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Abstract
1.	 Differential equation models are powerful tools for predicting biological systems, 

capable of projecting far into the future and incorporating data recorded at ar-
bitrary times. However, estimating these models' parameters from observations 
can be challenging because numerical methods are often required to approxi-
mate their solution. An example of such a model is the allometric trophic network 
model, for which studies considering its inverse problem are limited, particularly 
in the Bayesian framework. Here we develop a variational Bayesian method for 
parameter inference of the allometric trophic network model and explore how 
accurately we can recover its parameter values.

2.	 We represent the model as a Bayesian neural network, which combines an arti-
ficial neural network with Bayesian inference, using a surrogate for the posterior 
distribution of model parameters, and train this model by evolutionary optimi-
zation to avoid potentially costly computation of the gradient with respect to 
the model parameters. Using synthetic data, we compare the accuracy of this 
variational inference to ordinary least squares estimation. To reduce the num-
ber of estimated parameters, we focus on the inference of functional response 
parameters.

3.	 Our variational Bayesian method yields parameter estimates that are comparable 
to the ordinary least squares results in terms of accuracy. The method provides a 
promising approach for including uncertainty quantification in parameter estima-
tion, which the simple ordinary least squares approach as it is does not address. 
Regardless of the method, potential multimodality of the inference problem is 
nonetheless important to keep in mind.

4.	 The present study suggests a technique for parameter inference of ordinary dif-
ferential equation models in the Bayesian context. We propose the method es-
pecially for validation of the allometric trophic network model against empirical 
data.

K E Y W O R D S
allometric trophic network, Bayesian inference, Bayesian inverse problem, Bayesian neural 
network, evolutionary optimization, food web, ODE system
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1  |  INTRODUC TION

Predictive modelling has been widely used in ecology for decades 
and its utility continues to increase as the need for ecological fore-
casts that can inform ecosystem management and conservation is 
expanding (Barros et  al.,  2023; Bodner et  al.,  2021; Dietze,  2017). 
The task for forecasting is imperative today, as biodiversity losses, 
unexpected fires, and extreme weathers are testing the resilience 
and recovery ability of natural systems. To these ends, potential 
tools for making future predictions about biological systems are 
continuous-time models that describe the dynamics of the system 
over time by differential equations. In principle, such models can be 
used for making predictions far to the future and are able to incorpo-
rate data recorded at arbitrary times (Chen et al., 2018). Nonetheless, 
estimation of these models' parameters from observations can be 
challenging because they are often complex and do not permit an 
analytical solution, therefore requiring numerical methods to ap-
proximate their solution (e.g. Chen et al., 2018; Ghosh et al., 2021; 
Valderrama-Bahamóndez & Fröhlich, 2019). This may limit validation 
of the predictive ability of these models against empirical data.

An example of such a differential equation model is the bioen-
ergetic (Yodzis & Innes, 1992), or allometric trophic network (ATN) 
model (Boit et al., 2012; Brose et al., 2006), which offers powerful 
tools for predicting the dynamic interactions within ecosystems. 
Otherwise similar to the traditional Lotka–Volterra (Lotka,  1925; 
Volterra, 1926) predator–prey model, which describes the dynamics 
of interacting predator and prey populations by ordinary differen-
tial equations (ODEs), the ATN model adjusts predator consump-
tion to prey density and relates the model parameters to species' 
body masses and their metabolic categories using allometric rela-
tionships (Williams et al., 2006). By encapsulating the principles of 
energy flow and biomass distribution across different trophic levels 
in a general manner, these models not only contribute to the de-
velopment of basic theory of dynamically interacting species (Boit 
et al., 2012) but also provide critical insights into the mechanisms 
underlying ecological stability (Brose et al., 2006) and the impact 
of anthropogenic changes (e.g. Eloranta et  al.,  2023; Kuparinen 
et al., 2023; Perälä et al., 2023; Uusi-Heikkilä et al., 2022).

Despite the ATN model has recently gained a lot of inter-
est in research (e.g. Ávila Thieme et  al.,  2021; Kath et  al.,  2018; 
Martinez, 2020, in addition to the aforementioned papers), only a 
few studies (Banks et al., 2016, 2017; Boit et al., 2012; Koen-Alonso 
& Yodzis, 2005) have considered whether the ATN model can pre-
dict abundances in a real system. These studies range from model-
ling part of an ecosystem (Koen-Alonso & Yodzis, 2005) with only a 
few species to a large whole lake system with 24 functional groups 
(guilds). Overall, these studies obtained good resemblance with the 
empirical data but also reported inaccuracy in some cases (Banks 
et al., 2016, 2017; Koen-Alonso & Yodzis, 2005).

To calibrate the ATN model to empirical data, the studies with 
trophic networks of a relatively small size and low number of ATN 
model parameters to be estimated (Banks et al., 2016, 2017; Koen-
Alonso & Yodzis, 2005) utilized numerical optimization methods, 

while the authors of the larger model (Boit et al., 2012) reported to 
have calibrated their unknown parameters manually. Manual cali-
bration usually refers to the comparison of results obtained by using 
different parameter values, chosen by the modeller. Specifically, 
the studies utilizing automatic calibration (Banks et al., 2016, 2017; 
Koen-Alonso & Yodzis,  2005) applied the ordinary least squares 
(OLS) or maximum likelihood estimation (MLE). While these stud-
ies included sensitivity analysis (Banks et al., 2016, 2017) or ex-
ploration of the likelihood for parameters in the neighbourhood of 
its maximum (Koen-Alonso & Yodzis, 2005) to address parameter 
uncertainty and its impact on the predicted dynamics, a strictly 
Bayesian approach has not been applied to the inverse problem 
of the ATN model. Furthermore, only Banks et  al.  (2016, 2017) 
considered how accurately the parameter values can actually be 
recovered from observations. When testing the inverse problem 
of the ATN model on synthetic data, they found that the solution 
did not necessarily give the same parameter values as they used 
to generate the data.

Overall, calibration of the ATN model to observations can face 
several kind of challenges. In addition to the computational chal-
lenges associated with the parameter inference of ODE models in 
general, the solution of the inverse problem of the ATN model can 
easily appear as non-unique, or, more generally, that the inverse 
problem of the ATN model is ill-posed (there is no uniqueness or sta-
bility of solutions; Kabanikhin, 2008). Indeed, as biological data are 
often very noisy and the ATN model can produce various kinds of 
dynamics from stable diminished oscillations to chaotic fluctuations 
and bifurcation (Williams & Martinez, 2004), the solution of the in-
verse problem can highly depend on, for example how much of the 
variation in our data we regard as ‘noise’ and how much we regard 
to orginate from oscillations or fluctuations in the underlying ATN 
dynamics. When using numerical optimization methods, parameter 
estimation for the ATN model may encounter challenges with multi-
modality, as the results by Banks et al. (2016, 2017) suggest. This oc-
curs when multiple local optima exist, making it difficult to identify 
the global optimum. Traditional approaches like MLE typically aim 
to find a single set of parameter values that maximize the likelihood, 
which can result in selecting a local rather than the global optimum. 
These challenges can become considerable especially when the sys-
tem is large and the ATN model have many parameters. On the other 
hand, the allometric relationships underlying the ATN model may 
enable reducing the set of estimated parameters to functional re-
sponse parameters only (Boit et al., 2012). The functional response 
parameters are often notoriously difficult to measure directly owing 
to complex interactions, mechanisms and processes underlying 
feeding events (Williams, 2008). Nonetheless, they play a major role 
in defining the dynamics (Williams & Martinez, 2004), and the ATN 
inverse problem may still need additional constraints to reduce its 
ill-posedness (Wu et  al.,  2019). Moreover, to address the issue of 
multimodality, Bayesian methods, which aim to account for the full 
posterior distribution of parameters, might offer a potential advan-
tage over methods that focus solely on parameter values near the 
maximum likelihood. However, the effectiveness of these methods 
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    |  3TIRRONEN and KUPARINEN

in fully capturing multimodal distributions can vary depending on 
the specific implementation.

The present study builds upon previous ATN studies and ad-
vancements in other fields to develop the first Bayesian approach 
for calibration of the ATN model to observed data. Aiming to reduce 
the computational cost of the problem, we resort to a variational in-
ference (VI) method (Blei et al., 2017; Ghosh et al., 2021). Compared 
to Markov chain Monte Carlo (MCMC) methods, often applied in 
the Bayesian context, VI tends to be faster and easier to scale to 
large data (Blei et al., 2017). The performance of VI methods is ob-
tained by using a surrogate for the posterior distribution of model 
parameters and by applying optimization methods to find the best 
parameter values of this surrogate distribution, given the data. By 
definition, these methods provide only approximations of the poste-
rior, nonetheless, variational techniques have been found to provide 
good approximations in many applications, compared to MCMC re-
sults (Ghosh et al., 2021). A considerable challenge in VI, though, is 
the use of gradient-based optimization methods for ODE models as 
differentiation through the operations of numerical solvers can be 
computationally costly (Chen et al., 2018; Ghosh et al., 2021). For 
this reason, we combine VI with an optimization technique that does 
not use gradient information, specifically, an evolutionary optimiza-
tion method. Such methods are population-based global optimiza-
tion techniques that systematically pursue the identification of the 
best solution within a problem space using metaheuristics (Sloss & 
Gustafson, 2020) and only the function values. Often, evolutionary 
methods are used as last resort for inherently complex problems 
and when the size of problem domain is extreme, providing ‘good 
enough’ solutions in such circumstances (Sloss & Gustafson, 2020).

We demonstrate our method with synthetic data, generated 
by the ATN model, and explore how accurately the parameters of 
the ATN model can be recovered from these synthetic time series. 
Specifically, we compare our approach to OLS estimation. When 
using synthetic data, it is easy to evaluate the accuracy of the ob-
tained parameter estimates as we know exactly the parameter val-
ues that produced the data. We generate the synthetic time series 
using trophic networks with 10 and 25 guilds, the latter size cor-
responding to the largest empirical trophic network against which 
the ATN model has been tested (Boit et  al.,  2012). To reduce the 
number of parameters to be estimated, we focus particularly on the 
functional response parameters as unknown. The number of esti-
mated model parameters in our inverse problem corresponds to the 
studies by Boit et  al.  (2012) and Koen-Alonso and Yodzis  (2005). 
Furthermore, we focus on systems with stabilized dynamics and 
minimal oscillations and constrain the problem accordingly. Overall, 
our study sets ground for parameter inference of the ATN and other 
complex ODE models from observed data in the Bayesian context.

2  |  METHODS

We proceed as follows: First, we generate theoretical trophic net-
works with the niche model (Section 2.1.1). Next, for each network, 

we simulate synthetic trajectories of biomasses (Section 2.1.2) and 
assume them to be an analogue of the empirical trajectories that 
could be obtained in a natural system. For this step, we use the ATN 
model and parameterize it using allometric rules and values from 
previous studies. For these first steps, we require persistence and 
stability of the simulated networks and their population dynam-
ics (Section  2.1.3). Finally, we add noise to the simulated trajec-
tories (Section  2.1.4) and apply a variational inference technique 
(Section  2.2.1) and OLS (Section  2.2.2), combined with evolution-
ary optimization (Section 2.2.3), to infer model parameters from the 
synthetic time series of ‘observed biomasses’. We compare the syn-
thetic time series data and parameter values used to generate them 
with the predicted ones (Section 3).

2.1  |  Synthetic data

2.1.1  |  Trophic network structure

To simulate synthetic biomass time series, we first generated 
three synthetic trophic networks with 10 guilds and one with 25 
guilds (TN1–TN4; Section  S1.1) using the niche model (Williams & 
Martinez, 2000) and utilizing the function nichemodel of the Julia pack-
age BioEnergeticFoodWebs (Delmas et al., 2017; Poisot et al., 2017). 
For the nichemodel algorithm, we set the target connectance to 0.15, 
which is within the range of connectance of empirical networks 
(Martinez, 1992); the realized connectances are close to this. When 
generating the networks, we accepted only the ones in which all pro-
ducers were connected to the network and there was a path from 
every consumer guild to a basal producer. Studying the parameter es-
timation problem of the ATN model with three networks of the same 
size and approximately the same connectance gives us insight about 
the possible variation in the results within similar networks.

2.1.2  |  ATN dynamics

After generating synthetic trophic networks, we next simulated 
biomass time series using the bioenergetic model (Williams, 2008) 
with allometric coefficients (Brose et al., 2006). The model is com-
posed of the following set of ODEs that describe the dynamics of 
biomasses for producers (indices  prod) and consumers ( cons):

Above, t denotes time in the chosen scale and Bi(t), 
i ∈  prod ∪  cons, denotes the biomass of guild i  at time t (omitted). 

(1)
dBi

dt
= riBiGi(B) −

∑

j∈ cons
i

xj
(
Mj

)
yjiBjFji(B)

eji
, i ∈  prod,

(2)

dBi

dt
= −xi

(
Mi

)
Bi+xi

(
Mi

)
Bi

∑

j∈ res
i

yijFij(B)

−
∑

j∈ cons
i

xj
(
Mj

)
yjiBjFji(B)

eji
.
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4  |    TIRRONEN and KUPARINEN

 cons
i

 and  res
i

 denote the indices of guilds that consume or are re-
sources of guild i , respectively. In Equation (1), ri denotes the intrin-
sic growth rate of the producer guild i , and Gi is the logistic function

where cij is a producer competition coefficient and K is a system-wide 
carrying capacity. Moreover, xi denotes the metabolic rate of con-
sumer i , which we described by

with constants a, A > 0, Mi the average body mass within guild i  and M0 
the body mass of a reference producer guild. We set the body masses 
of guilds to be constant within trophic levels and to increase with in-
creasing trophic levels by defining

where N ∈ {1, 2, …} is the distance to a basal producer. Furthermore, 
in Equations  (1) and (2), yij is the maximum consumption rate of a 
consumer guild i  when feeding on guild j, eij is the corresponding 
assimilation efficiency, equal to the fraction of biomass of guild j 
lost for guild i  that is actually metabolized, and Fij is a functional 
response (FR) that describes the realized fraction of the maximum 
rate of consumption. We defined the latter one as Williams (2008)

where qij is a FR exponent that defines the type of the effect, and 
B0ij is a half-saturation constant, that is the density of resource guild 
j at which consumer guild i  achieves half its maximum feeding rate.

We chose to simulate our synthetic systems in the time scale in 
which the biomasses of producers would intrinsically double, start-
ing from initial biomass Bi(0) = 1 ∀ i, and set the parameter values 
following previous studies and in such a way that all the guilds per-
sisted through the simulation period and the dynamics were stable 
(Table S5; Section 2.1.3).

We approximated the biomass dynamics (1)–(2) of the synthetic 
trophic networks numerically. The computational model was im-
plemented in Julia using Tsit5 of the package DifferentialEquations 
(Rackauckas & Nie, 2017) for numerical solution of the ODE model.

2.1.3  |  Persistence and stability

In the simulation of synthetic time series (Section 2.1.2), we first con-
sidered the ATN dynamics for 2000 time steps. In this, we regarded 
a guild as extinct when it exceeded a value close to zero within the 
simulation period. Specifically, we considered whether Bi(t) < 10−6 
for some t, where the threshold 10−6 was an arbitrary choice. For our 
analysis, we selected only networks in which none of the guilds went 

extinct during the simulation period, that is the number of guilds in 
the system remained the same as was initially set.

In addition, we required that the oscillation of the generated dy-
namics was diminish at the end of this simulation period. To achieve 
this, we required that the coefficient of variation (CV; standard de-
viation per mean) of the simulated dynamics was 0.001 at maximum 
during the last 100 time steps, for each guild. On the other hand, 
some oscillation occurred in all generated systems so that the gra-
dients (1)–(2) were never zero (Section S1.2). Moreover, we also re-
quired that the mean of the simulated biomasses during the last 100 
time steps and during the preceding 100 days did not differ consider-
ably (their absolute difference was 0.001 at maximum).

Moreover, we considered possible bistability of the generated 
systems by simulating data with initial values Bi(0) = 0.1, 0.3, 0.5 and 
0.7, set equal for all of the guilds. In this, we did not notice bistability 
in the simulated time series (Section S1.2).

2.1.4  |  Training and test data

For parameter inference, or model training, we recorded the syn-
thetic abundances during the time steps t = 1970, 1971, … , 2000. 
We created random variation to the training data by simulating the 
time series as

where  (x, s) denotes the Gaussian distribution with mean x and 
standard deviation s. To test the performance of the methods under 
different amounts of noise, we generated data using different values 
of CV (Table S5).

Moreover, to test the predictive ability of the trained models, 
we simulated data for t = 2001, … , 2030, while introducing a dis-
ruption to the system at t = 2003. The disruption consisted of 50% 
reduction in biomasses for consumer guilds. Random variation was 
simulated for the test data sets similarly as above, using the same 
CV as for the training data.

2.2  |  Parameter inference

We first estimated the half-saturation constants and FR exponents 
of the functional responses as well as the standard deviations of bio-
masses for the networks with 10 guilds (TN1–TN3; Table 1). Based 
on these results, we focused on the half-saturation constants for the 
larger network (TN4). The total number of estimated parameters 
varied among the tested networks (Table 1).

2.2.1  |  Variational Bayes

For parameter inference in the Bayesian context, we took a vari-
ational approach based on the Bayes by Backpropagation method 

(3)Gi(B) = 1 −

∑
j∈ prodcijBj

K
, i ∈  prod,

(4)xi
(
Mi

)
= a

(
Mi

M0

)−A

,

(5)
Mi

M0

= 100N , i ∈  cons,

(6)Fij(B) =

�
Bj∕B0ij

�qij

1 +
∑

k∈ res
i

�
Bk∕B0ik

�qik ,

(7)i,t ∼ 
(
Bi(t), si

)
, i ∈  prod ∪  cons, t = 1970, … , 2000,
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    |  5TIRRONEN and KUPARINEN

presented by Blundell et  al.  (2015) for artificial neural networks. 
To apply their method, the operations of the numerical solver used 
to approximate the solution of the ATN model (Equations  1 and 
2) can be regarded as layers in an artificial neural network (Chen 
et al., 2018).

In VI, the posterior distribution of unknown parameters are ap-
proximated by a variational distribution. In addition to the variational 
distribution, we needed to define a prior distribution for the param-
eters and the loss function to be used in optimization. Otherwise, 
we followed the algorithm by Blundell et al. (2015) by including the 
numerical solution of the ATN model as one step in the procedure. 
Similar to Blundell et al. (2015), we carried out the optimization for 
unrestricted parameter values but transformed them to admissible 
ranges as another step in the algorithm.

Specifically, we defined the variational posterior distribution, 
, of the unknown parameters as a diagonal Gaussian distribution 
with mean � and standard deviation �. Using a factorized distribu-
tion in VI is known as mean-field approximation (Ghosh et al., 2021). 
To keep the standard deviation strictly positive, we parameterized it 
pointwise as � = log(1 + exp(�)) (Blundell et al., 2015).

Given parameters � and �, we constructed our neural network 
model following Blundell et al. (2015):

1.	 Sample a vector p from (�,�).
2.	 Perform transformations to p to obtain parameter values ptrans 

that are in admissible intervals.
3.	 Try to obtain a solution from the ODE solver by using the trans-

formed parameters ptrans.
4.	 Evaluate a loss function ℒ with the output from previous step.

To keep the estimated parameters of the ATN model in a pre-
defined range between pmin and pmax, we used the following modified 
sigmoid (logistic) activation function pointwise in step 2 above:

Moreover, we defined the loss function in step 4 as (Blundell 
et al., 2015)

where V denotes the variational posterior density, P denotes the joint 
prior density of the unknown model parameters and L is the likelihood 
of the data. Similar to the variational posterior, we set the prior to a 
diagonal Gaussian distribution. Since we simulated the data with abso-
lute normal errors (7), the likelihood of the data reads as

where N(z|x, y) denotes the univariate Gaussian density with mean x 
and standard deviation y at z, and the biomass Bi is obtained from p.

We resticted the search of parameter values to persistent tro-
phic networks with stable well-behaving dynamics. Therefore, if in 
step 3,

•	 any of the guilds went extinct during the simulation period,
•	 there was too much oscillation (CV > 0.001) or
•	 any problems occurred in solving the system (1)–(2) numerically,

we set the value of the loss function to infinity in step 4.
We set the prior means of the estimated parameters to val-

ues (approximately) at the middle of the intervals used in simula-
tion, or to values calculated from the simulated time series during 
the time steps 1970–2000 (Table  S5). The actual prior means we, 
however, obtained by performing the inverse of the transformation 
(8). For all estimated parameters, we set the standard deviations of 
their priors to one, which gives relatively flat priors for these pa-
rameters (Section  S2.7). Moreover, we restricted the estimates of 
half-saturation constants and FR exponents to the intervals used in 
simulation (Table S5). We also bounded the standard deviations of 
biomasses to reasonable ranges (Section S2.9).

2.2.2  |  Ordinary least squares

To compare the performance of the variational Bayesian method 
(Section 2.2.1) to OLS approximation, we also estimated the func-
tional response parameters using

as a loss function. In this, we did not carry out transformations for the 
parameters but instead, restricted the search space directly so that the 
parameters were in the same admissible ranges as in VI. Moreover, we 
set the loss function to infinity in case of unwanted ATN properties or 
behaviour, similarly as in VI. In OLS, there were fewer parameters to be 
estimated than in VI (Table 1).

2.2.3  |  Training

To avoid costly computation of the gradient with respect to the pa-
rameters to be estimated, we utilized an evolutionary optimization 

(8)ptrans = pmin +
pmax − pmin

1 + exp( − p)
.

(9)ℒ
B(p,�,�) = logV(p|�,�) − logP(p) − logL(| p),

(10)L(| p) =
∏

i

∏

t

N
(
i,t|Bi(t), si

)
,

(11)ℒ
OLS =

∑

i

∑

t

(
Bi(t)−i,t

)2
,

TA B L E  1  The number of guilds and the types and total number 
of estimated parameters for each synthetic trophic network we 
generated and tested for parameter estimation using the variational 
inference (VI) and ordinary least squares (OLS) methods.

ID
Number of 
guilds

Types of 
estimated 
parameters

Total number 
of estimated 
parameters

TN1 10 B0
∗, q∗, s, � 92 (36)

TN2 96 (38)

TN3 88 (34)

TN4 25 B0
∗, � 246 (123)

Note: For OLS, we estimated fewer parameters (marked by * and given 
in parenthesis) than for VI. The parameters are defined in Table S5 and 
Sections 2.1.2 and 2.2.1.
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6  |    TIRRONEN and KUPARINEN

method to optimize the loss functions (9) and (11). Specifically, 
we applied the Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES; Hansen,  2016), implemented in the Julia package 
Evolutionary.jl (Wilde et al., 2021). CMA-ES is a stochastic derivative-
free numerical method for optimization of challenging functions that 
can be, for example, non-convex, ill-conditioned, multi-modal and 
noisy. CMA-ES uses a multivariate normal distribution as the search 
distribution (Hansen, 2016).

We first explored the impact of different optimization set-
tings on the results with the smaller networks (TN1–TN3). In 
all cases, we set the initial values of the estimated parameters 
to correspond the prior distribution of the model parameters 
(Table S5; Section 2.2.1). Moreover, we set the maximum number 
of iterations to 3000 in each call of the optimization function and 
restarted the search several times from the parameter values ob-
tained in the previous call. Such a procedure of restarts is usual 
practice in evolutionary optimization. Here, we regarded those pa-
rameter values that minimized the loss function, when recorded at 
the end of each call, as the best estimates for the ATN parameters. 
For these smaller networks, we run CMA-ES with 50 restarts and 
the number of offspring set to 100, otherwise using the default 
parameter values in Evolutionary.jl. Within these restarts, the ac-
tual number of iterations carried out until having reached the min-
imum loss varied considerably case by case (Figure  S9). Overall, 
the loss functions did not seemingly decrease at the end of itera-
tion (Figures S7 and S8). In addition to this setting, we carried out 
sensitivity analysis using 50 and 200 offspring with 50 and 100 
total number of calls to the optimization function, respectively. 
Large population sizes can help to avoid local optima, however, we 
did not find considerable differences in the results consistently 
when altering the number of offspring (Section 3; Sections S3 and 
S4). Based on these findings, we used 100 offspring for the larger 
network (TN4) and evaluated the results after 50 and 25 restarts 
in OLS and VI, respectively. The lower number of iterations for VI 
was chosen because of its higher computational cost compared to 
OLS (due to the higher number of parameters) and based on moni-
toring the values of the loss function during iteration.

As evolutionary optimization methods use a set of candidate val-
ues when searching the minimum of the loss function, it is possible 
to consider uncertainty of the parameter estimates and predictions 
by inspecting the whole population of solutions. Nonetheless, in 
many cases, the resulting set of predictions was highly dispersed 
(Section S2.3). As such, and for simplicity, we only considered the 
best candidate of the population of solutions in our parameter esti-
mates and predictions.

When carrying out the model training on a regular laptop 
used simultaneously for other tasks, the computing time in VI 
was within days for the smaller networks (TN1–TN3, Figure S10) 
when using 100 offspring and 50 iterations, less for OLS because 
of the lower number of parameters. The number of offspring 
and iterations had a considerable impact on the execution time 
(Figure S10). For the larger network (TN4), the computation time 
was within weeks.

3  |  RESULTS

3.1  |  Parameter estimates

Overall, of the different types of parameters we estimated for the 
networks with 10 guilds (Table 1), we obtained the most accurate es-
timates for the half-saturation constants. When comparing the vari-
ational posterior means (Section 2.2.1) to the initial values (Table S5), 
the estimates improved, on average, for all data sets when using VI 
(Figure  1; Table  2). In OLS estimation, the error of estimates also 
decreased for all data sets, except for one, for which the mean ab-
solute error stayed approximately the same. When considering rela-
tive errors, on average, the improved accuracy of the estimates was 
more pronounced (Figure 1; Table 2). However, in VI, the estimated 
standard deviations of the variational posteriors were often small 
for half-saturation constants (Figure  S39) and, in many cases, the 
likelihood of the true value could be low (Figure S28). Nonetheless, 
uncertainty in the variational posteriors increased when variation in 
the data increased, on average (Figure S39.A), as expected.

For the larger network with 25 guilds (Table  1), the improved 
accuracy in the estimates of half-saturation constants became visi-
ble only when considering the relative errors (Table 2). The absolute 
errors of the estimates were, on average, slightly larger than of the 
initial values, for both VI and OLS. While the absolute errors were, 
on average, higher for VI than for OLS, the relative errors were re-
markedly smaller for VI. These differences may stem from the dif-
ferent scaling of the search space for these methods (Sections 2.2.1 
and 2.2.2). Furthermore, the estimated standard deviations of the 
variational posteriors of half-saturation constants were higher for 
this larger network than for the smaller ones (Figure S39) and the 
likelihood of the true value was, on average, higher (Figure S28).

In most cases we tested with the smaller network size (Table 1), 
we were not able to obtain accurate estimates for the FR exponents 
and standard deviations of the biomasses, as the error of the estimate 
did not remarkedly decrease, or could actually increase, compared 
to the error of the initial value (Figures S37 and S38). Nonetheless, 
the estimated standard deviations of the variational posteriors were 
larger for the FR exponents than for the half-saturation constants, 
reflecting the uncertainty about these parameters (Figures S39 and 
S28).

3.2  |  Predictions about the dynamics

On average, the solution of our inverse problem yielded remarkedly 
more accurate predictions about the underlying ATN dynamics than 
the initially set parameter values, particularly in terms of relative er-
rors (Figure 2; Table 2; Figure S25). In OLS, the mean relative errors 
were high for some data sets (Figure S25), and here the largest errors 
appeared for low abundances (Figure S26).

Moreover, VI provided fairly accurate predictions about the total 
abundance (Figure S27; Table S6). Considering the underlying ATN 
model, the model predicted its dynamics less accurately. Naturally, 
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    |  7TIRRONEN and KUPARINEN

the guild-specific predictions varied in accuracy (Figures  3 and 4; 
Section S2.2).

4  |  DISCUSSION

The present study lays the groundwork for Bayesian parameter 
estimation of the ATN model by developing a variational inference 
method and exploring how accurately the half-saturation constants 
of functional responses, particularly, can be inferred from observed 
data. For this, we used synthetic time series for which we know ex-
actly the parameter values that produced the data. Compared to 
OLS, VI yielded estimates of similar accuracy. This accuracy varied 

across networks, even for networks of similar size and connectance 
(mean relative error 37%–69% for VI; Table  2). Despite relatively 
high parameter estimation errors, the estimates overall yielded rea-
sonably accurate predictions for both the data used for parameter 
estimation and for fresh data generated by introducing a disturbance 
to the ATN dynamics (mean relative errors ≤26% and ≤27%, respec-
tively, for VI).

The results of the present study align with prior research on the 
invertibility of the ATN model. Banks et al.  (2016, 2017) reported 
that the solution to their inverse problem on synthetic data did not 
consistently converge to the same parameter values as those used 
to generate the data. This observation was also evident in our study, 
reinforcing the idea that the inverse problem of the ATN model may 

F I G U R E  1  Absolute and relative 
error of the initial values (a, b) and of the 
estimates of half-saturation constants 
obtained by variational inference (VI; c, 
d) and ordinary least squares (OLS; e, 
f), averaged over the number of feeding 
links and for the synthetic trophic 
networks with ten guilds (TN1–TN3; 
Table 1). The estimates correspond to 
the minimum value of the loss function 
during optimization. For VI, the estimates 
correspond to the variational posterior 
means. The error is calculated as a 
difference to the parameter value used 
in simulation of the synthetic time 
series. The relative error compares this 
difference to the true parameter value.

(a)

(c)

(e) (f)

(d)

(b)

Network Error type Initial VI OLS

TN1–TN3 Absolute for B0 0.23–0.28 0.13–0.22 0.14–0.23

Relative for B0 0.78–1.19 0.37–0.69 0.35–0.83

TN4 Absolute for B0 0.23 0.27 0.24

Relative for B0 0.91 0.65 0.90

TN1–TN3 Absolute for pred. in training set 0.073–0.096 0.0037–0.015 0.0017–0.020

Relative for pred. in training set 1.30–14.46 0.053–0.14 0.043–4.8

TN4 Absolute for pred. in training set 0.18 0.06 0.02

Relative for pred. in training set 62.02 0.26 61.89

TN1–TN3 Absolute for pred. in test set 0.074–0.093 0.0068–0.017 0.0060–0.018

Relative for pred. in test set 1.35–13.13 0.13–0.26 0.12–7.1

TN4 Absolute for pred. in test set 0.18 0.06 0.02

Relative for pred. in test set 71.07 0.27 94.39

Note: The errors were calculated as in Figures 1 and 2.

TA B L E  2  Mean absolute and relative 
error of the initial values, the estimates 
of half-saturation constants (B0) and the 
predicted biomasses in the training and 
test sets, obtained by variational inference 
(VI) and ordinary least squares (OLS) for 
the synthetic trophic networks (TN1–TN4; 
Table 1).
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8  |    TIRRONEN and KUPARINEN

involve multiple local optima, making it challenging to identify the 
global optimum in the optimization landscape. This reflects the mod-
el's inherent complexity. Consequently, our results underscore the 
importance of testing various initial values and priors when calibrat-
ing the ATN model to observations in future studies. Rather than 
relying on a single solution, it may be prudent to consider a set of 
solutions that correspond to different scenarios, particularly when 
predicting to the future. Additionally, a multimodal variational dis-
tribution could better represent the posterior distribution of param-
eters than the unimodal approach we employed. Nonetheless, our 
study is the first to suggest a Bayesian method for the ATN model. 
In addition, while Banks et al. (2016, 2017) briefly addressed the in-
vertibility of the ATN model, this issue has not been given full at-
tention. We tested the proposed method and explored the model's 
invertibility in a simplified setting, laying a foundation for further 
exploration and refinements in future research.

We demonstrated our method with synthetic trophic networks 
of relatively moderate size, but our inverse problems are compara-
ble to empirical studies of ATN modelling (Banks et al., 2016, 2017; 
Boit et al., 2012; Koen-Alonso & Yodzis, 2005). The smaller networks 
with 10 guilds had a similar number of unknown parameters (Table 1) 
as Koen-Alonso and Yodzis (2005) four-species model (38 estimated 
parameters), and more than (Banks et al., 2016, 2017) (six parame-
ters). Our larger network with 25 guilds had more estimated param-
eters than Boit et  al.  (2012) reported to have manually calibrated 
for their 24-guild model (107 unknown functional response param-
eters). For these network sizes, we obtained results using a regular 
laptop, though the computing time was long, especially for the larger 
network. For networks larger than this or those with more unknown 
parameters, computing services tailored for high-demand tasks may 
alleviate the computational burden.

The present study examined the invertibility of the ATN model in 
a theoretical framework with a simplified approach. Specifically, we 
considered a relatively simple formulation of functional responses 

and, especially for the larger network, limited the unknown model 
parameters to half-saturation constants. Such a setting nonetheless 
resembles a previous validation study of the ATN model against em-
pirical data (Boit et al., 2012). In parameter inference, we constrained 
parameter values to predefined ranges, and the synthetic data we 
generated for model training had relatively time-invariant underly-
ing ATN dynamics, which allowed us to further restrict the search 
space during parameter estimation and decrease ill-posedness. 
Identifiability is a common challenge in inverse problems and addi-
tional constraints can help regularize inversion results to consistent 
ranges (Wu et al., 2019). Our constraint aligns with findings that os-
cillations are seldom present in natural population dynamics (Lande 
et al., 2003), and by focusing on stable dynamics, we also reduced 
the number of latent variables, making it unnecessary to estimate 
the initial biomasses. While our modelling choices need to be ad-
dressed in an empirical context, the simplified framework serves to 
identify possibilities and challenges in ATN parameter estimation.

In this paper, we focused on a Bayesian approach to parameter 
inference, which allows for incorporation of prior knowledge and 
quantification of estimation uncertainty. For our inverse problem, 
we nonetheless only tested uninformative priors. Regarding the 
variational posteriors, the method often underestimated uncer-
tainty although for functional responses, the estimates behaved as 
expected. This underestimation of variation is a recognized issue in 
mean field VI (Ghosh et  al.,  2021). When applying the method to 
empirical data, one potential solution is to account for parameter 
correlations within the variational posterior (Ghosh et al., 2021), al-
though this increases the number of parameters to be estimated.

To invert the ATN model, we applied the Bayes by Backpropagation 
method suggested by Blundell et al.  (2015) for variational Bayesian 
inference of artificial neural networks but used evolutionary optimi-
zation for training. We chose evolutionary optimization instead of a 
gradient-based method because computing the gradient with respect 
to the parameters is often costly for ODE models (Chen et al., 2018; 

F I G U R E  2  The mean absolute error 
of predicted allometric trophic network 
dynamics from the originally simulated 
dynamics within training and test data. 
The initial predictions (a, b) correspond to 
the values initially set for the functional 
response parameters in optimization. 
For predictions by variational inference 
(VI; c, d) and ordinary least squares (OLS; 
e, f), we used the values of functional 
response parameters corresponding to the 
minimum value of the loss function.

(a)

(c)

(e) (f)

(d)

(b)
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    |  9TIRRONEN and KUPARINEN

Ghosh et  al.,  2021). For example, algebraic differentiation (AD) is 
commonly applied in neural network training but can be computa-
tionally expensive when used through ODE solver (Chen et al., 2018; 
Ghosh et  al.,  2021). This also appeared in our initial trials for the 
ATN model. Evolutionary optimization methods, being black-box 
approaches, provided flexibility in implementing the ATN model and 
optimizing the computer program for speed. Nonetheless, efficient 
AD techniques for ODE models have been recently suggested (Chen 
et  al.,  2018; Ghosh et  al., 2021). The efficiency (Chen et  al.,  2018) 
comes from backpropagating through an ODE solver without ac-
cess to its internal operations. Overall, the field of machine learning 

advances rapidly (Sun et al., 2019) and it may be worth considering 
the latest development when applying the proposed approach.

Finally, while the variational inference approach we propose may 
appear considerably more complex than the OLS analysis conducted 
in parallel, it offers a crucial advantage: the ability to quantify un-
certainty in parameter estimates. OLS, as it is, provides only point 
estimates without addressing this uncertainty. Previous studies 
have incorporated sensitivity analysis or explored the likelihood 
around parameter estimates (Banks et al., 2016, 2017; Koen-Alonso 
& Yodzis, 2005) to assess parameter uncertainty, but these methods 
do not directly estimate the full uncertainty in the way a Bayesian 

F I G U R E  3  Guild-specific predicted 
total abundances and underlying 
allometric trophic network (ATN) 
dynamics for the training (figures on the 
left) and test (figures on the right) biomass 
(BM) time series that were simulated 
using the synthetic trophic network 3 
and the coefficient of variation 0.3. For 
this data set, the mean error in predicted 
ATN dynamics was lowest among the 
generated data sets (Figure 2). The figure 
shows the true simulated biomasses and 
the predictions by variational inference 
and ordinary least squares (OLS) fit for 
five of the 10 guilds (G1–G5). For the 
Bayesian predictions, we used 3 × 10

4 
samples from the posterior distributions 
of model parameters (Section S2.7). CPI, 
central probability interval.
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10  |    TIRRONEN and KUPARINEN

approach can. For a complex model like the ATN, assessing uncer-
tainty is inherently challenging, and we expect that doing so within a 
frequentist framework would also involve significant complexity—a 
task beyond the scope of this paper.

Research on the inverse problem of the ATN model is lim-
ited (Banks et  al.,  2016, 2017; Boit et  al.,  2012; Koen-Alonso & 
Yodzis,  2005), particularly in the Bayesian context. The present 
study builds upon previous studies of ATN validation against empir-
ical data (Banks et al., 2016, 2017; Boit et al., 2012; Koen-Alonso & 
Yodzis, 2005) and research in machine learning (Blundell et al., 2015; 
Hansen, 2016) to develop a variational Bayesian method for param-
eter inference of the ATN model from observed data. With synthetic 

data, we demonstrate the challenges in ATN parameter estimation 
and identify possibilities to alleviate these issues. While developed 
particularly for the ATN model, our method is a potential tool for 
parameter inference also for other ODE models.
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