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ABSTRACT
In this paper, we show the existence of weak a solution to the
equation

(−�g)
su(x) = f (x)u(x)−q(x) in�,

u > 0 in�,

u = 0 in R
N \�

where� is a smooth bounded domain inR
N, q ∈ C1(�̄), and (−�g)

s

is the fractional g-Laplacian with g is the antiderivative of a Young
function and f in suitable Orlicz space. This includes the mixed frac-
tional (p, q)−Laplacian as a special case. The solution so obtained is
also shown to be locally Hölder continuous.
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1. Introduction

Nonlocal problems have been a subject of immense interest in mathematics recently. Var-
ious studies have been published to verify if the results of the Laplace operator can be
suitably generalized for problems involving fractional Laplacian (−�)s and its general-
ization. Here and throughout the paper, s is understood to be a number in (0, 1), unless
specified otherwise. Continuing with the spirit of recent developments in the study of
nonlocal operators, in this article, we consider the following problem

(−�g)
su(x) = f (x)u(x)−q(x) in�,

u > 0 in�,

u = 0 in R
N \�,

(1)

with� being a smooth bounded domain in R
N and q is a non-negative C1 function in�,

and the fractional g-Laplacian operator is defined as

(−�g)
su(x) :=

∫
RN

g
(
u(x)− u(y)

|x − y|s
)

dy
|x − y|N+s

with g : [0,∞) → R is a right continuous function satisfying the following assumptions:
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(Ha) g(0) = 0; g(t) > 0 for t>0 and limt→+∞ g(t) = ∞.
(Hb) g is convex on (0,∞).
(Hc) g′ is nondecreasing on (0,∞), and hence on R \ {0}.

Given g : R → R, we define G : [0,∞) → [0,∞), called the N-function or Young’s
function by

G(t) :=
∫ t

0
g(τ ) dτ .

We also assume the following additional conditions on G and g:

(He) g = G′ is absolutely continuous, so it is differentiable almost everywhere.
(Hf )

∫ 1
0

G−1(τ )

τ
N+s
N

dτ < ∞ and
∫ ∞
1

G−1(τ )

τ
N+s
N

dτ = ∞.

(Hg) There exist p+, p− such that

1 < p− − 1 ≤ tg′(t)
g(t)

≤ p+ − 1 ≤ ∞ t > 0.

Note that we will always be assuming conditions (Ha)–(Hg) on g and G throughout the
whole paper until otherwise specified. In literature, G is known as a Young function or an
N-function.

Remark 1.1: The following examples of G fits our framework:

(i) Gp(t) := 1
p t

p, where p ≥ 2.
(ii) If one takes Gp1,p2(t) := 1

p1 t
p1 + 1

p2 t
p2 , where p1, p2 ≥ 2. One gets,

(−�gp1,p2 )
s = (−�p1)

s + (−�p2)
s.

(iii) For a, b, c>0 and g(t) = ta log(b + ct) we get,

G(t) = t1+a

(1 + a)2

[
H2
1

(
1 + a, 1, 2 + a,−ct

b

)
+ (1 + a) log(b + ct)− 1

]

with p− = 1 + a, p+ = 2 + a, where H2
1 is a hyper geometric function.

Before we start with the preliminaries, let us briefly recall some related literature con-
cerning the singular problems. Singular problems have a long history starting from the
seminal work of Crandall–Rabinowitz–Tartar [1], where for a suitably regular f, the prob-
lem −�u = f (x)u−δ was considered in a bounded domain and is shown to admit a
classical solution irrespective of the sign of δ > 0, subject to Dirichlet boundary condition.
The classical solution so obtainedwas shown to be theweak solution provided 0 < δ < 3 in
another celebrated work of Lazer–Mckenna [2]. Singularly perturbed problems were also
studied in [3, 4] and the reference therein. The case of f ∈ Lp(�), p ≥ 1 was first treated in
Boccardo–Orsina [5], who showed the existence and regularity results for different cases of
m and δ. One may find the p-Laplace generalization of Boccardo–Orsina’s work in Scuinzi
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et al. [6], where the delicate issue of uniqueness was also addressed. Anisotropic Laplacians
with singular nonlinearities have also been dealt with in several papers, see [7–9] to name
a few. In [10], the fractional problem given by

(−�)su(x) = λf (x)u(x)−γ + Mup in�,

u > 0 in�,

u = 0 in R
N \�,

(2)

was first considered under the condition that n>2s, M ≥ 0, 0< s<1, 1 < p < 2∗
s − 1

and shown to admit a distributional solution for f ∈ Lm(�) and λ > 0 small. In [11], the
authors studied the problem

(−�p)
su(x) = f (x)u(x)−γ in�,

u > 0 in�,

u = 0 in R
N \�,

and proved the existence and uniqueness results. The first instance, to the best of our
knowledge of studying variable exponent singularitieswas inCarmona–Martínez–Aparicio
[12] where the rather surprising phenomenon of the restriction of the nonlinearity to 1
near the boundary of the domain for aweak solutionwas studied in contrast to the constant
exponentwhere such restriction is imposed on thewhole domain. Similar problems involv-
ing fractional p-Laplacian with variable exponent may be found in Garain–Mukherjee
[13], Giacomoni–Mukherjee–Sreenadh [14] and Mukherjee–Sreenadh [15]. However, by
considering the Orlicz setup, we can address a large class of interesting problems in one go.

In Section 2, we recall some preliminary results which are already known in literature.
In Section 3, we state and prove our main results Theorems 3.2, 3.3, and 3.4.

2. Preliminaries

Let us start by introducing the reader to the functional setup related to the fractional
Orlicz–Sobolev spaces. A detailed discussion can be found in [16–18]. Throughout the
section, we shall assume� to be a bounded domain and s ∈ (0, 1). Throughout the rest of
the article, C will stand for a generic constant, which may vary in each of its appearances.
First, we define the modular functions:

MLG(�)(f ) :=
∫
�
G(|f (x)|) dx and MWs,G(�)(f ) :=

∫
�

∫
�
G

( |f (x)− f (y)|
|x − y|s

)
dx dy

|x − y|N .

The Banach space

LG(�) :=
{
f : � → R measurable

∣∣∣∣ ∃ λ > 0 such thatMLG(�)

(
f
λ

)
< ∞

}

is called the Orlicz space. This space is equipped with the norm

‖f ‖LG(�) := inf
{
λ > 0

∣∣∣∣ MLG(�)

(
f
λ

)
≤ 1

}
.
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The infimum in the above definition is known to be achieved. The fractional
Orlicz–Sobolev spaces are defined as

Ws,G(�) :=
{
f ∈ LG(�)

∣∣∣∣ ∃ λ > 0 such thatMWs,G(�)

(
f
λ

)
< ∞

}
.

This space is equipped with the seminorm

‖f ‖Ws,G(�) := inf
{
λ > 0

∣∣∣∣ MWs,G(�)

(
f
λ

)
≤ 1

}
.

However, we shall mainly be working with the spaces defined by

Ŵs,G(�) :=
{
f ∈ LGloc(R

N) : ∃U � � s.t ‖f ‖Ws,G(U)

+
∫

RN
g
( |f (x)|
1 + |x|s

)
dx

(1 + |x|)n+s < ∞
}

and,

Ws,G
0 (�) :=

{
f ∈ Ws,G(RN)

∣∣ f ≡ 0 on R
N \�

}
.

It is clear thatWs,G
0 (�) ⊆ Ŵs,G(�). We equipWs,G

0 (�) with the norm ‖ · ‖Ws,G(RN). Note
that forG(t) = tp; 1 < p < ∞, LG(�) andWs,G(�) are well known Lebesgue space Lp(�)
and the fractional Sobolev spaceWs,p(�) respectively (see [19, p. 524]).

We now discuss some properties of these spaces which we shall use in the next section.
We start by observing that the assumption (Hg) implies

2 < p− ≤ tg(t)
G(t)

≤ p+ < ∞, t > 0. (3)

To see this, note that assumption (Hg) implies (tg(t))′ ≤ p+G(t)′. The following two
lemmas will be used frequently in the rest of the article.

Lemma 2.1: Let G be an N-function, and let g = G′ satisfy (Ha)–(Hg). Then

λp
−
G(t) ≤ G(λt) ≤ λp

+
G(t) ∀ λ ≥ 1, ∀ t > 0, (4)

where p+, p− is the constant as defined in (Hg). The above inequality is equivalent to

λp
−
G(t) ≥ G(λt) ≥ λp

+
G(t) ∀ 0 ≤ λ ≤ 1, ∀ t > 0.

Proof: For any λ > 1,

log(λp
−
) =

∫ λt

t

p−

τ
dτ ≤

∫ λt

t

g(τ )
G(τ )

dτ ≤
∫ λt

t

p+

τ
dτ = log(λp

+
).

This implies

log(λp
−
) ≤ log

(
G(λt)
G(t)

)
≤ log

(
λp

+)
.

The lemma follows. �



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 5

An immediate consequence of Lemma 2.1 is the following

Lemma 2.2: When ‖f ‖Ws,G(�) ≤ 1,

‖f ‖p+
Ws,G(�)

≤ MWs,G(�)(f ) ≤ ‖f ‖p−
Ws,G(�)

,

and when ‖f ‖Ws,G(�) ≥ 1,

‖f ‖p−
Ws,G(�)

≤ MWs,G(�)(f ) ≤ ‖f ‖p+
Ws,G(�)

.

Lemma 2.3: Let G be an N-function satisfying (Ha)–(Hg). For any two real numbers a and
b, we have

(g(b)− g(a))(b − a) ≥ C(G) G(|b − a|).
for some constant C depending on the N-function G.

Proof: By the symmetry of the inequality, it is enough to prove this lemma for the cases
0 < a ≤ b and a<0<b. In the first case, using Taylor’s theorem with an integral form of
reminder, we have

G(|b − a|) = G(0)+ g(0)|b − a| + 1
2

∫ b−a

0
g′(t)(b − a − t) dt

= b − a
2

∫ b

a
g′(t − a)

b − t
b − a

dt ≤ b − a
2

∫ b

a
g′(t) dt

= (b − a)(g(b)− g(a))
2

the case 0 ≥ a ≥ b follows similarly.
Now suppose a<0<b. Using convexity of G, we get

G
( |b − a|

2

)
= G

(
b + (−a)

2

)
≤ 1

2
(G(b)+ G(−a)) ≤ 1

2

(
bg(b)
p− + (−a)g(−a)

p−

)

≤ 1
2p− (bg(b)+ ag(a)− ag(b)− bg(a)) = 1

2p− (g(b)− g(a))(b − a).

�

Definition 2.4: Let G be an N-function.

(1) The N-function G is called the conjugate of G, and is defined by

G(t) :=
∫ t

0
g(τ ) dτ ,

where

g(t) := sup
{
τ |g(τ ) ≤ t

}
.



6 K. BAL ET AL.

(2) The N-function G∗, defined by

G−1∗ (t) :=
∫ t

0

G−1(τ )

τ
N+s
N

dτ ,

is called the Sobolev conjugate of G.
(3) G is said to be essentially stronger than an N-function H, written as H ≺≺ G, if for

any k>0,

lim
t→∞

H(kt)
G(t)

= 0.

Lemma 2.5 (Hölder Inequality): Let G be an N-function, N ≥ 1, and� ⊆ R
N. Then, we

have for any u, v : � → R, ∫
�

|uv| ≤ ‖u‖LG(�)‖v‖LG(�)

An N-function G is said to satisfy the�2-condition if G is doubling, equivalently if the
second inequality in Equation (4) is satisfied.

Lemma 2.6 ([18, Corollary 6.2]): Let G be an N-function which satisfy the �2-condition.
Then there exists a constant C = C(n,G,�) such that for any u ∈ Ws,G

0 (�),
∫
�
G(u(x)) dx ≤ C

∫
RN

∫
RN

G
(
u(x)− u(y)

|x − y|s
)

dx dy
|x − y|N .

Lemma 2.7 ([20, Theorems 1 and 2] and Lemma 2.6): Let G be an N-function, and let�
be a bounded open subset of R

N with C0,1-regularity. Then we have the following:

(1) the embedding Ws,G
0 (�) → LG∗(�), is continuous.

(2) Moreover, for any N-function H, the embedding Ws,G
0 (�) → LH(�) is compact if

H ≺≺ G.

The above result is not optimal. For recent developments in this direction, we refer the
reader to [21], especially to Sections 6 and 9 there.

Lemma 2.8 (Weak Harnack Inequality, [22, Theorem 3.2]): If u ∈ Ŵs,G(B3−1R) satisfies
weakly {

(−�g)
su(x) ≥ 0 if x ∈ �

u(x) ≥ 0 if x ∈ R
N

then there exists σ ∈ (0, 1) such that

inf
B4−1R

u ≥ σRsg−1

( ∫−
BR\B2−1R

g(R−s|u|) dx
)
.
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3. Main results

We begin this section by stating the definition of our weak solution.

Definition 3.1 (Weak solutions): The function u ∈ Ŵs,G(�) is said to be a weak solution
of Equation (1) if u>0 in�, and for any ϕ ∈ C∞

c (�) one has,
f

uq(·) ∈ L1loc(�) and∫
RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy =
∫
�
f (x)u(x)−q(x)φ(x) dx. (5)

The boundary condition is understood in the sense that

(1) if q(x) ≤ 1 on�δ := {x ∈ � | dist (x, ∂�) < δ}, then u ∈ Ws,G
0 (�).

(2) Elsewhere one has,�(u) ∈ Ws,G
0 (�), where

�(t) :=
∫ t

0
G−1

(
G(1)τ q

∗−1
)
dτ .

Furthermore, we say that u is a subsolution (or supersolution) of Equation (1) if, for any
ϕ ∈ C∞

c (�),∫
RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy ≤ (or ≥)
∫
�
f (x)u(x)−q(x)ϕ(x) dx. (6)

We are now ready to state our main results.

Theorem 3.2: Let there exist δ > 0 such that q(x) ≤ 1 on�δ := {x ∈ � | dist (x, ∂�) < δ}
and f ∈ LG∗(�). Then Equation (1) has a weak solution in Ws,G

0 (�) with essinfKu > 0 for
any K � �.

Theorem 3.3: Let g is sub-multiplicative and there exist q∗ > 1, δ > 0 such that
‖q‖L∞(�δ) ≤ q∗ and let

H(t) := G∗

(
t
p−+q∗−1

p−q∗
)

be an N-function such that f ∈ LH(�). Then Equation (1) has a weak solution u ∈ Ws,G
loc (�)

with essinfKu > 0 for any K � � such that�(u) ∈ Ws,G
0 (�), where

�(t) :=
∫ t

0
G−1

(
G(1)τ q

∗−1
)
dτ .

Theorem 3.4: Every weak solution of Equation (1) obtained through Theorems 3.2 and 3.3
belongs to Cαloc(�) for some α ∈ (0, 1).

In order to prove Theorems 3.2, 3.3, and 3.4, we first need to develop some results which
are needed in the proves. The first result is a comparison principle.
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Lemma 3.5 (Comparison Principle): Let u, v ∈ C(RN) with [u]Ws,G(RN), [v]Ws,G(RN) <

∞, and D ⊆ R
N be a domain such that |RN \ D| > 0. If v ≥ u in R

N \ D, and
∫

RN

∫
RN

g
(
v(x)− v(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy

≥
∫

RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy

for ϕ = (u − v)+, then v ≥ u in R
N.

Proof: We need to show that v ≥ u inD. The two integrals can be shown to be finite using
Hölder’s inequality and the assumptions on g. Then we have

∫
RN

∫
RN

[
g
(
v(x)− v(y)

|x − y|s
)

− g
(
u(x)− u(y)

|x − y|s
)]

ϕ(x)− ϕ(y)
|x − y|N+s dx dy ≥ 0.

This, and the identity

g(t2)− g(t1) = (t2 − t1)
∫ 1

0
g′((t2 − t1)τ + t1) dτ ,

gives ∫
RN

∫
RN

(
v(x)− v(y)− u(x)+ u(y)

)
Q(x, y)

ϕ(x)− ϕ(y)
|x − y|N+2s dx dy ≥ 0, (7)

where

Q(x, y) :=
∫ 1

0
g′

(
(v(x)− v(y)− u(x)+ u(y))τ + u(x)− u(y)

|x − y|s
)

dτ .

From the assumption on g, we know g′ ≥ 0. So Q(x, y) ≥ 0, and Q(x, y) = 0 if and only if
the integrand is identically zero. Again this happens if and only if v(x) = v(y) and u(x) =
u(y).

Choose ϕ = (u − v)+ and ψ := u − v. Equation (7), then, becomes∫
RN

∫
RN

Q(x, y)
(ϕ(x)− ϕ(y))(ψ(y)− ψ(x))

|x − y|N+2s dx dy ≥ 0. (8)

We can see that, after choosing ϕ := (u − v)+, and using the fact that ψ+(y)ψ−(y) = 0,

(ϕ(x)− ϕ(y))(ψ(y)− ψ(x))

= −(ψ+(x)− ψ+(y))2 − ψ−(y)ψ+(x)− ψ−(x)ψ+(y) ≤ 0.

This along with Equation (8), and the fact that Q(x, y) ≥ 0 implies Q(x, y) = 0 or
−(ψ+(x)− ψ+(y))2 − ψ−(y)ψ+(x)− ψ−(x)ψ+(y) = 0 almost everywhere. In both the
cases, we must have ψ+(x) = ψ+(y) for a.e. (x, y). Since (u − v)+ = 0 on R

N \ D, by
continuity of u, v, we conclude that ψ+ = 0 on R

N . This implies v ≥ u on R
N . �
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Lemma 3.6: Let g be sub-multiplicative, that is, there is a constant C>0 for which
Cg(t1t2) ≤ g(t1)g(t2) for any t1, t2 > 0. Let F and u be such that∫

RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy =

∫
�
Fϕ dx,

for any ϕ ∈ Ws,G
0 (�). Then for any convex and Lipschitz function�, we have∫

�
F(x)g(�′(u(x)))�(u) dx ≥ C

∫
RN

∫
RN

G
( |�(u(x))−�(u(y))|

|x − y|s
)

dx dy
|x − y|N .

Proof: First, note that, by density argument, we can assume � to be C1. Choose ϕ =
g(�′(u))ψ . Then we have

2
∫∫

{u(x)>u(y)}
g
(
u(x)− u(y)

|x − y|s
)
g(�′(u(x)))ψ(x)− g(�′(u(y)))ψ(y)

|x − y|N+s dx dy

=
∫

RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
g(�′(u(x)))ψ(x)− g(�′(u(y)))ψ(y)

|x − y|N+s dx dy

=
∫
�
F(x)g(�′(u(x)))ψ(x) dx.

Set u(x) = a, u(y) = b, ψ(x) = A and ψ(y) = B. Then the integrand in the LHS becomes

g
(

a − b
|x − y|s

)
g(�′(a))A − g(�′(b))B

|x − y|N+s .

Using the convexity of�, we have

�(a)−�(b) ≤ �′(a)(a − b) and �(a)−�(b) ≥ �′(b)(a − b).

We then have

g
(

a − b
|x − y|s

)
g(�′(a))A − g(�′(b))B

|x − y|N+s

≥ g
(

a − b
|x − y|s

) g
(
�(a)−�(b)

a−b

)
A − g

(
�(a)−�(b)

a−b

)
B

|x − y|N+s

= g
(

a − b
|x − y|s

)
g
(
�(a)−�(b)

a − b

)
A − B

|x − y|N+s

≥ Cg
(
�(a)−�(b)

|x − y|s
)

A − B
|x − y|N+s .

This, after taking ψ = �(u) (note that� is assumed to be C1), gives∫
�
F(x)g(�′(u(x)))�(u) dx ≥ C

∫
RN

∫
RN

G
( |�(u(x))−�(u(y))|

|x − y|s
)

dx dy
|x − y|N .

�
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Lemma 3.7: Let f ∈ L∞(�) with f ≥ 0, and f is not identically zero. Then the problem
⎧⎪⎨
⎪⎩
(−�g)

su = f , in�,
u > 0, in�,
u = 0, in R

N \�
(9)

has a unique solution u ∈ Ws,G
0 (�) ∩ L∞(�).

Proof: The existence, uniqueness, and continuity follows from [18, Theorem 6.16],
Lemma 2.8, and the fact that f ≥ 0, so that (−�g)

su ≥ 0 on �, using Lemma 3.5. It
remains to show that u ∈ L∞(�). For this, we shall assume, without loss of generality, that
� ⊆ B(0, 1) and fix α > 1.

Let us consider

vα(x) =
{
α(1 − |x|), when |x| < 1,
0, otherwise.

Note that for since α > 1, for any 0 < λ < 1 we have, using Lemma 2.1 and Equation (3),

the estimate g(αλt) > p−αp−−1λp
+−1G(t)

t when t>0. Again, for x ∈ � ⊆ B(0, 1) ⊆ B(x, 1 +
|x|) we get

(−�g)
svα(x) ≥

∫
|y|>1

g
(
vα(x)− vα(y)

|x − y|s
)

dy
|x − y|N+s

=
∫

|y|>1
g
(

vα(x)
|x − y|s

)
dy

|x − y|N+s

≥ p−αp−−1(1 − |x|)p+−1
∫

|y|>1
G

(
1

|x − y|s
)

dy
|x − y|N

= p−αp−−1(1 − |x|)p+−1
∫

|y|>1
G

(
1

(1 + |y|)s
)

dy
(1 + |y|)N → ∞

uniformly as α → ∞. Thus, as f is bounded, we can choose α large enough to get
(−�)sgvα > (−�)sgu. Applying Lemma 3.5 we get u ≤ vα in R

N . Thus, u is bounded. �

We consider the following approximated problem of Equation (1), where we used the
notation, fn = min{f , n} for all n ∈ N, and assumed q>0 is C1,

(−�g)
su(x) = fn(x)(

u(x)+ 1
n
)q(x) in�,

u > 0 in�,

u = 0 in R
N \�. (10)

Lemma 3.8: For a fixed n ∈ N, Equation (10) has a weak solution un ∈ Cα(n)(�) where
α(n) ∈ (0, 1) ∀ n ∈ N.
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Proof: Note that fn(x)
(u+(x)+ 1

n )
q(x) ∈ L∞(�). Hence by Lemma 3.7, there exists a unique

solution w ∈ Ws,G
0 (�) ∩ L∞(�) to the problem

(−�g)
sw(x) = fn(x)

(u+(x)+ 1
n )

q(x)
in�,

w > 0 in�,

w = 0 in R
N \�.

This allows us to define the operator S : Ws,G
0 (�) → Ws,G

0 (�) by S(u) = w the solution of

∫
RN

∫
RN

g
(
w(x)− w(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy =
∫
�

fn(x)ϕ(x)
(u(x)+ + 1

n )
q(x)

dx.

Multiplying both sides of this equation by w, we get

∫
RN

∫
RN

g
(
w(x)− w(y)

|x − y|s
)
(w(x)− w(y))

|x − y|N+s dx dy

=
∫
�

fn(x)w(x)
(u(x)+ + 1

n )
q(x)

dx ≤ n1+‖q‖L∞(�)‖w‖L1(�).

Applying Equation (3), we get

∫
RN

∫
RN

G
( |w(x)− w(y)|

|x − y|s
)

dx dy
|x − y|N

≤ 1
p−

∫
RN

∫
RN

g
( |w(x)− w(y)|

|x − y|s
) |w(x)− w(y)|

|x − y|N+s dx dy

= 1
p−

∫
RN

∫
RN

g
(
(w(x)− w(y))

|x − y|s
)
(w(x)− w(y))

|x − y|N+s dx dy

≤ n1+‖q‖L∞(�)

p− ‖w‖L1(�).

Assume ‖w‖Ws,G
0 (�)

> 1,

1

‖w‖p−
Ws,G

0 (�)

∫
RN

∫
RN

G
( |w(x)− w(y)|

|x − y|s
)

dx dy
|x − y|N

≥
∫

RN

∫
RN

G

(
|w(x)− w(y)|

‖w‖Ws,G
0 (�)

|x − y|s
)

dx dy
|x − y|N = 1.
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So, we have

‖w‖p−

Ws,G
0 (�)

≤ n1+‖q‖L∞(�)

p− ‖w‖L1(�),
and consequently, by Lemma 2.7,

‖w‖p−−1
Ws,G

0 (�)
≤ Cn1+‖q‖L∞(�)

provided ‖w‖Ws,G
0 (�)

> 1. Setting R := max
{
1, (Cn1+‖q‖L∞(�))

1
p−−1

}
, we can see that S

maps the ball of radius R in the metric space Ws,G
0 (�), into itself. The proof will now be

complete if we show that S is continuous and compact.
Proof of continuity of S: Assume that ui → u inWs,G

0 (�). Set wi = S(ui) and w = S(u).
So that we have for any ϕ ∈ Ws,G

0 (�),∫
RN

∫
RN

g
(
wi(x)− wi(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy =
∫
�

fn(x)ϕ(x)(
ui(x)+ + 1

n
)q(x) dx and (11)

∫
RN

∫
RN

g
(
w(x)− w(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy =
∫
�

fn(x)ϕ(x)(
u(x)+ + 1

n
)q(x) dx. (12)

We have to show that wi → w in Ws,G
0 (�). By Lemma 2.7, passing to a subsequence,

ui → u in LG∗(�) and ui → u a.e. in�. Set wi := wi − w. Subtracting Equation (??) from
Equation (11), with the choice ϕ = wi, and then applying Lemma 2.3 for a = w(x)−w(y)

|x−y|s
and, b = wi(x)−wi(y)

|x−y|s , we get

C(G)
∫

RN

∫
RN

G
( |wi(x)− wi(y)|

|x − y|s
)

dx dy
|x − y|N dx dy

≤
∫
�
fn(x)

(
1(

ui(x)+ + 1
n
)q(x) − 1(

u(x)+ + 1
n
)q(x)

)
(wi(x)− w(x)) dx.

We apply Lemma 2.2 on the left-hand side and Hölder inequality on the right-hand side
of this equation to get,

C(G)min
{
‖wi − w‖p+

Ws,G , ‖wi − w‖p−
Ws,G

}

≤ C

∥∥∥∥∥fn(x)
(

1(
ui(x)+ + 1

n
)q(x) − 1(

u(x)+ + 1
n
)q(x)

)∥∥∥∥∥
LG′∗

‖wi − w‖LG∗

≤ C

∥∥∥∥∥fn(x)
(

1(
ui(x)+ + 1

n
)q(x) − 1(

u(x)+ + 1
n
)q(x)

)∥∥∥∥∥
LG′∗

‖wi − w‖Ws,G ,

where the last inequality follows from Lemma 2.6. This gives

min
{
‖wi − w‖p+−1

Ws,G , ‖wi − w‖p−−1
Ws,G

}
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≤ C

∥∥∥∥∥fn(x)
(

1(
ui(x)+ + 1

n
)q(x) − 1(

u(x)+ + 1
n
)q(x)

)∥∥∥∥∥
LG′∗

.

Now observe that∣∣∣∣∣fn(x)
(

1(
ui(x)+ + 1

n
)q(x) − 1(

u(x)+ + 1
n
)q(x)

)∣∣∣∣∣ ≤ 2nq(x)+1 ≤ 2n‖q‖L∞+1.

Hence, as ui → u pointwise a.e., by DCT it follows that wi → w in Ws,G
0 . Thus S is

continuous.
Proof of compactness of S: Assume that ui is a bounded sequence inWs,G

0 (�). As before,
denote wi := S(ui). We wish to show that wi has a convergent subsequence in Ws,G

0 (�).
From Equation (11), Lemmas 2.5 and 2.2, we get

min
{
‖wi‖p

+
Ws,G , ‖wi‖p

−
Ws,G

}
≤ C(G)

∫
RN

∫
RN

G
(
wi(x)− wi(y)

|x − y|s
)

dx dy
|x − y|N

≤ C(G)
∫

RN

∫
RN

g
(
wi(x)− wi(y)

|x − y|s
)
(wi(x)− wi(y))

|x − y|N+s dx dy

= C(G)
∫
�

fn(x)wi(x)(
ui(x)+ + 1

n
)q(x) dx ≤ n1+‖q‖L∞(�)‖wi‖L1(�)

≤ Cn1+‖q‖L∞(�)‖wi‖Ws,G(�).

This shows that wi is a bounded sequence inWs,G
0 (�). From the boundedness of the two

sequences, ui,wi, we conclude that there exists u,w ∈ Ws,G
0 (�) such that ui ⇀ u andwi ⇀

w inWs,G
0 (�). We now want to show S(u) = w, that is for any ϕ ∈ C∞

c (�),∫
RN

∫
RN

g
(
w(x)− w(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy =
∫
�

fn(x)ϕ(x)(
u(x)+ + 1

n
)q(x) dx. (13)

Note that we already know

∫
RN

∫
RN

g
(
wi(x)− wi(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy =
∫
�

fn(x)ϕ(x)(
ui(x)+ + 1

n
)q(x) dx. (14)

By DCT, it is seen easily that the right-hand side of Equation (14) converges to the right-
hand side of Equation (13). It remains to show the convergence of the left-hand side. Note
that, under the hypotheses on g, we get that g is a bijection ofR onto itself. In this case g, as
defined in Definition 2.4 becomes g−1.We have, by the definition of conjugateN-function,
change of variable, hypothesis Hg ,

G(g(t)) =
∫ g(t)

0
g−1(τ ) dτ =

∫ t

0
τg′(τ ) dτ ≡

∫ t

0
g(τ ) dτ = G(t).
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Using this and the fact that wi’s are bounded in Ws,G
0 (�), we have that g

( |wi(x)−wi(y)|
|x−y|s

)
is a bounded sequence in LG

(
1

|x−y|N ,R
N × R

N
)
hence it has a weakly convergent subse-

quence. Thus we conclude that, up to a subsequence,

g
( |wi(x)− wi(y)|

|x − y|s
)
⇀ g

( |w(x)− w(y)|
|x − y|s

)

weakly in LG
(

1
|x−y|N ,R

N × R
N
)
. Now, since |ϕ(x)−ϕ(y)|

|x−y|s ∈ LG
(

1
|x−y|N ,R

N × R
N
)
,

∫
RN

∫
RN

g
( |wi(x)− wi(y)|

|x − y|s
) |ϕ(x)− ϕ(y)|

|x − y|N+s dx dy

→
∫

RN

∫
RN

g
( |w(x)− w(y)|

|x − y|s
) |ϕ(x)− ϕ(y)|

|x − y|N+s dx dy

Since the solution so obtained is in un ∈ Ws,G
0 (�) ∩ L∞(�) and hence it isCα(n)(�)where

α(n) ∈ (0, 1), ∀ n ∈ N by Theorem 1.1 of Bonder et al. [22]. �

Lemma 3.9: Assume g to be convex on (0, 1). The sequence of functions {un}n, found in
Lemma 3.8 satisfies

un(x) ≤ un+1(x), for almost every x ∈ �,
and for any compact set K ⊆ �, there exists a constant l = l(K) > 0 such that for any n,
large enough,

un(x) ≥ l for almost every x ∈ K.

Proof: Set the notation wn(x) = (un(x)− un+1(x))+. Then we note that, for any x ∈ �,
and fn(x) ≤ fn+1(x),

∫
�

fn(x)
(un(x)+ 1

n )
q(x)

wn(x) dx −
∫
�

fn+1(x)(
un+1(x)+ 1

n+1

)q(x)wn(x) dx

=
∫
�

(
fn(x)(

un(x)+ 1
n

)q(x) − fn+1(x)(
un+1(x)+ 1

n+1

)q(x)
)
wn(x) dx

=
∫
�

(
fn(x)(

un(x)+ 1
n

)q(x) − fn+1(x)(
un+1(x)+ 1

n+1

)q(x)
)
(un(x)− un+1(x))+ dx

≤
∫

{un(x)>un+1(x)}
fn+1(x)

((
un+1(x)+ 1

n+1

)q(x) − (
un(x)+ 1

n

)q(x)
(
un(x)+ 1

n

)q(x) (un+1(x)+ 1
n+1

)q(x)
)
(un − un+1)

+ dx

≤ 0.

Then the above calculation and Equation (10) implies∫
RN

∫
RN

g
(
un(x)− un(y)

|x − y|s
)
wn(x)− wn(y)

|x − y|N+s dx dy
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≤
∫

RN

∫
RN

g
(
un+1(x)− un+1(y)

|x − y|s
)
wn(x)− wn(y)

|x − y|N+s dx dy.

Now [22, Theorem 1.1] implies that both un, un+1 are Hölder continuous up to the bound-
ary. So, we can apply Lemma 3.5 to get un ≤ un+1 a.e. on R

N . This concludes the proof of
the first part.

The second part follows from the continuity of un, and Lemma 2.8, which gives un > 0
on�. �

Proof of Theorem 3.2: By Lemma 3.8, Equation (10) has a weak solution un. Let ϕ ∈
C∞
c (�). We have∫

RN

∫
RN

g
(
un(x)− un(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy =

∫
�

fn(x)ϕ(x)(
un(x)+ 1

n
)q(x) dx. (15)

First, we claim:

lim
n→∞

∫
RN

∫
RN

g
(
un(x)− un(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy

=
∫

RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy. (16)

Proof of the claim: Set ωδ := � \�δ . Then by Lemma 3.9, there exists a constant l>0 such
that un ≥ l > 0 on ωδ . We get, using Lemma 2.7, and choosing ϕ = un,

C(G)
∫

RN

∫
RN

G
( |un(x)− un(y)|

|x − y|s
)

dx dy
|x − y|N

≤
∫

RN

∫
RN

g
(
un(x)− un(y)

|x − y|s
)
un(x)− un(y)

|x − y|N+s dx dy

=
∫
�

fn(x)un(x)(
un(x)+ 1

n
)q(x) dx

=
∫
�δ

fn(x)un(x)(
un(x)+ 1

n
)q(x) dx +

∫
ωδ

fn(x)un(x)(
un(x)+ 1

n
)q(x) dx

≤
∫
�δ∩{un≤1}

fn(x) dx +
∫
�δ∩{un>1}

fn(x)un(x) dx +
∫
ωδ

fn(x)un(x)
lq(x)

dx

≤ ‖f ‖L1(�) + (1 + ‖l−q(·)‖L∞(ωδ))‖f ‖LG∗ (�)‖un‖LG∗ (�)

≤ ‖f ‖L1(�) + C1‖un‖Ws,G
0 (�)

.

Assuming α := ‖un‖Ws,G
0 (�)

> 1, we get, using Lemma 2.1,

1 =
∫

RN

∫
RN

G
( |un(x)− un(y)|

α|x − y|s
)

dx dy
|x − y|N

≤ 1
αp

−

∫
RN

∫
RN

G
( |un(x)− un(y)|

|x − y|s
)

dx dy
|x − y|N ≤ ‖f ‖L1(�)

αp
− + C1

1
αp

−−1
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This shows that ‖un‖Ws,G
0 (�)

must be bounded. So un ⇀ u inWs,G
0 weakly. By Lemma 2.7,

un → u strongly in L1(�), and hence un → u pointwise a.e. up to a subsequence.
Now applying Lemma 2.1

G(g(t)) =
∫ g(t)

0
g(τ ) dτ =

∫ t

0
g(g(τ ))g′(τ ) dτ =

∫ t

0
τg′(τ ) dτ .

This implies

(p− − 1)G(t) ≤ G(g(t)) ≤ (P+ − 1)G(t). (17)

This, along with Lemma 2.2, shows that the sequence of functions (x, y) �→ g
(
un(x)−un(y)

|x−y|s
)

is bounded in LG
(
R
N × R

N , dx dy
|x−y|N

)
. So it has a weakly convergent subsequence; without

loss of generality, we assume it to be itself. It is easy to check that the the function (x, y) �→
ϕ(x)−ϕ(y)

|x−y|s is in LG
(
R
N × R

N , dx dy
|x−y|N

)
. Hence Equation (16) follows and the claim is true.

Now, in order to complete the proof, taking into account Equation (15), we only need
to show the convergence of the right-hand side of Equation (15). Note that∣∣∣∣∣ fn(x)ϕ(x)(

un(x)+ 1
n
)q(x)

∣∣∣∣∣ ≤ |l−q(x)f (x)ϕ(x)| ∈ L1(�),

where we get l from applying Lemma 3.9 on supp (ϕ). Therefore, we can apply DCT to get

lim
n→∞

∫
�

fn(x)ϕ(x)(
un(x)+ 1

n
)q(x) dx =

∫
�

f (x)ϕ(x)
u(x)q(x)

dx.

Hence the proof is complete. �

Lemma 3.10: For any a, b ∈ R, we have

|g(a)− g(b)| ≤ C
|a − b|g(|a| + |b|)

|a| + |b| ≤ Cg(|a| + |b|).

Proof:

g(b)− g(a) =
∫ 1

0
g′(a + (b − a)t)(b − a) dt.

Now since g′ is increasing one has for t ∈ (0, 1), |a + (b − a)t| ≤ ||a| + |b||. So we get
|g(a)− g(b)| ≤ |a − b|g′(|a| + |b|).

The results now follow trivially using the hypothesis on g. �

Lemma 3.11: Let � : (0,∞) → (0,∞) be a strictly convex, C1-function such that �′ is
increasing and there exists θ1, θ2 ≥ 0 such that θ1�(x)x ≤ �′(x) ≤ θ2

�(x)
x . For x, y ∈ R and

ε > 0, define Sxε := {x ≥ ε} ∩ {y ≥ 0}, and Syε := {x ≥ 0} ∩ {y ≥ ε}. Then for (x, y) ∈ Sxε ∪
Syε,

|�(x)−�(y)| ≥ C�′(ε)|x − y| with C := max(θ1, 1).
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Proof: By symmetry, without loss of generality, we can assume x> y. Now for some λ ∈
(y, x), we have�(x)−�(y) = �′(λ)(x − y). If we assume x ≥ y ≥ ε > 0, then we have

|�(x)−�(y)| ≥ �′(λ)|x − y| ≥ �′(ε)|x − y|.
For, 0 ≤ y < ε ≤ x, then by strict convexity of�, we get

�(x)−�(y)
x − y

≥ �(x)
x

≥ θ1�
′(x) ≥ θ1�

′(ε)

thus concluding the assertion. �

Lemma 3.12: Let �, H, f, q be as in Theorem 3.3, un be as in Lemma 3.8. Then there is a
constant C>0, independent of n such that ‖�(un)‖Ws,G

0 (�)
, ‖�(u)‖Ws,G

0 (�)
≤ C, where u is

the pointwise limit of un.

Proof: We have, for t>0,

�(t) :=
∫ t

0
G−1

(
G(1)τ q

∗−1
)
dτ ,

that is

�′(t) := G−1
(
G(1)tq

∗−1
)
,

which gives, applying the fact that�′(t) is increasing and hence�(t) ≤ t�′(t),

g(�′(t))�(t) = �′(t)g(�′(t))
G(�′(t))

G(�′(t))�(t)
�′(t)

≤ p+G(1)tq∗−1 �(t)
�′(t)

≤ p+G(1)tq∗
. (18)

Using Equation (18), Lemma 3.6, and the fact q∗ > 1 we have∫
RN

∫
RN

G
( |�(un(x))−�(un(y))|

|x − y|s
)

dx dy
|x − y|N

≤ C
∫
�

fn(x)(
un(x)+ 1

n

)q(x) g(�′(un(x)))�(un(x)) dx

= C
(∫

�δ ,un<1
+

∫
�δ ,un≥1

+
∫
ωδ ,un<1

+
∫
ωδ , un≥1

)
fn(x)(

un(x)+ 1
n

)q(x) g(�′(un(x)))�(un(x))

≤ C
∫
�∩{un<1}

fn(x)+ C
∫
�∩{un≥1}

fn(x)un(x)q
∗
. (19)

Set r := p−
p−+q∗−1 . We have, for large enough t0, and for any t > t0,

t
1
r = 1

r

∫ 1

0
τ

1
r −1 dτ + 1

r

∫ t

1
τ

1
r −1 dτ ≤ 2

r

∫ t

1
τ

1
r −1G−1(G(1)) dτ

≤ 2
r

∫ t

1
G−1

(
G(1)τ

p−(1−r)
r

)
dτ ≤ 2

r

∫ t

0
G−1

(
G(1)τ

p−(1−r)
r

)
dτ = 2

r
�(t). (20)
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Applying Equation (20) on Equation (19) and then using Hölder’s inequality, and finally
the fact that |fn| ≤ |f |, we get∫

RN

∫
RN

G
( |�(un(x))−�(un(y))|

|x − y|s
)

dx dy
|x − y|N

≤ C
∫
�∩{un<1}

fn(x)+ C
∫
�∩{un≥1}

fn(x)�(un(x))rq
∗

≤ C‖fn‖L1(�) + C‖fn‖LH(�)‖�(un)rq
∗‖LH(�)

≤ C‖f ‖L1(�) + C‖f ‖LH(�)‖�(un)rq
∗‖LH(�). (21)

Observe that
∥∥∥�rq∗

(un)
∥∥∥
LH(�)

= inf

{
λ > 0

∣∣∣∣∣
∫
�
H

(
�(un)rq

∗

λ

)
≤ 1

}

= inf

{
λrq

∗
> 0

∣∣∣∣∣
∫
�
H

(
�(un)rq

∗

λrq
∗

)
≤ 1

}

=
(
inf

{
λ > 0

∣∣∣∣∣
∫
�
H

(
�(un)rq

∗

λrq
∗

)})rq∗

=
(
inf

{
λ > 0

∣∣∣∣
∫
�
G∗

(
�(un)
λ

)})rq∗

= ‖�(un)‖rq
∗

LG∗ (�),

to see the last line recall that G∗(t) := H(trq∗
). Combining this with Equation (21) gives∫

RN

∫
RN

G
( |�(un(x))−�(un(y))|

|x − y|s
)

dx dy
|x − y|N ≤ C‖f ‖L1(�) + C‖f ‖LH(�)‖�(un)‖rq

∗
LG∗ (�).

From Lemma 2.7, we can write∫
RN

∫
RN

G
( |�(un(x))−�(un(y))|

|x − y|s
)

dx dy
|x − y|N ≤ C‖f ‖L1(�) + C‖f ‖LH(�)‖�(un)‖rq

∗

Ws,G
0 (�)

.

When ‖�(un)‖Ws,G
0 (�)

> t0, using Lemma 2.2, we get

‖�(un)‖p
−

Ws,G
0 (�)

≤ C‖f ‖L1(�) + C‖f ‖LH(�)‖�(un)‖
rq∗

Ws,G
0 (�)

.

From the hypothesis, we have, rq∗ < p−. This implies that the norm ‖�(un)‖Ws,G
0 (�)

can-
not increase arbitrarily. So, there exists a constant C>0, independent of n, such that
‖�(un)‖Ws,G

0 (�)
≤ C.

By Lemma 3.9, un is a monotone increasing sequence. So, we can define u as the
pointwise limit of un. Direct application of Fatou’s lemma and Lemma 2.2 implies that
‖�(u)‖Ws,G

0 (�)
≤ C. �

Proof of Theorem 3.3: By Lemma 3.9, un is a monotone increasing sequence. So, we can
define u as the pointwise limit of un. Next, we show that this u is the required solution.
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We know from Lemma 3.8 that there are un which satisfy∫
RN

∫
RN

g
(
un(x)− un(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy =

∫
�

fn(x)φ(x)(
un(x)+ 1

n
)q(x) dx.

Note that, on supp(φ), as f ∈ L1(�),∣∣∣∣∣ fn(x)φ(x)(
un(x)+ 1

n
)q(x)

∣∣∣∣∣ ≤ ‖l−q(·)‖L∞|f ||φ| ∈ L1.

Hence, by dominated convergence theorem, we get

lim
n→∞

∫
�

fn(x)φ(x)(
un(x)+ 1

n
)q(x) =

∫
�

f (x)φ(x)
u(x)q(x)

.

So, we need to show that

lim
n→∞

∫
RN

∫
RN

g
(
un(x)− un(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy

=
∫

RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy.

We have, �(u) ∈ Ws,G
0 (�) and by Lemma 2.6, it follows that �(u) ∈ LG(�). Comparing

integrals, where u>1, it follows that u ∈ LG(�). We see, using Lemma 3.10,

∣∣∣∣
∫

RN

∫
RN

g
(
un(x)− un(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy −

∫
RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
ϕ(x)− ϕ(y)
|x − y|N+s dx dy

∣∣∣∣
=

∫
RN

∫
RN

∣∣∣∣g
(
un(x)− un(y)

|x − y|s
)

− g
(
u(x)− u(y)

|x − y|s
)∣∣∣∣ |ϕ(x)− ϕ(y)|

|x − y|N+s dx dy

≤ C
∫

RN

∫
RN

g
( |un(x)− un(y)| + |u(x)− u(y)|

|x − y|s
) |ϕ(x)− ϕ(y)|

|x − y|N+s dx dy

= C
∫

RN

∫
RN

In (assume)

The proof will be complete if we can show that
∫

RN
∫

RN In → 0. To do this, first, set

Sφ := suppφ, and Qφ := (RN × R
N) \ (Sφc × Sφc).

Now using Hölder’s inequality with respect to the measure dx dy
|x−y|N , we get for any compact

set K ⊆ R
N × R

N ,∫∫
R2N\K

In =
∫∫

Qφ\K
In

≤ C
∥∥∥∥g

( |un(x)− un(y)| + |u(x)− u(y)|
|x − y|s

)∥∥∥∥
LG

(
Qφ\K, dx dy

|x−y|N
)
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×
∥∥∥∥ |ϕ(x)− ϕ(y)|

|x − y|s
∥∥∥∥
LG

(
Qφ\K, dx dy

|x−y|N
) .

Now, if
∥∥∥g ( |un(x)−un(y)|+|u(x)−u(y)|

|x−y|s
)∥∥∥

LG
(
Qφ\K, dx dy

|x−y|N
) ≤ 1, we get

∫∫
R2N\K

In ≤ C
∥∥∥∥ |ϕ(x)− ϕ(y)|

|x − y|s
∥∥∥∥
LG

(
Qφ\K, dx dy

|x−y|N
) .

Otherwise, we apply Lemma 2.2 and Equation (17) to get

∫∫
R2N\K

In ≤ C

(∫∫
Qφ\K

G
(
g
( |un(x)− un(y)| + |u(x)− u(y)|

|x − y|s
))

dx dy
|x − y|N

) 1
p−

×
∥∥∥∥ |ϕ(x)− ϕ(y)|

|x − y|s
∥∥∥∥
LG

(
Qφ\K, dx dy

|x−y|N
)

≤ C

(∫∫
Qφ\K

G
( |un(x)− un(y)| + |u(x)− u(y)|

|x − y|s
)

dx dy
|x − y|N

) 1
p−

×
∥∥∥∥ |ϕ(x)− ϕ(y)|

|x − y|s
∥∥∥∥
LG

(
Qφ\K, dx dy

|x−y|N
)

≤ C

[∫∫
Qφ\K

G
( |un(x)− un(y)|

|x − y|s
)

dx dy
|x − y|N

+
∫∫

Qφ\K
G

( |u(x)− u(y)|
|x − y|s

)
dx dy

|x − y|N
] 1

p−

×
∥∥∥∥ |ϕ(x)− ϕ(y)|

|x − y|s
∥∥∥∥
LG

(
Qφ\K, dx dy

|x−y|N
) .

By Lemma 3.9, there exists l = l(Sφ) > 0 such that for n large enough, un(x) > l. We now
apply Lemma 3.11 on the two integrands of the last line to get

∫∫
R2N\K

In ≤ C

[∫∫
Qφ\K

G
( |�(un)(x)−�(un)(y)|

|x − y|s
)

dx dy
|x − y|N

+
∫∫

Qφ\K
G

( |�(u(x))−�(u(y))|
|x − y|s

)
dx dy

|x − y|N
] 1

p+

×
∥∥∥∥ |ϕ(x)− ϕ(y)|

|x − y|s
∥∥∥∥
LG

(
Qφ\K, dx dy

|x−y|N
) .
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By Lemmas 2.2 and 3.12, it is clear that

∫∫
R2N\K

In ≤ C
∥∥∥∥ |ϕ(x)− ϕ(y)|

|x − y|s
∥∥∥∥
LG

(
Qφ\K, dx dy

|x−y|N
) .

Since φ ∈ C∞
c (�), for a fixed ε > 0, there exists K = K(ε) such that

∫∫
R2N\K

In <
ε

2
.

We, now have to estimate
∫∫

K In. For this, we use Vitali’s convergence theorem. Let E ⊆ K.
Arguing as above, we can get

∫∫
E
In ≤ C

∥∥∥∥ |ϕ(x)− ϕ(y)|
|x − y|s

∥∥∥∥
LG

(
E, dx dy

|x−y|N
) .

This shows that the integrand in LHS is uniformly integrable, that is
∫∫

E In → 0 as
LN(E) → 0. ApplyingVitali’s convergence theorem, we get for large enough n,

∫∫
E In <

ε
2 .

So, from Equation (21), we get
∫

RN
∫

RN In → 0 as n → ∞, hence the proof follows. �

Proof of Theorem 3.4: Let u be a solution of Equation (1) obtained through Theorems 3.2
and 3.3. Then u is pointwise limit of a sequence of solutions, un, of Equation (10). Also, by
Lemma 3.9, there exists l(K) > 0 for any compact set K ⊆ � such that

u(x) ≥ l(K) > 0 for almost all x ∈ K.

This implies that there exists some CK > 0 such that u−q(x)(x) ≤ CK for all x ∈ K. Fix
x0 ∈ � and r>0 such that B := B(x0, r) ⊂ B(x0, r) ⊂ �. Again, since u is a weak solution
of Equation (1), this implies that for any ϕ ∈ C∞

c (B(x0, r)), where, with ϕ ≥ 0,

∫
RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy =
∫
B
f (x)u(x)−q(x)φ(x) dx

≤ CB

∫
B
f (x)φ(x) dx =

∫
RN

∫
RN

g
(
v(x)− v(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy,

(22)

where v ∈ Ws,G(B) ∩ L∞(B), is a solution to the problem

⎧⎪⎨
⎪⎩
(−�g)

sv = CBf , in B,
v > 0, in B,
v = 0, in R

N \ B

obtained through Lemma 3.7. By using Lemma 3.5, we can conclude that u ≤ v in B if u is
continuous on R

N . That is u ∈ L∞
loc(�) provided u is continuous on R

N .
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Again, since we have, from Equation (22),∫
RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy ≤ C
∫
B
φ(x) dx,

defining the sets

U0 :=
{
(x, y) ∈ R

N × R
N

∣∣∣∣ |u(x)− u(y)|
|x − y|s ≥ 1

}
,

Uj :=
{
(x, y) ∈ R

N × R
N

∣∣∣∣ 1
j + 1

≤ |u(x)− u(y)|
|x − y|s <

1
j

}
for j ≥ 1,

we get from Lemma 2.1 that

C
∫
B
φ(x) dx ≥

∫
RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
(ϕ(x)− ϕ(y))

|x − y|N+s dx dy

=
∫

RN

∫
RN

g
(
u(x)− u(y)

|x − y|s
)
u(x)− u(y)

|x − y|s
(ϕ(x)− ϕ(y))

(u(x)− u(y))|x − y|N dx dy

≥ p−
∫

RN

∫
RN

G
( |u(x)− u(y)|

|x − y|s
)

(ϕ(x)− ϕ(y))
(u(x)− u(y))|x − y|N dx dy

= p−
∞∑
j=0

jp
+
G(

1
j + 1

)

∫∫
Uj

|u(x)− u(y)|p+−2(u(x)− u(y))(φ(x)− φ(y))
|x − y|N+sp+ dx dy

≥ p−
∞∑
j=0

jp
+

(j + 1)p+ G(1)
∫∫

Uj

|u(x)− u(y)|p+−2(u(x)− u(y))(φ(x)− φ(y))
|x − y|N+sp+ dx dy

≥ C
∫

RN

∫
RN

|u(x)− u(y)|p+−2(u(x)− u(y))(φ(x)− φ(y))
|x − y|N+sp+ dx dy.

We can now apply Corollary 5.5 of [23] to conclude that there is some α ∈ (0, 1) such that
u ∈ Cα(B). This completes the proof. �
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