
Katja Henttonen

JYU DISSERTATIONS 857

Sustaining the Bazaar
Explorations into Governance and Sustainability 
in Open-Source-Producing Organisations, 
Communities, and Ecosystems



JYU DISSERTATIONS 857

Katja Henttonen

Sustaining the Bazaar
Explorations into Governance and Sustainability 

in Open-Source-Producing Organisations,  
Communities, and Ecosystems

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi Liikunta-rakennuksen luentosalissa L302  

joulukuun 4. päivänä 2024 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,  

in building Liikunta, auditorium L302, on December 4, 2024, at 12 o’clock noon.

JYVÄSKYLÄ 2024



Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Timo Hautala
Open Science Centre, University of Jyväskylä

Copyright © 2024, by the author and University of Jyväskylä

ISBN 978-952-86-0413-6 (PDF)
URN:ISBN:978-952-86-0413-6
ISSN 2489-9003

Permanent link to this publication: http://urn.fi/URN:ISBN:978-952-86-0413-6



ABSTRACT 

Henttonen, Katja 
Sustaining the Bazaar: Explorations into Governance and Sustainability in Open-
Source-Producing Organisations, Communities, and Ecosystems  
Jyväskylä: University of Jyväskylä, 2024, 107 p. 
(JYU Dissertations 
ISSN 2489-9003; 857) 
ISBN 978-952-86-0413-6 

Sustainability has long been a critical, though sometimes latent, theme in FOSS 
research. Today, FOSS underpins critical systems worldwide, making its 
sustainability essential for the security and reliability of the technologies our 
societies rely on. Governance, from day-to-day work coordination to long-term 
strategic planning, is essential to the sustainability of FOSS. This dissertation 
explores FOSS governance and sustainability across the community, corporate, 
and ecosystem levels. Adopting a multi-level approach bridges a gap in the 
literature which examines these levels separately. This research is grounded in 
case studies conducted within FOSS-producing communities, organisations, and 
ecosystems. The case studies triangulate various data sources, such as interviews, 
observations, and documentation, and primarily employ qualitative analysis 
methods. The findings enrich our understanding of how community, corporate, 
and ecosystem governance underpins various forms of sustainability, including 
infrastructural, resource-based, and interactional aspects of it. Additionally, they 
shed light on the dynamics between these levels, revealing both synergies and 
trade-offs.  In a synergistic scenario, different governance levels collectively 
contribute to a positive feedback loop where high-quality products attract more 
users; users become contributors, and their contributions further enhance 
product quality. However, the levels also compete for resources, highlighting 
inherent tensions that must be managed. The findings also illuminate often-
overlooked aspects of FOSS governance, such as the differences between public 
and private sector FOSS, ideological tensions among FOSS-engaged companies, 
and the role of promotional activities in sustaining FOSS.  Furthermore, each case 
study also has a practical goal of equipping practitioners with models and tools 
they need to navigate the complexities of FOSS governance in the case context, 
ultimately enhancing the sustainability of FOSS. The dissertation concludes by 
suggesting several future research directions, including the expansion of FOSS 
sustainability to incorporate environmental and social dimensions. 

Keywords: free software, FOSS, open source, public-private collaboration, 
software ecosystem, software governance, sustainability 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Henttonen, Katja 
Basaarin säilyttäminen: Tutkimuksia hallinnosta ja kestävyydestä avoimen 
lähdekoodin organisaatioissa, yhteisöissä ja ekosysteemeissä 
Jyväskylä: Jyväskylän yliopisto, 2024, 107 s. 
(JYU Dissertations 
ISSN 2489-9003; 857) 
ISBN 978-952-86-0413-6 

Kestävyys on jo pitkään ollut tärkeä aihe vapaiden ja avoimen lähdekoodin 
ohjelmistojen (VALO) tutkimuksessa.  Nykyään VALO toimii 
maailmanlaajuisesti monien kriittisten järjestelmien perustana, joten sen 
kestävyys on olennaista yhteiskuntien teknologisen turvallisuuden 
varmistamiseksi. Hallinnolliset tehtävät, aina päivittäisestä työn koordinoinnista 
pitkän aikavälin strategiseen suunnitteluun, ovat keskeisiä VALOn kestävyyden 
kannalta. Tämä väitöskirja tutkii VALOn hallintoa ja kestävyyttä yhteisön, 
yritysten ja ekosysteemin tasolla.  Monitasoinen lähestymistapa paikkaa 
kirjallisuuden katvealuetta, koska aiempi tutkimus on enimmäkseen tarkastellut 
näitä hallintotasoja erillään. Työ perustuu avoimen lähdekoodin ohjelmistoja 
tuottavissa yhteisöissä, organisaatioissa ja ekosysteemeissä tehtyihin 
tapaustutkimuksiin. Tapaustutkimuksissa hyödynnetään erilaisia tietolähteitä, 
kuten haastatteluja, havainnointia ja dokumentteja sekä käytetään pääasiassa 
laadullisia analyysimenetelmiä. Tulokset syventävät ymmärrystä siitä, miten eri 
hallintotasot muovaavat VALOn kestävyyttä ja vuorovaikuttavat keskenään. 
Pureutuminen eri hallintotasojen väliseen dynamiikkaan paljastaa sekä 
synergioita että kompromisseja. Synergisessä tilanteessa eri hallintotasot luovat 
yhdessä positiivisen palautesilmukan, jossa laadukkaat ohjelmistotuotteet 
houkuttelevat käyttäjiä ja käyttäjistä tulee aktiivisia osallistujia, joiden panokset 
edelleen parantavat tuotteen laatua. Toisaalta hallinnon eri tasot kilpailevat 
myös resursseista, mikä synnyttää toimenpiteitä vaativia jännitteitä. Lisäksi 
tutkimustulokset valottavat myös useita aiemmin vähän käsiteltyjä VALO-
hallinnon osa-alueita, esimerkiksi julkisen ja yksityisen sektorin eroja, yritysten 
välisiä ideologisia ristiriitoja sekä markkinointityön vaikutusta kestävyyteen. 
Lisäksi jokainen tapaustutkimus tähtää myös käytännön tavoitteeseen ja tarjoaa 
toimijoille malleja tai työkaluja VALO-johtamiseen kyseisessä ympäristössä, 
edistäen siten VALOn kestävyyttä. Väitöskirjassa ehdotetaan lopuksi useita 
tulevaisuuden tutkimussuuntia, mukaan lukien VALOn kestävyyden 
määritelmän laajentaminen ympäristöllisiin ja sosiaalisiin näkökulmiin. 

Avainsanat: Avoin lähdekoodi, julkis-yksityinen yhteistyö, kestävyys, 
ohjelmistoekosysteemi, ohjelmistojohtaminen, VALO, vapaa ohjelmisto 



Author Katja Henttonen 
Faculty of Information Technology 
University of Jyväskylä 
Finland 
katja.m.henttonen@student.jyu.fi 
ORCHID: 0000-0001-6912-128X 

Supervisors Pasi Tyrväinen 
Faculty of Information Technology 
University of Jyväskylä 
Finland 

Mirja Pulkkinen 
Faculty of Information Technology 
University of Jyväskylä 
Finland 

Reviewers Slinger Jansen 
Department of Information and Computer Science 
Utrecht University 
The Netherlands 

Marko Seppänen 
Faculty of Management and Business 
Tampere University 
Finland 

Opponent Björn Lundell 
School of Informatics 
University of Skövde 
Sweden 



PREFACE 

The journey that culminated in this dissertation has its roots in my early 
fascination with the world of free and open-source software (FOSS). This began 
in the late 1990s within the vibrant Finnish demo scene and led me to major 
European hacker events in the early 2000s, such as Hackers at Large (HAL) in 
2001, laying the foundation for my pursuits in the field of FOSS. 

Since 2006, I have been fortunate to work professionally with FOSS, soon 
intertwining this work with academic research. Witnessing the evolution of the 
FOSS phenomenon over the past two decades has been interesting. The growth 
and maturation of this field have been profound, and I am grateful for the 
opportunity to have observed this transformation closely. 

I am grateful to many individuals who have helped me along this journey. 
First and foremost, I would like to thank my supervisors at the University of 
Jyväskylä, Prof. Pasi Tyrväinen and Dr. Mirja Pulkkinen. Their unwavering 
support, guidance, and expertise have been instrumental in completing this 
dissertation. I also extend my heartfelt appreciation to my spouse, Jussi, whose 
support has been my anchor through the most challenging phases of this process. 

I also want to thank all the co-authors of the included articles and all the 
FOSS communities and organisations that have generously shared their 
knowledge and experiences. Collaborations with the Decidim Free Software 
Association and Mahiti Infotech have been particularly insightful and inspiring.  

I also warmly remember prior colleagues at VTT from the early part of my 
journey, including Dr. Pekka Savolainen, Prof. Eila Ovaska, and Dr.  Mari 
Matinlassi, who introduced me to the academic world, and my late friend Nicolas 
Sahlqvist, who introduced me to hacker culture in the early 2000s. 

This dissertation does not reflect my efforts alone but also the collaborative 
spirit of FOSS communities and the support of people around me.  

Katja Henttonen 
27.8.2024 
Helsinki 



FIGURES 

FIGURE 1 Main elements of the CO-SLM framework ..................................... 56 

FIGURE 2 Health-sustaining activities in public sector FOSS ecosystems .... 58 

FIGURE 3 Relationships between roles, rules, and tools ................................. 58 

FIGURE 4 Virtuous growth cycle and FOSS governance levels ..................... 71 

FIGURE 5 Matrix of FOSS Co-ordination Mechanisms ................................... 76 

TABLES 

TABLE 1 Levels of FOSS governance addressed in each article ................... 14 

TABLE 2 Summary of case study designs across articles .............................. 45 

TABLE 3  Summary of data collection methods .............................................. 47 

TABLE 4 FOSS governance contributions to each sustainability type ......... 69 

TABLE 5 VALO-hallinnon vaikutukset kestävyyden eri tyyppeihin .......... 85 



CONTENTS 

ABSTRACT 
TIIVISTELMÄ (ABSTRACT IN FINNISH) 
PREFACE  
FIGURES AND TABLES 
CONTENTS 
LIST OF INCLUDED ARTICLES 

1 INTRODUCTION .............................................................................................. 13 

1.1 Background and Motivation ................................................................... 13 

1.2 Goal and Research Questions ................................................................. 14 

1.3 Terminology .............................................................................................. 15 

1.3.1 Definitions of Key Terms ............................................................. 15 

1.3.2 Evolution of Terminology ............................................................ 17 

1.4 Structure of this Thesis ............................................................................. 18 

2 ESSENTIALS OF FREE AND OPEN-SOURCE SOFTWARE ...................... 19 

2.1 Competing and Complementary Ideologies ........................................ 19 

2.2 Types of FOSS Licences ........................................................................... 22 

2.3 Evolution of the FOSS Development Model ......................................... 24 

3 FOSS GOVERNANCE WITHIN COMMUNITIES, ECOSYSTEMS, AND 
ORGANISATIONS ...................................................................................................... 27 

3.1 FOSS Community Governance ............................................................... 27 

3.1.1 Early Research on FOSS Governance ......................................... 28 

3.1.2 Recognition of Various Governance Models ............................ 29 

3.1.3 Motivating and Coordinating Work in FOSS Communities .. 30 

3.2 Organisational FOSS Governance .......................................................... 33 

3.3 FOSS Ecosystem Governance .................................................................. 36 

3.4 Desired Outcomes of Governance .......................................................... 38 

3.5 Summary of Literature Review .............................................................. 41 

4 RESEARCH DESIGN AND METHODOLOGY ............................................ 42 

4.1 Research Approach and Philosophical Stance ..................................... 42 

4.2 Case Study Designs .................................................................................. 44 

4.3 Data Collection Methods ......................................................................... 46 

4.4 Data Analysis Methods ............................................................................ 48 

4.4.1 Qualitative Content Analysis ...................................................... 48 

4.4.2 Specialised Analytical Methods .................................................. 49 

5 OVERVIEW OF THE INCLUDED ARTICLES .............................................. 51 

5.1 Article I: Contributing to Eclipse – A Case Study ................................ 51 



5.2 Article II: Open Source-Based Tools for Sharing and Reuse of 
Software Architectural Knowledge ........................................................ 52 

5.3 Article III: Libre Software as an Innovation Enabler in India – 
Experiences of a Bangalorean Software SME ....................................... 53 

5.4 Article IV:  Managerial Perspective of Open Collaboration and 
Networked Innovation ............................................................................. 54 

5.5 Article V: Life-Cycle Management in Government-Driven Open-
Source Projects – Practical Framework .................................................. 55 

5.6 Article VI:  Health and Orchestration of  Public-Sector Open-Source 
Software Ecosystems: Roles, Rules, and Tools ..................................... 57 

6 RESULTS ............................................................................................................. 59 

6.1 FOSS Governance for Infrastructural Sustainability ........................... 59 

6.1.1 Community Governance and Infrastructural Sustainability .. 59 

6.1.2 Ecosystem Governance and Infrastructural Sustainability ..... 60 

6.1.3 Corporate Governance and Infrastructural Sustainability ..... 61 

6.2 FOSS Governance for Resource-Based Sustainability ......................... 61 

6.2.1 Governing Input Resources ......................................................... 61 

6.2.2 Governing Output Resources ...................................................... 64 

6.3 FOSS Governance for Interactional Sustainability ............................... 66 

6.3.1 Community Governance and Interactional Sustainability ..... 66 

6.3.2 Ecosystem Governance and Interactional Sustainability ........ 67 

6.3.3 Corporate Governance and Interactional Sustainability ......... 67 

6.4 Summary of FOSS Governance and Sustainability ............................. 68 

6.4.1 Levels of FOSS Governance and Their Inter-dynamics ........... 69 

6.4.2 Governance Supporting a Positive Feedback Loop ................. 70 

6.4.3 Differences Between Public and Private Sector FOSS 
Governance .................................................................................... 72 

7 DISCUSSION ...................................................................................................... 73 

7.1 FOSS Governance Levels ......................................................................... 73 

7.2 FOSS Sustainability Types ....................................................................... 77 

7.3 Limitations and Methodological Reflections ........................................ 78 

8 CONCLUSION ................................................................................................... 80 

8.1 Contributions to Researchers .................................................................. 80 

8.2 Contributions to Practitioners ................................................................. 81 

8.3 Future Research Directions ..................................................................... 82 

YHTEENVETO (SUMMARY IN FINNISH) ............................................................ 84 

REFERENCES ............................................................................................................... 87 

ORIGINAL PAPERS 



LIST OF INCLUDED ARTICLES 

I Henttonen, K., & Matinlassi, M. (2007). Contributing to Eclipse: A case study. 
In W. Bleek, J. Raasch, & H. Züllighoven (Eds.), Software Engineering 2007 – 
Fachtagung des GI-Fachbereichs Softwaretechnik. Gesellschaft für Informatik., 59-
70. Regular Research Papers. Hamburg. 27.-30.03.2007. ISBN: 978-3-88579-
199-7.

II Henttonen, K., & Matinlassi, M. (2009). Open-source-based tools for sharing 
and reuse of software architectural knowledge. The 2009 Joint Working 
IEEE/IFIP Conference on Software Architecture & European Conference on Software 
Architecture (WICSA 2019). DOI: 10.1109/WICSA.2009.5290790 

III Henttonen, K. (2011). Libre software as an innovation enabler in India: 
Experiences of a Bangalorian software SME. In S. Hissam,  B. Russo., M.G.. de 
Mendonça Neto & F. Kon (Eds), OpenSource Systems: Grounding Research. OSS 
2011. IFIP Advances in Information and Communication Technology, 365,  
220–232. Springer. DOI: 10.1007/978-3-642-24418-6_15 

IV Henttonen, K., Pussinen, P., & Koivumäki, T. (2012). Managerial perspective 
of open collaboration and networked innovation. Journal of Technology 
Management and Innovation, 7(3), 135–147. DOI: 10.4067/S0718-
27242012000300012. 

V Henttonen, K., Kääriäinen, J., & Kylmäaho. J. (2017). Lifecycle management in 
government-driven open-source projects — practical framework. 
International Journal of Information Systems and Project Management, 5(3), 23–41. 
DOI: 10.12821/ijispm050302. 

VI Henttonen, K., Pulkkinen, M. & Tyrväinen, P. (2024). Health and 
orchestration of public-sector open-source software ecosystems. Roles, rules 
and tools. Accepted to the Scandinavian Journal of Information Systems (SJIS). 

I served as the first author and was responsible for most of the writing 
across all the included articles.  Except for Article III, which I wrote alone, the co-
authors’ contributions were as follows. Articles I and II were based on the 
research ideas of Dr. Mari Matinlassi, who also provided substantial guidance. 
She contributed to the initial structure and some content of Article II, but after 
she changed employment, I completed the work independently. For Article IV, I 
received assistance from Mr. Pasi Pussinen, who helped with data collection and 
analysis, as well as Prof. Timo Koivumäki, who contributed a summary table and 
advice on the title and the choice of a forum for publication. Article V was 
significantly influenced by Dr. Jukka Kääriäinen, who supplied the foundational 
ideas, conducted all the workshops, and commented on a manuscript draft. 
Additionally, Mr Jani Kylmäaho assisted in data collection and shared his 
outstanding expertise in the Oskari technology and community. Lastly, for 
Article VI, Dr. Mirja Pulkkinen and Prof. Pasi Tyrväinen provided substantial 
guidance and iterative feedback, meticulously reviewing several drafts and 
offering insightful suggestions that significantly enhanced the manuscript. 



13 

This dissertation explores the role of governance in improving the sustainability 
of free and open-source software (FOSS). The chapter begins by briefly describing 
the motivations for the research, defining important terms, and tracing their 
development. It then articulates the research questions.  The chapter concludes 
with an introduction to the structure of the remainder of the thesis. 

1.1 Background and Motivation 

Over the past two decades, sustainability has remained a critical, though 
sometimes latent, theme in FOSS research (Curto-Millet & Corsín Jiménez, 2023; 
Krishnamurthy et al., 2014; Maruping et al., 2019). Governance is central to the 
sustainability of FOSS projects, involving everything from day-to-day work 
coordination to long-term strategic planning (Chengalur-Smith et al., 2010; 
Harutyunyan & Riehle, 2021; O’Mahony & Karp, 2022).  

In the early 2000s, FOSS introduced a transformative alternative to 
traditional proprietary models, challenging established norms of software 
governance and collaborative work (O’Neil et al., 2021). It was perceived as a 
disruptive force capable of democratising software access, enabling individuals 
and small organisations to compete with large corporate entities. It became 
crucial to assess whether this novel governance model, which Demil and Lecocq 
(2006) termed ‘bazaar governance’, was viable and sustainable enough to coexist 
with—or even replace—traditional software development frameworks. 

As businesses began integrating FOSS with profit-driven models, 
understanding the impact of commercial involvement on FOSS sustainability 
became essential (West & O’Mahony, 2008). Over time, FOSS became mainstream 
and commercialised—a process Germonprez and Kendall (2013) describe as the 
‘domestication of FOSS’.  Today, FOSS is no longer simply an alternative; it has 
become fundamental to numerous critical systems, from web infrastructure to 
national security applications. Ensuring the sustainability of FOSS is vital to the 

1 INTRODUCTION 



 
 

14 
 

security, stability, and reliability of technologies that our economies and societies 
rely on. With governments and large corporations’ widespread adoption of FOSS, 
there is increasing interest in how to govern FOSS projects sustainably at scale. 

The motivations for studying FOSS sustainability and the role of 
governance within it have evolved over the years, reflecting broad changes in 
technology, business, and society. These shifts intersect with my journey with 
FOSS, which I began as a hobbyist attending international hacker community 
events before transitioning into a professional role in FOSS software 
development in 2006. These experiences have endowed me with practical 
insights into the importance of sustainable FOSS governance, complementing my 
academic research in the field. 

Today, there is a substantial body of research on FOSS governance (as 
reviewed by Markus, 2007; Aksulu & Wade, 2010; Crowston et al., 2011; 
Heimburg & Wiesche, 2022; Linåker et al., 2022). However, much of it remains 
compartmentalised, focusing on organisational, community, or ecosystem 
governance. This dissertation contributes by adopting a multi-level analysis of 
FOSS governance, examining how governance practices across the organisational, 
community, and ecosystem levels influence the sustainability of FOSS. By 
exploring the dynamics of these levels, this research provides a holistic 
perspective on how effective governance can enhance the sustainability of FOSS. 

1.2 Goal and Research Questions 

The goal of the study is to develop a comprehensive understanding of 
governance approaches in FOSS across the community, organisational, and 
ecosystem levels, as well as their impact on the sustainability of FOSS initiatives. 
The central research question guiding this study is as follows: 

RQ How do governance approaches across organizational, community, and 
ecosystem levels influence the sustainability of FOSS? 

Table 1 summarises how each article addresses governance across these three 
key levels. The table highlights whether each article’s emphasis on a particular 
governance level is primary or supplementary, thus illustrating how the research 
aligns with the overarching goals outlined in the research question. 

TABLE 1 Levels of FOSS governance addressed in each article 

Article Community gov-
ernance 

Organisational gov-
ernance 

Ecosystem govern-
ance 

I (& II) Primary Not addressed Supplementary 

III Supplementary Primary Supplementary 

IV Supplementary Primary Supplementary 

V Primary Supplementary Supplementary 

VI Supplementary Supplementary Primary 

 



 
 

15 
 

Each article also addresses a specific aspect of governance, focusing on key 
discussions in FOSS research relevant at the time of their publication. The specific 
research questions for each article are as follows: 

RQ-I How can legal, technical, and social considerations be addressed to 
ensure the sustainability of a new FOSS community during its 
establishment? 

RQ-II How can FOSS-based tools best facilitate the sharing and reuse of 
software architectural knowledge, thereby enhancing the sustainability 
of FOSS? 

RQ-III How can resource-constraint software SMEs govern FOSS-based 
innovation in a sustainable manner, particularly within the context of 
India? 

RQ-IV How do managerial attitudes shape the governance of FOSS-based 
innovation in software SMEs, and what are the sustainability 
implications of this? 

RQ-V How can a structured lifecycle management approach improve the 
sustainability of public sector FOSS communities? 

RQ-VI How do governance activities by orchestrators and keystone players 
influence the sustainability of FOSS ecosystems in the public sector 
context? 

These research questions collectively contribute to the overarching goal of 
understanding how governance approaches at various levels influence the 
sustainability of FOSS. 

1.3 Terminology 

This section introduces the terminology used in the dissertation and discusses 
some shifts that occurred during the research process. 

1.3.1 Definitions of Key Terms  

Free and open-source software (FOSS) is commonly defined as software 
published under a licence that allows anyone to access, modify, and share the 
software’s source code (Crowston et al., 2012; Osterloh & Rota, 2007; Schreiber, 
2023). It is important not to confuse free software with freeware, which refers to 
software that is available at no cost but for which access to the source code is not 
available (Wolfenbarger & Smith, 2023). While free software and open-source 
software refer to the same phenomenon, these terms carry distinct ideological 
connotations (Fortunato & Galassi, 2021). Although the historical and ideological 
differences between these terms will be discussed below, they are largely 
irrelevant to the focus of this study. Therefore, this thesis consistently uses a 
widely accepted abbreviation, FOSS (e.g., Carosone, 2017; Crowston et al., 2012; 
Fortunato & Galassi, 2021; Gasson & Purcelle, 2018; Poo-Caamaño et al., 2017). 



 
 

16 
 

Reflecting the time and forum of their publication, some articles in the 
dissertation use alternative terms, such as FLOSS (free/libre open-source 
software) or OSS (open-source software), synonymously.  

A FOSS project is a specific initiative to develop a software artefact that is 
made available with a FOSS licence. Such projects often originate from the needs 
of an individual or organisation, with the contributor base expanding over time 
(Franco-Bedoya et al., 2017; West & O’Mahony, 2008).  Each FOSS project is 
characterised by its unique governance structure, design principles, and 
collaboration tools, facilitating the management of contributions and the project’s 
long-term direction (Jensen & Scacchi, 2007; West & O’Mahony, 2008). 

A FOSS community is a collective of individuals who contribute directly to 
a specific FOSS project. Franco-Bedoya et al. (2017) described FOSS communities 
as the backbone of FOSS projects, taking care of their development, support, and 
maintenance. Although the term ‘community’ is used diversely in the FOSS 
literature, this thesis adopts a definition that is common in FOSS governance 
studies (e.g. Ljungberg, 2000; Riembauer et al., 2020; West & O’mahony, 2008), in 
which a FOSS community is comprised of individuals actively engaged in the 
work of a project. 

A FOSS ecosystem is defined herein as a set of organisations 
collaboratively developing software distributed under a FOSS licence. This 
definition builds on the FOSS definition mentioned above and the software 
ecosystem (SECO) definition of Manikas and Hansen (2013). These ecosystems 
are often underpinned by a common technology, such as an extendable software 
platform (Jansen, 2020; Manikas & Hansen, 2013). 1  In FOSS ecosystems, the 
technological platform is accessible under a FOSS licence, enabling unrestricted 
modification and redistribution (Kilamo et al., 2012). A well-known example is 
the Eclipse ecosystem, in which various stakeholders collaborate on development 
tools, programming frameworks, and libraries based on the core Eclipse platform 
(Belo & Alves, 2021; Stevens & Draxler, 2010). 

In FOSS and beyond, governance can be defined as a shared basis for 
authority (O’Mahony & Ferraro, 2007). As Shaikh and Henfridsson (2017) note, 
the term ‘governance’ in FOSS research typically refers to high-level principles, 
decision-making structures, and practical management aspects, such as work 
coordination.  In line with Markus (2007), Noni et al. (2011), and O’Mahony and 
Ferraro (2007), this dissertation adopts a broad perspective on FOSS governance 
that encompasses work coordination and everyday management. 

FOSS governance is examined at three levels: community governance, 
organisational governance, and ecosystem governance.  FOSS research has 
traditionally focused on community governance, examining decision-making 

 
1  Manikas et al. (2016) called software ecosystems based on shared technology ‘infrastruc-

ture-rooted’ but also acknowledged the existence of ‘actor-rooted’ and ‘business-rooted’ 
software ecosystems. This observation applies to FOSS ecosystems; for example, the 
Apache Software Foundation ecosystem is rooted in the interaction between actors in-
stead of a shared technology platform (Digkas et al., 2018). However, the FOSS ecosys-
tems studied in this dissertation could be best described as infrastructure rooted or plat-
form centric. 



 
 

17 
 

processes, conflict resolutions and work coordination within FOSS projects 
(Aksulu & Wade, 2010; Markus, 2007). However, newer studies have broadened 
the scope of research to include organisational and ecosystem perspectives. An 
organisational perspective focuses on how FOSS activities are managed within 
the organisation (Daniel et al., 2018; Harutyunyan & Riehle, 2021), and an 
ecosystem perspective investigates how governance influences the evolution of 
broader FOSS ecosystems (Kilamo et al., 2012; Poo-Caamaño et al., 2017).  

Sustainability can be generally understood as the capacity to sustain 
activity and productivity over time (Chengalur-Smith et al., 2010). Definitions of 
organisational sustainability vary, ranging from those narrowly focused on 
organisational survival and value creation to those encompassing social, 
economic, and environmental dimensions (Chengalur-Smith et al., 2010; Curto-
Millet & Corsín Jiménez, 2023). For the purposes of this dissertation, I adopt the 
narrower perspective. The primary goal of the FOSS community or ecosystem is 
to develop and maintain software products that deliver value to users and other 
stakeholders (Chengalur-Smith et al., 2010). Consequently, sustainability, within 
a FOSS context, is defined as the ability to continue producing and maintaining 
valuable software products over time. 

This basic definition of sustainability is enhanced by differentiating 
between infrastructural, resource-based, and interactional sustainability, in line 
with  Curto-Millet and Corsín Jiménez (2023). Resource-based sustainability 
refers to the capacity of FOSS projects to attract and manage various types of 
resources, including software assets, human resources, and financial 
contributions. Interactional sustainability refers to maintaining a positive and 
effective community dynamic in which participation aligns with the shared 
values and expectations within the community. Infrastructural sustainability 

refers to the capacity to maintain foundational structures and systems that 
provide essential support and stability for a project 2 . The most important 
structures are legal frameworks and digital tooling environments. 

1.3.2 Evolution of Terminology 

In this dissertation, terms are used consistently, as defined previously. However, 
across the set of included articles, the terminology is not entirely consistent, due 
to the long timespan of the research and some shifts in focus. I will explain the 
important terminological shifts in the following. 

The use of the term ‘community’ in FOSS research has evolved over time, 
and this evolution is reflected in the articles included in this dissertation. 
Sometimes, the term is used to encompass not only participants in a given FOSS 
project but, rather, all individuals or organisations involved in a FOSS-related 
ecosystem or movement. For example, Article I refers to ‘the Eclipse community’ 

 
2  The original definition of ‘infrastructural sustainability’ by Curto-Millet & Corsín Jimé-

nez (2023) encompasses a community’s internal infrastructure and strategic integration 
with broader ecosystems. This thesis concentrates on internal infrastructure at the com-
munity level. Additionally, all three types of sustainability are examined at the ecosys-
tem level. 



 
 

18 
 

to denote all entities interacting within the expansive Eclipse ecosystem. 
However, I adhere to a narrower definition of the FOSS community in this thesis.  
The purpose of this is to capture the difference between more tightly knit 
communities and broader ecosystems, in which the connections between 
participants are typically looser. 

While the term ‘governance’ is also mentioned in the original research 
articles, many of them predominantly use other terms, such as ‘hosting’ (Article 
I), ‘management’ (Articles III, IV, and V), and ‘orchestration’ (Article VI). These 
issues fall within the broad definition of governance typical of FOSS studies, as 
introduced above. Here, FOSS governance encompasses practical work 
coordination, managerial practices, and organisational structures. Thus, all the 
included articles contribute to the discourse on FOSS governance. The various 
governance dimensions will be further elaborated on in the literature review 
below. 

Originally, Articles I and II used the term ‘successful’ instead of the term 
‘sustainability’, which became popularised in FOSS research after their 
publication.  Article VI uses the term ‘health’ instead of ‘sustainability’ to 
describe a desirable state for a FOSS ecosystem. This choice was made at the time 
of publication to underscore an ecosystem perspective because most prior 
research on FOSS sustainability had been centred on individual projects.  It also 
underlined our aim of considering various dimensions of ecosystem well-being 
beyond prolonged existence. For this thesis, the term ‘sustainability’ seemed 
most fitting for encompassing the community, organisational, and ecosystemic 
perspectives. ‘Sustainability’ has been defined herein as continued productive 
activity, not merely continued existence (see 1.3.1), which is close to the definition 
of FOSS health provided in Article VI. The diverse understandings of ‘success’, 
‘sustainability’, and ‘health’ as goals of FOSS governance will be discussed below 
in the literature review. 

1.4 Structure of this Thesis 

The rest of this thesis unfolds over several chapters. Chapter 2 presents a brief 
history of FOSS and describes its essential elements, and Chapter 3 explores the 
existing academic literature on FOSS governance within communities, 
ecosystems, and organisations in depth. Chapter 4 describes the research design 
and methodology employed in this dissertation. Chapter 5 provides an overview 
of the articles included in this dissertation. Chapter 6 synthesises the findings of 
these articles, highlighting how governance mechanisms at various levels 
influence the sustainability of FOSS. Finally, Chapter 7 discusses the critical 
aspects of these findings, reflecting on their limitations, credibility, and 
relationship to the prior literature. The thesis concludes with Chapter 8, which 
summarises contributions to research and practice and outlines directions for 
future research.  



 
 

19 
 

This chapter introduces the most fundamental dimensions of FOSS identified by 
researchers (Medappa & Srivastava, 2020; West & O’Mahony, 2008): ideologies, 
licences, and the development process. While governance is also recognised as a 
fundamental dimension by West and O’Mahony (2008), it is the primary focus of 
this dissertation and will therefore be explored in detail in its own dedicated 
chapter. The discussion in this chapter will be presented in chronological order 
to highlight the historical evolution of research and practice. 

2.1 Competing and Complementary Ideologies 

The history of FOSS can be traced back to the early decades of computing (1950-
1960s). This era was characterised by a communal approach to software 
development, in which software was often developed collaboratively and shared 
openly among users and developers (Levy, 1984). The associated culture of 
openness, collaboration, and knowledge-sharing is often referred to as the 
‘Hacker Ethic’ (Himanen, 2004; Levy, 1984). This approach was encouraged 
because at the time, software was not seen primarily as a commercial product but, 
rather, as a tool with which to advance computing and research capabilities. 

The commercialisation of software began to take shape in the late 1960s and 
early 1970s, marked by significant events, such as IBM’s ‘unbundling’ decision in 
1969 (Ceruzzi, 2003). This decision separated the sale of software and services 
from hardware, reflecting a shift in the industry’s focus towards recognising 
software as a source of revenue in its own right (Fortunato & Galassi, 2021). This 
unbundling reflected an inevitable shift in the computer industry’s dynamics, 
which was influenced by the realisation that software development required 
significant effort and had considerable commercial potential (Ceruzzi, 2003) 

 

2 ESSENTIALS OF FREE AND  
OPEN-SOURCE SOFTWARE 



 
 

20 
 

When proprietary software development and distribution models became 
more prevalent, a hacker community began to push back against these changes 
(Elliott & Scacchi, 2008). This ethos led to the emergence of the free software 
movement in the 1980s. The movement was spearheaded by Richard Stallman, 
who had witnessed the shift towards proprietary software in his work at the 
Massachusetts Institute of Technology (MIT) and was concerned about the 
deterioration of the culture of sharing and improvement that had defined the 
early days of computing (Elliott & Scacchi, 2008). Stallman launched the GNU 
(GNU’s Not Unix3) project in 1983 to create a completely free Unix-like operating 
system (Bergquist et al., 2011). This project was not merely a technical effort but, 
rather, a moral quest to ensure users’ freedoms  (Bergquist et al., 2011).  

In 1984, Richard Stallman and fellow hackers founded the Free Software 
Foundation (FSF), a nonprofit organisation dedicated to offering legal, 
organisational, and financial backing for the development of free software, 
including the GNU Project, among others (Elliott & Scacchi, 2008). Since its 
inception, the FSF has championed free software for moral and ethical reasons, 
prioritising user freedom above mere technological benefits. (Fortunato & 
Galassi, 2021). The well-known phrase ‘Free as in free speech, not as in free beer’ 
was coined to dispel terminological confusion and highlight the core concern of 
the movement: not the cost of software but the essential freedom to utilise, alter, 
and share the software as a fundamental right (Elliott & Scacchi, 2008).   

The FSF defined the four essential freedoms that software must provide to 
its users (Ljungberg, 2000): 

• The freedom to run the program as the user wishes for any purpose 
(Freedom 0) 

• The freedom to study how the program works and change it so that it 
computes as the user wishes (Freedom 1) 

• The freedom to redistribute copies so that the user can help others 
(Freedom 2) 

• The freedom to distribute copies of the modified versions to others. By 
doing this, the user can give the entire community a chance to benefit from 
the implemented changes (Freedom 3) 

These freedoms can be considered an early definition of FOSS, laying the 
foundation for the open-source movement a decade later. While intertwined with 
the free software movement, the history of the open-source software movement 
has its own narrative. The term ‘open source’ was coined in the late 1990s to make 
the free software ideology more appealing to the commercial sector, emphasising 
the practical benefits of collaboration and transparency in software development 
over the ethical and philosophical considerations championed by the free 
software movement (Bergquist et al., 2011).  The essay ‘The Cathedral and the 
Bazaar’ (Raymond, 1997) articulated the advantages of open, collaborative 
software development models over traditional, hierarchical models. This essay 

 
3 Humorous, recursive acronyms were part of the hacker culture of the time (Theodoropou-

lou, 2008). 



 
 

21 
 

captured the essence of the emerging open-source philosophy and crystallised 
the distinction with earlier free software initiatives. 

Eric Raymond and Bruce Parents founded the Open-Source Initiative (OSI) 
in 1998 to promote the use and development of open-source software, 
underlining the efficiency, reliability, and innovation associated with open-
source development methods (Fortunato & Galassi, 2021; Wolfenbarger & Smith, 
2023). It also published the Open-Source Definition (OSD), which is not a licence 
but, rather, outlines the criteria that a software licence must meet to be considered 
open source (Perens, 1999). The OSD was adapted from the Debian Free Software 
Guidelines, which were based on the freedoms previously articulated by the Free 
Software Foundation: free redistribution, access to the source code, and the 
ability to modify and share software (Wolfenbarger & Smith, 2023).  However, 
they were rephrased in a manner that highlighted technical access and 
collaborative development, instead of user freedoms (Fortunato & Galassi, 2021) 

Around this time, the terms ‘FOSS’ (Free and Open-Source Software), 
‘F/OSS’ (Free/Open-source software), and ‘FLOSS’ (Free/Libre and Open-
Source Software) emerged as part of the broader dialogue within the software 
community about how to describe the best software that was both free, as in 
freedom, and open source (Fortunato & Galassi, 2021). Scholars adopted these 
abbreviations, which became used extensively in the academic literature (see, e.g., 
Amherst et al., 2007; Crowston et al., 2005; Scacchi, 2010). As explained by 
Fortunato and Galassi (2021), the aim of doing so was to bridge the ideological 
and philosophical divide between the free software movement, led by the FSF, 
and the open-source movement, represented by the OSI.  The term was chosen 
for this dissertation to respect the histories of both movements while 
acknowledging that their ideological differences are irrelevant to this study (see 
Section 1.3.1). 

The 2000s saw a significant increase in corporate engagement with FOSS 
(Elliott & Scacchi, 2008; Fitzgerald, 2006). Red Hat was one of the first firms to 
effectively monetise open-source software, with an operating system based on 
the Linux Kernel and GNU System components (Elliott & Scacchi, 2008). Other 
trailblazing companies that proved the practicality of open-source-centric 
business models include the Swedish MySQL AB, which developed one of the 
world’s most widely utilised open-source database engines (Fitzgerald, 2006). 
Gradually, FOSS evolved from its roots in volunteer hacking into a commercially 
viable, mainstream form (Bergquist et al., 2011; Fortunato & Galassi, 2021). The 
relative prominence of the two movements also shifted. The OSI’s practical 
approach gained mainstream traction, whereas the FSF’s ideology, which was 
deeply rooted in the original hacker culture, found its influence somewhat 
diminished in the face of evolving industry dynamics (Bergquist et al., 2011). 
However, the term ‘FOSS’ remains widely used to recognise the historical 
contributions and value of both movements to the evolution of the phenomenon 
(Carillo & Bernard, 2015). 



 
 

22 
 

2.2 Types of FOSS Licences 

FOSS licenses serve as legal frameworks that define the conditions under which 
software can be freely accessed, used, modified, and shared (Sen et al., 2011). 
These licences form the bedrock of the FOSS movement, and as discussed afore, 
the definition of what constitutes ‘free and open-source software’ is primarily 
determined by the type of licence under which the software is distributed 
(Crowston et al., 2012). In academic circles and beyond, FOSS licences are 
commonly segmented into three categories.  Lerner and Tirole (2005) were 
among the first to provide an in-depth academic analysis of these licence 
categories, naming them permissive, restrictive, and highly restrictive. The 
categories have not changed, but subsequent discussions have seen them 
relabeled as non-copyleft, weak copyleft, and strong copyleft (Sen et al., 2008, 
2011).  These can be seen as more neutral; many copyleft advocates view the term 
‘restrictive’ as mischaracterising their intent to maximise user freedoms.  

Non-copyleft licenses, such as the MIT License (Massachusetts Institute of 
Technology License) and BSD License (Berkeley Software Distribution License), 
are characterised by minimal requirements regarding the use, modification, and 
distribution of software (Lerner & Tirole, 2005; Sen et al., 2011). These licences 
allow the software and its derivative works to be incorporated into FOSS and 
proprietary software without requiring the source code to be disclosed or the 
derivative works to be distributed under the same license (Lerner & Tirole, 2005; 
Sen et al., 2011). Despite their revival in the late 1990s (Lerner & Tirole, 2005), 
these types of licences predate copyleft licences (Omar, 2005; Sinclair, 2010). They 
were initially developed at academic institutions to encourage software’s 
widespread use and adaptation by minimising legal barriers to redistribution 
and modification (Omar, 2005; Sinclair, 2010). 

Strong copyleft licenses, most famously the GNU General Public Licence 
(GPL), require that any modified versions of the licensed software or software 
incorporating copyleft-licensed components are released under the same 
licensing terms (Lerner & Tirole, 2002; Sen et al., 2011).  They were a response to 
the experiences of early FOSS projects, such as BSD Unix, which saw its code 
used in proprietary products with no contributions being made to the original 
project (Omar, 2005; Sinclair, 2010). The GPL was initially introduced in 1989 to 
ensure that all versions of GPL-licensed software remained freely accessible and 
that the freedom to use, modify, and redistribute the software remained intact 
(Elliott & Scacchi, 2008). Later, the GPL underwent several revisions, with version 
3 being released in 2007 to address new issues, such as patent retaliation (Finney, 
2009). Furthermore, the GNU Affero General Public License (AGPL), which was 
introduced in the same year as GPLv3, adapted to the era of cloud computing 
and SaaS (Software as a Service) by mandating that the source code be accessible 
to network users (MacDonald, 2013).  
 



 
 

23 
 

Weak copyleft licences, such as the Eclipse Public Licence (EPL) and the 
GNU Lesser General Public Licence (LGPL), seek a balance between non-copyleft 
and strong copyleft licenses, offering a middle ground that allows the licensed 
code to be integrated within proprietary projects under specific conditions 
(Lerner & Tirole, 2005; Sen et al., 2011). These licences mandate that any 
modifications to the FOSS code must be released under the same licence, but they 
uniquely permit linking this code with proprietary code (Lerner & Tirole, 2005; 
Sen et al., 2011). They are often utilised to enable proprietary extensions to FOSS 
platforms or the utilisation of FOSS libraries within proprietary software while 
still mandating that modifications to the platform or library itself adhere to the 
same licensing terms (Sen et al., 2008, 2011). The introduction of these licences in 
the late 90s reflects debates within FOSS communities about the best ways to 
promote software freedom while accommodating the practical needs of 
developers and businesses (Sen et al., 2011). 

Even though the FSF has traditionally favoured copyleft licences and the 
OSI has been more inclusive of non-copyleft licenses (Maruping & Matook, 2020), 
this ideological preference has not influenced the recognition of licences as either 
‘free’ or ‘open source.’ All widely recognised licences, including those referenced 
in this study, are classified as ‘free’ by the FSF (2024) and as ‘open source’ by the 
OSI (2024). Consequently, I use the term ‘FOSS licence’, in line with Fortunato 
and Galassi (2021), to encompass licences endorsed by both movements. 
Occasional disputes over nuances in less prevalent licences, such as the Open 
Watcom licence (Free Software Foundation, 2024), have marginal relevance to the 
themes explored in this dissertation. 

Licensing matters are not merely legal technicalities; they profoundly 
influence the growth, management, and ultimate success of FOSS projects. 
Numerous studies have scrutinised the effects of licence selection on project 
outcomes, highlighting both the advantages and drawbacks of copyleft and non-
copyleft licences. For example, it is recognised that a copyleft licence facilitates 
the attraction of high-quality contributions (Colazo & Fang, 2009; Sen et al., 2008, 
2011) and discourages the emergence of closed-source forks, which could 
jeopardise the sustainability of a FOSS project (Ciffolilli, 2004; MacDonald, 2013). 
Conversely, projects licensed under non-copyleft licences tend to garner more 
sponsorship and experience accelerated growth, allowing for diverse revenue 
models to thrive (Colazo & Fang, 2009; 2005; Stewart et al., 2006). 

A relatively recent study conducted by Maruping and Matook (2020) 
reinforces the abovementioned findings. It also delves deep into the intricate 
relationship between licence selection, governance structures, and ideological 
shifts within the FOSS movement. The authors highlight how the re-emergence 
of non-copyleft licences in the 1990s facilitated greater commercial involvement 
in FOSS, leading to the rise of FOSS governance models that blend elements of 
traditional corporate control with efforts to preserve the collaborative ethos 
inherent in the original movements (Maruping & Matook, 2020). They emphasise 
that the alignment between a project’s licence, its governance model, and the 
motivations of its contributors is critical to its success (Maruping & Matook, 2020).  



 
 

24 
 

2.3 Evolution of the FOSS Development Model 

Although the definition distinguishing FOSS from proprietary software concerns 
licencing, another crucial aspect of FOSS is its distinct development model 
(Crowston et al., 2012). Weber (2004) wrote, ‘The essence of open source is not 
the software. It is the process by which software is created’ (p. 56). The FOSS 
development process is characterised by open collaboration involving teams of 
organisationally and geographically dispersed developers. The perceptions and 
dynamics of the FOSS development model or models, in the plural, as authors 
now prefer, have evolved significantly over the decades. 

The foundational description of the FOSS development model was 
arguably articulated in the GNU Manifesto (Stallman, 1985).  This seminal work 
envisioned a paradigm in which software development was inherently 
collaborative, encouraging programmers to share their code and enhancements 
with the broader community freely. Central to the manifesto’s philosophy were 
the ethics and culture of hacking, as chronicled by Levy (1984). Levy (1984) 
highlighted the hacker community’s commitment to openly sharing knowledge 
to improve software and hardware collectively. These core principles established 
the philosophical bedrock for the FOSS development model, setting a framework 
for collaboration that, while not detailing specific mechanisms, inspired a new 
approach to software development (Lakhani & Wolf, 2003; Vainio & Vadén, 2012). 

In a subsequent development, Eric Raymond (1997; 1999) offered a more 
detailed examination of the pragmatics underpinning the FOSS development 
model. His famous essay (Raymond, 1997) described two software development 
models: the ‘cathedral’ model, which is  akin to traditional software development 
practices in which the code is developed in a centralised, hierarchical manner and 
released in carefully planned versions, and the ‘bazaar’ model, which represents 
the FOSS approach of open, collaborative development. Utilising the Linux 
operating system as a case study, Raymond (1997; 1999) argues that the bazaar 
model, with its open exchange and chaotic evolutionary progress, leads to more 
effective and rapid development cycles and produces higher-quality software. 
Furthermore, Raymond articulates several vital principles that are essential for 
the success of FOSS, including the importance of releasing early and often, 
leveraging user feedback, and the idea that ‘given enough eyeballs, all bugs are 
shallow’ (Linus’s Law). 

Like Raymond, early academic depictions of FOSS development (Fielding, 
1999; Ljungberg, 2000; Mockus et al., 2000; O’Reilly, 1999) portrayed projects as 
beginning with a single programmer tackling a small problem of personal 
interest. As the solution gained importance, the programmer would share it with 
others, leading to the engagement of new users in its ongoing development. 
These contributors offered code, documentation, bug reports, and translations, 
among other things, driven by a shared passion for technology, a commitment to 
software freedom, a desire for recognition, and/or the satisfaction of being part 
of a community creating something of value (Hars & Ou, 2002; Markus et al., 



 
 

25 
 

2000; Ye & Kishida, 2003). Volunteering was thus a foundational pillar and a 
defining characteristic of the early FOSS movement (Bergquist et al., 2011; 
Markus et al., 2000). 

As scholars sought to understand the groundbreaking phenomenon, the 
early 2000s also witnessed the emergence of more theoretical accounts of FOSS. 
Benkler (2002) expanded the conceptual understanding with the introduction of 
‘commons-based peer production.’  This paradigm highlighted how the creative 
energy of large numbers of people can be coordinated into large, meaningful 
projects, mostly without traditional hierarchical organisation or financial 
compensation. Concurrently, an analysis by Lerner and Jean Tirole (2002) delved 
into the economic principles underlying the FOSS development model, aiming 
to shed light on the motivations and structural dynamics that support it. 
Furthermore, Steven Weber’s (2004) book “The Success of Open Source” delved 
into the organisational dynamics and motivations behind open-source 
collaboration, comprehensively analysing its success factors. This period 
deepened the academic understanding of the FOSS development model, 
affirming it as a viable and potentially superior approach to software 
development. 

By the late 2000s, commercialisation was rapidly changing what scholars 
perceived as the FOSS development model. Brian Fitzgerald (2006) was among 
the pioneers who highlighted the transformation of FOSS, which was related to 
increased corporate involvement. He discussed how the FOSS development 
process had become more structured and less chaotic, with strategic planning 
and commercial interests being increasingly influential. Similarly, Langlois and 
Giampaolo Garzarelli (2008) noted that FOSS projects went beyond the binary 
characterisation of bazaars and cathedrals, embodying hybrid models that 
combined self-organising production with deliberate planning. Fitzgerald (2006) 
also outlined several characteristics of the OSS 2.0 era, including a move from 
generic platforms to specialised domains and the adoption of hybrid models that 
blended open-source and proprietary software elements. 

Over time, as the commercialisation and mainstreaming of FOSS continued 
and accelerated, the distinction between FOSS and proprietary software 
development models became blurred (Mäenpää, 2020; O’Neil et al., 2021) or at 
least less pronounced in certain respects. As part of the phenomenon that 
Germonprez et al. (2013) call the ‘domestication of open source’, many company-
driven FOSS communities have adopted corporate practices, such as license 
vetting and formal code reviews (Germonprez et al., 2013; Mäenpää et al., 2016; 
Medappa & Srivastava, 2020; Schaarschmidt et al., 2015). The proportion of paid 
developers grew, and the role of volunteering diminished over the years (Carillo 
& Bernard, 2015). The portion of paid developers varies significantly from one 
project to another (O’Neil et al., 2021), but for example, paid professionals 

contributed over 85% of Linux Kernel development by 2017 (Corbet & Kroah‐
Hartman, 2017).  Meanwhile, a few large FOSS communities, such as Debian 
(O’Neil et al., 2021), and many small ones, such as Pearl/Raku (Hariharan, 2023), 
have remained volunteer-driven. 



 
 

26 
 

However, the influence has been bidirectional, with FOSS development 
models also influencing proprietary ones. Co-developing solutions with other 
stakeholders has become commonplace in proprietary settings (Franco-Bedoya 
et al., 2017; Kilamo et al., 2012). This relates to the growing prevalence of 
ecosystem-oriented thinking in software production, in which all software 
ecosystems inherently involve a degree of openness, which is typically achieved 
through interfaces, necessitating inter-organisational cooperation (Franco-
Bedoya et al., 2017; Kilamo et al., 2012). Additionally, many companies have 
embraced FOSS practices for their own proprietary software development, a 
phenomenon known as ‘inner sourcing’ (Buchner & Riehle, 2023; Capraro & 
Riehle, 2016).  This is connected with the use of tools such as Git and Jenkins, 
which are rooted in FOSS principles, offering an open, collaborative, and efficient 
development process (Armenise, 2015; Capraro & Riehle, 2016; Kalliamvakou et 
al., 2015). 

Kilamo et al. (2020) describe a trend in which FOSS and proprietary 
software models converge and swap attributes. They note that projects initially 
adopting a decentralised, bazaar-style approach tend to evolve into more 
structured, cathedral-like models with growth and increasing commercial 
interest. Conversely, initially, closed-source projects increasingly adopt the 
bazaar model to diversify their contributor base (Kilamo et al., 2020).  Several 
authors (e.g., Carillo & Bernard, 2015; Mäenpää et al., 2016; O’Neil et al., 2021) 
encourage other researchers to pay attention to the current diversity of FOSS 
development and governance models, which comprise a variety of practices 
influenced by factors such as project scale, community objectives, and a project’s 
evolutionary history. 

In summary, this chapter has traced the historical developments in FOSS 
ideologies, licensing, and development models, which have fundamentally 
shaped how FOSS projects are governed. The ideological foundations of the FOSS 
movements influence the values that guide governance decisions, such as 
freedom, transparency, and collaboration. The evolution of licensing practices 
establishes the legal frameworks that govern software use, modification, and 
distribution, directly impacting project control and contributor participation. 
Additionally, the development models reflect various governance structures and 
practices, ranging from decentralised, community-driven projects to more 
formalised, corporate-influenced models. By reviewing these elements, I have set 
the stage for the next chapter, in which I will present a literature review on FOSS 
governance, the key focus of this dissertation. 



 
 

27 
 

This chapter reviews the existing literature on FOSS governance. The literature 
review was carried out through a combination of database searches and the 
snowballing method (Jalali & Wohlin, 2012). Initially, 56 key sources were 
identified using searches 4  on the Web of Science, Google Scholar and the  
Association of Information Systems Electronic Library (AISeL). The literature 
base was expanded via backward snowballing (recursively examining reference 
lists) from newer articles and forward snowballing (examining citing articles) 
from a few older articles. Some sources were also included based on prior 
knowledge, the bibliographies of articles included in this dissertation, and AI-
generated suggestions. 

 The review results are organised into subsections on community 
governance (3.1), corporate governance (3.2), and ecosystem governance (3.3). 
Lastly, the literature on sustainability as a governance goal is reviewed in Section 
3.4. Section 3.4 provides the critical foundation for how the results of this thesis 
are subsequently presented. 

3.1 FOSS Community Governance 

This section reviews the literature on FOSS community governance. In defining 
it, I turn to Markus (2007), who described it as “the means of achieving the 

 
4 The search terms included various combinations of ‘FOSS’, including variations such as 

‘FLOSS’ and ‘open source’; ‘governance’, including related terms such as ‘management’, 
‘orchestration’, and ‘coordination’; and ‘sustainability’, including related terms such as 
‘success’ and ‘health’. Some searches were time limited to focus on recent articles. The 
searches led to a very large number of articles, and not all results were relevant.  For ex-
ample, some articles focused on using ready-made FOSS products for government agen-
cies or on 'open source governance' as the application of open source principles in pub-
lic administration rather than on the governance of FOSS communities or ecosystems. 
Articles that provided significant insights into the focus areas of the dissertation or were 
frequently cited within the FOSS governance literature were prioritised for inclusion. 

3 FOSS GOVERNANCE WITHIN COMMUNITIES, 
ECOSYSTEMS, AND ORGANISATIONS  



 
 

28 
 

direction, control, and coordination of wholly or partially autonomous 
individuals and organisations on behalf of an OSS development project to which 
they jointly contribute” (p. 152). The first part, 3.1.1, provides a historical 
perspective, while the actual literature review, conducted using the method 
explained at the beginning of the chapter, is presented in subsections 3.1.2 and 
3.1.3. 

3.1.1 Early Research on FOSS Governance  

Contrary to the perceptions of chaos sometimes associated with the bazaar 
metaphor, early FOSS communities already employed forms of governance. 
Markus et al. (2000) wrote, “Despite the clear potential for chaos, open-source 
projects are often surprisingly disciplined and successful through the action of 
multiple, interacting governance mechanisms” (p. 14).  This observation was 
supported by Gallivan (2001), who made a comprehensive content analysis of 
then-published case studies of FOSS projects.  The studies revealed many forms 
of control being practiced. Some were explicit, such as the rules and norms stated 
in FAQs, and others were implicit, such as emphasising an individual’s 
professional reputation.  Gallivan (2001) argued that FOSS projects rely more 
heavily on explicit forms of control than trust to regulate contributor behaviour 
and ensure project success. 

Ljungberg (2000) was among the first to recognise various types of 
governance structures among FOSS communities, including the benevolent 
dictatorship, rotating dictatorship, and voting committee. The most prevalent 
model at the time, benevolent dictatorship, was characterised by a single leader—
often the project’s founder—who retained the final say on key project decisions 
while negotiating with community members. The rotating dictatorship model 
extended the benevolent dictatorship by periodically changing the leader, thus 
distributing responsibilities and decision-making power more evenly among key 
contributors. The voting committee model represented a democratic approach to 
decision-making, with co-developers participating in decisions through a voting 
system. For example, the Apache project used email-based voting with minimal 
quorum consensus. 

Theoretical accounts of the FOSS phenomenon, such as the previously 
mentioned works of Weber, Benkler and Raymond (see Section 2.3) have argued 
that FOSS governance is not merely a variation on existing forms of governance 
but, rather, represents an entirely new structure characterised by a decentralised, 
non-hierarchical approach that leverages collective intelligence. A few years later, 
Demil et al. (2006) also described ‘Bazaar governance’ as an entirely new 
governance structure that diverged from traditional market, firm, and network 
governance structures by being grounded in a specific contract, that is, the FOSS 
license. As also noted by Shaikh and Henfridsson (2017), early theoretical 
discussions can give the impression that FOSS governance is somewhat 
monolithic, likely because of the need to underline FOSS governance as 
something radically new and contrast it effectively with other forms of 
governance. 



 
 

29 
 

3.1.2 Recognition of Various Governance Models 

However, the governance of FOSS soon came to be recognised as a 
multidimensional phenomenon. As FOSS projects grew and aged, scholars (e.g. 
Amherst et al., 2007; De Laat, 2007; Lattemann & Stieglitz, 2005) observed that 
their governance models evolved as they matured, following a discernible 
trajectory. Lattemann and Stieglitz (2005) analysed the changes in governance 
practices that occurred as FOSS projects went through the four lifecycle phases: 
introduction, growth, maturity, and decline/revival. In turn, de Laat (2007) 
divided the evolution of FOSS community governance into three phases: 
spontaneous, internal, and external governance. In the first phase, governance is 
informal and heavily relies on a close-knit community’s shared norms, values, 
and work practices. Moving into the second phase, formal governance 
mechanisms are introduced, and their primary purpose is to coordinate and 
improve efficiency within larger communities. The third phase witnesses the 
further formalisation and codification of governance practices, which is primarily 
driven by the involvement of external parties. 

As FOSS underwent commercialisation (see Section 2.3), the governance 
practices within FOSS projects gradually evolved a more formalised structure, 
marking the transition to the third phase outlined by De Laat (2007). However, 
alongside this evolution, significant other changes emerged. O’Mahony (2007) 
observed that many FOSS communities that are now commercially sponsored no 
longer operated solely under community management, nor could they be 
described as self-governed. The authors emphasised the importance of FOSS 
researchers differentiating between purely community-managed governance 
and hybrid forms, which amalgamate community-driven and corporate or 
institutional-driven approaches. An article by West and O’Mahony (2008) further 
highlighted the differences between what they called ‘autonomous’ and 
‘sponsored’ FOSS communities. Research on FOSS governance increasingly 
focused on these sponsored or hybrid communities, which aimed to combine the 
benefits of FOSS with proprietary ownership and control (Aksulu & Wade, 2010; 
Shah, 2006). 

Markus (2007) also identified the multifaceted nature of FOSS community 
governance, arguing that it is configurational. Based on a literature review, he 
proposed six dimensions of FOSS governance, encompassing rules on asset 
ownership, project chartering, community management, software development 
processes, conflict resolution, and information/tools management. Tulio and 
Staples (2011) applied these six dimensions to various real-world FOSS projects 
and, as a result, distinguished between three distinct configurations of FOSS 
governance: open, authoritarian, and defined. Open communities are 
characterised by a decentralised nature and informal or non-existent 
management structures. In contrast, authoritarian communities mirror the 
benevolent dictatorship model identified by Ljungberg (2000) and others (e.g. 
Antikainen et al., 2007), featuring centralised control. Defined communities, 
meanwhile, are marked by formal management and decision-making processes. 
In line with de Laat’s (2007) evolutionary model, the introduction of formal 



 
 

30 
 

governance mechanisms is related to communities maturing and growing.   More 
mature or defined forms of governance are typically supported by a FOSS 
foundation. It has since been noticed, however, that the exact role assumed by a 
foundation varies extensively from one FOSS community to another (Izquierdo 
& Cabot, 2018; Luis et al., 2020). 

In their work building both on de Laat (2007) and Markus (2007), Noni et al. 
(2012) proposed four FOSS governance configurations: ‘open-source-based 
governance’ (a somewhat counterintuitive term considering all four 
configurations are within the open-source world), ‘tolerant dictatorship’, 
‘collective governance’, and ‘sponsored governance’. Collective governance and 
tolerant dictatorship roughly mirror the ‘open’ and ‘authoritative’ models 
identified by Di Tullio and Staples (2013). The two other models relate to 
situations in which communities mature and formal governance structures are 
established, which are described as ‘external governance’ by De Laat (2007) and 
‘defined’ governance by Tulio and Staples (2013). According to Noni (2012), 
governance trajectories can diverge upon reaching this phase. FOSS communities 
may adopt an open-source-based model, in which leadership is institutionalised, 
democratic, and distributed, or a sponsored model, in which elements from 
traditional institutional governance are incorporated to achieve the strategic 
goals of commercial sponsors. This confirmed earlier notions (e.g., O’Mahony, 
2007; West & O’mahony, 2008) that company-driven FOSS projects often have a 
different governance structure than volunteer-driven projects.  

Shaikh and Henfridsson (2017) argued that despite recognising multiple 
governance configurations, most articles still assume a singular authoritative 
structure underlying FOSS community governance. Through a comprehensive 
literature review, they classify FOSS governance studies into three categories: 
those assuming libertarian, collectivist, or centralised authoritative structures. 
Centralised authority research (e.g., Dahlander & O’Mahony, 2010; Di Tullio & 
Staples, 2013; Weber, 2004) highlights a core group’s leadership and decision-
making, which are endorsed by others as long as they align with community 
standards. Libertarian authority research (e.g. De Laat, 2007; Fitzgerald, 2006; 
Gallivan, 2001; Howison & Crowston, 2014; Noni et al., 2011) focuses on 
individual freedom, advocating for equal autonomy and expression among all 
members. Meanwhile, collective authority research (e.g., Fielding, 1999; 
Hemetsberger & Reinhardt, 2009; O’Mahony & Ferraro, 2007) emphasises the 
community’s collective good, highlighting the fact that governance should reflect 
the majority’s needs and benefits. 

3.1.3 Motivating and Coordinating Work in FOSS Communities  

Markus (2007) categorised FOSS governance research of from the early 2000s into 
two subthemes: solving collective action dilemmas and coordinating 
collaborative work. He also pondered then-emerging studies of developer 
climate and motivation as a potentially new subtheme. However, with hindsight, 
these can also be viewed as extensions to the first subtheme, collective action 
dilemmas. In this section, I will present resolving collective action dilemmas and 



 
 

31 
 

practical work coordination as separate subthemes of FOSS community 
governance research.  

3.1.3.1 Resolving Collective Action Dilemmas 

A significant research topic within the theme of resolving social action dilemmas 
is how various governance models and mechanisms influence the initial and 
sustained motivations of contributors (Franck & Jungwirth, 2003; Linåker et al., 
2018; Lumbard, 2018, Mäenpää, 2020; Riehle et al., 2014; Von Krogh et al., 2012). 
This is a recurring theme in FOSS research because governance plays a crucial 
role in influencing contributor motivation. Governance can offer private benefits, 
such as improved professional reputation, technological control, or learning 
opportunities, but perhaps even more importantly, it can establish a working 
environment that respects the intrinsic, collectivist motivations of contributors 
and is aligned with their ideological beliefs (Daniel et al., 2018; Linåker & 
Runeson, 2020; Mäenpää, 2020; Von Krogh et al., 2012).  

If FOSS community governance fails to engage developers effectively, this 
may result in the premature abandonment of the project or the neglect of essential 
but less appealing maintenance tasks (English & Schweik, 2007; Linåker et al., 
2018a; Von Krogh et al., 2012). This has often happened, prompting researchers 
to argue that, in the context of FOSS, the ‘tragedy of the commons’ is related to 
underproduction rather than the depletion of resources (Amherst et al., 2007; 
English & Schweik, 2007). 

In the context of the developer motivation and emotional climate in the 
FOSS community, interpersonal trust is frequently mentioned (Dabbish et al., 
2012; Orsila et al., 2009; Sajadi et al., 2023; Sapkota et al., 2019). Community trust 
plays a crucial role in attracting new contributors and keeping them engaged 
(Dabbish et al., 2012; Lane et al., 2004; Orsila et al., 2009). Research has explored 
the factors influencing trust (Alarcon et al., 2020; Antikainen et al., 2007) and how 
trust manifests in FOSS projects (Sajadi et al., 2023; Sapkota et al., 2019). The 
manifestations of mistrust have also been studied (Miller et al., 2022). 

In company-driven FOSS projects, sustaining the motivation of volunteers 
is closely related to the challenges of bridging the often-conflicting interests 
between volunteer developers and companies (Bonaccorsi & Rossi, 2005; Capra 
et al., 2008, 2011; Dahlander & Magnusson, 2006; O’Mahony & Bechky, 2008; 
Riehle et al., 2014). It has been observed that the increasing involvement of 
companies influences FOSS governance in ways that are not always favourable 
from the community’s perspective (Dahlander & Magnusson, 2005; 2006; Daniel 
et al., 2018; Yu, 2020). Finding the appropriate balance between openness and 
freedom, which sustains the motivation of external participants, and control, 
which enables the appropriation of private profit, has been recognised as a key 
governance challenge in sponsored FOSS communities (Capra et al., 2011; Noni 
et al., 2011; O’Neil et al., 2021; Shah, 2006; West & O’Mahony, 2008; Zhang et al., 
2022). This is closely related to corporate FOSS governance, which will be 
discussed below. 



 
 

32 
 

3.1.3.2 Work Co-ordination and Quality Assurance 

Within the theme of work coordination, many questions are related to how the 
work is distributed among developers in FOSS projects (Crowston et al., 2005; 
Dahlander & O’Mahony, 2010). Traditionally, volunteer contributors to FOSS 
projects select tasks based on their interests and skills, with prioritisation 
primarily being determined through community discussions (Crowston et al., 
2012; den Besten et al., 2008; Jensen & Scacchi, 2005; 2007). This process is enabled 
by modular software architecture and collaborative tools, such as mailing lists, 
forums, and issue trackers (Crowston et al., 2012; Dinh-Trong & Bieman, 2005; 
Langlois & Giampaolo Garzarelli, 2008). However, with the maturation and 
growth of FOSS projects, work coordination practices have also evolved (Aksulu 
& Wade, 2010; Germonprez et al., 2013; Scacchi, 2010; Scholtes et al., 2016). 

In response to these changes, research attention has been directed towards 
a work-coordination approach known as ‘open superposition’, which helps to 
maintain developer autonomy in large and complex projects (Howison & 
Crowston, 2014; Li et al., 2020; Maruping & Matook, 2020; Medappa & Srivastava, 
2019). Open superposition involves layering sequential, individual, and 
motivationally independent contributions over time and relies on strategically 
deferring complex tasks (Howison & Crowston, 2014; Li et al., 2020). This 
gradually develops a cumulative artefact with increasing functionality and 
complexity (Howison & Crowston, 2014; Li et al., 2020). Open superposition 
differs from traditional software development approaches, which prioritise 
collaborative and simultaneous task execution through modular design and 
typically address complexity upfront (Howison & Crowston, 2014; Li et al., 2020).   
It has been found to increase the project’s attractiveness among developers 
(Medappa & Srivastava, 2019), thus also touching on collective action dilemmas. 

On the other hand, in some FOSS projects, the increased involvement of 
companies and the growing number of paid developers have led to the adoption 
of more authoritative work coordination mechanisms, which prioritise control 
and predictability over developer autonomy (Aksulu & Wade, 2010; O’Neil et al., 
2021; Scacchi, 2010). This shift involves introducing formal work assignment 
processes and structured project management practices, such as sprints 
(predefined development cycles) and road maps (Germonprez et al., 2013; 
Kilamo et al., 2012; Riehle et al., 2014). 

Another important work coordination issue is quality assurance. The peer 
review of code through pull requests (PRs) is a standard practice in which project 
maintainers or other contributors evaluate contributions before they are merged 
(Crowston et al., 2005; Yu et al., 2016). Mechanisms relating to the evaluation and 
lifespan of pull requests in FOSS have received significant research attention (e.g., 
Alami et al., 2020; Jiang et al., 2019; Moreira Soares et al., 2021; Terrell et al., 2017; 
Yu et al., 2016). Alami et al. (2020) proposed three PR governance styles: 
protective, lenient, and equitable. They examined each style’s underlying beliefs 
and norms and the relationship between merits and social connections in the PR 
acceptance process. The authors concluded that despite their fundamental 
differences, all PR governance models are intended to ensure code quality and 



 
 

33 
 

the software’s evolution per the community roadmap.  They also note that PR 
governance styles have a non-straightforward relationship with the overall 
governance style of the community. 

Shaikh and Henfridsson (2017) demonstrate that various coordination 
processes co-exist and overlap, reflecting the multiplicity of authority structures 
within a single project. Based on a literature review and a single case study of 
Linux Kernel’s development, four coordination mechanisms are established as 
follows (ibid): Autocratic clearing involves a singular point of entry and exit for 
contributions, making the central figure a ‘clearing house’ for all changes.  In 
oligarchic recursion, a group of trusted individuals essentially acts as a bridge 
between the general contributor base and the central figure(s), which is critical in 
integrating code obtained from contributors, managing patches, and resolving 
implementation details. Federated self-governance grants autonomy to sub-
projects within the larger project, as exemplified by the semi-autonomous 
management of different branches of the Linux Kernal project. Meritocratic idea-
testing promotes an environment in which contributions are collectively and 
transparently evaluated on their merits, regardless of the contributor’s status 
within the community. They argue that a single project may contain different 
coordination mechanisms, with some of these supporting centralised or 
decentralised authority structures. 

3.2 Organisational FOSS Governance 

Early scholars quickly recognised the significance of companies developing well-
considered strategies for engaging with FOSS. In the nascent literature on FOSS, 
various critical factors, such as business models and licensing, were thoroughly 
discussed (e.g., Hecker, 1999; Lerner & Tirole, 2005; Välimäki, 2002; West, 2003). 
Subsequently, a series of studies delving into the intersection of corporate 
interests and FOSS communities emerged (e.g., Dahlander & Magnusson, 2005; 
2006; O’Mahony, 2007; West & O’Mahony, 2008). An improved understanding of 
corporate FOSS governance has been attained through the application of 
established management theories, such as the resource-based view (Alexy et al., 
2018; Ghapanchi et al., 2014; Schoder et al., 2019) and institutional theory (Marsan 
et al., 2012; Nevo & Chengalur-Smith, 2017).Today, organisational or ‘corporate’ 
FOSS governance is a solidified research field that focuses on the practices 
organisations implement to effectively manage their FOSS engagements 
(Harutyunyan & Riehle, 2021; Lundell et al., 2017). 

The popularisation of open innovation theory (Chesbrough, 2003; 2004) has 
significantly influenced the study of organisational FOSS governance. The theory 
underscores the importance of absorbing external ideas and technologies to 
enhance internal innovation processes (outside-in processes) and, on the other 
hand, bringing internal ideas and technologies to market through external 
channels (inside-out processes). The original theory leaned heavily on a well-
regulated intellectual property (IP) regime, envisioning IP as a commodity to be 



 
 

34 
 

traded in the market. While Chesbrough (2017) never embraced the connection, 
other scholars, such as West and Gallagher (2006) and Henkel (2006), identified 
FOSS as a unique manifestation of open innovation. Following this, companies 
were encouraged to weave FOSS into their internal innovation management 
processes. This integration became a focus of scholarly inquiry into how 
organisations can capitalise on FOSS to drive innovation while navigating its 
inherent challenges (Faridian, 2023; Schreieck et al., 2023; Tang et al., 2021).  

Recent research by Harutyunyan (2022) categorised corporate FOSS 
governance into four subfields: general governance, supply chain governance, 
inbound governance, and outbound governance. General FOSS governance 
pertains to overarching FOSS policies and organisational structures, such as 
open-source program Offices (see, e.g., Munir & Mols, 2021). Supply chain 
governance ensures that suppliers’ FOSS policies are aligned with the company’s 
(Harutyunyan, 2019; 2020). The inbound and outbound governance subfields, 
which appear to draw from open innovation theory, are commonly employed in 
FOSS governance research.  Their contents are further examined in the following 
paragraphs. 

Studies on inbound FOSS governance (e.g.,  Harutyunyan & Riehle, 2019; 
Lundell et al., 2017; Petersen et al., 2018) examine how organisations integrate 
open-source components into their proprietary software projects and the 
methodologies used in selecting FOSS components (Harutyunyan & Riehle, 2019; 
Spinellis, 2019), compliance with open-source licensing (Alspaugh & Scacchi, 
2010; Fendt & Jaeger, 2019; Gangadharan et al., 2012), and strategies for 
managing security vulnerabilities (Cowan, 2023; Wang et al., 2019). It is noted 
that while FOSS components may initially appear to be cost free, further 
assessment reveals indirect financial costs, operational challenges, and strategic 
complexities, necessitating effective corporate governance practices 
(Harutyunyan, 2019). 

Research on outbound FOSS governance addresses processes and policies 
via which organisations can contribute to FOSS projects or release their products 
in open-source form. This includes decisions regarding project open-sourcing 
(Alamer & Alyahya, 2017; Jansen et al., 2012), licensing choices (MacDonald, 2013; 
Scacchi & Alspaugh, 2012; Stewart et al., 2006), and community engagement 
strategies (Gençer & Oba, 2011; Bergquist et al., 2011; Linåker et al., 2018; 
Maruping et al., 2019). As emphasised by Schaarschmidt et al. (2015), outbound 
contributions to FOSS development are investments, for which there must be 
returns. Consequently, much research has focused on FOSS business models 
(Duparc et al., 2022; Krishnamurthy, 2005; Shahrivar et al., 2018; Thomas et al., 
2017). Today, they are often based on developing FOSS platforms and benefiting 
from surrounding ecosystems (Duparc et al., 2022). Business models influence 
governance structures: some depend on broad external participation, while 
others benefit from maximum control over the core platform (Duparc et al., 2022). 

In a commercial setting, all outbound FOSS processes necessitate a degree 
of control over the relevant community or ecosystem (Schaarschmidt et al., 2015). 
Well-resourced companies may establish their FOSS communities or ecosystems 



 
 

35 
 

by open-sourcing previously closed products, as seen with IBM’s Eclipse and Sun 
Microsystems’s OpenOffice (Joo et al., 2012). Another approach involves 
companies investing in existing ecosystems and gradually increasing their 
influence within them (Schaarschmidt et al., 2015). Studies have examined both 
scenarios: companies launching entirely new FOSS collaborations (Belo & Alves, 
2021; Kilamo et al., 2012; West & Wood, 2013) and companies gradually gaining 
control by participating in pre-existing FOSS communities (Schaarschmidt et al., 
2015; Zhang et al., 2022; Zhou et al., 2016). The mechanisms via which companies 
influence existing FOSS communities often involve human resource tactics, such 
as hiring influential community members or having employees contribute to the 
community to gain influence (Daniel et al., 2018; Schaarschmidt et al., 2015). 

However, companies can also undermine the community by exerting 
disproportionate influence on the project’s direction, often prioritising their own 
business interests over those of the community (Butler et al., 2022; Lundell et al., 
2017; Zhang et al., 2022; Zhou et al., 2016). This can leave projects particularly 
vulnerable if a company later withdraws its support. In their seminal article, 
Dahlander and Magnusson (2006) developed a typology of firm–community 
relationships, identifying symbiotic, communalistic, and parasitic approaches. 
Subsequent literature (Daniel et al., 2018; Zhang et al., 2020, 2022; Zhou et al., 
2016) consistently shows that corporate involvement in FOSS communities can 
impact their sustainability positively or negatively, with the direction of impact 
being largely dependent on corporate governance decisions, namely how 
companies choose to engage.  

While most research on organisational FOSS governance has focused on 
commercial companies (Linåker et al., 2023), public sector FOSS governance has 
also been addressed. Most studies on FOSS governance in public sector 
organisations have traditionally focused on inbound factors, particularly 
adoption factors, which have been thoroughly reviewed by Sánchez et al. (2020). 
The role of public procurement practices in FOSS adoption has also been 
analysed recently (e.g., Lundell et al., 2021). Fewer studies have focused on 
outbound FOSS governance, such as how public sector organisations can 
produce FOSS. For example, there are studies on how public sector organisations 
govern involvement in a particular FOSS project (e.g., Feldman & Horan, 2011; 
Gamalielsson et al., 2021) and how national policy frameworks influence the 
readiness of public sector organisations to produce FOSS (Blind et al., 2021; 
Favario, 2023; Scott & Rung, 2016). Mergel (2015) and Viseur and Jullien (2023) 
studied how government agencies share code within a broader network. The 
scarcity of research on outbound FOSS governance may stem from the fact that 
public sector organisations have only recently shifted from being mere 
consumers of FOSS to also being producers, as described by Favario (2023). 



 
 

36 
 

3.3 FOSS Ecosystem Governance  

As ecosystems gained prominence in explaining modern software production, 
the study of FOSS governance increasingly shifted to examining ecosystems 
rather than individual projects (Franco-Bedoya et al., 2017; Jansen, 2014). A 
considerable portion of the research on FOSS ecosystem governance is now 
situated within broader examinations of software ecosystems (Manikas, 2016) 
and digital platform ecosystems (Hein et al., 2020). This trend likely mirrors the 
diminishing distinction between FOSS and proprietary production (see Section 
2.3), a phenomenon that is particularly pronounced within the ecosystem 
framework. However, several attributes rooted in platform openness continue to 
differentiate FOSS ecosystems from other software ecosystems (Alves et al., 2017). 

Regarding the definition of FOSS ecosystem governance, we turn to van 
Angeren et al. (2013), who describe software ecosystem governance as “the use 
of strategic procedures and processes to control, maintain, or change the 
ecosystem” (p. 4). Van Angeren et al. (2016) add that a software ecosystem’s 
governance encompasses technical and business aspects, including managing the 
software platform and its interfaces and defining business and partnership 
models. Many authors use the terms ‘ecosystem orchestration’ and ‘ecosystem 
governance’ interchangeably (Bazarhanova et al., 2018; Manikas, 2016;Alvet et al., 
2017).  Some, like Mukhopadhyay and Bouwman (2019), seem to imply a subtle 
distinction, with ecosystem governance referring to the overarching design and 
meta-organisation and orchestration focusing on practical coordination 
processes. Given my broad definition of governance (see Section 1.3), I consider 
practical coordination activities to be part of ecosystem governance. 

Software ecosystems, which are akin to other digital platform ecosystems, 
are essentially comprised of a platform owner (the orchestrator, focal firm, or 
keystone), complementors, and end-users (Heimburg & Wiesche, 2022; Manikas 
& Hansen, 2013). The platform owner manages and develops the software 
platform, setting the stage for complementors, who, driven by their own 
motivations, join the ecosystem to enhance the platform with their products or 
services (Autio, 2022). End-users leverage these offerings to meet their needs.  
While this simplified triad can also characterise the structure of FOSS ecosystems, 
there are notable differences. Unlike most proprietary software ecosystems, FOSS 
ecosystems often feature multiple platform owners (e.g., Hein et al., 2020; Jansen, 
2014; Karger, 2023). Orchestration is often delegated to a foundation, although 
the extent of involvement on the part of FOSS foundations varies considerably 
(Izquierdo & Cabot, 2018; Luis et al., 2020). Free and open-source software 
projects also have various types of complementors, with some contributing 
directly to platform development (Müller et al., 2019; Teixeira et al., 2015).   

Building on an extensive literature review, Hein et al. (2020) identify three 
governance models for digital platform ecosystems: centralised, consortia, and 
peer-to-peer. The centralised model places control in the hands of a single key 
player, such as Facebook or Apple, and it is typically associated with proprietary 



 
 

37 
 

ecosystems.  FOSS ecosystems can also be governed centrally, as arguably 
exemplified by projects under the Qt group (Carillo & Bernard, 2015; Kilamo et 
al., 2012). However, the two other models are more common in FOSS ecosystems. 
In the ‘consortia’ model, multiple key players share ownership and decision-
making responsibilities. Hein et al. (2020) illustrate this with the example of the 
open-source Cloud Foundry project, in which prominent technology companies, 
such as Cisco, SAP, Dell. IBM, and VMware, collaboratively oversee the 
ecosystem through a dedicated foundation. The peer-to-peer model disperses 
control and decision-making authority across various stakeholders. Due to its 
highly decentralised decision-making structures (Zanotti & Vélez, 2020), the 
Gnome ecosystem may be considered an example of peer-to-peer governance. 

Jansen (2020) developed a maturity model for software organisations to use 
in assessing and refining their ecosystem governance, which has been validated 
through case studies encompassing proprietary and FOSS ecosystems. The 
author suggests that large-scale, industry-friendly FOSS platforms are managed 
similarly to closed platforms, a conclusion stemming from their empirical 
investigation focusing on industrially driven FOSS ecosystems, such as Eclipse 
and Android. Although these ecosystems are formally associated with a 
consortium governance model, a single company (IBM for Eclipse and Google 
for Android) will significantly dominate the others (Bettenburg et al., 2015; 
Mizushima & Ikawa, 2011). 

However, studies on other large-scale, industry-supported FOSS 
ecosystems, such as Apache (Gharehyazie et al., 2015; Wang et al., 2023), 
OpenStack (Zhang et al., 2020; 2022), and Gnome (Oliveira & Alves, 2021; Zanotti 
& Vélez, 2020) have found that they operate without the control of a single 
company, unlike Eclipse or Android, instead benefiting from the support of 
various stakeholders, including corporations, individuals, and nonprofit 
organisations. Their governance models incorporate several mechanisms to 
foster open, inclusive, and meritocratic participation, preventing overt control by 
a single actor. For example, the Gnome Foundation enforces diversity within its 
Board of Directors through policies such as forced rotations and a limit on the 
number of representatives from one organisation (Gnome Foundation, 2023; 
Zanotti & Vélez, 2020). Projects under the Apache Software Foundation adhere 
to a sophisticated voting system for consensus-building on critical decisions, 
including code modifications and project releases (Wang et al., 2023). Meanwhile, 
despite being significantly influenced by corporate interests, OpenStack benefits 
from contributions by hundreds of companies, fostering varied collaborations 
that mitigate the impact of any single entity (Zhang et al., 2020, 2022). 

Additionally, numerous case studies focusing on smaller FOSS ecosystems, 
including Matomo (Gamalielsson et al., 2021), PyPi (Valiev et al., 2018), Skyline 
(Pino et al., 2020), Ruby (Jansen et al., 2011), and Pearl (Hariharan, 2023) have 
touched on governance issues, underscoring the wide range of approaches to 
ecosystem governance within FOSS. This diversity is echoed by several authors 
(Kilamo et al., 2020; O’Neil et al., 2021), who all emphasise the variety of 
governance frameworks across FOSS ecosystems. Furthermore, recent case 



 
 

38 
 

studies from various countries, such as Kenya (Hewapathirana, 2017), Finland 
(Bazarhanova et al., 2018), and Sweden (Linåker & Runeson, 2020), have shed 
light on the unique dynamics of FOSS ecosystems with a societal purpose in 
which public sector organisations play pivotal roles as keystone players or 
orchestrators. These ecosystems differ from their company-driven counterparts 
in terms of resourcing and objectives, and therefore, the former require different 
governance approaches  (Mukhopadhyay & Bouwman, 2019).  

Based on an extensive literature review, Alves et al. (2017) identified 
governance mechanisms that various players, mostly keystones and 
orchestrators, employ in open and closed software ecosystems. These 
mechanisms were grouped into three categories: value creation (e.g., innovation 
strategies, revenue models, and cost-sharing), the coordination of players (e.g., 
partnership models, conflict resolution, and risk management), and 
organisational openness and control (e.g., knowledge-sharing, architecture 
design, quality standards, and roadmaps).  Many of these mechanisms have 
recently been explored in the context of FOSS ecosystems, including knowledge-
sharing (Nimmagadda et al., 2022), architecture design (Amorim et al., 2023; 
Moon, 2021), and partner/contributor management (Kaur et al., 2022; O’Mahony 
& Karp, 2022). These studies build on the older research on FOSS community 
governance (see Section 3.1) but adopt an ecosystemic perspective. 

3.4 Desired Outcomes of Governance 

In the initial phases of FOSS governance research, scholars primarily aimed to 
understand the impact of governance mechanisms on the success or failure of 
FOSS projects (Capra et al., 2008; Markus, 2007; Sagers, 2004). Success was often 
quantified using metrics such as user and developer adoption rates, the volume 
and frequency of contributions, and stakeholder satisfaction levels (Lee et al., 
2009; Sagers, 2004). Over time, the notion of project success expanded to 
incorporate a longer-term outlook, leading to an increased focus on sustainability 
in FOSS studies (Chengalur-Smith et al., 2010). Sustainability highlights the 
ability of FOSS projects to continue thriving over an extended period (Chengalur-
Smith et al., 2010; Noni et al., 2011; Nyman & Lindman, 2013). According to 
Chengalur-Smith et al. (2010), “sustainability requires certain levels of activity to 
be maintained over a long period, whereas success can be measured at one 
particular point in time.” (p. 660). 

The shift from success to sustainability reflected the growing 
acknowledgement of the challenges faced by FOSS governance as communities 
grow and evolve (Chengalur-Smith et al., 2010; Noni et al., 2011; Nyman & 
Lindman, 2013). It also mirrored the increasing popularity of using ecological 
concepts derived from the natural sciences in organisational research 
(Chengalur-Smith et al., 2010). Central to this perspective is sustaining a positive 
feedback loop in which FOSS projects attract a community of users who 
gradually evolve into contributors (Butler, 2001; Howison & Crowston, 2014; 



 
 

39 
 

Kane & Ransbotham, 2016). These contributors, in turn, enhance the software, 
attracting even more users and reinforcing the cycle (ibid). 

The FOSS sustainability debate has also become linked with the ‘tragedy of 
the commons’ (Hardin, 1968) debate. Initially, this concept described the issue of 
over-depleting unmanaged common-pool resources (Hardin, 1968; 2007). Digital 
commons, such as FOSS, however, are often regarded as different because digital 
resources are not depleted through use and can be shared indefinitely (Amherst 
et al., 2007). The debate was reframed in the FOSS context to refer to a situation 
in which many wish to use the resource but few are willing to contribute to its 
production (Amherst et al., 2007; English & Schweik, 2007). 

In her work on environmental commons, Ostrom (1999; 2009) argued that 
the tragedy of ‘commons’ can be avoided and that careful community 
governance can sustain common pool resources. Her ideas have significantly 
influenced FOSS sustainability research, as Curto-Millet and Corsín Jiménez 
(2023) noted. Sustainability and, consequently, the ultimate purpose of FOSS 
governance have often been viewed, in this context, as a way to sustain 
community participation and inflow of contributions (Chengalur-Smith et al., 
2010; Dennehy et al., 2023; Fang & Neufeld, 2009; Linåker et al., 2018b).   

Curto-Millet and Corsín Jiménez (2023) argue that despite the change in 
terminology, the understanding of sustainability in FOSS studies has remained 
centred on success. They contend that FOSS studies have suffered from the 
binary framing of sustainability as a “stabilised success or failure” (p. 1).  They 
attribute this partially to the influential position of Ostrom’s (1999; 2009) work 
on environmental commons, in which systems are either sustainable or not based 
on their capacity to manage resources effectively without depletion. They 
continue to argue for a multidimensional view of FOSS sustainability and 
propose a typology of FOSS sustainability consisting of resource-based, 
interactional, and infrastructural sustainability (see Section 1.3.1 for definitions).   

According to Curto-Millet and Corsín Jiménez (2023), the three types of 
sustainability—resource-based, interactional, and infrastructural—interact in 
ways that significantly influence the overall sustainability of FOSS projects. 
These interrelationships may result in synergies, in which enhancements of one 
sustainability type positively affect the others, amplifying beneficial outcomes 
across the project. Conversely, they may involve trade-offs, in which progress in 
one area can inadvertently undermine that in another. Additionally, there are 
instances where these sustainability types are independent; changes in one do 
not necessarily impact the others. Understanding these dynamics is crucial for 
effective governance, allowing project leaders to align management strategies 
with the specific sustainability needs and interactions within their FOSS projects. 

In addition to sustainability, health emerged early as another crucial aspect 
of the well-being of FOSS projects. In the context of FOSS, health was first 
mentioned by Wyn (2007), who described it as vigour (activity level and 
productivity), resilience (the ability to adapt and recover), and organisation (the 
efficiency of the governance structure). Wahyudin et al. (2007) introduced the 
notion of health indicators, which serve as a method for assessing and 



 
 

40 
 

quantifying attributes that can potentially forecast the viability of individual 
open-source projects. Together, they build a foundation for a large body of 
research on health assessment for FOSS projects (Linåker et al., 2022). 

Much of this research, which was recently reviewed by Linåker et al. (2022), 
focuses on quantitative measurements and mining them from collaborative 
platforms such as GitHub. Link and Germonprez (2018) adopted a less common 
qualitative approach, interviewing practitioners to assess open-source project 
health. They identified three key areas—community, code, and resources—in 
which the health of open-source projects becomes evident and significant. 
Interestingly, this parallels the sustainability types identified by Curto-Millet and 
Corsín Jiménez (2023). Although FOSS health assessment shares similarities with 
FOSS sustainability, its primary objective has focused on assisting organisations 
in selecting FOSS components rather than serving as a governance goal like 
sustainability. 

However, this changed when the body of research on FOSS project health 
was (re5)integrated with existing theories of business ecosystem health (Iansiti & 
Levien, 2004) and software ecosystem health (Hyrynsalmi et al., 2015; Manikas & 
Hansen, 2013). For example, Jansen (2014) compiled an inventory of metrics 
mentioned in the prior FOSS literature into a comprehensive framework and 
extended them to cover both FOSS projects and networks.  She organised these 
metrics in alignment with the business ecosystem health dimensions proposed 
by Iansiti and Levien (2004): productivity, resilience, and niche creation. Unlike 
traditional research on FOSS project health, ecosystem research has placed 
significant emphasis on the interplay between ecosystem health and governance 
(Mukhopadhyay & Bouwman, 2019; Oliveira & Alves, 2021). 

Ecosystem governance and orchestrating activities are perceived as crucial 
in sustaining and improving the health of ecosystems (Hyrynsalmi et al., 2015; 
Iansiti & Levien, 2004; Manikas & Hansen, 2013). Several articles, as 
comprehensively reviewed by Alves et al. (2017), delve into specific orchestration 
activities, such as conflict management procedures, assessing their influence on 
software ecosystem health. Indeed, health is often posited as the goal of 
ecosystem governance. For example, Alves et al. (2017) define governance 
mechanisms as “managerial tools of participants in software ecosystems …. that 
have the goal of influencing an ecosystem's health” (p. 2).  

While much research on enhancing ecosystem health through governance 
mechanisms has focused on keystone players, Carst and Hu (2023) underscore 
the significant role of complementors in shaping the well-being and overall 
trajectory of software ecosystems. This is particularly pertinent in the context of 
FOSS, in which numerous studies highlight the influential role of peripheral 
ecosystem participants (Bazarhanova et al., 2018; Dhungana, 2013; Tiwana, 2015). 

 
5  One could talk about ‘reintegration’ because originally, the influential article on FOSS 

health by Wyn (2007) was, in turn, influenced by the work of Iansity and Levien (2004). 



 
 

41 
 

3.5 Summary of Literature Review 

This chapter thoroughly reviewed how research explored FOSS governance at 
three levels: community, organisation, and ecosystem. Studies in FOSS 
community governance evolved from acknowledging foundational governance 
structures to more nuanced explorations of governance diversity. The growing 
involvement of corporations in FOSS gave rise to a new research focus on 
corporate FOSS governance. As the concept of ecosystems gained prominence in 
software research, attention shifted towards FOSS governance and orchestration 
at the ecosystem level. The well-being of FOSS has long been seen as a key 
objective of governance, with the term ‘sustainability’ being increasingly used to 
describe this goal since the 2010s. 

However, FOSS governance research remains fragmented across these 
levels, with few exceptions, such as Jansen (2014), who considered the ‘project’ 
and ‘network’ levels in parallel. Most studies concentrate on specific governance 
activities and their impact on FOSS sustainability at a single level, such as conflict 
resolution or sponsor attraction, often neglecting the interconnectedness of 
governance across these levels. This fragmentation has created a gap in 
understanding the governance challenges relevant at each level and how they 
interrelate, ultimately affecting the overall sustainability of FOSS.  



 
 

42 
 

This chapter presents the research design and methodology employed in this 
dissertation. Section 4.1 outlines the overall research approach and philosophical 
foundations. Section 4.2 explains case study designs, providing justifications for 
the selection of case organisations and the number of cases. Sections 4.3 and 4.4 
then detail the methods used for data collection and analysis, respectively. 

4.1 Research Approach and Philosophical Stance 

The case study is an empirical inquiry that investigates a phenomenon within its 
real-life context (Runeson & Höst, 2009; Simons, 2014; Yin, 1998). It focuses on 
understanding how the phenomenon interacts with its environment through an 
in-depth analysis of specific cases rather than using controlled settings or 
statistically representative samples (Runeson & Höst, 2009). In this dissertation, 
the case study was selected as the primary research approach because it aligns 
well with the nature of the phenomenon being studied, the research objectives, 
and the types of research questions posed, as detailed below.  

As a phenomenon, FOSS governance involves complex interactions among 
diverse stakeholders. Case studies are particularly suited to exploring these 
interactions in depth, offering a nuanced understanding of governance processes. 
Given that FOSS communities and ecosystems vary significantly in size, scope, 
purpose, and culture (Carillo & Bernard, 2015), the case study method effectively 
captures these contextual influences on governance practices and outcomes. 

Much of my research has a strong practical orientation. Case studies are 
arguably well suited to delivering practical contributions because they can 
capture rich, contextual information, which allows practitioners to assess the 
results’ applicability to their situations  (Chetty, 1996). Furthermore, my research 
questions are ‘how ’-oriented, necessitating a deep understanding of operational 
issues instead of reporting incidents or frequencies.  Case studies are often 

4 RESEARCH DESIGN AND METHODOLOGY 



 
 

43 
 

regarded as particularly effective in analysing ‘why’ and ‘how’ questions due to 
their explanatory nature (Rowley, 2002; Yin, 2009). 

The various ontological and epistemological positions in IS research shape 
the approaches to case study research. Positivist case studies aim to identify 
general laws or principles that can explain behaviour in specific contexts.  These 
may be formulated deductively, through hypothesis testing, as highlighted by 
Yin (1998; 2009) or inductively, through theory generation, as advocated by 
Eisenhardt (1989). In either case, the emphasis is on the researcher’s objectivity 
and the ability to replicate the findings across contexts. In contrast, the 
interpretivist approach to case study research, as described by Flyvbjerg (2004) 
and Walsham (1995), emphasises understanding the meaning that participants 
attribute to their experiences and the context in which they operate. They 
underline the depth and breadth of insights and rich contextual descriptions, 
often placing little importance on generalisation. Research within this paradigm 
is seen as fundamentally subjective, with researchers being encouraged to reflect 
on their own biases and subjectivities (Goldkuhl, 2012; Walsham, 1995). 

The philosophical position of this dissertation places it between positivism 
and interpretivism.  It could best be described as falling within a broad category 
of perspectives described as critical realism (Groff, 2004; Sayer, 2010). Critical 
realism combines ontological realism, a belief that some mind-independent 
reality is ‘out there’, with epistemological relativism, a position that our 
knowledge of reality is always conceptually mediated and thus approximate or 
probabilistic at best (ibid). Unlike positivist approaches, which prioritise 
observable phenomena, and unlike interpretivism, which emphasises subjective 
experiences, critical realism focuses on uncovering the underlying structures and 
mechanisms that shape both observable phenomena and subjective experiences 
within a broader context (Easton, 2010). 

Critical realism has influenced the case studies presented in this dissertation 
in terms of the objective of describing and explaining empirical realities beyond 
the subjective perceptions of the research participants (ontological realism). 
Additionally, it has shaped my attempts to critically assess how both my 
subjectivities and those of the informants have influenced the research process 
(epistemological relativism). Although the research questions primarily focus on 
the ‘how’, they implicitly delve into the ‘why’ by examining the factors 
contributing to the sustainability of FOSS ecosystems. From my perspective, 
many FOSS governance mechanisms are neither directly measurable nor entirely 
subjective. Furthermore, according to some scholars, such as Easton (2010), 
critical realism aligns well with the case study approach, as it supports our 
understanding of causalities within specific contexts. 

While critical realism forms the foundation of my thinking, the practical 
orientation of my research also has a great deal in common with pragmatism (e.g., 
Mead, 1938; Morgan, 2014). Pragmatism emphasises the practical application of 
ideas and the usefulness of theories in solving real-world problems (Goldkuhl, 
2012). In my case studies, the aim is not only to understand the underlying 
mechanisms of FOSS governance but also to provide actionable 



 
 

44 
 

recommendations that practitioners can implement. However, I also believe that 
understanding underlying structures and mechanisms is essential for a 
comprehensive analysis of any phenomenon. Consequently, I feel comfortable 
aligning myself with critical realism in the philosophical sense despite the 
practical focus of my work. I also believe critical realism is not at odds with a 
practical orientation. While the existence of a mind-independent reality is 
unverifiable, assuming its presence surely facilitates practical decision-making in 
professional contexts. 

Both critical realism and pragmatism have been associated with favouring 
mixed-method approaches (Easton, 2010; Goldkuhl, 2012).However, this 
dissertation primarily relies on qualitative methods, although some case studies 
incorporate small quantitative elements. Qualitative methods provide a deep, 
detailed analysis of complex issues involving human behaviour, and many 
consider them especially suited to grasping organisational dynamics (Cassell et 
al., 2004). Furthermore, authors such as Chetty (1996) encourage using qualitative 
methods in case studies aimed at making practical contributions. He (ibid) argues 
that quantitative approaches, by reducing organisational characteristics to a 
limited number of variables, often strip away the contextual richness necessary 
for the findings to be genuinely helpful for practitioners. It is also noteworthy 
that, partially due to the extensive data mining opportunities offered by FOSS 
platforms such as SourceForge and GitHub (Almarzouq et al., 2022; 
Kalliamvakou et al., 2016), quantitative research has become very popular in 
FOSS research (see Crowston et al., 2012; Linåker et al., 2022 for reviews). 
Therefore, I perceived a greater need for qualitative research to study the aspects 
of FOSS governance that cannot be derived solely from measurable variables. 

4.2 Case Study Designs 

This dissertation consists of studies employing both single-case and multi-case 
designs. The choice of analytic unit—a company, community, or ecosystem—
varies depending on the research objectives. Brief introductions to the case 
contexts, objectives, and research questions were provided in Section 1.2.  This 
section focuses on other decisions in case study design, particularly the number 
of cases, case study approaches, and criteria for case selection.   

To describe the diverse study designs employed, Stake’s (1995, 2005) 
typology of case study approaches and Flyvbjerg's (2006, 2011) case selection 
strategies are referenced herein. Stake’s typology focuses on the purpose and 
scope of the case study. It distinguishes between intrinsic case studies, conducted 
out of specific interest in a unique case; instrumental case studies, which provide 
broader insights through an in-depth focus on a single case; and collective case 
studies, which examine multiple cases to identify patterns across contexts (Stake 
1995, 2005)  Flyvbjerg (2006, 2011) outlines several case selection strategies that 
align with these purposes, including critical cases, which are strategically 
important in relation to the problem being studied; deviant cases, which are 



 
 

45 
 

unusual or special in some way; and maximum variation cases, which capture a 
wide range of perspectives and experiences. These categories are not rigid 
classifications but serve as concepts to describe the case studies in this 
dissertation to some extent. 

Table 2 summarizes the case study designs across the articles, detailing the 
number of cases, the type of organization studied, and their relationship with 
Stake’s (1995, 2005) case study types and Flyvbjerg’s (2006, 2011) case selection 
strategies. The following paragraphs elaborate on these choices.  

TABLE 2 Summary of case study designs across articles 

Article Number of 
cases 

Case 
name(s) 

Organisation 
type 

Case selec-
tion strategy 
(Flyvberg 
2004, 2011) 

Case study 
type (Stake, 
1997, 2005) 

Articles I 
and II 

Single case Stylebase 
for Eclipse 

FOSS Commu-
nity 

Critical case  Instrumental 
case study 

Article III Single case Mahiti In-
fotech 

Company Deviant case Intrinsic case 
study  

Article IV Multi-case 
study, six 
cases 

Unnamed 
SMEs 

Company Maximum 
variation 
cases 

Collective 
case study 

Article V Single case Oskari Plat-
form  

Community Critical  
case 

Instrumental 
case study 

Article VI Multi-case 
study, 
three cases 

Decidim, 
Oskari, 
Plone   

FOSS Ecosys-
tem 

Maximum 
variation 
cases 

Collective 
case study 

 
Single studies allow for a deep, comprehensive, and detailed examination 

and are particularly well suited to studying cases deemed ‘deviant’ or ‘critical.’ 
(Flyvbjerg, 2004).  For instance, the case company in India studied in Article III 
was notably active in the FOSS scene, contrasting sharply with many other Indian 
software companies at the time, which reportedly lacked the capabilities to utilize 
FOSS components, let alone contribute to FOSS communities. This aligns with 
Flyvbjerg's (2004, 1011) concept of a deviant case. This case study can also be 
described as primarily intrinsic, driven by a specific interest in understanding the 
unique characteristics of the company6. In contrast, Article I and IV present more 
instrumental case studies and, in terms of case selection criteria, can be seen as 
examples of ‘critical’ cases. According to Flyvbjerg (2011), a critical case allows 
for logical deductions such as, ‘If this is (not) valid for this case, then it applies to 
all (no) cases.’  For example, the Oskari platform, which is featured in Article IV, 
was a flagship public sector FOSS initiative in Finland. The Finnish Ministry of 

 
6   While the case study presented in Article III was largely intrinsic in the beginning, some 

broader lessons could also be drawn, especially due to similar patterns later identified 
in other cases.  Stake (1997) warns against categorizing case studies strictly into three 
‘boxes’, reminding that is rarely possible. The case studies in this dissertation could be 
seen as aligning with these categories to a degree rather than being pure representa-
tions.   



 
 

46 
 

Finance aimed to use it as a model for open-source practices that could be 
replicated in other public sector organizations. 

The use of multiple case studies allows for a comprehensive exploration of 
differences and similarities across contexts (Bryman, 2008; Eisenhardt, 1989). 
Deriving recommendations for policy or practice can also become easier via the 
use of multiple cases, given the reduced risk of idiosyncratic findings (ibid). I 
adopted a multi-case design for two studies to obtain a comprehensive view of a 
research topic. The study of six FOSS-engaged software companies in Article IV 
revealed a broad spectrum of managerial attitudes towards FOSS across firms. In 
Article VI, consistent patterns emerged in three public sector FOSS ecosystems 
despite variations in terms of national origin, size, and domain.  In Stake’s (1997, 
2005) terms, these could be categorized as collective case studies. The case 
selection criteria were centered on achieving ‘maximum variation’ (Flyvbjerg, 
2004, 2011), aiming to identify cases that, despite diverse variations, have shared 
patterns that cut across these variations. Setting the number of cases between 
three and six was an attempt to strike a balance between maximising data 
richness and maintaining a manageable scope while also aiming to achieve a 
reasonable level of thematic saturation (see Runeson et al., 2012). 

In addition to the mentioned rationales for case selection, convenience of 
access also played a role. Access to organizations or communities was often 
facilitated by personal contacts, which helped in building rapport with 
informants. In some instances, my involvement with the organisations or 
communities consisted of a full-time professional role, allowing for long-term 
participatory observation. This deep engagement complemented interview 
findings and enriched crucial background knowledge.  One of the case studies 
(Article V, Oskari platform) was methodologically framed as an ‘action case’ 
(Vidgen & Braa, 1997) to reflect its dual objective: revealing the case context and 
facilitating actionable improvements. While the interventionist elements were 
not as pronounced as in full-fledged action research, they surpassed what could 
be justified by participatory observation alone. 

4.3 Data Collection Methods 

Triangulating multiple data sources is one of the key strengths of case study 
research (Runeson et al., 2012), as it allows for a nuanced and comprehensive 
understanding of complex phenomena. This dissertation employed various data 
collection methods across the included articles to capture diverse perspectives 
and insights. Table 3 summarises the data sources and the volume of the data 
analysed for each article, highlighting the use of interviews, document analysis, 
observation, and software analysis. 
  



 
 

47 
 

TABLE 3  Summary of data collection methods 

Article Interviews Documents  Observation 
 

Software 

Article I N/A*  63 pages 6-month work 
period 

10 250 LOC* 

Article II N/A  N/A  N/A  3 applications 
(87 FP*) 

Article III 4 h 28 min 50+ pages 10+ pages of 
notes  

N/A  

Article IV 8+ h* 50+ pages N/A N/A  

Article V 5+ h  N/A 6-month work 
period 

N/A  

Article VI 13 h 40 min 223 pages 21 pages of 
notes 

N/A  

 
*Explanations: N/A = not applicable, LOC = lines of code, FP = function points, h = hours 

 
The data collection methods used are as follows: 

Interviews: This dissertation employs semi-structured interviews, with the level 
of structuring varying across the studies. The interviews for Articles III and IV 
were more structured, reflecting the choice of a theory-driven approach for these 
early phases of the research. In contrast, later interviews, as in Articles V and VI, 
allowed more space for spontaneous discussions and, thus, exploring emerging 
themes. All interviews were recorded and transcribed, with a few exceptions due 
to technical failures or instances in which informants did not permit recording; 
in such cases, hand-written notes were taken. Informant selection was influenced 
by the research question posed in each article, and I made a general attempt to 
include individuals from diverse professional roles and positions within the case 
organisation to gather a broad range of perspectives. 

Documents: The documents analysed fell into three categories: unpublished and 
potentially confidential business documents received from informants, such as 
balance sheets and strategy documents; publicly available online documents, 
including FOSS community descriptions and governance rules; and ongoing 
discussions on FOSS forums, such as on digital platforms, IRC (Internet Relay 
Chat) channels, and mailing lists. Unpublished documents and tools were stored 
in a dedicated case study database or folder, with links being saved for publicly 
accessible documents. Only excerpts that were relevant to the research questions 
were retained for lively discussion forums.  

Observation: Observation methods ranged across the spectrum of participant 
observation. As a researcher, I assumed a dual role: that of an observer who 
systematically noted behaviours and interactions within the setting and that of a 
participant who engaged to varying degrees depending on access and the 
objectives of the case context. Levels of participation ranged from moderate, such 
as mingling informally at community events or in company cafeterias, to full 
involvement, such as contributing to an open-source software project and 



 
 

48 
 

leading design workshops in a professional capacity. Observational data were 
primarily recorded through notetaking. Furthermore, some of the documents 
described above were accessed during participant observation. 

Software:  In Article II, a black box testing approach was adopted, in which three 
open-source software tools were installed and used without accessing or 
analysing the underlying code. This methodology was crucial in evaluating the 
tools from an end-user's perspective, focusing on external functionalities and 
usability. Conversely, the research in Article I involved a thorough analysis of 
the existing Eclipse architecture, which is essential for integrating a new plugin 
seamlessly. This analysis enhanced the plugin’s technical utility and deepened 
our understanding of modular development within software ecosystems. Thus, 
software served as a data source in Article I. In Articles V and VI, although 
knowledge of the platform software was vital for context, aiding in the 
discussions with informants and the interpretation of the findings, it did not 
constitute an independent data source. 

4.4 Data Analysis Methods 

This section offers an overview of the data analysis methods employed. It begins 
by detailing the primary analysis method, which is qualitative content analysis, 
and then briefly describes the additional analytical methods used in the included 
articles. 

4.4.1 Qualitative Content Analysis 

Qualitative content analysis was applied to interview transcripts, selected 
documents, and observation notes.  Both directed and conventional approaches 
were used. In directed content analysis (Hsieh & Shannon, 2005), initial coding 
categories are derived from existing theory, facilitating theory-driven data 
exploration. Conversely, in conventional content analysis, categories are 
developed directly from the data, allowing themes to emerge naturally, without 
theoretical preconceptions (Hsieh & Shannon, 2005). 

Template analysis (King, 1998; 2012) was utilised throughout the 
dissertation and provided a structured yet flexible approach to thematic coding. 
Central to this method is a coding ‘template’—a hierarchical organisation of 
themes deemed essential for analysing the dataset. This template guides the 
initial stages of analysis and is also iteratively refined as the analysis progresses. 
Themes may be refined, combined, split, or discarded, and new themes may 
emerge, necessitating revising the template. This iterative process is continued 
until a stable template that accurately reflects the data’s themes is achieved. 

There were several pragmatic reasons for choosing template analysis. The 
method is adaptable to the specific needs and contexts of various research 
projects and adept at managing relatively large volumes of data. It effectively 



 
 

49 
 

balances a priori theoretical concerns with emergent themes derived from the 
data, supporting both conventional and directed content analysis. An additional 
advantage of template analysis is its flexibility in terms of not being tied to any 
theoretical framework or epistemological stance. 

The initial study containing interviews (Article III) adopted a more theory-
driven approach, using directed content analysis with prior codes derived from 
open innovation theory and FOSS business research. In contrast, the later studies 
(Articles III-VI) adopted a more open-ended coding approach that was informed 
by my experiences with the limitations of a strictly theory-driven coding strategy. 
Article III can be categorised as employing directed content analysis, but it used 
only a few initial codes related to open innovation theory. Article V utilised 
purely conventional content analysis, with all codes derived directly from the 
data. Article VI employed a combination of directed and conventional content 
analysis, emphasising the latter. 

All studies that implemented formal thematic coding had interview 
transcripts as their primary data source. Documents and observations were 
crucial in supplementing and corroborating the data collected from the 
interviews. While some core documents and observational notes underwent 
systematic coding identical to that the interview transcripts were subjected to, 
most of these supplementary data were integrated into the content analysis 
differently. Alongside the thematic coding of the interview data, documents and 
observation notes were scrutinised for examples that either corroborated or 
contested the themes derived from the interviews. This pragmatic approach 
allowed for the inclusion of much larger sets of supplementary data. The role of 
triangulation was emphasised: data from interviews were often supported, but 
sometimes contested, by evidence derived from documents or observations, 
prompting the further examination of conflicts within the data. This led to 
credible and robust research findings. 

4.4.2 Specialised Analytical Methods 

In addition to the qualitative content analysis employed across several research 
articles, this dissertation integrates the following specialised analysis methods to 
address specific aspects of the research questions in some articles: 

Quality-Driven Architecture Design and Analysis (QADA): Utilised in Article 
I, QADA (Matinlassi et al., 2002; Niemelä & Ihme, 2001; Ovaska et al., 2010) is an 
academically grounded software engineering methodology that ensures 
software architectures have critical quality attributes, such as performance, 
security, maintainability, and scalability. This method underpinned the 
development of an open-source Eclipse plugin and supported its integration 
within the Eclipse ecosystem. 

Normative Information Model-Based Systems Analysis and Design 
(NIMSAD): Applied in Article II, the NIMSAD (Jayaratna, 1994; Simister, 1996) 
framework was used to evaluate and assess the functionality and usability of 



 
 

50 
 

three open-source tools. Its structured approach offers a robust framework for 
systematic analysis, enhancing our understanding of information systems. 

Value Network Analysis (VNA): VNA (Allee, 2003; 2008) is a practice-oriented 
method of mapping relationships and analysing value exchanges among 
stakeholders. Used in Article III, alongside qualitative content analysis, it helped 
delineate the company’s strategic position within FOSS-related value networks 
and quantify associated revenue streams. 

Software Configuration Management (SCM) Plan: Software configuration 
management planning (Leon, 2015) leverages strategic planning to refine 
software processes and lifecycle activities.  Due to its practical relevance and 
adaptability, it was selected to guide the iterative improvement of management 
practices within a public sector FOSS community, as reported in Article V. 

These methods are primarily qualitative but also incorporate quantitative 
elements, creating a mixed methods approach. They blend academic theories 
with practical IS applications and, in my view, have been particularly helpful in 
enhancing the practical relevance of the research findings. 



 
 

51 
 

This chapter provides a concise overview of the six articles that form the core of 
this dissertation. Each article is summarised in a structured format, covering the 
objective, methodology, and key results. 

5.1 Article I: Contributing to Eclipse – A Case Study 

Objective  

The objective of this study was to understand the requirements for building a 
sustainable FOSS community, particularly within an existing platform ecosystem 
such as Eclipse. Equal consideration was given to the social, technical, and legal 
aspects of community development. This study explored both the academic 
literature and practitioner accounts of FOSS community building. Based on these 
resources, it aimed to make informed governance decisions concerning issues 
such as licensing, hosting infrastructure, and initial communications. These 
choices are designed to contribute to the long-term sustainability of the 
community. The article documents these experiences and their implications. 

Methodology 

The study documents and analyses the lessons learned from a practical trial 
involving the development of an Eclipse plugin called Stylebase for Eclipse and 
the building of a new FOSS community to continue this development. The paper 
was written in a manner typical of ‘experience reporting’ in software engineering 
at the time and did not discuss methodology in detail. The work can be seen as a 
form of participatory observation in which the researcher fully engages in plugin 
development and community building. The QADA methodology (Matinlassi et 
al., 2002; Niemelä & Ihme, 2001) was instrumental in the technical and functional 
design of the plugin, as explained by Ovaska et al. (2010).  

5 OVERVIEW OF THE INCLUDED ARTICLES 



 
 

52 
 

Results 

The study highlighted the complexities and rewards of contributing to FOSS 
ecosystems, providing insights into various practical issues, including project 
hosting, choosing and complying with licences as well as strategies for building 
user and contributor bases. Developing the plugin proved relatively 
straightforward; however, integrating FOSS components raised technical and 
legal issues, necessitating careful consideration and, sometimes, the replacement 
of components. The report also discussed some previously unreported practical 
hurdles, such as the lengthy acceptance processes of FOSS hosting services at that 
time. Reflecting its era, the report also analysed the steps taken to avoid 
ideological disapproval on the part of certain FOSS communities, such as 
replacing Sun Java libraries and ensuring full Linux support, even though Linux 
users were a marginal or nonexistent user base. In addition to this article, more 
detailed results have been published in a research report  (Henttonen, 2007). 

5.2 Article II: Open Source-Based Tools for Sharing and Reuse of 
Software Architectural Knowledge  

Objective  

The article is an extension of Article I, but it shifts in focus from FOSS community 
building to the purpose of the software artefact itself. The article was intended to 
evaluate how well the Stylebase for Eclipse plugin meets its intended purpose, 
which is to boost the sharing and reuse of software architectural knowledge 
(SHARK) within FOSS projects and other geographically distributed 
development teams.  It was believed that the effective dissemination of 
architectural knowledge could improve the sustainability of FOSS projects by 
facilitating better decision-making and integration practices. Furthermore, the 
long-term sustainability of the plugin community itself was naturally dependent 
on it creating value for users. 

Methodology 

The methodology employed involves constructing an evaluation framework 
specifically designed to assess SHARK tools. This evaluation framework was 
built on the NIMSAD meta-framework (Jayaratna, 1994; Simister, 1996), and its 
criteria were derived from the academic literature. The framework was applied 
to assess Style for Eclipse and two other open-source tools for the same purpose: 
Web of Patterns and PAKME (Process-based Architecture Knowledge 
Management Environment). The study utilised publicly available materials, 
hands-on tool installation, and usage in certain test scenarios to derive insights 
into each tool’s effectiveness. 
 



 
 

53 
 

Results 

The evaluation revealed distinct strengths and areas for improvement in 
‘Stylebase for Eclipse’ as compared to the two other tools. The strengths of 
‘Stylebase for Eclipse’ included its flexibility, easy integration with Eclipse tools, 
and illustrative presentation of design knowledge. ‘Web of Patterns’ excelled at 
facilitating the search and retrieval of design patterns directly from source code, 
making it highly suitable for FOSS and other agile projects. In turn, PAKME, the 
most comprehensive tool evaluated, offered robust functionalities for managing 
extensive architectural knowledge at the cost of being complex to deploy. The 
results pinpointed areas for further enhancement regarding the ‘Stylebase for 
Eclipse’ plugin, including usability improvements and the addition of 
collaborative features. They highlighted the fact that the long-term success of the 
‘Stylebase for Eclipse’ community would be tied to its ability to deliver value 
through both robust features and ease of integration into developers’ daily 
activities. Although it was not the focus of this work, the results also illustrated 
the potential of SHARK tools to support the sustainable governance of FOSS 
projects broadly by enabling efficient architectural knowledge management. 

5.3 Article III: Libre Software as an Innovation Enabler in India – 
Experiences of a Bangalorean Software SME  

Objective 

The study explores the role of organisational FOSS governance in fostering 
innovation and economic development within a small to medium-sized 
enterprise (SME) in Bangalore, India. The primary objective is to assess how the 
SME governs its FOSS efforts to enhance innovative capabilities and value chain 
positioning. These issues are related to open-source governance, particularly 
how the SME manages its engagement with FOSS communities and integrates 
open-source tools into its business model to sustain competitive advantages. 

Methods 

The approach adopted is a primarily qualitative case study of Mahiti Infotech, a 
Bangalore-based company that integrates FOSS into its business model. Data 
were collected through semi-structured interviews with the company’s directors 
and senior developers and supplemented by document analysis and 
observations of employee interactions in the workspace and on relevant IRC 
channels. The dataset is hereafter referred to as the ‘Dataset of Article III’. The 
interviews were recorded, transcribed, and thematically analysed using the 
template analysis (King, 1998) method.  The initial coding was based on concepts 
derived from open innovation theory (Chesbrough, 2004; West & Gallagher, 
2006), but it was adjusted to accommodate the themes drawn from the data.  The 
role of other data collection methods was primarily to corroborate or contrast the 
evidence gathered through interviews. In addition, the documents provided data 



 
 

54 
 

in support of value network analysis (Allee, 2003; 2008), which was used as a 
complementary analytical method. This approach helped elucidate the business 
model by tracing monetary and non-monetary value flows. 

Results 

The study found that the case company had developed mature organisational 
FOSS governance practices and that leveraging FOSS significantly boosted its 
innovation capabilities and progression in the software value chain. By 
incorporating FOSS into products, the company cut R&D costs, hastened time-
to-market, and bolstered global competitiveness. Despite resource limitations, 
the company prioritised contributing to FOSS communities. Being active 
developers, rather than mere users of FOSS solutions, improved their brand 
image, provided marketing benefits, and created opportunities for inter-
organisational learning.  The company ensured the compatibility of its business 
models with FOSS licenses and integrated FOSS tools and practices into internal 
processes, such as employee training. Challenges were also reported, including 
adapting FOSS solutions to local market needs and financing some FOSS efforts. 
In addition to this article, I published a longer and more detailed report on the 
results in (Henttonen, 2011). 

5.4 Article IV:  Managerial Perspective of Open Collaboration 
and Networked Innovation  

Objectives  

The study explored the diverse managerial views regarding FOSS usage and 
networked innovation across six software companies. The primary objectives 
were to understand the differences in managerial attitudes towards FOSS, the 
expected benefits, and the challenges related to its adoption and integration into 
business practices. Specifically, the study sought to examine how different levels 
of engagement with FOSS communities influence corporate governance.  While 
the focus was on organizational/corporate FOSS governance, its influence on the 
sustainability of FOSS communities and ecosystems was also addressed. 

Methods 

The research employed a multiple case study approach, analyzing six software 
companies that utilize FOSS extensively but vary in their level of engagement 
with FLOSS communities. The method included semi-structured interviews with 
company managers and a review of documentation such managerial guidelines 
and saved chat conversations. The interviews were recorded and transcribed. 
Documents and interviews were thematically analysed using the template 
analysis (King, 1998) method. The initial coding was based on concepts adapted 
from open innovation theory, but was flexibly adjusted to  incorporate themes 
drawn from the data. Interviews were the primary data collection method, and 



 
 

55 
 

document analysis was used to corroborate or contest the evidence gathered 
through interviews. 

 Results 

The study highlighted the pivotal role of managerial attitudes in shaping 
corporate FOSS governance. Although this was only implied in the original text, 
it is worth noting that these attitudes often seemed more rooted in gut feelings 
and ideology than in informed business analysis. The attitudes led to stark 
differences in how companies engaged with FOSS, consequently impacting the 
benefits they reaped and the challenges they encountered. Companies 
categorised as ‘external innovators’ tended to perceive FOSS primarily as a 
means of cutting costs and accelerating time-to-market. Conversely, ‘open 
innovators’ viewed FOSS as integral to their value creation processes, actively 
participating in and contributing to the community to foster networked 
innovation. Despite the significant time and resources required for FOSS 
contributions, managers from the later companies perceived their reciprocal 
relationships with FOSS communities as a sustainability strategy. They 
recognised that their contributions help sustain the ecosystems they depend on, 
ensuring the longevity of their business models. 

5.5 Article V: Life-Cycle Management in Government-Driven 
Open-Source Projects – Practical Framework  

Objective 

The article addressed a gap in the existing literature concerning practical tools 
for managing the evolution of FOSS products in the public sector, emphasising 
the stages from deployment to end-of-life. The study was intended to develop a 
practical framework to support adopting a collaborative lifecycle management 
model in the governance of public sector FOSS communities. This framework 
served as a practical application of the model introduced by Kääriäinen et al. 
(2012).The framework was tested in a real-life case study to evaluate its 
effectiveness in enhancing FOSS sustainability. The focus was on determining 
whether and how a structured lifecycle management approach could address 
previously observed sustainability challenges in public sector FOSS projects, 
such as insufficient work coordination and poor quality. 

Methodology 

The research adopts an action-case approach (Vidgen & Braa 1997), combining 
explanatory and interventionist elements. Developing a lifecycle management 
framework involved iterative focus group discussions with public sector 
information systems experts and email interviews with SME-sized software 
companies familiar with public sector collaboration. Software configuration 
management planning (Leon, 2015) was selected as a practice-oriented method 
to guide framework development. The framework was then applied and tested 



 
 

56 
 

in the Oskari project, a collaborative open-source geospatial toolkit. The 
assessment data were collected from participant observations and semi-
structured interviews with key project contributors. Interview transcripts were 
analysed using the template analysis (King, 1998; 2012) method. 

Results 

The paper introduced a CO-SLM (Collaborative Software Lifecycle Management) 
framework, which provided clear guidelines for designing governance structures, 
responsibilities, and processes within public sector FOSS projects. Figure 1 
depicts the four main elements of the product management framework. The 
practical framework then elaborates on each element, describing the issues that 
must be considered and documented when a consortium of public sector 
organisations seeks to co-develop a FOSS product. 

 

FIGURE 1 Main elements of the CO-SLM framework 

The application of the CO-SLM framework in the Oskari project 
demonstrated several benefits, such as increased stakeholder trust in the 
community, increased inter-organisational collaboration and enhanced software 
quality (e.g., due to shared architectural principles). These contributed to the 
sustainability of the project. However, the study also acknowledged 
sustainability challenges the framework did not fully address, such as ensuring 
the project’s independence from any single coordinating entity. Overall, the 
findings underscored the need for robust, community-driven governance models 
that can adapt to the unique challenges of open-source software development in 
government contexts. Apart from this article, the results were also disseminated 
by Matinmikko et al. (2017) in an article aimed at practitioners that emphasised 
actionable insights. 



 
 

57 
 

5.6 Article VI:  Health and Orchestration of  Public-Sector Open-
Source Software Ecosystems: Roles, Rules, and Tools 

Objectives 

The study explores how public-sector organisations function as orchestrators and 
keystones within free and open-source software (FOSS) ecosystems, with a 
particular focus on governance activities that contribute to the long-term well-
being of these ecosystems. To define this well-being, the research draws on the 
concept of ‘ecosystem health’. The objectives were twofold. First, the study 
sought to identify the key dimensions of FOSS ecosystem health in the public 
sector, and second, it sought to understand how orchestrators and keystones can 
influence this health through governance. 

Methods 

The research employs a qualitative multi-case study approach, examining three 
FOSS ecosystems orchestrated by public sector organisations. This was not a 
comparative study design, so the cases were not selected for comparison but, 
rather, to maximise the diversity of perspectives and allow for the identification 
of commonalities across cases. Data were collected through interviews, 
participant observation, and an analysis of online discussion forums. More 
detailed information on the dataset, which is hereafter referred to as the ‘Dataset 
of Article VI’, is available at the Jyväskylä University Digital Repository 
(Henttonen, 2020; 2024). The selection of interviewees was strategically oriented 
toward capturing diverse perspectives within each case ecosystem to provide a 
balanced representation across ecosystem roles and occupational positions. The 
study used a combination of directed and conventional content analysis (Hsieh 
& Shannon, 2005) to approach the interview data. Template analysis (King, 1998, 
2012; King & Brooks, 2017) was employed to analyse the transcripts thematically. 
In parallel to the coding of the interview transcripts, the supplementary 
documents, such as text taken from online discussion forums and notes from 
participative observation, were scrutinised for examples that corroborated or 
contested the evidence derived from the interviews. Reflecting our analytical 
focus on commonalities, the results were written in a manner that integrates the 
insights derived into a unified narrative rather than examining them on a case-
by-case basis. 

Results 

This study introduced a model for health-sustaining activities in public sector 
FOSS ecosystems and underscored the importance of their purposeful 
governance.  The model described seven health-sustaining activities and 
elucidated their relationship with ecosystem health, as illustrated by Figure 2.  
 



 
 

58 
 

 

FIGURE 2 Health-sustaining activities in public sector FOSS ecosystems 

The model also described how public-sector orchestrators and keystones 
engage in these health-sustaining activities through strategic role creation, rule 
establishment, and tool provision. Figure 3 illustrates this triad, which hints at 
the potential explanatory potential of activity theory. Through rulemaking and 
role creation, the orchestrator shapes organisational relationships within the 
ecosystem. Digital tools support both prescriptive tools, such as automatic 
quality assurance (QA) tools, and collaborative tools, such as wikis and CVS, 
which help ensure compliance with the rules, while collaborative tools, such as 
wikis and CVS, facilitate the division of labour. 

 

 

FIGURE 3  Relationships between roles, rules, and tools 

The study also identified significant challenges public sector orchestrators 
face, such as conflicting policy frameworks and institutional misalignment with 
private software contractors. Challenging the myth of complete self-sufficiency, 
the findings emphasised that fostering a sustainable open-source ecosystem in 
the public sector requires substantial dedication, expertise, and investment. 
 



 
 

59 
 

This chapter synthesises the findings derived from the articles. It aims to answer 
the following overall research question: 

RQ How do governance approaches across organizational, community, and 
ecosystem levels influence the sustainability of FOSS? 

The chapter is organised into subsections based on the sustainability types 
described by Curto-Millet and Corsín Jiménez (2023) and the three levels of 
governance.  

6.1 FOSS Governance for Infrastructural Sustainability 

Infrastructural sustainability concerns the capacity to sustain technical and legal 
infrastructure on a long-term basis. This section discusses the findings regarding 
how governance at various levels can support it. 

6.1.1 Community Governance and Infrastructural Sustainability 

One important way governance enhances FOSS communities’ sustainability is by 
establishing and maintaining a robust legal and technical infrastructure. Several 
case studies in this dissertation involved some interaction with foundations, 
including the Eclipse Foundation (Article I), the Plone Foundation (Articles III 
and VI), and the Decidim Free Software Association (Article VI). The role of 
foundations varies depending on the nature of the ecosystem—one could not 
draw many comparisons between the Eclipse Foundation of the 2000s, which was 
heavily dominated by IBM, and the very democratic and collectivist Decidim 
Foundation run by public sector organisation and civil society actors in the 2020s. 
What they share, however, is a key role in sustaining the legal infrastructure of 
the ecosystem. This was seen as crucial for the long-term sustainability of the 
ecosystem, as highlighted by an informant: 

6 RESULTS 



 
 

60 
 

I would like to emphasise the Plone Foundation as a success story. We have a govern-
ance body responsible for ensuring that the wheel keeps rolling, that there is a legal 
basis for everything, that contributor license agreements remain in force, and so on. 
We also have a trademark and a logo that must be protected against misuse. This is 
very dull administrative work but extremely important in the long run. (Article IV, p. 
13) 

Of all legal agreements, licensing terms have particularly strong influences 
on the governance and sustainability of a project, as detailed in the literature 
review (2.2). The topic has surfaced—often unprompted—throughout the case 
studies in this dissertation. The narrative surrounding licensing has evolved 
markedly. Earlier conversations with informants, particularly those in Articles I 
and IV, were dominated by somewhat ideologically charged debates about the 
merits and limitations of copyleft licences and their impact on community 
sustainability. In contrast, the discussions in later articles adopt a more pragmatic 
approach, focusing on aligning licensing choices with business goals and 
ensuring compatibility with licenses that are widely adopted within the broader 
ecosystem. 

The collaborative development environments have also undergone 
significant transformations during the dissertation period, from platforms such 
Savannah and SourceForge in the early 2000s, as discussed in Article I, to the 
contemporary predominance of GitHub, which was used in the case studies 
reported in Articles V and VI. However, despite changes in technology, the key 
tools remain similar: version control, issue tracking, and discussion forums. 
Additionally, the most recent article (VI) highlights the role of automatic and 
semi-automatic quality control tools. These critical tools include linting tools (e.g., 
Flake8 and RuboCop) that analyse code for potential errors and style violations 
and continuous integration (CI) tools (e.g., Jenkins and GitHub Actions) that 
automate build and test processes 7 .  These tools can be seen as forms of 
architectural knowledge sharing (like the earlier tools reviewed in Article II) 
because they embody architectural principles, best practices, and patterns. 
However, they do not explicitly document architectural decisions. Discussion 
forums are often seen to suffice for this purpose in FOSS communities. 

6.1.2 Ecosystem Governance and Infrastructural Sustainability 

At the level of ecosystem governance, infrastructural sustainability is mainly 
related to ensuring technical and legal infrastructure compatibility. The license 
compatibility with the ecosystem was considered more important than an 
individual community’s ideological or pragmatic preferences. One informant 
stated, “Right now, the most important thing is to pick the already strong licence 
in each ecosystem so that it is compatible with the other pieces” (dataset of Article 
VI). The uniformity of the tooling environment within a broader ecosystem was 
also discussed. For example, some informants mentioned the benefits of 

 
7  The tools are not mentioned by name in the articles but are present in the underlying dataset of Article 

IV.  These and other linting and CI tools were pioneered within the FOSS scene and have since been 
widely adopted in proprietary development environments.  



 
 

61 
 

standardising QA processes by adopting uniform tools throughout the 
ecosystem. 

6.1.3 Corporate Governance and Infrastructural Sustainability 

Organisational/corporate governance strategies for legal and technical 
infrastructure vary widely. The results of the studies reported in Articles III and 
IV suggest that companies that establish strong partnerships with FOSS 
communities integrate their tooling environments with those of the FOSS 
communities. This leads to adopting FOSS-based collaborative development 
tools within their internal software development processes, as exemplified by the 
inner source platform deployed by Mahiti Infotech. Additionally, these 
companies adapt their business models to align with FOSS licence terms and 
often view ‘open-source piracy’— using FOSS-licensed software in a manner not 
permitted by its licensing terms—as a business threat. In contrast, companies that 
only utilise FOSS components typically maintain their existing tools and 
processes, using them to assess and integrate FOSS code. They also opt for FOSS 
components that are compatible with their existing business models, rather than 
changing to accommodate licensing terms. As discussed in Article IV, these 
companies view copyleft licenses negatively and may be more prone to violating 
their terms if they believe they will not be caught. 

While the above description may sound like two distinct approaches, 
corporate FOSS governance strategies are situated along a spectrum between 
these two, as highlighted by Article IV. Evidently, the sustainability of FOSS 
communities is influenced by how participating commercial entities adhere to 
the standards embodied in their legal and technical infrastructure. 

6.2 FOSS Governance for Resource-Based Sustainability 

Free and open-source software governance can enhance resource-based 
sustainability by effectively managing and nurturing all available resources 
within the ecosystem. This includes both input resources—mostly human but 
also financial—and output resources, with the source code being the most critical. 
Given the differences in the governance practices for input and output resources, 
this section is divided into two subsections accordingly. In line with the 
sustainability types (Curto-Millet & Corsín Jiménez, 2023), infrastructure is not 
treated herein as a resource but, rather, as a separate category (see Section 6.1). 

6.2.1 Governing Input Resources 

This section summarises governance of input resources—financial and human—
from the perspectives of community, organisation, and ecosystem. 



 
 

62 
 

6.2.1.1 Community Governance of Input Resources 

We know from the literature and practice (see Section 3.2) that large, multi-
national companies can maintain large FOSS communities alone if that serves 
their strategic interests. In this dissertation, I also report the example of a 
resource-constrained Indian SME kickstarting and maintaining a FOSS project 
alone (Article III). In this type of community, resource-based sustainability 
largely depends on the ‘depth of the pockets’ and revenue model of the leading 
company. However, in all other cases explored in this dissertation, the studied 
organisations have entered the FOSS scene with a strong desire to benefit from 
resource pooling. Thus, resource-based sustainability depends on mechanisms 
encouraging the inflow of human and financial resources from various sources.   

The inflow of human resources can be sustained by promoting the growth 
of the user base and deepening user engagement, as discussed throughout this 
dissertation. At the community level, this involves attracting users and providing 
them with a rewarding pathway to becoming contributors. The case studies 
reported in Articles III, IV, and VI suggest that commercial organisations and 
broader ecosystems play crucial roles in expanding the user base. Community 
governance mechanisms, such as clear contribution guidelines, published 
roadmaps, and mentoring programs, are vital in encouraging and enabling 
independent and organisational users to become more actively involved and 
transition into becoming contributors.  

Nevertheless, the results reported in Article IV highlight the fact that a 
balance must be struck regarding how much time core teams invest in 
accommodating new users and contributors. While the growth of communities 
or ecosystems is generally considered beneficial for sustainability, rapid 
expansion can overburden central organisations. The challenges associated with 
growth are particularly evident in public sector organisations but were also 
mentioned during interviews with companies. The results suggest that rapid 
growth poses challenges unless sufficient resources are available to “grow the 
core team proportionally to the growth of the user base”, as the informant 
expressed it (dataset of Article VI). Managing growth is, therefore, a crucial 
aspect of ecosystem and community governance because it helps to ensure 
resource-based sustainability.  

Apart from attracting human resources, community governance must also 
effectively manage their allocation. This includes addressing collective action 
dilemmas related to less glamorous tasks, such as maintaining core components. 
While they are crucial for everyone, these tasks often do not offer new business 
opportunities for companies, recognition for public sector managers, nor 
intellectual stimulation for individual developers. Effective governance 
mechanisms are essential to ensure that these critical tasks are not neglected. One 
potential mechanism identified in the dissertation involves collecting community 
membership fees to contract out unwanted tasks. This approach emerged from 
the public sector context, where the importance of financial inflows and formal 
co-financing contracts is emphasised. Co-financing contracts in public sector 
FOSS projects addresses legal and practical constraints, such as procurement 



 
 

63 
 

laws and a lack of technical expertise, which limit the ability of public sector 
organisations to contribute directly to development work.   They can also be used 
to assign tasks that no organisation would spontaneously undertake.  

6.2.1.2 Ecosystem Governance of Input Resources 

At the ecosystem level, resource-based sustainability is fundamentally linked to 
the resourcing of communities that develop the core platform and other 
foundational components of the ecosystem. The process of gradual engagement 
also applies at the ecosystem level. Initially, the ecosystem must grow by 
involving organisations in peripheral roles, such as users or developers of third-
party extensions. These peripheral participants can then be offered opportunities 
and incentives to contribute to developing the core platform and other 
strategically important projects. However, managing growth is also a challenge 
in an ecosystemic context. This is because new extension developers often require 
support and attention from the core platform development community but 
typically do not contribute resources in the short term. 

Platform development can also grapple with long-term collective action 
dilemmas. Investing in the core platform may appeal less to stakeholders than 
developing proprietary, value-adding extensions. One informant likened 
platform development to a “janitor's job” (Article IV, p. 6)—a task left for others 
to handle. Without effective ecosystem governance to incentivise and facilitate 
participation in platform development, too many participants might adopt a 
freeriding position regarding platform development. 

In addition to attracting contributions to platform development, the role of 
ecosystem-level governance is to promote resource pooling among all ecosystem 
projects. One interviewee explained how this kind of resource pooling between 
projects works in the context of the Oskari case: 

The first level is that each organisation manages their own projects [with an ecosystem] 
but follows some commonly agreed-upon principles. Meanwhile, others are waiting 
to get their hands on it. This is the most common way because it is fast and easy if you 
have money. The second level involves collaborative financing; it is much more com-
plex and requires trust. One organisation is chosen as a leader, and then, the leader 
organisation makes a consortium agreement with other organisations to co-finance 
and co-develop something together. (Article V, p. 17) 

Inter-project collaboration within the ecosystem encourages consolidating efforts 
and resources to develop extensions, thereby preventing the proliferation of re-
dundant extensions and enhancing overall efficiency.  

6.2.1.3 Corporate Governance of Input Resources 

Although governance mechanisms at the community and ecosystem levels can 
influence the amount and distribution of human and financial resources, 
ultimately, investment decisions are made at the level of corporate FOSS 
governance. The findings reveal stark differences in the willingness of 
commercial organisations to allocate resources to FOSS activities that may not 
directly generate revenue. Although they were perhaps less pronounced, 



 
 

64 
 

differences were also noted in the willingness of public sector organisations to 
invest in long-term shared development efforts that go beyond addressing 
immediate administrative responsibilities.  

Some private sector companies perceived FOSS contributions as giving 
money to a charity, that is, a benevolent but ultimately wasteful activity that a 
company could not afford in the long run, at least apart from minor PR 
investments. One interviewed software company manager answered a question 
about FOSS contributions as follows:  

Why would anybody contribute? […] You are not giving gold for free to anybody. It 
is like a joke that, you know, it is open-sourced. Everybody contributes. […] ha-hah, 
nobody contributes, especially [not] the big companies focusing on asset protection. 
(Article IV, p. 6).  

An executive at another software company took a different approach, 
highlighting the importance of contributing to FOSS sustainability: 

If you are part of the ecosystem, you must do things to sustain that ecosystem. If you 
are just a consumer, then that ecosystem will sooner or later die… in order to make the 
open-source ecosystem stable, you [a company] have to start looking at other aspects 
than just being a consumer... to contribute in different ways and make sure that the 
ecosystem stays alive. (Article IV, p. 8). 

Some findings from the case studies reported in Articles III, IV and VI suggest 
that the centrality of FOSS to a company’s business model may partially explain 
some differences in corporate FOSS strategies. Logically, companies for which 
business depends on the continuity of a specific FOSS community or ecosystem 
are more likely to contribute financial or human resources.  However, the find-
ings also highlighted ideological reasons for contributing, which will be dis-
cussed later in the context of interactional sustainability. 

6.2.2 Governing Output Resources 

This section summarises the governance of the most important output resource, 
the source code, at the community, organisational, and ecosystem levels. 

6.2.2.1 Community Governance of Output Resources 

If a FOSS community can secure a sustained flow of financial and human 
resources, it sets favourable conditions for nurturing output resources, such as 
the source code. The importance of robust quality control was emphasised in 
communities that developed core platforms serving a large ecosystem (see 
Articles IV and VI). For platform communities, maintaining both the technical 
quality (e.g., ensuring the architecture remains maintainable) and the functional 
focus of the product is critical. Regardless of the QA methods selected, 
governance must establish clear guidelines and processes for quality control and 
communicate them effectively. The good communication also optimises the use 
of human resources by minimising last-minute debates over whether a 
contribution should be accepted, as one informant described:  



 
 

65 
 

Contributor guidelines must be available, and the criteria must [be] clear about what 
is required from contributions. Because if […] those contributions get rejected on the 
last line, it is very frustrating, a complete waste of resources. […] People will stop try-
ing to contribute if that happens again and again. (Article VI, p. 15) 

The stringent QA approach also helps to maintain an approachable architecture, 
lowering entry barriers for new contributors and supporting human resource 
management. This development was seen with Plone, for example, for which a 
relatively relaxed approach to QA has led to an architecture that an informant 
compared to the “monster of Frankenstein” (dataset of Article VI), noting that 
such an architecture is difficult to learn, limiting the influx of new contributors. 

6.2.2.2 Ecosystem Governance of Output Resources 

Direct involvement in the QA processes of individual projects was often seen by 
informants (in the datasets of Article V and VI) as impractical and undesirable, 
as it would conflict with the principle of project autonomy. At the ecosystem 
governance level, QA work promoted integrability and interoperability between 
projects. The case studies in this dissertation exemplify various strategies with 
which to accomplish this8, such as by endorsing open standards, as Oskari does 
with relevant Open Geospatial Consortium (OGC) standards, by providing 
extensive APIs like Decidim, and by offering common frameworks for extension 
developers like the Eclipse Modelling Framework (EMF).   

Interoperability and integrability are essential at the ecosystem level 
because they make resource pooling easier between projects and increase the 
value of output resources. For example, a large public sector organisation in 
Finland contracted the development of Decidim extensions, which, due to the 
smooth integration with the Decidim core platform and easy installation through 
the Ruby Gems platform, have come to be used internationally and add value to 
others.  This work also included integration into Finnish national systems - such 
as those offered by the Digital and Population Data Services Agency – which 
enhanced the value of Decidim to other Finnish organisations. 

6.2.2.3 Corporate Governance of Output Resources 

Corporate FOSS governance also plays a crucial role in determining how much 
attention is given to the quality of FOSS contributions. The findings from the last 
study (Article IV) revealed the challenges of QA in environments in which many 
participants make FOSS contributions merely to comply with external demands. 
This includes public sector organisations that, in the words of one informant, 
“throw stuff into GitHub” (Article VI, p. 16) merely to comply with policy 
recommendations or software companies that use open-source methods only 
because that is required by the organisations contracting the work.  

If the contributing organisations have little intrinsic interest in the long-
term sustainability of the ecosystem or project, this affects the quality of 

 
8 Although not explicitly mentioned in the included articles, the examples provided here 

are derived from the datasets of Article VI (Oskari and Decidim) and the experience of 
working with EMF while developing an Eclipse plugin, as described in Article I. 



 
 

66 
 

contributions. For example, new functionalities have been placed in illogical 
parts of the code structure, and interfaces are used in a non-standard manner. 
Some contributing companies were reluctant to comply with the basic 
architectural requirements of the core platform and insisted on making non-
reusable contributions. One informant explained this situation as follows: 

We have architectural principles that should be followed in the development work; 
one must pay attention to generalisability in software design. However, it is practically 
always cheaper for a company to develop a specific solution with minimum time and 
effort. However, then, it cannot be reused as such. Some generalisation would be 
needed, which is a big part of the work. Suppose companies are not contractually ob-
ligated to do it. In that case, they will not do it because they think money and time is 
money for them…  it annoys me when the companies say, ‘Yeah, yeah, this is reusable’ 
when it is not reusable. (dataset of Article VI; see Article IV, p. 16, for a shorter version 
of the citation) 

In the public sector context (Articles V and VI), it was evident that some 
participants’ lack of interest in adhering to quality principles placed significant 
pressure on QA processes and personnel.  Resources were wasted on assessing 
substandard contributions and/or arguing about their rejection. Fortunately, this 
was not a universal issue, and some companies played key roles in maintaining 
the quality of the codebase. For example, some SME-sized companies in the 
Decidim platform community make high-quality contributions and significantly 
advise public sector participants on QA issues. Meanwhile, some larger 
companies received substantial revenues but paid little attention to quality. 

6.3 FOSS Governance for Interactional Sustainability  

If resource-based sustainability highlights the continued inflow and QA of 
contributions, interactional sustainability highlights interactions that ensure that 
the incoming contributions are aligned with shared values and expectations. 

6.3.1 Community Governance and Interactional Sustainability 

At the community level, the research done for Articles III, V, and IV strongly 
supports the notion that inclusive and transparent decision-making processes are 
pivotal in encouraging positive community dynamics. Contributions can only be 
aligned with community expectations if members understand how decisions are 
made and feel that their perspectives are valued. As one informant put it (dataset 
of Article VI), “You want to be treated as a partner and not as a free-or-charge 
resource thrown with unwanted tasks”.  

The importance of knowledge sharing in sustaining both input and output 
resources has already been touched upon (see Section 6.2). Additionally, 
knowledge sharing is crucial for collective decision-making. For example, one 
informant noted (Article VI) that the Project Steering Committee (PSC) meetings 
were particularly challenging because many participants lacked sufficient 
background knowledge to engage in the discussions. He expressed reluctance to 



 
 

67 
 

dominate the conversation but found himself being the only one speaking, as 
others were there ”just to listen and learn”.  It was acknowledged that 
participating in PSC meetings without the necessary background knowledge to 
discuss the matters being decided was not the most efficient way to learn. 
Because the problem could not be solved at the organisational or community 
level, those in charge of ecosystem governance planned to invest further in inter-
organizational knowledge sharing, for example, by organising training events.  

6.3.2 Ecosystem Governance and Interactional Sustainability  

As discussed in the context of resource-based sustainability and as mentioned in 
several articles (III, IV, V, and VI), there are various approaches to inter-project 
resource pooling: some stakeholders engage in the passive reuse of source code 
from other projects, while others pursue opportunities for co-developing 
extensions together. While technical knowledge sharing (e.g., well-documented 
source code and interfaces) may be sufficient to enable the former, the latter 
model requires organisations to understand one another's requirements and 
goals in depth.  As it typically involves the creation of new communities or 
merging existing ones within the ecosystem, the role of interpersonal trust and 
face-to-face meetings was highlighted. One informant (the dataset of Article V) 
argued, “If you need to put money on the table and finance something together, 
it does require trust, and trust does not happen unless you meet in person.” 

Collaborative decision-making at the ecosystem level is often perceived as 
primarily focused on integration issues, such as interface standards. However, 
the close intertwining of ecosystem governance with the community governance 
of the core platform makes the picture more complex, as observed in Articles V 
and VI. Most of the time, the platform community governance determines which 
issues are important enough to escalate to ecosystem-level decision-making. Due 
to the highly heterogeneous and loosely coupled participants, ecosystem-wide 
negotiations are often particularly challenging, which may create a temptation to 
make decisions in a smaller circle. This interactional deficit can cause platform 
remakes that are not interesting for most ecosystem participants.  An informant 
recalled a historical example: 

The remember in the 2000s when the Zope component architecture [was adopted]… 
In the Python ecosystem, it was the most advanced way to build applications from 
new components. However, because Python is mainly used for small applications, it 
did not interest most of the Python community, so it remained a niche area. (dataset 
of Article VI) 

The same informant continued to explain that this major design overhaul—which 
remained underutilised—caused later challenges.   

6.3.3 Corporate Governance and Interactional Sustainability 

There are limitations to what governance at the ecosystem or community level 
can do to achieve interactional sustainability. Several factors independent of 
community or ecosystem governance influence corporate FOSS governance, 



 
 

68 
 

leading some companies to align their contributions carefully with the 
expectations of the community and others to disrespect community norms, as 
discussed above in the context of infrastructural and resourced-based 
sustainability. 

The findings suggest that FOSS companies often balance profit 
maximisation and collective FOSS community interests. Ideological factors 
played a role in shaping these assessments, particularly in small companies in 
which organisational values are tightly connected with the personal values of the 
entrepreneur(s). For example, when asked about the time spent engaging with 
the FOSS community, one informant downplayed business reasons and 
highlighted the ideological underpinnings of the collaborative approach: 

The more prominent software houses... they just look straight at how many billable 
hours there are; it is up to the consultants themselves if they are interested, but seldom 
are they interested in their free time... For me, it is mainly for ideological reasons: if 
you participate in a community, you must commit enough to understand what that 
community is about. The core idea of this [platform] is that it does not fragment into 
ten different software pieces; that is important for me in terms of the software’s de-
sign… that features which should be in the core do make it there, at least on some 
timeline.  (dataset of Article VI) 

Examining all the material collected during this dissertation, primarily from 
Articles III–VI, reveals that ideology and values frequently arise when discussing 
the nature and quality of corporate interactions with FOSS. In a fully private 
sector context, the discussion focused on whether to contribute or interact or not. 
In contrast, in the public sector context (Articles III and IV), the discussion 
extends to the quality of interactions. This may be due to the transactional 
relationships that some public sector contractors have with FOSS. 

The ideological orientations are also related to the overarching ethos of a 
company—its cultural alignment with open collaboration and sharing. As 
discussed in Article IV, some companies intensely focused on protecting 
intellectual property and revealed a culture of risk aversion and exclusivity, 
which stemmed from their fundamental business ideologies. These companies 
typically exhibit significant concerns about participating in FOSS forums, citing 
potentially exaggerated risks. For example, one informant stated (Article IV, p. 
140): “If we started hanging out on open-source forums, they [customers] may 
think that we will tell their secrets to the world... [ ] it would cast a shadow of 
doubt”. In contrast, companies that embodied FOSS principles in their business 
models demonstrated a culture and ideology that value openness and inter-
organisational collaboration, viewing knowledge sharing as a strategic benefit. 

6.4 Summary of FOSS Governance and Sustainability 

This section presents a summary of the results. Subsection 6.4.1 examines how 
various levels of governance contribute to sustainability, highlighting the 
synergistic and conflicting dynamics between them. Subsection 6.4.2 examines 



 
 

69 
 

the role of each governance level in contributing to a FOSS community’s virtuous 
growth cycle. Lastly, subsection 6.4.3 notes some differences between the public 
and private sectors regarding FOSS governance.  

6.4.1 Levels of FOSS Governance and Their Inter-dynamics 

Table 4 summarises the role of governance in supporting FOSS and 
contextualises it within sustainability types. It illustrates how ecosystem, 
community, and corporate FOSS governance enhance interactional, resource-
based, and infrastructural sustainability.  

TABLE 4 FOSS governance contributions to each sustainability type 

Sustainability 
Type 

FOSS Ecosystem 
Governance 

FOSS Community 
Governance 

Corporate FOSS 
Governance 

Infrastructural 
sustainability 
 

Promotes licence 
compatibility and 
uniform tooling in-
frastructure (Arti-
cles I & VI) 

Maintains robust digi-
tal and legal infrastruc-
ture  
(Articles I, II, V, & VI) 

Ensures licence com-
pliance and integra-
tion with own tooling 
environments (Arti-
cles III & IV) 

Resource-based 
sustainability 
 - input 

Facilitates project 
discovery, promotes 
resource pooling be-
tween projects, and 
attracts platform 
contributions (Arti-
cles V & VI) 

Boost (social) media 
visibility, encourages 
and rewards engage-
ment, provides clear 
pathways to new con-
tributors and sponsors 
(Articles I, III, V & VI)  

Promotes growth 
through marketing, 
invests financial and 
human resources, en-
sures sustainable rev-
enue streams  
(Articles III, IV & VI) 

Resource-based 
sustainability 
- output 

Advocates open 
standards and pro-
ject interoperability   
(Datasets of Articles 
I & VI) 

Implements QA guide-
lines and checks, co-or-
dinates development 
work (Dataset of Arti-
cle I, Articles V & VI) 

Integrates with a 
company’s own soft-
ware products and 
QA processes (Arti-
cles III & IV) 

Interactional 
sustainability 

Enhances 
knowledge-sharing 
opportunities across 
projects (Articles III, 
Article V & VI) 

Enables collective deci-
sion-making, encour-
ages knowledge shar-
ing, builds reciprocal 
culture (Articles III, V, 
& VI) 

Aligns with corporate 
culture and values 
(Articles III & IV) 
 

 
The interaction between different governance levels reveals a complex web of 
synergies and conflicts. Resource pooling, both among communities within the 
ecosystem and between stakeholders within a project, was often seen by 
informants as the most significant synergistic benefit of FOSS collaboration. 
However, the results show that input resources are also a key source of conflict 
between governance levels. Organisations often face financial and human capital 
constraints and are often tempted to channel these resources towards internal 
software development projects, rather than collaborative efforts in the FOSS 
community. Similarly, FOSS communities, which operate with limited resources, 
may prioritise investing in value-adding community products rather than 



 
 

70 
 

contributing to ecosystem platforms or other shared software assets. This 
competition for input resources can lead to deterioration in the quality and value 
of shared software assets (i.e., the output resources). 

Governance between ecosystems and communities tends to be more 
synergistic in interactional and infrastructural sustainability matters. However, 
in governance between organisations and communities, conflicts over resource-
based sustainability are often intertwined with those over interactional and 
infrastructural sustainability. Stark value differences exist in terms of how FOSS-
involved organisations perceive the importance of contributing to shared 
resources. These value differences were also reflected in debates over licencing 
choices. Although the debates on licensing issues have diminished somewhat 
over the years, licenses still represent different value frameworks and mandate 
distinct levels of reciprocity. Moreover, differences in the attitudes towards 
contributing were also related to infrastructural sustainability. While non-
contributing organisations had equal access to the source code, they may not 
have had equal access to the knowledge and tools needed to ensure integration 
and interoperability. Poor integration can further decrease the value of input 
resources throughout the ecosystem. 

6.4.2 Governance Supporting a Positive Feedback Loop 

The interplay between governance levels could be further summarised by 
considering their role in a positive feedback loop, a fundamental concept in FOSS 
research (see Section 3.4). Informants described this idea, which is very familiar 
to practitioners, as a “virtuous cycle” or “community-driven growth” (datasets 
of Article III and VI). Figure 4 illustrates and extends the loop to demonstrate 
how governance levels reinforce and shape one another, emphasising how 
community, corporate, and ecosystem governance is integral to each phase.  



 
 

71 
 

 

FIGURE 4 Virtuous growth cycle and FOSS governance levels 

The first phase involves attracting a user base to a valuable software product. 
This growth rarely happens solely due to technical merit, as discussed in Articles 
III and VI, although it is possible. Community governance may involve 
promotional activities, such as social media engagement, though their 
importance has been debated. Stakeholder companies contribute through direct 
marketing, while ecosystem-level governance enhances a project’s 
discoverability by providing the necessary infrastructure. While not directly 
sustaining the project, these actions set the stage for future resource-based 
sustainability, especially if the growth is well managed. 

The second phase involves converting a large user base into a robust pool 
of contributors and sponsors. In this phase, community governance is critical in 
creating an environment that encourages user contributions and equips users 
with the tools and knowledge they need to contribute effectively. This involves 
establishing clear contribution pathways, fostering knowledge-sharing 
mechanisms, and implementing systems that reward contributions. At the 
ecosystem level, governance must facilitate collaboration across projects, 
enabling contributors to engage with multiple initiatives, thereby broadening 
their impact. Corporate governance is also crucial in this phase, as it allocates 
resources and expertise to shared projects and aligns corporate contributions 
with collective goals. These activities primarily support interactional 
sustainability and the input aspect of resource-based sustainability. 

The third phase of the cycle focuses on transforming contributions and 
sponsorships into an increasingly valuable product. This stage highlights the 

 
 

 

 

 

Phase 2: Contributor Engagement 

• Community: Guidance and 

rewards for contributors 

• Corporate: Investing human 

and financial resources 

• Ecosystem: Support for cross-

project collaborations 

 
 

Phase 3: Value creation 

• Community: Quality assurance 

and work coordination 

• Corporate: Integration with 

corporate offerings  

• Ecosystem: Promotion of 

open standards and 

interoperability 

Phase 1: User base growth 

• Community: Promotion and outreach 

• Corporate:  Marketing and branding 

• Ecosystem: Ease of project discovery 

1 

3 2 



 
 

72 
 

importance of governance in resource allocation, work coordination, and QA at 
the community level. Ecosystem governance enhances this process by promoting 
interoperability and integration with other software components, amplifying the 
product’s value. Corporate governance further reinforces this transition by 
aligning the project with business models, ensuring that the software’s value can 
be augmented through service provision, support, and other value-added 
offerings. These activities primarily address the output aspect of resource-based 
sustainability, while infrastructural sustainability is a critical enabler. 

6.4.3 Differences Between Public and Private Sector FOSS Governance 

The results have also highlighted key differences in the governance of FOSS in 
public and private sector contexts. At the level of ecosystem governance, securing 
financing for a fast-growing community is particularly challenging in the public 
sector due to budgetary constraints and bureaucratic hurdles. Unlike the private 
sector, where rapid growth is more unambiguously seen as a positive indicator 
of success, public sector FOSS communities risk fragmentation and declining 
quality if growth is not carefully managed. This influences resource-based 
sustainability, especially the quality of output resources. 

Public procurement laws pose unique challenges at the community and 
ecosystem governance levels. Rigid procurement processes can lead to a 
transactional atmosphere, unlike the relational and trust-based dynamics often 
found in commercial or volunteer-based FOSS projects. Furthermore, as these 
laws limit the ability to choose partners freely, they can make it harder to reward 
reciprocity and goodwill. 

At the level of organisational governance, stark differences between the 
public and private sectors were not as apparent, although the data on this topic 
was limited. Across both the public and private sectors, there is considerable 
variation in the commitment of individual organisations to collaboration within 
FOSS projects. Much like private corporations, public sector organisations 
display differing levels of willingness and ability to contribute to shared 
initiatives, influencing resource-based sustainability. 



 
 

73 
 

This section discusses the research process and results. Section 7.1 discusses the 
governance levels and their inter-dynamics in the context of prior studies. Section 
7.2 reflects on the types of sustainability and their applicability to empirical 
studies. Section 7.3 discusses the methodological choices and quality criteria. 

7.1  FOSS Governance Levels 

Overall, the results have underscored the importance of purpose-driven 
leadership and coordination for the sustainability of FOSS initiatives. Some 
researchers, potentially influenced by utopian underpinnings, as Carillo and 
Bernard (2015) suggest, have overly emphasised universal openness, 
spontaneous emergence, and self-sustainability in open-source software 
development. However, the broader body of empirical evidence (Carillo & 
Bernard, 2015; Noni et al., 2011; Schreiber, 2023; Shaikh & Henfridsson, 2017) 
highlights the necessity of targeted leadership efforts to initiate and sustain these 
communities and ecosystems. Nevertheless, this does not diminish the 
significance of broad and organic participation. My observations at both the 
ecosystem and organisational levels of FOSS governance indicate that compared 
to autocratic models, governance structures that emphasise broad participation 
and democratic decision-making demand more significant effort. This additional 
effort manifests in the need for more complex governance systems and greater 
time investment. These observations are consistent with earlier research on FOSS 
governance, highlighting the critical role of governance frameworks in enabling 
and managing widespread participation within FOSS communities (e.g., Di 
Tullio & Staples, 2013; O’Mahony, 2007). 

As reviewed in Chapter 3, the literature on FOSS governance models has 
evolved significantly, progressing from recognising forms of control (e.g. 
Ljungberg, 2000; Markus et al., 2000) to analysing multidimensional governance 
configurations (Di Tullio & Staples, 2013; Markus, 2007; Noni et al., 2011) and 

7 DISCUSSION 



 
 

74 
 

towards an even more nuanced understanding of governance diversity (e.g., 
O’Mahony & Karp, 2022; Shaikh & Henfridsson, 2017; Wang et al., 2023).  
However, as discussed in Section 3.5, much of this research remains fragmented, 
often examining organisational, community, and ecosystem governance 
practices in isolation. Moreover, as noted by Franco-Bedoya et al. (2017), the term 
‘ecosystem’ is often used without a shared definition and sometimes 
interchangeably with ‘community’, adding to the complexity of the discourse. 
This dissertation has contributed to the ongoing discussion by conceptualising 
FOSS governance as a complex, interwoven framework of activities across these 
three levels, emphasising the interactions between them and their combined 
impact on the sustainability of FOSS initiatives. 

While analytically distinct, it is essential to note that the three levels 
frequently overlap in practice. For example, our findings demonstrate that the 
governance of core platform communities often intertwines with the broader 
governance of the entire ecosystem. The fluid boundaries between the 
governance levels have been noted in prior studies, which describe how 
corporate dominance can blur the lines between organisational and community 
governance (e.g., O’Mahony, 2007; O’Mahony & Bechky, 2008; O’Neil et al., 2021). 
Moreover, large FOSS communities may be governed in an ecosystem-like 
manner, with autonomous subprojects, a practice Shaikh and Henfridsson (2017) 
refer to as ‘federative self-governance’. The case study material also points out 
that further fluidity can arise from the dynamic nature of ecosystems: a niche 
extension at the periphery of the ecosystem may quickly become part of the core 
platform, but de facto governance often lags behind formal governance changes. 
The three levels remain a valuable analytical tool despite these overlaps and 
blurred boundaries. 

The results section (see Section 6.4.2) emphasised the interplay between 
levels of governance and their collective role in driving a virtuous growth cycle. 
This concept, which was initially popularised by Raymond (1997) and later 
formalised (see Section 3.4), is crucial to FOSS sustainability studies, though often 
more implied than explicitly discussed. The first phase of this loop—user base 
growth—has received little attention in FOSS governance research, which 
typically focuses on external factors such as market dynamics or technology 
policy (see Sánchez et al. 2020 for a review). The second and third phases revolve 
around FOSS governance challenges. Markus (2007) identified the ‘social action 
dilemma’ (how to motivate contributions) and the ‘work coordination dilemma’ 
(how to organise and manage collective work efficiently). Both will be briefly 
discussed below. 

The results (see Section 6.4.1) show that the primary points of conflict 
between organisational, community, and ecosystem governance stem from the 
inherent tension between collaboration and competition for resources, 
particularly the time and expertise of skilled developers. This tension is central 
to the ‘social action dilemma’—the challenge of motivating stakeholders to 
contribute to a collective effort despite competing demands on their time—and 
remains one of the most studied themes in FOSS research (see Section 3.1.3.1).  



 
 

75 
 

The results reaffirm the finding from prior research that the 
‘underproduction’ of shared components (Amherst et al., 2007; English & 
Schweik, 2007) constantly threatens FOSS sustainability, and addressing this 
challenge is a crucial function of governance at all levels. They also highlight the 
fact that some trade-offs between organisational and community-level 
governance appear to be inevitable because self-maximising behaviour by 
individual participants—whether individuals or organisations—rarely leads to 
optimal sustainability outcomes for collective FOSS efforts. This observation is 
consistent with findings from common pool resource management studies (e.g., 
Ostrom, 1999), which emphasise the challenges of balancing individual 
incentives with collective sustainability. 

Within this complex interplay, an exciting nuance emerged: ideologically 
inclined motivation’s notable influence on FOSS organisational participation. 
While ideologies have been widely recognised as motivational factors for 
individual contributors (Bonaccorsi & Rossi, 2005; Stewart & Gosain, 2006; Von 
Krogh et al., 2012), they have been less prominent in organisational FOSS 
research. Interestingly, despite not being the primary focus, ideological 
differences emerged as a significant theme, particularly in Articles III, IV, and VI. 
It was observed that some SMEs approached FOSS as a shared resource requiring 
careful stewardship, whereas others treated it purely transactionally, aiming to 
maximise benefits while minimising contributions (see Section 6.2.1.3). These 
differing mindsets were poorly explained by market position and the other 
‘rational’ factors typically emphasised in traditional economic theory but often 
seemed to stem from the world view of the company owners and key managers. 
Thus, ideological conflicts existed not only across the volunteer–company divide, 
as traditionally suggested in FOSS research (Bonaccorsi & Rossi, 2005; O’Mahony, 
2007; Riehle et al., 2014), but also between companies. An improved 
understanding of this divide could help enhance the sustainability of FOSS. As 
suggested in Article IV, institutional logic (Thornton & Ocasio, 2008) may 
provide a valuable framework by exploring the underlying norms that guide 
each company’s FOSS participation. Studies in this field (e.g., Khan et al., 2018) 
have noted that not all companies operate solely on a commercial logic. 

This dissertation has also highlighted the vast array of work coordination 
mechanisms in FOSS governance. Shaik and Henriksson’s (2017) insightful 
examination of the Linux Kernel community and its coordination activities 
related to version control identified four essential coordination practices within 
that context. However, when we broaden our perspective beyond community-
level version control, we encounter an even more diverse spectrum of 
coordination mechanisms operating across different levels. Given the variety of 
these mechanisms, organising them along new dimensions may be more 
analytically fruitful than merely listing or classifying them. 

Building on the categories emerging from Article VI, one could organise 
these mechanisms into a four-field along a spectrum from emergent to assigned 
roles and another spectrum from suggestive to prescriptive rules. This 
speculative framework is depicted in Figure 5. It organises coordination 



 
 

76 
 

mechanisms into four distinct quadrants: ‘Commanding’, in which roles and 
rules are highly assigned and prescriptive; ‘Legislating’, which involves 
predefined rules but allows emergent role-taking; ‘Facilitating’, which is 
characterised by emergent roles and suggestive guidelines; and ‘Delegating’, in 
which authority is delegated to assigned actors who operate with independence. 
Although further research is needed, the ecosystem-level coordination 
mechanism may predominantly operate within the facilitating quadrant, which 
is characterised by suggestive rules and emergent roles. In contrast, community-
level coordination may span multiple quadrants, reflecting its more varied 
nature, while work coordination inside a single organisation typically involves 
the quadrants associated with assigned roles.  

 

FIGURE 5 Matrix of FOSS Co-ordination Mechanisms 

Two of the four coordination activities identified by Shaik and Henriksson (2017), 
Autocratic Clearing and Oligarchic Recursion, could be easily situated in the 
Commanding quadrant of the matrix. Meritocratic Idea Testing would fall within 
the Facilitating quadrant, while federated self-governance falls within the 
Delegating quadrant. More coordination mechanisms are mentioned in Article 
IV and the related dataset that informed the research. For example, mechanisms 
in the Legislating quadrant include deliberation and voting procedures based on 
predefined rules, as seen in platforms such as Decidim and Oskari, and quality 
control methods in which all contributions that adhere to specific rules are 
accepted, as in Plone. Additionally, Oskari’s practice of delegating social media 
activism to outsourced professionals could be an example within the ‘Delegating’ 
quadrant. These examples illustrate the diversity of coordination mechanisms 
within FOSS governance, underscoring the need for a nuanced understanding of 
how these processes interact and evolve across governance levels and contexts. 

 
 
 
 

   

 

 

Suggestive 
rules 

Prescriptive 
rules 

Emergent roles 

Assigned roles 



 
 

77 
 

7.2 FOSS Sustainability Types  

This study extends the understanding of sustainability in FOSS governance by 
empirically applying the sustainability types introduced by Curto-Millet and 
Jimenez (2023). While these types were initially conceptualised as theoretical 
constructs, this research demonstrates their practical utility and confirms their 
relevance across community, organisational, and ecosystem governance levels. 
Minor challenges arose when applying these sustainability types to governance 
issues, particularly the need to split resource-based sustainability into two 
subcategories, as governing input resources, such as funding and manpower, 
differ significantly from governing output resources, such as source code. 

Synergies among the sustainability types were easy to identify. For example, 
infrastructural sustainability was identified as a foundational element, 
supporting and enabling human and software sustainability. When analysed 
through the lens of practical governance tasks, these synergies sometimes appear 
more as overlaps and boundaries between various types of sustainability, which 
can be rather fluid. Positive interactional dynamics, for example, are crucial in 
sustaining human resources and source code, making it challenging to draw clear 
distinctions between resource-based and interactional sustainability.  

Interestingly, the findings indicate minimal trade-offs between the 
sustainability types themselves. Instead, the more significant trade-offs and 
conflicts arise between actors and between levels of governance. While the 
theoretical discussion (Curto-Millet & Jimenez, 2023) has suggested potential 
trade-offs, such as a single actor’s dominance enhancing resource sustainability 
at the expense of interactional sustainability, the case studies in this dissertation 
present this issue differently. For example, reliance on a single financing 
organisation undermined resource-based and interactional sustainability in the 
long term, highlighting a strong connection between sustainability types. Overall, 
the results suggest that the relationships between the different types of 
sustainability in FOSS governance may be predominantly synergistic. The lack of 
practical examples involving significant trade-offs between sustainability types 
underscores this point. However, this observation should not be considered 
conclusive, as trade-offs could arise under conditions that are not present in the 
cases examined in this dissertation. 

While the sustainability topology created by Curto-Millet and Corsín 
Jiménez (2023) offers a new conceptual framework, its alignment with 
conventional FOSS approaches is expected given that it is based on a literature 
review. While broader sustainability frameworks, such as the triple bottom line 
(Elkington, 1998), have long been embraced in IS research, they have yet to be 
integrated into the discourse on FOSS sustainability, as observed by Curto-Millet 
and Jiménez (2023).  It is possible for a FOSS project to have excellent 
infrastructure, resource management, and communication but still be 
unsustainable in terms of environmental and social impact. For example, the 
extensive energy consumption associated with Bitcoin mining has raised 



 
 

78 
 

ecological concerns (Yang, 2022), while the censorship practices on the Chinese 
FOSS platform Gitee have implications for fundamental rights (Yang, 2022). 
While expanding the definition of sustainability within the FOSS context is 
important, this study did not undertake that task and, instead, built on existing 
definitions. 

7.3 Limitations and Methodological Reflections 

This dissertation was shaped by an evolutionary study design, rather than a pre-
planned structure. This approach, while organic and responsive to emerging 
needs, led to certain critical elements, such as open standards within FOSS 
governance, being partially overlooked in the scope of the study. Additionally, 
the selection of case studies, though diverse, exhibited some imbalances. For 
example, studies primarily focused on community and ecosystem perspectives 
(see Table 1 in Section 1.2) were conducted in the public or non-profit sectors and 
within strongly platform-centric ecosystems. This influenced the findings; for 
example, the emphasis on centralised quality control likely stemmed from the 
specific characteristics of these ecosystems. Due to these factors resulting from 
the organic study design, constructing a fully comprehensive theoretical 
framework for FOSS governance and sustainability was not feasible. 
Nevertheless, the research generated an in-depth understanding of FOSS 
governance levels and their inter-dynamics. 

Although the case selection was less than optimal, the case study 
methodology proved largely effective overall. My ‘triple role’ within the FOSS 
scene—as a hobbyist, professional, and researcher—provided me with access to 
various organisations and facilitated a strong rapport with informants. This 
multi-faceted involvement allowed for extensive and rich data collection over 
prolonged periods, not only through interviews but also through document 
analysis and participant observations. The triangulation of multiple data sources 
within each case contributed to the credibility of the findings. The necessity to 
consolidate insights from sometimes conflicting sources contributed to a deep, 
nuanced analysis. Critically examining the reasons for differing viewpoints and 
acknowledging that informants may have agendas that are not entirely aligned 
with the research objectives was an essential part of this process. 

On the other hand, the vast data collected in most case studies, coupled with 
the broad nature of the research questions and my relative inexperience with 
open coding, occasionally led to a lack of focused exploration. Many dimensions 
relevant to the research questions were touched upon only superficially, rather 
than being explored in significant depth. This issue was compounded by the 
constraints of standard article lengths in the IS field, which often limit the space 
available for reporting qualitative research. Consequently, substantial reductions 
in article length were frequently necessary, contributing to a perceived lack of 
depth in the findings. In hindsight, the use of more narrowly defined research 
questions in some articles could have resulted in a more in-depth inquiry. 



 
 

79 
 

However, these broad research questions and the use of open coding also 
provided notable advantages. They enabled a holistic understanding of specific 
subtopics and facilitated the integration of multiple disciplines—legal, economic, 
and technical—that are critical in the study of FOSS governance. Moreover, open 
coding allowed for the emergence of unexpected themes and findings from the 
data. For example, in Article IV, relationships between private and public sector 
actors became a prominent topic of discussion, even though this was not an 
original focus of the research. The flexibility of the research approach permitted 
the incorporation of these insights, which ultimately emerged as some of the 
most valuable findings of the study. Often, the most insightful revelations are 
those that informants share unprompted. 

Throughout the research process, I also periodically questioned the 
suitability of my realist, albeit critical-realist, approach. In some of the case 
studies (e.g., Article IV), the subjective attitudes and ideologies of interviewees 
came to the forefront, and finding a logical structural explanation for these 
perspectives was not feasible with the available information, perhaps not even 
sensible. Reflecting on this, I believe that an interpretivist approach might have 
led to a more nuanced analysis and yielded more valuable results during some 
parts of the dissertation work. On the other hand, the realist approach facilitated 
the development of practical tools and frameworks, which were successfully 
implemented in real organisations (as demonstrated, e.g., in Article V).  

In keeping with the critical realist approach, my dissertation adopts a 
writing style that limits the extent of self-reflection. However, this does not mean 
that self-reflective practice was absent from the research process. Especially in 
cases in which I was deeply involved in a professional capacity, maintaining a 
research-oriented mindset was crucial. This required considerable effort to 
critically analyse and manage the biases inherent in my specific roles within these 
organisations. It was essential to ensure that perspectives resonating with my 
own experiences did not receive undue emphasis or overshadow the equally 
important viewpoints of individuals with different roles. Achieving this balance 
was vital to the integrity of the findings, enabling a comprehensive 
understanding of each case. 



 
 

80 
 

This section summarises the contributions for both researchers and practitioners 
and then discusses potential future research directions. In terms of contributions 
to researchers, the focus is on the integrated insights, while the section on 
practitioner contributions mentions each article separately. This approach is 
taken because practitioner insights are context specific, with each article 
addressing certain scenarios and environments.   

8.1 Contributions to Researchers 

This dissertation advances our understanding of FOSS governance by providing 
a comprehensive analysis of how governance mechanisms, at the ecosystem, 
community, and corporate levels, contribute to the sustainability of FOSS projects. 
Through a detailed examination of various governance approaches and their 
interactions, this research project offers the following contributions to the field. 

First, while the dissertation does not develop a complete framework for 
governance across all levels, it provides inroads that facilitate the further 
exploration of the roles of and conflicts and synergies between these levels. By 
emphasising the interplay between ecosystem, community, and corporate 
governance, this study reveals how these levels interact to create synergies and 
conflicts that significantly impact the sustainability of FOSS projects. This 
approach addresses a critical gap in the literature (see section 3.5), in which 
governance practices are often studied in isolation, providing a more holistic 
view that underscores the complexity of sustaining FOSS initiatives. 

Second, the research contributes to the discourse on sustainability in FOSS 
(see section 3.4) by empirically applying and validating the sustainability types 
proposed by Curto-Millet and Jimenez (2023). The findings demonstrate the 
practical utility of these types—interactional, resource-based, and infrastructural 
sustainability—across governance levels, showing how they are interconnected 
and mutually reinforcing. The study notes that while synergies between these 

8 CONCLUSION  



 
 

81 
 

sustainability types are common, examples of trade-offs are difficult to find. 
More significant trade-offs occur between actors and between governance levels 
than between the sustainability types. This insight adds nuance to the existing 
theoretical discussions of sustainability in open-source ecosystems. 

Third, the study explores the often-overlooked differences (see section 3.2) 
between the public and private sectors in FOSS governance. Identifying distinct 
challenges and dynamics in public sector governance, such as the impact of 
budgetary constraints and procurement laws on resource-based and interactional 
sustainability, provides a critical perspective that broadens the understanding of 
how various institutional contexts influence FOSS governance and sustainability. 
The most recent article (VI) introduces a model for sustaining public-sector FOSS 
ecosystems, detailing key activities and the critical roles of orchestrators and 
keystones in driving those activities. 

Fourth, this research sheds light on the ideological differences between 
companies involved in FOSS. While ideological motivations have been widely 
recognised at the individual contributor level (see section 3.1.3.1), this study 
identifies similar ideological divides at the organisational level, particularly in 
terms of how companies approach collaboration and resource stewardship 
within FOSS projects. Because FOSS communities and ecosystems often lack 
mechanisms via which to enforce reciprocity, these ideological commitments are 
crucial to sustainability. While this issue is particularly pronounced in the public 
sector, it is also evident across the broader FOSS landscape. By uncovering these 
ideological dynamics, this research provides valuable insights into how 
organisational values influence corporate FOSS governance and shape the long-
term sustainability of FOSS. 

8.2 Contributions to Practitioners 

For practitioners, this study emphasises the critical role of governance in 
ensuring the sustainability of FOSS, highlighting the need for adequate 
resourcing and strategic planning. It identifies the key governance mechanisms 
and pivotal dilemmas faced by FOSS-producing organisations, communities, and 
ecosystems. This is particularly important given the historical challenges 
involved in understanding FOSS governance, perhaps reflecting the persistent 
myth that FOSS projects and ecosystems are self-sustaining. 

The most pertinent insights for practitioners are context-specific and 
detailed in the overview of the articles (see Chapter 5). Article I outlines the social, 
technical, and legal tasks involved in launching a new FOSS community within 
a large ecosystem and shares practical experiences related to each aspect of this 
process. Article II offers guidelines for selecting an architectural knowledge-
sharing tool that benefits FOSS or any virtual development team. Article III 
showcases a practical example of how a resource-constrained SME leveraged 
FOSS governance decisions to ascend the value chain. Article IV examines the 
advantages and disadvantages of managerial approaches to FOSS, providing 



 
 

82 
 

entrepreneurs with insights that can be used to weigh the pros and cons of these 
approaches and position themselves strategically. Article V introduces a 
framework designed to assist a consortium of public sector organisations in the 
collaborative governance of FOSS communities and shares the experiences of its 
application in a real-world organisation. Extending these insights, Article VI 
provides a model and a comprehensive description of the responsibilities of 
public sector organisations acting as orchestrators and keystones in FOSS 
ecosystem governance. Collectively, these articles equip practitioners with tools 
to navigate the complexities of FOSS governance across different contexts, 
ultimately contributing to the sustainability of FOSS. 

8.3 Future Research Directions 

This dissertation has laid the necessary groundwork for understanding the 
governance and sustainability of FOSS across the organisational, community, 
and ecosystem levels. However, several essential areas remain underexplored, as 
discussed previously. One promising direction for future research is developing 
a comprehensive governance framework that integrates practices across all 
levels—organisational, community, and ecosystem. While this study provided 
valuable insights into how these levels interact, a systematic literature review 
(SLR) could further consolidate existing knowledge and identify gaps. Following 
this, empirical validation through practitioner interviews or case studies would 
be essential to ensure the framework’s relevance and effectiveness in diverse real-
world settings.  

Another important avenue for future research involves expanding the 
definition of sustainability within the FOSS context. The current study is built on 
the traditional FOSS literature, with a narrow, intra-organisational definition of 
sustainability. However, broader frameworks, such as the ‘triple bottom line’, 
which includes economic, environmental, and social dimensions, would offer a 
more comprehensive understanding of sustainability. Future research could 
explore how these broader sustainability considerations apply to FOSS projects, 
addressing apparent gaps in the current approach. For example, while a FOSS 
project may be well-managed regarding resources and infrastructure, it may still 
raise concerns regarding environmental impact or social equity. Expanding the 
sustainability discourse to include these dimensions could provide a more 
complete picture of what it means for a FOSS project to be genuinely sustainable. 
One potential path for future research is conducting case studies to examine how 
different FOSS projects address these broader sustainability challenges. 

Furthermore, this research has highlighted the need to explore the role of 
ideological motivations on organisational participation in FOSS. Small and 
medium-sized enterprises often play a crucial role in sustaining FOSS projects 
because these enterprises are driven by a strong ideological commitment to open-
source principles. However, the way companies engage with FOSS varies 
significantly, with some viewing it as a collaborative endeavour and others 



 
 

83 
 

taking a more transactional approach. Future studies could apply institutional 
theory to better understand how these underlying values and organisational 
cultures shape FOSS participation. By examining the norms and beliefs that drive 
different types of engagement, research can provide deeper insights into how 
these factors influence the sustainability of FOSS ecosystems. This line of inquiry 
could also explore how large organisations might support or collaborate with 
SMEs to enhance the overall sustainability of FOSS initiatives. 

An additional valuable area for future research is the role of governance at 
the community, corporate, and ecosystem levels in boosting the growth of the 
FOSS user base. In studies on FOSS growth, the role of governance has received 
less attention compared to external factors like market dynamics and technology 
policy. In my research, many informants considered promotional and marketing 
activities to be very critical during this phase, although not all of them shared 
this notion. Investigating how governance strategies across these three levels 
influence these activities and their impact on the long-term sustainability of FOSS 
projects could provide essential insights into how communities attract and retain 
users, ultimately enhancing the overall sustainability of FOSS initiatives. 

  



 
 

84 
 

YHTEENVETO (SUMMARY IN FINNISH) 

Tämä väitöskirja tutkii vapaiden ja avoimen lähdekoodin ohjelmistojen (VALO) 
kestävyyttä ja hallintoa kolmella eri tasolla: yhteisö-, organisaatio- ja 
ekosysteemitasolla. Tutkimuksen tavoitteena oli ymmärtää, miten nämä 
hallintotasot vuorovaikuttavat keskenään ja miten ne yhdessä edistävät VALO-
projektien pitkäaikaista kestävyyttä. Työ pohjautuu tapaustutkimuksiin, jotka on 
toteutettu avoimen lähdekoodin ohjelmistoja tuottavissa yhteisöissä, 
organisaatioissa ja ekosysteemeissä. Niissä on hyödynnetty monipuolisia 
tiedonkeruutapoja, kuten haastatteluita, dokumenttianalyysia ja havainnointia. 

Tämän tutkimuksen yhteydessä hallinto määriteltiin laajasti, kattaen sekä 
strategisen päätöksenteon että jokapäiväisen toiminnanohjauksen. 
Yhteisöhallinto viittaa toimijoiden muodostaman VALO-yhteisön hallintoon 
yksittäisissä projekteissa. Organisaatiohallinto keskittyy siihen, miten yksittäiset 
organisaatiot hallinnoivat omaa osallistumistaan VALO-projekteihin. 
Ekosysteemihallinto puolestaan ohjaa laajempaa organisaatioiden ja VALO-
projektien joukkoa, jotka toimivat yhteisessä teknologiaympäristössä. 

Kestävyys sen sijaan on määritelty tässä yhteydessä melko suppeasti, 
tarkoittaen kykyä jatkaa tuottavaa toimintaa pitkällä aikavälillä. VALO-
kestävyys on jaettu Curto-Milletin ja Jiménezin (2023) esittämällä tavalla 
kolmeen eri tyyppiin: resurssipohjaiseen, vuorovaikutukselliseen ja 
infrastruktuuriseen kestävyyteen. Resurssipohjainen kestävyys viittaa kykyyn 
hankkia ja hallita erilaisia resursseja, kuten ohjelmisto-omaisuutta, henkilöstöä ja 
taloudellisia varoja. Vuorovaikutuksellinen kestävyys tarkoittaa positiivisen ja 
tehokkaan yhteisödynamiikan ylläpitämistä. Infrastruktuurinen kestävyys 
viittaa kykyyn ylläpitää järjestelmiä, jotka tarjoavat tukea ja vakautta 
päätoiminnoille kuten työkaluympäristöjä ja oikeudellisia kehyksiä. 

Tutkimus korostaa hallinnon roolia ja alleviivaa, että VALO-yhteisöt ja 
ekosysteemit eivät ole täysin itseohjautuvia, vaan niiden pitkäaikainen kestävyys 
edellyttää tarkoituksellista ohjausta ja koordinointia. Tutkimuksessa 
tarkastellaan, miten hallinnolliset toimet eri tasoilla voivat edistää kutakin 
kestävyystyyppiä. Taulukko 5 tiivistää tulokset tältä osin. 



 
 

85 
 

TABLE 5 VALO-hallinnon vaikutukset kestävyyden eri tyyppeihin 

Kestävyyden 
tyypit 

Ekosysteemihal-
linto 

Yhteisöhallinto Organisaatiohallinto 

Vuorovaiku-
tuksellinen 

Edistää tiedonjaka-
mista projektien vä-
lillä 

Mahdollistaa yhteisöl-
lisen päätöksenteon, 
edistää tiedon jaka-
mista, rakentaa vasta-
vuoroista kulttuuria  

Sovittaa yhteen yri-
tyksen ja yhteisön 
kulttuurin ja arvot  

Resurssipohjai-
nen - Panokset 
(työvoima ja 
raha) 

Tarjoaa yhteisöille 
näkyvyyttä, edistää 
resurssien jakamista 
projektien välillä ja 
hankkii resursseja 
yhteiseen kehitys-
työhön 

Edistää ja palkitsee 
käyttäjien osallistu-
mista, tarjoaa selkeitä 
polkuja uusille osallis-
tujille ja sponsoreille  

Edistää kasvua mark-
kinoinnin kautta, in-
vestoi taloudellisiin ja 
henkilöstöresurssei-
hin, varmistaa kestä-
vät tulonlähteet  

Resurssipohjai-
nen - Tuotokset 
(ohjelmakoodi) 

Kannustaa avoimiin 
standardeihin ja 
projektien yhteen-
toimivuuteen 

Toteuttaa laadunvar-
mistusta ja tukee järke-
vää työnjakoa 

Integroi omiin ohjel-
mistotuotteisiin ja tu-
kee laadunvarmistus-
prosesseja  

Infrastruktuuri-
nen 

Edistää lisenssien 
yhteensopivuutta ja 
yhtenäisiä työkalu-
ympäristöjä 

Ylläpitää digitaalisia 
työkaluympäristöjä ja 
oikeudellisia kehyksiä 

Varmistaa lisenssien 
noudattamisen ja in-
tegroi työkaluympä-
ristöt  

 
Tutkimuksessa havaittiin, että VALO-hallinnon eri tasot voivat vahvasti tukea 
toinen toisiaan, mutta niiden välillä esiintyy myös konflikteja. Ekosysteemien ja 
yhteisöjen välillä vallitsee usein synergistinen suhde erityisesti 
vuorovaikutuksellisen ja infrastruktuurisen kestävyyden osalta.  Toisaalta, 
vaikka resurssien yhdistäminen onkin usein tärkeä motiivi VALO-kehitykseen 
osallistumiselle, eri hallintotasojen välinen kilpailu resursseista voi aiheuttaa 
konflikteja ja haasteita resurssikestävyyden näkökulmasta. Organisaatiolle 
saattaa olla houkuttelevaa ohjata kaikki taloudelliset ja henkilöstöresurssit omiin 
projekteihin ja samoin yhteisöt saattavat priorisoida omat projektinsa 
ekosysteemin yhteisten kehitystarpeiden kustannuksella, mikä voi heikentää 
jaettujen ohjelmisto-omaisuuksien arvoa pitkällä aikavälillä. Etenkin 
organisaatio- ja yhteisöhallinnon välillä resurssikonfliktit voivat vaikeuttaa myös 
rakentavan vuorovaikutuksen ylläpitämistä sekä etenkin oikeudellisten 
kehysten kuten lisenssien osalta yhteisestä infrastruktuurista sopimista. 

Parhaimmillaan hallintotasojen vuorovaikutus tukee VALO-yhteisöjen 
kasvua ja kestävyyttä positiivisen palautesilmukan kautta. Tämä prosessi alkaa 
käyttäjäkunnan kasvattamisesta, jota tukevat yhteisön ja organisaatioiden 
markkinointitoimenpiteet sekä ekosysteemin tarjoama näkyvyys. Seuraavassa 
vaiheessa laajentunut käyttäjäkunta muuttuu osallistujiksi ja sponsoreiksi. Tämä 
edellyttää sitä, että yhteisöhallinto onnistuu luomaan ympäristön, jossa 
osallistuminen on helppoa ja tehokasta ja organisaatiohallinnot tekevät päätöksiä 
resurssien investoimisesta.  Ekosysteemihallinto voi myös osaltaan auttaa 
tukemalla henkilöresurssien liikkumista projektien välillä. Kolmannessa 



 
 

86 
 

vaiheessa osallistumiset ja sponsoroinnit muutetaan laadukkaiksi 
ohjelmistotuotteiksi. Yhteisöhallinto voi tukea arvonluontia huolehtimalla 
asianmukaisesta laadunvalvonnasta ja tehtävien koordinoinnista.  
Ekosysteemihallinto tukee teknisten ratkaisujen yhteentoimivuutta, joka 
kasvattaa ohjelmiston arvoa, samoin kuin yritysten tarjoamat lisäpalvelut. On 
kuitenkin huomattava, että liian nopea ja huonosti hallittu kasvu voi olla 
kuormittava tekijä kaikille osapuolille ja heikentää kestävyyttä. 

Tutkimuksessa nousi myös esiin merkittäviä eroja julkisen ja yksityisen 
sektorin VALO-hallinnossa. Julkisen sektorin organisaatioilla on usein haasteita 
rahoituksen ja resurssien kanssa, mikä vaikuttaa negatiivisesti VALO-projektien 
kestävyyteen erityisesti nopean kasvun tilanteissa. Julkisten hankintalakien 
asettamat rajoitukset voivat lisäksi vaikeuttaa luottamukseen perustuvien 
suhteiden muodostumista ja ylläpitämistä yhteisöissä ja ekosysteemeissä. 
Organisaatiotason hallinnossa julkisen ja yksityisen sektorin välillä ei havaittu 
yhtä selkeitä eroja. Molempien sektorien sisällä organisaatioiden sitoutumisessa 
VALO-kehitykseen oli huomattavia eroja, mikä vaikutti merkittävästi etenkin 
resurssipohjaiseen ja osin myös vuorovaikutukselliseen kestävyyteen. 

Kokonaisuudessaan väitöskirja syventää ymmärrystä VALO-hallinnosta ja 
sen vaikutuksista kestävyyteen. Lopuksi esitetään useita suuntaviivoja tulevalle 
tutkimukselle. Näitä ovat muun muassa kattavan kehyksen kehittäminen, joka 
yhdistäisi käytännöt organisaatio-, yhteisö- ja ekosysteemitasoilla. Lisäksi 
tutkimuksessa ehdotetaan kestävyyskäsitteen laajentamista VALO-kontekstissa 
siten, että se kattaisi myös taloudelliset, ympäristölliset ja sosiaaliset 
ulottuvuudet. Ideologisten motiivien ja institutionaalisten arvojen vaikutukset 
organisaatioiden osallistumiseen VALO-hankkeisiin tunnistettiin myös 
kiinnostavaksi tutkimusalueeksi. 

  



 
 

87 
 

REFERENCES 

Aksulu, A., & Wade, M. (2010). A comprehensive review and synthesis of open 
source research. Journal of the Association for Information Systems, 11(11), 
576–656. https://doi.org/10.17705/1jais.00245 

Alamer, G., & Alyahya, S. (2017). Open source software hosting platforms: A 
collaborative perspective’s review. Journal of Software, 12(4), 274–291. 
https://doi.org/10.17706/jsw.12.4.274-291 

Alami, A., Cohn, M. L., & Waisowski, A. (2020). How do FOSS communities 
decide to accept pull requests? The 24th International Conference on 
Evaluation and Assessment in Software Engineering (EASE ’20), 220–229. 
https://doi.org/10.1145/3383219.3383242 

Alarcon, G. M., Walter, C., Gibson, A. M., Gamble, R. F., Capiola, A., Jessup, S. 
A., & Ryan, T. J. (2020). Would you fix this code for me? Effects of repair 
source and commenting on trust in code repair. Systems, 8(1), 8. 
https://doi.org/10.3390/SYSTEMS8010008 

Alexy, O., West, J., Klapper, H., & Reitzig, M. (2018). Surrendering control to 
gain advantage: Reconciling openness and the resource-based view of the 
firm. Strategic Management Journal, 39(6), 1704–1727.  

 https://doi.org/10.1002/SMJ.270 
Allee, V. (2003). The future of knowledge: Increasing prosperity through value 

networks. Butterworth-Heinemann. https://doi.org/10.1002/SMJ.2706 
Allee, V. (2008). Value network analysis and value conversion of tangible and 

intangible assets. Journal of Intellectual Capital, 9(1), 5–24. 
https://doi.org/10.1108/1469193081084577 

Almarzouq, M., Alzaidan, A., & Al Dallal, J. (2022). The Relevance of 
SourceForge Data in the Age of GitHub. ACM SIGMIS Database: The 
DATABASE for Advances in Information Systems, 53(4), 83–93. 
https://doi.org/10.1145/3571823.3571830 

Alspaugh, T. A., & Scacchi, W. (2010). Software licenses in context: The 
challenge of heterogeneously-licensed systems. Journal of the Association for 
Information Systems, 11(11), 2. https://doi.org/10.17705/1jais.00241 

Alves, C., Oliveira, J., & Jansen, S. (2017). Software ecosystems governance a 
systematic literature review and research agenda. ICEIS 2017 - Proceedings 
of the 19th International Conference on Enterprise Information Systems, 3, 215–
226. https://doi.org/10.5220/0006269402150226 

Amherst, S., Schweik, C. M., & English, R. (2007). Tragedy of the FOSS 
commons? Investigating the institutional designs of free/libre and open 
source software projects. First Monday, 2(12). 
https://doi.org/10.5210/fm.v12i2.1619 

Amorim, S., McGregor, J. D., Almeida, E. S. de, & Chavez, C. von F. G. (2023). 
Software architectural practices: Influences on the open source ecosystem 
health. Journal of Software Engineering Research and Development, 11(1), 9–23. 
https://doi.org/10.5753/JSERD.2023.967 

https://doi.org/10.17705/1jais.00245
https://doi.org/10.17706/jsw.12.4.274-291
https://doi.org/10.1145/3383219.3383242
https://doi.org/10.3390/SYSTEMS8010008
https://doi.org/10.1002/SMJ.270
https://doi.org/10.1002/SMJ.2706
https://doi.org/10.1108/1469193081084577
https://doi.org/10.1145/3571823.3571830
https://doi.org/10.17705/1jais.00241
https://doi.org/10.5220/0006269402150226
https://doi.org/10.5210/fm.v12i2.1619
https://doi.org/10.5753/JSERD.2023.967


 
 

88 
 

Antikainen, M., Aaltonen, T., & Väisänen, J. (2007). In J. Feller, B. Fitzgerald, W. 
Scacchi, & A. Sillitti (Eds.), Open source development, adoption and innovation. 
OSS 2007. IFIP Advances in Information and Communication Technology, 
234. 223–228. Springer. https://doi.org/10.1007/978-0-387-72486-7_19 

Armenise, V. (2015). Continuous delivery with Jenkins: Jenkins solutions to 
implement continuous delivery. 2015 IEEE/ACM 3rd International Workshop 
on Release Engineering, 24–27. https://doi.org/10.1109/RELENG.2015.19 

Bazarhanova, A., Yli-Huumo, J., & Smolander, K. (2018). Love and hate 
relationships in a platform ecosystem: A case of Finnish electronic identity 
management. The 51st Hawaii International Conference on System Sciences 
2018 (HICSS-51), 1493–1052.  

Belo, Í., & Alves, C. (2021). How to create a software ecosystem? A partnership 
meta-model and strategic patterns. Information, 12(6), 240. 
https://doi.org/10.3390/INFO12060240 

Benkler, Y. (2002). Coase’s Penguin, or, Linux and the nature of the firm. The 
Yale Law Journal, 112(3), 369–446.  

Benkler, Y. (2006). The wealth of networks: How social production transforms markets 
and freedom. Yale University Press. 

Bergquist, M., Ljungberg, J., & Rolandsson, B. (2011). A historical account of the 
value of free and open source software: From software commune to 
commercial commons.  In S. A. Hissam, B. Russo, M. G. de Mendonça 
Neto, & F. Kon (Eds.), Open source systems: Grounding research. OSS 2011. 
IFIP Advances in Information and Communication Technology, 365, 196–
207. https://doi.org/10.1007/978-3-642-24418-6_13 

Bettenburg, N., Hassan, A. E., Adams, B., & German, D. M. (2015). Management 
of community contributions: A case study on the Android and Linux 
software ecosystems. Empirical Software Engineering, 20(1), 252–289. 
https://doi.org/10.1007/S10664-013-9284-6 

Blind, K., Böhm, M., Grzegorzewska, P., Katz, A., Muto, S., Pätsch, S., & 
Schubert, T. (2021). The impact of Open Source Software and Hardware on 
technological independence, competitiveness and innovation in the EU economy. 
Final Study Report. Publications Office of the European Union. 

Bonaccorsi, A., & Rossi, C. (2005). Altruistic individuals, selfish firms? The 
structure of motivation in open source software. First Monday, 10(SPEC. 
ISS. 2). https://doi.org/10.2139/SSRN.433620 

Bryman, A. (2008). Social  Research Methods. Oxford University Press. ISBN 
0199202958, 9780199202959 

Buchner, S., & Riehle, D. (2023). The business impact of inner source and how to 
quantify it. ACM Computing Surveys, 56(2). 
https://doi.org/10.1145/3611648 

Butler, B. S. (2001). Membership size, communication activity, and 
sustainability: A resource-based model of online social structures. 
Information Systems Research, 12(4), 346–362. 
https://doi.org/10.1287/ISRE.12.4.346.9703 

Butler, S., Gamalielsson, J., Lundell, B., Brax, C., Mattsson, A., Gustavsson, T., 
Feist, J., Kvarnström, B., & Lönroth, E. (2022). Considerations and 

https://doi.org/10.1007/978-0-387-72486-7_19
https://doi.org/10.1109/RELENG.2015.19
https://doi.org/10.3390/INFO12060240
https://doi.org/10.1007/978-3-642-24418-6_13
https://doi.org/10.1007/S10664-013-9284-6
https://doi.org/10.2139/SSRN.433620
https://doi.org/10.1145/3611648
https://doi.org/10.1287/ISRE.12.4.346.9703


 
 

89 
 

challenges for the adoption of open source components in software-
intensive businesses. Journal of Systems and Software, 186, 111152. 
https://doi.org/10.1016/J.JSS.2021.111152 

Capra, E., Francalanci, C., & Merlo, F. (2008). An empirical study on the 
relationship between software design quality, development effort, and 
governance in open source projects. IEEE Transactions on Software 
Engineering, 34(6), 765–782. https://doi.org/10.1109/TSE.2008.68 

Capra, E., Francalanci, C., Merlo, F., & Rossi-Lamastra, C. (2011). Firms’ 
involvement in Open Source projects: A trade-off between software 
structural quality and popularity. Journal of Systems and Software, 84(1), 
144–161. https://doi.org/10.1016/j.jss.2010.09.004 

Capraro, M., & Riehle, D. (2016). Inner source definition, benefits, and 
challenges. ACM Computing Surveys (CSUR), 49(4). 
https://doi.org/10.1145/2856821 

Carillo, K., & Bernard, J.-G. (2015). How many penguins can hide under an 
umbrella? An examination of how lay conceptions conceal the contexts of 
free/open source software. ICIS 2015 Proceedings, 16. 
https://aisel.aisnet.org/icis2015/proceedings/ManagingIS/16 

Carosone, Michelle. (2017). FOSS governance programs: Why do you need one? 
International In-House Counsel Journal, 41(11). 

Carst, A. E., & Hu, Y. (2023). Complementors as ecosystem actors: A systematic 
review. Management Review Quarterly. https://doi.org/10.1007/s11301-
023-00368-y 

Cassell, C., Symon, G., Humphrey, C., & Lee, B. (2004). Qualitative methods in 
organizational research. Elsevier BV.  

Ceruzzi, P. (2003). A history of modern computing. MIT Press. 
Chengalur-Smith, I., Sidorova, A., & Daniel, S. (2010). Sustainability of 

free/libre open source projects: A longitudinal study. Journal of the 
Association for Information Systems, 11(11), 5. 
https://doi.org/10.17705/1jais.00244 

Chesbrough, H. (2003). The logic of open innovation. California Management 
Review, 45(3), 33–58. https://doi.org/10.1177/000812560304500301 

Chesbrough, H. (2004). Managing open innovation. Research-Technology 
Management, 47(1), 23–26. 
https://doi.org/10.1080/08956308.2004.11671604 

Chesbrough, H. (2017). The future of open innovation. Research-Technology 
Management, 60(1), 35–38. https://doi.org/10.1080/08956308.2017.1255054 

Chetty, S. (1996). The case study method for research in small-and medium-
sized firms. International Small Business Journal, 15(1), 73–85. 
https://doi.org/10.1177/0266242696151005 

Ciffolilli, A. (2004). The economics of open source hijacking and the declining 
quality of digital information resources: A case for copyleft. First Monday, 
9(9). https://doi.org/10.5210/FM.V9I9.1173 

https://doi.org/10.1016/J.JSS.2021.111152
https://doi.org/10.1109/TSE.2008.68
https://doi.org/10.1016/j.jss.2010.09.004
https://doi.org/10.1145/2856821
https://aisel.aisnet.org/icis2015/proceedings/ManagingIS/16
https://doi.org/10.1007/s11301-023-00368-y
https://doi.org/10.1007/s11301-023-00368-y
https://doi.org/10.17705/1jais.00244
https://doi.org/10.1177/000812560304500301
https://doi.org/10.1080/08956308.2004.11671604
https://doi.org/10.1080/08956308.2017.1255054
https://doi.org/10.1177/0266242696151005
https://doi.org/10.5210/FM.V9I9.1173


 
 

90 
 

Colazo, J., & Fang, Y. (2009). Impact of license choice on Open Source Software 
development activity. Journal of the American Society for Information Science 
and Technology, 60(5), 997–1011. https://doi.org/10.1002/ASI.21039 

Cowan, C. (2023). Open and closed software security redux. IEEE Security and 
Privacy, 21(2), 18–23. https://doi.org/10.1109/MSEC.2022.3227819 

Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2012). Free/libre open-
source software development: What we know and what we do not know. 
ACM Computing Surveys, 44(2). https://doi.org/10.1145/2089125.2089127 

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., & Howison, J. (2005). Coordination 
of free/libre open-source software development. International Conference 
on Information Systems (ICIS 2005),18–26. 
https://doi.org/10.1145/1029997.1030003 

Curto-Millet, D., & Corsín Jiménez, A. (2023). The sustainability of open source 
commons. European Journal of Information Systems, 32(5), 763–781. 
https://doi.org/10.1080/0960085X.2022.2046516 

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012). Social coding in GitHub: 
Transparency and collaboration in an open software repository. 
Proceedings of the ACM Conference on Computer Supported Cooperative Work, 
CSCW, 1277–1286. https://doi.org/10.1145/2145204.2145396 

Dahlander, L., & Magnusson, M. G. (2005). Relationships between open source 
software companies and communities: Observations from Nordic firms. 
Research Policy, 34(4), 481–493.  

Dahlander, L., & Magnusson, M. G. (2006). Business models and community 
relationships of open source software firms. The Economics of Open Source 
Software Development, 111–130. https://doi.org/10.1016/B978-044452769-
1/50005-6 

Dahlander, L., & O’Mahony, S. (2010). Progressing to the center: Coordinating 
project work. Organization Science, 22(4), 961–979. 
https://doi.org/10.1287/ORSC.1100.0571 

Daniel, S. L., Maruping, L. M., Cataldo, M., & Herbsleb, J. (2018). The impact of 
ideology misfit on open source software communities and companies. MIS 
Quarterly, 42(4), 1069–1096. https://doi.org/10.25300/MISQ/2018/14242 

De Laat, P. B. (2007). Governance of open source software: State of the art. 
Journal of Management and Governance, 11(2), 165–177. 
https://doi.org/10.1007/S10997-007-9022-9 

Demil, B., & Lecocq, X. (2006). Neither market nor hierarchy nor network: the 
emergence of bazaar governance. Organization Studies, 27(10), 1447–1466. 
https://doi.org/10.1177/0170840606067250 

den Besten, M., Dalle, J. M., & Galia, F. (2008). The allocation of collaborative 
efforts in open-source software. Information Economics and Policy, 20(4), 
316–322. https://doi.org/10.1016/J.INFOECOPOL.2008.06.003 

Dennehy, D., Conboy, K., Ferreira, J., & Babu, J. (2023). Sustaining open source 
communities by understanding the influence of discursive manifestations 
on sentiment. Information Systems Frontiers, 25(1), 241–257. 
https://doi.org/10.1007/s10796-020-10059-8 

https://doi.org/10.1002/ASI.21039
https://doi.org/10.1109/MSEC.2022.3227819
https://doi.org/10.1145/2089125.2089127
https://doi.org/10.1145/1029997.1030003
https://doi.org/10.1080/0960085X.2022.2046516
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1016/B978-044452769-1/50005-6
https://doi.org/10.1016/B978-044452769-1/50005-6
https://doi.org/10.1287/ORSC.1100.0571
https://doi.org/10.25300/MISQ/2018/14242
https://doi.org/10.1007/S10997-007-9022-9
https://doi.org/10.1177/0170840606067250
https://doi.org/10.1016/J.INFOECOPOL.2008.06.003
https://doi.org/10.1007/s10796-020-10059-8


 
 

91 
 

Dhungana, D. , Groher. I. , Schludermann E. , & Biffl, S. (2013). Guiding 
principles of natural ecosystems and their applicability to software 
ecosystems. In S. Jansen, M. Cusumano, & S. Brinkkemper (Eds.), Software 
ecosystems: analysing and managing business networks in the software industry 
(pp. 43–58). Edward Elgar Publishing,. 

Di Tullio, D., & Staples, D. S. (2013). The governance and control of open source 
software projects. Journal of Management Information Systems, 30(3), 49–80. 
https://doi.org/10.2753/MIS0742-1222300303 

Digkas, G., Lungu, M., Avgeriou, P., Chatzigeorgiou, A., & Ampatzoglou, A. 
(2018). How do developers fix issues and pay back technical debt in the 
Apache ecosystem? 2018 IEEE 25th International Conference on Software 
Analysis, Evolution and Reengineering, 153–163. 
https://doi.org/10.1109/SANER.2018.8330205 

Dinh-Trong, T. T., & Bieman, J. M. (2005). The FreeBSB project: A replication 
case study of open source development. IEEE Transactions on Software 
Engineering, 31(6), 481–494. https://doi.org/10.1109/TSE.2005.73 

Duparc, E., Möller, F., Jussen, I., Stachon, M., Algac, S., & Otto, B. (2022). 
Archetypes of open-source business models. Electronic Markets, 32(2), 727–
745. https://doi.org/10.1007/S12525-022-00557-9 

Easton, G. (2010). Critical realism in case study research. Industrial Marketing 
Management, 39(1), 118–128. 
https://doi.org/10.1016/J.INDMARMAN.2008.06.004 

Eisenhardt, K. M. (1989). Building theories from case study research. The 
Academy of Management Review, 14(4), 532–550. 
https://doi.org/10.2307/258557 

Elkington, J. (1998). Partnerships from cannibals with forks: The triple bottom 
line of 21st-century business. Environmental Quality Management, 8(1), 37–
51. https://doi.org/10.1002/TQEM.3310080106 

Elliott, M. S., & Scacchi, W. (2008). Mobilization of software developers: The 
free software movement. Information Technology & People, 21(1), 4–33. 
https://doi.org/10.1108/09593840810860315/FULL/XML 

English, R., & Schweik, C. M. (2007). Identifying success and tragedy of FLOSS 
commons: A preliminary classification of Sourceforge.net projects. First 
International Workshop on Emerging Trends in FLOSS Research and 
Development, FLOSS’07, 11–15. https://doi.org/10.1109/FLOSS.2007.9 

Fang, Y., & Neufeld, D. (2009). Understanding sustained participation in open 
source software projects. Journal of Management Information Systems, 25(4), 
9–50. https://doi.org/10.2753/MIS0742-1222250401 

Faridian, P. (2023). Leading open innovation: The role of strategic 
entrepreneurial leadership in orchestration of value creation and capture 
in GitHub open source communities. Technovation, 119, 102546. 
https://doi.org/10.1016/J.TECHNOVATION.2022.102546 

Favario, L. (2023). Toward a free and open source-driven public sector: An 
Italian journey. IEEE Software, 40(4), 55–61. 
https://doi.org/10.1109/MS.2023.3266706 

https://doi.org/10.2753/MIS0742-1222300303
https://doi.org/10.1109/SANER.2018.8330205
https://doi.org/10.1109/TSE.2005.73
https://doi.org/10.1007/S12525-022-00557-9
https://doi.org/10.1016/J.INDMARMAN.2008.06.004
https://doi.org/10.2307/258557
https://doi.org/10.1002/TQEM.3310080106
https://doi.org/10.1108/09593840810860315/FULL/XML
https://doi.org/10.1109/FLOSS.2007.9
https://doi.org/10.2753/MIS0742-1222250401
https://doi.org/10.1016/J.TECHNOVATION.2022.102546
https://doi.org/10.1109/MS.2023.3266706


 
 

92 
 

Feldman, S. S., & Horan, T. A. (2011). Collaboration in electronic medical 
evidence development: A case study of the social security administration’s 
MEGAHIT system. International Journal of Medical Informatics, 80(8), e127–
e140. https://doi.org/10.1016/J.IJMEDINF.2011.01.012 

Fendt, O., & Jaeger, M. C. (2019). Open source for open source license 
compliance. In F. Bordeleau, A. Sillitti, P. Meirelles, & V. Lenarduzzi 
(Eds.), Open source systems. OSS 2019. IFIP advances in information and 
communication technology, 556, 133–138. https://doi.org/10.1007/978-3-
030-20883-7_12 

Fielding, R. T. (1999). Shared leadership in the Apache project. Communications 
of the ACM, 42(4), 42–34.  

Finney, G. (2009). The evolution of GPLV3 and contributor agreements in open-
source software. Journal of Technology Law & Policy, 14.  

Fitzgerald, B. (2006). The transformation of open source software. MIS 
Quarterly, 30(3), 587–598. https://doi.org/10.2307/25148740 

Flyvberg, B. (2004). Five misunderstandings about case-study research. 
Sosiologisk Tidsskrift, 12(2), 117–142. https://doi.org/10.18261/ISSN1504-
2928-2004-02-02 

Flyvberg, B. (2011). Case study. In N. K. Denzin & Y. S. Lincoln (Eds.), The Sage 
Handbook of Qualitative Research (pp. 301-316). Sage. 

Fortunato, L., & Galassi, M. (2021). The case for free and open source software 
in research and scholarship. Philosophical Transactions of the Royal Society A, 
379(2197). https://doi.org/10.1098/RSTA.2020.0079 

Franck, E., & Jungwirth, C. (2003). Reconciling rent-seekers and donators - The 
governance structure of open source. Journal of Management and 
Governance, 7(4), 401–421. https://doi.org/10.1023/A:1026261005092 

Franco-Bedoya, O., Ameller, D., Costal, D., & Franch, X. (2017). Open source 
software ecosystems: A Systematic mapping. Information and Software 
Technology, 91, 160–185. https://doi.org/10.1016/J.INFSOF.2017.07.007 

Free Software Foundation. (2024). Various Licenses and Comments about Them. 
https://www.gnu.org/licenses/license-list.html 

Gallivan, M. J. (2001). Striking a balance between trust and control in a virtual 
organization: A content analysis of open source software case studies. 
Information Systems Journal, 11(4), 277–304. 
https://doi.org/10.1046/J.1365-2575.2001.00108.X 

Gamalielsson, J., Lundell, B., Butler, S., Brax, C. T., Persson, T., Mattsson, A., 
Gustavsson, T., Feist, J., & Lönroth, E. (2021). Towards open government 
through open source software for web analytics: The case of Matomo. 
Journal of E-Democracy and Open Government, 13(2), 133. 
https://doi.org/10.29379/JEDEM.V13I2.650 

Gangadharan, G. R., D’Andrea, V., De Paoli, S., & Weiss, M. (2012). Managing 
license compliance in free and open source software development. 
Information Systems Frontiers, 14(2), 143–154. 
https://doi.org/10.1007/S10796-009-9180-1 

https://doi.org/10.1016/J.IJMEDINF.2011.01.012
https://doi.org/10.1007/978-3-030-20883-7_12
https://doi.org/10.1007/978-3-030-20883-7_12
https://doi.org/10.2307/25148740
https://doi.org/10.18261/ISSN1504-2928-2004-02-02
https://doi.org/10.18261/ISSN1504-2928-2004-02-02
https://doi.org/10.1098/RSTA.2020.0079
https://doi.org/10.1023/A:1026261005092
https://doi.org/10.1016/J.INFSOF.2017.07.007
https://doi.org/10.1046/J.1365-2575.2001.00108.X
https://doi.org/10.29379/JEDEM.V13I2.650
https://doi.org/10.1007/S10796-009-9180-1


 
 

93 
 

Gasson, S., & Purcelle, M. (2018). A participation architecture to support user 
peripheral participation in a hybrid FOSS community. ACM Transactions 
on Social Computing, 1(4), 1–46. https://doi.org/10.1145/3290837 

Germonprez, M., Kendall, K., Kendall, J., Young, B., & Warner, B. (2013). The 
domestication of open source. Diffusion Interest Group In Information 
Technology (DIGIT) Proceedings, 8. http://aisel.aisnet.org/digit2013/8 

Ghapanchi, A. H., Wohlin, C., & Aurum, A. (2014). Resources contributing to 
gaining competitive advantage for open source software projects: An 
application of resource-based theory. International Journal of Project 
Management, 32(1), 139–152. 
https://doi.org/10.1016/J.IJPROMAN.2013.03.002 

Gharehyazie, M., Posnett, D., Vasilescu, B., & Filkov, V. (2015). Developer 
initiation and social interactions in OSS: A case study of the Apache 
Software Foundation. Empirical Software Engineering, 20(5), 1318–1353. 
https://doi.org/10.1007/S10664-014-9332-X 

Gnome Foundation. (2023, June 23). GNOME Foundation Board of Directors 
Elections 2023. GNOME Discourse / Elections and Referendums. 
https://discourse.gnome.org/t/gnome-foundation-board-of-directors-
elections-2023/15657 

Goldkuhl, G. (2012). Pragmatism vs interpretivism in qualitative information 
systems research. European Journal of Information Systems, 21(2), 135–146. 
https://doi.org/10.1057/EJIS.2011.54 

Groff, R. (2004). Critical realism, post-positivism, and the possibility of knowledge. 
Routledge.  

Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248. 
https://doi.org/10.1126/SCIENCE.162.3859.1243 

Hardin, G. (2007). The tragedy of the unmanaged commons. In D. Pen & I. 
Mysterud (Eds.), Evolutionary Perspectives on Environmental Problems (pp. 
106–108). Routledge. https://doi.org/10.4324/9780203792650 

Hariharan, A. (2023). Evaluation of Volunteering Capabilities in an Open-Source 
Software Community [Master’s thesis]. University of Calgary. 

Hars, A., & Ou, S. (2002). Working for free? Motivations for participating in 
open-source projects. International Journal of Electronic Commerce, 6(3), 25–
39. https://doi.org/10.1080/10864415.2002.11044241 

Harutyunyan, N. (2019). Corporate open source governance of software supply chains 
[Phd Dissertation]. Friedrich-Alexander-Universität Erlangen-Nürnberg. 

Harutyunyan, N. (2020). Managing your open source supply chain- why and 
how? Computer, 53(6), 77–81. https://doi.org/10.1109/MC.2020.2983530 

Harutyunyan, N. (2022). Open source software governance: Distilling and 
applying industry best practices.  In Felderer, M., et al. (Edss). Ernst Denert 
Award for Software Engineering (pp. 73–90). Springer. 
https://doi.org/10.1007/978-3-030-83128-8_5 

Harutyunyan, N., & Riehle, D. (2019). Industry best practices for open source 
governance and component reuse. In Proceedings of the 24th European 

https://doi.org/10.1145/3290837
http://aisel.aisnet.org/digit2013/8
https://doi.org/10.1016/J.IJPROMAN.2013.03.002
https://doi.org/10.1007/S10664-014-9332-X
https://doi.org/10.1057/EJIS.2011.54
https://doi.org/10.1126/SCIENCE.162.3859.1243
https://doi.org/10.4324/9780203792650
https://doi.org/10.1080/10864415.2002.11044241
https://doi.org/10.1109/MC.2020.2983530
https://doi.org/10.1007/978-3-030-83128-8_5


 
 

94 
 

Conference on Pattern Languages of Programs (EuroPLop '19), Association for 
Computing Machinery, https://doi.org/10.1145/3361149.3361170 

Harutyunyan, N., & Riehle, D. (2021). Getting started with corporate open 
source governance: A case study evaluation of industry best practices. The 
54th Hawaii International Conference on System Sciences 2021 (HICSS-54). 
https://aisel.aisnet.org/hicss-54/os/practice-based_research/3 

Hecker, F. (1999). Setting up shop: The business of open-source software. IEEE 
Software, 16(1), 45–51. https://doi.org/10.1109/52.744568 

Heimburg, V., & Wiesche, M. (2022). Relations between actors in digital 
platform ecosystems: A literature review. ECIS 2022 Research Papers, 93, 
https://aisel.aisnet.org/ecis2022_rp/93 

Hein, A., Schreieck, M., Riasanow, T., Setzke, D. S., Wiesche, M., Böhm, M., & 
Krcmar, H. (2020). Digital platform ecosystems. Electronic Markets, 30(1), 
87–98. https://doi.org/10.1007/S12525-019-00377-4 

Hemetsberger, A., & Reinhardt, C. (2009). Collective development in open-
source communities: An activity theoretical perspective on successful 
online collaboration. Organization Studies, 30(9), 987–1008. 
https://doi.org/10.1177/0170840609339241 

Henkel, J. (2006). Selective revealing in open innovation processes: The case of 
embedded Linux. Research Policy, 35(7), 953–969. 
https://doi.org/10.1016/J.RESPOL.2006.04.010 

Henttonen, K. (2007). Stylebase for Eclipse: An open-source tool to support the 
modelling of quality-driven software architecture. VTT Tiedotteita - 
Meddelanden - Research Notes No. 2387. VTT Technical Research Centre 
of Finland. ISBN 978-951-38-6925-0 

Henttonen, K. (2011). Open source as an innovation enabler: Case study of an Indian 
SME [M.Sc. Thesis]. University of Manchester. 

Henttonen, K. (2020). Interviews and observation notes from a multi-case study on 
three open-source software ecosystems (Decidim.org, Oskari.org and Plone.org), 
University of Jyväskylä. https://doi.org/10.17011/JYX/DATASET/72939 

Henttonen, K. (2024). Additional documents and observation notes from a multi-case 
study on three open-source software ecosystems (Decidim.org, Oskari.org and 
Plone.org). University of Jyväskylä. 
https://doi.org/10.17011/JYX/DATASET/96515 

Hewapathirana, R. (2017). FOSS as a platform ecosystem: Understanding 
governance of open source HIS implementation in a low and middle income 
country context [PhD Dissertation], University of Oslo.  

Himanen, P. (2004). The hacker ethic as the culture of the information age. In M. 
Castells (Ed.), The Network Society: A Cross-cultural Perspective. Edward 
Elgar Publishing. 

Howison, J., & Crowston, K. (2014). Collaboration through open superposition.  
  Mis Quarterly, 38(1), 29–50. https://www.jstor.org/stable/26554867 
Hsieh, H., &., Shannon, S. (2005). Three approaches to qualitative content 

analysis. Qualitative Health Research, 15(9), 1277–1288. 
https://doi.org/10.1177/1049732305276687 

https://doi.org/10.1145/3361149.3361170
https://aisel.aisnet.org/hicss-54/os/practice-based_research/3
https://doi.org/10.1109/52.744568
https://aisel.aisnet.org/ecis2022_rp/93
https://doi.org/10.1007/S12525-019-00377-4
https://doi.org/10.1177/0170840609339241
https://doi.org/10.1016/J.RESPOL.2006.04.010
https://doi.org/10.17011/JYX/DATASET/72939
https://doi.org/10.17011/JYX/DATASET/96515
https://www.jstor.org/stable/26554867
https://doi.org/10.1177/1049732305276687


 
 

95 
 

Hyrynsalmi, S., Seppänen, M., Nokkala, T., Suominen, A., & Järvi, A. (2015). 
Wealthy, healthy and/or happy —what does ‘ecosystem health’ stand for? 
In J. Fernandes, R. Machado, & K. Wnuk (Eds.), Software business. ICSOB 
2015. Lecture Notes in Business Information Processing, 210, 272–287. 
Springer. https://doi.org/10.1007/978-3-319-19593-3_24 

Iansiti, M., & Levien, R. (2004). Strategy as ecology. Harvard Business Review, 
82(3), 68–78, 126.  

Izquierdo, J. L. C., & Cabot, J. (2018). The role of foundations in open source 
projects. In Proceedings of 2018 ACM/IEEE 40th International Conference on 
Software Engineering: Software Engineering in Society, ICSE-SEIS 2018, 3–12. 
https://doi.org/10.1145/3183428.3183438 

Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database searches 
vs. backward snowballing. The 6th ACM-IEEE International Symposium on 
Empirical Software Engineering and Measurement, 29-38. 
https://doi.org/10.1145/2372251.2372257 

Jansen, S. (2014). Measuring the health of open source software ecosystems: 
Beyond the scope of project health. Information and Software Technology, 
56(11), 1508–1519. https://doi.org/10.1016/J.INFSOF.2014.04.00 

Jansen, S. (2020). A focus area maturity model for software ecosystem 
governance. Information and Software Technology, 118, 106219. 
https://doi.org/10.1016/J.INFSOF.2019.106219 

Jansen, S., Brinkkemper, S., Souer, J., & Luinenburg, L. (2012). Shades of gray: 
Opening up a software producing organization with the open software 
enterprise model. Journal of Systems and Software, 85(7), 1495–1510. 
https://doi.org/10.1016/J.JSS.2011.12.007 

Jayaratna, N. (1994). Understanding and evaluating methodologies: NIMSAD, a 
systemic framework. McGraw-Hill. 

Jensen, C., & Scacchi, W. (2005). Collaboration, leadership, control, and conflict 
negotiation and the Netbeans.org open source software development 
community. Proceedings of the Annual Hawaii International Conference on 
System Sciences, 196. https://doi.org/10.1109/HICSS.2005.147 

Jensen, C., & Scacchi, W. (2007). Role migration and advancement processes in 
OSSD projects: A comparative case study. Proceedings - International 
Conference on Software Engineering, 364–373. 
https://doi.org/10.1109/ICSE.2007.74 

Jiang, J., Mohamed, A., & Zhang, L. (2019). What are the characteristics of 
reopened pull requests? A case study on open source projects in GitHub. 
IEEE Access, 7, 102751–102761. 
https://doi.org/10.1109/ACCESS.2019.2928566 

Joo, C., Kang, H., & Lee, H. (2012). Anatomy of open source software projects: 
Evolving dynamics of innovation landscape in open source software 
ecology. The 5th International Conference on Communications, Computers and 
Applications (MIC-CCA2012), 96–100.  

Kääriäinen, J., Pussinen, P., Matinmikko, T., & Oikarinen, T. (2012). Lifecycle 
management of open-source software in the public sector: A model for 

https://doi.org/10.1007/978-3-319-19593-3_24
https://doi.org/10.1145/3183428.3183438
https://doi.org/10.1145/2372251.2372257
https://doi.org/10.1016/J.INFSOF.2014.04.00
https://doi.org/10.1016/J.INFSOF.2019.106219
https://doi.org/10.1016/J.JSS.2011.12.007
https://doi.org/10.1109/HICSS.2005.147
https://doi.org/10.1109/ICSE.2007.74
https://doi.org/10.1109/ACCESS.2019.2928566


 
 

96 
 

community-based application evolution. ARPN Journal of Systems and 
Software, 2(11), 279–288.  

Kabbedijk, J., & Jansen, S. (2011). Steering insight: An exploration of the ruby 
software ecosystem. In B. Regnell, I. van de Weerd, & O. De Troyer (Eds.), 
Software Business. ICSOB 2011. Lecture Notes in Business Information 
Processing, 80. Springer. https://doi.org/10.1007/978-3-642-21544-5_5 

Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., & German, D. M. (2015). 
Open source-style collaborative development practices in commercial 
projects using GitHub. 2015 IEEE/ACM 37th IEEE International Conference 
on Software Engineering, 1, 574–585. https://doi.org/10.1109/ICSE.2015.74 

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & 
Damian, D. (2016). An in-depth study of the promises and perils of mining 
GitHub. Empirical Software Engineering, 21(5), 2035–2071. 
https://doi.org/10.1007/S10664-015-9393-5 

Kane, G. C., & Ransbotham, S. (2016). Content as community regulator: The 
recursive relationship between consumption and contribution in open 
collaboration communities. Organization Science, 27(5), 1258–1274. 
https://doi.org/10.1287/ORSC.2016.1075 

Karger, T. (2023). Bounded ownership: Lessons learned from online platforms 
in creating inclusive goods. Social Media + Society, 9(2). 
https://doi.org/10.1177/20563051231175624 

Kastrinou Theodoropoulou, A. M. A. (2008). The Gift of the Code: The culture 
of an operating system. Durham Anthropology Journal, 15(1). ISSN: 1742-
2930 

Kaur, R., Kaur Chahal, K., & Saini, M. (2022). Understanding community 
participation and engagement in open source software Projects: A 
systematic mapping study. Journal of King Saud University - Computer and 
Information Sciences, 34(7), 4607–4625. 
https://doi.org/10.1016/J.JKSUCI.2020.10.020 

Khan, S., Lacity, M., & Carmel, E. (2018). Entrepreneurial impact sourcing: A 
conceptual framework of social and commercial institutional logics. 
Information Systems Journal, 28(3), 538–562. 
https://doi.org/10.1111/ISJ.12134 

Kilamo, T., Hammouda, I., Mikkonen, T., & Aaltonen, T. (2012). From 
proprietary to open source - Growing an open source ecosystem. Journal of 
Systems and Software, 85(7), 1467–1478. 
https://doi.org/10.1016/j.jss.2011.06.071 

Kilamo, T., Lenarduzzi, V., Ahoniemi, T., Jaaksi, A., Rahikkala, J., & Mikkonen, 
T. (2020). How the cathedral embraced the bazaar, and the bazaar became 
a cathedral.  In V. Ivanov, A. Kruglov, S. Masyagin, A. Sillitti &  G. Succi,  
(Eds.), Open Source Systems. OSS 2020. IFIP Advances in Information and 
Communication Technology, 582,  141–147. https://doi.org/10.1007/978-
3-030-47240-5_14 

https://doi.org/10.1007/978-3-642-21544-5_5
https://doi.org/10.1109/ICSE.2015.74
https://doi.org/10.1007/S10664-015-9393-5
https://doi.org/10.1287/ORSC.2016.1075
https://doi.org/10.1177/20563051231175624
https://doi.org/10.1016/J.JKSUCI.2020.10.020
https://doi.org/10.1111/ISJ.12134
https://doi.org/10.1016/j.jss.2011.06.071
https://doi.org/10.1007/978-3-030-47240-5_14
https://doi.org/10.1007/978-3-030-47240-5_14


 
 

97 
 

King, N. (1998). Template analysis. In G. Symon & C. Cassell (Eds.), Qualitative 
methods and analysis in organizational research: A practical guide, 118–134. 
Sage Publications Ltd.  

King, N. (2012). Doing template analysis. In C. Cassell & G. Symon (Eds.), 
Qualitative Organizational Research: Core Methods and Current Challenges (pp. 
426–450). Sage Publications Ltd. 
https://doi.org/10.4135/9781526435620.N24 

King, N., & Brooks, J. M. (2017). Template analysis for business and management 
students. Sage Publications Ltd. https://doi.org/10.4135/9781473983304 

Krishnamurthy, S. (2005). An analysis of open source business models. In B. 
Fitzgerald, S. Hissam, & K. Lakhani (Eds.), Making sense of the bazaar: 
Perspectives on open source and free software. MIT Press.  

Krishnamurthy, S., Ou, S., & Tripathi, A. K. (2014). Acceptance of monetary 
rewards in open-source software development. Research Policy, 43(4), 632–
644. https://doi.org/10.1016/J.RESPOL.2013.10.007 

Lakhani, K. R., & Wolf, R. G. (2003). Why hackers do what they do: 
Understanding motivation and effort in free/open source software 
projects. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.443040 

Lane, M., Vyver, G., Basnet, P., & Howard, S. (2004). Interpretative insights into 
interpersonal trust and effectiveness of virtual communities of open 
source software (OSS) developers. ACIS 2004 Proceedings, 64. 
https://aisel.aisnet.org/acis2004/67 

Langlois, R. N., & Garzarelli, G. (2008). Of hackers and hairdressers: Modularity 
and the organizational economics of open-source collaboration. Industry 
and Innovation, 15(2), 125–143. 
https://doi.org/10.4324/9781315873503-2 

Lattemann, C., & Stieglitz, S. (2005). Framework for governance in open source 
communities. The 28th Annual Hawaii International Conference on System 
Sciences (HICSS’28), 192. https://doi.org/10.1109/HICSS.2005.278 

Lee, S. Y. T., Kim, H. W., & Gupta, S. (2009). Measuring open source software 
success. Omega, 37(2), 426–438. 
https://doi.org/10.1016/J.OMEGA.2007.05.005 

Leon, A. (2015). Software configuration management handbook (Third Edition). 
Artech House.  

Lerner, J., & Tirole, J. (2002). Some simple economics of open source. The Journal 
of Industrial Economics, 50(2), 197–234. https://doi.org/10.1111/1467-
6451.00174 

Lerner, J., & Tirole, J. (2005). The scope of open source licensing. Journal of Law, 
Economics, and Organization, 21. 

Levy, S. (1984). Hackers: Heroes of the computer revolution. Anchor 
Press/Doubleday. 

Li, P., Maruping, L. M., & Mathiassen, L. (2020). Developing and managing 
open source enterprise systems through open superposition:  A digital 
options and technical debt perspective. AMCIS 2020 Proceedings, 2.  

https://doi.org/10.4135/9781526435620.N24
https://doi.org/10.4135/9781473983304
https://doi.org/10.1016/J.RESPOL.2013.10.007
https://doi.org/10.2139/SSRN.443040
https://aisel.aisnet.org/acis2004/67
https://doi.org/10.4324/9781315873503-2
https://doi.org/10.1109/HICSS.2005.278
https://doi.org/10.1016/J.OMEGA.2007.05.005
https://doi.org/10.1111/1467-6451.00174
https://doi.org/10.1111/1467-6451.00174


 
 

98 
 

Liebenau, J., & Smithson, S. (1994). Banning organizational secrecy can threaten 
research too. European Journal of Information Systems, 3(2), 83–86. 
https://doi.org/10.1057/EJIS.1994.9 

Linåker, J., Munir, H., Wnuk, K., & Mols, C. E. (2018). Motivating the 
contributions: An Open Innovation perspective on what to share as Open 
Source Software. Journal of Systems and Software, 135, 17–36. 
https://doi.org/10.1016/J.JSS.2017.09.032 

Linåker, J., Papatheocharous, E., & Olsson, T. (2022). How to characterize the 
health of an Open Source Software project? A snowball literature review 
of an emerging practice. The 18th International Symposium on Open 
Collaboration (OpenSym’22), Association for Computing Machinery. 
https://doi.org/10.1145/3555051.3555067 

Linåker, J., Robles, G., Bryant, D., & Muto, S. (2023). Open source software in 
the public sector: 25 years and still in its infancy. IEEE Software, 40(4), 39–
44. https://doi.org/10.1109/MS.2023.3266105 

Linåker, J., & Runeson, P. (2020). Public sector platforms going open: Creating 
and growing an ecosystem with open collaborative development. 16th 
International Symposium on Open Collaboration (OpenSym’20),  Association 
for Computing Machinery. https://doi.org/10.1145/3412569.3412572 

Ljungberg, J. (2000). Open source movements as a model for organising. 
European Journal of Information Systems, 9(4), 208–216. 
https://doi.org/10.1057/PALGRAVE.EJIS.3000373 

Luis, J., Anovas Izquierdo, C., & Cabot, J. (2020, May 20). A survey of software 
foundations in open source. ArXiv E-Prints by Cornell University. 
https://arxiv.org/abs/2005.10063v1 

Lundell, B., Gamalielsson, J., Butler, S., Brax, C., Persson, T., Mattsson, A., 
Gustavsson, T., Feist, J., & Öberg, J.(2021). Enabling OSS usage through 
procurement projects: How can lock-in effects be avoided? In D. Taibi, V. 
Lenarduzzi, T. Kilamo &  S.  Zacchiroli, (Eds.). Open Source Systems. OSS 
2021. IFIP Advances in Information and Communication Technology, 624, 
Springer. https://doi.org/10.1007/978-3-030-75251-4_2 

Lundell, B., Gamalielsson, J., Tengblad, S., Hooshyar Yousefi, B., Fischer, T., 
Johansson, G., Rodung, B., Mattsson, A., Oppmark, J., Gustavsson, T., 
Feist, J., Landemoo, S., & Lönroth, E. (2017). Addressing lock-in, 
interoperability, and long-term maintenance challenges through open 
source: How can companies strategically use open source? Open Source 
Systems. IFIP Advances in Information and Communication Technology, 
496, 80–88. Springer. https://doi.org/10.1007/978-3-319-57735-7_9 

MacDonald, M. (2013). Open source licensing in the networked era. Masaryk 
University Journal of Law and Technology, 7(2), 229–239. 

Mäenpää, H. (2020). Organizing and Managing Contributor Involvement in Hybrid 
Open Source Software Development Communities [Phd Dissertation, 
University of Helsinki].  

Mäenpää, H., Kilamo, T., & Männistö, T. (2016). In-between open and closed – 
Drawing the fine line in hybrid communities. In K. Crowston, I. 

https://doi.org/10.1057/EJIS.1994.9
https://doi.org/10.1016/J.JSS.2017.09.032
https://doi.org/10.1145/3555051.3555067
https://doi.org/10.1109/MS.2023.3266105
https://doi.org/10.1145/3412569.3412572
https://doi.org/10.1057/PALGRAVE.EJIS.3000373
https://arxiv.org/abs/2005.10063v1
https://doi.org/10.1007/978-3-030-75251-4_2
https://doi.org/10.1007/978-3-319-57735-7_9


 
 

99 
 

Hammouda, B. Lundell, G. Robles, J. Gamalielsson, & J. Lindman (Eds.), 
Open source systems: Integrating communities. OSS 2016. IFIP Advances in 
Information and Communication Technology, 472, 134–146. 
https://doi.org/10.1007/978-3-319-39225-7_11 

Manikas, K. (2016). Supporting the evolution of research in software 
ecosystems: Reviewing the empirical literature. In A. Maglyas & A. L. 
Lamprecht (Eds.), Software Business. ICSOB 2016. Lecture Notes in 
Business Information Processing, 240, 63–78.  Springer. 
https://doi.org/10.1007/978-3-319-40515-5_5 

Manikas, K., Hämäläinen, M., & Tyrväinen, P. (2016). Designing, developing, 
and implementing software ecosystems: Towards a step-wise guide. In S. 
Jansen, C. Alves, & J. Bosch (Eds.), Proceedings of the 8th International 
Workshop on Software Ecosystems (IWSECO 2016). 

Manikas, K., & Hansen, K. M. (2013). Software ecosystems – A systematic 
literature review. Journal of Systems and Software, 86(5), 1294–1306. 
https://doi.org/10.1016/J.JSS.2012.12.026 

Manikas, K., & Hansen, K. (2013). Reviewing the health of software 
ecosystems–a conceptual framework proposal. In C. Alves, G. Hansen, & J. 
Bosch (Eds.), The Proceedings of 5th International Workshop on Software 
Ecosystems (IWSECO), 33–44. 

Markus, L., Manvilleand, B., & Agres, C. E. (2000). What makes a virtual 
organization work: Lessons from the open-source world. MIT Sloan 
Management Review, October 2000.  

Markus, M. L. (2007). The governance of free/open source software projects: 
Monolithic, multidimensional, or configurational? Journal of Management 
and Governance, 11(2), 151–163. https://doi.org/10.1007/s10997-007-9021-x 

Marsan, J., Paré, G., & Wybo, M. D. (2012). Has open source software been 
institutionalized in organizations or not? Information and Software 
Technology, 54(12), 1308–1316. 
https://doi.org/10.1016/J.INFSOF.2012.07.001 

Maruping, L. M., Daniel, S. L., & Cataldo, M. (2019). Developer centrality and 
the impact of value congruence and incongruence on commitment and 
code contribution activity in open source software communities. MIS 
Quarterly, 43(3), 951–976. https://doi.org/10.25300/MISQ/2019/13928 

Maruping, L. M., & Matook, S. (2020). The evolution of software development 
orchestration: current state and an agenda for future research. European 
Journal of Information Systems, 29(5), 443–457. 
https://doi.org/10.1080/0960085X.2020.1831834 

Matinlassi, M., Ovaska, E., & Dobrica, L. (2002). Quality-driven architecture design 
and quality analysis method: A revolutionary initiation approach to a product line 
architecture. VTT Publications 456. 
https://publications.vtt.fi/pdf/publications/2002/P456.pdf  

Matinmikko, T., Kääriäinen, J., Kylmäaho, J., & Henttonen, K. (2017). 
Yhteispelillä kohti edullisempia ja laadukkaampia ohjelmistoja. Kuntalehti, 
26(6), 5050. 

https://doi.org/10.1007/978-3-319-39225-7_11
https://doi.org/10.1007/978-3-319-40515-5_5
https://doi.org/10.1016/J.JSS.2012.12.026
https://doi.org/10.1007/s10997-007-9021-x
https://doi.org/10.1016/J.INFSOF.2012.07.001
https://doi.org/10.25300/MISQ/2019/13928
https://doi.org/10.1080/0960085X.2020.1831834
https://publications.vtt.fi/pdf/publications/2002/P456.pdf


 
 

100 
 

Maxwell, E. (2006). Open standards, open source, and open innovation: 
Harnessing the benefits of openness. Innovations: Technology, Governance, 
Globalization, 1(3), 119–176. https://doi.org/10.1162/ITGG.2006.1.3.119 

Mead, G. H. (1938). Philosophy of the act. University of Chicago Press.  
Medappa, P. K., & Srivastava, S. C. (2019). Does superposition influence the 

success of floss projects? An examination of open-source software 
development by organizations and individuals. Information Systems 
Research, 30(3), 764–786. https://doi.org/10.1287/isre.2018.0829 

Medappa, P. K., & Srivastava, S. C. (2020). Ideological shifts in open source 
orchestration: Examining the influence of licence choice and organisational 
participation on open source project outcomes. European Journal of 
Information Systems, 29(5), 500–520. 
https://doi.org/10.1080/0960085X.2020.1756003 

Mergel, I. (2015). Open collaboration in the public sector: The case of social 
coding on GitHub. Government Information Quarterly, 32(4), 464–472. 
https://doi.org/10.1016/J.GIQ.2015.09.004 

Miller, C., Cohen, S., Klug, D., Vasilescu, B., & Kastner, C. (2022). “Did you miss 
my comment or what?” Understanding toxicity in open source 
discussions. International Conference on Information Systems (ICIS 2022), 
2022-May, 710–722. https://doi.org/10.1145/3510003.3510111 

Mizushima, K., & Ikawa, Y. (2011). A structure of co-creation in an open source 
software ecosystem: A case study of the eclipse community. Proceedings of 
PICMET ’11: Technology Management in the Energy Smart World (PICMET), 
1–8. https://ieeexplore.ieee.org/abstract/document/6017787 

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000). A case study of open source 
software development. Proceedings of the 22nd International Conference on 
Software Engineering  - ICSE ’00, 263–272. 
https://doi.org/10.1145/337180.337209 

Moon, E. (2021). Episodic peripheral contributors and technical dependencies in 
open source software (OSS) rcosystems. Communications of the Association 
for Information Systems, 49(1), 8. https://doi.org/10.17705/1CAIS.04908 

Moreira Soares, D., de Lima Júnior, M. L., Murta, L., & Plastino, A. (2021). What 
factors influence the lifetime of pull requests? Software: Practice and 
Experience, 51(6), 1173–1193. https://doi.org/10.1002/SPE.2946 

Morgan, D. L. (2014). Pragmatism as a paradigm for social research. Qualitative 
Inquiry, 20(8), 1045–1053. https://doi.org/10.1177/1077800413513733 

Mukhopadhyay, S., & Bouwman, H. (2019). Orchestration and governance in 
digital platform ecosystems: A literature review and trends. Digital Policy, 
Regulation and Governance, 21(4), 329–351. https://doi.org/10.1108/DPRG-
11-2018-0067 

Müller, M., Diegmann, P., & Rosenkranz, C. (2019). Evolution of platform-based 
open source ecosystems: Uncovering socio-technical dynamics using 
digital traces. International Conference on Interaction Sciences. 

Munir, H., & Mols, C. E. (2021). The rise of open source program office. IT 
Professional, 23(1), 27–33. https://doi.org/10.1109/MITP.2020.3019961 

https://doi.org/10.1287/isre.2018.0829
https://doi.org/10.1080/0960085X.2020.1756003
https://doi.org/10.1016/J.GIQ.2015.09.004
https://doi.org/10.1145/3510003.3510111
https://ieeexplore.ieee.org/abstract/document/6017787
https://doi.org/10.1145/337180.337209
https://doi.org/10.17705/1CAIS.04908
https://doi.org/10.1002/SPE.2946
https://doi.org/10.1108/DPRG-11-2018-0067
https://doi.org/10.1108/DPRG-11-2018-0067
https://doi.org/10.1109/MITP.2020.3019961


 
 

101 
 

Nevo, S., & Chengalur-Smith, I. S. (2017). Examining organizations’ continued 
use of open source technologies: An institutional perspective. Information 
Technology and People, 30(1), 24–46. https://doi.org/10.1108/ITP-09-2014-
0204 

Niemelä, E., & Ihme, T. (2001). Product line software engineering of embedded 
systems. ACM SIGSOFT Software Engineering Notes, 26(3), 118–125. 
https://doi.org/10.1145/379377.375271 

Nimmagadda, S., Reiners, T., Wood, L., & Mani, N. (2022). On developing 
sustainable digital ecosystems and their spatial-temporal knowledge 
management. ACIS 2022 Proceedings. https://aisel.aisnet.org/acis2022/20 

Noni, I. De, Ganzaroli, A., & Orsi, L. (2011). The governance of open source 
software communities. Journal of Law and Governance, 6(1), 1-18. 
https://doi.org/10.15209/JBSGE.V6I1.195 

Nyman, L., & Lindman, J. (2013). Code forking, governance, and sustainability 
in open source software. Technology Innovation Management Review, 
January 2013,  7–12. 

Oliveira, J., & Alves, C. (2021). Software ecosystems governance - An analysis of 
SAP and GNOME platforms. 47th Euromicro Conference on Software 
Engineering and Advanced Applications (SEAA 2021), 296–299. 
https://doi.org/10.1109/SEAA53835.2021.00045 

O’Mahony, S. (2007). The governance of open source initiatives: What does it 
mean to be community managed? Journal of Management and Governance, 
11(2), 139–150. https://doi.org/10.1007/S10997-007-9024-7 

O’Mahony, S., & Bechky, B. A. (2008). Boundary organizations: Enabling 
collaboration among unexpected allies. Administrative Science Quarterly, 
53(3), 422-459. https://doi.org/10.2189/ASQU.53.3.422 

O’Mahony, S., & Ferraro, F. (2007). The emergence of governance in an open 
source community. Academy of Management Journal, 50(5), 1079–1106. 
https://doi.org/10.5465/AMJ.2007.27169153 

O’Mahony, S., & Karp, R. (2022). From proprietary to collective governance: 
How do platform participation strategies evolve? Strategic Management 
Journal, 43(3), 530–562. https://doi.org/10.1002/SMJ.3150 

Omar, I. (2005). View of the penguin in peril: SCO’s legal threats to Linux. First 
Monday, 10(1). https://doi.org/10.5210/fm.v10i1.1203 

O’Neil, M., Muselli, L., Raissi, M., & Zacchiroli, S. (2021). ‘Open source has won 
and lost the war’: Legitimising commercial–communal hybridisation in a 
FOSS project. New Media and Society, 23(5), 1157–1180. 
https://doi.org/10.1177/1461444820907022 

Open Source Initiative. (2024). Licenses – Open Source Initiative. 
https://opensource.org/licenses/ 

O’Reilly, T. (1999). Lessons from open-source software development. 
Communications of the ACM, 42(4), 32–37. 
https://doi.org/10.1145/299157.299164 

Orsila, H., Geldenhuys, J., Ruokonen, A., & Hammouda, I. (2009). Trust issues 
in open source software development. Proceedings of the Warm Up 

https://doi.org/10.1108/ITP-09-2014-0204
https://doi.org/10.1108/ITP-09-2014-0204
https://doi.org/10.1145/379377.375271
https://aisel.aisnet.org/acis2022/20
https://doi.org/10.15209/JBSGE.V6I1.195
https://doi.org/10.1109/SEAA53835.2021.00045
https://doi.org/10.1007/S10997-007-9024-7
https://doi.org/10.2189/ASQU.53.3.422
https://doi.org/10.5465/AMJ.2007.27169153
https://doi.org/10.1002/SMJ.3150
https://doi.org/10.5210/fm.v10i1.1203
https://doi.org/10.1177/1461444820907022
https://opensource.org/licenses/
https://doi.org/10.1145/299157.299164


 
 

102 
 

Workshop for ACM/IEEE ICSE 2010, WUP’09, 9–12. 
https://doi.org/10.1145/1527033.1527037 

Ostrom, E. (1999). Coping with tragedies of the commons. Annual Review of 
Political Science, 2(1999), 493–535.  

Ostrom, E. (2009). A general framework for analyzing sustainability of social-
ecological systems. Science, 325(5939), 419–422.  

Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., & Aho, P. (2010). 
Knowledge based quality-driven architecture design and evaluation. 
Information and Software Technology, 52(6), 577–601 
https://doi.org/10.1016/J.INFSOF.2009.11.008 

Perens, B. (1999). The open source definition. In Open sources: voices from the open 
source revolution (pp. 171–188). O’Reilly Media. 

Petersen, K., Badampudi, D., Shah, S. M. A., Wnuk, K., Gorschek, T., 
Papatheocharous, E., Axelsson, J., Sentilles, S., Crnkovic, I., & Cicchetti, A. 
(2018). Choosing component origins for software intensive systems: In-
house, COTS, OSS or outsourcing? - A case survey. IEEE Transactions on 
Software Engineering, 44(3), 237–261. 
https://doi.org/10.1109/TSE.2017.2677909 

Pino, L. K., Searle, B. C., Bollinger, J. G., Nunn, B., MacLean, B., & MacCoss, M. 
J. (2020). The Skyline ecosystem: Informatics for quantitative mass 
spectrometry proteomics. Mass Spectrometry Reviews, 39(3), 229–244. 
https://doi.org/10.1002/MAS.21540 

Poo-Caamaño, G., Knauss, E., Singer, L., & German, D. M. (2017). Herding cats 
in a FOSS ecosystem: A tale of communication and coordination for 
release management. Journal of Internet Services and Applications, 8(1), 1–24. 
https://doi.org/10.1186/S13174-017-0063-2 

Raymond, E. (1997, May 27). The cathedral and the bazaar: Musings on Linux 
and open source by an accidental revolutionary. Linux Kongress . 

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & 
Policy, 12(3), 23–49. https://doi.org/10.1007/s12130-999-1026-0 

 Riehle, D., & Berschneider, S. (2012). A model of open source developer 
foundations. In I. Hammouda, B. Lundell, T. Mikkonen, & W. Scacchi 
(Eds.), Open source systems: Long-term sustainability. OSS 2012. IFIP 
advances in information and communication technology, 378, 15–28 
Springer. https://doi.org/10.1007/978-3-642-33442-9_2/ 

Riehle, D., Riemer, P., Kolassa, C., & Schmidt, M. (2014). Paid vs. volunteer 
work in open source. The 47th Annual Hawaii International Conference on 
System Sciences (HICSS 2014), 3286–3295. 
https://doi.org/10.1109/HICSS.2014.407 

Riembauer, S., Hornung, O., & Smolnik, S. (2020). Knowledge unchained or 
strategically overseen? Knowledge management in open source software 
projects. The 53rd Hawaii International Conference on System Sciences (HICSS 
2020), 5003–5012.  

Rolfstam, M. (2012). An institutional approach to research on public 
procurement of innovation. Innovation: The European Journal of Social 

https://doi.org/10.1145/1527033.1527037
https://doi.org/10.1016/J.INFSOF.2009.11.008
https://doi.org/10.1109/TSE.2017.2677909
https://doi.org/10.1002/MAS.21540
https://doi.org/10.1186/S13174-017-0063-2
https://doi.org/10.1007/s12130-999-1026-0
https://doi.org/10.1007/978-3-642-33442-9_2/
https://doi.org/10.1109/HICSS.2014.407


 
 

103 
 

Science Research, 25(3), 303–321. 
https://doi.org/10.1080/13511610.2012.717475 

Rolland, K. H., & Herstad, J. (2000). The “critical case” in information systems 
research. Proceedings of IRIS 23. 

Rowley, J. (2002). Using case studies in research. Management Research News, 
25(1), 16–27. https://doi.org/10.1108/01409170210782990/FULL/XML 

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case 
study research in software engineering. Empirical Software Engineering, 
14(2), 131–164. https://doi.org/10.1007/S10664-008-9102-8 

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case Study Research in 
Software Engineering: Guidelines and Examples. John Wiley and Sons. 
https://doi.org/10.1002/9781118181034 

Sagers, G. (2004). The influence of network governance factors on success in 
open source software development projects. ICIS 2004 Proceedings. 
https://aisel.aisnet.org/icis2004/34 

Sajadi, A., Damevski, K., & Chatterjee, P. (2023). Interpersonal trust in OSS: 
exploring dimensions of trust in GitHub pull requests. 2023 IEEE/ACM 
45th International Conference on Software Engineering (ICSE-NIER 2023), 19–
24. https://doi.org/10.1109/ICSE-NIER58687.2023.00010 

Sánchez, V. R., Ayuso, P. N., Galindo, J. A., & Benavides, D. (2020). Open source 
adoption factors-a systematic literature review. IEEE Access, 8, 94594–
94609. https://doi.org/10.1109/ACCESS.2020.2993248 

Sapkota, H., Murukannaiah, P. K., & Wang, Y. (2019). A network-centric 
approach for estimating trust between open source software developers. 
PLOS ONE, 14(12), e0226281. 
https://doi.org/10.1371/JOURNAL.PONE.0226281 

Sayer, R. Andrew. (2010). Method in social science: A realist approach (Second 
Edition). Routledge.  

Scacchi, W. (2010). Collaboration practices and affordances in free/open source 
software development. In I. Mistrík, J. Grundy, A. Hoek, & J. Whitehead 
(Eds.), Collaborative Software Engineering (307–327). Springer. 
https://doi.org/10.1007/978-3-642-10294-3_15 

Scacchi, W., & Alspaugh, T. A. (2012). Understanding the role of licenses and 
evolution in open architecture software ecosystems. Journal of Systems and 
Software, 85(7), 1479–1494. https://doi.org/10.1016/J.JSS.2012.03.033 

Schaarschmidt, M., Walsh, G., & von Kortzfleisch, H. F. O. (2015). How do firms 
influence open-source software communities? A framework and empirical 
analysis of different governance modes. Information and Organization, 25(2), 
99–114. https://doi.org/10.1016/J.INFOANDORG.2015.03.001 

Schoder, D., Schlagwein, D., & Fischbach, K. (2019). Open resource-based view 
(ORBV): A theory of resource openness. ICIS 2019 Proceedings. 
https://aisel.aisnet.org/icis2019/research_methods/research_methods/9 

Scholtes, I., Mavrodiev, P., & Schweitzer, F. (2016). From Aristotle to 
Ringelmann: A large-scale analysis of team productivity and coordination 

https://doi.org/10.1080/13511610.2012.717475
https://doi.org/10.1108/01409170210782990/FULL/XML
https://doi.org/10.1007/S10664-008-9102-8
https://doi.org/10.1002/9781118181034
https://aisel.aisnet.org/icis2004/34
https://doi.org/10.1109/ICSE-NIER58687.2023.00010
https://doi.org/10.1109/ACCESS.2020.2993248
https://doi.org/10.1371/JOURNAL.PONE.0226281
https://doi.org/10.1007/978-3-642-10294-3_15
https://doi.org/10.1016/J.JSS.2012.03.033
https://doi.org/10.1016/J.INFOANDORG.2015.03.001
https://aisel.aisnet.org/icis2019/research_methods/research_methods/9


 
 

104 
 

in open source software projects. Empirical Software Engineering, 21(2), 642–
683. https://doi.org/10.1007/S10664-015-9406-4/FIGURES/15 

Schreiber, R. R. (2023). Organizational influencers in open-source software 
projects. International Journal of Open Source Software and Processes, 14(1). 
https://doi.org/10.4018/IJOSSP.318400 

Schreieck, M., Wiesche, M., & Krcmar, H. (2023). Governing innovation 
platforms in multi-business organisations. European Journal of Information 
Systems, 32(4), 695–716. https://doi.org/10.1080/0960085X.2022.2041371 

Scott, T., & Rung, A. (2016). Federal source code policy: Achieving efficiency, 
transparency, and innovation through reusable and open source software. 
Memorandum for the Heads of Departments and Agencies M-16-21, 
Executive Office of the President. Whitehouse Archives. 

Sen, R., Subramaniam, C., & Nelson, M. L. (2008). Determinants of the choice of 
open source software license. Journal of Management Information Systems, 
25(3), 207–240. https://doi.org/10.2753/MIS0742-1222250306 

Sen, R., Subramaniam, C., & Nelson, M. L. (2011). Open source software 
licenses: Strong-copyleft, non-copyleft, or somewhere in between? Decision 
Support Systems, 52(1), 199–206. https://doi.org/10.1016/J.DSS.2011.07.004 

Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in 
open source software development. Management Science, 52(7), 1000–1014. 
https://doi.org/10.1287/MNSC.1060.055 

Shahrivar, S., Elahi, S., Hassanzadeh, A., & Montazer, G. (2018). A business 
model for commercial open source software: A systematic literature 
review. Information and Software Technology, 103, 202–214. 
https://doi.org/10.1016/J.INFSOF.2018.06.018 

Shaikh, M., & Henfridsson, O. (2017). Governing open source software through 
coordination processes. Information and Organization, 27(2), 116–135. 
https://doi.org/10.1016/J.INFOANDORG.2017.04.00 

Simister, S. (1996). Understanding and evaluating methodologies: NIMSAD, a 
systemic framework. Journal of the Operational Research Society, 47(4), 594–
595. https://doi.org/10.1057/JORS.1996.67 

Simons, H. (2014). Case study research: In-depth understanding in context. The 
Oxford Handbook of Qualitative Research, 454–470. 
https://doi.org/10.1093/OXFORDHB/9780199811755.013.00 

Sinclair, A. (2010). License Profile: BSD. International Free and Open Source 
Software Law Review, 2.  

Spinellis, D. (2019). How to Select Open Source Components. Computer, 52(12), 
103–106. https://doi.org/10.1109/MC.2019.2940809 

Stake, R. E. (1995). The art of case study research. Sage. 
Stake, R. E. (2005). Qualitative case studies. In N. K. Denzin & Y. S. Lincoln 

(Eds.), The Sage Handbook of Qualitative Research (pp. 443-466). Sage. 
Stallman, R. (1985). The GNU Manifesto. Gnu Project.  

https://www.gnu.org/gnu/manifesto.en.html 

https://doi.org/10.1007/S10664-015-9406-4/FIGURES/15
https://doi.org/10.4018/IJOSSP.318400
https://doi.org/10.1080/0960085X.2022.2041371
https://doi.org/10.2753/MIS0742-1222250306
https://doi.org/10.1016/J.DSS.2011.07.004
https://doi.org/10.1287/MNSC.1060.055
https://doi.org/10.1016/J.INFSOF.2018.06.018
https://doi.org/10.1016/J.INFOANDORG.2017.04.00
https://doi.org/10.1057/JORS.1996.67
https://doi.org/10.1093/OXFORDHB/9780199811755.013.00
https://doi.org/10.1109/MC.2019.2940809
https://www.gnu.org/gnu/manifesto.en.html


 
 

105 
 

Stevens, G., & Draxler, S. (2010). Appropriation of the eclipse ecosystem: Local 
integration of global network production. Proceedings of COOP 2010, 287–
308. https://doi.org/10.1007/978-1-84996-211-7_16 

Stewart, K. J., Ammeter, A. P., & Maruping, L. M. (2006). Impacts of license 
choice and organizational sponsorship on user interest and development 
activity in open source software projects. Information Systems Research, 
17(2), 126–144. https://doi.org/10.1287/ISRE.1060.0082 

Stewart, K. J., & Gosain, S. (2006). The impact of ideology on effectiveness in 
open source software development teams. MIS Quarterly, 30(2), 291–314. 
https://doi.org/10.2307/25148732 

Tang, T. (Ya), Fisher, G. J., & Qualls, W. J. (2021). The effects of inbound open 
innovation, outbound open innovation, and team role diversity on open 
source software project performance. Industrial Marketing Management, 94, 
216–228. https://doi.org/10.1016/J.INDMARMAN.2021.02.013 

Teixeira, J., Robles, G., & González-Barahona, J. M. (2015). Lessons learned from 
applying social network analysis on an industrial Free/Libre/Open 
Source Software ecosystem. Journal of Internet Services and Applications, 
6(1). https://doi.org/10.1186/S13174-015-0028-2 

Terrell, J., Kofink, A., Middleton, J., Rainear, C., Murphy-Hill, E., Parnin, C., & 
Stallings, J. (2017). Gender differences and bias in open source: Pull 
request acceptance of women versus men. PeerJ Computer Science, 2017(5), 
e111. https://doi.org/10.7717/PEERJ-CS.111/SUPP-2 

Thomas, L., & Samuel, K. (2017). Characteristics of open source business 
models. The XXVIII ISPIM Innovation Conference - Composing the Innovation 
Symphony. 

Thornton, P. H., & Ocasio, W. C. (2008). Institutional logics. The SAGE Handbook 
of Organizational Institutionalism, 99–129. 
https://doi.org/10.4135/9781849200387.N4 

Tiwana, A. (2015). Platform desertion by app developers. Journal of Management 
Information Systems, 32(4), 40–77. 
https://doi.org/10.1080/07421222.2015.1138365 

Vainio, N., & Vadén, T. (2012). Free software philosophy and open source. 
International Journal of Open Source Software and Processes, 4(4), 56–66. 
https://doi.org/10.4018/ijossp.2012100105 

Valiev, M., Vasilescu, B., & Herbsleb, J. (2018). Ecosystem-level determinants of 
sustained activity in open-source projects: A case study of the PyPI 
ecosystem. ESEC/FSE 2018 - Proceedings of the 2018 26th ACM Joint Meeting 
on European Software Engineering Conference and Symposium on the 
Foundations of Software Engineering, 644–655. 
https://doi.org/10.1145/3236024.3236062 

Välimäki, M. (2002). Dual licensing in open source software industry. Systemes 
d'Information et Management, 8(1), 63–75. 
https://doi.org/10.2139/ssrn.1261644 

van Angeren, J. , Kabbedijk, K., Popp, K., & Jansen, S. (2013). Managing 
software ecosystems through partnering. In J. Slinger, M. Cusumano, & S. 

https://doi.org/10.1007/978-1-84996-211-7_16
https://doi.org/10.1287/ISRE.1060.0082
https://doi.org/10.2307/25148732
https://doi.org/10.1016/J.INDMARMAN.2021.02.013
https://doi.org/10.7717/PEERJ-CS.111/SUPP-2
https://doi.org/10.4135/9781849200387.N4
https://doi.org/10.1080/07421222.2015.1138365
https://doi.org/10.4018/ijossp.2012100105
https://doi.org/10.1145/3236024.3236062
https://doi.org/10.2139/ssrn.1261644


 
 

106 
 

Brinkkemper (Eds.), Software Ecosystems: Analyzing and Managing Business 
Networks in the Software Industry (pp. 85–102). Edward Elgar Publishing. 

Vidgen, R., & Braa, K. (1997). Balancing interpretation and intervention in 
information system research: The action case approach. Information 
Systems and Qualitative Research, 524–541. https://doi.org/10.1007/978-0-
387-35309-8_26 

Viseur, R., & Jullien, N. (2023). CommunesPlone: An original open source 
model of resource pooling in the public sector. IEEE Software, 40(4), 46–54. 
https://doi.org/10.1109/MS.2023.3268352 

Von Krogh, G., Haefliger, S., Spaeth, S., Wallin, M. W., & Zurich, E. (2012). 
Carrots and rainbows: Motivation and social practice in open source 
software. MIS Quarterly, 36(2), 649–676. 

Walsham, G. (1995). Interpretive case studies in IS research: Nature and 
method. European Journal of Information Systems, 4(2), 74–81. 
https://doi.org/10.1057/EJIS.1995.9 

Wang, J., Bao, L., & Ni, C. (2023). An empirical study of the Apache voting 
process on open source community governance. In Proceedings of the 14th 
Asia-Pacific Symposium on Internetware (Internetware '23), 101–111, ACM, 
https://doi.org/10.1145/3609437.3609454 

Wang, W., Mahakala, K. R., Gupta, A., Hussein, N., & Wang, Y. (2019). Data on 
security requirements in open-source software projects. Data in Brief, 25, 
103590. https://doi.org/10.1016/J.DIB.2018.12.02 

Weber, S. (2004). The Success of Open Source. Harvard University Press. 
https://doi.org/10.4159/9780674044999/ 

West, J. (2003). How open is open enough?: Melding proprietary and open 
source platform strategies. Research Policy, 32(7), 1259–1285. 
https://doi.org/10.1016/S0048-7333(03)00052-0 

West, J., & Gallagher, S. (2006). Challenges of open innovation: The paradox of 
firm investment in open-source software. R&D Management, 36(3), 319–
331. https://doi.org/10.1111/J.1467-9310.2006.00436.X 

West, J., & O’Mahony, S. (2008). The role of participation architecture in 
growing sponsored open source communities. Industry and Innovation, 
15(2), 145–168. https://doi.org/10.1080/13662710801970142 

West, J., & Wood, D. (2013). Evolving an open ecosystem: The rise and fall of 
the Symbian platform. Advances in Strategic Management, 30, 27–67. 
https://doi.org/10.1108/S0742-3322(2013)0000030005 

Wolfenbarger, V., & Smith, J. (2023). How the public shaped the internet: Open-
source software development and implementation through the years. 
SAIS 2023 Proceedings. https://aisel.aisnet.org/sais2023/25 

Yang, Z. (2022). How censoring China’s open-source coders might backfire. MIT 
Technology Review, May 2022.  

Ye, Y., & Kishida, K. (2003). Toward an understanding of the motivation of 
open source software developers. International Conference on Software 
Engineering (ICSE 2003), 419–429. 
https://doi.org/10.1109/ICSE.2003.1201220 

https://doi.org/10.1007/978-0-387-35309-8_26
https://doi.org/10.1007/978-0-387-35309-8_26
https://doi.org/10.1109/MS.2023.3268352
https://doi.org/10.1057/EJIS.1995.9
https://doi.org/10.1145/3609437.3609454
https://doi.org/10.1016/J.DIB.2018.12.02
https://doi.org/10.4159/9780674044999/
https://doi.org/10.1016/S0048-7333(03)00052-0
https://doi.org/10.1111/J.1467-9310.2006.00436.X
https://doi.org/10.1080/13662710801970142
https://doi.org/10.1108/S0742-3322(2013)0000030005
https://aisel.aisnet.org/sais2023/25
https://doi.org/10.1109/ICSE.2003.1201220


 
 

107 
 

Yin, R. (1998). The abridged version of case study research: Design and method. 
In L. Bickman & D. Rog (Eds.), Handbook of applied social research methods. 
229–259. Sage Publications.  

Yin, R. K. (2009). Case study research: Design and methods. SAGE Publications.  
Yu, Y. (2020). Role of reciprocity in firms’ open source strategies. Baltic Journal of 

Management, 15(5), 797–815. https://doi.org/10.1108/BJM-12-2019-0408 
Yu, Y., Wang, H., Yin, G., & Wang, T. (2016). Reviewer recommendation for 

pull-requests in GitHub: What can we learn from code review and bug 
assignment? Information and Software Technology, 74, 204–218. 
https://doi.org/10.1016/J.INFSOF.2016.01.004 

Zanotti, A., & Vélez, J. G. (2020). Floss development and peer governance: the 
case of the gnome desktop environment. International Journal of Innovation, 
8(3), 438–465. https://doi.org/10.5585/iji.v8i3.17114 

Zhang, Y., Stol, K. J., Liu, H., & Zhou, M. (2022). Corporate dominance in open 
source ecosystems: A case study of OpenStack. ESEC/FSE 2022 - 
Proceedings of the 30th ACM Joint European Software Engineering Conference 
and Symposium on the Foundations of Software Engineering, 1048–1060. 
https://doi.org/10.1145/3540250.3549117 

Zhang, Y., Zhou, M., Stol, K. J., Wu, J., & Jin, Z. (2020). How do companies 
collaborate in open source ecosystems an empirical study of openstack. 
Proceedings - International Conference on Software Engineering, 1196–1208. 
https://doi.org/10.1145/3377811.3380376 

Zhou, M., Mockus, A., Ma, X., Zhang, L. U., & Mei, H. (2016). Inflow and 
retention in OSS communities with commercial involvement. ACM 
Transactions on Software Engineering and Methodology (TOSEM), 25(2). 
https://doi.org/10.1145/2876443 
 

 
 

  

https://doi.org/10.1108/BJM-12-2019-0408
https://doi.org/10.1016/J.INFSOF.2016.01.004
https://doi.org/10.5585/iji.v8i3.17114
https://doi.org/10.1145/3540250.3549117
https://doi.org/10.1145/3377811.3380376
https://doi.org/10.1145/2876443


 

ORIGINAL PAPERS 
 
 

I  
 
 

CONTRIBUTING TO ECLIPSE: A CASE STUDY 
 
 

by 
 

Katja Henttonen & Mari Matinlassi, 2007 
 

Software Engineering 2007 – Fachtagung des GI-Fachbereichs 
Softwaretechnik 27.–30.03.2007 in Hamburg, pp. 59–70   

 
https://dl.gi.de/items/fdb0a380-211e-437d-85a3-c11e0729436f 

 
 

Reproduced with kind permission by Gesellschaft für Informatik.  
 

https://dl.gi.de/items/fdb0a380-211e-437d-85a3-c11e0729436f


  

 

 
Contributing to Eclipse:A Case Study 

Henttonen Katja, Matinlassi Mari 
VTT Technical Research Centre of Finland 

P.O. Box 1100, 90571 Oulu, Finland 
{Katja.Henttonen, Mari.Matinlassi}@vtt.fi 

 
 
 

Abstract: Open source software has gained a lot of well-deserved attention during 
the last few years. Eclipse is one of the most successful open source communities 
providing an open development environment and an application lifecycle platform. 
The main aim of this paper is to describe a case study on contributing to the Eclipse 
open source community and report experiences. The most important experiences are 
related to building an architecture model repository tool as an Eclipse plug-in and 
startinga new community around it. 

 
 
 

1 Introduction 

Open source software (OSS) has been growing its popularity among software developers, 
communities and media over a decade and lately also the research community has been 
active in studying the subject. Among the most successful open source projects, Eclipse 
(www.eclipse.org) is an open development platform and application framework for 
building software. The Eclipse community has distinguished itself in productivity and 
creativity [Ki05] and has developed new features that have evolved Eclipse towards a 
platform that is integrating not only tools but also applications and services [Gr05]. The 
new features also make Eclipse a strong force in the embedded market [Er06] [Kl05] and 
make the community even more international [La05]. 

There are several ways of contributing to open source communities, e.g. fixing bugs and 
providing new features. In this paper, contributing to Eclipse is considered as a twofold 
issue. On the one hand, a contribution, i.e. a plug-in, needs to be developed, and on the 
other hand, it needs to get published to the audience: users and community [Be04]. A good 
plug-in is modular, because the only way an open source project can mature is by allowing 
a number of people to participate in the development [Fl01]. While developing modular 
plug-ins is relatively straightforward [Ga04], the acute question remains how to get the 
modular plug-in to the open source “market”? The contribution of this paper is to introduce 
a case study on contributing to Eclipse and to report the experiences on the subject. The 
rest of the paper is structured as follows. The next section summarizes the approach used 
for contributing to Eclipse. After that the case study is introduced and the experiences 
discussed. Conclusions close the paper. 



  

 
 

2 Approach for contributing to Eclipse 

Open source projects have been likened to a bazaar [Ra03]. An open source project gathers 
people, whose skills, motivation and time of involvement may vary significantly [GaA04], 
to work in a distributed environment. Any contributor is welcomed to add a new feature 
to “scratch an itch”. In such a development model, the importance of maintainability and 
the ease of making modifications are highlighted. This goal is achieved, e.g., by designinga 
modular software architecture. 

In order to create a successful open source community around an Eclipse plug-in, the 
contributor needs (1) to build a plug-in with well designed software architecture, (2) to 
enable others to extend the plug-in with further plug-ins, and (3) to publish the plug-in as 
an open source project. The main stakeholders of the Eclipse community [Be04] are 
summarized in Table 1. In our approach for contributing to Eclipse, and in this case study, 
we are acting in three different stakeholder roles: extender, publisher and enabler. In this 
hierarchical stakeholder stack, the stack is built from a technical point of view. That is, 
publishing an Eclipse extension does not require making it extendable. Although this is 
true, attracting an active open source community, as stated above, requires easily 
expandable architecture, which in this case is implemented by Eclipse extension 
mechanisms. 

Table 1. Stakeholders in the Eclipse community. 
 

Stakeholder Description 
User Uses Eclipse as it is. 
Configurer A user who customizes his/her experience of Eclipse within the limits 

envisioned by the original programmer. 
Extender A programmer who makes extensions by plugging in functionality. 
Publisher An extender who makes extensions available to others for loading 

them. 
Enabler A publisher who has defined one or more extension points for a plug- 

in, thus enabling others to extend the contribution. 
Committer Modifies the Eclipse code and incorporates changes into the global 

Eclipse release. Requires trust of existing committer community. 
 
 

An open source project can be announced when the code artifact has been implemented 
into a “minimal but working version” [Go05]. Mandatory requirements, which need to 
be implemented before announcing the project, were identified in the requirement 
specification phase. In addition to the code artifact, an open source project needs a 
standard set of tools for managing information, including at least a website, mailing lists, 
a code versioning system and a real-time chat room [Fo05]. Once the infrastructure is 
ready, the next goal is 1) to get publicity for the project, 2) to gain a large enough user 
community, and 3) to gradually increase the level of community involvement. To be 
successful, an open source project requires marketing just like any other product. [Go05] 



  

 
 

3 Case study: Stylebase for Eclipse 
 
 

3.1. Overview 

Quality-driven architecture design is an approach for software architecture design which 
emphasizes the importance of quality attributes (e.g. performance, modularity or 
maintainability) during the development1. The approach relies on the assumption that 
architectural styles and patterns, and also design patterns, embody different quality 
attributes. When patterns are applied in the architecture, the quality characteristics of the 
selected patterns are reflected in the entire software architecture. Stylebase is an important 
part of the quality-driven software architecture design and analysis (QADA®) 
methodology. Stylebase is a knowledge base of architectural styles and patterns [Ni05], 
and design patterns. The aim of the stylebase is to assist the architect in selecting styles 
and patterns which promote desired quality attributes. On the other hand, the stylebase 
may also assist in evaluating software architectures [Do02]. 

The Stylebase for Eclipse community has developed an open source implementation of 
the stylebase based on previous work [Me05] [MN05], and it has also published as a tool 
for browsing and maintaining the stylebase. The tool can be used in three ways: 1) as an 
electronic library for patterns, 2) as a guide for evaluating quality-driven architecture and 
3) as a guide for quality-driven architecture modeling. When used as an electronic library, 
the architect browses the stylebase as a pattern catalogue. When used for model evaluation, 
the architect detects which patterns have been used in an architecture model and then 
checks from the stylebase which quality-attributes are associated with these patterns. 
When constructing a new architecture model, the architect searches the knowledge base 
and selects patterns according to the desired quality characteristics. 

 

 
3.2. Expandable plug-in architecture 

In the Stylebase for Eclipse, modularity was implemented at two levels. (1) The internal 
architecture of the Stylebase for Eclipse was designed to be modular. This was achieved 
by following the well-known model-view-controller pattern (MVC), see e.g. [Bu96]. (2) 
The Stylebase for Eclipse provides functionality which lets users build custom extensions 
without touching the source code of the Stylebase for Eclipse. This has been achieved by 
(a) building access points by implementing and exporting API (Application 
Programming Interface) packages, and (b) defining extension points with the Eclipse 
extension point mechanism. The access and extension points are listed in Table 2 and 
Table 3 respectively. 

 
 
 
 
 
 

 
1 http://virtual.vtt.fi/qada/ 



  

 

 
The MVC architecture (Model, View and Controller) is a way of breaking an application 
into three parts: model, view and controller. The user input, the manipulation of data and 
the visual feedback to the user are separated and handled by controller, model and view 
objects respectively. The MVC architecture was selected for the following reasons: 

1) MVC promotes extensibility by allowing multiple representations (views) of the same 
information (model). This makes it easy to update the graphical user interface, which is 
especially prone to change requests, and/or to customize views based on user profiles. 

2) MVC promotes code reuse by allowing a single view to show data from different 
models. By adding a new model, it is possible to adjust the tool to manage entirely 
different types of data with minimum recoding effort. 

3) MVC facilitates maintenance by allowing an individual developer to focus on one 
aspect of the application at a time. Multiple developers can simultaneously update the 
interface, logic or input of an application without affecting other parts of the source code. 

5) MVC architecture suits well for Eclipse plug-in development because the view classes 
of Eclipse can receive any other class as an input object. The Eclipse platform itself has 
a model-view-controller architecture [Gr04]. 

 
In order to increase the level of modularity, the three main components communicate with 
each other via predefined interfaces. Figure 1 shows how the plug-in implements a model-
view-controller pattern. 

 

 
 

FIGURE 1: Stylebase plug-in composite structure 



  

 

 
Tables 2 and 3 describe functionality that the Stylebase for Eclipse provides for 
downstream plug-ins. 

 
Table 2. The access points provided by the Stylebase for Eclipse 

 

Controller The interface provides access to the control component. It lets users 
associate the functions of Stylebase for Eclipse with the GUI of another 
plug-in. 

Model The interface gives access to the model component. It provides a set of 
methods for retrieving and updating essential data in the Stylebase. 

Database 
(SQL) 

The interface provides SQL-level access to the underlying database. It 
helps in implementing specific functionality not provided by the model 
interface. 

 

 
Table 3. The extension points provided by the Stylebase for Eclipse 

 

Model 
Extension 
Point 

The extension point provides the means of adding new models, units 
for storing and handling different types of data. 

GUI 
Extension 
Point 

The extension point provides the means of customizing the user 
interface of the Stylebase for Eclipse. It allows users to add their own 
views and/or menu items to the main view of the Stylebase for Eclipse. 
The controller component is extended respectively. 

 
 

 
3.3. Founding a community 

In the case of Stylebase for Eclipse, , the founding of the community was started right 
after implementing the mandatory functionality. Considering our limited resources and 
the laborious effort of self-hosting a project, it was decided to subscribe to one of the 
websites providing free hosting services for open source projects. Such services include 
web hosting, mailing lists, code archive, file hosting and bug tracking. For selecting 
hosting facilities, the most well-known, general-purpose hosting facilities – 
SourceForge.net, Savannah, BerliOS and Google code – were evaluated. They all run a 
collaborative software development management system originally called 
“SourceForge”. SourceForge.net uses a closed-source proprietary version of this 
software, while the three other websites run free versions forked from the last open 
source version of SourceForge. 



  

 

 
When registering a project to any such facility, the submitter has to state which license the 
project uses. We decided to use the GNU (GNU's Not Unix) General Public License 
(GPL), which has been written by the Free Software Foundation. Many contributors are 
familiar with it as it is the most widely used open source license [Fo06]. GPL efficiently 
prevents creation of closed-source forks [Go05] and ensures that our software can be 
unambiguously used with MySQL client libraries which are also GPL licensed. The main 
drawback of GPL is that it may turn companies away from contributing toa project [Go05]. 
Another disadvantage is the incompatibility with EPL (Eclipse Public License) [Fr06] 
which, however, may be solved by GPL version 3 [Or06]. 

Savannah provided by the Free Software Foundation was selected as a project hosting 
provider because it is ad-free and it provides the most professional looking user- interface. 
Unlike the other alternatives, Savannah is dedicated to free software advocacy and has 
strict hosting policies, such as code review before accepting a new project as a Savannah 
project. The Savannah administration requires that all hosted software 1) is licensed under 
a free software license compatible with the GNU General Public License, 
2) runs on at least one free operating system such as Linux, and 3) is not dependent on any 
non-free software. Non-free software includes all proprietary programs (such as 
Macromedia Flash and the Microsoft SQL Server), non-free file formats (such as the 
Graphic Interchange Format), and non-free programming languages (such as the Sun 
implementation of Java). [FrA06] 

In order to express support to the Eclipse community, it was decided to apply for the 
membership of the Eclipse Foundation. Associate membership is free of charge for non- 
commercial entities like universities and research institutes. The Eclipse Foundation 
requires that associate members commit to 1) deliver added value to the Eclipse 
community within 12 months and 2) publicly announce joining the Eclipse Foundation 
within 90 days [EcA06]. While the associate membership does not grant decisive power, 
it grants rights to participate in project reviews, project creation and discussions on Eclipse 
intellectual property policy. It also entitles the member to use the Eclipse Foundation 
Member logo in marketing activities. [Ec06] 

In order to make the project known to the public, we decided to publish announcements 
on some popular, open source related websites and to send one-time postings to carefully 
selected mailing lists. We chose not to send email to several, large mailing lists because 
such postings are easily considered as spam. As well as regular internet users, open source 
developers dislike irrelevant information that is blocking their communication channels 
[Ra06]. Further, we promoted the project at various open source related events, such as 
the OpenMind seminar (http://www.openmind.fi/). A brochure and poster were designed 
for marketing the project. We also contacted lecturers of software development courses at 
the University of Oulu and offered the Stylebase for Eclipse project as a practical work for 
their students. 

The Eclipse Plug-in Central (EPIC) is obviouslya website where we wanted our plug-in to 
be listed. This is a place where Eclipse users search for commercial and open source plug-
ins. An announcement was also placed at a few open source development portals, at 
FreshMeat.net, for example, which Fogel [Fo05] mentions as the number one place to be 
seen. 



  

 
 

5 Experiences 
 
 

5.1. Starting up the project- project hosting 

As stated above (see Section 3.3), we evaluated four project hosting services and selected 
Savannah as the most appropriate one for our purposes. Savannah administration had very 
strict requirements on how the GNU General Public License should be applied to the code 
artifact. The requirements include placing copyright and free software statements both at 
the beginning of each source file and in a README file in every subdirectory containing 
binary files. According to the Free Software Foundation, this is the only way to ensure 
that the code is effectively protected by the license [FrB06]. What made things 
inconvenient was extending the requirement to apply to all external libraries distributed at 
Savannah. In the case of the Stylebase, this meant, for example, that one needed to open 
the JAR (Java Archive) file of the MySQL client, placea README file into dozens of 
sub directories and then to package the source code and binaries back into a JAR file. 
Savannah also required that the source code of all external libraries was distributed with 
the plug-in. It was not sufficient to provide instructions on where to download the source 
code [RoA06]. 

Some interesting lessons were learned with different implementations of Java class 
libraries. Until November 2006, Sun Java libraries were published under Sun Community 
Source License (SCSL), which is a hybrid between an open source license and a traditional 
proprietary license [Ga6]. Many free software developers were unhappy with the Sun 
licensing scheme [So05] and Free Software Foundation coordinated the development of 
GNU Class Path, a GPL licensed implementation of Java. As the Stylebase plug-in was 
developed on Sun platform, some Sun-only features were inadvertently used. Later on, it 
was required to redo these features because the code could not be compiled with GCJ 
(GNU Compiler for Java), a widely-used open source Java compiler. In November 2006, 
as a response to many requests, Sun finally decided to publish its Java implementation 
under GNU General Public License [Su06]. Time shall show whether the decision will 
diminish or increase differences between Java implementations. In any case, making an 
open source product dependent of one particular implementation would hardly bea good 
choice. 

The application process to Savannah took longer than planned. This was most probably 
due to the following reasons. Not all the requirements for application were clearly stated 
at once, but rather mentioned one after another each week. The voluntary nature [Go05] 
of open source communities was really put into action when our emails were replied to 
mostly on weekends and there was often a long delay before receiving a reply. Due to the 
strict deadline of publishing our open source project we had to set up a site at 
SourceForge.net where the application was processed and accepted in less than a day. 
Considering the amount of bogus projects found at SourceForge.net, the quick approval 
appears to reflect a loose hosting policy rather than efficiency. 



  

 

 
5.2. Integrating OS components - license issues 

At the time the Stylebase for Eclipse was about to be published, the Stylebase for Eclipse 
tool was dependent on an XML (eXtensible Markup Language) object model called 
JDOM, which was published under its own open source license specifically written for the 
JDOM project. Due to the fact that JDOM uses a permissive license similar to the MIT 
(Massachusetts Institute of Technology) license, we considered it to be GPL- compatible. 
However, Savannah refused to accept the JDOM component as a part of the project. The 
clause that prohibits the use of the name JDOM in derivative works can be seen as an 
additional restriction and this would rule out the GPL-compatibility [RoB06]. A polite 
posting [He06] to an open source forum regarding the GPL-compatibility of JDOM caused 
an intense “flame war”. It seems that whenever a project uses its own license, compatibility 
issues area matter of debate. The JDOM component was therefore replaced with another 
document object model which had been published under the GNU Lesser General Public 
License (LGPL). The Open Source Watch [Os06] recommends that GPL-licensed 
software be combined with licenses that are listed as GPL-compatible on the website of 
the Free Software Foundation. 

 

 
5.3. Attracting users and contributors - marketing activities 

At the time of writing this paper, not all the marketing activities mentioned above (Section 
3.3.) were executed. However, initial experiences were collected as follows. Applying for 
the membership of Eclipse Foundation was quite straightforward. However, while 
reviewing the membership agreement of Eclipse Foundation, it was unclear whether 
contributions would be accepted under any other open source license than the Eclipse 
Public License (EPL). The Eclipse Foundation confirmed that the strict EPL requirement 
applies only to contributions which are part of the official Eclipse project and hosted at 
eclipse.org [Sm06]. Soon after that, the application for Eclipse Foundation Associate 
Membership was accepted [Mc06]. 

The most effective marketing activity seemed to be giving a demonstration at a seminar 
targeted for special audience interested in open source. A concrete metric set for assessing 
the effectiveness of marketing activities was provided by the number of downloads at 
stylebase.sourceforge.net. A few days after the demonstration we were able to witness 
nearly 50 downloads from different IP addresses. 



  

 
 

6 Conclusions 

The aim of this paper was to describe a case study on contributing to the Eclipse open 
source community and to report some experiences. The initial experiences were reported 
soon after the official publication of the project in autumn 2006. The case study was 
concerned with a software architecture tool called Stylebase for Eclipse, which was 
licensed under the GNU GPL and implemented as an Eclipse plug-in. Developing Eclipse 
plug-ins was quite straightforward and therefore the most interesting experiences were 
related to (1) licensing issues while integrating several open source components together, 
(2) project hosting services while starting up an open source community, and 
(3) marketing activities while attracting users and contributors for the community. 

Based on the case study, the most important conclusions are as follows. First, Savannah 
by the Free Software Foundation was selected as a project hosting provider because it was 
ad-free and provided the most professional looking user-interface. One of the experienced 
advantages of Savannah was that it would host only carefully reviewed projects (causing 
a disadvantage of long acceptance process). We also tried out another option - 
SourceForge – where, although the acceptance process was very fast, the responsibility of 
project quality was left for the respective community. 

Second, it seems that whenever an open source subcomponent uses its own license written 
especially for the project, compatibility issues will be a matter of debate. Resolving 
compatibility issues takes time and therefore should be taken into account in schedules, or 
in our case regarding a GPL license, one should only use open source components with 
GPL compatible licenses accepted by the Free Software Foundation. 

Third, the marketing of an open source project was deemed to be crucial in order to gain 
users and contributors for your project. We used several marketing channels such as 
passing information down by word of mouth, handing out brochures, and demonstrating 
the proposed tool at a seminar for open source related audience. Marketing activities 
caused an immediate tenfold increase in code downloads at the project website. 

Acknowledgements 

The publication of this paper has been supported by Eureka ITEA research project COSI 
funded by the National Technology Agency (Tekes) and VTT. 



  

 
 

 
References 

[Be04] Beck, K.; Gamma, E.: Contributing to Eclipse. Dr. Dobb's Journal. 29, 9, 2004; P. 74-8. 

[Bu96]  Buschmann F; Meunier R; Rohnert H; Sommerlad P; Stal M: Pattern-oriented software 
architecture - a system of patterns. Wiley, 1996. 

[Do02] Dobrica, L.; Niemela, E: A survey on software architecture analysis methods. 
Software Engineering, IEEE Transactions on 28(7): 638-653. 2002. 

 
[Ec06]  Eclipse  Foundation: Eclipse Rights by Membership Category 

http://www.eclipse.org/membership/become_a_member/How2Join%20Eclipse%20Right 
s%20by%20Membership%20Category.pdf. Visited 26.10.2006. 

[EcA06] Eclipse Foundation: Eclipse Membership Application or Change in Representation. 
http://www.eclipse.org/membership/become_a_member/Membership 
%20Application.pdf. Visited 26.10.2006. 

 
[Er06] Erickson, J: Eclipse Foundation Releases Embedded RCP. The World of Open Source. 

Available at 
http://www.ddj.com/blog/opensourceblog/archives/2006/10/eclipse_release.html 

[Fl04] Fleury, M.; Lindfors J.: Enabling component architectures in JVMX. 
http://www.onjava.com/pub/a/onjava/2001/02/01/jmx.html. 2001. Visited 30.6.2006. 

[Fo05] Fogel, K.: Producing Open Source Software. How to run a successful free software project. 
O’Reilly, 2005; P. 34, 43, 45-47. 

[Fr06] Free Software Foundation: GPL-incompatible Free Software Licences. 
http://www.fsf.org/licensing/licenses/index_html#GPLIncompatibleLicenses. 
Visited 20.10.2006. 

[FrA06] Free Software Foundation: Savannah Services and Requirements 
https://savannah.nongnu.org/register/requirements.php Visited 26.10.2006 

 
[FrB06] Free Software Foundation: Frequently Asked Questions on GNU GPL: Using the GPL for 

your programs. http://www.gnu.org/licenses/gpl-faq.html. Visited 27.10.2006. 

[Ga04]  Gamma, E.; Beck, K.: Contributing to Eclipse - Principles, Patterns, and Plug-Ins. 
Addison Wesley, 2004; P. 395. 

[GaA04] Gacek, C.; Arief, B.: The many meanings of open source. IEEE Software. 21, 1, 2004; P. 
34-40. 

[Ga06] Gabriel,R; Joy, W: Sun Community Source Licensing (SCSL) – Principles. 
http://www.sun.com/software/communitysource/principles.xml. Visited 26.10.2006. 

[Go05] Goldman R.; Gapriel R: Innovation Happens Elsewhere. Open Source as Business Strategy. 
Elsivier, 2005; P. 15-16, 157, 190-191, 224, 256. 

[Gr04] Griffin, C: Transformations in Eclipse. The proceedings of 18th European Conference on 
Object-Oriented Programming. Norway, 2004. 



  

 
 

 
[Gr05] Gruber, O. et al.: The Eclipse 3.0 platform: adopting OSGi technology. IBM Systems 

Journal. 44, 2, 2005; P. 289-99. 
 

[He06] Henttonen, K.: Incompatibility with GPL [email]. Message to: jdom- interest@jdom.org. 
28.9.2006. Cited 26.10.2006. Available at http://www.jdom.org/pipermail/jdom- 
interest/2006-September/015549.html 

[Ki05] Kidane, Y.; Gloor, P: Correlating Temporal Communication Patterns of the Eclipse 
Open Source Community with Performance and Creativity. NAACSOS Conference, June 
26 - 28, Notre Dame IN, North American Association for Computational Social and 
Organizational Science, 2005. Available at 
http://www.ickn.org/documents/Naacsos_Kidane_Gloor.pdf 

 
[La05] Lammers, D.: Tool developers rally around Eclipse. Electronic Engineering Times. 

1369, 2005; P. 47-49. 

[Mc06] McGaughey, S.: Welcome VTT Technical Research Center of Finland to Eclipse 
Foundation as an Associate Member [email]. Message to Katja Henttonen. 4.10.2006. 
Cited 1.11.2006. 

 
[Me05] Merilinna, J:A Tool for Quality-Driven Architecture Model Transformation. Espoo, 

VTT. VTT Publications. 2005. 
http://www.vtt.fi/inf/pdf/publications/2005/P561.pdf 

[MN05] Merilinna, J; Niemelä, E: A stylebase asa tool for modelling of quality-  driven 
software architecture. Proceedings of the Estonian Academy of Sciences. Engineering 
December 2005. Special issue on Programming Languages and Software Tools. 
vol. 11, 4. 2005 

 
[Ni05] Niemelä, E.; Kalaoja J. : Toward an architectural knowledge base for wireless 

service engineering. IEEE Transactions on Software Engineering 31(5): 361 - 379. 2005. 

[Os06] Open Source Watch: What is open source software? http://www.oss- 
watch.ac.uk/resources/opensourcesoftware.xml. Visited 27.10.2006. 

 
[Or06] O'Riordan, C: The Transcript of the Speech by Eben Moglen (Section 7e) at the 

Opening Session of the First International GPLv3 Conference on January 16th 2006. 
Available at http://www.ifso.ie/documents/gplv3-launch-2006-01-16.html. 

[Ra03] Raymond, E: The Cathedral and the Bazaar. O’Reilly, 2001. Available at 
http://catb.org/~esr/writings/cathedral-bazaar/. 

[Ra06] Raymond,  E.; Moen R: How to Ask Smart Questions The Smart  Way. 
http://catb.org/esr/faqs/smart-questions.html. Visited 27.10.2006. 

[Ro06] Robson, S.: [task #5865] Submission of Stylebase [email]. Message to Katja Henttonen 
and savannah-register-public@gnu.org. 24.9.2006. Cited 26.10.2006. Available at 
http://www.mail-archive.com/savannah-register-public@gnu.org/msg06275.html 

[RoA06] Robson, S.: [task #5865] Submission of Stylebase [email]. Message to Katja Henttonen 
and  savannah-register-public@gnu.org.  12.10.2006. Cited 26.10.2006. 
Available at http://www.mail-archive.com/savannah-register-public@gnu.org/ 
msg06347.html 



  

 
 

 
[RoB06] Rowan, W.: Open Source Development - An Introduction to Ownership and Licensing 

Issues. University of Oxford, 2006. Available at http://www.oss- 
watch.ac.uk/resources/iprguide.xml. 

[Sm06] Smith, D.: RE: Question on Eclipse membership [email]. Message to: Katja Henttonen. 
2.10.2006. Cited 26.10.2006. 

 
[So05]  Souza, B.: How Much Freedom Do you Want?  In compilation Cris Dibona  & al. 

(edit): Open Sources 2.0. O’Reilly, 2005; P219-224. 
 

[Su06] Sun MicroSystems Inc. Sun Open Sources Java Platform and Releases Source 
Code Under GPL License Via NetBeans and Java.net Communities. 
http://www.sun.com/smi/Press/sunflash/2006-11/sunflash.20061113.1.xml. 
Visited 28.12.2006. 



 

 
 
 

II   
 
 

OPEN SOURCE BASED TOOLS FOR SHARING AND REUSE 
OF SOFTWARE ARCHITECTURAL KNOWLEDGE 

 
 
 
 

by 
 

Katja Henttonen & Mari Matinlassi, 2009 
 

2009 Joint Working IEEE/IFIP Conference on Software Architecture 
(WICSA) & European Conference on Software Architecture (ECSA), pp. 41–

50 
https://doi.org/10.1109/WICSA.2009.5290790 

 
 

Reproduced with the kind permission of IEEE Publications. 

https://doi.org/10.1109/WICSA.2009.5290790


   

Open Source Based Tools for Sharing and Reuse of 
Software Architectural Knowledge 

 
Katja Henttonen, Mari Matinlassi 

VTT Technical Research Centre of Finland 
katja.henttonen@vtt.fi 

 

Abstract 

Sharing and reuse of software architectural knowledge 
(SHARK) has become an emerging topic of discussion 
and research in the field of software architecture 
development. SHARK is efficient with tool support, 
particularly so when that support is appropriate. 
However, there seems to be little guidance for selecting a 
suitable SHARK tool for use in an organization. The 
contribution of this paper is twofold. First, we present an 
evaluation framework that can be used for presenting an 
overview of SHARK tool features or comparing their 
differences. Secondly, we use the presented framework 
to evaluate three publicly available SHARK tools. The 
evaluated tools are the following: WebOfPatterns, 
Stylebase for Eclipse and PAKME. 

 
1. Introduction 

 
The complexity and size of software systems and 

system families has increased and the stakeholders 
involved in software architecture are many. When 
software is developed in a multi-site global company or 
in an open source community, the stakeholders are also 
geographically distributed. For these reasons, SHARK 
has become an increasingly important topic. Storing, 
reusing and sharing architectural knowledge, both from a 
design and design decision perspective, requires 
appropriate tool support. 

While several papers [1, 3, 4, 5] state many desirable 
features for a SHARK tool, a common framework for 
evaluation of SHARK tools has not been provided. Ihme 
et al. [20] present an evaluation framework aimed at 
computer aided software engineering tools. However, 
this framework is quite general i.e. not targeted 
especially at SHARK tools and, on the other hand, too 
detailed to be used for presenting an overview of tool 
features. The NIMSAD (Normative Information Model- 
based Systems Analysis and Design) evaluation 
framework [21] has been presented earlier. This 
framework has been developed for evaluating methods in 
any category, but it can also be adapted for evaluating 
tools. 

Some excellent literature studies on the state-of-the- 
art of SHARK tools have already been presented [see e.g. 
12]. However, there is obviously a substantial difference 
in what functionality has been outlined in literature and 
what has been already implemented and made available 
to users. Some industrial studies on Enterprise 
Architecting tools [e.g. 25,28] touch model sharing 
features briefly, but focus on business (instead of 
software) architecting. Therefore, the participants of the 
2nd SHARK workshop agreed that a more empirical 
analysis of software architectural knowledge sharing 
solutions is required [1]. 

The contribution of this paper is to present an 
evaluation framework for SHARK tools and then use the 
framework to evaluate three open source based solutions. 
The framework is based on the frameworks introduced 
above. The topics addressed in the framework have been 
widely recognized [e.g. 1-5] as desirable features for a 
SHARK tool. Evaluation is entirely based on public and 
free material available in the web pages of open source 
projects. The evaluation was performed by installing and 
using the case tools. 

The following open source tools were selected for 
evaluation: Web of Patterns, Stylebase for Eclipse and 
PAKME. These tools were selected because they are 
general purpose (i.e. not limited to a particular 
programming language or platform) and currently in 
active development. The study uses open source tools to 
exercise the framework, because they are publicly 
available, thus making the evaluation more transparent 
[15]. The open source approach brings also many 
benefits to users, such as easy customization [14]. 
Solutions, which are only available as research papers, 
were excluded due to the empirical nature of the study. 

The remaining parts of this paper are organized as 
follows. First, a framework for evaluating the SHARK 
tools is presented with a rationale and background of 
question categories, criteria and evaluation questions. 
After that, each case tool is introduced and its evaluation 
data provided. In the end, evaluation results and 
framework capabilities are discussed. Conclusions close 
the paper. 



   

2. Framework for Evaluation 

2.1 Question Categories 

The evaluation framework for tools that support 
sharing and reuse of architectural knowledge is presented 
in Table 1. Categories of the framework are based on the 
NIMSAD evaluation framework [21], the CASE tool 
evaluation criteria of Ihme et al. [20] and results of the 
second SHARK working group [1]. The evaluation 
questions have been defined based on a large body of 
previous work from an active research community [e.g. 
2, 11-13]. In line with NIMSAD, the entire problem 
solving process is used as the basis of evaluation. Our 
framework proposes four view points to the evaluation of 
SHARK tools (Figure 1) as follows. 

 

 
Figure 1: Elements of SHARK tool evaluation 

 
Problem the tool assists in. Reuse and sharing of 

software architectural knowledge means capturing it in a 
reusable form and sharing it with others a meaningful 
way. This is the problem a SHARK tool solves. The 
questions in this category evaluate how well the tool 
covers the problem area of SHARK. 

Problem solver. Problem solver is usually the tool 
user. In the case of knowledge sharing tools there are 
groups of users from several interest groups. This 
category of questions evaluates the tool from the 
viewpoint of problem solver e.g. learning, ease of use 
and installation issues. 

Means of problem solving. SHARK tools may be 
implemented with several technologies. Technology 
selections may either restrict or open up tool features. 
The questions in this category evaluate (1) what kind of 
technological and implementation solutions have been 
selected for the tool and (2) how well these solutions 
serve the problem areas defined. 

Maturity of the tool. The maturity of any tool is an 

important aspect for decision makers when selecting a 
tool for an organization. This category of questions 
evaluates the maturity of the tool. 

 
2.2 Question criteria and evaluation 

questions 

Knowledge reuse is about using the same knowledge 
more than once. Architectural knowledge (AK) reuse is 
the most efficient when first storing knowledge and then 
retrieving knowledge from the repository in order to use, 
reuse and maintain it. This kind of repository also 
enables sharing of AK. 

According to [1, 22, 29, 30] architectural knowledge 
consists of the design solutions, i.e. how the system is 
designed, plus the design decisions and their rationales 
i.e. why the system is designed the way it is. As we 
know, software architecture has many definitions and 
many meanings depending on the context e.g., do we 
record the software architecture of a small application, 
family of applications or family of embedded software- 
intensive systems? Therefore, representation of 
architectural design knowledge may have to be done on 
several abstraction levels to present all the relevant 
information. Examples of abstraction levels include 
conceptual architecture, concrete architecture and 
detailed design-level knowledge. The second SHARK 
workshop aimed to specify what architectural decision 
documentation must include and what it can include in 
addition to must-to-have documentation [1, 4]. In 
summary, architectural design decisions documentation 
should describe what is decided, why the decision was 
made and what the discarded options were. The above 
mentioned issues of storing knowledge are addressed in 
questions 1-4 of the framework in Table 1. 

The previously mentioned SHARK working group 
also considered tool support for architectural knowledge 
management. Firstly, searching the knowledge has to be 
efficient and users need to find what they are looking for 
[1]. Finding reusable knowledge may be difficult for 
various reasons [16, 30] e.g. knowledge utilizers may be 
unaware that the knowledge they need is available 
through a tool. Secondly, the essential information may 
be only implicit in the repository. In the end, the 
knowledge may have to be reconfigured in some way in 
order to meet the requirements of the task in hand. 
However, knowledge retrieval features of SHARK tools 
should help with at least some of these problems. Free 
text searches and first-order predicates are common 
approaches to querying AK data. [1]. In addition to 
conventional search functions, SHARK tools should 
provide mechanisms for navigating through architectural 
knowledge [4,5,17]. This means navigating between 
abstraction levels (e.g. by graphical zooming) and 
through decision paths (e.g. by tree branching or 



  

Table 1: Evaluation framework for SHARK tools 
Category Criterion Evaluation questions 

 
 
 

 
Problem the 
tool assist in 

 
 
 
Knowledge 
reuse 

1. How does the tool support storing design solutions 
2. How does the tool support storing design decisions and their rationales 
3. Can the tool store both accepted and discarded design decisions? 
4. What is the abstraction level of stored knowledge? 
5. What kind of search mechanisms does the tool support? 
6. Does the tool support navigating through abstraction hierarchy / decision paths? How? 
7. Does the tool provide descriptive assistance (instead of imposing solutions)? 
8. What knowledge is modelled explicitly in the tool? 

Knowledge 
sharing 

9. Does the tool support a shared repository with multi-user access? 
10. Does the tool support collaborative interactions or integrate with collaborative SW? 
11. Does the tool indicate the author of the knowledge (encouraging personal contacts)? 

 

 
Problem 
solver 

Target user 
group 

12. What is(are) the target user group(s) of the tool? 
13. Can users get information on the granularity level of their choice? 

Target 
environment 

14. How does the tool aim to integrate into the architecting process? 
15. Can templates be customized to accommodate organizational needs? How? 

Required 
resources 

16. How much effort does it require to learn to use the tool? 
17. How much extra effort does it require to create and update the knowledge? 
18. What resources does it require to deploy the tool in an industrial organization? 

 
 
Means of 
problem 
solving 

Implementation 
technologies 

19. What technologies have been used in the tool? 
20. In which format is the knowledge stored? 
21. Can the knowledge be imported/exported in some other formats? 
22. How well do the selected technologies/formats serve the problem of the tool? 

Openness 23. To what extent is the tool open (i.e. licensing terms)? 
24. Is the tool integrable with other tools? Which tools? How? 

Security 25. Does the tool implement access control? How? 

 
Maturity 

History 
26. How long has the tool (and/or its vendor) been on the market? 
27. Has the tool been successfully used in an industrial setting? Where? 

Support 
28. What kind of tool documentation is provided? 
29. What kind of support is available in using the tool? 

 

hyperlinks). These issues of retrieving knowledge are 
addressed in questions 5 and 6. 

A strong tendency in AK management seems to be 
that SHARK tools are not meant to replace people [1, 2, 
11, 12]. According to the SHARK working group [1] 
“the tool itself should not be prescriptive, or even 
advisory, in its capacity to support the architecting 
process.” Since architecting is essentially an art form, the 
tool should not limit the creativity of a software architect 
[12]. Experience has shown that “best practices” are 
found by peer-to-peer discussions rather top-down 
imposition of compliance rules [1]. This issue is taken 
into account by question 7. 

Other important issues to consider when selecting a 
SHARK tool are what knowledge is modelled explicitly 
in the tool and how the modelled knowledge is tied to the 
development process [1]. The tool may derive e.g., from 
the background of modelling, process analysis or 
programming [1, 8] – and this impacts on how it attaches 
itself into the development process. The working group 
agreed that a SHARK tool should integrate with existing 
processes and tooling [1]. Such integration makes the 

tool more intuitive to use and thereby lowers the learning 
curve [1,19]. It also helps AK management to be seen as 
part of the “normal” architecting process, rather than as 
some extra, resource-consuming activity [1,30]. These 
issues are addressed in questions 8, 14 and 23. 

Furthermore, the architecting environment dictates 
what knowledge is worth storing [11,30]. Data structures 
and templates should therefore be flexibly customizable 
to accommodate an organization’s needs [1, 11]. The 
relevance of the knowledge also depends on the audience 
[1, 11, 12]. For example, a developer is usually interested 
in much more detailed architectural knowledge than a 
project manager [12, 18]. Therefore, one has to identify 
the stakeholders of the architecting process (i.e. 
programmers, designers, architects, managers) and 
ensure that they can access the knowledge at the desired 
granularity level [11, 12]. These issues are covered by 
questions 12, 13, 15. 

In addition to knowledge reuse, the sharing of 
architectural knowledge is another main problem that 
SHARK tools shall address. A central requirement is that 
a tool supports a shared knowledge repository which can 



  

be accessed by multiple users and tools simultaneously 
[13, 33]. This approach enables easy retrieval and reuse 
of solutions that have proven themselves in the past [11]. 
However, industrial experiences have proven that such 
repositories may turn into “information junk yards” if 
social incentives between people are not encouraged [2]. 
In addition to making knowledge available in repositories 
(codification), a SHARK tool should help people to 
communicate (personalization) [1,2,12]. In order to 
enable personal communication, the tool should identify 
the author of the knowledge [2, 12]. Furthermore, social 
incentives can be encouraged by collaborative features, 
such as discussion boards or voting [2, 10]. User 
feedback received by us [17] also suggests that social 
networking support is at the top of the “wish list” of 
many SHARK tool users. These knowledge sharing 
features are considered in questions 9-11. 

Ease of insertion and learnability are mentioned as 
important CASE (Computer Aided Software 
Engineering) tool evaluation criteria in [20]. Installation 
of a tool and its related learning curve sometimes are key 
issues among busy users. According to our experiences 
in developing open source tools [17, 18], a high threshold 
for installing a tool may prevent using it at all. The easy 
manipulation of content improves the user’s commitment 
to use the tool and helps to keep architectural decision- 
making up to speed [12]. However, acquiring 
architectural knowledge from architects’ heads takes 
some time, no matter how good the tool is. These issues 
are considered in questions 16-18 as required resources 
criteria. 

The purpose of the implementation technologies 
criterion is to give an overview about technologies that 
are selected to implement the tool for a certain problem 
area (described in knowledge sharing and reuse criterion 
above). Technology selections affect several issues e.g., 
use of the tool, integrability with other tools and tool 
adaptability for a specific environment. A tool’s input 
and output data format provide interesting information 
for deciding how to further utilize AK provided by the 
tool. These issues are addressed in questions 19– 22. 

According to the earlier interviews conducted in the 
industrial sector [26, 27, 31], companies want to remain 
tool vendor neutral, whenever possible. Tool vendor 

neutrality decreases risks. Openness in software tools is a 
major trend today [14, 31] and therefore, the openness 
issue is considered in question 24. Openness also relates 
to the previously discussed issues of integrability and 

ease of customization. Like with any knowledge- 
intensive software tool, data security must be also 
considered [20,29]. Question 25 addresses access control. 

Maturity of the tool is a criterion that should provide 
a quick overview of the professional nature of a SHARK 

help lines). These issues are covered in questions 26-29. 
 

3. Web of Patterns 

The WebOfPatterns1 (WOP) [8,9] consists of two 
parts: (1) a language neutral format to describe design 
patterns and micro-architectures and (2) a set of Eclipse2 
extensions which use this format. WOP facilitates 
searching pattern instances in Java projects, searching 
patterns from online repositories, publishing one’s own 
patterns and rating patterns published by others. 

 
3.1 Problem the tool assists in 

(Question 1:) A formal, machine-processable pattern 
language is used to define design patterns and related 
concepts such as pattern instance, pattern participants and 
pattern refinement. The data is presented in a table form 
as depicted in Figure 2. Question 2:) The general design 
rationale behind a pattern can be briefly stated in a 
designated field. (Question 3:) The tool supports storing 
several version of each pattern, which enables storing 
discarded or alternative solutions. (Question 4:) The tool 
can store concrete software designs, i.e. solutions that 
address coding problems. 

(Question 5:) The tool supports the discovery of 
pattern instances from source code and online 
repositories can be searched for pattern definitions. 
Complex set of rules can be defined in order to locate 
desirable patterns. (Question 6:) Because the tool focuses 
only on micro-architectures, there is no need to navigate 
between abstraction levels. Navigation through decision 
paths is not supported. (Question 7:) The tool is advisory 
in nature. (Question 8:) The shared knowledge is not 
explicitly modelled in the tool, but retrieved from source 
code instead. 

(Question 9:) The tool supports access to multiple 
shared repositories which all can be managed in the same 
view (Question 10:) The users can provide free text 
feedback on each pattern and bookmark them, wherein 
the number of bookmarks can be seen as a quality 
indicator. The tool also integrates with collaborative web 
services such as Blogger. (Question 11:) The tool 
identifies both the publisher and the original author of the 
knowledge. 

3.2 Problem solver 

(Question 12:) The tool is aimed primarily at one user 
group – programmers. (Question 13): Therefore, there is 
no need to filter the knowledge by abstraction level. 
(Question 14:) The tool integrates into programming 

tool. With regard to the maturity of a CASE tool, Ihme et   
al [20] emphasize its history, documentation and 
available support services (e.g. user groups, maintenance, 

1 http://www-ist.massey.ac.nz/wop/ 
2 http://www.eclipse.org 



  

work: new patterns are published from source code and 
source code is analyzed by identifying used patterns. 
However, there is no way to automatically transform 
pattern definitions into code. (Question 15:) The tool 
requires that patterns are defined in a particular language 
developed for the purpose and, in this sense the tool is 
not flexible. However, the underlying pattern language 
can be extended to accommodate special needs. 

 

Figure 2: Viewing pattern properties in WOP 

(Question 16:) The user interface is intuitive and 
learning to use the tool takes only a quarter of an hour. 
Getting to know the pattern definition language is time 
consuming, but not required for basic use. (Question 17:) 
It takes only a few mouse-clicks to create a new pattern 
by identifying relevant elements in the source code. 
(Question 18:) When deploying the tool, one needs to 
install client software on each workstation and store 
pattern definitions on web server. Client installations can 
be done remotely with operating system commands. 

 
3.3 Technology 

(Question 19:) The client has been implemented as an 
extension to the Eclipse IDE; standard web technologies 
are used to distribute pattern definitions. (Question 20:) 
Pattern definitions are stored in the RDF/OWL format. 
(Question 21:) The results of a pattern scan can also be 
aggregated and exported in the XML format to create 

integration with search engines and collaboration tools 
such as CVS or Blogger. Compared to UML, the OWL- 
based approach facilitates more precise pattern 
description, which is required to underpin design 
recovery. 

(Question 23:) The tool can be integrated with Web 
services and Eclipse-compatible OWL editors. (Question 
24:) The tool is open source, apparently complying with 
the Open Source Definition3, but the choice of license is 
not indicated. (Question 25:) Access control is not 
explicitly supported. However, standard web technology 
can be used to control access to repository servers. 

 
3.4 Maturity 

 
(Question 26:) The first code artifact was published 

in 2004 and a few major releases have been issued 
afterwards. (Question 27:) According to our knowledge, 
the tool has not been deployed in any industrial 
organization. (Question 28:) Related research papers are 
freely available on the Internet, but there is little other 
documentation. The provided online instructions are 
brief, but clear. (Question 29): The WOP mailing list is 
active and support requests are attended to quickly. The 
support seems to rely mostly on one person, however. 

 
4. Stylebase for Eclipse 

Stylebase for Eclipse4 [17,18] is a tool for creating, 
maintaining and searching a software architectural 
knowledge base, aka stylebase. Stylebase can store 
different architectural models, e.g. architecture patterns, 
design patterns and reference architectures. In addition to 
the knowledge sharing function, the tool aims to guide 
architects in selecting solutions which best provide a 
system's desired quality goals. 

 
4.1 Problem the tool assists in 

The solution concentrates on reusable models as a 
form of architectural knowledge. (Question 1:) Each 
model is associated with the following information: basic 
properties (e.g. name, abstraction level), picture, model 
structure (a mark-up language document), usage 
instructions (a free text document) and a set of quality 
attributes. (Question 2:) When a model is associated 
with a quality attribute, one is asked to enter a design 
rational as shown by Figure 3. (Question 3:) A more 
detailed discussion of design decisions, including 
discarded options, can be included in the free text 
document. (Question 4:). The tool can store knowledge at 

reports. (Question 22:) The Eclipse environment helps to   
integrate the tool into the programmers’ daily work. The 
simple, file-based distribution approach facilitates easy 

3 http://www.opensource.org/docs/definition.php 
4 http://stylebase.tigris.org 



  

any abstraction level; example contents consist of both 
macro and micro architectures. 

 

Figure 3: Giving a design rational in Stylebase 

(Question 5:) Models can be searched by name, intent, 
abstraction level and quality attributes (see Figure 4). 
Search criteria can be constructed from multiple 
properties, which are joined by using AND operation. 
(Question 6:) The current version of the tool does not 
implement any navigation mechanism; nor does it 
support the presentation of relationships between design 
decisions. (Question 7:) The tool is completely advisory 
in nature, i.e. architects decide on whether and how to 
use the provided knowledge. (Question 8:) Most 
knowledge is modelled in third-party tools and only 
imported into the stylebase. 

 

Figure 4: Searching patterns in Stylebase 

(Question 9:) The tool supports a shared repository, uses 
locking to control simultaneous updates and provides a 
mechanism for uploading and downloading models 
between local and shared repositories .(Question 10:) 
The tool does not support collaborative interactions, all 

communication happens through the shared knowledge 
repository. (Question 11:) The tool does not help to 
identify the author of the knowledge. 

 
4.2 Problem solver 

 
(Question 12:) The tool is primarily aimed at 

software architects and designers, but programmers could 
also benefit from the software design knowledge. 
(Question 13:) There is a possibility to define user roles, 
which allow the filtering of knowledge based on 
abstraction level. 

(Question 14:) Knowledge maintenance is intended 
to happen simultaneously with modelling. When a 
software architect creates or updates models in an 
Eclipse-compatible modelling tool, they can be 
automatically saved to the local knowledge repository. 
(Question 15:) The tool supports the customization of 
knowledge base contents to a large extent: first, the user 
can determine the contents and appearance of the free 
text document and, second, the tool imposes no rules on 
the internal structure of stored models. 

(Questions 16:) Learning to use the tool takes 20 
minutes with an instructor or 1-2 hours by self-study, 
providing that a person is familiar with Eclipse. 
(Question 17): Knowledge maintenance is laborious, 
mostly for two reasons. Models must be downloaded 
from the shared repository and saved locally before they 
can be updated. Text document must be manipulated 
with an HTML editor, which is not very convenient. 
(Question 18:) When deploying the tool, one needs to 
install database on a server and client software on each 
workstation. Client installations can be done remotely. 

 
4.3 Technology 

(Questions 19:) The tool has been implemented in 
Java as a plug-in to the Eclipse IDE; the repositories are 
based on relational database technology and are queried 
with SQL. (Questions 20:) Each record in the database 
has three large fields: a picture of a model in binary 
format (JPG/PNG/GIF), a guide text in format 
understood by an internet browser (typically HTML) and 
the model’s structure in a mark-up language (typically 
XML). (Questions 21:) While the tool supports the 
storage of knowledge in heterogeneous formats, the 
knowledge can only be exported in exactly the same 
format in which it was stored. 

(Questions 22:) The Eclipse platform brings the tool 
closer to the developers, but also creates distance to 
architects who don’t work with Eclipse on a daily basis. 
The relational database approach facilitates quick and 
sufficiently powerful searches. The heterogeneous 
documentation formats allow maximum integrability, but 
also cause a problem: users of the same shared repository 



  

need to explicitly agree in which format they store the 
knowledge. 

(Question 23) Because the tool supports diverse 
documentation formats and provides many extension 
points, integration with Eclipse-compatible tools is 
straightforward. Question 24) The tool is open source 
and published under the GNU General Public License5. 
(Question 25): The tool exploits the MySQL access 
control mechanisms. Username and password are 
requested upon each connection to the remote database. 

 
4.4 Maturity 

 
(Question 26:) The first code artifact was published 

in October 2006 and five other, rather small, releases 
have been issued by June 2009. (Question 27:) The tool 
has not been deployed in any industrial organization. 
(Question 28): User guides are available on the Internet, 
along with a variety of technical documents. (Question 
29): Mailing lists are inactive, but there are other support 
channels such as email and IRC. Chargeable services (e.g 
product customization) are also offered. 

 
5. Pakme 

PAKME (Process-based Architecture Knowledge 
Management Environment) [3] is a process-based 
SHARK tool, which has been built on top of an open 
source groupware platform called Hipergate6. The 
solution supports storing both contextual knowledge (e.g. 
design rationales, requirements) and technical knowledge 
(e.g. patterns, styles, tactics). 

 
5.1 Problem the tool assists in 

(Question 1:) PAKME supports storing architecting 
scenarios, architecture-specific requirements, analysis 
models, patterns and tactics. The tool uses forms for 
entering and presenting the knowledge (see Figure 5). 
(Question 2:) The tool supports defining "design option 
cases", which contain a description (e.g. patterns, tactics) 
and a rational. The design decision is a selected design 
option. (Question 3:) Each design decision can be linked 
to discarded design options. (Question 4:) The 
information can be stored at any abstraction level. 

(Question 5:) The tool has a mechanism for searching 
scenarios, patterns, analysis models, requirements, tactics 
and design options. One can search them by name or, 
alternatively, search for a string in a given field (e.g. 
description). Logical operators can be used in advanced 
searches.  (Question  6:)  The  web-based  tool  uses 

 
5 http://www.fsf.org/licensing/licenses/gpl.html 
6 http://www.hipergate.org 

hyperlinks to navigate through architectural structures 
and decision paths (see Figure 5). (Question 7:) The tool 
is essentially advisory in nature and doesn’t impose 
solutions. Some features provide descriptive support in 
the decision-making process. (Question 8:) Practically all 
knowledge is modeled explicitly in the tool. 

 

Figure 5: Pattern listing in PAKME 

(Question 9:) As the tool is based on a groupware 
solution, the repository is on a web server and accessible 
by multiple users. (Question 10:) PAKME can be 
integrated with collaboration features of the underlying 
Hipergate platform. (Question 11:) The current version 
of the tool does not identify the author of the knowledge, 
except in the case of architecting scenarios and 
requirements. 

 
5.2 Problem solver 

 
(Question 12:) The tool is aimed at anyone who needs 

knowledge on software architecture design. (Question 
13:) There is no possibility to filter knowledge based on 
the abstraction level. However, patterns can be searched 
by the type field which expresses the level of granularity 
(e.g. design pattern, architecture pattern etc). (Question 
14:) The elicitation and codification of knowledge could 
take place either simultaneously with knowledge creation 
or as a separate task. Since the tool constraints the 
modeling of knowledge, some changes into the 
architecting process are required. (Question 15:) The 



  

Hipergate platform supports easy customization of 
templates, which brings flexibility. 

(Question 16:) One can learn to browse the 
knowledge base in a half an hour, but advanced usage 
requires proper training. Learning is naturally easier if 
one is already familiar with the Hipergate platform. 
(Question 17:) As stated previously, PAKME is based on 
the concept that a significant amount of knowledge is 
modelled in the tool itself. This naturally takes time 
despite of easy-to-use data manipulation features. 
Textual descriptions of architectural models need to be 
very detailed, because graphical presentation is not 
supported (Question 18:) When deploying the tool, one 
needs to install Hipergate, a relational database solution 
and a Servlet container on a server. 

 
5.3 Technology 

 
(Question 19:) The tool is based on Hipergate 

groupware, which in turn relies on relational database 
technology and a Tomcat Servlet container. The Internet 
browser is used as a client software (Question 20:) The 
knowledge is stored in the text fields of a relational 
database. (Question 21:) It is not possible to import or 
export knowledge in any other format. (Question 22:) 
The Hipergate platform provides good support for a 
collaborative activity and knowledge is easily accessible 
with a web browser. The database technology enables 
quick and powerful searches. Unfortunately, the selected 
technology fails to support graphical diagrams, which is 
seen as a very effective means of presenting architectural 
information [16]. Storing knowledge in a single format 
facilitates advanced features, but obviously harms 
integrability and reusability. 

(Questions 23:) Other tools can query or update the 
database through Hipergate API7. However, converting 
the data into another format seems difficult. (Questions 
24:) Hipergate is open source and published online under 
the Hipergate Public License8. The trial version of 
PAKME9 is available on the Internet, but not distributed 
online. (Questions 25:) PAKME relies on the security 
features of the Hipergate platform. Username and 
password are entered upon starting a session. 

 
5.4 Maturity 

 
(Question 26:) PAKME was first introduced at the 

beginning of 2007. (Question 27:) We have no 
knowledge on who is using PAKME, but academic 
papers [2,3] suggest that the approach has been validated 

 
7 http://www.hipergate.org/docs/api/4.0.0/ 
8 http://www.hipergate.org/license/ 
9 http://193.1.97.13:8080/ 

in an industrial setting. (Question 28:) There are many 
academic publications on PAKME, but little other 
documentation. A user guide is reportedly available by 
request. (Question 29:) Commercial support and 
consultation services are advertised by the Australian 
research centre NICTA10. 

 
6. Discussions 

 
6.1. Analysis of Evaluated Tools 

The evaluation relieved the advantages and 
disadvantages of the three tools as follows. 

The Web of Patterns (WOP) tool facilitates sharing 
concrete, design-level solutions. Because models are 
mapped directly into source code, knowledge 
maintenance requires little extra resources. Deployment 
is easy for loosely-organized, distributed development 
teams since there is no need to install server side 
software. Thanks to the code-centric and lightweight 
approach, the tool should be well-suited for most open 
source developers. The obvious limitation is that the tool 
cannot store architectural patterns or other high-level 
design solutions. 

Stylebase for Eclipse can store design knowledge at 
any level of abstraction. Design knowledge is presented 
in a clear and illustrative way by using both text and 
graphics. One of its main advantages is integrability: 
Eclipse users can continue working with their existing 
modelling and documentation tools and only exploit 
output in Stylebase for Eclipse. However, the evaluation 
made it evident that the tool lacks essential functionality. 
There is no mechanism for navigating through complex 
architectural structures. With the exception of a shared 
repository, there is no support for collaborative 
interactions. Browsing models is easy, but knowledge 
maintenance functions lack usability. For these reasons, 
the current version of the tool seems best fitted for 
storing reference models, e.g. patterns, which do not 
change frequently. 

PAKME was clearly the most comprehensive of the 
three architecting tools that we evaluated. Unlike the two 
others, PAKME seems suitable for managing all the 
software architectural knowledge of an organization. The 
tool has an impressive set of advanced functions from 
complex searches to detecting relationships between 
architectural models. Thanks to the integration with 
Hipergate groupware platform, PAKME also boasts very 
good collaboration features. However, the 
comprehensive approach comes at a price of lengthy 
adoption. In practice, users must abandon their existing 
tooling and start modelling the knowledge with PAMKE 
instead.  Further,  PAKME  only  supports  textual 

 

10http://nicta.com.au 



  

presentation of architectural models. This can be a 
threshold for developers who have grown used to 
graphical diagrams. 

 
6.2 Suitability of the framework 

The framework reflects the coverage of the tool 
features on the SHARK domain, basic tool user 
viewpoints, selected technologies and the maturity of the 
tool. These criteria encourages using the framework in 
selecting a SHARK tool for use in an organization. 
However, the suitability of a SHARK tool depends on an 
architecting environment. Before selecting a tool, there 
must be understanding e.g. on who are the stakeholders, 
what kind of knowledge is relevant for them and what 
they expect from the tool. Once the architecting 
environment has been analyzed, the evaluation 
framework can be used to get an overview of SHARK 
tools and short out potentially suitable ones. The case 
study demonstrates (see 6.1) that the evaluation 
framework helps in identifying the advantages and 
disadvantages of each tool. Developing a two-step 
framework, which would help to analyze both the target 
environment and the tool, could be an interesting 
research topic for the future. 

The framework could also be used as guideline for 
tool vendors and open source communities to present an 
overview of the features of their particular SHARK tool. 
However, the purpose of the framework is not to rate the 
SHARK tools based on how many times the questions 
have the “yes” answer but, moreover, to compare “how” 
the particular features are supported in the tool and how 
the tool approaches the problem domain. The difficulty 
in defining this kind of framework is to make it short and 
simple enough to be used in a reasonably short time and 
represent the results succinctly and, on the other hand, to 
present enough features and viewpoints to reflect the 
different aspects of the tool. It was also difficult to 
categorize the questions explicitly into only one criterion 
group at the time. For example, a question “Is the tool 
integrable with other tools?” could be as well categorized 
under “target environment” than under "openness” 
criteria. 

The evaluation questions seemed well-suited for 
assessing all three tools – despite of the fact that each 
tool takes a very different approach to AK management. 
This study focussed on open source tools, but the 
framework is meant for evaluating all SHARK tools, not 
depending on their licensing terms. Some evaluation 
questions are even more applicable to the closed source 
environment. For example, issues related to openness's 
and integrability are more relevant when there is a real 
thread of "vendor-lock-in" [14]. It should therefore be 
interesting to apply the framework into the evaluation of 
proprietary SHARK tools. The framework is at the 
beginning of its lifecycle and we hope it will be 

developed and improved while being used in the future. 
 

Conclusions 

The contribution of this paper was to define an 
evaluation framework for SHARK tools and make a 
comparative study of three open source SHARK tools. 
The framework helps to assess the capabilities of a 
SHARK tool from four view points: problem domain, 
target user group, technologies and a tool’s maturity. The 
evaluation questions concentrate on not only whether the 
tool supports certain capabilities, but also how it supports 
them. The main challenges in the development of the 
evaluation framework were related to categorizing 
questions and steering them towards answers that are 
reasonably short and still sufficiently informative. 

Three open source SHARK tools, Web of Patterns, 
Stylebase for Eclipse and PAKME, were evaluated with 
the framework as examples. The evaluation revealed the 
“pros and cons” of each tool, however, target 
environment must be understood before selecting a tool 
to be deployed in an organization. WOP is a lightweight 
tool which enables the sharing of concrete design 
solutions in an agile manner. Stylebase for Eclipse has 
poor collaboration features, but is suitable for 
maintaining a centralized pattern repository. PAKME is a 
comprehensive tool for managing all software 
architectural knowledge, but its deployment requires 
substantial effort. 

The evaluation framework is meant to be used in 
evaluating SHARK tools, comparing them to each other 
and presenting a summary of their features. We hope that 
the framework will be actively used and thereby 
improved and enhanced in the future. 

Acknowledgements 

The publication of this paper has been supported by 
the following research projects: EU-SMEPP, ITEA-COSI 
and ITEA-CAM4HOME. The first mentioned project is 
funded mostly by the European Commission while the 
two others are co-funded by Tekes and VTT. The 
authors have been involved in the development of the 
Stylebase for Eclipse tool. The evaluation of Stylebase 
for Eclipse was therefore performed by Mr. Pekka Aho, 
who we thank for his contribution. We also thank Dr. 
Jan Dietrich and Dr. Muhammad AliBabar for their help 
in the testing of WOP and PAKME respectively. 

 
References 

[1] Avgeriou, P., Kruchten, P., Lago, P., Grisham, P., and Perry, 
D 2007. "Architectural knowledge and rationale: issues, 
trends, challenges". SIGSOFT Softw. Eng. Notes 32, 4 (Jul. 
2007), 41-46. 



  

[2] Babar, M. A., de Boer, R. C., Dingsoyr, T., and Farenhorst, 
R. "Architectural Knowledge Management Strategies: 
Approaches in Research and Industry" In Proceedings of the 
Second Workshop on Sharing and Reusing Architectural 
Knowledge, IEEE Computer Society. 2007. 

[3] Babar, M. A., and Gorton, I. "A Tool for Managing Software 
Architecture Knowledge." In Proceedings of the Second 
Workshop on Sharing and Reusing Architectural Knowledge 
(SHARK 2007), IEEE Computer Society. 2007 

[4] Capilla, R., Nava, F., and Duenas, J., . “Modeling and 
documenting the evolution of architectural design decisions” 
in Proceedings of the Second Workshop on Sharing and 
Reusing Architectural Knowledge (SHARK2007), IEEE 
Computer Society, 2007 

[5] Capilla, R., Nava, F., Pérez, S., and Dueñas, J. "A web-based 
tool for managing architectural design decisions." SIGSOFT 
Softw. Eng. Notes 31, 5 (Sep. 2006), 2006. 

[6] Clements, P., Kazman, R., Klein, M., Devesh D, Reddy and 
Verma P., "The duties, skills, and knowledge of software 
architects" in Proceedings of the WICSA 2007 Conference, 
2007. 

[7] Clerk, V. “Towards architectural knowledge management 
practices for global software development” in Proceedings of 
the Third Workshop on Sharing and Reusing Architectural 
Knowledge (SHARK2008), IEEE Computer Society, 2008. 

[8] Dietrich J. and Elgar C, "A formal description of design 
patterns using OWL" in Proceedings of The Australian 
Software Engineering Conference (ASWEC) 2005, IEEE 
Computer Society, 2005. 

[9] Dietrich J. and Elgar C. "Towards a web of patterns” in 
Proceedings of Workshop on Semantic Web Enabled 
Software Engineering (SWESE), 2005. 

[10] Dietrich J. and Jones N. "Using Social Networking and 
Semantic Web Technology in Software Engineering--Use 
Cases, Patterns, and a Case Study" in Proceedings of the 
2007 Australian Software Engineering Conference 
(ASWEC'07), 2007 

[11] Farenhorst, R. "Tailoring knowledge sharing to the 
architecting process". SIGSOFT Softw. Eng. Notes 31, 5 (Sep. 
2006), 3, 2006. 

[12]  Farenhost R., Lago P., Vlient H. "Effective tool support for 
architectural knowledge sharing", Lecture Notes in Computer 
Science 4758/2007. Springer-Verlag, Berlin Heidelberg, 
2007. 

[13] Farenhorst, R., Lago, P., van Vliet, H. "Prerequisites for 
Successful architectural knowledge sharing" in Proceedings 
of The18th Australian Software Engineering Conference 
(ASWEC 2007), 2007. 

[14] Goldman R., Gapriel R. Innovation Happens Elsewhere. 
Open Source as Business Strategy. Elsivier, Boston, 2005 

[15] Gram, S., "From research software to open source" in 
Wilhelm R. (Ed.) Informatics. 10 Years Back. 10 Years 
Ahead. Springer-Verlag Berlin, 2001. pp. 195-2008. 

[16] Grisham, P., Hawthorne M., Perry D., “Architecture and 
design intent: experience report” in the Proceedings of the 
Second Workshop on Sharing and Reusing Architectural 
Knowledge (SHARK2007), IEEE Computer Society, 2007. 

[17] Henttonen. K. Stylebase for Eclipse. An Open Source Tool to 
Support the Modelling of Quality Driven Software 
Architecture. VTT Research Note 2387. VTT Technical 
Research Centre of Finland, Espoo, 2007. 

[18] Henttonen K, and Matinlassi M. "Contributing to Eclipse: A 
Case Study", Proceedings of 2007 Conference on Software 
Engineering (SE2007), 2007. 

[19] Henttonen, K., Matinlassi M., Niemelä E., and Kanstén T. 
"Integrability and Extensibility Evaluation From Software 
Architectural models - A Case Study". Open Software 
Engineering Journal 1(1), 1-20, 2007. 

[20] Ihme, T., Kumara, P., Suihkonen, K., Nolsti, N., and Paakko, 
M. 1998. "Developing application frameworks for mission- 
critical software" VTT Research Notes 1933. VTT Technical 
Research Centre of Finland, 1998. 

[21] Jayaratna N. Understanding and Evaluating Methodologies: 
NIMSAD: A Systematic Framework. London: McGraw-Hill, 
1994. 

[22] Crichton P., Lago P, and van Vliet H. "Building up and 
reasoning about architectural knowledge." Lecture Notes on 
Computer Science 4214, 43-58. Springer-Verlag, Berlin, 
2006. 

[23] Kruchten P., Lago P., Van Vliet, H., and Wolf, T. "Building 
up and exploiting architectural knowledge", Proceedings of 
the 5th Working IEEE/IFIP Conference on Software 
Architecture (WICSA), 2005. 

[24] Matinlassi M., Niemelä E., and Dobrica L. Quality-Driven 
Architecture Design and Quality Analysis Method. A 
Revolutionary Initiation Approach to a Product Line 
Architecture. VTT Publications, Espoo, 2002. 

[25] Matthes F., Buckl S., Leitel J., Schweda C. Enterprise 
Architecture Management Tool Survey 2008. Sebis, 
München, 2008. 

[26]  Merilinna J. and Matinlassi M. "State of the art and practice 
of open source component integration", proceedings of the 
32nd Euromicro Conference on Software Engineering and 
Advanced Applications (SEAA), 2006. 

[27] Mäki-Asiala, P. and Matinlassi. M. "Quality assurance of 
open source components: Integrator point of view. 
"Proceedings of the Second International Workshop on 
Testing and Quality Assurance for Component-Based Systems 
(TQACBS 2006), IEEE Computer Society, 189 - 192, 2006. 

[28] Shekkerman J. Enterprice Architecture Tool Selection Guide 
v.4.2. Institute for Enterprise Architecture Developments, 
2007. Available at http://www.cioindex.com/nm/articlefiles/ 
51796-EAToolSelectionGuide.pdf 

[29] van der Ven, J., Jansen, A. NijHuis J., Bosch, J. "Design 
decisions: the Bridge between rational and architecture" in 
Dutoit, McCall, Mistrík and Paech (Eds.) Rationale 
Management in Software Engineering. Springer-Verlag, 
Berlin, 2006. 

[30] van Vliet, H.,"Software architecture knowledge management" 
in Proceedings of The 19th Australian Conference of 
Software Engineering (ASWEC 2008), 2008. 

[31]  Walli, S., Gynn D. and von Rotz B. Growth of Open Source 
in Organizations, Boston, 2005. 



 

 
 
 

III 
 
 

LIBRE SOFTWARE AS AN INNOVATION ENABLER  
IN INDIA: EXPERIENCES OF A BANGALORIAN  

SOFTWARE SME 
 
 
 
 

by 
 

Katja Henttonen, 2011 
 

Open-Source Systems: Grounding Research. OSS 2011. IFIP Advances in 
Information and Communication Technology, vol 365, pp. 220–232, 

Springer.  
 

https://doi.org/10.1007/978-3-642-24418-6_15 
 
 

Reproduced with the kind permission of Springer. 
 

https://doi.org/10.1007/978-3-642-24418-6_15


 

Libre Software as an Innovation Enabler in India 
Experiences of a Bangalorian Software SME 

 
Katja Henttonen 

VTT Technical Research Centre of Finland 
Oulu, Finland  

katja.henttonen@vtt.fi  
 

Abstract. Free/Libre and open source software (FLOSS) has been advocated 
for its presumed capacity to support native software industries in developing 
countries. It is said to create new spaces for exploration and to lower entry bar- 
riers to mature software markets, for example. However, little empirical re- 
search has been conducted concerning FLOSS business in a developing country 
setting and, thus, there is not much evidence to support or refute these claims. 
This paper presents a business case study conducted in India, a country branded 
as a 'software powerhouse' of the developing world. The findings show how 
FLOSS has opened up significant opportunities for the case company, especial- 
ly in terms of improving its innovative capability and upgrading in the software 
value chain. On the other hand, they also highlight some challenges to FLOSS 
involvement that rise specifically from the Indian context. 

Keywords: Open source, innovation, India, free software, software business. 
 

 
1 Introduction 

Free/Libre and open source software (FLOSS) has been widely advocated [e.g. 1-4] 
as a way to promote endogenous software innovation in developing countries. The 
developmental opportunities created by the FLOSS phenomenon have been noticed 
both by international development institutions (e.g. World Bank and UNDP) and 
many of the developing countries themselves [1,3,4]. However, despite the enthu- 
siasm, there remains very little empirical research on how developing country compa- 
nies could successfully integrate FLOSS efforts into their internal innovative activi- 
ties. Studies on commercially-motivated FLOSS in the US and Europe abound, but 
the results may not be directly applicable to the diverse innovation environments in 
the global South. This paper presents some key results of a qualitative case study [5] 
conducted in India, the country with the most well-known software industry in the 
developing world. The aim is to understand FLOSS-created opportunities and chal- 
lenges from the viewpoint of an indigenous software SME. 

The focus of the study is on the impacts of FLOSS on the innovativeness and prof- 
itability of the case company. Herein, innovativeness means the ability to create and 
implement new ideas which generate commercial value [cf. 6].  This can entail 

 
S.



 
 

improvements to products, internal operations or a mix of markets. The study con- 
cerns modest incremental innovations, which an SME can generate on a regular basis. 
The rest of the paper is structured as follows. The second chapter is divided into 
two sections: the first summarizes theoretical concepts underlying the study and the 
second one briefly introduces the current debate on whether and how Indian primary 
software sector could benefit from FLOSS.1 The third chapter describes the research 
approach and methods employed in this study, and also very briefly introduces the 
case company. The fourth chapter presents the actual case study results; it is orga- 
nized in three sections reflecting three different approaches to open innovation (more 
on these below). The fifth chapter discusses the meaning of some findings for further 
research. Conclusions close the paper. 

 
2 Background 

2.1 FLOSS as Open innovation: Three Archetypes 

This study builds on the Chesbrough's [7] Open innovation theory, which describes 
the recent tendency of companies to 'open up' their innovation processes. In open 
innovation, not all good ideas need to be developed internally, and not all ideas 
should necessarily be further developed within firm's boundaries [8]. Chesbrough and 
Crowther [9, cf. 10] distinguish two archetypes of open innovation: inbound and out- 
bound. In the case of inbound open innovation, companies monitor the surrounding 
environment of the firm to find technology and knowledge to complement in-house 
R&D. In the case of outbound open innovation, companies are looking for external 
organizations to take internally developed technology into new markets. An additional 
approach to openness is an interactive value co-creation in strategic partnerships [11, 
cf. 10] Here, the focus is on innovating together rather than on bringing resources 
over company borders (inside or outside) [8]. 

From a perspective of a private company, FLOSS involvement becomes open in- 
novation when it is combined with a sustainable business model [12]. The aforemen- 
tioned 'subtypes' of open innovation can be used to categorize how primary software 
companies engage with FLOSS [5, cf. 12,13]. In inbound open innovation, a company 
sources free-of-charge intellectual property (IP) from FLOSS communities and uses it 
to produce commercial software products or services. Typically, the main goal is to 
save own R&D expenses and/or achieve faster time to market2. The outbound open 
innovation entails what West and Gallagher [12] call “open source spin-out”: a com- 
pany brings internally developed IP into FLOSS domain. It may aim to to create 
demand for associated commercial offerings or advance strategic goals such as stan- 
dards creation, for example. OSS communities can also be platforms for open value 
co-creation where diverse stakeholders join forces to achieve a common R&D goal 
and pooled contributions are made available to all [cf. 12]. 

 
1 The focus is on introducing the points put forwards in the development literature; the dis- 

course is somewhat different in the FLOSS business literature. For the comparison of discus- 
sions in the two disciplines, please see [5]. 

2 This does not necessarily equal to a 'parasite approach': a company may motivate external 
innovation, e.g. by financially sponsoring FLOSS development [5, cf. 13,14]. 



 
 

 

2.2 FLOSS-Based Innovation in the Indian Context 

While Indian software exports have grown exponentially over the past two decades 
[15,16], many observers have pointed out that the industry's innovative capability has 
remained relatively low [15,17,18]. The vast majority of Indian software exports con- 
sists of low-value-adding off-shoring services such as maintenance of legacy systems 
[15,17,18]. Due to barriers such as heavy financial constraints, 'late-comer disadvan- 
tage' and geographical distance from key customers, many Indian software entrepre- 
neurs struggle to upgrade in the software value chain [15,17]. Meanwhile, 'FLOSS 
debate' is getting heated: academics and policy makers are arguing [e.g.4,19-22] on 
whether FLOSS could help some Indian software companies, especially SMEs, to 
increase innovativeness, add more value and capture more returns. 

The proponents point out that sourcing technology from FLOSS communities (i.e. 
inbound open innovation) saves R&D time and costs and can thereby help Indian 
companies to overcome financial constraints and 'catch-up' to older players on the 
global software markets [3,4,23]. Another key argument relates to inter-organizational 
learning through gradually deepening FLOSS participation (in open co-creation). 
Unlike off-shoring parent companies, who often have a strong incentive to prevent 
knowledge spill-overs, FLOSS communities are very motivated to share knowledge 
across organizational and geographical boundaries [24,25]. This is said to offer valua- 
ble learning opportunities to Indian and other Southern companies [2,3,22]. Interes- 
tingly, the possible benefits of outbound open innovation has not been discussed 
much in the development literature, perhaps reflecting a tacit assumption that relevant 
IP and technical knowledge flows 'from the West to the Rest' rather than vice versa. 

Some critics have argued that any competitive advantage derived from FLOSS- 
enabled cost and time savings is mitigated by GPL-like licensing terms [19,26]. As 
these licenses make it difficult to sell mass-distributed packaged software, they are 
said to deprive Southern software companies from the opportunity to benefit from the 
'economies of repetition' [19]. Others have pointed out that 'price parity' with pirated 
software is shirking the markets for FLOSS in the South [21,27]. It also widely ac- 
knowledged that the cultural and linguistic barriers may hinder learning trough parti- 
cipative process in FLOSS communities [20,28].There are also significant differences 
between FLOSS communities on how they draw the boundaries of peripheral partici- 
pation: some are highly inclusive, while others welcome only very advanced pro- 
grammers [28,29]. Further, open co-creation and outbound open innovation both 
require significant investments in non-(directly) revenue generating activities [13] and 
because Indian companies typically face heavier financial constraints than their West- 
ern counterparts, affordability can become a major problem [20]. Launching an own 
FLOSS project is considered particularly costly and challenging human resource wise 
[30-32]. 

Somewhat surprisingly, despite the lively debate, empirical studies on FLOSS ac- 
tivities of primary software companies in India are almost non-existent. Some authors 
[e.g. 19] even dismiss the subject by saying that FLOSS plays no role in the Indian 
software industry. However, an international survey [33-35] indicates that, while 
commercially-motivated FLOSS involvement seems to be a relatively weak 
phenomenon in India (e.g. in comparison to Europe or Brazil), many small FLOSS 
companies are still 'out there' and FLOSS experience is also highly appreciated by 



 
 

recruiters in more 'mainstream' software companies. The survey [34,35] also suggests 
that most Indian companies limit themselves to inbound open innovation as far as 
FLOSS is concerned. Outbound open innovation seems particularly rare, only three 
Indian companies were found to author their own FLOSS projects [33]. Mahammo- 
dan and De [36] also analysed FLOSS reuse by six proprietary software producers in 
India. While these organizations reportedly attained significant cost savings by using 
FLOSS components as 'black box', their developers often lacked sufficient time or 
skills to even read the source code, leave alone contribute back. 

 
3 Research Approach and Methodology 

The paper presents results from a single case study conducted in a company called 
Mahiti Infotech Private Limited3 (in short 'Mahiti') which is headquartered in Banga- 
lore and employs 70-90 people. The company employs a customized product devel- 
opment model [37]: it develops 'semi-finished' products, often co-creatively with 
FLOSS communities, and later adds value by customizing them to the needs of indi- 
vidual end-clients. The tailored products go to market either as bespoke software or 
through the application service provision (ASP) model. Technical consulting provides 
additional revenue streams. 

While planning to conduct more case studies in the future, the author believes that 
findings from this one case study alone may be valuable for the research community. 
Especially so, because, to the knowledge of the author, no previous academic study 
has aimed to 'give a say' to FLOSS entrepreneurs in India. Further, even though the 
case cannot be argued to be perfectly 'revelatory' nor 'exemplifying' in a strict sense 
[cf. 38], there are certainly many interesting characteristics to it. For example, despite 
its relatively small size, Mahiti has an extremely visible role in the Indian FLOSS 
scene. It can also be regarded as a notable example of an SME which has successfully 
used FLOSS strategically in order to upgrade in the software value chain. The case 
company also integrates elements from all the three archetypes of open innovation, 
thereby allowing to analyse outbound/inbound open innovation and open co-creation 
within the same organization. 

The primary method of data collection was semi-structured interviews of the case 
company personnel. Three directors, the company's chief executive officer (CEO), 
chief technical officer (CTO) and marketing director were interviewed along with few 
senior developers. Two other sources of evidence, documentation (e.g websites and 
mailing list archives) and unobtrusive observation (mostly of employee interaction on 
FLOSS related IRC channels) were used to collaborate and augment evidence col- 
lected in the interviews. In order to cross-check data further [cf.39,40], some ques- 
tions were also made to representatives of partner organizations. Most interviews 
were recorded and transcribed; in few cases, it was necessary to rely on note taking 
instead. A qualitative method called Template Analysis [41] was employed to 
thematically analyse the interview transcripts and, to a much smaller extent, some 
documentary evidence. In short, this means that a coding template was developed 

 

3 Researchers have argued both for and against disclosing the organization's name in case stu- 
dies, see [47] for an overview. In this study, the company directors were given a choice and 
they selected recognition over anonymity. 



iteratively whilst the analytical process moved forwards. The final template served as 
a basis for interpreting the data and writing up the findings. In addition to the thematic 
coding, some aspects of the Value Network Analysis [42] approach were used. The 
role of this method was complementary and it is not elaborated herein.

This study aims to confirm to the criteria that Guba [43,44] suggests for qualitative 
research: credibility (a parallel of internal validity), dependability (a parallel of reli-
ability) and transferability (a parallel of external validity). To improve credibility, the 
study relies on several data sources and two different analysis methods as explained 
earlier [cf. 40]. The results report has also been shown to key informants for confir-
mation [cf.39,45]. To ensure dependability, complete records have been kept of the 
collected raw data (a case study database) so that other researchers can check them
per request [cf, 22,50]. As for transferability, the results from a single case study are 
not generalisable to other situations, but they can still contribute to the understanding 
of the target phenomena and thereby provide valuable leads for future research 
[40,46]. Further, a longer research report available online [5] provides additional con-
textual information which can help others to make judgements on the transferability
of the findings to other settings [cf. 38].

4 Case Study Results

4.1 Experiences in Inbound Open Innovation

In order to save costs, Mahiti intensively encourages the use of FLOSS code and 
components in all of their software projects. One of the founders gauged that an aver-
age Indian software company pays approximately 15% of their profits back in licens-
ing fees, an expense they avoided. However, the cost savings and their profitability 
implications varied a great deal in practice as illustrated by two recent customer pro-
jects (see Fig.1). In the first case, the company only needed to make minor modifica-
tions to an existing FLOSS product, but could still charge a 'premium price', higher 
than that of all proprietary software vendors participating in the bid. This is because

FOSS code base
(by community)

Custom code
(by Mahiti)

Re-sellable extension
(by Mahiti)

Customer project 1 Customer project 2

Fig. 1. Proportions of FLOSS and 'own' code in two projects [5]

the FLOSS product in question met well with the needs of the customer as such and 
Mahiti could offer the fastest lead-time. The profit margin was very high. In the sec-
ond case, the company had to build almost half of the source code by itself before

+-0$$$$$$$$



 
 

customer requirements were met, but could still charge a much lower price. The pro- 
ject was not profitable alone, but was still worth doing because the extension devel- 
oped in this project was expected to be resold to several other customers over time. 

FLOSS also brings cost savings to customers and, according to Mahiti's expe- 
rience, this is helping to expand bespoke software markets in India and other develop- 
ing countries. Interestingly, unlike most Indian software SMEs [15,18], Mahiti has 
highly diversified export markets with customers in countries such as Mongolia, the 
Bahamas, Brazil and Tajikistan. They believed this is partially because FLOSS based 
solutions are more affordable to Southern customizers, though it is obvious that many 
other factors are also at play. Nevertheless, it is noteworthy that, while the ease of 
piracy diminishes the cost advantage of FLOSS on the realm of mass software, the 
impact is not the same on the bespoke software markets. Pirated mass products can be 
customized to a certain extent (e.g. Microsoft Excel with macros), but such possibili- 
ties are very limited. 

FLOSS licensing did not cause any fundamental changes to the company's revenue 
models4: instead of tailoring proprietary software packages, they were customizing 
FLOSS solutions. The latter allowed them to add-more value in-house, thanks to the 
low 'purchase price' and unlimited customization options. Profiting from the 'econo- 
mies of repetition' through closed-source product development was seen infeasible 
due to financial constraints and highly mature markets: “basically, the curve to re- 
cover the funds is very high and this kind of [business] model is not viable for a com- 
pany like ours”. To the question of whether FLOSS licensing terms limit profit- 
making, the CEO replied: 

 “Yes, if you choose to build your product with open source, you will most proba- 
bly not become Bill Gates or Steve Jobs. But this is like any career choice, well, 
you can become a mortgage banker or a broker. [ ... ] Microsoft is what it is today 
because they have spent money on every single line of code that they wrote. But I 
cannot start from scratch and build an operating system, I cannot achieve anything 
like that unless I do it with open source. And when I benefit from the efforts of 
others, I cannot expect to keep all of the profits alone.” 

When asked about the main difficulties in FLOSS reuse, directors pointed to difficul- 
ties in finding recruits with any previous experience on FLOSS technologies and de- 
velopment practices. This was seen as stemming from the tendency of local engineer- 
ing education to ignore the skills needs of FLOSS companies and from the relatively 
small number of volunteer FLOSS developers [cf. 33] in the country. There was a 
recognition of some recent positive developments on the field of education. However, 
while some FLOSS technologies were slowly making their way to the engineering 
curricula, general code reuse skills were reportedly not. Consequently, the vast major- 
ity of new recruits were totally unfamiliar with the whole concept code reuse, only 
vaguely associating it with 'cut and paste'. They had to be taught 'by hand' which 
tended to bring up training expenses. As a strategy to address the skills gap, the com- 
pany has started to offer free-of-charge lectures on FLOSS skills to local engineering 
colleges. 

 
4 For more information on FLOSS licensing issues in the case context, please see [5]. 



 
 

 

For the case company, another concern is that, as the vast majority of FLOSS 
projects originate from the global North [cf. 48], they do not always address regional 
needs as well as locally created software could. For example, the directors pointed out 
that there are practically no FLOSS applications addressing non-urban development 
needs in India, such as monitoring the quality of water or coordinating rural health- 
care. “All of these are possible with FLOSS, but there are very few projects moving 
despite a huge demand”, the CTO said. He added that, while many FLOSS applica- 
tions are relatively easy to localize in terms of language or metric systems, there are 
also more fundamental differences in software requirements between countries and 
regions. Referring to the cultural diversity within India, he continued: “this is a vast 
country and on the way from Bombay to Delhi the requirements change also... so no 
matter how much FLOSS there is in a market, it is not enough.”. 

 
4.2 Experiences in Outbound Open Innovation 

 
Mahiti is one of the very few Indian software companies [cf. 33] to author its own 
FLOSS development project. Recently launched OurBank (www.ourbank.in) is a 
micro-finance software community which has attracted dozens of volunteer develop- 
ers, mostly Indian engineering students, and NGOs from as far as Brazil have contrib- 
uted localization effort. Based on their positive experience, Mahiti's directors are 
convinced that it is feasible for a resource-constraint SME to launch its own FLOSS 
community. Success on this arena was seen to depend on “energy and passion” as 
well as certain key capabilities (e.g. social networking skills) rather than large mone- 
tary investments. On the other hand, the CEO did admit that capturing returns from 
FLOSS spin-outs can be difficult: “Creating a product, architecting it, developing it, 
convincing other people that it is good and building a community - it is a painful thing 
to do, but it is sustainable in the long run. However, it does not provide you with re- 
turns like these [FLOSS customization projects].” 

The mentioned profit-making challenges exist despite some institutional donations 
(e.g. from EuropeAid) towards the development of OurBank. However, most diffi- 
culties were believed to relate to the incubation phase. In the long run, Mahiti plans to 
step aside from leading the community and become just one of the many contributors. 
Such partial 'hand-off' was seen necessary so that the community can “evolve natu- 
rally”. Time will show how the transition will work out in practise. 

Apart from the spin-out described above, Mahiti has a longer history in doing re- 
leases which could be called ‘spin-offs’. Whenever they have a piece of 'surplus' 
source code, which has reached the end of it's life cycle, they put it freely available on 
SourceForge or similar OSS platform. Because nothing is invested in community 
building or even making a website, the cost of open-sourcing is very low in this case. 
The company reported concrete and significant benefits once the IP got 'new life' in 
FLOSS domain. For example, they once open sourced a very small business applica- 
tion, a leave management system, which was only meant to be used in-house. Later 
on, they were contacted by a large foundation, who had downloaded the software and 
wanted to have it extended. The company gained a very important customer in this 
way, but the marketing effort only consisted of a few mouse clicks. 



 
 

4.3 Experiences in Open Value Co-creation 

Mahiti also plays a globally important role in the development of some FLOSS prod- 
ucts such as the Plone content management system. When asked about business gains 
from strategic FLOSS participation, the global marketing benefits were typically men- 
tioned first. The company does not need to engage in conventional marketing, direc- 
tors said, because “FLOSS gives us complete visibility”. Being listed as a partner on 
the Plone website was alone considered to be a major advantage. Further visibility 
resulted from employees' contributions, which they were always advised to do under 
the name of the company, and from co-organizing Plone conferences. However, it 
was not only about having one's name visible but, more importantly, about being seen 
as a 'shaper' of the technology: “They [customers] come to us because they see us as 
people who vision the [Plone] product and not only as people having [third-party] 
expertise on it”, explains the marketing director. In addition, FLOSS communities are 
specialized social networks were 'word-of-mouth' travels quickly. Recommendations 
from other FLOSS community members brought in many customers. To exemplify 
such discussions, a UK-based member recommends Mahiti to another organization on 
a Plone mailing list saying “I've been told Mahiti has very good Plone/Zope skills and 
also knows the server side”. 

Somewhat expectedly, another group of reported benefits related to inter- 
organizational learning. The employee training at Mahiti is closely integrated with 
FLOSS participation. New employees started by following discussions on FLOSS 
forums and they were encouraged to gradually deepen their participation, very much 
in line with the classic 'onion model' [49] frequently stated in FLOSS research. The 
interviewed employees seemed genuinely enthusiastic about this training method. 
One said that while engineering education had only taught her to complete specific 
tasks, FLOSS participation had taught her to find solutions independently. From the 
management viewpoint, there are cost advantages because new employees are 
coached free-of-charge5 by external experts. Some drawbacks were also mentioned, 
for example, FLOSS project administrators did not always explain why they rejected 
a contribution, which obviously constrained what an employee could learn from the 
experience. 

As to other forms of inter-organizational learning, the company had benefited from 
adopting process innovations from FLOSS communities. For example, FLOSS in- 
volvement had prompted the company to adopt and improve the practice of end-user 
co-development. As a result, intense collaboration with domestic end-customers, who 
paid below-market prices in return of participating in R&D and beta-testing, had be- 
come a key part of their innovation process. Further, as a result of their FLOSS activi- 
ties, the company has become geared towards writing well-commented and highly 
modular source code which is easy to reuse internally. They have even introduced an 
'internal source forge', a repository where developers search for reusable source code 
developed in previous customer projects. These new development practices have 
enabled the case company to move away from one-time-project development towards 
developing 'semi-packages' out of reusable modules. In this way, FLOSS had clearly 
become a booster rather than a barrier to the 'economies of repetition' discussed 
earlier. 

 

5 Alternatively, the coaching can be understood as a social return from investments which the 
company makes to foster its relationship with FLOSS communities [cf. 13]. One developer 
said that Mahiti's 'good reputation' in communities helped her to get assistance. 



 
 

 

The challenges discussed in the context of inbound open innovation also have an 
impact on open co-creation. In addition, directors acknowledged there are economic 
barriers to making FLOSS contributions. However, Mahiti has found several ways to 
keep expenses reasonable. Making minor contributions like bug fixes is integrated 
into employee training as explained earlier. The company also intermediates contribu- 
tions made by others, for example, it facilitated local Myanmarian refugees to trans- 
late Plone into Burmese and put their contribution online. Or, as in the Hecker's [50] 
“sell-it-free-it model”, large FLOSS contributions often consist of source code that 
has already been sold to one or more customers. The later model is not only an issue 
of affordability though; co-operation with end-customers was also seen crucial for 
ensuring the quality of the contribution. The CTO explains: “You cannot release 
something [to a FLOSS community] and expect miracles, unless you have tested it 
and the only way to test a product is to test with a customer...once it's a stable product 
only then the masses [of FLOSS users] can use it”. Reportedly, most of the company's 
customers do not mind a contractual clause saying that the source code developed for 
them might be open source later. 

Interestingly, developers said that they had not experienced any language barriers 
to FLOSS participation. Tertiary education had left them with a decent command of 
English and, besides, they felt that only technical terms are needed to talk on FLOSS 
related IRC channels. This is not an ethnographic study and it was not possible to 
detect how more 'subtle' cultural or linguistic issues may shape their identity building 
as FLOSS developers and effect their sense of belonging to a FLOSS community. On 
the surface, however, the employees seemed to feel sincerely proud of being well- 
recognized and respected members of the FLOSS communities where they contri- 
buted. For example, they very positively recalled that Joel Burton from the Plone 
Foundation had visited Mahiti and socialized with them. This was understood to be 
evidence that their participation is highly appreciated. “If we worked with Microsoft, 
Bill Gates would not come to chat with us”, compared one. 

 
5 Discussion 

This paper does not aim to advocate Mahiti's experiences as a success model, which 
Indian software SMEs in masses could imitate. Firstly, it is appreciated that the study 
has succeeded to identify more opportunities than challenges. Despite cross-checking 
information from different sources (including non-company ones), the study still es- 
sentially relies on what the informants decided to share. Most people prefer to talk 
about their successes rather than their failures and the informants were supposedly not 
free from this common human tendency. Secondly, the case company seems to pos- 
sess unique capabilities and also has a different market position than most Indian 
software SMEs. To exemplify the latter, Mahiti serves direct end-customers, over half 
of which are non-profit organizations. As such customers often agree to open- 
sourcing the code, which they have already paid for, the company can benefit from 
'the sell-it-free-it' model. The scene is supposedly very different for most Indian 
SMEs, which do subcontracting work for multinational ICT companies. 

The paper has 'scanned' several opportunities and challenges faced by the case 
company and none of these could be discussed in great depth. However, the author 



 
 

hopes that the paper has helped to highlight the wide range of perspectives, which one 
should take into consideration when discussing FLOSS business in India, or possibly 
other Southern contexts. For example, some development writers [e.g. 19] argue that 
FLOSS business models are 'less profitable' without discussing what are the likely 
alternatives for software companies in that particular country/region. Or, on the other 
side of the debate, the 'endogenous' nature of FLOSS is often strongly advocated [e.g. 
1,4] without discussing the challenges that Southern organizations face when trying to 
launch their own FLOSS projects. 

Most prior work on FLOSS-enabled learning, especially in the development con- 
text, focuses on technological knowledge transfer [e.g.2,25,29]. However, this study 
points to significant benefits from learning new development practices on customer 
co-development and code reuse. The study also suggests that FLOSS can have mixed 
impacts on the costs of employee training. These are both interesting subjects for 
further research, especially considering that the low level of code reuse (often below 
5%) and high training expenses are often mentioned among key factors hindering 
profitability of Indian software SMEs [15,17,18]. Other topic, which deserves more 
attention, is the potential ability of FLOSS to expand low-cost markets for bespoke 
software in the South. The strong emphasis, which the interviewees placed on the 
global marketing benefits of FLOSS participation, is also noteworthy. Very hypothet- 
ically, this could related to the cost of international marketing (e.g. adverts in interna- 
tional magazines) being proportionally higher than the cost of R&D labour (i.e. 
FLOSS participation) for Indian companies. 

From the viewpoint of the Open Innovation theory, Mahiti's experiences in upload- 
ing 'surplus' source code to the Internet are particularly interesting. Their habit strong- 
ly reflects one of the Chesbrough's [7] main “ethos”: one should never 'sit' on the 
surplus intellectual property. The case study hints that SourgeForge-like platforms 
might provide a low-cost route for releasing IP which is no longer creating value in- 
house. If the released IP creates value elsewhere, there is a chance to claim a portion 
of that value. While getting theoretical support from Open innovation researchers 
[e.g. 51], this idea conflicts with many prior studies [13,30,32], which suggest that 
any commercially-motivated FLOSS release should be supported by significant in- 
vestments in marketing and infrastructure building. 

 
6 Conclusion 

The study illustrates how FLOSS can blur the boundary between software vendor and 
third-party service provider, thereby opening up new opportunities for companies who 
lack resources to develop own products from 'scratch'. FLOSS co-creation has helped 
the case company to develop 'vendor-like' in-depth expertise and build an image as a 
co-creator of certain technologies. Due to the availability of source code and the ab- 
sence of licensing fees, they can also add more value to FLOSS products than a non- 
vendor can typically add on proprietary products. In some cases, FLOSS releases 
have even helped to open up routes to new markets. Meanwhile, the case company 
continues to face many challenges such as the poor availability of new recruits with 
FLOSS competences in India. More research is needed to understand how the find- 
ings may apply beyond the single case setting and whether FLOSS has any potential 
to transform the Indian software sector at large. 



 
 

 

Acknowledgements. I want to thank Mr. Pasi Pussinen, a research scientist at VTT, 
who gave some excellent feedback on a draft of this paper and all the informants, who 
spent their valuable time being interviewed. As to financing, this work has been 
supported by the research project ITEI-VTT, which is co-funded by VTT and Finnish 
National Technology Agency (Tekes). 

 
References 

1. Dravis, P.: Open source software. Perspectives for development. Global information and 
Communication Technologies Department, the World Bank, Washington (2003) 

2. Tapia, A., Maldonado, E.: An ICT Skills Cascade: Government-Mandated Open Source 
Policy as a Potential Driver for ICT Skills Transfer. Information Technologies and Inter- 
national Development 5(2), 31–51 (2009) 

3. Weerawarana, S., Weeratunge, J.: Open Source in Developing Countries. SIDA, Stock- 
holm (2004) 

4. Wong, K.: Free/open source software: government policy, UNDP Asia Pacific Develop- 
ment Information Program in cooperation with Elsevier, New Delhi (2004) 

5. Henttonen K.: Open source as an innovation enabler: A Case Study of an Indian Software 
SME. Dissertation, The University of Manchester. Institute for Development Policy and 
Management (2011), 
http://opensource.erve.vtt.fi/publications/henttonendisserta 
tion.pdf 

6. Subramaniam, M., Youndt, S.: The influence of intellectual capital on the type of innova- 
tive capabilities. Academy of Management Journal 48(3), 450–463 (2005) 

7. Chesbrough, H.: Open innovation: the new imperative for creating and profiting from 
technology. Harvard University Press, Boston (2003) 

8. Koskela, K., Koivumäki, T., Näkki, P.: Art of openness. In: Pikkarainen, M., Codenie, W., 
Boucart, N., Heredia, J. (eds.) The Art of Software Innovation. Eight Practice Areas to In- 
spire your Business. Springer, Heidelberg (2011) (to be published) 

9. Chesbrough, H., Crowther, A.: Beyond high tech: early adopters of open innovation in 
other industries. R&D Management 36, 229–236 (2006) 

10. Gassmann, O., Enkel, E.: Towards a theory of Open innovation: three core process arche- 
types. In: The Proceedings of the R&D Management Conference, Sesimbra, Portugal 
(2004) 

11. Piller, F., Ihl, C.: Open Innovation with Customers – Foundations, Competences and In- 
ternational Trends. Trend Study within the BMBF Project. International Monitoring’, 
RWTH Aachen University, Aachen (2009) 

12. West, J., Gallagher, S.: Patterns of Open innovation in open source software development. 
In: Chesbrough, H., Vanhaverbeke, W., West, J. (eds.) Open Innovation:Researching a 
New Paradigm, pp. 82–106. Oxford University Press, Oxford (2006) 

13. Goldman, G., Gabriel, R.: Innovation happens elsewhere. Open source as business strate- 
gy. Elsivier, San Fransisco (2005) 

14. Dahlander, L., Magnusson, M.: Relationships between open source software companies 
and communities: Observations from Nordic firms. Research Policy 34(4), 481–493 
(2005) 

15. Arora, A.: The Indian software industry and its prospects. In: Bhagwati, J., Calomiris, C. 
(eds.) Sustaining India’s growth miracle, pp. 166–215. Columbia University Press, New 
York (2008) 



 
 

16. Athreye, S.: The Indian software industry. In: Arora, A., Gambardella (eds.) From Under- 
dogs to Tigers: The Rise and Growth of the Software Industry in Brazil, China, India, Irel- 
and, and Israel, pp. 7–14. Oxford University Press, Oxford (2005) 

17. D’Costa, A.: Export Growth and Path Dependence: Locking Innovations. Software Indus- 
try, Science, Technology and Society 7(1), 51–81 (2002) 

18. Nirjar, A., Tylecote, A.: Breaking out of lock-in: Insights from case studies into ways up 
the value ladder for Indian software SMEs. Information Resources Management Jour- 
nal 18(4), 40–61 (2005) 

19. Debroy, B., Morris, J.: Open to development: Open-Source software and economic devel- 
opment. International Policy Network, London (2004) 

20. O’Donnell, C.: A case for Indian outsourcing: open source interests in IT jobs. First Mon- 
day 9(11) (2004) 

21. Sharma, A., Adkins, R.: OSS in India. In: Dibona, C., Cooper, D., Stone, M. (eds.) Open 
sources: the Continuing Evolution, O’Reilly, Sebastopol (2005) 

22. Suman, A., Bhardwaj, K.: Open Source Software and Growth of Linux: The Indian Pers- 
pective. DESIDOC Bulletin of Information Technology 23(6), 9–16 (2003) 

23. May, C.: The FLOSS alternative: TRIPs, non-proprietary software and development. 
Knowledge, Technology, and Policy 18(4), 142–163 (2006) 

24. Krogh, G., Spaeth, S., Lakhani, K.: Community, joining, and specialization in open source 
software innovation: a case study. Research Policy 32(7), 1217–1230 (2003) 

25. Staring, K., TitleStad, O.: Development as a Free Software: Extending Commons Based 
Peer Production to the South. In: The Proceedings of the Twenty Ninth International Con- 
ference on Information Systems (ICIS 2008), Paris (2008) 

26. Reddy, B., Evans, D.: Government Preferences for Promoting Open-Source Software: A 
Solution in Search of a Problem. Social Science Research Network (2002) 

27. Heeks, R.: Free and Open Source Software: A Blind Alley for Developing Countries? 
IDPM Development Informatics Briefing Paper, Institute of Development Policy and 
Management. The University of Manchester (2005) 

28. Vaden, T., Vainio, N.: Free and Open Source Software Strategies for Sustainable Informa- 
tion Society. In: O. Hietanen (ed.) University Partnerships for International Development: 
Finnish Development Knowledge, Finland Futures Research Centre, Turku (2005) 

29. Wernberg-Tougaard, C., Schmitz, P., Herning, K., Gøtze, J.: (Evaluating Open Source in 
Government: Methodological Considerations in strategizing the Use of Open Source in the 
Public Sector. In: Lytras, M., Naeve, A. (eds.) Open Source for Knowledge and Learning 
Management: Strategies Beyond Tools, Idea Group Publishing, London (2007) 

30. Henttonen, K., Matinlassi, M.: Contributing to Eclipse - a case study. In: Proceedings of 
the Software Engineering 2007 Conference (SE 2007), Hamburg, Germany (2007) 

31. Järvensivu, J., Mikkonen, T.: Forging A Community? Not: Experiences On Establishing 
An Open Source Project. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. 
(eds.) Open Source Development Communities and Quality, IFIP Working Group 2.13 on 
Open Source Software Systems (OSS 2008), Milano, Italy (2008) 

32. West, J., O’Mahony, S.: Contrasting Community Building in Sponsored and Community 
Founded Open Source Projects. In: The Proceedings of the 38th Annual Hawaii Interna- 
tional Conference on System Science. IEEE Computer Society, Los Alamitos (2005) 

33. UNU-MERIT Free/Libre and Open Source Software: Worldwide Impact Study. D31: 
Track 1 International Report. Skills Study. United Nations University, Maastricht (2007) 

34. UNU-MERIT Free/Libre and Open Source Software: Worldwide Impact Study. D7: Track 
1 Survey Report - India. Skills Study. United Nations University, Maastricht (2007) 



 
 

 

35. UNU-MERIT Free/Libre and Open Source Software: Worldwide Impact Study. D7: Track 
2 Survey Report - India. Software Study. United Nations University, Maastricht (2007) 

36. Madanmohan, T., De, R.: Open source reuse in commercial firms. IEEE Software 21(6), 
62–69 (2004) 

37. Codenie, W., Pikkarainen, M., Boucart, N., Deleu, J.: Software innovation in different 
companies. In: Pikkarainen, M., Codenie, W., Boucart, N., Heredia, J. (eds.) The Art of 
Software Innovation. Springer, Heidelberg (2011) (to be published) 

38. Bryman, A.: Social Research Methods, 3rd edn. Oxford University Press, New York 
(2008) 

39. Chetty, S.: The case study method for research in small and medium sized firms. Interna- 
tional Small Business Journal 15(1), 73–85 (1996) 

40. Yin, R.: Case Study Research: Design and Methods, 4th edn. Sage Publications, California 
(2009) 

41. King, N.: Template analysis. In: Symon, G., Cassell, C. (eds.) Qualitative Methods and 
Analysis in Organizational Research: A Practical Guide, pp. 118–134. Sage Publications, 
California (1998) 

42. Allee, V.: Value Network Analysis and Value Conversion of Tangible and Intangible As- 
sets. Journal of Intellectual Capital 9(1), 5–24 (2008) 

43. Guba, E.: Criteria for assessing the trustworthiness of naturalistic inquiries. Educational 
Technology Research and Development 29(2), 75–91 (1981) 

44. Guba, E.G., Lincoln, Y.S.: Competing paradigms in qualitative research. In: Denzin, N., 
Lincoln, Y. (eds.) Handbook of Qualitative Research, pp. 163–194. Sage Publications, 
London (1994) 

45. Rowley, J.: Using case studies in research. Management Research News 25(1), 16–27 
(2002) 

46. Flyvbjerg, B.: Five Misunderstandings About Case-Study Research. Qualitative In- 
quiry 12(2), 219–245 (2006) 

47. Walsham, G.: Doing interpretive research. European Journal of Information Sys- 
tems 15(3), 320–330 (2006) 

48. Robles, G., Gonzalez-Barahona, J.M.: Geographic location of developers at SourceForge. 
In: The Proceedings of the 2006 International Workshop on Mining Software Reposito- 
ries, Shanghai, China, pp. 144–150 (2006) 

49. Ye, Y., Kishida, K.: Toward an understanding of the motivation of open source software 
developers. In: The Proceedings of the 25th International Conference on Software Engi- 
neering, ICSE 2003 (2003) 

50. Hecker: Setting up shop: the business of Open-Source software. IEEE Software 16(1), 45– 
51 (1999) 

51. Henkel, J.: Selective revealing in Open innovation process: The case of embedded Linux. 
Research Policy 35, 953–969 (2006) 



 

 
 
 

IV 
 
 

MANAGERIAL PERSPECTIVE OF OPEN COLLABORATION 
AND NETWORKED INNOVATION 

 
 
 
 

by 
 

Katja Henttonen, Pasi Pussinen, & Timo Koivumäki, 2012 
 

Journal of Technology Management and Innovation, 7(3), 135-147  
 

http://dx.doi.org/10.4067/S0718-27242012000300012 
 
 

Reproduced under the terms of the Creative Commons Attribution-
Noncommercial 4.0 International License (CC BY-NC 4.0). 

http://dx.doi.org/10.4067/S0718-27242012000300012
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en


135

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

Received June 29, 2012 / Accepted September 21, 2012 J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

Managerial Perspective on 
Open Source Collaboration and Networked Innovation

 

Katja Henttonen1, Pasi Pussinen2, Timo Koivumäki3   

Abstract

This study explores the managerial perspectives towards open source software and networked innovation. We analysed 
six software companies who use open source software as a significant part of their product or service offering. The study 
found notable differences in managerial attitudes, expected benefits and key challenges related to open source software 
and its role in innovative activities. While all companies were using same pieces of software with open source communities, 
there were different levels of engagement in the development of the software and information flows between companies 
and communities. A deeper level of involvement enables the exchange of more than just the code: like ideas, influences, 
opinions and even innovations or parts of them. The differences in managerial views on open source and networked 
innovation may be explained by industry domains, value chain position and leadership style

Keywords: open source; free software; external innovation; open innovation; technology management; digital commons.

1Service Development and Management, Digital Service Research.  VTT Technical Research Centre of Finland. Kaitoväylä 1, FI-90571, Oulu, 
Finland. Email: katja.henttonen@vtt.fi. Phone: +358 40 821 7180.
2Value-Driven Service Business, Digital Service Research. VTT Technical Research Centre of Finland. Kaitoväylä 1, FI-90571, Oulu, Finland.
Email: pasi.pussinen@vtt.fi. Phone: +358 40 351 4858
3Digital Service Research. VTT Technical Research Centre of Finland. Kaitoväylä 1, FI-90571, Oulu, Finland.
Email: timo.koivumaki@vtt.fi. Phone:  +358 40 507 3631



136

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

innovators’ and that there are significant differences be-
tween the two. The managers of the two kinds of companies 
view FLOSS differently, expect different operational benefits 
from it, face different challenges and, consequently, employ 
contradictory managerial techniques. For example, external 
innovators view FLOSS as a ‘free lunch’ and look solely for 
cost savings while, open innovations perceive FLOSS as a 
fundamental element of value creation and seek to become 
shapers of the technologies in question. Further, external in-
novators mostly attempt to ‘work around’ conflicts of inter-
est with FLOSS communities, while open innovators seek to 
establish maximum synergy with them to reap the benefits 
of pooled R&D.

The rest of the article is structured as follows. The second 
chapter summarises theoretical concepts underlying the 
study and explores how they compare to some models used 
in prior FLOSS literature. The third chapter describes the 
research approach and methods employed in this study, and 
also briefly introduces the case study companies. The fourth 
chapter presents the actual case study results and presents 
a brief summary of them. The fifth chapter discusses the 
limitations of the study and gives suggestions for further re-
search. Conclusions close the paper.

2. Theoretical background   

2.1 Three innovation models: closed, external and 

open

Over the past decades, co-operation and networks have 
come to the fore in innovation research (see e.g. Tuomi 2002 
or Chesbrough 2006 for a historical review). Relatively re-
cent ideas on the collaborative nature of innovation include, 
for example, the concepts of extended enterprise (Dyear 
2000), open innovation (Chesbrough 2003, 2006), user-driv-
en innovation (von Hippel 2005) and creation nets (Hagel 
and Brown 2011). This article builds mostly on Chesbrough’s 
(2003, 2006) idea’s on open innovation. His theory describes 
the recent tendency of companies to ‘open up’ their innova-
tion processes. The main claim is that not all good ideas need 
to be developed internally, and not all ideas should necessar-
ily be further developed within a firm’s boundaries (ibid; Ko-
skela et. al. 2011). Two important characteristics of the Open 
Innovation theory are that it gives considerable attention to 
the purposive outbound flows of intellectual property (IP) 
and underlines the need to motivate the creation of relevant 
knowledge outside the company (ibid).

Based on Chesbrough (2003, 2006), West and Gallagher 
(2006a, 2006b) acknowledge three innovation models: closed 
innovation, external innovation and open innovation. In the 
closed innovation model, internal research and development 
(R&D) activities feed the company’s production pipeline and 

Authors

Katja Henttonen is a Specialist at Digital Services Research 
within the VTT Technical Research Centre of Finland. Her 
research interests are related to the delicate art of ‘open-
ness’ in inter-organisational collaborations.

Pasi Pussinen is a Research Scientist in the Value-Driven 
Service Business Team at VTT Technical Research Centre of 
Finland. His research interests include open source software, 
business models and service dominant logic.

Timo Koivumäki is a Research Professor of Mobile Business 
Applications at the VTT Technical Research Centre of Fin-
land and at the University of Oulu. His research interests 
include consumer behaviour in e-commerce, m-commerce 
and ubi environments, user-driven innovation, mobile mar-
keting, digital economy and information goods.

1. Introduction

Various business models based on free and open source 
software (FLOSS) have been widely studied in academia (e.g. 
Bonaccorsi et. al. 2004, Favaro and Pfleeger 2011, Spiller and 
Wichmann 2002, Lerner and Tirole 2002). However, there 
seems to be relatively little research into why some open 
source companies take a very proactive role as FLOSS de-
velopers/advocates while others only use publicly available 
FLOSS resources and minimise any community involvement. 
This difference is not evident from FLOSS business-model 
literature because most known business models can be 
linked with either approach.

This study was born from a desire to understand key factors 
and determinants that turn companies into ‘passive exploit-
ers’ or ‘active contributors’ in FLOSS. The focus is on analys-
ing the difference in managerial perspectives towards open 
source and networked innovation. The selected research 
approach is a multiple case study of six software compa-
nies which all utilise FLOSS intensively but differ in terms 
of their engagement with FLOSS communities. Theory-wise, 
the study benefits from Chesbrough’s (2003, 2006) open in-
novation paradigm and, more specifically, builds on the dif-
ference between ‘external innovation’ and ‘open innovation’ 
which was proposed by West and Gallagher (2004, 2006). 
This paper claims that companies who actively contribute to 
FLOSS development have adapted the open innovation para-
digm, while mere exploiters employ the external innovation 
model. Following Valkokari et. al. (2009), we use the term 
‘networked innovation’ to refer to all externally-orientated 
approaches to innovation, including both ‘open innovation’ 
and ‘external innovation’.
The results suggests that FLOSS companies can indeed be 
meaningfully categorised into ‘external innovators’ and ‘open 



137

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

egories of inter-firm relationships: ‘knowledge co-creation 
relationships for knowledge exploration’ and ‘knowledge 
transaction relationships for knowledge exploitation’. The 
former focuses on joint knowledge creation and resembles 
open innovation; the latter focuses on the efficient utilisa-
tion of existing knowledge and can be associated with the 
external innovation model. The stated difference between 
external and open innovation also contains clear analogies 
with other categorisations of innovation practices such as 
‘inboud open innovation vs. open value co-creation’ by Ko-
skela et. al. (2011), ‘user cluster vs. open cluster’ by Indrissal 
et. al. (2012) and ‘Explorers vs. Professionals’ by Kaup and 
Gassman (2009).

The term ‘open innovation’ is sometimes used to describe 
all scenarios where companies create profits from open 
source software. However, increasingly many software-in-
tensive companies appropriate assets from FLOSS commu-
nities and use them to create proprietary products, without 
making any noticeable contributions back (Dahlander and 
Magnuson 2005; Stams 2009). Lacking steps to motivate 
the in-flows of external IP or to benefit from outbound IP 
flows, such an approach exemplifies the external - rather 
than open - innovation model (West and Gallagher 2006). In 
contrast, the open innovation model entails some reciprocal 
interaction with FLOSS communities (ibid). Such reciprocity 
enables learning through co-creation (cf. Krogh et. al. 2003) 

products are brought to market by the company itself. In 
the external innovation model, the company seeks to de-
velop what Cohen and Levithal (1989) termed ‘absorptive 
capacity’ and utilises external sources of innovation such as 
universities, customers, supplies and competitors. However, 
very much like in the closed innovation model, the outbound 
flows of intellectual property (IP) are viewed as unwitting 
‘spill-overs’. While sharing some characteristics with ex-
ternal innovation, the open innovation model goes beyond. 
Instead of merely exploiting what ‘happens’ to be available, 
open innovators employ a systematic strategy for motivat-
ing the creation of external knowledge. They also use purpo-
sive outward IP flows to reach new markets and maximise 
returns on internal innovation. Table 1 (on the next page) 
summarises the characteristics of each model, showing the 
managerial attitudes, key challenges and resulting managerial 
techniques associated with each. This paper focuses on the 
difference between external and open innovation. For clar-
ity, the characteristics that distinguish open innovation from 
external innovation are underlined.

The difference between external and open innovation is in 
line with the recent study (Paasi et al 2010, Luoma et al 
2010) on intellectual property management in inter-organi-
sational networks. Based on their extensive empirical study 
(ibid) and the knowledge management theory of Grand 
and Baden-Fuller (2004), the authors recognised two cat-

Innovation 
model

Managerial attitudes Key managerial challenges Related managerial techniques

Closed 
innovation

Only internal R&D 
matters, ‘not invented 
here’ syndrome

 
Fierce protection against 
spill-overs

1. Attract the best talent into the 
company

2. Exploit own research 
commercially

1. Provide excellent compensation, resources 
and freedom to internal inventors

2. Provide a dedicated development function 
to link research with market knowledge

External 
innovation

Harvesting external 
ideas, ‘innovation 
happens elsewhere’

 
Modest protection 
against spill-overs

1. Explore a wide range of 
sources for innovation

2. Integrate external knowledge 
with own innovative activities

1. Scan environment carefully

2. Develop absorptive capacity, utilise 
networks

Open 
innovation

Facilitating external 
innovation, pooled 
R&D, ‘innovation 
happens together’

Willing spill-overs,

‘never sit on surplus IP’

1. Motivate the creation 
and contribution of external 
knowledge

2. Incorporate external 
knowledge with own innovative 
activities

2. Maximise exploitation of 
diverse IP resources

1. Provide intrinsic rewards for contributions

2. As in external innovation

3. Share or give away IP to maximise returns 
from entire innovation portfolio

Table 1. Three innovation models summarised, modified from West and Gallagher (2004,2006)



138

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

ander and Magnuson (2005) detected that companies adopt 
either a ‘commensalistic’, ‘symbiotic’ or ‘parasitic’ relation-
ship with FLOSS communities (see also Lundell et. al. 2006). 
The symbiotic relationship resembles the open innovation 
model as both carry the idea of reciprocity and mutual ben-
efit. Our study shows that what were herein describe as the 
‘external innovation model’ can become a commensalistic 
relationship at best (this means benefiting from another en-
tity while leaving it without harm) or turn into parasitic one 
at its worst.

Grand et. al. (2004) and Dahlander (2007) propose four 
modes of company involvement in FLOSS. Grand et al. 
(2004) understands their four levels as ‘progressive’: each 
level implies bigger investments and a greater reliance on 
FLOSS, but also more operational benefits and improved 
opportunities for knowledge sharing and learning. As pre-
sented in Figure 1, the ‘lowest’ level of involvement could 
be associated with external innovation and the two ‘upper’ 
levels with open innovation as defined herein. In turn, Dahl-
ander (2007) presents commercial FLOSS participation as a 
2x2 matrix where the variables are the intensity of FLOSS 
participation (low/high) and the initiator of the project (the 
company itself or a wider community). This study is located 
on the other side of the matrix, focusing mostly on how 
companies engage in FLOSS projects initiated by others.

Thus, the proposed distinction between ‘external innova-
tors’ and ‘open innovators’ is not at odds with classifications 

and ensures so that communal resources are continuously 
replenished (Dahlander and Magnuson 2005). As open in-
novation companies have internalised the idea that willing 
spill-overs can be beneficial, they are not ‘scared’ of releas-
ing their own IP to the FLOSS domain in order to achieve 
promotional or strategic goals (cf. Henkel 2006).

West and Gallagher (2006a; 2006b) name two main chal-
lenges for external innovation and three for open innova-
tion. The first challenges for external innovators is exploring 
the wide range of knowledge sources, i.e. to perform envi-
ronmental scanning to find out what happens on the FLOSS 
scene and what could be exploited from there. Meanwhile, 
open innovators define their challenge in terms of motivat-
ing external innovation i.e. how to keep open source contin-
uously producing inputs that are beneficial for the company. 
The second challenge of integrating external and internal ac-
tivities is shared by both external and open innovators and 
contains a diverse set of diverse legal, technical and business 
issues. The third challenge is only accepted by open innova-
tors and it relates to the maximisation of returns by giving 
away ‘surplus’ intellectual property.

2.3. Other ‘categorisations’ of commercial FLOSS 

engagement

There are some prior studies which have aimed to catego-
rise FLOSS companies according to the ‘intensity’ of their 
engagement with FLOSS communities. For example, Dahl-

Figure 1. Levels of FOSS involvement (from Grand et. al. 2004, red text/symbols added)



139

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

3.2 Data collection and analysis methods

The primary method of data collection was semi-structured 
interviews of company personnel. All interviews were lit-
erally transcribed. Other sources of evidence were online 
documentation and unobtrusive observation of employee 
interaction on FLOSS forums. These had a secondary role 
and were mainly used to collaborate and augment evidence 
collected in the interviews. In some cases, company partners 
were also contacted to confirm particular details. Qualita-
tive method called Template Analysis was employed to the-
matically analyse the interview transcripts and, to a much 
smaller extent, some documentary evidence. In short, this 
means that a coding template was developed iteratively 
while the analytical process moved forwards. A short, initial 
version of the template reflected the pre-assumptions based 
on the theoretical frame while later versions were updated 
to reflect themes emerging from the data set. The final tem-
plate  served as a basis for interpreting the data and writing 
up the findings.

4. Case study results

This chapter presents the case study results. The first chap-
ter analyses the managerial attitudes, challenges and tech-
niques associated with the external innovation model. This 
model, in our view, is represented by companies F, C and A 
and, to a lesser extent, E. The second chapter discusses how 
the same managerial issues are faced by open innovators, 
i.e. companies D and B. Figure 2 presents how the com-
panies are positioned on the continuum from external to  
open innovation.

in prior FLOSS literature. However, to our knowledge, this 
is the first article which studies the difference from the view 
point of innovation management.                    
                                                                                                                                                                                                                                                       
3 Methodology

3.1  Research approach and case selection

As stated previously, six small-scale case studies of open 
source companies were performed. Herein, multiple case 
studies were not used for the purpose of literal or theoreti-
cal replication; there was not yet a well-formed theory to 
‘test’. Instead, considering the preliminary and exploratory 
state of the research, the goal was to maximise the ‘richness’ 
of information for qualitative analysis (cf. Flyvbjerg 2006). 
Consequently, we selected case study companies which dif-
fer from each other in several dimensions, e.g. geographic 
location, size and software sector. All case study companies 
were required to comply with the following selection cri-
teria: (a) utilise FLOSS intensively as part of their product 
or service offerings and b) have different levels of activity 
within FLOSS communities and thus be placed differently on 
the ‘continuum’ from external to open innovation. The case 
selection was also influenced by the ease of access: in five 
out of six cases, the interviewing authors and company per-
sonnel had already collaborated on other research projects. 
These prior collaborations gave us in-depth understanding 
on the managerial philosophy and practices of the case study 
companies and actually pointed to the research problem at 
hand (see Henttonen 2011).

‘Alias’ Product offering Size Strategically important FLOSS products

Firm A Embedded systems (hardware 
and software) for automotive 
and wireless industries

Personnel 1000-2000 
, turnover 100-200 
M€

Linux-kernel for most products lines, diverse FLOSS 

terminal end-user devices
Firm B Customised business software 

solutions and consultation 
services for end-clients

Personnel 50-100, 
turnover below 2 M€

Linux desktop solutions (Ubuntu), FLOSS databases 
(MySQL, PostgreSQL), content management systems 
(e.g. Plone, Joomla) and development tools (e.g. Zope)

Firm C Embedded systems (hardware 
and software) design as a 
subcontractor

Personnel 100-500, 
turnover 10-30 M€

Embedded Linux-distributions, development tools 
(e.g. Subversion, Bugzilla)

Firm D Advanced web solutions for 
both IT contractors and direct 
end-clients

Personnel 20-50, 
turnover below 2 M€

FLOSS databases (MySQL), content management 
systems (e.g. Joomla, Drupal), e-commerce solutions 
(Magento) and development tools (e.g. Zend 
framework)

Firm E Mobile software, media portals, 
web-based enterprise software

Personnel 1000-
2000, turnover 50-
100 M€

Mobile Linux (e.g. Android, Meego), content 
management systems (e.g. Alfresco), enterprise 
software platforms (e.g. Liferay)

Firm F Embedded software for the 
mobile/cellular industry

Personnel below 20, 
turnover below 1 M€

Embedded Linux distributions, user interface 
development tools (e.g. GTK)

Table 2. Summary of the case study companies



140

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

your true value.’ Others viewed FLOSS more like a decora-
tive chimney stack, bringing something extra on top of their 
own products: ‘We keep receiving free-of-charge updates ... 
we can just say to the customer that “Hey, our next release 
contains this fascinating new feature” ...we hardly have to 
think about new features by ourselves.’ However, what was 
common to all companies classified by us as ‘external inno-
vators’ was their tendency to view FLOSS as a ‘free lunch’.
Despite gaining significant business benefits from FLOSS, 
the companies felt unwilling to contribute anything. Their 
answers reflected attitudes which are characteristics to 
closed and external innovation models. Mostly, FLOSS con-
tributions were perceived as giving money to a charity: a 
benevolent, but eventually wasteful, activity that a company 
could not afford in the long run (with the possible exception 
of small PR investments). One interviewee from company E 
restructured the question in terms of ‘Why would anybody 
contribute?’. He continued: ‘You are not giving gold for free 
to anybody. It is like a joke that, you know, “Oh its open 
sourced, everybody contributes”... hah, nobody contributes, 
especially not the big companies focusing on assets protec-
tion’. FLOSS participation was also likened to a ‘janitor’s job’ 
something that is undoubtedly necessary but not attractive 
technically or monetarily – so let somebody else do it. Fur-
ther, some said that their customers were quasi-paranoid 
about openness: ‘If we started hanging out on open source 
forums, they [customers] may think that we will tell their 
secrets to the world... even if we did not, it would cast a 
shadow of doubt.’  

4.1  FLOSS as external innovation

4.1.1 Managerial attitudes and goals

External innovators did not perceive FLOSS communities 
as part of their value network – instead, publicly available 
source code was seen more like a ‘bulk’ resource on which 
to feed. They all saw free-of-charge software artefacts as the 
main ‘gain’ from FLOSS, underlining how cost and time sav-
ings had helped them to offer reduced prices, make bigger 
profit margins and/or achieve shorter lead times to market. 
They also recognised that the cost advantage was far from 
being marginal: a couple of companies said that they could 
never have entered a particular market without FLOSS. 
‘There were initially very few [mobile] terminal vendors 
who could afford building platforms based on proprietary 
systems... but now we have an [open source] software pool 
that has helped to kick-start many new vendors [like us],’ 
explains a manager from company E.

Considering the heterogeneity of the case study compa-
nies, it is hardly surprising that FLOSS has a different place 
in their innovation processes. For a couple of companies, 
FLOSS was a free-of-charge ‘base brick’ on which their own 
products were built. For example, a manager from company 
E explains, ‘Open source is not value adding: it is simply a 
matter of getting the base software stack in a very mature 
state from day one and then you can concentrate on adding 

Figure 2. Six case study companies placed on the continuum from external to open innovation



141

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

As to legal challenges, it was said to require significant skills 
to ‘make sense’ of a multitude of FLOSS licences, e.g. regard-
ing reciprocal compatibility and propagation mechanisms (cf. 
Dahlander 2005; Henttonen and Matinlassi 2008). Further, 
many customers were reportedly unwilling to accept the 
reciprocity demands of FLOSS licences, especially those 
made by the popular GPL licence . One interviewee (com-
pany A) noted that such resistance is often based on a fixed 
world view rather than careful business analysis: ‘Even when 
it’s a totally irrelevant component, no business secrets, no 
patents, no major expertise, nothing... they oppose [open 
sourcing it] merely out of principle... they just cannot imag-
ine another way.’

The most prominent challenges related to release mainte-
nance. Since the companies do not contribute their own 
modifications to FLOSS communities, they have to maintain 
a separate version of the product, a kind of in-house ‘fork’ 
(cf. Nyman and Mikkonen 2011) by themselves. Thus, major 
effort is required to synchronise their own FLOSS-based 
product with the community version. If an original FLOSS 
community splits apart, creating more ‘forks’, the company 
has to merge its own product with several versions. This is 
closely intertwined with the questions of control and power. 
The company may be very negatively affected by a communi-
ty’s decisions: on technology standards, product architecture 
and release cycles. But, as the company is ‘nobody’ inside the 
FLOSS community, there is little use to raise objections:

‘This [influencing a FLOSS community] is tricky diplomacy... 
you cannot create a forum account on one day and go there 
on next day to tell people what to do. You are first required 
to build respect and a [brand] name for yourself by being 
committed and contributing. This applies to individuals and 
companies alike... Despite being a big company and enjoy-
ing an established position in the industry, we are absolutely 
nobody in the FLOSS world.’

(Senior specialist, company A)

4.1.3 Managerial techniques

Since the companies devote little or no effort in environ-
mental scanning, how do they find out about new FLOSS 
projects with business relevance? The companies depend 
heavily on individual employees who are ‘hobbyists’ and con-
tributors in FLOSS projects in their free-time. For example, 
when asked how they kept an eye on new developments 
with mobile Linux, the representative of company F replied 
openly: ‘We cannot afford to use working time [on this].... 
but Linux is a hobby for the most [of the employees] so 
we will stay up-to-date that way.’ Sometimes companies can 
maintain a dialogue with key FLOSS communities through 
individual employees who reportedly make significant con-
tributions in their free-time and thus have a ‘name’ in those 

Despite the underling cost and time savings, two external 
innovators also tried to exploit other opportunities within 
FLOSS to a limited extent. For example, company A sends 
marketing announcements to the mailing lists of FLOSS 
communities when a new product comes out. Company E 
has gone a step further and builds its brand by contribut-
ing small bug fixes and sometimes even sponsoring FLOSS 
events. Their principal software architect explains how the 
company occasionally manages to get ‘fifteen minutes of 
fame’ with minimal contributions and concludes: ‘[FLOSS] 
communities are important for marketing, and not just mar-
keting towards customers but also marketing towards de-
velopers, enabling the company to hire smart brains... no 
doubt about that.’  

4.1.2  Managerial challenges

The first challenge mentioned for external innovators re-
lates to exploration. Interestingly, several interviewees men-
tioned that it was very difficult to keep up-to-date on what 
is happening on the FLOSS scene. This was blamed on insuf-
ficient human resources internally or the need to keep all 
resources engaged in customer projects, leaving an impres-
sion that environmental scanning was seen secondary, after 
all. However, a senior specialist from company A expressed 
that his top-management should definitely pay more atten-
tion to the issue:

‘We are pretty unorganised on this [scanning for FLOSS-
related innovation]... it is useless to go randomly surfing the 
Internet every Tuesday morning like “la di da, can’t find any-
thing here, let’s try again next week” – instead, we should re-
ally have a carefully managed process for staying up-to-date 
on the latest FLOSS developments.’

The second challenge is to ‘integrate external knowledge 
with own innovative activities’. On this area, the key issues 
for the interviewed companies related to quality assurance, 
legal liabilities and release maintenance. The quality-related 
challenges were very much in line with what has already 
been widely reported. It was underlined that FLOSS never 
provides any guarantees on quality and therefore each com-
ponent has to go through an internal quality assurance and 
testing pipeline.

GPL i.e.  GNU General Public Licence is one of the most well-
known and widely used  FLOSS licenses.  It  is based the idea of 
‘copyleft’ and is particularly strict in  its requirements for develop-
ers to release the source code of derived or joint work  (see e.g. 
McGowan 2005).
Such tools analyze software packages from a legal perspective, 
searching source code for license declarations  and technical in-
terdependences which impact how licensing terms propagate (for 
more information see  e.g. Oksanen 2006)



142

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

ibility on FLOSS forums or through direct references from 
other community members. ‘It is here [in the OSS world] 
where we get complete visibility,’ says the marketing direc-
tor of company B, explaining that they had practically aban-
doned conventional marketing in favour of FLOSS network-
ing (cf. Henttonen 2011).

The importance of inter-organisational learning was also un-
derlined; company B had integrated employee training with 
the participative learning methods of FLOSS communities. 
In addition to technical learning, the communities were a 
source of information on what is happening in the market. 
The CEO of company D explains that the FLOSS world is 
full of excellent online conferences, blog sites and other re-
sources which help him to stay informed on, ‘What is hot 
and what is up right now on the market,’ adding that such 
market knowledge obtained from FLOSS forums, has greatly 
assisted him in positioning his company favourably.

The cost and time savings related to FLOSS were equally im-
portant to ‘open innovators’ – however, these were viewed 
as a successes of joined development or ‘pooled R&D’ 
rather than as a ‘free lunch’. The importance of reciprocity 
was underlined in several accounts. For example, the CEO 
of company B explains that his company could have never 
built mature software from ‘scratch’ and continues, ‘I could 
never achieve anything like that without open source and, 
well, when I benefit from the efforts of others I cannot ex-
pect to keep all profits to myself.’ (cf. Henttonen 2011). He 
continues to underline the importance of contributing to 
the FLOSS projects on which his company depends:

‘If you are part of the ecosystem you have do things to sus-
tain that ecosystem. If you are just a consumer, then that 
ecosystem will sooner or later die… in order to make the 
open source ecosystem stable, you [a company] have to 
start looking at other aspects than just being a consumer... 
to contribute in different ways and make sure that the eco-
system stays alive.’ (General Executive Officer, company A)
FLOSS participation was also seen as an opportunity be-
come ‘shapers’ rather than just ‘users’ of a particular tech-
nology. The difference was also noticed by customers. ‘They 
[customers] come to us because they see us as people who 
envision the [FLOSS] product and not only as people having 
[third-party] expertise on it,’ says the marketing director of 
company A.

communities. However, despite their reliance on employees’ 
own FLOSS enthusiasm, the companies do not give any spe-
cific rewards for this. So, somewhat surprisingly, external 
innovators seemed to depend, not only on the volunteer 
contributions from external FLOSS developers, but also on 
those from their own employees. Because these companies 
had indicated strong worries about ‘unwitting’ spill-overs, it 
was interesting that they preferred their employees to be 
involved in FLOSS communities as individuals, or ‘hobbyists’, 
instead of a more-controlled policy.

There were relatively well-defined managerial techniques in 
place to address challenges regarding legal liabilities and qual-
ity assurance. The companies use a combination of dynamic 
and static testing, very much like those described by some 
previous authors (e.g. Maki-Aisala and Matinlassi 2006). As 
to legal issues, two companies use automatic licensing tools  
and most add empty ‘glue code’ in order to isolate FLOSS 
code from their own or customer’s code. The ‘glue code’ 
layers are often totally void of functionality and do nothing 
to aid component interoperability. Instead, their sole pur-
pose was to stop GPL licensing terms from propagating and 
thereby avoid associated liabilities (e.g. reciprocity demands, 
patent licensing etc.)  The practice was perceived to be a 
‘rule’ rather than an exception in FLOSS business:

‘The common line with these [mobile software] products is 
that what is open sourced are the trivial parts, because the 
real costly things, that is IPR... is never open sourced... one 
can do that with the GPL as well, because big companies are 
just using open source empty glue layers and then, you know, 
protecting their assets.’
       

(Principal software architect, company E)

Interestingly, even though interviewees emphasised challeng-
es related to release maintenance, they could not name any 
concrete steps taken to address them. It seems that most 
took for granted that FLOSS projects are unpredictable/un-
controllable by ‘nature’ and this was just ‘a risk to live with’. 
However, as a side note - the companies did share some 
of the same software development tools with communities, 
like GIT and Bugzilla.

4.2 FLOSS as open innovation

4.2.1 Managerial attitudes and goals

Open innovators had clearly different rationales for their 
FLOSS involvement. FLOSS communities were understood 
as an important part of the external value network and were 
deemed essential for global marketing, inter-organisational 
learning and joint development. Both companies B and D 
found most of their customers either through general vis-

The interviewees either did not know  or did not openly admit it, 
but the  described ‘glue code’  models are known to be ‘grey’ or 
borderline cases legally (e.g. Hopner 2004 ). They are clearly not 
‘safe’ but reduce risks compared to boldly ignoring the GPL terms.



143

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

4.2.3 Managerial techniques

When asked about the affordability of non-direct invest-
ments, open innovators replied that whole-hearted FLOSS 
participation requires ‘energy and passion’ rather than big 
monetary investments. To exemplify such an attitude, their 
marketing director run a city marathon dressed as a blue 
elephant, a mascot of a well-known open source project, 
Postgre SQL. This earned the company five minutes of fame 
on a national TV channel. Once the CEO had contacted a 
local refugee centre and asked them to translate OpenOf-
fice into an ‘exotic’ language. So, despite being a medium-
sized company, they showed something that could be called 
‘community spirit’. While external innovators relied on the 
FLOSS enthusiasm of individual employees, the managers of 
open innovation companies were clearly the sources of such 
enthusiasm themselves.

Open innovators shared quality assurance concerns with 
external innovators, but adopted totally different techniques 
to address this challenge. First, they picked-up FLOSS soft-
ware with a ‘good reputation’, they used their excellent so-
cial networks to accumulate knowledge on quality issues and 
made decisions on that basis. Secondly, they engaged some 
of their customers in the co-development and co-testing 
of products. The technical manager of company B says, ‘The 
only way to test a product is to test with a customer and 
slowly start working to stabilise it... when I give software 
to them [certain customers] at a low cost, I can do some 
beta-testing, some R&D on them... this is how we bring in 
stable code.’

This was seen as an important continuum from FLOSS de-
velopment practices which has always emphasised end-user 
involvement in R&D. This is just one example of the ‘ways 
of doing things’ adopted from FLOSS communities. Another 
example comes up when looking at how they respond to 
the aforementioned challenge of training new employees. In 
both companies B and D, employee training follows the clas-
sic ‘onion model’ (Ye at Kishida 2003) which is frequently 
used to describe how participative learning occurs in FLOSS 
communities. New employees started by following discus-
sions on FLOSS forums and were encouraged to gradually 
deepen their participation and eventually make contribu-
tions of their own. Within FLOSS communities, new employ-
ees are ‘coached’ by external experts free-of-charge which 
supports in-house training efforts.

To fight against unwanted appropriation by competitors, the 
companies always used a GPL licence when giving out their 
own intellectual property. Interestingly, a licence that was 
mentioned as a management challenge for external innova-
tors, was a protection technique for open innovators. While 
GPL licensing terms can also be circumvented (as shown in 

Further, both companies D and B had internalised the open 
innovation ‘philosophy’ that one should never ‘sit’ on sur-
plus IP. For example, whenever they have a piece of source 
code, which has reached the end of its life cycle, they put it 
freely available on SourceForge or another similar FLOSS 
platform. Sometimes there are surprising benefits when the 
IP gets ‘a new life’ in the FLOSS domain. For example, com-
pany B open sourced a very small business software, which 
was only meant to be used in-house (Henttonen 2011). 
Later, they were contacted by a big foundation, which had 
found the software from the Internet and wanted to have 
it extended. Thus, they got a very important customer with 
minimal ‘marketing’ effort

4.2.2  Managerial challenges

It seems that while external innovators struggle to stay 
tuned to developments on the FLOSS scene, open innova-
tors use FLOSS forums to keep up-date-on on what is ‘hot 
and in’ , not only on FLOSS, but on the software markets in 
general. To address the challenge of motivation, open innova-
tors make significant contributions to FLOSS communities, 
e.g. by committing resources to open software development 
and by co-organising FLOSS events. This raised an obvious 
question on how they can afford so many activities which do 
not generate revenues directly.  

From the integration challenges mentioned previously, only 
quality assurance concerns were mentioned by open inno-
vators. In stark contrast with external innovators, licence 
compatibility issues and other legal ‘risks’ were seen as 
fundamentally non-threatening due to close and friendly 
ties with legal copyright owners, i.e. the communities. The 
afore-mentioned problems on release maintenance were 
also eliminated: since base software was developed together 
with the community, there was no need to maintain a sepa-
rate version for ‘them’ and ‘us’. For open innovators, the big-
gest integration challenges related to developing the techni-
cal, social and business skills required by ‘fully fledged’ FLOSS 
involvement. Because such skills are not commonly taught 
in universities, they have to make significant investments in 
teaching the ‘FLOSS ways’ to new employees.  

As to willing spill-outs and spin-offs, the biggest challenge 
named by open innovators were so called ‘open source pi-
racy’. This means that sometimes competing software com-
panies appropriate the source code but illegally ignore the 
reciprocity terms of the FLOSS licence. This often means 
that potential benefits and ‘credit’ of the released IP goes to 
a competitor and nothing comes back to the original owner 
of the IP. This type of piracy was said to be common and 
it is exactly what some ‘external innovators’ in this study 
admitted to.



144

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

companies may indeed have contributed to a diversity of 
viewpoints, it also diminishes the value of analytical com-
parisons between the companies. Further, one of the key ad-
vantages of the case study approach is that ‘rich’ contextual 
information on the studied organisations can be provided 
(Chetty 1999; Bryman 2008). However, in this study, such 
information is confined to few company characteristics pre-
sented in a table form; a more elaborate description of the 
companies could have improved the value of the findings and 
helped others to assess their transferability to other settings 
(Bryman 2008; Flyvbjer 2006). Then, of course, there are the 
known limitations of the case study approach in general: 
even when multiple case studies are performed, the results 
cannot be generalised as such. With hindsight, qualitative 
interviews with a few dozen carefully selected companies 
could have better served our purpose than a multiple study 
design. On the other hand, intensive collaboration with a 
few organisations allowed us to build better ‘rapport’ with 
the interviewees and make them openly discuss sensitive 
issues such as legally ‘shady’ attempts to circumvent licens-
ing terms. Further, we also find it interesting that certain 
clear regularities/similarities in management perspectives 
emerged despite the heterogeneity of the cases, suggest-
ing that the proposed concepts do have some broader rel-
evance.

Looking at the case study companies, we see that the com-
panies with the most ‘exploitative’ relationship with FLOSS 
are embedded systems providers and positioned as sub-
contractors in the value chain. On the other hand, the com-
panies which are most deeply involved in open innovation 

section 4.1.3), the companies saw it as a relatively efficient 
tool against unwanted appropriation (justifiably, see Hopner 
2004).

4.3 Summary of the results

 This study has explored managerial views on open 
source and networked innovation in six case study compa-
nies. The results are summarised in Table 3. The study showed 
that there are fundamental differences in the managerial at-
titudes: while the management of external innovators clearly 
present an exploitation attitude and see FLOSS as a ‘free 
ride ‘ to cost savings, the managers of companies with an 
open innovation approach see FLOSS as a fundamental el-
ement of their value creation process. Furthermore, open 
innovators clearly see FLOSS as a ‘two-way street’ of giving 
and receiving. There are also notable differences in the way 
the managers see the main challenges and in the way these 
challenges are tackled. For example, external innovators see 
the reciprocity demands of FLOSS licences, especially GPL, 
as a major obstacle and actively seek ways to work around 
it. Open innovators have a totally opposite view on the issue: 
they view open source piracy as a major challenge and see 
strong licensing schemes such as GPL, as a valid protection 
technique.  

5. Discussion

There are problems in the methodological design of the 
study. With hindsight, the case study companies did not have 
enough common denominators: while the heterogeneity of 

Managerial perspective
Pattern of

 involvement

Managerial

attitudes

Main ene t Main challenges Challenge management 
techniques

External 
innovation

Exploitation 
attitude:

-FLOSS is a bulk 
resource

- FLOSS is a ‘free 
lunch’

- Savings in 
development 
costs and time 

resource 
utilisation

- FLOSS-related 
knowledge acquisition

- Quality assurance

- FLOSS licensing

- Release maintenance

- Passive management

(dependence on individual 
employees)

- Dynamic and static testing

- Use of automatic licensing tools 
and empty glue code

Open 
innovation

Contribution 
attitude:

- FLOSS as an 
integral element of 
value (co-)creation

- FLOSS seen as 
an effective way to 
shape technology

- Value co-
creation with 
communities

- Inter-
organisational 
learning  
- Global 
networks for 
marketing

- Quality assurance

- Maintaining the 
FLOSS talent pool

- Open source piracy

- Utilisation of social networks to 
gain quality-related knowledge 
- Co-development and co-testing 
with customers

- Adopting peripheral FLOSS 
participation as part of employee 
training

 - Strong FLOSS licensing schemes, 
particularly GPL

Table 3.  Summary of the case study results



145

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

6. Conclusions

The study investigated the management perspective to-
wards open source collaboration and networked innovation 
in six software companies. From our empirical data, two op-
posite managerial views on community collaboration arose. 
The first view sees community participation as a cost or an 
unnecessary burden by the management. The open source 
community is seen as a resource pool of some kind, only 
in terms of a free-of-charge software artefact, and compa-
ny interaction with the communities is limited to minimal. 
The second view is a complete opposite one, in this view 
collaboration with open source communities is seen as an 
investment. As a return of their investment, these compa-
nies expect opportunities for global marketing and inter-or-
ganisational learning as well as cost savings through pooled 
R&D. The latter view is compatible with the open innovation 
paradigm, while the former could be better described as ‘ex-
ternal innovation’. The difference between the two manage-
rial views could be explained in terms of industrial domain, 
value chain position, leadership style or even open source 
business models. More research is required to understand 
what causes a company to adopt either managerial perspec-
tive on FLOSS.

References

BADEN-FULLER, C. (2004). A Knowledge Accessing Theory 
of Strategic Alliances. Journal of Management Studies, 41(1), 
1467-6486.

BONACCORSI, A. Rossi, C. Giannangeli, S. (2004). Adaptive 
Entry Strategies under Dominant Standards - Hybrid Busi-
ness Models in the Open Source Software Industry. SSRN 
Electronic Journal, 1-23.

BRYMAN A. (2008). Social Research Methods. Third Edition.  
Oxford University Press, New York.

CHESBROUGH H. (2003). Open innovation: the new im-
perative for creating and profiting from technology.  Harvard 
University Press, Boston.

CHESBROUGH, H (2006). Open Business Models: How to 
Thrive in the New Innovation Landscape. Harvard Univer-
sity Press, Boston.

CHETTY, S. (1996). The case study method for research in 
small and medium sized firms. International Small Business 
Journal 15(1),  73–85.

COHEN W. Levinthal, D. (1989). Innovation and learning: the 
two faces of R&D. The Economic Journal, 99(397),  569-596.

are software service providers with direct contact to end 
clients. For embedded systems providers, software forms a 
cost rather than a profit centre (cf. West 2007) and, thus, it 
might not be surprising that these companies stated cost 
savings as the biggest drivers for using open source soft-
ware. Thus, even though ‘widget frosting’ can be considered 
as one of the most pivotal open source business models (e.g. 
Hecker 1999, Henkel 2006), in our study it not did seem to 
embrace innovations from community or interaction with 
the communities. For those companies who acted as sub-
contractors, contributing was also constrained by the fear 
of (customer’s) sensitive information leaking out. In turn, the 
bespoke software companies that seemed more dependent 
on FLOSS communities as their main value proposition are 
focused around open source software. The core competence 
of these companies – services – is enhanced by the outside 
effects of open source and open innovation and there might 
be less threat of sensitive data or know-how leaking outside.
It is obviously impossible to make conclusions in this regard 
based on six case studies, because the above relationships are 
probably incidental. However, the study suggest that differ-
ences in the value chain position and the related networked 
business models may create restrictions in the ways that 
open source can be applied. Beyond the software industry, 
prior studies (e.g. Savitskaya et. al. 2010) have found correla-
tions between the value chain position and the ‘openness’ of 
innovation practices. It seems that more research is required 
to explore how the value chain position influences the com-
panies’ motivation and ability to contribute to FLOSS. One 
could also have deeper look at well-known open source 
business models to see whether they encourage a ‘mind-
set’ of exploitation or contribution. Because sustaining the 
pool of contributors is necessary for the long-term survival 
of the FLOSS phenomenon (cf. Hippel 2003, Dahlander and 
Magnuson 2005), the question is hardly trivial.

Alternatively, the difference between ‘external innovators’ 
and open innovators’ could also be explained in terms of 
leadership (cf. Sanchez et. al. 2011): the former seem to ap-
ply passive, and the latter, an active management approach 
towards FLOSS. For example, external innovators acknowl-
edge the ‘uncontrollability’ of FLOSS as a given business risk 
while open innovators participate in FLOSS communities 
for the very reason of being able to control. For another 
example, external innovators passively rely on the enthusi-
asm of individual employees as FLOSS ‘hobbyists’, while top 
managers in open innovation companies are inputting their 
own ‘energy and passion’ in order to catalyse active FLOSS 
participation. The relationship between leadership style and 
FLOSS involvement might also be an interesting subject for 
further enquiry.  



146

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

collective innovation model: Issues for organization science. 
Organization science, 209-223.

HIPPEL, E (2005). Democratizing Innovation. Cambridge, 
MA: MIT Press.

IDRISSIA, M. Amaraa, N. Landrya, R. (2012)  SMEs’ Degree of 
Openness: The Case of Manufacturing Industries. Journal of 
Technology Management and Innovation, 7(1), 186-210.

KEUPP, M. Gassmann, O. (2009). Determinants and archetype 
users of open innovation. R&D Management, 39(4), 331-341.

KING, N. (1998) Template analysis. In: Symon G. Cassell C. 
(Eds.),  Qualitative Methods and Analysis in Organizational 
Research: A Practical Guide. Sage Publications, California. pp. 
118-134.

KOSKELA K. Koivumäki T. Näkki P. (2011) Art of opennesses. 
In: Pikkarainen M. Codenie W. Boucart N. Heredia J. (Eds.), 
The Art of Software Innovation, Springer, Berlin. pp. 57-68.

KROGH G., Spaeth S. Lakhani K. (2003) Community, joining, 
and specialization in open  source software innovation: a 
case study. Research Policy, 32 (7), pp. 1217–1241

LERNER, J. Tirole, J. (2002). Some Simple Economics of Open 
Source. Journal of Industrial Economics, 50(2), 197-234.

LUNDEL, B. Ling, B. Lindqvist, E. (2006). Perceptions and up-
take of open source in Swedish organisations In: Damiani, 
E. Fitzgerald B.  Scacchi, W.  Scotto M.  Succi G. (Eds.) Open 
Source Systems,  IFIP International Federation for Informa-
tion Processing, Volume 203, Springer, Boston. pp. 155-153.

LUOMA T.  Paasi J. Valkokari, K. (2010). Intellectual property 
in inter-organizational relationships -  Findings from an inter-
view study. International Journal of Innovation Management, 
14(3), 399–414.

McGOWAN, D. (2005) Legal aspects of free and open 
source software, In: Feller J. Fitzgerald B., Hissam S., Lakhani 
K. (Eds.), Perspectives on Free and Open Source Software, 
MIT Press, London. pp. 211–226.

MÄKI-AISALA, P., Matinlassi M. (2006). Quality Assurance of 
Open Source Components: Integrator Point of View. Pro-
ceedings of the 30th Annual International Computer Soft-
ware and Applications Conference, Second International 
Workshop on Testing and Quality Assurance for Compo-
nent-Based Systems, Chicago, September 17-21, 2OO6,  189 
- 192.

DAHLANDER, L. (2005).  Appropriation and appropriable 
in open source software. International Journal of Innovation 
Management,  9(3),  259-285.

DAHLANDER, L. (2007). Penguin in a new suit: a tale of how 
de novo entrants emerged to harness free and open source 
software communities. Industrial and Corporate Change, 
16(5), 913—943.

DAHLANDER, L. Magnusson M. (2005). Relationships be-
tween open source software companies and communities: 
Observations from Nordic firms. Research Policy, 34(4),  
481-493.

DYER, J (2000). Collaborative Advantage: Winning Through 
Extended Enterprise. Oxford University Press, New York.

FAVARO, J. Pfleeger, S. (2011). Software as a Business. IEEE 
Software, 28(4), 22-25.

FLYVBERG, B. (2006). Five Misunderstandings About Case-
Study Research. Qualitative Inquiry, 12(2), pp-245.

GRAND, S. Von Krogh, G. Leonard, D. Swap, W. (2004) Re-
source allocation beyond firm boundaries: A multi-level 
model for Open Source innovation. Long Range Planning, 
37(6), 591—610.

HAGEL, J. Brown J. (2011) Creation nets: harnessing the po-
tential of open innovation. Journal of Service Science, 1(2), 
27-40.

HECKER, F. (2009). Setting Up Shop : The Business of Open-
Source Software. IEEE Software,16(1), 45-51.

HENKEL, J. (2006). Selective revealing in open innovation 
processes: The case of embedded Linux. Research Policy, 
35(7), 953-969.

HOPNER, J. (2004). The GPL prevails: An analysis of the first-
ever Court decision on the validity and effective of the GPL. 
SCRIPT-ed, 1(4), 628—635.

HENTTONEN, K. Matinlassi, M. (2007). Contributing to 
Eclipse - a case study. Proceedings of the Software Engineer-
ing 2007 Conference (SE2007). Hamburg, Germany, 27-30 
March, 2007.

HENTTONEN, K. (2011). Libre Software as an Innovation 
Enabler in India: Experiences of a Bangalorian Software SME . 
In: Hissam S. Russo B. (Eds.), Open Source Systems: Ground-
ing Research.  IFIP Advances in Information and Communica-
tion Technology, Volume 365,  Springer, Boston. pp. 220-232.
HIPPEL, E (2003). Open source software and the private-



147

ISSN: 0718-2724. (http://www.jotmi.org) 
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2012, Volume 7, Issue 3

YE, Y. Kishida, K. (2003). Toward an understanding of the 
motivation of open source software developers. The pro-
ceedings of the 25th International Conference on Software 
Engineering (ICSE’03), 3-10 May 2003, 419- 429.

NYMAN, L. Mikkonen, T. (2011). To Fork or Not to Fork: 
Fork Motivations in SourceForge Projects. International 
Journal of Open Source Software and Processes, 3(3), 1-9.

OKSANEN, V. (2006). State of Art on Legal research on 
FLOSS. In: Helender N. Martin-Vanhanen H. (Eds.), Multi-
disciplinary Views to Open Source Software Business. BRC 
Research Report #33. Tampere University of Technology and 
the University of Tampere, Tampere. pp. 10–19.

PAASI, J. Luoma T.  Valkokari, K. (2010). Knolwedge and In-
tellectual property management in customer supplyer rela-
tionships.  International Journal of Innovation Management , 
14(4), 629–654.

SANCHEZ, A. Lago, A.  Ferràs X. Ribera J. (2011). Innovation 
Management Practices, Strategic Adaptation, and Business 
Results: Evidence from the Electronics Industry. Journal of 
Technology Management and Innovation , 2(6), 14-39.

SAVITSKAYA J., Salmi P, Torkkeli M. (2010). Barriers to Open 
Innovation: Case China. Journal of Technology Management 
and Innovation, 5(4), 10-21.

SPILLER, D., Wichmann, T. (2002). Floss Final Report – Part 
3: Basics of Open Source Software Markets and Business 
Models. University of Maastricht, Netherlands.

STAM, W. (2009). When does community participation en-
hance the performance of open source software companies? 
Research Policy, 38(8), 1288-1299.

TUOMI, I. (2002). Networks of Innovation, Oxford Univer-
sity Press, New York.

VALKOKARI, K. Paasi J. Luoma T.  Ling, N. (2009). Beyond 
open innovation: The concept of networked innovation. In: 
Huizing, K. Conns, S. Torkkeli M. Bitran, I. (Eds) Stimulating 
Recovery - The Role of Innovation Managemen, Internation-
al Society for Professional Innovation Management (ISPIM), 
New York.

WEST, J. (2007). Value Capture and Value Networks in Open 
Source Vendor Strategies. 40th Annual Hawaii International 
Conference on System Sciences (HICSS), January 2007.

WEST, J. Gallagher, S. (2006a) Patterns of Open innovation 
in open source software development. In: Chesbrough, H.  
Vanhaverbeke W. West J. (Eds.), Open innovation:researching 
a new paradigm, Oxford University Press, Oxford.
West, J. Gallagher S. (2006b). Challenges of Open innovation: 
the paradox of firm investment in open source software. 
R&D Management, 36(2), 316-331 .



 

 
 
 

V 
 
 

LIFECYCLE MANAGEMENT IN GOVERNMENT-DRIVEN 
OPENSOURCE PROJECTS – PRACTICAL FRAMEWORK 

 
 
 
 

by 
 

Katja Henttonen, Jukka Kääriäinen, & Jani Kylmäaho, 2017 
 

International Journal of Information Systems and Project Management,  
5(3), 23-41  

 
https://doi.org/10.12821/ijispm050302 

 
 

Reproduced with kind permission by SciKA 

https://doi.org/10.12821/ijispm050302


ISSN (print):2182-7796, ISSN (online):2182-7788, ISSN (cd-rom):2182-780X

Available online at www.sciencesphere.org/ijispm

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 23 ►

Lifecycle management in government-driven open source 
projects – practical framework

Katja Henttonen
VTT Technical Research Centre of Finland
Tietotie 3, 02150 Espoo
Finland
www.shortbio.org/katja.henttonen@vtt.fi

Jukka Kääriäinen
VTT Technical Research Centre of Finland
Kaitoväylä 1, 90530 Oulu
Finland
www.shortbio.org/jukka.kaariainen@vtt.fi

Jani Kylmäaho
National Land Survey of Finland (NLS)
Opastinsilta 12C, 00521 Helsinki
Finland
www.shortbio.org/jani.kylmaaho@nls.fi

Abstract:
In many parts of the world, public sector organizations are increasingly interested in collaborating across 
organizational (and even national) boundaries to develop software solutions under an open licence. However, 
without sound lifecycle management practices, the full benefits of open collaboration are not achieved and 
projects fail to achieve sustained success. This paper introduces a lifecycle management model and framework 
for government-driven open-source projects and reports about its use in a real-life case study. Our focus is on 
lifecycle management activities which take place between deployment and end-of-life. The framework was 
developed iteratively through a series of focus group discussions with representatives of public sector 
organizations. After the framework had been taken into use in our real-life case project, individual qualitative 
interviews were conducted to collect experiences on its benefits and weaknesses. According to the initial 
evidence, the deployment of the framework seems to have brought concrete benefits to the project, e.g. by 
contributing positively to community growth, software quality and inter-organizational learning.

Keywords:
public information systems; open source; open-source software; free software; e-government; public sector; software 
lifecycle management; software evolution; information systems; public sector.

DOI: 10.12821/ijispm050302

Manuscript received: 1 May 2017
Manuscript accepted: 10 September 2017

Copyright  © 2017, SciKA. General permission to  republish in pr int  or electronic forms, but  not  for profit ,  a ll or part  of this mater ial is gran ted, provided that  the 
Internat ional Journal o f Informat ion Systems and Pro ject  Management copyr ight  notice is  given and that  reference made to  the publicat ion, to  its date of issue, and to 
the fact  that  reprint ing pr ivileges were granted by permiss ion o f SciKA - Associat ion for Promotion and Disseminat ion o f Scient ific Knowledge.



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 24 ►

1. Introduction

In many countries, governments agencies have started to open up bespoke software developed with public funding, 
often by releasing it under an open source license [1]–[3].  This may stem from governments’ desire to spur innovation 
(by letting all citizens to gain from software at no additional costs) and/or to improve transparency (e.g. by making 
source code of an electronic voting system subject to public scrutiny) [2].  Another key rational behind open sourcing is 
a belief  that other government agencies, who have similar software development needs, can reuse the software [1]–[3].   

For example, in Finland, it was noticed that public sector organizations did not sufficiently co-operate on the field of  
bespoke software development [1].  In the absence of inter-agency collaboration, software vendors could charge each 
administrative unit a full price for the same or similar customizations and, thus, in the worst case, the same piece of 
code was purchased multiple times with tax-payer money [1]. For these reasons, the Finnish Ministry of Finance [4] and 
Public Administration Recommendations [5] have started to encourage public sector organizations to co-purchase 
bespoke software and  publish it under an open-source license.

However, avoiding duplicate effort by open sourcing is not straightforward. It may be difficult for other organizations to 
exploit the source code purchased by one organization, e.g. due to lack of support and maintenance, multiple parallel 
development paths and uncertainty on the future development direction [1], [3], [6]. Therefore, there is a need to build 
public sector communities around these software initiatives to collaboratively manage the lifecycle [1], [2], [6], [7].

To address these issues, Kääriäinen et al. [1] developed a model where public sector agencies co-produce and co-
maintain open-source software products together. However, at the time, the model had not been tested in any 
organization and its presentation remained abstract. This article concretizes the model introduced by Kääriäinen et al.
[1] and demonstrates its practical value. The aims of the study are two-fold: firstly, to develop a practical framework 
that facilitates adoption of the model and, secondly, to use the framework for organizing collaborative lifecycle 
management in a real-life case study. The case study is an open source spatial data visualization software called Oskari, 
which is currently being co-produced by more than ten public sector organizations and companies in Finland.

The authors have studied the concept of the lifecycle management previously focusing on the development phase of the 
software (SW) product [8]. The emphasis of this article is on the lifecycle management actions taken after the 
implementation of the first software version i.e. how the developed SW product under the operation and maintenance 
could be collaboratively maintained and further developed by the group of public sector organizations.

The article is structured as follows. The next section covers theoretical background and related work, reviewing 
different approaches to change/lifecycle management in software production and summarizing studies on open-source 
lifecycle management and government-driven open-source software development. The third section introduces the 
model on which the framework has been built. The fourth section introduces the research approach and methodology. 
The fifth section introduces the practical framework which supports the deployment of the model. The sixth section 
demonstrates the deployment of the model and the framework of the Oskari project and reports on the experience 
gained. Finally, discussion and conclusions are drawn.

2. Theoretical background and related work

2.1 Lifecycle management and software evolution 

Software lifecycle management (SLM) is herein understood as a process of coordinating activities and managing 
resources (e.g. people, money, documentation, technical artefacts) during the entire lifecycle of a software product, 
from initial ideation to retirement [9]. This definition comes from the application lifecycle management (ALM) 
literature, but similar issues have also been addressed by studies on software configuration management (SCM) and 
software evolution. However, SLM is different from software product management (SPM), which focuses solely on 
managerial actions taken before customer delivery of a software product [10]. 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 25 ►

Application lifecycle management (ALM) is a relatively new concept [11]. Chappell [12] presents ALM as a 
combination of three functions: governance, development and operations – and three milestones: (start of) ideation, 
deployment and end-of life. Development takes place at the beginning of the lifecycle, between ideation and 
deployment, and then periodically (after deployment) when the application is updated. Operations, which involve 
monitoring and deployment of updates, always happen after deployment of the first software version. Governance, 
which means supervising the software's evolution towards predefined goals, is needed during entire lifecycle. The 
emphasis of this article is on lifecycle management actions which take place between deployment and end-of life.  Out 
of the three functions, most attention is given to governance but development and operations issues are also touched.

Software Configuration Management (SCM) is a much older discipline and can be seen as the basis upon which ALM is 
founded [13]. SCM is essentially about controlling and tracking changes to the software, and it has been discussed in 
the literature for more than three decades [14]–[17]. SCM research has significantly impacted software engineering 
practices [18]. The (sub)areas of SCM provide techniques for change control boards, defect tracking, build and release 
management, versioning and team/workflow management, for example [15], [17].

The term software evolution was originally used to differentiate from software maintenance which, at the time, was 
seen as a post-deployment activity consisting only of bug fixes and minor adjustments [19]. Early software evolution 
literature [20] noted that requirements continue to change and software needs to be adapted during its entire lifetime. 
Because the idea of iterative software development has become widely accepted, some authors use the terms software 
maintenance and software evolution synonymously [19]. However, there are two prevalent perspectives to software 
evolution, dubbed  ‘what/why’ and ‘how’ by [19]. The former (what/why) refers to academic research on the nature of 
the software evolution phenomenon, its driving forces and impact [19], [21]. The latter (how) refers to engineering 
studies on practical means (e.g. technology, methods, tools) to direct, implement and control software evolution [22]. 
The focus of this article resembles the ‘how perspective’ on software evolution. However, the authors felt that when 
talking about the purposeful actions taken to ensure that a software product develops in the desired direction, lifecycle 
management is a more suitable term.

2.2 Open-source software production in the public sector

The term open source can be used to refer either to a licensing model or a software-development model [23]. Open-
source licensing allows anyone to access the source code of the software, modify the software as desired and share it 
with others by redistributing a modified or unmodified version [24]. As a development model, open source refers to 
projects where relatively loosely coupled individuals and organizations collaborate to co-develop a piece of software 
together, typically working over the Internet in a distributed environment [25], [26]. Practices typically associated with 
open-source development include agile development, meritocratic governance and volunteer participation [26] for 
example.

During the last decade, government agencies all over the world have also become interested in open-source software 
development. Several communities or repositories for public sector open-source software development have sprung up, 
e.g. European-level Joinup, Finnish Yhteentoimivuus and Government GitHub. Joinup is meant for sharing and reusing 
open-source software, semantic assets and other inter-operability solutions for public administrations. Yhteentoimivuus 
is a delivery channel for public sector interoperability assets administrated by the Finnish Ministry of Finance. 
Government GitHub allows government agencies to share code and data on the social coding platform GitHub. While 
some government-driven open-source development projects have been abandoned, many others are active and continue 
to grow: CONNECT Health, OskarEMR, WorldWind and CAMAC, for example. Surprisingly, while there is a large 
body of research on open-source adoption by government organizations, e.g. [27]–[30], very few studies have looked at 
open-source production by government organizations. The latter are reviewed below.

Mergel [3]  studied a context where government agencies share code through a common repository but do not form an 
open-source project or otherwise co-ordinate collaboration. The most common activity was found to be forking: 
participants copied the code release of another organization and then possibly modified it for their own needs internally
[3]. Contribution back to the original project was not usual [3]. In other words, participants seemed to favor the 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 26 ►

relatively passive process of ‘copy and reuse’ over active collaboration. These findings on government code-sharing 
mechanisms are in line with [1]: the absence of lifecycle management practices leads to multiple forks and therefore the 
potential benefits of collaborative development are not fully achieved.

Bryant and Ramsamy [31] analyzed ten open-source projects where public sector agents are key contributors. There are 
also few academic case studies on specific open-source collaborations in the public sector [32]–[34]. Studies 
demonstrate that organizational and political factors play a large role in government open-source projects [31], just like 
many other IS projects in public sector [35]. Success factors include trust between key stakeholders, skilled in-house 
ICT personnel and steady financial support [31], [34]. Projects were found to be particularly vulnerable to sudden 
changes in political leadership and loss of key personnel [31], [34] . Some studies underline the importance of retaining 
the agility/flexibility inherent in the open-source model [31] while others emphasize managerial control [32]. Interest 
conflicts are also a common challenge. Feldman and Horan [32] note that public and private sector participants had 
varying perceptions of value propositions. Bryant and Ramsamy [31] report that end users experienced difficulties in 
making their ‘voices heard’ over bureaucrats whose budgets paid for the development.

2.3 The community-based software lifecycle management model

Kääriäinen et al. [1] introduced the community-based software lifecycle management model (CO-SLM) aimed 
particularly at public sector organizations that finance and develop software collaboratively. In this model the term 
lifecycle management refers to actions taken after the implementation of the first software version. The model is 
applicable to free/open-source software development but also to other collaborative development models, as long as the 
licensing is sufficiently permissive to prevent vendor-locking and allows sharing of source code with other 
organizations. The model is depicted in Figure 1. The community has a common repository where the baseline version 
of the software product is stored. Each organization can use their own software supplier to take care of deployment, 
maintenance and customization of the software. However, they are encouraged to inform the rest of the community on 
changes made and contribute them back to the baseline version for integration. The integration work is coordinated by a 
‘product manager’ and financed as agreed by the community (e.g. costs are equally shared by the community members). 
Parallel baseline versions are not maintained. The inclusiveness and openness of the development process are safe-
guarded via a ‘community manager’ role.

According to Kääriäinen et al. [1], the core community consists of public sector organizations which have primary 
authority over lifecycle management decisions. Thus, the community becomes a key decision-making arena: individual 
government organizations can influence the development goals and evolution of the baseline software product by 
participating in the community. Very much like in ‘traditional’ open-source projects, the community can also become 
an arena for collaborative learning and knowledge sharing (e.g. sharing solutions to common deployment problems) and 
even collective innovation (e.g. ideating new functionality). Outside of the core community but still functioning as key 
partners are software companies that are tendered to develop the software [1]. However, in some cases companies may 
also participate in the community as full community members if the intention is to support the application of the 
software for the private sector as well (note that the model itself does not limit this). The community manages the 
software according to the lifecycle management plan initiated by the financier of the first version [1]. The plan defines 
who will do what and when in relation to the lifecycle management activities (e.g. documentation requirements, 
versioning model, change and release management practices and financing). Basically, this is a similar job that 
companies make for software products they own. Similarly, companies have product managers who are responsible for 
coordinating the lifecycle management actions to software products. However, when the group of public sector 
organizations start to jointly manage SW products the case is just more complex since there has to be found a consensus 
between the organizations what are the responsibilities, financing model, rights, etc.



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 27 ►

Fig. 1. Community-based Application Lifecycle Management Model 

3. Research approach and methodology

The Ministry of Finance, our organization and a number of public sector organizations have collaborated in defining, 
piloting and deploying lifecycle management as depicted in Figure 2. The model creation process and the introduction 
to the models were published in [1]. This effort has since continued by piloting the planning of software lifecycle 
management in practice in the public sector. After successful piloting, the deployment of this model started in public 
sector organizations (the Finnish Ministry of Finance has accepted the model for production).

Prior and during the pilot phase, we developed the CO-SLM framework that is introduced in this article. The CO-SLM 
framework is a check list and documentation template to facilitate the definition of project-specific lifecycle 
management plans for software products. It helps software product communities to define a lifecycle management plan 
that describes who will do what and when related to the lifecycle management activities in the public sector software 
community environment. The framework has been tested and refined through deployment in real organizations. 

The research presented in this article has an interpretive and an interventionary stance and, therefore, the approach 
could be described as an ‘action case’. The term ‘action case’ was originally coined by Vidgen and Braa [36] to 
describe in-context information systems (IS) research which both aims to accumulate rich understanding on an 
organizational dilemma (interpretation) and to change the status quo in that organization (intervention). The 
interventionist phase typically takes place later in the research and involves the testing of the previously developed 
methods [36].

The CO-SLM framework was developed through iterative rounds of data collection and analysis. The primary data 
collection method was a series of six focus group discussions with information systems experts working in public sector 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 28 ►

organizations. There were participants from both municipal (e.g. City of Espoo, the Association of Finnish Local and 
Regional Authorities) and national (e.g. State Treasury, Finnish Ministry of the Environment) levels of government.  In 
addition, the representative from the Finnish Centre for Open Systems and Solutions (COSS) and a lawyer appointed by 
the Finnish Ministry of Finance participated some of the sessions. In the discussion sessions, participants were 
prompted to assess draft versions of the framework and their feedback was used to improve the framework iteratively.  
The point of saturation was reached after six consequent meetings. In addition to the focus group discussions, six 
Finnish, SME-sized software companies were asked to reply interview questions by email and clarifications were asked 
on the phone where necessary. These companies were selected for email interview due to prior collaborations with the 
public sector and consequent good knowledge of the domain. Complementary data collection methods also included
few workshops with the Finnish Ministry of Finance and informal discussions with different stakeholders.

Fig. 2. Timeline for the development of the CO-SLM model

The testing and modification of the CO-SLM framework took place ‘in situ’ at multiple organizations during the years 
2014 and 2015. For example, the National Land Survey of Finland (NLS) and the Ministry of Finance’s JulkICT Lab 
project have adopted the model for their operation. This article explains and analyses its deployment within “Oskari”, 
an NLS-led project which develops an open source geospatial toolkit. The reported experiences are based on two 
sources:  1) analytical observations from two of the authors who have been engaged in the Oskari project for a long time 
and (b) lengthy, semi-structured interviews of representatives from organizations who are key contributors to Oskari:  
National Land Survey of Finland (NLS), Finnish Transport Agency and The Finnish National Board of Antiquities.  
The interviewees were senior professionals who have co-ordinator responsibilities in the Oskari project, either in 
technical development or communications. Four out of five interviews were recorded and all were selectively 
transcribed. The thematic coding of the interview data followed a method called Template Analysis [37].

4. Framework for community-based lifecycle planning (CO-SLM framework)

In this chapter, we introduce a practical framework which helps with the application of the CO-SLM model into real-
life situations where public sector organizations wish to develop software collaboratively. The framework focuses on 
the governance aspect of lifecycle management. The origins of the framework come from the SCM research area. One 
part of the SCM is a planning activity that forms an SCM plan [38]. The basic idea of the SCM plan is to define who is 
going to do what, when, where and how in relation to the configuration management [39]. When applied to the context 
of CO-SLM the goal is to help a consortium of public sector organizations to define what to manage, who will do the 
management, how the management will be done and how to finance the management and further development of a 
software product. Financing practices were included in the framework because collective purchasing and cost sharing is 
a significant and obvious concern for public sector organizations. Figure 3 depicts the four main elements of the 
product-management plan and Tables 1-4 present each of them in detail. The framework can be used as a check list and 

Development and testing of the 
CO-SLM framework



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 29 ►

template to form a lifecycle plan for a software product that needs governance during its lifecycle. The following four 
tables then describe each element in detail. Each element contains issues that need to be considered and documented for 
any software under management. Therefore, when applying the CO-SLM model and CO-SLM framework it should be 
borne in mind that each software product – and its associated community – is unique. Thus the model and framework 
must be applied to suit the context. This means making adjustments to terminology and content when applicable. 

Fig. 3. Elements of the product-management plan

Table 1. What to manage?

Issues Description

Name of the software What is the name of the software program?

Licensing scheme What are licensing terms for the source code and documentation?

User organizations Which organizations will use the software?

Schedule for the first version When is the baseline version of the software schedule to be ready?

Distribution channel Where are the source code and documentation distributed?

Social media Which social media channels are used by the project?

Table 2. Who will manage?

Issues Description

Owner of the software product Who ‘takes care of’ the software product? Who owns the copyright to the software?

Community structure and 
membership

How is the consortium of organizations structured? Are there community and steering groups? Who has 
the highest decision-making authority concerning the software product and its evolution?

Product manager (Development 
Co-ordinator)

Who supervises the software's evolution towards the commonly agreed goals? How is the role mandated? 
Coordinates the software product-related lifecycle management activities so that the software product 
evolves in the direction that serves the needs of the community and business.

Community manager  (Openness 
Co-ordinator)

Who consolidates conflicts and protects the inclusiveness and openness of the development process? How 
is this role mandated? Coordinates the operation in the community. Checks that the licence is used as 
agreed by the community.



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 30 ►

Table 2. Who will manage? (cont.)

Issues Description

Repository maintainer(s) Who maintains the shared repository containing the source code and documentation?

Technical integrator 

(Baseline Developer)

Who develops and maintains the baseline version of the software? Who is responsible for integrating the 
desired customisations to the baseline as agreed by the community? If the integrator function is 
outsourced, who does the tendering?

Providers of customisation and 
deployment services

Who can provide customisation and deployment services on the software product to individual member 
organizations?

Table 3. How to manage?

Issues Description

Decision-making bodies Responsibilities for making managerial and technical decisions regarding software development. How are 
the decision-making bodies (e.g. managerial board, change control board, steering group) organised, 
elected and assembled for a meeting?

Collaborative development 
approach

What are the key principles guiding collaborative development? How are the development efforts co-
ordinated?

Road mapping Who is responsible for creating and updating the roadmap documents? Who is responsible for accepting a 
new roadmap? Where are the documents located?

Change management Who can initiate change requests, and how? Who analyses the change requests? How are requests
prioritised? Who makes the final decision on what is included in the next software version?  

Release management and 
versioning

How often are releases made? Who accepts a new baseline version for deployment? How are versions 
named/numbered?  

Urgent bug fixes Who/how to handle urgent bug fixes required to the baseline version already in deployment?

Communications Who defines and supervises the community’s communication strategy? What are the primary channels for 
internal and external communication?  

Documentation What documents are required and where are they located?

Table 4. How to finance?

Issues Description

Co-ordination work How are the efforts of the product and community manager financed?

Repository maintenance How is repository maintenance financed? 

Baseline development 
(Technical integrator)

How is the further development of the software product financed, including integration of external 
contributions? How to finance the bug fixes?

Deployment and 
customisation

Who pays for deployment and customisation work within an individual organization? 

Community and steering 
group meetings

Who pays for organising and participating in the community meetings and steering group meetings?  

New entrants Who can join the community and how? Are there any joining fees?



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 31 ►

5. Case study: Oskari software

This chapter presents a real-life case study where the CO-SLM framework has been applied. This chapter is structured 
as follows. The first sub-section introduces the Oskari case study. The second sub-section presents the lifecycle 
management plan for Oskari, which is based on the CO-SLM framework and briefly explains how the plan was made. 
The third sub-section reports on the benefits and challenges of lifecycle management as well as the experiences of using 
the framework in practice.

5.1 Introduction to the OSKARI case 

Oskari is an open source software originally developed by the National Land Survey of Finland. Initially, Oskari was 
developed to offer easy-to-use browser-based tools to access and re-use information from various data sources, 
including the INSPIRE Spatial Data Infrastructure (SDI) and the Finnish National SDI. Oskari software has been 
adopted by about a dozen public sector organizations in Finland, including the City of Tampere, Finnish e-Government 
portal, Finnish Transport Agency and the Helsinki Regional Environmental Authority. Two major international co-
operation projects utilising Oskari are currently running: European Location Services (ELS) and the Arctic Spatial Data 
Infrastructure (ASDI). The first independent Oskari installations are also emerging outside Finland: the National Land 
Survey of Iceland has set up Oskari, followed by Agency for Land Relations and Cadastre of the Republic of Moldovia.

Oskari makes it possible to view, visualize, analyze and even edit spatial data using just a web browser and standards-
compliant APIs, such as OGC WMS (Web Map Service), OGC WFS (Web Feature Services) and OGC WPS (Web 
Processing Service). One of the most used features of Oskari implementations is the embedded maps functionality. It 
enables the user to choose applicable map layers and to create a map client using a WYSIWYG user interface without 
programming skills. The embedded map client can then be placed on any website in a similar manner as in Google 
Maps, just by placing a piece of HTML code into the website. The difference is that Oskari leverages standards-
compliant APIs, which means that there are thousands of spatial data resources to choose from.

The Oskari network is a consortium of organizations that have entered into a formal agreement to co-develop the Oskari 
software. Oskari is published under open source licenses (MIT and EUPL) and therefore anyone can download the 
source code and utilise the software without joining the Oskari network. This means that anyone can try the software 
without committing to it or even without letting the network know about it, or use and extend it as they see fit. 
However, it is the appointed representatives of the steering committee member organizations who oversee which 
developed features or changes are integrated to the Oskari repository. The most important benefit of the steering 
committee membership is the ability to get support from other organizations and agree on the development goals 
together. 

5.2 Lifecycle management plan for Oskari 

The CO-SLM framework was used as a template and instructive guide when writing the lifecycle management plan for 
the Oskari software. The first draft of the plan was created by collecting existing practices found from websites and 
documents. Then the plan was discussed and refined to fill in any missing information. The plan template was also 
modified to be in the line with the terminology of software products and the software community. Finally, the plan was 
reviewed by the key members of the Oskari software team (the coordinator and the chairperson of the steering 
committee) and the plan was discussed and agreed (Version 1.0) in a steering committee meeting. The resulting plan is 
presented in the following tables 5-8 below. 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 32 ►

Table 5. Basic information about the Oskari software

Issues Details

Name of the software Oskari 

Licensing scheme Open Source. Source code can be utilised using an MIT licence or EUPL licence.

User organizations Public sector organizations, companies, non-profit organizations.

Schedule for the first 
baseline version

First public version was released 2011 (first version was financed by the National Land Survey Development 
Centre).

Distribution channel, 
repositories 

Documentation, examples, etc.: http://www.oskari.org
Source code: https://github.com/oskariorg 
General introduction to the software and the Oskari network (in Finnish): http://verkosto.oskari.org

Social media Twitter: the @oskari_org Twitter channel reports new releases, bug and security fixes as well as events related to 
Oskari. The release plan and roadmap are presented on a Trello board (in Finnish): http://oskari.org/trello Slack: 
Slack is a team communication platform: https://oskari.slack.com

Table 6. Roles and organizations

Issues Details

Owner of the software 
product

The Oskari network

Community structure and 
membership

The Oskari network is the development network for Oskari software that is open for anyone that signs the 
Memorandum of Understanding. Members (listed in Finnish): http://verkosto.oskari.org/oskari-verkosto/jasenet/

Organization of the Oskari Steering committee: representatives of projects that exploit Oskari and sign the 
Integration agreement, coordinator (chosen by steering committee) and 1-2 representatives from the Oskari 
network member organizations (nominated annually by the Oskari network).

Members (listed in Finnish):
http://verkosto.oskari.org/oskari-verkosto/ohjausryhma/

Technical Coordinator 
(Product manager) 

National Land Survey Development Centre (Jani Kylmäaho, Inkeri Lantta)
http://verkosto.oskari.org/oskari-verkosto/koordinaattori

The coordinator was selected by the Oskari steering committee. The coordinator coordinates (using the available 
resources) the software product-related lifecycle management activities so that the software product evolves 
optimally in the direction that serves the needs of the network and businesses. Furthermore, the coordinator 
facilitates the network and its activities, provides support to the projects utilising the software and works as a 
secretary for the steering committee. An architecture board meets 2 to 3 times per year to discuss and agree upon 
changes proposed to the technical architecture. 

Community manager 
(Openness co-ordinator)

The National Land Survey Development Centre has the responsibility for this task as well.

Repository maintainer(s) Technical coordinator

Integrator (Baseline 
developer)

The coordinator takes care of the integration work. The selected integrator is responsible for technical 
coordination, e.g. regarding the architecture of the software core. The integrator takes care of the integration 
work: coding, testing, version updates, documentation and any necessary IT support. The integrator reviews pull 
requests proposed by contributors, maintains repositories and core documentation and manages software 
versions, working in close cooperation with the coordinator.

Providers of customisation 
and deployment services

Each customer organization that applies Oskari software may select an IT provider for Oskari customisations 
without limitation. Customer organizations are encouraged to follow the architecture principles defined by the 
Oskari network if they wish to include modifications or extensions into the Oskari software.   



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 33 ►

Table 7. Practices for lifecycle management

Issues Details

Tasks of the decision-
making bodies

The Oskari network is open for anyone who signs the Memorandum of Understanding. The agreement 
describes the goals, tasks and decision-making practices for the Oskari network.

The network communicates information about the Oskari software and its development, as well as discussing 
the future needs of the software. It has a mailing list and communicates actively in social media. Network 
members are invited to networking days (the steering committee schedules networking days at least once a 
year). Agenda for networking days:

Status reporting and future activities
Presentations of projects and activities around the software
Selection of representatives of the steering committee

Furthermore, developer meetings take place and the architecture group assembles 3 to 4 times each year. The 
goal of the developer meetings is to collect input that supports the development of the Oskari software core. 

The tasks of the Oskari steering committee are:

Overseeing the network and planning activities
Choosing the coordinator and setting the annual fees
Prioritising the roadmap
Communicating with the coordinator

The steering committee also checks the status of the Oskari network (new members, etc.), communications 
activities, ongoing development projects, planned development projects, the roadmap and updated documents. 
The coordinator works as a secretary of the steering committee. The steering committee can invite the 
representatives of development projects to introduce and discuss their projects.

Collaborative development 
approach

The Oskari software is reused in development projects that need to create a web map application, a geoportal or 
to embed map clients into other web applications. The development project downloads the Oskari software and 
applies it; and further develops it, if needed. The development needs will be discussed with the coordinator and 
other development projects to avoid overlapping development work. The project is requested to follow the 
Oskari architectural principles and to provide modifications (Oskari open source licence) back to the Oskari 
network for integration. The Oskari steering committee decides what will be integrated into the next public 
Oskari release (or road mapped into future releases) based on the coordinator’s proposal. Development projects 
are requested to document new source code to facilitate reuse (a documentation guide can be found on the 
Oskari website). The coordinator is responsible for checking the documentation during integration.

Road mapping The coordinator maintains the Oskari roadmap (short-term roadmap and longer-term (1 year) roadmap) and is 
responsible for introducing new releases in steering committee meetings. The steering committee has the 
responsibility of checking and agreeing on any major changes before release. 

The roadmaps can be found at:

http://oskari.org/trello (in Finnish)
http://www.oskari.org/documentation/development/roadmap (in English)

Change management Requesting changes: Based on proposals from the development projects, the Oskari coordinator collects the 
new features that are proposed to be integrated into Oskari. Major changes in the software core are planned by 
the coordinator and presented to the Oskari architecture board, which discusses and agrees on the proposed 
changes.  All other remarks and proposals will be reported as GitHub issues.

Change proposal: The coordinator prepares the proposal. 

Change decision: The Oskari steering committee makes change decisions based on the coordinator’s proposals.

Change implementation: The coordinator arranges tendering for Oskari integration and core framework 
development work and makes acquisitions based on the tendering results. Tendering material templates are 
provided as guidance for other projects for their tendering purposes. The coordinator maintains the Oskari 
integration backlog in cooperation with the integrator. The coordinator updates the backlog based on the agreed 
integration tasks. The integrator is responsible for defining and scheduling more detailed tasks and setting 
foreseeable version numbers for backlogged items. The selected integrator takes care of the integration work: 
coding, testing, version updates, documentation and any necessary IT support.



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 34 ►

Table 7. Practices for lifecycle management (cont.)

Issues Details

Release management and 
versioning

After integration and testing, the integrator prepares a software version for release. The version numbering 
scheme is as follows:

X = Major version with significant changes in architecture and/or APIs of the software: planned in 
the Oskari roadmap.
Y = Minor version: planned in the Oskari roadmap.
Z = Maintenance version: other small changes and bug fixes are marked with a maintenance version 
number. 

The coordinator introduces a new software release proposal (major or minor release) for the Oskari steering 
committee who check and agree on major integrations before the release. The steering committee is informed of 
any major plans to change the software core. The committee schedules the major changes to ensure smooth 
transition to the new version within member organizations.

The coordinator takes care of any other necessary small changes and bug fixes (maintenance releases). 
Instructions on how to contribute to Oskari development using GitHub branches: 
http://www.oskari.org/documentation/development/how-to-contribute

Communications The Oskari steering committee is responsible for the communication plan. The coordinator prepares change 
requests to the communication plan and the steering committee agrees them. The coordinator is responsible for 
implementing the communication activities as scheduled.  

Documentation Functional specification: http://www.oskari.org/

User guides:
Developer guides for applying Oskari: http://www.oskari.org/
http://oskari.org/examples/rpc-api/rpc_example.html
End-user guides: ELF service http://demo.locationframework.eu/
National Geoportal Map window: http://www.paikkatietoikkuna.fi/web/en/user-guide

Installation and operational environment: http://oskari.org/documentation/

Technical description and instructions for Oskari developers: http://oskari.org/documentation/

Table 8. Financing practices

Issues Details

Coordinator Mostly integration fees collected from organizations who have signed the Integration agreement.

Community manager Financed as part of the coordinator’s work.

Integrator Will be financed by the partners who have signed the Integration agreement (annual integration fee). The 
coordinator and development projects can also negotiate the sharing of integration costs if the integration fee 
turns out to be too low. 

Oskari development National Land Survey Development Centre/SDI team. Oskari network. Project funding.

Deployment and 
customisation

Each organization takes care of its own funding to apply the Oskari software.

Network and steering 
committee meetings

Each organization takes care of its own participation expenses. Meeting costs are covered by the integration fee.  

New entrants Oskari network: Free of charge. New members have to sign the Memorandum of Understanding.
Oskari steering committee: steering committee members (development projects) sign the Integration agreement
where they agree the annual integration fee. The steering committee agrees on the annual integration fee. 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 35 ►

6. Experiences on deploying CO-SLM

This chapter reports experiences, particularly benefits, challenges and lessons from deploying CO-SLM model and 
framework within the Oskari project.

6.1 Product acceptance and quality

CO-SLM model and framework provided a strong governance model for cooperation by clearly defining 
responsibilities and processes.  As one of the interviewees point out, “lifecycle management is what actually turns an 
open software application into a software product…”.  Being a product means the availability of technical support and 
documentation, version schemes and roadmaps for future development, for example. This allows potential users to 
evaluate the suitability of the software to their current and future needs. The productization also includes 
communications and marketing activities, which – together with the robust management model – have helped to 
improve the “brand” of the software and make it more attractive to adopt. Overall, many interviewees talked about the 
Oskari brand and its importance to project acceptance.

The Oskari project had recently entered incubation process to join the OSGeo foundation, a not-for-profit legal entity 
supporting the open source geospatial community. This is expected to further improve the Oskari brand and acceptance 
of the software product, also internationally, but the process is in early stage. Generally, presence on platforms like 
GitHub and OSGeo where curious outsiders can explore the software without making financial or other commitments, 
is seen as a key to identifying stakeholders and growing the user base. One of the interviewees expressed this as 
follows:

OsGEO, GitHub and other platforms where anybody can participate in the discussion are really good. You do 
not have to identify all stakeholders in advance, but just throw out something and interested parties will come 
to you. We have received inquiries from as far as Moldova…[ ]... If you want “fresh blood” [into the project], 
it is great that people can start following you without commitment and then deepen their involvement 
gradually.

The CO-SLM model has also helped to improve non-functional qualities of the software, particularly adaptability and 
extensibility. When a software is developed by a single organization alone, hectic demands and limited resources can 
cause focusing on immediate user needs at the expense of long-terms software quality, e.g. architecture design that 
allows software to adopt to future needs. Consequently, the software becomes hard to maintain within a single 
organization and impossible to share with other organizations without significant refactoring. However, CO-SLM 
model forces the owner to look at the software from a wider perspective, beyond their own immediate use cases. Each 
modification to the baseline version is considered from the viewpoint of multiple organizations, leading to improved 
adaptability. One informant explained: 

Our understanding [of software design] has broadened so much after we started talking with other 
organizations who have similar needs.  It was a bit like ‘oh, right, we do not have to reinvent that wheel’. We 
have learned that we can develop things collaboratively even though the needs are not exactly the same”.

The CO-SLM model has also helped to secure resources for developing project-wide testing methods and tools 
available to all member organizations. This has reportedly decreased the number of software bugs in new releases.

6.2 Resource pooling 

6.2.1 Human resources

For more than two decades, public sector organizations in Finland have been inclined to outsource all their software-
development activities.  This has caused a shortage of skilled in-house ICT personnel in many organizations, making it 
harder for them to take responsibility for software development and lifecycle activities. For example, when 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 36 ►

organizations buy Oskari implementations from software companies, they may not know how to communicate key 
architectural principles to the companies or conduct tendering process in a manner that obligates companies to follow 
them. 

This has sometimes led to poor-quality code contributions, e.g. new functionalities have been placed in illogical parts of 
code structure and/or interfaces are used in a non-standardised way. The resulting problems require significant effort 
from the technical coordinator (NLS) who underlines that, in the future, more effort must be put into ensuring a 
common understanding of proper architecture principles and their inclusion in the request for tenders.

The alternative strategy to address human resource deficits has been to acquire manpower from software companies in a 
form of ‘body shopping’. This differs significantly from a process where public sector organizations place a request for 
tenders (RFT) for software implementation. As the bidders aim to offer the lowest possible price, no requirements apart 
from those explicitly mentioned in the RFT will be taken into account. According to both the interviewees and prior 
studies [35], [40], the heavy-weight requirements specification (for RTF) makes it difficult to incorporate new ideas 
afterwards and can thus hinder innovativeness. Oskari community has noticed that, in complex development cases, it is 
often better to tender for individual developers instead of tendering for specific implementations. This approach has 
enabled agile software development processes and intensified knowledge exchange between public- and private-sector 
organizations. In this model, the leadership of the software-development process stays entirely with the public sector, 
which again requires specific skills, different from those required by mere software acquisition.

It was also repeatedly noted that, while CO-SLM model does indeed require new skills, it also creates an environment 
for inter-organizational learning and thereby helps building new skills. For example, interviewees gave statements like  
“inter-organizational learning is a key benefit [from Oskari participation]”, “even organizations who do not contribute 
code have provided much valuable inputs [of skills and ideas]” and “we have learned so much just by talking to other 
organizations with similar needs”.

6.2.2 Financial resources

Because Oskari is open source licenced, any organization could download it and use it without participating in 
development expenses. However, the majority of organizational users have chosen to pay an integration fee. The 
payment ensures them a membership in the steering group and an opportunity to influence the future development of 
the software. By participating in the decision-making, organizations can ensure that the software will continue to meet 
their needs in the future. This has been enough to motivate organizations to contribute financially, and, thus, open 
source licensing has not lead to a significant ‘free riding’ problem.

Despite this, financing the Oskari baseline software development has not been easy. The relatively low integration fee 
(currently EUR 5,000 per organization annually) has been sufficient to cover the integration, co-ordination and 
communication activities of the Oskari community but not maintenance of the baseline software. Steering committee 
members felt it was impossible to increase the fee without forcing member organizations to go through a significant 
amount of bureaucracy. For long time, the development of the baseline version was paid for entirely by the National 
Land Survey of Finland, which made the project extremely dependent on a single organization. However, the increasing 
number of participants has recently improved finances and Oskari community is moving towards a model where it is 
less dependent on NLS funding.

In general, interviewees felt that the CO-SLM model has enabled significant savings because development cost can be 
split with others. One of the informants put it as follows:

One of the major goals of this collaborative development model has been to save funds. I feel that we have 
achieved that… We can go to a steering group and split up tasks [between organizations], like ‘you do this and 
I do that’… If we did not have this collaboration, we would have had to pay everything alone.

In practice, there were two ways to finance major extensions to Oskari: (1) some member organizations pay for Oskari 
extensions alone but comply with architectural rules and share them with others for free and (2) some organizations 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 37 ►

form ‘mini consortia’ with other organizations who needed the same functionality and make the requirement analysis, 
tendering and financing jointly. The latter was considered as more mature form of co-development but required more 
inter-organizational communication and trust. One interviewee explained:

The first level is that each organization manages their own projects but follows some commonly agreed principles.
Meanwhile, others are waiting to get their hands on it. This is the most common way because it is fast and easy if 
you have money [within one organization]. The second level involves collaborative financing; it is much more 
complex and requires trust. One organization is chosen as a leader and then the leader organization makes 
consortium agreement with other organizations to co-finance and co-develop something together. 

6.3 Project sustainability

Because big money is circulated in public sector ICT procurement, successful new models, which create savings for 
governmental organizations, unavoidably shrink revenues of some companies. Consequently, Finnish Location 
Information Cluster, an advocacy group of some established companies offering geospatial solutions, has been very 
critical of the Oskari project and tried to create political pressure against it. While no significant harm has been caused, 
aggressive industrial lobbying was noted to be a risk factor which can negatively influence sustainability of any 
government-driven open source project. CO-SLM approach partially helped to tackle the issue, e.g. by resourcing 
communication and public relations (PR) activities.

However, with Oskari, the biggest sustainability challenge is to decrease the project’s dependence on the coordinator, 
NLS, and thus make it less vulnerable to changing management interests and/or shifts in key personnel within that 
organization. This was expressed in several interviews, for example as follows: “even though NLS has been a primus 
motor in the start, there is no particular reason why it should remain as a primary or principal actor” and “other actors 
must take more responsibility because we [the project] should not be overly dependent on NLS”.

Significant informing and marketing effort has been undertaken to attract more organizations to the Oskari network. 
When more organizations are participating, more financing will come in and relevant technical knowledge will be 
distributed among multiple organizations and people. If the software is strategically important to a sufficiently large 
number of organizations, the development will continue even if the NLS decides to drop out. The project is now 
entering a new phase as the co-ordinator role is planned to be shifted from NLS to an outsourced project organization 
whose costs are covered with integration fees.

7. Discussion 

7.1 Lessons for researchers and practitioners

For practitioners in the public sector who consider engaging their organizations in collaborative open source projects, 
the case study highlights the importance of ensuring sufficient in-house IS skills. This is in line with prior literature 
pointing out in-house IS skills as a key success factor to open source and other agile projects on the public sector [32], 
[35]. Even though it is possible and often recommended [34] to exploit external experts, open source development 
requires the public sector to take on the responsibility of a software owner. This requires both sufficient technical 
competence and knowledge in software lifecycle management. To support the latter, the CO-SLM framework acts as a 
document template for planning software governance and lifecycle activities.

The second lesson for practitioners has to do with the importance of enabling community growth. A ‘critical mass’ of 
active organizational users helps to ensure steady funding and guarantee project continuity, even if one dominant 
organization drops out. This is also in line with prior studies which have emphasised versatile developer and donor 
bases as a success factor to all types of open source projects [41], [42]. In part, CO-SLM supports community growth 
by making the software more attractive to new users. This is because clarified governance processes and responsibilities 
make the whole process more predictable and manageable. Software must also be ‘generic’ enough so that it can be 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 38 ►

adapted to the diverse use cases for heterogeneous organizations. As the software is developed further, one must keep a 
multi-organizational perspective in mind.

For researchers and consultants, a key lesson relates to appreciating the huge diversity of organizations and software 
projects. Due to the heterogeneity of environments, it has proven pointless to develop a detailed predefined set of 
lifecycle management practices for all public sector driven open source projects. We noticed that a high flexibility of 
the framework is more important, taking, e.g. the form of ‘check lists’ on lifecycle management issues to be taken into 
account. Each project can then take the framework as a basis and develop lifecycle management practices suitable to 
their particular circumstances. If one wishes to develop ‘best practices’ on lifecycle management, one must focus on a 
particular software domain and type of application, not public sector driven OSS projects in general.

7.2 Limitations of the study and further research

While diverse stakeholders were involved in the drafting and development of the CO-SLM framework (see Section 3 
for details), we did not interview all members of the Oskari network after its deployment. Because we had an 
opportunity to interview only people from three heavily-engaged organizations (see chapter 3), the results are biased 
towards their perspectives. We acknowledge that ‘peripheral’ members of the Oskari community may have different 
perspectives that are not visible in this study. We also understand that a single case study is not enough to make 
definitive conclusions regarding the applicability of the framework in diverse public sector environments. Our next step 
is to deploy the CO-SLM model and framework in other public sector open source software development efforts and, 
thereby, to gain further experience on their applicability in different organizational settings. We also hope to collect and 
analyse more qualitative and quantitative data on the supposed benefits of the CO-SLM approach.

8. Conclusions

This paper introduced the CO-SLM model and flexible framework developed for helping public sector organizations to 
follow sound lifecycle management practices in open source development projects. The model and the framework were 
successfully deployed in a real-life setting, where a dozen public sector organizations were jointly developing spatial 
data analysis software under an open source licence. The adoption of CO-SLM benefited the software project by 
encouraging community growth, improving the ‘image’ of the software and enhancing software quality, especially 
regarding software maintainability and extensibility. Challenges stemmed from deficit software development and 
acquisition skills in some organizations and insufficient funding due to relatively low membership fees. Furthermore, 
the study shows that a project’s financial and technical dependence on the leading organization should be decreased in 
the future to lower risks and ensure long-term sustainability.

9. References

[1] J. Kääriäinen, P. Pussinen, T. Matinmikko, and T. Oikarinen, “Lifecycle Management of Open-Source Software in 
the Public Sector A Model for Community-Based Application Evolution,” ARPN Journal of Systems and Software, vol. 
2, no. 11, pp. 279–288, 2012.

[2] J. C. Colannino, “Free and Open Source Software in Municipal Procurement: The Challenges and Benefits of 
Cooperation,” Fordham Urban Law J., vol. 39, p. 903, 2012.

[3] I. Mergel, “Open collaboration in the public sector: The case of social coding on GitHub,” Gov. Inf. Q., vol. 32, no. 
4, pp. 464–472, Sep. 2015.

[4] Finnish Ministry of Finance, “Sade-ohjelma: open source approach,” Helsinki, Finland: VM, 2012. Available: 
https://www.europeandataportal.eu/data/en/dataset/sade-ohjelma-avoimen-lahdekoodin-toimintamalli00

[5] JHS, JHS 169 Use of Open Source software in Public Administration. Helsinki, Finland: JUHTA (Advisory 
Comittee on Information Management in Public Administration), 2012.



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 39 ►

[6] A. Nurmi, “Coordination of Multi-Organizational Information Systems Development Projects – Evidence From Two 
Cases,” J. Inf. Technol. Theory Appl., vol. 10, 2010.

[7] T. A. Pardo, A. M. Cresswell, F. Thompson, and J. Zhang, “Knowledge sharing in cross-boundary information 
system development in the public sector,” Inf. Technol. Manag., vol. 7, no. 4, pp. 293–313, Dec. 2006.

[8] J. Kääriäinen, “Towards an application lifecycle management framework,” VTT Publications, no. 759. Espoo, 
Finland: VTT Technical Research Centre of Finland, 2011.

[9] S. Chanda and D. Foggon, “Application Lifecycle Management,” in Beginning ASP. NET 4.5 Databases, Berkeley, 
USA: Apress, 2013, pp. 235–249.

[10] K. Vlaanderen, I. Van de Weerd, and S. Brinkkemper, “Improving software product management: a knowledge 
management approach,” Int. J. Bus. Inf. Syst., vol. 12, no. 1, p. 3, 2013.

[11] G. Weiß, G. Pomberger, W. Beer, G. Buchgeher, B. Dorninger, J. Pichler, H. Prähofer, R. Ramler, F. Stallinger, 
and R. Weinreich, “Software engineering - Processes and tools,” Hagenb. Res., no. 1, pp. 157–235, 2009.

[12] D. Chappell, “What is application lifecycle management,” David Chappel and Associates, 2008,  Available: 
http://davidchappell.com/writing/white_papers/What_is_ALM_v2.0--Chappell.pdf

[13] C. Schwaber, “The Expanding Purview Of Software Configuration Management”, Forrester Research, 2009.

[14] E. H. Bersoff, “Elements of Software Configuration Management,” IEEE Trans. Softw. Eng., vol. SE-10, no. 1, pp. 
79–87, 1984.

[15] J. Estublier, “Software configuration management,” Proc. Conf. Futur. Softw. Eng. - ICSE ’00, pp. 279–289, 2000.

[16] J. Koskela, “Software configuration management in agile methods,” VTT Publications, no. 514. Espoo, Finland: 
VTT Technical Research Centre of Finland, pp. 3–54, 2003.

[17] M. E. Moreira, Software configuration management implementation roadmap. Chichester, England: John Wiley & 
Sons, 2004.

[18] J. Estublier, D. Leblang, A. Van Der Hoek, R. Conradi, G. Clemm, W. Tichy, and D. Wiborg-Weber, “Impact of 
software engineering research on the practice of software configuration management,” ACM Trans. Softw. Eng. 
Methodol., vol. 14, no. 4, pp. 383–430, 2005.

[19] T. Mens and S. Demeyer, Software evolution. Springer Berlin Heidelberg, 2008.

[20] B. W. Boehm, “A spiral model of software development and enhancement,” Computer (Long. Beach. Calif)., vol. 
21, no. 5, pp. 61–72, 1988.

[21] M. Lehman and J. C. Fernáandez-Ramil, “Software Evolution,” Softw. Evol. Feed. Theory Pract., vol. 27, no. 4, 
pp. 7–40, 2006.

[22] T. Mens, “Introduction and roadmap: History and challenges of software evolution,” in Software Evolution, T. 
Mens and S. Demeyer, Eds. Berlin, Heidelberg, Germany: Springer, 2008.

[23] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre open-source software development: What we know 
and what we do not know,” ACM Comput. Surv., vol. 44, no. 2, p. 7, 2012.

[24] Open Source Initiative, “The Open Source Definition,” Open Source Initiative, 2013. [Online]. Available: 
http://opensource.org/osd.

[25] J. West and S. O’mahony, “The Role of Participation Architecture in Growing Sponsored Open Source 
Communities,” Ind. Innov., vol. 15, no. 2, pp. 145–168, Apr. 2008.

[26] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre open-source software development,” ACM 



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 40 ►

Comput. Surv., vol. 44, no. 2, pp. 1–35, 2012.

[27] B. Rossi, B. Russo, and G. Succi, “Adoption of free/libre open source software in public organizations: factors of 
impact,” Inf. Technol. People, vol. 25, no. 2, pp. 156–187, Jun. 2012.

[28] M. Shaikh and T. Cornford, “Navigating Open Source Adoption in the Public Sector,” 18th Am. Conf. Inf. Syst. 
(AMCIS 2012), pp. 1–10, 2012.

[29] J. Allen and D. Geller, “Open source deployment in local government: Rapid innovation as an occasion for 
revitalizing organizational IT,” Inf. Technol. People, vol. 25, pp. 136–155, 2012.

[30] O. Jokonya, “Investigating open source software benefits in public sector,” in Proceedings of the Annual Hawaii 
International Conference on System Sciences, 2015, vol. 2015–March, pp. 2242–2251.

[31] D. Bryant and P. Ramsamy, “Public Administration Code Release Communities,” Madrid, Spain: ONSFA, 2014.

[32] S. S. Feldman and T. A. Horan, “Collaboration in electronic medical evidence development: A case study of the 
Social Security Administration’s MEGAHIT System,” Int. J. Med. Inform., vol. 80, no. 8, 2011.

[33] M. Liu, B. C. Wheeler, and J. L. Zhao, “On Assessment of Project Success in Community Source Development,” 
Proc. Twenty Ninth Int. Conf. Inf. Syst. (ICIS 2008), 2008.

[34] M. Liu, X. Wu, J. Leon Zhao, and L. Zhu, “Outsourcing of Community Source: Identifying Motivations and 
Benefits.,” J. Glob. Inf. Manag., vol. 18, no. 4, pp. 36–52, 2010.

[35] J. Nuottila, K. Aaltonen, and J. Kujala, “Challenges of adopting agile methods in a public organization,” 
International Journal of Information Systems and Project Management, vol. 4, no. 3, pp. 65–85, 2016.

[36] R. Vidgen and K. Braa, “Balancing interpretation and intervention in information systems research: the action case 
approach,” in Information Systems and Qualitative Research, 1997, pp. 524–541.

[37] N. King, “Template analysis. Qualitative methods and analysis in organizational research: A practical guide. ,” in 
Qualitative methods and analysis in organizational research: A practical guide, 1998, pp. 118–134.

[38] A. Leon, Software Configuration Management Handbook. Boston, USA: Artech House, 2005.

[39] F. J. Buckley, Implementing Configuration Managment, Hardware, Software and Firmware. IEEE Standards 
Office, 1996.

[40] P. F. Manso and A. Nikas, “The application of post tender negotiation procedure: A public sector procurement 
perspective in UK,” International Journal of Information Systems and Project Management, vol. 4, no. 2, pp. 23–39, 
2016.

[41] I. Chengalur-Smith, A. Sidorova, and S. Daniel, “Sustainability of Free/Libre Open Source Projects: A 
Longitudinal Study,” J. Assoc. Inf. Syst., vol. 11, no. 11, 2010.

[42] M. Stuermer, G. Abu-Tayeh, and T. Myrach, “Digital sustainability: basic conditions for sustainable digital 
artifacts and their ecosystems,” Sustain. Sci., vol. 12, no. 2, pp. 247–262, 2017.



Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 41 ►

Biographical notes

Katja Henttonen
Ms. Katja Henttonen is working as a digitalization specialist at VTT Technical Research 
Centre of Finland.  She has over 15 years of experience in software development gained
in both the public and private sector. Since joining VTT, she has worked in various 
research projects around the following topics: open source systems, open innovation and 
collaborative economy. She holds a M.Sc. degree in ICTs and socio-economic 
development from the University of Manchester and is studying towards a Phd.

www.shortbio.org/katja.henttonen@vtt.fi

Jukka Kääriäinen 
Dr. Jukka Kääriäinen works as a Senior Scientist at VTT Technical Research Centre 
of Finland Ltd in the Digital Transformation team. He has received PhD degree in 
2011 in Information Processing Science from the University of Oulu. He has over 10 
years of experience with product management, configuration management and 
lifecycle management. He has been involved in various European ITEA, ITEA2 and 
Artemis research projects.

www.shortbio.org/jukka.kaariainen@vtt.fi

Jani Kylmäaho
Mr. Jani Kylmäaho is currently employed at the National Land Survey of Finland, where his 
position is Head of Development for topographic data production. Jani worked as the product 
owner for the Oskari open source software until January 2017. He has been working with 
OGC services and both national and international SDIs for 15 years. He has extensive 
experience of open source software, agile methods, collaboration networks as well as 
INSPIRE implementation. Jani holds an MSc degree in Geography from the University of 
Helsinki, Finland.

www.shortbio.org/jani.kylmaaho@nls.fi



VI 

HEALTH AND ORCHESTRATION OF PUBLIC-SECTOR 
OPEN-SOURCE SOFTWARE ECOSYSTEMS: ROLES, RULES, 

AND TOOLS 

by 

Katja Henttonen, Mirja Pulkkinen, & Pasi Tyrväinen, 2024 

Accepted to the Scandinavian Journal of Information Systems (SJIS), 
expected to be published in December 2024 

Request a copy from the author. 


	Abstract
	Tiivistelmä (Abstract in Finnish)
	Preface
	Figures
	Tables
	Contents
	List of Included Articles
	1 introduction
	1.1 Background and Motivation
	1.2 Goal and Research Questions
	1.3 Terminology
	1.3.1 Definitions of Key Terms
	1.3.2 Evolution of Terminology

	1.4 Structure of this Thesis

	2 essentials of Free and  open-source software
	2.1 Competing and Complementary Ideologies
	2.2 Types of FOSS Licences
	2.3 Evolution of the FOSS Development Model

	3 FOSS Governance within Communities, Ecosystems, and Organisations
	3.1 FOSS Community Governance
	3.1.1 Early Research on FOSS Governance
	3.1.2 Recognition of Various Governance Models
	3.1.3 Motivating and Coordinating Work in FOSS Communities
	3.1.3.1 Resolving Collective Action Dilemmas
	3.1.3.2 Work Co-ordination and Quality Assurance


	3.2 Organisational FOSS Governance
	3.3 FOSS Ecosystem Governance
	3.4 Desired Outcomes of Governance
	3.5 Summary of Literature Review

	4 Research design and methodology
	4.1 Research Approach and Philosophical Stance
	4.2 Case Study Designs
	4.3 Data Collection Methods
	4.4 Data Analysis Methods
	4.4.1 Qualitative Content Analysis
	4.4.2 Specialised Analytical Methods


	5 Overview of the included articles
	5.1 Article I: Contributing to Eclipse – A Case Study
	5.2 Article II: Open Source-Based Tools for Sharing and Reuse of Software Architectural Knowledge
	5.3 Article III: Libre Software as an Innovation Enabler in India – Experiences of a Bangalorean Software SME
	5.4 Article IV:  Managerial Perspective of Open Collaboration and Networked Innovation
	5.5 Article V: Life-Cycle Management in Government-Driven Open-Source Projects – Practical Framework
	5.6 Article VI:  Health and Orchestration of  Public-Sector Open-Source Software Ecosystems: Roles, Rules, and Tools

	6 Results
	6.1 FOSS Governance for Infrastructural Sustainability
	6.1.1 Community Governance and Infrastructural Sustainability
	6.1.2 Ecosystem Governance and Infrastructural Sustainability
	6.1.3 Corporate Governance and Infrastructural Sustainability

	6.2 FOSS Governance for Resource-Based Sustainability
	6.2.1 Governing Input Resources
	6.2.1.1 Community Governance of Input Resources
	6.2.1.2 Ecosystem Governance of Input Resources
	6.2.1.3 Corporate Governance of Input Resources

	6.2.2 Governing Output Resources
	6.2.2.1 Community Governance of Output Resources
	6.2.2.2 Ecosystem Governance of Output Resources
	6.2.2.3 Corporate Governance of Output Resources


	6.3 FOSS Governance for Interactional Sustainability
	6.3.1 Community Governance and Interactional Sustainability
	6.3.2 Ecosystem Governance and Interactional Sustainability
	6.3.3 Corporate Governance and Interactional Sustainability

	6.4 Summary of FOSS Governance and Sustainability
	6.4.1 Levels of FOSS Governance and Their Inter-dynamics
	6.4.2 Governance Supporting a Positive Feedback Loop
	6.4.3 Differences Between Public and Private Sector FOSS Governance


	7 Discussion
	7.1  FOSS Governance Levels
	7.2 FOSS Sustainability Types
	7.3 Limitations and Methodological Reflections

	8 Conclusion
	8.1 Contributions to Researchers
	8.2 Contributions to Practitioners
	8.3 Future Research Directions

	Yhteenveto (Summary in Finnish)
	REFERENCES
	ADP545A.tmp
	1 Introduction
	2 Approach for contributing to Eclipse
	3 Case study: Stylebase for Eclipse
	3.1. Overview
	3.2. Expandable plug-in architecture
	3.3. Founding a community

	5 Experiences
	5.1. Starting up the project- project hosting
	5.2. Integrating OS components - license issues
	5.3. Attracting users and contributors - marketing activities

	6 Conclusions
	Acknowledgements
	References




