

a.e. in G, i.e., almost all points of G are good.
Suppose K ⊂ Q is a closed cube and assume that |K ∩Φj(B)| = (1 − ε)|K|. Clearly, 

|K ∩Φj(G)| = ε|K|. That is, most of the cube K is covered by the image of bad points.
Note that DaΦj = Rλ in Φ−1

j (K) ∩ B, and DaΦj = λ a.e. in Φ−1
j (K) ∩G. We want 

to change the derivative of Φj on the bad set Φ−1
j (K) ∩B from Rλ to λ.

Denote by Ψ : Q → Q the homeomorphism Φ from Theorem 1.5. Let κ : K → Q be 
the standard similarity, and let

ΨK(y) :=
{
κ−1 ◦ Ψ ◦ κ(y) if y ∈ K

y if y ∈ Q \K.

Since Ψ is the identity on the boundary of Q, the mapping ΨK is a homeomorphism of 
Q. Then, we define Φj+1 = ΨK ◦ Φj .

It follows from the chain rule, Lemma 6.5, that DaΦj+1 = λ a.e. in Φ−1
j (K) ∩ B, so 

the bad set becomes a good one. Unfortunately, we also have that DaΦj+1 = Rλ a.e. in 
Φ−1

j (K) ∩G, so the good set is bad now. However,

|Φ−1
j (K) ∩B| = |K ∩ Φj(B)| = (1 − ε)|K| and |Φ−1

j (K) ∩G| = |K ∩ Φj(G)| = ε|K|

(because the transformation Φj is measure preserving), so we changed the bad derivative 
to the good one on a set of measure (1 − ε)|K| which is much larger than the measure 
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ε|K| of the set where the good derivative turned bad. We iterate this procedure infinitely 
many times in such a way that the measure of the set of good points converges to the 
measure of the cube Q.

In fact, in the actual construction, we will use not only one cube K to modify Φj , but 
a finite family of cubes that approximates well the measure of the set Φj(B).

By taking sufficiently small cubes we will guarantee that Φj is a Cauchy sequence in 
the uniform metric d. Thus, the sequence will converge to a homeomorphism Φ and it 
will follow that Φ satisfies (6.9).

Using the above idea, we will construct a sequence of measure preserving homeomor-
phisms {Φj}∞j=0, Φj : Q → Q, Φj |∂Q = id , that are approximately differentiable almost 
everywhere and for all j ≥ 1 satisfy:

DaΦj(x) ∈ {I,R} = {λ(x),Rλ(x)} a.e. in Q, (6.10)

|Bj | ≤ 2−j , (6.11)

d(Φj ,Φj+1) ≤ 2−j+1, |Lj | ≤ 2−j+1,
∣∣∣Bj \

∞⋃
�=j

L�

∣∣∣ = 0, (6.12)

where d is the uniform metric, Lj := {x ∈ Q : Φj 
= Φj+1}, and the set

Bj := {x ∈ Q : DaΦj(x) = Rλ(x)}

is the set of points where the approximate derivative of Φj is bad.
Before we construct such a sequence, we show that a sequence satisfying the above 

conditions converges to a homeomorphism Φ that has all the required properties, except 
for being a limit of volume preserving diffeomorphisms (we will take care of it at the end 
of the proof).

Clearly, (6.12) and Lemma 3.20 imply convergence in the uniform metric to some 
homeomorphism Φ : Q → Q that is identity on the boundary.

Note that by (6.12),

Aj := Q \
∞⋃
�=j

L�.

is an increasing sequence of measurable sets that exhaust Q up to a set of measure zero.
We have that Φ = Φj on Aj , because Φj = Φj+1 = Φj+2 = . . . on Aj , and hence

DaΦ = DaΦj = λ almost everywhere in Aj .

The first equality follows from Lemma 6.3 and the last equality follows (6.10), from the 
definition of Bj and the fact that |Aj ∩ Bj | = 0 (which is a consequence of (6.12) and 
the definition of Aj). Since the sets Aj exhaust Q up to a set of measure zero, DaΦ = λ

a.e. in Q.
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Therefore, it remains to construct the sequence Φj with the properties described above 
and after the construction is completed to prove that the homeomorphisms Φj can be 
approximated by volume preserving diffeomorphisms.

We will construct a sequence Φj by induction as a sequence of measure preserving 
homeomorphisms that are identity on the boundary, and satisfy properties (6.10) and 
(6.11). Then, the properties listed in (6.12) will be verified directly, but they are not 
needed to run the induction.

In the initial step we choose Φ0 = id : Q → Q, so obviously B0 = E (up to a 
set of measure zero) and conditions (6.10) and (6.11) are satisfied. Now suppose that 
we already constructed homeomorphisms Φ� for � ≤ j; we will describe construction of 
Φj+1 as a modification of Φj .

The homeomorphism Φ−1
j is uniformly continuous on Q, so let δj > 0 be such that 

|Φ−1
j (x) − Φ−1

j (y)| ≤ 2−j whenever |x − y| ≤ δj .
Next, we choose a finite family of closed cubes Kj

i , i = 1, . . . , mj , with pairwise disjoint 
interiors, with diamKj

i ≤ min(δj , 2−j), and such that 
⋃mj

i=1 K
j
i well approximates the 

set Φj(Bj) measurewise:

∣∣∣∣Φj(Bj) �
mj⋃
i=1

Kj
i

∣∣∣∣ ≤ 2−(j+1). (6.13)

We set Lj = Φ−1
j (
⋃mj

i=1 K
j
i ); then (6.13) and the fact that Φj is a measure preserving 

homeomorphism yields |Bj � Lj | ≤ 2−(j+1).
Note that with this choice

|Lj | ≤ |Bj | + |Bj � Lj | ≤ 2−j + 2−(j+1) < 2−j+1.

Let κj
i : Kj

i → Q be the standard similarity maps between the cubes and define

Ψj(y) :=
{

(κj
i )−1 ◦ Ψ ◦ κj

i (y) if y ∈ Kj
i ,

y if y ∈ Q \
⋃mj

i=1 K
j
i .

Clearly,

DaΨj(y) = R for almost all y ∈
mj⋃
i=1

Kj
i = Φj(Lj). (6.14)

Since the cubes Kj
i have pairwise disjoint interiors, it follows that Ψj is a measure pre-

serving homeomorphism. Moreover, Ψj |∂Q = id . Then we define Φj+1 = Ψj ◦ Φj and 
clearly Φj+1 is measure preserving, too, with Φj+1|∂Q = id . Note that Ψj is approxi-
mately differentiable a.e. and detDaΨ = ±1 a.e. on Q so by Lemma 6.5, Φj+1 which is 
the composition of Ψj with Φj , is approximately differentiable a.e. on Q.
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The homeomorphisms Φj and Φj+1 differ only on the set Lj =
⋃

i Φ
−1
j (Kj

i ). Since 

both diam Φ−1
j (Kj

i ) and diamKj
i are at most 2−j , we have d(Φj , Φj+1) ≤ 2−j+1.

Also, the definition of the set Lj and the construction of Φj+1 shows that

Lj = {x ∈ Q : Φj(x) 
= Φj+1(x)}.

It follows from Lemma 6.5 and (6.14) that

DaΦj+1(x) = DaΨj(Φj(x)) ·DaΦj(x) = RDaΦj(x) for almost all x ∈ Lj .

Thus, DaΦj+1 = λ on Lj ∩Bj . Also,

DaΦj+1(x) = DaΦj(x) for almost all x ∈ Q \ Lj ,

so DaΦj+1 = λ on (Q\Lj) \Bj . This means that the set Bj+1 of points where DaΦj+1 =
Rλ is contained (modulo a set of measure zero) in the complement of the union of these 
two sets, which is Bj � Lj , and hence

|Bj+1| ≤ |Bj � Lj | ≤ 2−(j+1).

This completes the proof that Φj+1 satisfies the induction hypothesis. What is left to 

prove is the last part of (6.12), 
∣∣∣Bj \

⋃∞
�=j L�

∣∣∣ = 0.
To see that, it suffices to realize that for all k > j the mappings Φk have bad derivative 

DaΦk = Rλ at almost all points of Bj \
⋃∞

�=j L�, because Φk is obtained from Φj by a 
sequence of modifications which happen only in 

⋃∞
�=j L�. Thus Bj \

⋃∞
�=j L� ⊂

⋂
k≥j Bk

(modulo a set of measure zero). Since |Bk| → 0, it follows that 
∣∣∣Bj \

⋃∞
�=j L�

∣∣∣ = 0.
Now it remains to show that the homeomorphism Φ can be approximated in the metric 

d by volume preserving diffeomorphisms that are identity in a neighborhood of ∂Q.
Let Ψk

d→ Ψ be a sequence of volume preserving diffeomorphisms, Ψk = id near ∂Q, 
from Theorem 1.5. Note that the diffeomorphisms

Ψj,k :=
{

(κj
i )−1 ◦ Ψk ◦ κj

i (y) if y ∈ Kj
i ,

y if y ∈ Q \
⋃mj

i=1 K
j
i

are volume preserving and Ψj,k = id near ∂Q. Clearly, Ψj,k
d→ Ψj as k → ∞.

An easy induction on j shows that Φj can be approximated in the metric d by C∞

volume preserving diffeomorphisms Φj,k that are identity near ∂Q. If j = 0, then Φ0 = id
and we can take Φ0,k := Φ0. If the claim is true for j, Φj,k

d→ Φj , then, it is easy to 

check that Φj+1,k := Ψj,k ◦Φj,k
d→ Ψj ◦Φj = Φj+1. Therefore, for each j, we can find kj

such that d(Φj,kj
, Φj) < 2−j and hence Φj,kj

d→ Φ. �
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7. Proof of Theorem 1.4

Proof of Theorem 1.4.

7.1. Reduction to the case detT > 0

It suffices to prove Theorem 1.4 under an additional assumption that detT > 0 a.e. 
Indeed, assume that we have already proven Theorem 1.4 under this assumption and, 
for a general T , let

T̂ (x) =
{
T (x) if detT ≥ 0,
RT (x) if detT < 0,

where R is defined in (6.8). Then det T̂ = | detT | > 0 a.e. Let Φ̂ be the almost everywhere 
approximately differentiable homeomorphism provided by Theorem 1.4 with T̂ in place 
of T , DaΦ̂ = T̂ a.e.

Let E := {detT < 0}. Note that since Φ̂ satisfies the Lusin (N) condition, the set 
Ê := Φ̂(E) is measurable (because E is the union of a Borel set and a set of measure 
zero). Theorem 6.8 yields an a.e. approximately differentiable homeomorphism Φ′ such 
that Φ′|∂Q = id and

DaΦ′(x) =
{
R for a.e. x ∈ Ê,

I for a.e. x ∈ Q \ Ê.

Then Lemma 6.5 implies that the composition Φ := Φ′ ◦ Φ̂ is a.e. approximately differ-
entiable and satisfies the chain rule (6.2), so for a.e. x ∈ Q we have

DaΦ(x) = DaΦ′(Φ̂(x))DaΦ̂(x) =
{
RRT (x) for a.e. x ∈ E,

I T (x) for a.e. x ∈ Q \ E

}
= T (x). (7.1)

Obviously, Φ|∂Q = id and, since Φ′ is measure preserving (see Remark 6.9) and Φ̂
preserves sets of measure zero, Φ preserves sets of measure zero as well.

Since by Theorem 6.8 and Theorem 1.4 the homeomorphisms Φ′ and Φ̂ can be ap-
proximated in the uniform metric d by C∞-diffeomorphisms Φ′

k and Φ̂k, Φ′
k = Φ̂k = id

near ∂Q, one can easily check that

Φ′
k ◦ Φ̂k

d→ Φ′ ◦ Φ̂ = Φ.

It remains to check that Φ−1 is approximately differentiable a.e. on Q and DaΦ−1(y) =
T−1(Φ−1)(y) for a.e. y ∈ Q. Indeed, Φ−1 = Φ̂−1 ◦ Φ′ −1 and both Φ̂−1 (by The-
orem 1.4) and Φ′ −1 (see Remark 6.9) are approximately differentiable a.e. on Q. 
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Since detDa(Φ′ −1) 
= 0 a.e. (Remark 6.9), Φ−1 is approximately differentiable a.e. by 
Lemma 6.5. Then applying the chain rule (6.2) to Φ−1 ◦Φ = I yields that the derivative 
of Φ−1 has the required form.

This concludes the proof of Theorem 1.4 in the general case, provided we can prove 
it for T such that detT > 0 a.e. in Q.

Thus, from now on, we assume that detT > 0 a.e.

7.2. General outline of the construction

The general plan of the proof is as follows: To construct a homeomorphism Φ such 
that Φ|∂Q = id and DaΦ = T a.e., we shall iterate the construction from Theorem 1.2
on the smaller and smaller subsets of Q on which the derivative is not yet as required.

We inductively show that there exists a family of orientation preserving C1-
diffeomorphisms Φk of Q and Borel sets Ck ⊂ Q with the following properties for 
k ≥ 1:

(i) Φk = id near ∂Q;
(ii) Φk+1 = Φk on Ck;
(iii) DΦk = T on Ck;
(iv) Ck is an increasing family of sets, C1 ⊂ C2 ⊂ · · · , with limk→∞ |Ck| = 1;
(v) d(Φk, Φk+1) < 2−(k−1) for k ≥ 2.

The limit map Φ := limk→∞ Φk is the required homeomorphism. Indeed, property (v) 
implies that (Φk) is a Cauchy sequence in the uniform metric d, hence its limit is a home-
omorphism as shown in Lemma 3.20. By (i), Φ = id on ∂Q. Note that Φ = Φk on Ck by 
(ii) and (iv). Therefore, Lemma 6.3 and (iii) imply that

DaΦ = T a. e. on
∞⋃
k=1

Ck,

and hence DaΦ = T a.e. on Q, because |Ck| → 1.
At this point, let us stress that Lemma 6.6 implies that Φ and Φ−1 satisfy the Lusin 

(N) condition which is part (b) of Theorem 1.4 and property (a) follows directly from 
Lemma 6.7.

Finally, Φk are C1-diffeomorphisms, identity near ∂Q, that converge to Φ in the 
uniform metric d, but according to Lemma 3.21, each Φk can be approximated in the 
metric d by C∞-diffeomorphisms and (c) follows.

This completes the proof of Theorem 1.4 and it remains to construct diffeomorphisms 
Φk and Borel sets Ck satisfying (i)-(v).

The construction of the family Φk and of the sets Ck is complicated. In fact, the sets 
Ck are not constructed inductively, but defined only at the end, when all the steps of 
the inductive construction are concluded.
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The actual inductive construction provides a quadruple (Φk, Pk, Ek, Lk)∞k=1:

• a diffeomorphism Φk of Q onto itself; the diffeomorphism Φk is constructed by a 
modification of Φk−1,

• a partition Pk of the unit cube; the corrections leading from Φk−1 to Φk are done 
at a small scale, i.e., within the elements of the partition Pk−1.

• a large set Ek, on which DΦk = T ,
• a small set Lk ⊂ Ek−1 such that Φk = Φk−1 on Ek−1 \Lk (although DΦk−1 = T on 

Ek−1, for technical reasons in the construction of Φk from Φk−1 we alter Φk on the 
subset Lk of Ek−1),

• the sets Ck are constructed at the very end by (7.5).

To be more precise, we have, for k ≥ 1,

(a) a C1-diffeomorphism Φk : Q → Q, Φk = id near ∂Q;
(b) a compact set Ek ⊂ Q such that DΦk = T on Ek;
(c) 2−(k+1) < |Q \ Ek| < 2−k;
(d) a Borel set Lk ⊂ Ek−1 for k ≥ 2, such that Φk = Φk−1 on Ek−1 \Lk and |Lk| < 2−k;
(e) a partition Pk of the unit cube, Pk = {Pki}Mk

i=1 for k ≥ 2, such that

Φk(Pk−1,i) = Φk−1(Pk−1,i) for k ≥ 3, (7.2)

|Φk(Pki)| =
∫
Pki

detT (x) dx for k ≥ 2, (7.3)

diamPki < 2−k, diam Φk(Pki) < 2−k for k ≥ 2. (7.4)

We will show that the family of diffeomorphisms (Φk) with properties (a)-(e) satisfies 
conditions (i)-(v) for

Ck :=
∞⋂
j=k

(Ej \ Lj+1) . (7.5)

Conditions (i) and (a) are the same. Clearly, Ck ⊂ Ek, which means that condition (iii) 
is satisfied. Applying (d) with k + 1 in place of k, we get Φk+1 = Φk on Ek \ Lk+1 and 
since Ck ⊂ Ek \ Lk+1, condition (ii) also holds. Since the sets Ck form an increasing 
family of sets, in order to show (iv), it remains to check that limk→∞ |Ck| = 1.

For the sake of this calculation, set Aj := Ej \ Lj+1. Since Lj+1 ⊂ Ej and in view of 
(c) and (d),

|Q \Aj | = |Q \ Ej | + |Lj+1| < 2−j + 2−(j+1) = 3 · 2−(j+1). (7.6)

Therefore,
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|Q \ Ck| =
∣∣∣Q \

∞⋂
j=k

Aj

∣∣∣ = ∣∣∣ ∞⋃
j=k

(Q \Aj)
∣∣∣ ≤ ∞∑

j=k

|Q \Aj | < 3
∞∑
j=k

2−(j+1) = 3 · 2−k.

This implies that

|Ck| > 1 − 3 · 2−k

and since |Ck| ≤ 1, this shows that |Ck| → 1 and finishes the proof of (iv). It remains to 
show (v).

It follows from condition (e) that for k ≥ 3 the diffeomorphism Φk is a modification 
of Φk−1 in each of the sets Pk−1,i, i.e., Φk(Pk−1,i) = Φk−1(Pk−1,i). Hence

‖Φk − Φk−1‖∞ ≤ max
i

{
diam Φk−1(Pk−1,i)

}
< 2−(k−1),

‖Φ−1
k − Φ−1

k−1‖∞ ≤ max
i

{diamPk−1,i} < 2−(k−1),

so d(Φk, Φk−1) < 2 · 2−(k−1) = 2−(k−2) and (v) follows. The proof of properties (i)-(v) is 
complete.5

7.3. Construction of Φ1 and Φ2

By a direct application of Theorem 1.2, we obtain a diffeomorphism Φ1 of the unit 
cube, Φ1 = id near ∂Q, and a compact set E1 such that DΦ1 = T on E1 and 1/4 <
|Q \ E1| < 1/2. Note that Φ1 and E1 satisfy conditions (a)-(e), because conditions (d) 
and (e) do not apply to k = 1.

We shall now describe in detail the construction of Φ2, which demonstrates all the 
crucial aspects of the construction of Φk based on Φk−1. The induction step for general 
k will be described later.

In the course of the proof we use two numbers α = 1/2, β = 3/4. We write α, β
instead of the actual fractions as we believe it makes it easier to transfer this argument 
to the proof for arbitrary k. Note that |E1| > 1 − α.

We begin with correcting the way Φ1 distributes measure so that we are later able to 
apply Theorem 1.2 in sets of smaller diameter. To this end, we use Proposition 5.8 for 
the compact set Φ1(E1) and functions

f(y) = detT (Φ−1
1 (y)) detDΦ−1

1 (y) and g(y) = 1.

We check that (5.16) is satisfied. By change of variables,∫
Q

detT (Φ−1
1 (y)) detDΦ−1

1 (y) dy =
∫

Φ−1
1 (Q)

detT (x) dx =
∫
Q

detT (x) dx =
∫
Q

1 dx.

5 In the construction of Φ2 from Φ1, we modify Φ1 in Q, so in this step we use the trivial partition 
P1 = {Q}.
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Moreover, since DΦ1 = T on E1, we have f(y) = g(y) for all y ∈ Φ1(E1). Therefore, the 
assumptions of Proposition 5.8 are satisfied.

By Proposition 5.8, we get a diffeomorphism Ψ : Q → Q, a partition R = {R2i}2nN2
i=1

of Q and a compact set K̃ ⊂ Φ1(E1) with properties described below.
Partition R is a diffeomorphic dyadic partition and satisfies

diam Ψ(R2i) < 1/4 and diam(Φ−1
1 (R2i)) < 1/4 (7.7)

(we use here the uniform continuity of Φ−1
1 ) and∫

R2i

f(y) dy = |Ψ(R2i)|,

which after a change of variables in the integral becomes∫
Φ−1

1 (R2i)

detT (x) dx = |Ψ(R2i)|. (7.8)

We find η > 0 such that for any measurable set A ⊂ Q with |A| < η, 
∫
A

det DΦ−1
1 <

α2/2. We choose K̃ ⊂ Φ1(E1) so that

|Φ1(E1) \ K̃| < η.

Moreover, Ψ = id near K̃ ∪∂Q. In view of the inequality above, setting K := Φ−1
1 (K̃) ⊂

E1, we have

|E1 \K| = |Φ−1
1 (Φ1(E1) \ K̃)| < α2/2. (7.9)

Eventually, we set

Φ̃2 := Ψ ◦ Φ1 and P2 := {P2i}M2
i=1, where M2 = 2nN2 , and P2i := Φ−1

1 (R2i).

Then (7.7) and (7.8) become

diam Φ̃2(P2i) < 1/4, diam(P2i) < 1/4,
∫
P2i

detT (x) dx = |Φ̃2(P2i)|, (7.10)

i.e., diffeomorphism Φ̃2 satisfies (e) for k = 2 (condition (7.2) does not apply to k = 2). 
Observe also that Φ̃2 = Φ1 near K ∪ ∂Q. Consequently,

DΦ̃2 = T on K, Φ̃2 = id near ∂Q and Φ̃2 = Φ1 on K ⊂ E1. (7.11)
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We construct Φ2 by replacing Φ̃2 inside each P2i with a diffeomorphism Φ2i which has 
correct derivative DΦ2i = T on a larger set. To this end, we would like to keep Φ̃2 on K
unchanged and apply Theorem 1.2 to the open set P̊2i \K. Unfortunately, this set need 
not be connected and Theorem 1.2 cannot be applied. To overcome this difficulty we use 
Lemma 5.12 to find a compact set Ẽ2i ⊂ P̊2i ∩K so that P̊2i \ Ẽ2i is connected and

|(P̊2i ∩K) \ Ẽ2i| < α2/(2M2). (7.12)

Set

Ẽ2 :=
M2⋃
i=1

Ẽ2i ⊂ E1 and L2 := E1 \ Ẽ2.

Clearly, Ẽ2 is compact and summing (7.12) over i = 1, . . . , M2 yields

|K \ Ẽ2| < α2/2.

By (7.9), we arrive at

|L2| = |E1 \ Ẽ2| = |E1 \K| + |K \ Ẽ2| < α2. (7.13)

Consequently,

|Ẽ2| = |E1| − |L2| > 1 − α− α2. (7.14)

Let us stress that Ẽ2 ⊂ K so (7.11) yields

DΦ̃2 = T on Ẽ2 (7.15)

and

Φ̃2 = Φ1 on Ẽ2 = E1 \ L2. (7.16)

Although DΦ1 = T on E1, as explained earlier, the set L2 is the set on which we will 
have spoiled the already prescribed derivative of Φ1. This is the cost we bear in order to 
be able to prescribe the derivative farther. One can also think of the set Ẽ2 as the set of 
points in which the prescribed derivative survives the transition from Φ1 to Φ2.

Let us now focus on applying Theorem 1.2, i.e., correcting the derivative of Φ̃2. The 
set

Ω2i := P̊2i \ Ẽ2i

is open and connected. Observe that, setting Ω2 :=
⋃

i Ω2i,
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|Ω2| = |Q \ Ẽ2|,

since the set Ω2 coincides with Q \ Ẽ2 up to a set of measure zero which consists of 
boundaries of the diffeomorphic cubes P2i. We check that Ω2i satisfies

|Φ̃2(Ω2i)| = |Φ̃2(P2i)| − |Φ̃2(Ẽ2i)|
(7.10)=

∫
P2i

detT (x) dx−
∫
Ẽ2i

detDΦ̃2(x) dx

(7.15)=
∫
P2i

detT (x) dx−
∫
Ẽ2i

detT (x) dx =
∫

Ω2i

detT (x) dx.
(7.17)

We are now in position to use Theorem 1.2 for the domain Ω2i and the diffeomorphism 
Φ̃2. We find a diffeomorphism Φ2i : Ω2i → Φ̃2(Ω2i) and a compact set E′

2i ⊂ Ω2i such 
that

DΦ2i = T on E′
2i, Φ2i = Φ̃2 near ∂Ω2i and |E′

2i| > β|Ω2i|. (7.18)

Let

E′
2 :=

M2⋃
i=1

E′
2i.

Clearly, E′
2 is compact. By the third condition in (7.18), we have

|E′
2| > β|Ω2| = β|Q \ Ẽ2|.

We replace the diffeomorphism Φ̃2 with Φ2i inside each Ω2i, setting

Φ2 :=
{

Φ2i on Ω2i,

Φ̃2 on Q \ Ω2.

Observe that thanks to the second condition in (7.18), Φ2 is indeed a diffeomorphism. 
Moreover, Φ2 = Φ̃2 near 

⋃
i ∂P2i. Since ∂Q ⊂

⋃
i ∂P2i, Φ2 = id near ∂Q, whence (a) 

holds.
Note that Ẽ2 ⊂ Q \ Ω2 and Φ2 = Φ̃2 in a neighborhood of Ẽ2. Hence, the first 

condition in (7.18) together with (7.15) implies that

DΦ2 = T on Ê2 := E′
2 ∪ Ẽ2.

We calculate
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|Ê2| = |E′
2| + |Ẽ2| > β|Q \ Ẽ2| + |Ẽ2| = β|Q| + (1 − β)|Ẽ2|

(7.14)
> β + (1 − β)(1 − α− α2) = 1 − α(1 + α)(1 − β)

> 1 − α2,

since β > 1/(1 +α). Therefore, |Q \ Ê2| < α2 = 1/4. By discarding some points from Ê2
if necessary, we obtain a compact set E2 ⊂ Ê2 such that 1/8 < |Q \ E2| < 1/4. Clearly, 
DΦ2 = T on E2.

Let us check if Φ2 satisfies properties (a)-(e). We have already verified conditions (a), 
(b) and (c). Moreover, in view of (7.10), (e) holds as well, because Φ2(P2i) = Φ̃2(P2i)
((7.2) does not apply to k = 2). Since Φ2 = Φ̃2 on Ẽ2 = E1 \ L2, recalling (7.16) and 
(7.13), we see that (d) also holds.

7.4. Construction of Φk given Φk−1

Let k ≥ 3. As in the construction of Φ2, we use α = 1/2 and β = 3/4. We assume that 
we have found Φk−1 satisfying properties (a)-(e) for k− 1 instead of k and we show how 
to construct Φk. In fact, we only need the following properties from the previous step:

• Φk−1 : Q → Q, Φk−1 = id near ∂Q,
• DΦk−1 = T on a compact set Ek−1, αk < |Q \ Ek−1| < αk−1,
• Φk−1(Pk−1,i) =

∫
Pk−1,i

detT (x) dx.

In the construction of Φ2 from Φ1, we alter Φ1 inside Q while keeping Φ2 = Φ1 near ∂Q. 
In the construction of Φk from Φk−1 we repeat the same construction, but we alter Φk−1
inside each diffeomorphic closed cube Pk−1,i while keeping Φk = Φk−1 near ∂Pk−1,i. 
Therefore, the crucial though technical difference between the construction for k ≥ 3
is that we do not use Proposition 5.8 (stated for a closed cube) but Proposition 5.11
(stated for a diffeomorphic closed cube).

Define Ek−1,i := Ek−1 ∩ Pk−1,i for i = 1, . . . , Mk−1. Note that Ek−1,i is compact and 
that | 

⋃
i Ek−1,i| = |Ek−1|.

Let us firstly show that it suffices to construct for i = 1, . . . , Mk−1

• a family of diffeomorphisms Φki : Pk−1,i → Φk−1(Pk−1,i),
• compact sets Êki ⊂ P̊k−1,i,
• Borel sets Lki ⊂ Ek−1,i,
• a partition Pki = {Pkij}2nNki

j=1 of Pk−1,i

such that

(1) Φki = Φk−1 near ∂Pk−1,i;
(2) DΦki = T on Êki;
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(3) |Êki| > β|Pk−1,i| + (1 − β)|Ek−1,i \ Lki|;
(4) Φki = Φk−1 on Ek−1,i \ Lki and |Lki| < αk M−1

k−1;
(5) partition Pki is a diffeomorphic dyadic partition and satisfies for j = 1, . . . , 2nNki

|Φki(Pkij)| =
∫

Pkij

detT (x) dx

and

diamPkij < 2−k, diam Φki(Pkij) < 2−k.

We set

Φk := Φki on Pk−1,i.

By condition (1), Φk is indeed a diffeomorphism and Φk = id near ∂Q, which is (a). 
Next, we set

Êk :=
Mk−1⋃
i=1

Êki and Lk :=
Mk−1⋃
i=1

Lki ⊂ Ek−1.

Since DΦk = DΦki = T on Êki, we have that DΦk = T on Êk.
Summing (4) over i = 1, . . . , Mk−1, we readily see that Φk = Φk−1 on Ek−1 \ Lk and 

|Lk| < αk, i.e., (d) holds. Moreover, summing (3) over i = 1, . . . , Mk−1 and recalling 
that |Ek−1| > 1 − αk−1, we get

|Êk| > β|Q| + (1 − β)|Ek−1 \ Lk| > β + (1 − β)(1 − αk−1 − αk) > 1 − αk,

so |Q \ Êk| < αk. By discarding some points from Êk if necessary, we can find another 
compact set Ek ⊂ Êk such that αk+1 < |Q \ Ek| < αk. Clearly, DΦk = T on Ek i.e., 
conditions (b) and (c) are satisfied. It remains to verify (e).

We define the partition6 Pk as the union of partitions Pki

Pk =
Mk−1⋃
i=1

2nNki⋃
j=1

{Pkij}.

After re-enumeration of the diffeomorphic cubes Pkij, we can write

Pk =
Mk⋃
�=1

{Pk�}, where Mk =
Mk−1∑
i=1

2nNki .

6 While Pki are a diffeomorphic dyadic partitions, Pk need not be, because we might divide each of the 
diffeomorphic cubes Pk−1,i into a different number of diffeomorphic dyadic cubes.
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Since Φk = Φki on Pk−1,i, and Φki = Φk−1 near ∂Pk−1,i, it follows that Φk(Pk−1,i) =
Φk−1(Pk−1,i), which is (7.2). Since Pk� = Pkij for some i, j and Φk = Φki on Pk� =
Pkij ⊂ Pk−1,i, condition (5) yields

|Φk(Pk�)| = |Φki(Pkij)| =
∫

Pkij

detT (x) dx =
∫
Pk�

detT (x) dx,

which is (7.3). Also

diamPk� = diamPkij < 2−k and diam Φk(Pk�) = diam Φki(Pkij) < 2−k,

which is (7.4). This completes the proof of (e) and hence that of (a)-(e).
Fix any i = 1, . . . , Mk−1. We shall now show that given Φk−1, we can construct Φki

as described above. As before, we begin by correcting the way Φk−1 distributes measure 
so that the subsequent corrections from Φk−1 to Φk are made at a smaller scale. To 
this end, we use Proposition 5.11 for the diffeomorphic closed cube Φk−1(Pk−1,i), the 
compact set Φk−1(Ek−1,i) and functions

f(y) = detT (Φ−1
k−1(y)) detDΦ−1

k−1(y) and g(y) = 1.

We check that (5.20) is satisfied by change of variables and the inductive assumption (7.3)
for Φk−1,∫

Φk−1(Pk−1,i)

detT (Φ−1
k−1(y)) detDΦ−1

k−1(y) dy =
∫

Pk−1,i

detT (x) dx (7.3)= |Φk−1(Pk−1,i)|

=
∫

Φk−1(Pk−1,i)

1 dx.

Moreover, since DΦk−1 = T on Ek−1,i, we have f(y) = g(y) for all y ∈ Φk−1(Ek−1,i). 
Therefore, assumptions of Proposition 5.11 are satisfied.

By Proposition 5.11, we get a diffeomorphism Ψi : Φk−1(Pk−1,i) → Φk−1(Pk−1,i), 
a partition Rki = {Rkij}2nNki

j=1 of Φk−1(Pk−1,i) and a compact set K̃i ⊂ Φk−1(Ek−1,i)
with properties described below.

Partition Rki is a diffeomorphic dyadic partition and satisfies an analogue of (7.7)
and (7.8), namely

diam Ψi(Rkij) < 2−k, diam(Φ−1
k−1(Rkij)) < 2−k, (7.19)

and ∫
Φ−1 (R )

detT (x) dx = |Ψi(Rkij)|. (7.20)
k−1 kij
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We find η > 0 such that for any measurable set A ⊂ Q,

|A| < η ⇒
∫
A

detDΦ−1
k−1 <

αk

2Mk−1
.

We choose a compact set K̃i ⊂ Φk−1(Ek−1,i) so that

|Φk−1(Ek−1,i) \ K̃i| < η.

Moreover, Ψi = id near K̃i ∪ ∂(Φk−1(Pk−1,i)). In view of the inequality above, setting 
Ki := Φ−1

k−1(K̃i) ⊂ Ek−1,i, we have

|Ek−1,i \Ki| <
αk

2Mk−1
. (7.21)

Eventually, we set

Φ̃ki := Ψi ◦ Φk−1 in Pk−1,i and Pki := {Pkij}2nNki

j=1 , where Pkij := Φ−1
k−1(Rkij).

Then (7.19) and (7.20) become

diam Φ̃ki(Pkij) < 2−k, diam(Pkij) < 2−k,

∫
Pkij

detT (x) dx = |Φ̃ki(Pkij)|, (7.22)

i.e., diffeomorphism Φ̃ki satisfies (5). Observe also that

Φ̃ki = Φk−1 near Ki ∪ ∂Pk−1,i so DΦ̃ki = T on Ki ⊂ Ek−1,i. (7.23)

We will now replace Φ̃ki inside each Pkij with a diffeomorphism Φkij which has correct 
derivative on a larger set.

As explained earlier, above inequality (7.12), we need to use Lemma 5.12 to get 
a compact set Ẽkij ⊂ P̊kij ∩Ki such that P̊kij \ Ẽkij is connected and

|(P̊kij ∩Ki) \ Ẽkij | < αk 2−nNki−1M−1
k−1. (7.24)

Set

Ẽki :=
2nNki⋃
j=1

Ẽkij ⊂ Ki and Lki := Ek−1,i \ Ẽki.

Clearly, Ẽki ⊂ P̊k−1,i. Summing (7.24) over j = 1, . . . , 2nNki yields
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|Ki \ Ẽki| <
αk

2Mk−1
.

By (7.21), we arrive at

|Lki| = |Ek−1,i \Ki| + |Ki \ Ẽki| < αkM−1
k−1. (7.25)

Consequently,

|Ẽki| = |Ek−1,i| − |Lki| > |Ek−1,i| − αk M−1
k−1. (7.26)

Let us stress that Ẽki ⊂ Ki so (7.23) yields

DΦ̃ki = T on Ẽki. (7.27)

and

Φ̃ki = Φk−1 on Ẽki = Ek−1,i \ Lki. (7.28)

Although DΦk−1 = T on Ek−1,i, the set Lki is the set on which we will have spoiled 
the already prescribed derivative of Φk−1. On the other hand, the set Ẽki consists of 
points in which the prescribed derivative survives the transition from Φk−1 to Φki and, 
as we will soon see, to Φk.

We now correct the derivative of Φ̃ki. The set

Ωkij := P̊kij \ Ẽkij

is open and connected. Observe that, setting Ωki :=
⋃

j Ωkij ,

|Ωki| = |Pk−1,i \ Ẽki|.

Exactly as in (7.17), invoking (7.22) and (7.27) instead of (7.10) and (7.15), we check 
that Ωkij satisfies

|Φ̃ki(Ωkij)| =
∫

Ωkij

detT (x) dx.

We are now in the position to use Theorem 1.2 for the domain Ωkij and the diffeo-
morphism Φ̃ki. We find a diffeomorphism Φkij : Ωkij → Φ̃ki(Ωkij) and a compact set 
E′

kij ⊂ Ωkij such that

DΦkij = T on E′
kij , Φkij = Φ̃ki near ∂Ωkij and |E′

kij | > β|Ωkij |. (7.29)

and thus Φkij(Ωkij) = Φ̃ki(Ωkij). Let
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E′
ki :=

2nNki⋃
j=1

E′
kij ⊂ P̊k−1,i.

By the third condition in (7.29), we have

|E′
ki| > β|Ωki| = β|Pk−1,i \ Ẽki|.

We replace the diffeomorphism Φ̃ki with Φkij inside each Ωkij , setting

Φki :=
{

Φkij on Ωkij ,

Φ̃ki on Pk−1,i \ Ωki.

Observe that thanks to the second condition in (7.29), Φki is indeed a diffeomorphism.
Moreover, Φki = Φ̃ki near ∂Pk−1,i ⊂

⋃
j ∂Pkij . Since Φ̃ki = Φk−1 near ∂Pk−1,i, 

property (1) follows.
Since Φki = Φ̃ki near 

⋃
j ∂Pkij , Φki(Pkij) = Φ̃ki(Pkij), so (7.22) proves property (5).

Note that Ẽki ⊂ P̊k−1,i \ Ωki and Φki = Φ̃ki in a neighborhood of Ẽki, so the first 
condition in (7.29) together with (7.27) implies that

DΦki = T on Êki := E′
ki ∪ Ẽki ⊂ P̊k−1,i.

Note that Êki is compact as a finite sum of compact sets. This proves property (2). We 
calculate

|Êki| = |E′
ki| + |Ẽki| > β|Pk−1,i \ Ẽki| + |Ẽki| = β|Pk−1,i| + (1 − β)|Ek−1,i \ Lki|,

where the last equality follows from Ẽki = Ek−1,i \ Lki. This proves (3).
Since Φki = Φ̃ki on Ẽki = Ek−1,i \ Lki, recalling (7.28) and (7.25), we see that (4) 

also holds.
We verified conditions (1)-(5) and that completes the proof of the theorem. �

Appendix A

Lemma A.1. Let E ⊂ Rn, n ≥ 1, be a measurable set of finite measure. Then the space 
of measurable functions f : E → R is complete with respect to the Lusin metric dL.

Proof. Let {fk}k be a Cauchy sequence. It suffices to show that it has a convergent 
subsequence in the metric dL. To this end, we will show that a subsequence {fk�

}� such 
that

dL(fk�
, fk�+1) = |{fk�


= fk�+1}| < 2−(�+1)

is convergent. Let
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A� := {fk�
= fk�+1} and C :=

∞⋃
�=1

∞⋂
i=�

Ai.

Note that for any �,

|E \ C| ≤
∣∣∣E \

∞⋂
i=�

Ai

∣∣∣ ≤ ∞∑
i=�

|E \Ai| < 2−�, so |E \ C| = 0.

If x ∈ C, then x ∈
⋂∞

i=� Ai for some � and hence

fk�
(x) = fk�+1(x) = fk�+2(x) = . . . so f(x) := lim

�→∞
fk�

(x)

exists for all x ∈ C and hence for almost all x ∈ E. In fact, f(x) = fk�
(x) for x ∈

⋂∞
i=� Ai

and hence

dL(f, fk�
) ≤
∣∣∣E \

∞⋂
i=�

Ai

∣∣∣ < 2−�,

proving that fk�
→ f in the metric dL. �
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