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Abstract
Temporal variation during the assembly of arbuscular mycorrhizal (AM) fungal communities within plant roots have been 
posited as critical drivers of the plant-fungal symbiotic outcomes. However, functional implications of these dynamics for the 
host plant remain poorly understood. We conducted a controlled pot experiment with Sorghum bicolor to investigate how tem-
poral shifts in AM fungal community composition and phylogenetic diversity influence plant growth and phosphorus responses 
to the symbiosis. We characterised the root-colonising AM fungal communities across three time points and explored their 
community assembly processes by analysing their phylogenetic diversity and employing joint species distribution modelling 
with the Hierarchical Modelling of Species Communities (HMSC) framework. We found strong AM fungal turnover through 
time with a high phylogenetic signal, indicating recruitment of phylogenetically clustered AM fungal species in the host. This 
temporal phylogenetic clustering of communities coincided with marked increases in plant biomass and phosphorus responses 
to the AM fungal symbiosis, suggesting that host selection for specific fungi may be a key determinant of these benefits.

Keywords  Arbuscular mycorrhiza · Community assembly · Phylogenetic diversity · Sorghum bicolor

Most terrestrial plants engage in symbiotic associations with 
arbuscular mycorrhizal (AM) fungi [1]. In this symbiosis, 
the fungi colonise plant roots and the surrounding soil, 
facilitating the plant’s access to essential nutrients such as 
phosphorus, while acquiring carbon from the plant [2]. The 
composition of AM fungal communities exerts a consider-
able influence on the symbiotic effects experienced by the 
plant hosts [3–5]. Consequently, understanding the determi-
nants of AM fungal community composition has long been 
a focus of ecological research [6–8]. However, achieving 

this is complicated by the global distribution of AM fungi, 
whose taxa are found across multiple hosts and a wide array 
of environmental conditions [9].

Despite their widespread distribution, evidence sug-
gests that environmental filtering plays a critical role in the 
assembly of AM fungal communities [9]. Local-scale studies 
often reveal that these assemblages are composed of closely 
related individuals, suggesting that phylogenetic clustering 
occurs as communities change to suit specific habitats [10]. 
In the context of root-colonising communities, the root sys-
tem of the host plant serves as the local habitat for the fungi. 
These root-colonising communities are frequently observed 
to be phylogenetically clustered [7], likely as a result of both 
abiotic filtering and mutualistic partner selection [11–13]. 
With evidence that plant hosts can show preference toward 
more beneficial fungal taxa [14–16], it may be presumed that 
such partner selection would lead to AM fungal assemblages 
that confer greater functional benefits to the host plant com-
pared to communities assembled in a purely stochastic man-
ner. Based on this assumption, it is reasonable to expect that 
newly assembled AM fungal communities, such as in roots 
of seedlings, would become increasingly phylogenetically 
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clustered over time as host-fungal compatibility is optimised 
to maximise symbiotic benefits.

The specific mechanisms through which host plants influ-
ence the assembly of AM fungal communities, particularly 
in terms of selecting taxa, remain poorly understood. Host 
affinity can be examined using different approaches such as 
the assessment of differential carbon allocation by hosts to 
more beneficial fungi [16], direct measurements of plant fit-
ness in response to specific AM fungal taxa [17], or through 
comprehensive sampling of multiple host species within a 
given region [11]. While such studies can highlight that host 
preference could be a potential driver of community compo-
sition, a challenge remains in consistently identifying which 
fungal taxa provide the greatest benefits to their hosts. This 
challenge is compounded by the context-dependent nature 
of symbiotic outcomes, leading to significant variability in 
the functional roles of different AM fungal lineages [18, 19].

Assigning specific functional characteristics to differ-
ent AM fungal taxa, particularly in terms of the potential 
‘benefits’ they provide to hosts, has proven challenging in 
itself due to the highly context-dependent nature of these 
outcomes [5] and the difficulties of measuring traits on 
fungal individuals [20]. Despite decades of research, data 
associating particular AM fungal lineages with specific sym-
biotic effects on plant performance, remain limited [5, 21]. 
Notwithstanding this variability, it is generally accepted that 
AM fungi exhibit phylogenetic niche conservatism [22], that 
species retain ecological traits and niches over time. Con-
sequently, closely related AM fungal taxa tend to exhibit 
similar characteristics, which could be anticipated to result 
in similar symbiotic effects on a given host [22].

Although AM fungal community composition signifi-
cantly influences symbiotic outcomes for host plants [3, 5], 
and temporal dynamics have been observed in AM fungal 
spore populations and root colonisation [23, 24], compara-
tively few studies have directly investigated the temporal 
dynamics of AM fungal community composition within 
plant roots [10]. Those studies which have examined this, 
report significant changes in community composition over 
time [25–29] (but see [30]), often linked to host devel-
opmental stages or shifts in edaphic variables. The most 
detailed of these studies observed a shift from stochastic 
to deterministic assembly processes, with root communities 
exhibiting increased phylogenetic clustering through time 
[25]. This was attributed to the expanding available habi-
tat—the growing root system—facilitating the immigration 
of fungal taxa with similar ecological niche requirements, 
resulting in communities composed of more closely related 
fungi. Despite being conducted in a relatively homogene-
ous agricultural context, this study would nevertheless have 
been influenced by soil heterogeneity and the natural spatial 
variation in the resident soil AM fungal communities, as 
well as potential dispersal effects. Consequently, additional 

data are required to enhance our understanding of the tem-
poral dynamics of AM fungal communities in plant roots. 
It also remains unclear whether, or how, temporal shifts in 
the composition or phylogenetic structure of root-colonising 
communities have functional consequences in terms of their 
symbiotic effects on the host.

We conducted a glasshouse pot experiment with 60 indi-
vidual plants of Sorghum bicolour L. Moench cv. ‘MR. 
Bazley’ with the objectives of (i) characterising temporal 
changes in AM fungal community composition and phylo-
genetic diversity within plant roots, and (ii) determining how 
these temporal changes relate to plant growth and phospho-
rus uptake (see Supplementary Information for methodo-
logical details). We hypothesised that (i) communities would 
become more phylogenetically clustered over time and (ii) 
this would correlate with an increase in the growth and phos-
phorus benefits provided by the symbiosis to the host.

Plants were cultivated in a fully homogenised and 
gamma-irradiated sand-soil mixture, which was either inocu-
lated with a homogenised diverse community of AM fungi 
(AM fungi treatment) or with a sterilised inoculum of the 
same (No AM fungi treatment). The AM fungal community 
was sourced from a combination of field soils collected from 
various agricultural and non-agricultural sites previously 
known to support a high diversity of AM fungi (Fig. S5a). 
Plants were harvested at 4, 8, and 12 weeks (timepoints one, 
two, and three, respectively), where 20 replicate plants (10 
with AM fungi and 10 without) were harvested. Total bio-
mass was measured, foliar samples were collected for nutri-
ent analysis, and root samples were subjected to Illumina 
amplicon sequencing using the nuclear small subunit (SSU) 
rRNA gene to identify AM fungal virtual taxa (VT) [31] and 
characterise community composition. Changes in AM fungal 
communities over time were analysed using a joint species 
distribution Bayesian framework, Hierarchical Modelling 
of Species Communities (HMSC; [32]). We employed this 
framework for the ability to model multiple species simul-
taneously while accounting for phylogenetic relationships, 
species interactions, and hierarchical data structures. Unlike 
classic regression methods that model species independently 
and may overlook inter-species interactions, or standard 
multivariate analyses that lack species-specific insights and 
explicit consideration of phylogeny, HMSC provides a com-
prehensive framework. This allows us to partition variance 
among fixed effects (e.g., timepoint, sequencing depth), ran-
dom effects (e.g., individual plant variability), and phyloge-
netic contributions, offering deeper ecological insights into 
the factors shaping the community than traditional methods. 
We used this approach in combination with calculating beta 
diversity metrics alongside phylogenetic indices [33] meas-
uring the extent of phylogenetic clustering or overdispersion. 
The AM fungal community dynamics were then assessed 
in relation to plant biomass and phosphorus concentrations 
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to explore if and how temporal AM fungal assembly was 
associated with symbiotic outcomes for the host.

Our HMSC model demonstrated high discrimination 
ability (mean AUC = 0.88), reasonable accuracy (mean 
RMSE = 0.25), and modest explanatory power (mean Tjur’s 
R2 = 0.2) overall. The model evaluated the occurrence of AM 
fungal VT across the three timepoints and exhibited strong 
support for taxon-specific responses, particularly towards the 
third time point (Fig. 1a). Overall, the model attributed 45.3% 
of the explained variation in AM fungal occurrence to time 
(Fig. 1b), with 29.5% to the random effect of individual sam-
ples. Our model also attributed 25.2% to sequencing depth, 

indicating that the number of sequences generated per sample 
influenced the detected taxa. Including sequencing depth in 
our model allows us to account for this influence and improves 
our ability to isolate and interpret the true ecological patterns 
in the data. Our HMSC model had a notably high phylogenetic 
signal (ρ = 0.84 ± 0.0037; mean ± SE), indicating that the phy-
logenetic relatedness strongly predicts which AM fungal taxa 
are present at a given timepoint. This suggests that species 
traits conserved through evolutionary history play an impor-
tant role in community assembly over time [32]. Indeed, of the 
36 AM fungal taxa (VT) significantly associated with time-
point three, 35 belonged to the Glomeraceae family (Fig. 1a).

Fig. 1   Hierarchical Modelling of Species Communities (HMSC) (a) 
beta coefficients indicating positive (green), negative (black), or no 
significant relationship (blank/white) of arbuscular mycorrhizal (AM) 
fungal virtual taxa (VT) responses with at least a posterior probabil-
ity of 0.95 associated with timepoints two, three, and sampling depth 
(log readcount). The mean Rho (ρ) of the model, as a measure of 

phylogenetic signal in species’ responses, is shown.b The proportion 
of explained variation in AM fungal VT occurrence by time, sam-
pling depth (log readcount), and the random effect of sample iden-
tity. Phylogenetic tree coloured by family is shown which includes the 
detected AM fungi across all samples, the AM fungal VT in (a) and 
(b) are sorted vertically according to their phylogenetic relatedness
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Temporal shifts in community composition revealed 
high species turnover, with fungi from families such as 
Entrophosporaceae, Archaeosporaceae, and Diversispo-
raceae present at earlier timepoints but mostly absent by 
the third. Correspondingly, the variation in community 
composition among samples (the community dispersion) 
was lowest at the third timepoint (Fig. S2), reflecting 
increasing similarity among communities through time. 
The phylogenetic diversity also exhibited distinct trends, 
with standardised effect sizes of mean pairwise distances 
and mean nearest taxon distances significantly decreasing 
from the first to the third timepoint (Fig. 2a, b). These 
more negative values reflect a trend towards phylogenetic 
clustering suggesting that, as the AM fungal communi-
ties assembled over time, they became composed of more 

closely related taxa. This pattern is often thought to be 
indicative of community assembly processes driven by 
some form of environmental filtering [34, 35].

Although abiotic factors would have affected the out-
comes observed in this experiment, the homogenisation of 
the initial starting AM fungal community and the use of con-
trolled environmental conditions would have significantly 
lessened their influence. At the very least, phylogenetic 
clustering under such conditions implies that the closely 
related fungal taxa may share particular traits that then con-
fer membership and dominance of communities at the later 
stages of community assembly. It may further suggest that 
these traits are selected for by the plant host, and this selec-
tion drives the success of these taxa in the system. If this 
is the case, we might expect the host selection to confer a 

Fig. 2   Phylogenetic diversity of 
root-colonising arbuscular myc-
orrhizal (AM) fungal communi-
ties as standardised effect sizes 
(SES) of (a) the mean pairwise 
distances and (b) mean nearest 
taxon distances at timepoints 
one, two, and three. The (c) 
mycorrhizal growth responses 
(%), calculated using total plant 
biomass, and the (d) mycorrhi-
zal phosphorus responses (%) at 
each timepoint. Solid points and 
error bars represent the mean± 
SE overlaid on top of the raw 
data points
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functional benefit. Our data support this hypothesis, as we 
found phylogenetic clustering corresponded with positive 
plant responses, reflecting functional advantages (Figs. 2, 3).

The total plant biomass and phosphorus benefits con-
ferred by AM fungi, as reflected in mycorrhizal growth 
responses (Fig. 2c) and mycorrhizal phosphorus responses 
(Fig. 2d), revealed that plants derived little growth or 
nutrient advantages from the AM fungi during the first and 
second timepoints. At the third timepoint, however, plants 

displayed significantly enhanced growth and phosphorus 
uptake in response to AM fungi (Fig. 2c, d). This coin-
cided with the strong positive associations of Glomeraceae 
taxa with timepoint three (Fig. 1a) and the phylogenetic 
clustering of the fungal communities. Additionally, at this 
timepoint, a notable increase in the proportion of arbuscule 
structures within roots was also observed (Fig. S4d). Since 
arbuscules are the primary fungal structures involved in 
nutrient and carbon exchange between the host and fungi 

Fig. 3   Relationships between phylogenetic diversity (showing the 
standardised effect sizes, SES) of root-colonising arbuscular myc-
orrhizal (AM) fungal communities and plant host responses to AM 
fungi. The relationships between mycorrhizal growth responses (%) 
and the (a) mean pairwise distances (MPD) and (b) mean nearest 
taxon distances (MNTD), and the relationships between the mycor-
rhizal phosphorus responses (%) and the (c) mean pairwise distance 
and the (d) mean nearest taxon distances. Each plot shows the amount 

of variation in the mycorrhizal growth responses (a, b) and mycor-
rhizal phosphorus responses (c, d) explained by the timepoint alone, 
the phylogenetic diversity (MPD or MNTD) alone, or shared by both 
timepoint and phylogenetic diversity. The coefficients of determina-
tion (R2) showing the total variation explained (including both time-
point and phylogenetic diversity as explanatory variables), are shown 
on each plot
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[2], a shift towards increased arbuscular colonisation may 
suggest an enhanced transfer of resources between the 
symbiotic partners. However, we acknowledge that arbus-
cule frequency, which can fluctuate significantly over time 
[2], can be a coarse measure for symbiotic function.

It is noteworthy that our results demonstrate a clear 
increase in the dominance of Glomeraceae taxa within 
communities over time (Fig. 1a). Glomeraceae are often 
characterised as putatively ruderal and disturbance-tolerant 
fungi that are fast-growing, and comparatively less nutri-
tionally beneficial to hosts than other slower-growing fun-
gal taxa [18, 36]. As ruderals, these AM fungi would be 
expected to colonise new habitats early; yet here we found 
their dominance later in community development. As such, 
it is less likely the strong succession patterns we observed 
are explained by phylogenetically related fungal traits that 
simply allow them to grow faster and access the root, but 
rather that their shared traits contribute to better host-
fungal compatibility. That said, it remains possible that 
these fungi may simply possess certain traits, shared among 
phylogenetically similar taxa, that allow them to more eas-
ily colonise this root system. Still, the strong association 
between phylogenetic clustering and functional plant ben-
efits suggests that host selection is a stronger influence of 
assembly through time than passive colonisation.

The ruderal characteristics of Glomeraceae taxa may 
indeed make them more suitable symbiotic partners for an 
agricultural crop selectively bred to have fast growth rates, 
particularly here in the context of a pot experiment which 
inherently represents a significant disturbance [37, 38]. It 
is also important to note that assigning life history strate-
gies to particular AM fungal lineages still remains fraught 
with uncertainty [20] as comprehensive trait data across AM 
fungal taxa are still lacking. Although some studies suggest 
that certain AM fungal groups may exhibit distinct suites of 
traits [19, 39], confidently assigning lineages to a particular 
life history strategy is still premature.

We found strong relationships between the phylogenetic 
clustering of AM fungal communities and the growth and 
phosphorus benefits conferred by the symbiosis (Fig. 3). 
Both mean pairwise distances and mean nearest taxon dis-
tances exhibited significant and strong correlations with 
mycorrhizal growth and phosphorus responses. Variance 
partitioning revealed that the amount of variation in mycor-
rhizal growth responses explained by phylogenetic diversity 
alone reached as high as 26% (for mean pairwise distances), 
whereas time alone accounted for only 3% (Fig. 3a). While 
the amount of explained variation in mycorrhizal growth 
and phosphorus responses varied (Fig. 3a-d), the timepoint 
alone did not explain more than 22% of plant responses 
in any given instance. These results provide evidence 
that the temporal phylogenetic clustering of AM fungal 

communities within plant roots can be a key driver of the 
functional benefits the host derives from the symbiosis.

Our results indicate that selective processes in the roots 
can lead to positive outcomes for the host plant. However, 
we want to stress that strong host selection does not nec-
essarily lead to positive outcomes. For example, evidence 
from plant-soil feedback experiments show that hosts can 
foster AM fungal communities that are beneficial [40, 41] 
but also communities that can negatively impact conspe-
cific plants [42]. Thus, the nature of these interactions is 
highly context dependant, both on the effect of the AM 
fungal communities on the host [5], and the degree of host 
influence on AM fungal community assembly in roots. 
Since our study focuses on a single crop species, future 
research should assess the temporal assembly of root-col-
onising AM fungi across a wider range of host plants, not 
only across key agricultural species but also native plants. 
Understanding the capacity of crops to shape the assembly 
of beneficial AM fungal communities is essential for fully 
harnessing the functional benefits of this symbiosis.
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