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ABSTRACT
Generalized linear latent variable models (GLLVMs) have become mainstream models in this analysis of correlated, m-
dimensional data. GLLVMs can be seen as a reduced-rank version of generalized linear mixed models (GLMMs) as the latent 
variables which are of dimension p≪ m induce a reduced-rank covariance structure for the model. Models are flexible and 
can be used for various purposes, including exploratory analysis, that is, ordination analysis, estimating patterns of residual 
correlation, multivariate inference about measured predictors, and prediction. Recent advances in computational tools allow 
the development of efficient, scalable algorithms for fitting GLLMVs for any response distribution. In this article, we discuss the 
basics of GLLVMs and review some options for model fitting. We focus on methods that are based on likelihood inference. The 
implementations available in R are compared via simulation studies and an example illustrates how GLLVMs can be applied as 
an exploratory tool in the analysis of data from community ecology.

1   |   Introduction

Latent variable (LV) modeling is nowadays one of the main-
stream methods in the analysis of complex, multivariate data. 
Although the origins of LV modeling are mainly in social sci-
ences and psychology, models are nowadays increasingly im-
portant also in other fields of science. Some recent examples 
include applications to finance (Huber, Scaillet, and Victoria-
Feser  2009), neuroscience (Turner, Wang, and Merkle  2017), 
medicine (Bianconcini and Cagnone 2021), microbiology (Zeng, 
Zhao, and Wang 2021), and ecology (Dombrovski, Zhurauliou, 
and Ashton-Butt 2022).

By LV models we mean statistical models that relate latent, 
that is, unobserved variables to observed variables in some 
way. The core idea is that a small amount of LVs drive the 

dependency structure of the observed data. Traditionally, LV 
models have been divided into four categories depending on 
the assumption made on observed and LVs. In latent profile 
models (for continuous observed variables) and latent class 
models (for discrete observed variables) the LVs are assumed 
to be discrete and the methods aim to recover hidden groups 
from observed data (Gibson 1959; Lazarsfeld and Henry 1968). 
These methods can be seen as model-based clustering methods 
and they belong to a larger family of LV techniques called fi-
nite mixture models. See Oberski (2016) for a recent review on 
the two models. In this review, we focus on models in which 
observed variables can be of any type and LVs are assumed to 
be continuous. A general framework for such models is gen-
eralized linear latent variable modeling framework (GLLVM, 
Skrondal and Rabe-Hesketh  2004; Bartholomew, Knott, and 
Moustaki  2011) which includes models for continuous and 
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discrete responses (or mixed responses) as special cases. 
GLLVMs that assume continuous responses, that is, factor 
analysis (FA) models, have been classically used to estimate 
causes of correlation in multivariate data (confirmatory FA) 
or as an explanatory tool to reduce the dimension of multivar-
iate data (explanatory FA). However, they also serve as a basis 
for more general methods such as structural equation models 
(SEM; Jöreskog 1969, 1970). As will be discussed later, gener-
alized linear mixed models (GLMMs) share certain similari-
ties with GLLVMs, as in GLMMs so-called random effects play 
similar roles as the LVs in GLLVMs. Both GLMMs, GLLVMs, 
and SEMs model complex dependencies in data using compo-
nents that are not directly measurable. In GLMMs, random 
effects typically account for variability because of clustering 
effects, such as repeated measures on the same subject or stu-
dents nested within school classes. In contrast, in GLLVMs, 
the LVs are of direct interest, particularly in how they affect 
the outcome variables. SEMs further expand on GLLVMs by 
specifying causal relationships among LVs and between latent 
and observed variables. For a more detailed discussion of the 
similarities and differences among these three models, see, for 
example Skrondal and Rabe-Hesketh (2004).

Nowadays, when recent developments in computational tools 
have allowed fast and efficient LV model fitting for any response 
type, GLLVMs have become a standard joint modeling tool for 
multivariate analysis that can address various data exploration 
and analysis questions (Warton et  al.  2015; Ovaskainen and 
Abrego 2020).

Consider for a moment a continuous response case and 
write Y =

(

y1⋯ yn
)

⊤ for a n ×m response matrix, where 
yi =

(

yi1,… , yim
)

⊤ is the m-vector of responses recorded at ob-
servational unit i = 1,… ,n. The most widely known dimen-
sion reduction method is principal component analysis (PCA, 
Pearson  1901; Hotelling  1933) which transforms multivari-
ate data into uncorrelated components, that is, yi is decom-
posed into

where � is a m-dimensional location vector, � is an orthogonal 
m ×m matrix specifying the principal axes, and the compo-
nents of m-vector ui =

(

ui1,… ,uim
)

⊤, that is, principal compo-
nent scores, are uncorrelated and ordered according to their 
variances. PCA is often used as a pre-processing step and only 
p components explaining most of the variation in data are re-
tained for further analyses. PCA is a non-probabilistic method 
as no distributional assumptions are made. If we make some 
moment conditions on ui, methods such as independent compo-
nent analysis (ICA, Comon 1994) can be used to decompose data 
into components that are independent and ordered according to 
some measure of non-Gaussianity. Notice that � and ui in model 
(1) are confounded and the model is not uniquely defined. We 
return to a similar indeterminacy issue in connection with FA 
models later in this article. For a comprehensive review of ICA 
methods and their variants, see Comon and Jutten  (2010) and 
Nordhausen and Oja (2018). For the extensions of model (1) to 
dependent data settings, see Ensor (2013), Bachoc et al. (2020), 
Pan et al. (2021), Virta et al. (2020), and Muehlmann, De Iaco, 
and Nordhausen  (2023), for example. PCA has been extended 

to discrete data settings especially in the matrix factoriza-
tion literature, see, for example, Cao and Xie  (2016), Lee and 
Seung  (2000), Collins, Dasgupta, and Schapire  (2001), and 
Smallman, Artemiou, and Morgan (2018).

The popularity of PCA and ICA arises from their computational 
simplicity, but a notable drawback is the absence of a probabilis-
tic model for the observed data. By assuming a probability distri-
bution for LVs we can better account for key statistical properties 
of the data at hand. It also allows easy comparison with other 
probabilistic techniques, and the availability of inferential, pre-
diction, model selection, and diagnostic tools in addition to di-
mension reduction. A probabilistic version of PCA (probabilistic 
PCA) assumes that the observations are generated via

where m × p matrix � now relates the p-dimensional LVs 
ui =

(

ui1,… ,uip
)

⊤ to observed data (Lawley  1953; Anderson 
and Rubin  1956). The noise components in m-vector 
�i =

(

𝜖i1,… ,𝜖im
)

⊤ are assumed to be uncorrelated and nor-
mally distributed, �i ∼ Nm

(

0 ,�2Ip
)

. Tipping and Bishop  (1999) 
give a detailed discussion of model (2) and show how the esti-
mation of � and �2 can be conducted iteratively using an EM 
algorithm. Recently, the extensions of probabilistic PCA to expo-
nential family case and related computational approaches have 
been considered in series of articles, see, for example, Chiquet, 
Mariadassou, and Robin (2018), Wang and Carvalho (2024), and 
references therein.

In this article, we review GLLVMs, which extend (2) to any re-
sponse distributions, and related computational approaches 
focusing on maximum likelihood estimation (MLE)-based 
methods. The structure of this article is as follows. Section  2 
reviews the considered models in detail. Additionally, we dis-
cuss also the tools available for selecting the optimal number of 
factors and address the identifiability issues inherent in these 
models. Related to this, we focus in this review on exploratory 
methods and only refer to confirmatory methods where the in-
terpretability of factors is of main interest. The most recent com-
putational tools are reviewed in Section  3, and some of these 
methods are compared using simulation studies in Section  4. 
The article is concluded with some discussion in Section 5. For a 
list of abbreviations used in this article, see Table 1.

2   |   Generalized Linear Latent Variable Models

2.1   |   Factor Analysis

The main idea in factor analysis (FA) is to explain the correlation 
across continuous, multivariate responses using a small number 
of common factors. It is thus assumed that there are some im-
portant unmeasured predictors that introduce correlation across 
responses, and the main idea is to find those predictors. FA mod-
els are the most popular LV models used in psychology, and its 
origins date back to studies of intelligence by Spearman (1904). 
The name FA was introduced in Thurstone  (1931), and a sta-
tistical treatment of the model was considered in Anderson 
and Rubin  (1956) and more comprehensively in Lawley and 
Maxwell (1962).

(1)yi = � + �ui,

(2)yi = � + �ui + �i,
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2.1.1   |   Model Formulation

Write now Y =
(

y1⋯ yn
)

⊤ for a n ×m response matrix, where 
yi =

(

yi1,… , yim
)

⊤ is the m-vector of responses recorded at ob-
servational unit i = 1,… ,n. The FA model assumes that the re-
sponses are generated via

where the m-vector � =

(

𝜈1,… , 𝜈m
)

⊤ specifies the loca-
tion of the model. The m × p matrix � =

[

�1⋯�m
]

⊤, where 
�j =

(

𝜆j1,… ,𝜆jp
)

⊤, is a matrix of factor loadings, and the p-
dimensional LVs (common factors) ui =

(

ui1,… ,uip
)

⊤ are 
usually assumed to be independent vectors from a standard mul-
tivariate normal distribution, ui ∼ Np

(

0 ,Ip
)

, where Ip is a p × p 

identity matrix. This fixes the scales and locations of factors, but 
they still remain rotation invariant. We return to this topic in 
Section 2.1.2. If the additional noise vectors �i =

(

ϵi1,… ,ϵim
)

⊤ are 
also assumed to be normally distributed, �i ∼ Nm(0 ,Ψ), where Ψ 
is a m ×m diagonal matrix with variances �2

1
,… , �2m as diagonal 

elements, and ui is independent on �i, then model (3) implies that

that is, responses are independent after conditioning on LVs. By 
integrating out the LVs, the marginal distribution of responses 
becomes

that is, LVs induce a (reduced-rank) covariance structure for the 
model. As Ψ is assumed to be diagonal, information about correla-
tions across responses is given by a matrix of factor loadings �, 
and �i only contribute to variances. When �2

1
= … = �

2
m = :�2 , 

that is, Ψ = �
2Im, the FA model (3) is known as the isotropic 

error model and it is equivalent to the probabilistic PCA model 
(2). For connections between the two models and algorithms 
for estimating � and �2, see Anderson  (1963); Tipping and 
Bishop (1999).

With special choices of p and �, model (3) reduces to a linear 
mixed effects model (Pinheiro and Bates 1995; Searle, Casella, 
and McCulloch  2009). A simple variance component model 
is obtained by selecting p = 1 and �1 = … = �m = :�, then �2 
corresponds to the variance of random intercept, that is, we 
assume that ui ∼ N

(

0, �2
)

. The presence of univariate random 
intercept induces a constant positive correlation between each 
pair of responses yij and yik, where j ≠ k. However, in most 
applications such a model is too far too simple. If we select 
p = m, and allow m-dimensional random effects to be distrib-
uted as ui ∼ Nm(0 ,�), where � is an unstructured m ×m cova-
riance matrix, this corresponds to the choice � = ��

⊤, that is, 
we can for example formulate the model using � = �

1∕2, where 
�
1∕2 is the unique symmetric root of �. Models that include 

m-dimensional random effects offer a flexible framework for 
accounting for any correlation structure in data. With large m, 
the model fitting becomes however computationally demand-
ing as the number of parameters in the covariance matrix in-
creases quadratically with m. Hence, as seen in (5), by letting 
p≪ m, the factor loadings in m × p matrix � describe the cor-
relation across responses, but use a lot less parameters than 
the mixed effects model with general correlation structure. 
We return to the methods for choosing the number of factors 
in Section 2.1.2.

Finally, notice that the FA model (3) can be extended to account 
for measured predictors. If we write xi =

(

xi1,… , xiq
)

⊤, for a q-
vector of observed predictors for the observational unit i, then 
the model (3) can be written for example as

where now m × q matrix B =
[

�1⋯�m
]

⊤ with � j =
(

𝛽 j1,… ,𝛽 jq
)

⊤ 
is a matrix of regression coefficients. Now �ui accounts for cor-
relation in responses not accounted for by the observed predictors. 

(3)yi = � + �ui + �i,

(4)yi |ui ∼ Nm

(

� + �ui ,Ψ
)

,

(5)yi ∼ Nm

(

� ,��⊤ + Ψ
)

,

(6)yi = � + Bxi + �ui + �i,

TABLE 1    |    Commonly occurring abbreviations in this article.

Term Abbreviation

(Adaptive) Gauss–Hermite quadrature (A)GHQ

Akaike Information Criterion (corrected) AIC(c)

Automatic differentiation AD

Bayesian Information Criterion BIC

Expectation propagation EP

Expectation–maximization EM

Extended variational approximation EVA

Factor analysis FA

Generalized linear latent variable model GLLVM

Generalized linear mixed model GLMM

Generalized linear model GLM

Independent component analysis ICA

Integrated nested Laplace approximations INLA

Item response theory IRT

Laplace's approximation LA

Latent Gaussian modeling LGM

Latent variable LV

Markov Chain Monte Carlo MCMC

Maximum likelihood estimation MLE

Penalized quasi-likelihood PQL

Principal component analysis PCA

Probability density/mass function PDF/PMF

Quasi-maximum likelihood QML

Root mean square error RMSE

Simulated maximum likelihood SML

Stochastic partial differential equation SPDE

Structural equation modeling SEM

Variational approximation/inference VA/VI
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Such correlation can be driven by some missing predictors or 
other unmeasured characteristics of the observational units.

2.1.2   |   Rotation of Factors and Choosing Their Number

The FA model (3) is not uniquely defined; if we write �⋆ = L� 
and u⋆

i
= L⊤ui, where L is an orthogonal p × p matrix (e.g., a 

rotation), then the model (3) is equivalent to

that is, the model is defined only up to a rotation. This indetermi-
nacy is both a challenge and an opportunity. Assuming that the 
number of latent factors p is known, this indeterminacy must be 
taken into account when considering the identifiability of the 
model and its parameter estimation. Identifiability is considered 
in great detail in Anderson and Rubin (1956), and many estima-
tion approaches proposed in the literature often fix the form of 
� in some way; see, for example, Mulaik (2009), Govindasamy 
et al. (2024), and references therein. The most popular estima-
tion method by far is the MLE, which assumes that both LVs 
and noise are normally distributed. The MLE can essentially be 
based solely on the covariance matrix (or correlation matrix) but 
has no closed-form solution, and iterative approaches such as the 
EM algorithm, which will be discussed in detail in Section  3, 
have to be used. Once estimates have been obtained, however, 
the matrix L can be chosen in such a way that it best reflects the 
purpose of the analysis.

If the aim is to give the loading matrix � a simple structure 
and the factors ui meaningful interpretations, then one might 
choose L to be a Varimax rotation that pushes the loadings 
toward zero or one (Kaiser  1958). However, there are many 
other objective functions to choose L with quite similar goals; 
see, for example, Mulaik  (2009, chap. 10 and 11). Note that 
in some cases L is not restricted to being an orthogonal ma-
trix to achieve better interpretability. In such case the rotation 
is denoted as an oblique rotation where again many options 
exist (see, e.g., Mulaik  2009, chap. 12). However, if the aim 
of the LV modeling is to use it as a data exploration method, 
one may, for example, be mainly interested in visualizing the 
data in a lower-dimensional space so that the axes are defined 
by factors (ordination axes). In such an exploratory analysis 
(i.e., ordination analysis), rotation does not matter as only the 
relative position of points in the ordination plot is relevant. In 
such cases, the rotation is fixed in some convenient way, for 
example, by constraining the upper triangular components of 
� to be zero and the diagonal elements to be positive (Huber, 
Ronchetti, and Victoria-Feser 2004; Niku et al. 2017). Notice 
that when FA is used to explore the correlation structure of the 
data, the method is called as the exploratory FA. The counter-
part of the method is the confirmatory FA in which case the 
goal is to decide if a given dataset follows some hypothetical 
factor model (see Mulaik 2009, for more details).

Estimation in exploratory FA is done assuming that the num-
ber of LVs is known, which is often not the case in practical 
scenarios. Hence, extensive research has been conducted 
on the optimal choice for p, as reviewed, for example, in 
Iantovics, Rotar, and Morar  (2019). Heuristic approaches for 

choosing p are commonly based on the eigenvalues of the 
sample correlation matrix, and are still widely used. Kaiser's 
rule (Kaiser  1960, 1961) suggests selecting p as the num-
ber of eigenvalues greater than 1, as this indicates that each 
factor explains more of the variation than a single variable. 
Cattell  (1966) recommends plotting the eigenvalues against 
their ordinal number and visually identifying an “elbow”—
the point where the plot bends significantly, which then sug-
gests the number of components to be used. This method is 
known as the scree plot method.

These heuristic approaches, while not depending on strong as-
sumptions or a specific estimation method, are considered quite 
crude. Nonetheless, the popularity of using the MLE for FA also 
stems from its immediate provision of tools for model selection, 
such as the Akaike Information Criterion (AIC) or the Bayesian 
Information Criterion (BIC), and for inference, such as likelihood 
ratio tests that compare the unrestricted covariance matrix with 
the model-based one (Bartlett 1950). More details on FA can be 
found in Anderson (2003), Mulaik (2009), Bartholomew, Knott, 
and Moustaki (2011), and discussions on how to perform FA with 
various packages in R are available in Govindasamy et al. (2024).

2.2   |   Generalized Linear Latent Variable Models

Quite often the multivariate data are discrete and extensions 
of classical FA are needed. One example of such data is ques-
tionnaire data in psychology and sociology, where responses to 
test items are often binary, ordinal or categorical (or of mixed 
type). The aim of the analysis may then be to describe the data 
using a set of LVs and interpret the variables as psychologi-
cal or sociological traits such as intelligence (Andersen 1982; 
Moustaki and Knott 2000; Skrondal and Rabe-Hesketh 2004). 
In educational testing data consist of students' answers to a 
set of questions and a single LV corresponding to students' 
performances is used to locate students on some chosen scale. 
Such a method is known as the item response theory (IRT, 
Andersen 1973; Andersen and Madsen 1977). In community 
ecology, GLLVMs are nowadays widely used to build joint 
models for abundance data. Such data occur when observa-
tions (e.g., presence–absences, counts, biomass, coverage, 
etc.) of multiple interacting species are recorded from a set of 
sites or samples. When GLLVM is used as an explanatory tool, 
predicted LVs (often with p = 2) can be plotted to illustrate 
how different samples or sites differ in terms of their species 
composition. Such a method is known as the model-based or-
dination analysis (Hui et al. 2015; van der Veen et al. 2021). 
If covariates related to study sites and/or traits are recorded, 
GLLVMs can be used to make valid inferences about their ef-
fects while accounting for any residual correlation between 
taxa not accounted for by the measured covariates. For more 
applications of GLLVMs on ecology, see Warton et al. (2015), 
Ovaskainen and Abrego (2020), and references therein.

2.2.1   |   Model Formulation

The principles of FA can be easily extended to discrete or semi-
continuous data setting using the GLLVM framework. A gen-
eral treatment of GLLVMs for any response types stems from 

yi = � + �
⋆u⋆

i + �i,
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Bartholomew  (1980, 1984) who proposed a model for binary 
data. Later, Moustaki (1996) and Moustaki and Knott (2000) al-
lowed the response variables to be of mixed type. For a general 
framework for GLLVMs, see for example, Skrondal and Rabe-
Hesketh (2004) and Bartholomew, Knott, and Moustaki (2011). 
In GLLVMs we assume that responses yi come from some dis-
tribution with known mean–variance relationship. Often it is 
assumed that the distribution belongs to the exponential family 
of distributions, but there is no reason to restrict to exponential 
family. The p-dimensional LVs are again assumed to follow a 
standard multivariate normal distribution, ui ∼ Np

(

0 ,Ip
)

, and 
the conditional mean of yi given LVs ui is linked to the linear 
predictor via some known link function. To be more specific, 
write the linear predictor �i =

(

𝜂i1,… ,𝜂im
)

⊤ as �i = � + �ui, 
where � is again a m-vector specifying the location and m × p 
matrix � is a matrix of factor loading as in (3). In GLLVMs, the 
normality assumption in (4) can be replaced by

where � =

(

𝜙1,… ,𝜙m
)

⊤ denotes possible additional response-
specific parameters for modeling dispersion, depending on the 
distributional families of the responses; present in, for example, 
negative binomial models for modeling overdispersion in count 
data (Niku et al. 2017), or in beta models for modeling vegeta-
tion cover data (Korhonen et  al.  2024). The conditional mean 
�ij = �

(

yij|ui
)

 is then linked to the linear predictor via

where g( ⋅ ) is a known link function. As in FA, the model is not 
uniquely defined. Assumption ui ∼ Np

(

0 ,Ip
)

 fixes the mean and 
scale of LVs, but not the rotation as the vectors �j and ui can be 
multiplied by an orthogonal matrix without changing �ij. To fix 
the rotation, one can force the upper triangular components of � 
to be zero and the diagonal elements to be positive as in Huber, 
Ronchetti, and Victoria-Feser (2004).

As in (6), the model (7) can be extended to account for measured 
predictors. Then the model can be specified, for example, by

The above model is widely used, for example, in ecology commu-
nity studies, where the aim may be in conducting multivariate 
inference about the effect of environmental covariates on com-
munity composition while accounting for correlation between 
species via LVs. Note that (8) now bears a lot of similarities to a 
multivariate GLMM (Breslow and Clayton 1993), which models 
the mean �ij by, for example,

where �i =
(

𝛾 i1,… ,𝛾 im
)

⊤ are elements of a multivariate random 
effect, which is typically assumed to be distributed according to 
Nm(0 ,�), where � is used to model the covariance structure 
among the responses. As already discussed in Section  2.1, al-
though the mixed modeling approach is flexible, if � is left un-
structured, the number of parameters needed to be estimated in 

� grow quadratically with the number of responses m, making 
GLMMs impractical for modeling large multivariate datasets. 
The GLLVM (7) can then be seen as a rank-reduced version of 
(9), lowering the number of parameters needed through the 
factor-analytic decomposition that is obtained by 𝛾 ij = �⊤

j ui.

The model as defined in (8) can be extended further to more 
complex settings. For models specific to studies in ecology and 
various examples of case studies, we refer to Warton et al. (2015), 
Niku, Hui, et al. (2019), and Ovaskainen and Abrego (2020).

3   |   Estimation and Computational Tools

In this section we review some most common computational 
tools for fitting GLLVMs. For simplicity, we consider here mod-
els without measured predictors, but their inclusion would not 
change the parameter estimation. Let fj

(

yij|�ij,�j
)

 denote the 
pdf. (for continuous) or pmf. (for discrete) of the ith observa-
tion of the jth response yij, conditional on the LVs and the pa-
rameters of the model as in (7). Note the subscript j in fj( ⋅ ), 
indicating that the conditional distributions are allowed to be 
mixed, that is, they can vary among the responses j = 1,… ,m. 
To simplify notation, from now on we assume one common dis-
tributional family fj( ⋅ ) = f ( ⋅ ) for all j.

Because of the relatedness of GLMMs and GLLVMs as shown 
in the previous section, likelihood-based estimation methods 
for the latter mirror those developed earlier for the former. For 
this reason, we will be referring to GLMMs several times during 
the rest of this section. Note however that no specific additional 
knowledge on GLMMs is required on part of the reader.

3.1   |   Complete Likelihood Function

Denote by � =
(

�⊤,vec(�)⊤,�⊤
)⊤ and u =

(

u⊤

1
,… ,u⊤

n

)

⊤ the vec-
tors collecting all of the parameters and the LVs in the model, 
respectively. Under the assumption, that conditional on the LVs 
ui the responses are distributed independently, the complete 
likelihood function takes the form

where f
(

ui
)

 are densities of the standard multivariate normal 
distribution Np

(

0 ,Ip
)

, f (y� �,u) =
∏n

i=1

∏m
j=1 f

�

yij��ij,�j
�

, and 

f (u) =
∏n

i=1 f
�

ui
�

. As follows, the complete log-likelihood func-
tion is then given by

3.1.1   |   Expectation–Maximization Algorithm

As the complete log-likelihood (10) depends on the unobserved 
quantities in u, we cannot maximize �(� ,u) as is using the 
standard routines of maximum likelihood estimation (MLE). 

yij ∣ ui ∼ F
(

�ij,�
)

(7)g
(

𝜇ij

)

= 𝜂ij = 𝜈j + �⊤

j ui,

(8)g
(

𝜇ij

)

= 𝜈j + �⊤

j xi + �⊤

j ui.

(9)g
(

𝜇ij

)

= 𝜈j + �⊤

j xi + 𝛾 ij,

(�,u)=
n
∏

i=1

[

m
∏

j=1

f
(

yij,�ij|�j
)

]

f
(

ui
)

= f (y,�|u)f (u),

(10)

�(�,u)= log (�,u)= log f (y,�|u)+ log f (u)
=

n
∑

i=1

m
∑

j=1

log f
(

yij,�ij|�j
)

+

n
∑

i=1

log f
(

ui
)

.
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Instead, it is popular to maximize (10) using algorithms such as 
the expectation–maximization (EM algorithm, Dempster, Laird, 
and Rubin  1977)—a general estimation tool for models with 
missing observations and/or LVs. The EM algorithm works by 
iterating through the so-called E (expectation) and M (maximi-
zation) steps:

1.	 E step: Let �(k) stand for the current estimate of the parame-
ters � after k iterations. Determine then the expected value 
of the complete log-likelihood (10) w.r.t. the LV conditional 
density f

(

u| y,�(k)
)

:

2.	 M step: Update the parameter estimates by maximizing 
Q
(

�| �(k)
)

 w.r.t. �:

These steps are repeated in sequence until convergence, say the 
Kth iteration. Then, the EM estimates for the parameters of the 
model (7) can be read from �(K), and the conditional distribution 
f
(

u| y,�(K)
)

 (or posterior in Bayesian terms) may be used for 
predicting the LV scores. The EM algorithm is often easy to im-
plement, and Q

(

�| �(k)
)

 may admit closed-form expression even 
when the model's marginal log-likelihood—more on which 
below—does not. Furthermore, based on Jensen's inequality, 
the EM algorithm is guaranteed to improve the marginal log-
likelihood at each iteration (see, e.g., the convergence discus-
sions in the seminal work Dempster, Laird, and Rubin 1977).

In the modeling frameworks related to this review, variants of 
the EM algorithm have been employed in a plethora of settings, 
for example, in Sammel, Ryan, and Legler (1997) EM was used 
for LV modeling of mixed discrete and continuous responses, 
and in Hui et al.  (2015) coupled with Monte Carlo integration 
for model-based ordination using GLLVMs. In Daolin Pang 
and Wang (2023), a variational EM algorithm was employed for 
the analysis of microbiome data using a multinomial response 
GLLVM. Wang and Carvalho  (2024) proposed a general algo-
rithm for the estimation of GLLVMs based on the EM algorithm 
and numerical integration.

The R package ltm (Rizopoulos 2006), aimed for applications in 
IRT, can be used to fit logistic GLLVMs on multivariate Bernoulli 
(i.e., binary) responses, with the LV dimension p ≤ 2. It utilizes 
the EM algorithm together with the Gauss–Hermite quadrature 
(GHQ, Bock and Lieberman 1970; Bock and Aitkin 1981) to fit 
estimate the model.

3.2   |   Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC, e.g., Metropolis et al. 1953; 
Hastings 1970) sampling based on the complete likelihood (10) 
presents another popular approach for estimation of models 
with unobserved parameters. In general, MCMC algorithms 
aim to draw samples from a given target distribution (typically 

the marginal posterior densities of the model parameters 
and LVs). Specifically, the samples are drawn by construct-
ing a Markov chain, that is, sequence where the probability 
of a given member depends only on the one preceding it. The 
Markov chain is constructed in a way which ensures that after a 
sufficient amount of draws, the distribution of the chain closely ap-
proximates the target. For GLLVM estimation specifically, MCMC 
has been utilized, for example, in Ovaskainen, Abrego, et al. (2016) 
and Hui et  al.  (2017). Big advantage of the MCMC sampling 
based approach is that, compared with alternatives, it caters 
naturally to estimation of very complex, hierarchical models; 
Tikhonov et al. (2020) fitted GLLVMs with spatially correlated 
LVs, replacing the assumption that ui ∼ Np

(

0 ,Ip
)

 by a more 
complex correlation structure. Lammel et  al.  (2018) utilized 
MCMC to estimate a GLLVM augmented with a phylogenetic 
correlation matrix. The latter two studies used the popular 
R package Hmsc (Tikhonov et  al.  2019, 2024) to conduct the 
analyses. Motivated by ecological applications, Hmsc provides 
a user-friendly interface for Bayesian analysis of multivariate 
community data. As an alternative, one might consider boral 
(Hui  2016, 2024), another ecologically focused MCMC-based 
R package, with a larger number of supported response distri-
butions while being more limited when it comes to including 
phylogenetic information or more complicated hierarchical 
structure. HMSC also employs a clever way of finding the opti-
mal number for the LV dimension p; by allowing p to be essen-
tially unlimited, HMSC controls the effective number of LVs by 
employing the multiplicative gamma process shrinking prior 
of Bhattacharya and Dunson (2011) for the loadings �j, leading 
to sparse loading matrices � regardless of p.

As an alternative to software specific to GLLVMs—such 
as the aforementioned HMSC or boral—one can choose to 
build their own modeling tools using some general purpose 
MCMC modeling software, including, for example, Stan (for 
the R interface, see Stan Development Team  2024), greta 
(Golding 2019), JAGS (Plummer 2003), and many more. This 
approach can offer great flexibility in the kinds of models one 
can fit, but may in turn require considerably more effort on 
part of the user.

3.3   |   Marginal Likelihood

In the case of estimating GLLVMs based on (10), the two afore-
mentioned methods—the EM algorithm and MCMC samplers—
are able to provide accurate inferences and predictions, but tend 
to lead to very long computation times (Warton et al. 2015), ren-
dering them impractical in many scenarios involving high or 
even moderate-dimensional data. Furthermore, for those not 
familiar with Bayesian statistics, MCMC convergence might 
be hard to assess (Gelman and Rubin 1996), particularly when 
the amount of parameters in the model is high—as is typical 
in scenarios where GLLVMs are employed. In this review, we 
are mainly focusing on the alternative and generally much more 
computationally efficient approach of approximating the mar-
ginal log-likelihood function

Q
(

�| �(k)
)≔𝔼u∼f (⋅|y,�(k))[𝓁(�,u)]

= �
ℝ
np

f
(

u| y,�(k)
)[

log f (y|�,u)+ log f (u)
]

du.

�(k+1)
= argmax

�

Q
(

� |�(k)
)

.

(11)�(�)= log(�)= log
⎛

⎜

⎜

⎝

�
ℝ
np

f (y��,u)f (u)du
⎞

⎟

⎟

⎠

.
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where the LVs ui have been integrated out, leading into a 
proper likelihood function for just the parameters �. To facil-
itate efficient MLE requires the integral in (11) to be avail-
able as closed-form expression, a condition fulfilled only 
by the normal-response identity-link (i.e., factor analytic) 
model. For other response types, some approximation tech-
nique is needed; popular “classical” approaches include those 
that approximate the integrand, for example, Laplace's ap-
proximation (LA) (Tierney and Kadane  1986) and penalized 
quasi-likelihood (Green  1987; Breslow and Clayton  1993), 
and those that approximate the integration itself, for ex-
ample, numerical integration using Monte Carlo methods 
(Danielsson  1994; Cappellari and Jenkins  2003) or (adap-
tive) Gaussian quadrature rules such as the Gauss–Hermite 
(Bock and Lieberman 1970; Bock and Aitkin 1981; Naylor and 
Smith 1982). More recently, the method of variational approxi-
mations has also gained significant amount of traction in like-
lihood based statistics (Ormerod and Wand  2010, 2012). On 
the Bayesian side, the method of integrated nested Laplace ap-
proximations (Rue, Martino, and Chopin 2009) has seen a lot 
of adaptation in general latent variable modeling. While these 
approximative methods are usually a lot faster to run than 
EM algorithm or MCMC, there comes a trade-off in terms of 
estimation accuracy. However, often the loss in accuracy is 
relatively small compared with the gain in computational effi-
ciency, making these approximation methods attractive from 
a practical point of view (Warton et al. 2015).

3.3.1   |   Approximations to the Integrand

The methods belonging to this class seek to bypass the inte-
gration in (11) by approximating the integrand, that is, the 
function f (y|�,u)f (u) = f (y,u|�), by a Gaussian density to 
leverage the fact that the integral then has a closed form. 
Popular methods of this class include the laplace's approxima-
tion (LA) (Tierney and Kadane 1986) and the penalized quasi-
likelihood estimation (Green 1987; Breslow and Clayton 1993). 
Common characteristic of these kind of methods is that their 
performance generally improves with larger number of re-
sponses m. Conversely, for small m or very “discretely behav-
ing” responses—for example, binary 0∕1 or low-count Poisson 
or negative-binomial—the accuracy of the Gaussian approxi-
mation might be very poor.

3.3.1.1   |   Laplace's Approximation.  The Laplace's method 
or Laplace's approximation (LA, Tierney and Kadane 1986) is 
one of the best-known and most widely employed tools 
of approximate inference in statistics, including both Bayesian 
and frequentist methodologies. LA bypasses the need 
for high-dimensional integration in (11) by instead considering 
an optimization problem, namely that of finding the mode 
of the joint density w.r.t. u, that is, û = argmaxulog (y,u |�)—in 
Bayesian terminology, this corresponds to the maximum a pos-
teriori—or MAP—estimate of LVs in u. The joint density is then 
approximated by a multivariate normal distribution 
(un-normalized), log f (y,u |�) ≈ N

(

u| û, Ŝ
)

, with the mean û 

and the precision (i.e., inverse covariance) matrix

As mentioned earlier, (11) has a well-known closed-form solu-
tion for Gaussian integrands, meaning that LA is able to deliver 
closed-form approximations of (11) for GLLVMs with any type 
of response distribution. Asymptotic properties of LA are also 
well established; Tierney and Kadane  (1986) have shown the 
asymptotic error of the approximation to be of order (m−1

)

, 
and for GLLVMs specifically, Huber, Ronchetti, and Victoria-
Feser  (2004) have shown the estimates based on LA to be as-
ymptotically normal and consistent.

Popular software packages that implement the Laplace's method 
for fitting GLLVMs or closely related models include glm-
mTMB (Brooks et al. 2017); gllvm (Niku et al. 2023) by setting 
method = “LA” in gllvm(); and lme4 (Bates et al. 2015) by setting 
nAGQ = 1 in the function glmer(). Of the three packages, gllvm 
focuses on GLLVMs, while glmmTMB and lme4 are oriented to-
ward GLMMs, with glmmTMB also having the option of fitting 
GLMMs with rank-reduced correlation structures, that is, es-
sentially GLLVMs. Notably, in their implementations, both glm-
mTMB and gllvm leverage the R/C++ TMB library (Kristensen 
et al. 2016); a state-of-the-art model-building software combin-
ing fast LA with automatic/algorithmic differentiation (AD, e.g., 
Rall  1981) for efficient and relatively easy implementation of 
many types of models with random effects.

The basic TMB workflow consists of writing and compiling a 
C++ function, the model template for the objective, that is, usu-
ally the negative log-likelihood. On the R side, the user then 
specifies the data and parameter starting values and denotes the 
random effects using MakeADFun() on the compiled template, 
producing the objective function together with its gradient, 
which is calculated using AD. These can then be fed into any 
gradient-based optimization function in R, for example, optim() 
or nlminb(), to obtain estimates for the parameters � and pre-
dictions for u. Through the R_inla namespace TMB can be com-
bined with the stochastic partial differential equation approach 
from the INLA package (Rue, Martino, and Chopin  2009; 
Lindgren, Rue, and Lindström 2011; Martins et al. 2013) to cre-
ate models with very complex spatial or spatio-temporal correla-
tion structures. By using the package tmbstan in addition, users 
can do MCMC sampling based on a TMB model object using the 
No-U-Turn Hamiltonian Monte Carlo sampler (Hoffman and 
Gelman 2014) implemented in the Bayesian modeling software 
platform Stan (e.g., Stan Development Team 2024). Prospective 
users familiar with R but not with C++, can instead opt for 
using the RTMB package (Kristensen 2023), a R-only interface 
to TMB, with most of the same functionalities in place.

3.3.1.2   |   Penalized Quasi-Likelihood.  Quasi-maximum 
likelihood (QML) estimation refers to a broad category of ways 
to relaxing some of the distributional assumptions inherent 
in popular statistical methodologies, particularly general-
ized linear models—the context in which it was originally 
introduced in Wedderburn  (1974). Unlike the typical likeli-
hood function, which is always related to a given distribution 
assumed for the response variable y, the quasi-likelihood func-
tion is formed by specifying only the assumed mean–variance 
relationship

Ŝ
−1

= − ∇2
u

[

log f (y,u|�)
]

u=û
.

�(y)=�,

var(y)=�� (�),
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where � is an (unknown) dispersion parameter and � ( ⋅ ) is some 
known variance function depending on the mean �—which it-
self is connected to some linear predictor through a known link 
function g(�) = �. The quasi-likelihood is then given by integrat-
ing the so-called quasi-score function defined as

and it behaves similarly to ordinary log-likelihood, and ac-
tually coincides with it when y is in the exponential family 
(Wedderburn 1974). QML estimates for the regression parame-
ters related to the mean � are then achieved by maximizing (12) 
w.r.t. them; interestingly, � has no effect in the estimation of the 
mean parameters. Under certain fairly broad conditions, the es-
timates based on (12) enjoy similar properties as ML estimates, 
for example, asymptotic normality and consistency, but suf-
fer in terms of efficiency (Wedderburn 1974; McCullagh 1983; 
Firth 1987).

Following Green  (1987), the method of penalized quasi-
likelihood (PQL) has been developed as a fast estimation method 
for GLMMs in Breslow and Clayton (1993), and more recently ex-
tended for GLLVMs in Kidzinski et al. (2022), particularly in the 
context of very high-dimensional datasets. Their line of work de-
rives the PQL for LV models by considering first a LA to a quasi-
likelihood formulation of GLMM/GLLVM, which is followed by 
then discarding an expensive to compute log-determinant term 
from the resulting approximation. Justification for this exclusion 
is, that based on theory (GLMMs, Breslow and Clayton  1993) 
and empirical evidence (GLLVMs, Kidzinski et  al.  2022), the 
magnitude of the particular log-determinant diminishes com-
pared with other terms, when n and m grows large.

Assuming that yij is in the exponential family with canonical 
link, that is, yij ∼ exp

((

yij�ij − b
(

�ij

))

∕�j
)

h
(

yij,�
)

 with known 
b( ⋅ ) and h( ⋅ ), following Kidzinski et  al.  (2022), the likelihood 
contribution of the ith observation is in the first step (Laplace) 
approximated by

where Li(u) =
∑m

j=1

�

yij𝜂ij − b
�

𝜂ij

��

∕𝜙j − u⊤u∕2, and ûi is such 

that Li( ⋅ ) is minimal. After calculating the necessary derivatives 
(see eqs. 4 and 5 in Kidzinski et al. 2022) the approximation for 
the ith likelihood contribution becomes

where Wi is a m ×m diagonal matrix with diagonal elements 
�
(

�i1

)

∕�1, … ,�
(

�im

)

∕�m and �𝜂ij = 𝜈i + �⊤

j
�ui. In the context 

of GLMMs, where the loading matrix � would be replaced by a 
known random-effect design matrix, Breslow and Clayton (1993) 
argue that as the matrix Wi tends to vary slowly w.r.t. �, the log-
determinant term could be ignored. In GLLVMs, where � need 
to be estimated, one cannot categorically discard the first term 
in (13). However, backed by empirical evidence, Kidzinski 

et al. (2022) argue that in high-dimensional settings with large 
numbers of observations n and responses m, the log-determinant 
terms become negligible lending to the following PQL approxi-
mation of the marginal log-likelihood

The term 1
2

∑n
i=1 u

⊤

i
ui in (14) resembles a ridge-like penalty term 

(e.g., McDonald  2009)—hence the name penalized quasi-
likelihood. By essentially treating ui as fixed effects instead of 
random, the PQL estimation can be done very efficiently lever-
aging well-established Newton and quasi-Newton methods, as 
shown by the two algorithms provided in Kidzinski et al. (2022). 
Both algorithms are implemented in the R package gmf 
(Kidzinski et al. 2020). The package also implements an option 
of using a regularization scheme to control the effective number 
of LVs p. This procedure, as described in Kidzinski et al. (2022), 
is done by setting a bound on (e.g., p <

√

m), and then including 
in (14) L2 penalties on the LV score and loading matrices with 
some scaling factor �. During the model estimation, these pen-
alty terms then push some of the columns toward zero, thus lim-
iting the effective number of LVs.

3.3.2   |   Approximations to the Integral

The other approach to approximating (11) is to consider approx-
imations to the operation of integration itself. This includes, for 
example, numerical integration techniques such as the GHQ 
(Bock and Lieberman  1970; Bock and Aitkin  1981) and simu-
lated maximum likelihood (SML) (Danielsson 1994; Cappellari 
and Jenkins 2003).

3.3.2.1   |   Gauss–Hermite Quadrature.  Finding its way 
into the statistical literature through uses in item response the-
ory (Bock and Lieberman 1970; Bock and Aitkin 1981), the GHQ 
is a popular numerical integration technique for approximating 
univariate integrals of the following form

by a weighted sum of h( ⋅ ) evaluated on a set of nQ quadra-
ture points or nodes uq ∈ Q ⊂ ℝ. The set of quadrature points 
Q corresponds to the roots of the physicist's Hermite polyno-
mial of order nQ. The roots and the corresponding weights 
have long been tabulated for moderate values of nQ, see, for 
example, Stroud and Secrest (1966). Using R, for example, the 
function gaussHermiteData() from the package fastGHQuad 
(Blocker 2022) can be used to create tables for a desired num-
ber of nodes and weights 

(

uq,wq

)

. Accuracy of the method in-
creases by increasing the number of quadrature points nQ, but 
so does the computational load. The univariate quadrature 
(15) can be extended to the multivariate case u ∈ ℝ

p by con-
sidering p nested Gauss–Hermite integrals together with the 
note that exp

�

−u⊤u
�

=
∏p

k=1
exp

�

−u2
k

�

 factorizes, thus mak-
ing GHQ suitable for marginal MLE of GLLVMs (7). However, 
these nested integrals get computationally cumbersome very 

(12)ql(�,�) = ∫
�

y

y − t

�� (t)
dt,

�i(�)≈ −
1

2
log

|

|

|

|

|

𝜕
2Li

(

ui
)

𝜕ui𝜕u
⊤

i

|

|

|

|

|ui=�ui

−Li
(

�ui
)

,

(13)

�i(�)≈ −
1

2
log |�⊤Wi�+Ip|+

m
∑

j=1

1

𝜙j

(

yij�𝜂ij−b
(

�𝜂ij

))

−
1

2
�u
⊤

i
�ui,

(14)�(�)≈ −

n
∑

i=1

m
∑

j=1

1

𝜙j

(

yij𝜂ij−b
(

𝜂ij

))

+
1

2

n
∑

i=1

u⊤

i ui,

(15)∫
∞

−∞

exp
(

− u2
)

h(u)du ≈

nQ
∑

q=1

wqh
(

uq
)

,
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quickly as the LV dimension p grows, hampering the practi-
cality of the method for direct marginal MLE of GLLVMs (11). 
Nowadays, GHQ is more often seen as an intermediary step 
in other algorithms; particularly with intractable integrals 
appearing within the “E-step” in the EM algorithm, as in 
Moustaki (1996), Moustaki and Knott (2000), and the R pack-
age ltm (Rizopoulos  2006), for fitting GLLVMs with mixed 
exponential family responses; or within variational approxi-
mation as in Korhonen et al. (2023).

3.3.2.2   |   Adaptive Gauss–Hermite Quadrature.  In 
practice, the usability of GHQ in the estimation of multivariate 
random effect models is hindered by the fact that the integrands 
f
�

yi��,ui
�

=
∏m

j=1 f
�

yij��,ui
�

 often exhibit high peakedness 

(Lesaffre and Spiessens 2001), causing the need for high num-
ber of quadrature points to accurately assess the integral. This 
issue is further compounded in scenarios with high number 
of responses m, and by the nested integration needed for multi-
variate random effects p > 1. Pruning can be employed to 
remove the points in the grid with the smallest weights wq, but 
this is often small relief. As a better and more comprehensive 
solution, Naylor and Smith (1982) and Pinheiro and Bates (1995) 
considered an extension of GHQ (15) called the adaptive Gauss–
Hermite quadrature (AGHQ). AGHQ differs from regular GH 
by using a technique akin to importance sampling to shift 
the nodes uq and to transform the weights wq to better target 
the high density regions of the integrand which are of interest. 
As a result, a much smaller nQ suffices for accurate approxima-
tion of the integral, easing the computational burden. Still, 
the method is often considered impractical even for relatively 
low numbers of LVs, p > 2.

Since its introduction, the AGHQ has become one of the stan-
dard methods for integration in random effect models, par-
ticularly for GLMMs. For example, it is available as a fitting 
method used by glmer() in the mixed modeling R package 
lme4, though only for univariate random effects; for p ≥ 2 the 
function switches to LA (Tierney and Kadane 1986)—which is 
often seen as a special case of AGHQ with just one quadrature 
point. AGHQ was first applied and implemented for GLLVMs 
by Rabe-Hesketh, Skrondal, and Pickles (2002) in the associ-
ated gllamm package for the proprietary statistical software 
STATA. Bianconcini  (2014) showed that for GLLVM estima-
tors based on AGHQ, the asymptotic normality, and consis-
tency holds.

3.3.2.3   |   Simulated Maximum Likelihood.  SML (e.g., 
Danielsson 1994; Cappellari and Jenkins 2003) estimation is a 
Monte Carlo method for evaluating the marginal log-likelihood 
function (11). Study on SML estimation of GLLVM/FA mod-
els was first conducted in Wedel and Kamakura  (2001) 
and recently revisited in Wang and Carvalho  (2024). SML 
can be an attractive choice for estimation method particularly 
because of its simplicity; the Monte Carlo estimate of (11) is 
constructed by using the following procedure:

1.	 Store k = 1,… ,K draws of �u(k)
=

(

�u⊤

k1,… , �u⊤

kn

)

⊤

 with each 

ũki ∼ Np

(

0 ,Ip
)

, as assumed in (7).

2.	 Choose starting values �0 for the model parameters �.

3.	 Based on the values ũ, evaluate the simulated log-likelihood 
function:

4.	 For gradient-based maximization (e.g., Newton–Raphson) 
of �̃(�), evaluate the simulated gradient:

The gradients �f
(

yij|�, ũki
)

∕�� are typically easy to find, en-
suing SML as a simple method to implement for most types of 
LV models. Based on strong law of large numbers, �̃(�)→ �(�) 
when K → ∞, making �̃(�) a consistent simulator of the mar-
ginal log-likelihood (11), resulting in the SML estimator 
�̃ = argmax��̃(�) being consistent and asymptotically equiv-
alent to the ML estimator—but only if K → ∞ when n→ ∞. 
However, the SML estimator has been shown in Lee (1995) to be 
asymptotically biased when the amount of Monte Carlo draws 
K  does not grow at a rate of at least 

√

n. Furthermore, Wang and 
Carvalho (2024) record that empirically, to ensure reasonably 
low variances for the Monte Carlo gradients �f

(

yij|�, ũki
)

∕��, a 
much larger amount of draws K ≫

√

n might be needed, mak-
ing SML impractical for modern big data settings. As a further 
practical hindrance, Wang and Carvalho (2024) also note that 
the denominator in the simulated gradient is easily prone to 
issues of numerical underflow and requires good choices for 
starting values �0, which can be challenging especially when 
the amount of responses m is large.

3.3.3   |   Recent Developments

This section reviews some of the more recently developed ap-
proximations to the marginal log-likelihood (11), namely the 
methods of (mean-field) variational inference (Ormerod and 
Wand 2010, 2012), expectation–propagation (Minka 2001; Hall 
et al. 2020) and integrated nested Laplace approximations (Rue, 
Martino, and Chopin 2009).

3.3.3.1   |   Variational Approximations.  Already popular in 
Bayesian statistics and machine learning literature, the use of vari-
ational inference (VI) was introduced to frequentist setting by 
Ormerod and Wand (2010, 2012), for the purpose of fitting GLMMs. 
As a rank-reduced form of mixed effect models, GLLVMs fit into 
their approach naturally, as evidenced by Hui et al. (2017), Niku, 
Brooks, et al. (2019), and Daolin Pang and Wang (2023). Further-
more, for GLLVMs, as demonstrated by Warton et al. (2015), VI is 
able to exhibit a desirable balance between accuracy and speed, 
compared with popular alternatives such as (adaptive) numerical 
quadratures, MCMC, or LA reviewed above.

Instead of the marginal log-likelihood (11), VI seeks to maxi-
mize the so-called evidence lower bound (ELBO), derived using 
the Jensen's inequality

�̃(�) =

n
∑

i=1

log

K
∑

k=1

m
∏

j=1

f
(

yij|�, ũki
)

.

��̃(�)

��
=

n
�

i=1

∑K
k=1 �f

�

yij��, ũki
�

∕��
∑K

k=1 f
�

yij��, ũki
�

.
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(Needham 1993), where q(u| �) is referred to as the variational 
distribution for the LVs u, with � denoting the variational pa-
rameters. Maximizing (16) involves minimizing the Kullback–
Leibler divergence—or distance—(KL divergence, Kullback and 
Leibler 1951) from the variational distribution q(u| �) to the ac-
tual LV distribution f (u), more evident from the fact that

Undeniably, the most popular assumption for q is the mean-field 
approximation, under which the variational distribution factor-
izes into independent parts as follows

Mean-field VI is often preferred because of computational sim-
plicity it provides, even though independence might be a too 
strong assumption for some applications. Furthermore, the in-
dividual qi are typically chosen to be multivariate Gaussians, 
that is, qi

(

ui| �i
)

= Np

(

ui| ai,Ai

)

. In particular, this is the ap-
proach employed when specifying method = “VA” when calling 
gllvm() in the R package gllvm (Niku, Brooks, et al. 2019; Niku 
et al. 2023). Mean-field approximation was also used in Chiquet, 
Mariadassou, and Robin (2018) for probabilistic Poisson PCA, 
and in Daolin Pang and Wang  (2023) to fit a multinomial 
GLLVMs to microbiome data. As GLLVMs (7) and FA (3) by de-
fault already assume independent normal LVs, the mean-field 
assumptions might not be as big of a concern. Noteworthily, in 
the GLLVM setting, the number of variational mean and cova-
riance parameters in �i =

{

ai,Ai

}

 depends on the number of 
rows n and LVs p. Particularly, with higher LV dimension, if the 
matrices Ai are assumed to be unstructured (default in gllvm), 
then the optimization process can get hindered by the swiftly 
increasing additional parameter count. This can be alleviated to 
a degree by specifying a simpler structure for Ai, for example,, 
diagonal—achieved through the control.va argument, when 
calling gllvm().

When both q(u) and f (u) are Gaussian densities, the term 
DKL(q(u) ‖ f (u)) in (17) has a well-known closed-form expres-
sion. Meanwhile, the term �u∼q

[

log f (y|�,u)
]

 is not guaranteed 
to have closed-form for all response-link combinations; for ex-
ample presence-absence responses require specifically the use 
of the probit link function, that is, g( ⋅ ) = Φ( ⋅ ) in (7), to arrive 
in closed expression. To use logit (or cloglog) link on binary 
responses, one needs to apply numerical integration (such as 
GHQ) or additional approximations on �u∼q

[

log f (y|�,u)
]

, pos-
sibly losing the property of being a lower bound to (11) in the 
process.

Readers interested in variational inference are recommended 
to refer to Blei, Kucukelbir, and McAuliffe (2017) for a general 
review on VI methodology intended specifically for statistics-
oriented audience, and Zhang et al. (2019) for a review on recent 
advanced techniques of VI-driven mainly by machine learning 
and AI research, touching, for example, on the potential scal-
ability issues mentioned above.

3.3.3.2   |   Extended Variational Approximations.  To cir-
cumvent the inherent restrictions in VA regarding the choices 
of response family and link function, Korhonen et  al.  (2023) 
introduced the method of extended variational approximations 
(EVA) in the GLLVM context. In EVA, log f (y|�,u) in (17) is 
replaced by its second-order Taylor expansion around the varia-
tional mean a, that is,

Now, calculating the mean of the expression above w.r.t. the 
variational density q( ⋅ |a,A) results in a closed-form approxi-
mation for any combination of response distribution f (y|�,u) 
and link function g( ⋅ ). On the other hand, the resulting ob-
jective function is no longer guaranteed to be a lower bound 
for the marginal log-likelihood, as is the case with the ELBO 
(16). This means that improving the objective could in fact 
weaken the actual likelihood. Regardless, EVA has shown to 
be a competitive estimation method both in terms of scalabil-
ity/computational speed and estimation accuracy when fitting 
GLLVMs (Korhonen et al. 2023). This is further validated by 
similar developments and findings in machine learning and 
variational Bayes literature; Wang and Blei  (2013) proposed 
two estimation methods, Laplace VI and delta method VI, for 
nonconjugate models in the contexts of Bayesian logistic re-
gression and correlated topic models. Similarly to EVA, delta 
method VI also uses the variational mean as a center of Taylor 
expansion, for updating q, while Laplace VI builds the Taylor 
expansion around the MAP estimate û of log f (y|�,u). Braun 
and McAuliffe (2010) proposed two surrogate ELBO functions 
for closed-form variational approximations for Bayesian dis-
crete choice models, one—like EVA—based on multivariate 
delta method, and another based on the application of Jensen's 
inequality onto the complex log-sum-exp term present in 
�u∼q

[

log f (y|�,u)
]

. Even though the latter surrogate ELBO 
preserves the lower-bound property of the original, the au-
thors noted the former to be empirically superior.

EVA—accessible through the argument method = “EVA” when 
calling gllvm()—has been implemented for select response 
distributions and link functions in the gllvm package (Niku 
et al. 2023).

3.3.3.3   |   Expectation Propagation.  Closely related 
to variational inference, expectation propagation (EP, 
Minka  2001) is an algorithm or framework for estimating 
models containing random effects. Rooted deeply within 
machine learning literature and adopted first and foremost 
for the estimation of Bayesian graphical models, EP was 
introduced to frequentist methodology by Hall et  al.  (2020), 
again as a way to fit GLMMs with multivariate random effects 

(16)

�(�)= log
⎛

⎜

⎜

⎝

�
ℝ
np

f (y��,u)f (u)du
⎞

⎟

⎟

⎠

= log
⎛

⎜

⎜

⎝

�
ℝ
np

f (y,u��)
q(u� �)

q(u� �)
du

⎞

⎟

⎟

⎠

= log 𝔼u∼q

�

f (y,u��)

q(u� �)

�

≥𝔼u∼q

�

log f (y,u��)− log q(u� �)
�

= :ELBO(�, �),

(17)
ELBO(�, �)=�u∼q

�

log f (y��,u)
�

−�u∼q

�

log

�

q(u� �)

f (u)

��

=�u∼q

�

log f (y��,u)
�

−DKL(q(u)‖ f (u)).

(18)q(u| �) =

n
∏

i=1

qi
(

ui| �i
)

.

log f (y|�,u)≈ log f (y|�, a)+∇u

[

log f (y|�,u)
]

u=a
(u−a)

+
1

2
(u−a)⊤∇2

u

[

log f (y|�,u)
]

u=a
(u−a),
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efficiently. The method is implemented in the glmmEP pack-
age for binary response probit GLMM with one level of nest-
ing—a model more specific, but with lots of similarities to 
GLLVM as formulated in (7).

The key difference between VI and EP is in the applica-
tion of the KL divergence; in VI (16), the objective is in fact 
to minimize the “forward” KL divergence from q(u) to 
f (y,u), while EP seeks to minimize the “reverse” KL diver-
gence DKL(f (y,u) ‖ q(u)). Because of the asymmetry of the 
KL divergence, there are notable differences in the resulting 
algorithms; in minimization of the forward KL-divergence 
zero-forcing is rewarded, that is, q(u) needs to be close to zero 
whenever f (u) is close to zero, while for reverse KL to be mini-
mal zeros need to be avoided. Particularly, in situations where 
f (u) is possibly multimodal, VI tends to concentrate around 
a mode, while EP seeks to cover the whole support. Unlike 
VI, EP does not possess the lower bound property and has 
no guarantees of convergence (generally). Nonetheless, it has 
still displayed comparable or even improved performance to 
those of MCMC or LA in some settings (Kuss, Rasmussen, and 
Herbrich 2005; Hall et al. 2020).

As a final note, both EP and VI fall under a more broader fam-
ily of estimation algorithms known as Power EP, in which the 
KL-divergence is replaced by a more general class of diver-
gence measures, namely the α-divergences (e.g., Minka  2004; 
Hernandez-Lobato et al. 2016). For a recent overview of the EP 
framework/philosophy—particularly from a distributed com-
puting point of view—see Vehtari et al. (2020).

3.3.3.4   |   Integrated Nested Laplace Approximations.  
Introduced in Rue, Martino, and Chopin  (2009), the method 
of integrated nested Laplace approximations, or INLA, is an 
approximate estimation tool for general (Bayesian) latent Gauss-
ian models (LGM), that is, models containing Gaussian random 
effects. As such, it has successfully been applied for estimation 
of GLMMs in, for example, Fong, Rue, and Wakefield  (2010), 
and a R package implementing the INLA approach for fitting 
GLLVMs is in development, under the name LatentINLA (O'Hara 
and van der Veen  2024). The core INLA software library—
that the LatentINLA also utilizes—is called R-INLA (Martins 
et al. 2013).

Compared with MCMC, INLA is regarded as a fast and accu-
rate alternative for Bayesian inference in latent Gaussian models 
(e.g., Held, Schrödle, and Rue 2010; De Smedt et al. 2015). Many 
of the frequently used LGMs admit properties of conditional in-
dependence—that is, the inverse covariance matrix �−1 of the 
Gaussian random effects is a sparse matrix—or are reasonably 
well approximated by such a simplified model (see, e.g., Rue and 
Held 2005; Lindgren, Rue, and Lindström 2011). The computa-
tional efficiency of the INLA approach is largely driven by its 
ability to take advantage of such sparsity-inducing assumptions, 
as long as the amount of model hyperparameters also stays rel-
atively small.

As a predominately Bayesian method, INLA is concerned with 
providing accurate approximations to marginal posteriors of the 
model parameters and the LVs using (roughly) the following steps:

1.	 Explore the parameter space � through Laplace approxima-
tion to the marginal posterior

�where f̃ G(u|�, y) is the Gaussian approximation built by 
matching the mode u∗ and the curvature at the mode. 
Find a set of K  high-density points 

{

�(1),… ,�(K)
}

, which 
can be formed by, for example, taking a grid of equidistant 
points or using a strategy inspired by central composite 
design (Box and Draper 2007).

2.	 For each �(k), approximate the conditional marginal 
posteriors

by f̃
(

ui|�
(k), y

)

, using one of three options:

a.	 The marginal Gaussian approximation f̃ G
(

u−i|ui,�
(k), y

)

, 
computed fast from the full conditional Gaussian approx-
imation f̃ G(u|�, y) from step 1 using simple recursive for-
mulas. This is the fastest option, but often inaccurate.

b.	 The Laplace approximation

�This is considered the most accurate option, but its perfor-
mance in practice is hindered by the need to factorize large 
sparse matrices for each i separately.

c.	 The simplified Laplace approximation f̃ SLA
(

ui|�
(k), y

)

, 
which uses a third-order Taylor expansion of ̃f LA

(

ui|�
(k), y

)

 
around the mean �

[

ui
]

 to essentially correct the Gaussian 
approximation f̃ G

(

u−i|ui,�
(k), y

)

 for both location and 
skewness. Offers a balance between accuracy and speed, 
and is indeed the default choice in the R-INLA package.

3.	 Using numerical integration, approximate the LV marginal 
posteriors as f

�

ui� y
�

≈
∑K

k=1 f̃
�

ui��
(k), y

�

f̃
�

�(k)
� y

�

wk, using 
the approximations calculated in steps 1 and 2. The integra-
tion weights wk depend on how the points 

{

�(1), … ,�(K)
}

 
are picked, for example, for regular grids the weights can be 
set to be equal w1 = ⋯ = wK.

The approximate marginal posteriors for each component of 
� can be attained in a similar fashion.

Note that the above outline of the algorithm is very scarce on 
details. For an in-depth view of each of the different steps, 
we refer to Rue, Martino, and Chopin  (2009). The “nested 
Laplace approximations” in the name of the method refer to 
the approximations taken in steps 1 and 2, while “integrated” 
comes from the numerical integration employed in the last 

f (�| y)∝
f (y|u,�)f (u|�)f (�)

f (u|�, y)
≈
f (y|u,�)f (u|�)f (�)

f̃ G(u|�, y)

|

|

|

|

|u=u∗

,

f
(

ui|�
(k), y

)

∝
f
(

y|u,�(k)
)

f
(

u|�(k)
)

f
(

�(k)
)

f
(

u−i|ui,�
(k), y

)

f̃ LA
(

ui|�
(k), y

)

=
f
(

y|u,�(k)
)

f
(

u|�(k)
)

f
(

�(k)
)

f̃ G
(

u−i|ui,�
(k), y

)

|

|

|

|

|

|u−i=u
∗
−i
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step (Table  2). We provide a summary of all of the software 
referenced in this review with some details in Table 2.

4   |   Comparative Studies

To compare some of the computational approaches from Section 3 
with freely available R software implementations in their ability to 
estimate GLLVMs, we used two simple simulation studies intend-
ing to also highlight two kinds of datasets typically encountered 

in ecological studies. Afterwards, a short example study based on 
a real dataset about abundances of Australian ant species from 
Gibb and Cunningham (2011) was conducted, involving two of 
the approaches included in the simulations. These comparisons 
are by no means intended as conclusive, as some of the methods 
are designed for widely differing use cases and feature slightly 
different parametrizations or constraints. Nevertheless, the in-
tention of these studies is to be able to provide the reader some 
guidance on how to approach the choice computational method, 
or how to determine a suitable amount of LVs in a given scenario.

TABLE 2    |    A summary of all of the software referenced in this review with the capabilities of being used to estimate GLLVMs.

Software Method(s) Response families Short description Citation

Specialized 
packages

boral(R) MCMC (Zero-truncated) 
Poisson and 

negative binomial, 
binomial, normal, 

Tweedie; beta, 
ordinal, and more.

Highly accurate, at the cost of 
very slow computation. Provides 

samples drawn from the 
posterior distribution. Model fit 
may be harder to assess without 
knowledge in Bayesian methods.

Hui (2016, 2024)

gllamm (Stata) AGHQ Poisson, binomial, 
normal, gamma, 

multinomial, ordinal.

Accurate estimation. 
Model fitting can slow 

down considerably when 
LV count exceeds two.

Rabe-Hesketh, 
Skrondal, and 
Pickles (2005)

gllvm (R) (E)VA, LA (Zero-inflated) 
Poisson and 

negative binomial, 
binomial, normal, 

Tweedie, beta, 
ordinal, and more.

Aims to offer a balance 
between accuracy and 

computational efficiency. 
Focuses solely on GLLVMs. 
Implements several schemes 
for model-based ordination.

Niku, Brooks, 
et al. (2019); Niku 

et al. (2023)

glmmTMB (R) LA (Zero-inflated) 
Poisson and 

negative binomial, 
binomial, normal, 

Tweedie, beta, 
ordinal, and more.

Aims to offer a good balance 
between accuracy and speed. 

Is focused on mixed effect 
models, with the option 

to specify a reduced-rank 
covariance structure.

Brooks 
et al. (2017)

gmf (R) PQL Poisson, binomial, 
normal, gamma, 
inverse Gaussian, 

quasi-Poisson, 
quasi-binomial.

Best suited for very high-
dimensional datasets and 
multiple LVs. Implements 

regularization to help 
control the effective number 

of parameters and LVs.

Kidzinski 
et al. (2020, 2022)

Hmsc (R) MCMC Poisson, Bernoulli, 
normal, log-normal, 
log-normal Poisson.

Similar strengths and 
weaknesses to boral. 

More limited in featured 
response types, but offers 

more tools for incorporating 
spatiotemporal dependencies, 

phylogeny trees, etc.

Tikhonov 
et al. (2019, 2024)

LatentINLA 
(R)

INLA Everything that 
comes with R-INLA.

Under development. Relative 
strengths of INLA for 

GLLVMs remain untested.

O'Hara and van 
der Veen (2024)

ltm (R) EM, GHQ Bernoulli Limited to two LVs at most. 
Comes with many tools for 
researchers working in IRT.

Rizopoulos (2006)

(Continues)
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Code for reproducing both simulation studies and the example 
can be found at https://​github.​com/​pekol​ako/​lvm-​review.

4.1   |   Simulation Studies

Both simulation setups consisted of four cases with vary-
ing sample sizes: (a) n = 50, m = 50; (b) n = 50, m = 150; (c) 
n = 200, m = 50, and (d) n = 200, m = 150, where n and m denote 
the amounts of rows and columns in the desired response ma-
trices. Then, each setup/case used similar approach to generat-
ing the parameters used in simulation. The values for column 
effects and LV loadings were drawn from the uniform distri-
bution, �j ∼ U (−1, 1) and �j1,… , �jp ∼ U (−2, 2), respectively, 
with the addition that the upper triangle of the loading matrix 
was fixed to zero and the diagonal entries set to be positive—
as per the usual GLLVM identifiability assumptions (Huber, 
Ronchetti, and Victoria-Feser  2004). The number of LVs was 
set to p = 2 in the first setup and p = 5 for the second setup. 
Then, in each of the cases (eight in total), the fixed values of 
�j and �j were used to generate 1000 datasets of simulated re-
sponses, according to (7), after first drawing the LV scores 
ui =

(

ui1,… ,uip
)

⊤

∼ Np

(

0 ,Ip
)

. In the first setup, the responses 
were generated from Bernoulli distribution with probit link, 
while the second setup instead used Poisson distribution and 
log link, thus representing both presence–absence and count 
data, that is, some of the most common types of multivariate 
abundance data. Figure  1 shows the densities of values for 
the linear predictor �ij (left) and the Bernoulli probabilities 
pij = Φ

(

�ij

)

 (right) that were used to generate the presence–ab-
sence data during the simulations.

The sample sizes chosen for n and m were partly inspired by some 
real world ecological datasets. Namely, the size 50 × 150 roughly 
corresponds to the Bornean bird dataset of Cleary et al. (2005), 
which had 37 observational sites and 177 species, or the SBC 
LTER coastal kelp forest dataset (Reed and Miller 2023) with 44 
observational units and about 150 species. This type of “wide” 
structure (i.e., n≪ m) is also very commonly encountered when 
dealing with sequencing data, for example, in studies on micro-
bial species such as in Mach et al. (2015), Edwards et al. (2018), 
and Jernfors et al. (2024). To contrast this, the “long” datasets 
of size 200 × 50 are similar in size and form to, for example, 
the testate amoebae data in Daza Secco et al.  (2016). The size 
50 × 50 resembles that of the Australian ant data (Gibb and 
Cunningham 2011) used in the example in Section 4.2.

The methods compared were the VA, LA, and EVA from gllvm 
(Niku et al. 2023), MCMC from boral (Hui 2024), PQL from gmf 
(Kidzinski et al. 2020), LA from glmmTMB, and a combination 
of EM algorithm and GHQ from ltm (Rizopoulos 2006). It is im-
portant to note that excepting the last, all of the methods use very 
similar parametrizations and allow estimation of probit models 
on Bernoulli data; the ltm package instead only allows the use of 
logistic link, putting it at a disadvantage in these comparisons. 
The ltm package also cannot fit Poisson GLLVMs, and is limited 
to at most two LVs, thus excluding it from the simulation setup 2. 
Moreover, ltm does not allow the user to enforce positivity con-
straints on the diagonal elements of the loading matrix � without 
fixing them at some specific values. The package has been de-
veloped with focus in item response theory, while the rest of the 
compared packages have-been developed with ecological appli-
cations in mind, explaining the differing approaches.

Software Method(s) Response families Short description Citation

General 
model 
building 
libraries

R-INLA (R) INLA Long list of 
readily available 

distributions, 
including majority of 
the ones listed above.

Offers the INLA method 
for approximate Bayesian 

inference of models with LVs. 
Conveniently integrates the 

stochastic partial differential 
equation, or SPDE, approach 

for models with spatially 
correlated effects.

Martins 
et al. (2013)

Stan (R, Stata, 
MATLAB, 

Python, 
Julia, shell)

MCMC, 
VA, LA

Long list of 
readily available 

distributions. Allows 
the user to specify 
custom likelihood 

functions.

Provides full Bayesian inference 
of complex high-dimensional 

hierarchical LV models 
through a Hamiltonian Monte 
Carlo sampler. Approximate 

inference is also available with 
implementations of Laplace's 

and variational methods.

Stan Development 
Team (2024)

TMB (R, C++) LA Long list of 
readily available 

distributions. Allows 
the user to specify 
custom likelihood 

functions.

Efficient marginal MLE by 
combination of fast matrix 

operations with LA and 
automatic differentiation. 

Pairs with R-INLA for SPDE 
approximation of spatial models, 
and with Stan for fully Bayesian 
analysis by the package tmbstan.

Kristensen 
et al. (2016)

TABLE 2    |    (Continued)
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Default settings for starting values and stopping criteria were 
used for all of the methods. Metrics of comparison included the 
bias and root mean square error (RMSE) of the column effect 
estimates �̂j, as well as Procrustes errors (e.g., Bartholomew, 
Knott, and Moustaki  2011) of both the predicted LV scores ûi 
and the estimated loadings ̂�j. Procrustes error can be thought of 
as the Frobenius distance of two matrices, after accounting for 
differences in location, scale, and rotation. It is a measure often 
used for comparing the quality of ordinations w.r.t. some refer-
ence, such as the true ui and �j here. Additionally, computation 
times were recorded for each method.

Tables 3 and 4 contain the summaries of the results from the first 
and second simulation setups, respectively. EVA proved to be 
the method with the lowest median computation time across all 
cases in setup 1, followed closely by VA. In the setup 2, PQL was 
the fastest method by several orders of magnitude, with both of 
the variational methods slowing down drastically (cases 2c, d), 
as the amount of rows n—and thus the amount of variational 
mean and covariance parameters—increased, compounded by 
the higher LV dimension of p = 5. Interestingly, the computa-
tion times were quite varied between the two LA implementa-
tions, even though both gllvm and glmmTMB leverage the TMB 
library. Generally, glmmTMB was the faster of the two, while 
gllvm produced better ordinations, the differences being most 
probably because of differing choices in regard to starting values 
or optimization algorithms used. In terms of bias and RMSE, 
the LA methods were on equal footing, and fairly close to VA/
EVA—which were the two best methods overall, performing 
well in every metric across all cases.

LA made big improvements when the column count m increased, 
that is, cases b and d in Tables 3 and 4, reflecting similar find-
ings in the supplementary simulation studies done in Korhonen 
et al. (2023). The smaller number of columns proved especially 
problematic for the PQL method, best evidenced by cases 1a and 
(to a lesser degree) 1c, where it failed to produce finite estimates 

for the row effects �j. The relatively subpar performance of the 
PQL in these comparisons is not surprising, as the method 
was developed with emphasis (and in a sense, dependence) on 
very large datasets—setting at which it excels at according to 
the numerical studies conducted in Kidzinski et al. (2022). The 
EM and GHQ hybrid method from ltm performed the worst in 
general, producing the highest and most spread-out biases and 
RMSEs, and high Procrustes errors—unsurprising when taking 
into account the vast differences in implementation compared 
with the others. In terms of estimation accuracy, the MCMC was 
firmly on par with VA/EVA/LA, but its computational burden 
was enormous in comparison.

4.2   |   Real Data Example

Fitting GLLVMs is a complex process and a typical workflow is 
presented in Figure 2. To illustrate the process and to showcase 
that the algorithm choice matters we conduct a small case study 
using the best (and the worst) performer from the simulation 
studies done in Section 4.1. We fit GLLVMs using the packages 
gllvm and ltm on a dataset containing abundances of m = 41 spe-
cies of ants collected at n = 30 observation sites in March–April 
2008 near Canberra, Australia (Gibb and Cunningham  2011). 
The original data come as counts, so to facilitate the use of ltm, 
we transformed the data into binary presence/absence responses. 
With gllvm, we use EVA as the estimation method so that we 
can use logit link, similar to ltm. The dataset is freely available 
within the gmf package (Kidzinski et al. 2020), and in Kidzinski 
et al.  (2022) the authors used it to compare their proposed two 
PQL estimation algorithms to the VA method from gllvm.

Figure  3 shows (residual) ordination plots resulting from the 
two methods; the upper plot is based on ltm fit and the lower 
is based on gllvm. Ordination analysis is an important applica-
tion of GLLVMs in community ecology. To assess similarities 
and dissimilarities between the observational units, ordination 

FIGURE 1    |    Density plots for the values of the linear predictor �ij = � + �ui (left), and the resulting probabilities pij = Φ
(

�ij

)

 (right), which were 
used to generate the Bernoulli data during the simulation studies. The solid (red) lines correspond to the case with n = 50 rows and m = 50 columns, 
and the dashed (black) lines correspond to the case with n = 200 rows and m = 150 columns.

 19390068, 2024, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
ics.70005 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [12/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



15 of 24

methods seek a low-dimensional representation of the original 
high-dimensional dataset—two-dimensional here, with p = 2. 
In the plots in Figure 3, sites that are closer to each other are 
deemed more similar (because of species composition, unob-
served environmental factors, et cetera.). Interestingly, the ar-
rangement of the sites here are quite different between the two 
estimation methods. Most notably, the site #9 is very distant 
from the rest according to ltm, while belonging to the “main” 
cluster of points as deemed by gllvm. On the other hand, some 
formations are similar, as for example, sites #22 and #30 lie close 
to each other on either plots, as are sites #8 and #24. Note that 

we used the same starting values for the model parameters with 
both methods.

Although p = 2 LVs is the most common choice for the pur-
pose of ordination, a model with higher p can be more suitable 
to the data at hand—or other applications. The decision can be 
guided by considering information criteria, such as AIC or BIC. 
These values, together with the corrected AIC—or AICc—are 
printed, for example, when calling summary() upon a gllvm 
object. Table  5 lists these quantities for one to six LVs from 
GLLVMs fitted to the ant data with the EVA approach, along 

TABLE 3    |    Results from the first simulation setup, in which 1000 datasets with (a) n = 50, m = 50; (b) n = 50, m = 150; (c) n = 200, m = 50, and (d) 
n = 200, m = 150 rows and columns, respectively, were generated according to a Bernoulli GLLVM with probit link and p = 2 LVs.

Method Package Bias (SD) RMSE (SD) Proc. (LV) Proc. (�) Time (s)

(a) MCMC boral −0.003 (0.123) 0.341 (0.064) 0.088 0.109 393.404

VA gllvm 0.003 (0.052) 0.300 (0.044) 0.081 0.085 1.528

LA-1 gllvm −0.001 (0.543) 0.671 (0.717) 0.086 0.625 9.809

EVA gllvm −0.002 (0.072) 0.278 (0.042) 0.146 0.105 1.162

LA-2 glmmTMB −0.001 (0.606) 0.749 (0.882) 0.086 0.618 34.394

PQL gmf — — 0.120 0.257 2.529

EM ltm −0.031 (2.154) 2.131 (2.337) 0.948 0.757 8.274

(b) MCMC boral −0.003 (0.076) 0.274 (0.041) 0.040 0.088 1278.034

VA gllvm 0.000 (0.076) 0.342 (0.081) 0.034 0.112 5.698

LA-1 gllvm −0.009 (0.339) 0.434 (0.440) 0.037 0.718 74.106

EVA gllvm 0.001 (0.065) 0.237 (0.026) 0.041 0.073 2.308

LA-2 glmmTMB −0.002 (0.213) 0.414 (0.231) 0.037 0.664 195.586

PQL gmf 0.001 (0.122) 0.325 (0.101) 0.041 0.315 7.129

EM ltm −0.027 (1.039) 1.069 (0.916) 0.948 0.802 32.387

(c) MCMC boral −0.005 (0.036) 0.161 (0.039) 0.074 0.036 2954.051

VA gllvm 0.001 (0.046) 0.138 (0.025) 0.073 0.026 4.931

LA-1 gllvm −0.001 (0.024) 0.156 (0.038) 0.073 0.034 21.077

EVA gllvm −0.001 (0.036) 0.148 (0.025) 0.077 0.028 3.112

LA-2 glmmTMB −0.001 (0.024) 0.156 (0.038) 0.073 0.034 107.141

PQL gmf 0.001 (0.115) 0.235 (0.079) 0.101 0.272 68.320

EM ltm 0.000 (0.543) 0.600 (0.217) 0.987 0.051 21.422

(d) MCMC boral 0.002 (0.027) 0.143 (0.033) 0.029 0.028 22048.171

VA gllvm 0.000 (0.012) 0.145 (0.031) 0.027 0.023 24.639

LA-1 gllvm 0.001 (0.021) 0.152 (0.038) 0.027 0.030 100.963

EVA gllvm −0.002 (0.049) 0.135 (0.028) 0.040 0.024 7.776

LA-2 glmmTMB 0.001 (0.021) 0.152 (0.038) 0.027 0.030 687.591

PQL gmf 0.004 (0.079) 0.159 (0.043) 0.029 0.027 11.430

EM ltm 0.005 (0.484) 0.562 (0.196) 0.987 0.040 94.358

Note: Bolded values indicate the best performer on each of the metrics used; mean bias and RMSE of the column effect estimates �̂j, mean Procrustes errors of LVs 
and loadings �, and median computation time in seconds. The means were calculated using trimming factor of 0.05 to remove effects of the most extreme values. The 
Procrustes errors were scaled by the number of LV scores or loading parameters. Note, that in the smallest setting (a) the PQL method failed to produce finite biases 
and RMSEs for 27 of the 50 column effects involved. PQL also failed on two column effects in the case c, but these were simply left out when calculating the mean.
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with the corresponding log-likelihood approximations and de-
grees of freedom. Lowest—that is, the best—AIC is achieved 
with the model with two LVs, while the model with only one 
LV is the best in terms of AICc and BIC. AICc differs from AIC 
by including an additional penalty 

(

2k2 + 2k
)

∕(nm − k − 1) on 
the number of model parameters k, as AIC might encourage 
overfitting with small nm (Burnham and Anderson  2002). 
Based on Table 5, going beyond p = 2 brings no considerable 
benefits in this case.

In addition to similarities/dissimilarities between the observa-
tion sites, the dependence patterns among the different species 
in the data are also often of interest. These can be assessed, for 
example, using biplots, which simultaneously display both LV 
scores and loadings in the same figure, or through inspecting 
the residual covariation matrix—attained from the estimated 
loading matrix fit by �� = ����

⊤

 (with a possible additional 

correction term depending on the response family and link). In 
gllvm, this can be done easily by calling the function getResid-
ualCov(). By transforming covariances into correlations, and 
with help of the packages corrplot (Wei and Simko 2021) and 
gclus (Hurley 2019), one can visualize the inter-species correla-
tions in the manner of Figure 4. In the correlation plot, sizes and 
colors of the squares signal the magnitude and direction of de-
pendence. Pairs of species with positive correlation (blue) tend 
to exhibit co-occurrence among the environments present in the 
study, while pairs of species with negative correlation (red) tend 
to compete for space or resources, et cetera. Figure 4 suggests, 
that among the ants, for example, the species Monomorium 
rothsteini and Cardiocondyla atalanta have a high positive cor-
relation, meaning that they commonly share environments. 
Meanwhile, the species Camponotus cinereus amperei and 
Monomorium sydneyense have high negative correlation, that 
is, they do not often appear in the same environment.

TABLE 4    |    Results from the second simulation setup, in which 1000 datasets with (a) n = 50, m = 50; (b) n = 50, m = 150; (c) n = 200, m = 50, and 
(d) n = 200, m = 150 rows and columns, respectively, were generated according to a Poisson GLLVM with log link and p = 5 LVs.

Method Package Bias (SD) RMSE (SD) Proc. (LV) Proc. (�)
Time 

(s)

(a) MCMC boral −0.073 (0.192) 0.452 (0.097) 0.034 0.033 728.192

VA gllvm −0.023 (0.025) 0.341 (0.064) 0.026 0.029 81.637

LA-1 gllvm −0.024 (0.023) 0.341 (0.065) 0.026 0.029 103.360

EVA gllvm −0.023 (0.025) 0.341 (0.064) 0.026 0.029 81.359

LA-2 glmmTMB −0.016 (0.110) 0.291 (0.050) 0.069 0.107 44.847

PQL gmf −0.192 (0.357) 2.071 (0.600) 0.072 0.115 0.255

(b) MCMC boral 0.003 (0.480) 0.831 (0.201) 0.080 0.072 2136.711

VA gllvm −0.021 (0.021) 0.348 (0.066) 0.021 0.028 287.885

LA-1 gllvm −0.021 (0.020) 0.348 (0.066) 0.021 0.028 502.301

EVA gllvm −0.021 (0.021) 0.350 (0.066) 0.021 0.028 286.059

LA-2 glmmTMB 0.036 (0.243) 0.356 (0.110) 0.157 0.345 349.671

PQL gmf 0.038 (0.302) 2.395 (0.610) 0.101 0.153 0.529

(c) MCMC boral 0.007 (0.031) 0.170 (0.039) 0.026 0.022 2938.741

VA gllvm −0.004 (0.006) 0.162 (0.034) 0.009 0.006 1610.825

LA-1 gllvm −0.003 (0.009) 0.163 (0.032) 0.009 0.007 486.576

EVA gllvm −0.004 (0.006) 0.162 (0.033) 0.009 0.006 1623.731

LA-2 glmmTMB 0.004 (0.149) 0.191 (0.058) 0.068 0.105 168.984

PQL gmf −0.622 (1.389) 2.701 (1.744) 0.126 0.209 0.695

(d) MCMC boral 0.035 (0.175) 0.614 (0.143) 0.066 0.067 8515.737

VA gllvm −0.002 (0.011) 0.176 (0.029) 0.008 0.009 3106.656

LA-1 gllvm 0.002 (0.032) 0.168 (0.042) 0.006 0.007 4136.681

EVA gllvm −0.002 (0.011) 0.175 (0.029) 0.008 0.008 3117.498

LA-2 glmmTMB 0.031 (0.312) 0.391 (0.127) 0.179 0.410 1451.624

PQL gmf 0.431 (0.354) 1.967 (0.516) 0.182 0.382 1.210

Note: Bolded values indicate the best performer on each of the metrics used; mean bias and RMSE of the column effect estimates �̂j, mean Procrustes errors of LVs 
and loadings �, and median computation time in seconds. The means were calculated using trimming factor of 0.05 to remove effects of the most extreme values. The 
Procrustes errors were scaled by the number of LV scores or loading parameters.
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FIGURE 2    |    Workflow of a typical GLLVM modeling process.

FIGURE 3    |    Residual ordination of the ant dataset (when converted to presence–absence responses), formed based on the predicted LV scores 
using both (a) ltm and (b) gllvm. With the latter, EVA was chosen as the method of estimation. Ordination plots can be used for determining 
observation sites/units (numbered here), that are similar based on their species composition, environment, et cetera. Here, the arrangements of the 
sites differ notably; for example, site #9 is deemed very distant from the rest by ltm, but grouped firmly among the main mass by gllvm.
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Finally, the goodness of a GLLVM fit on data can be assessed in 
a manner shared by many popular statistical modeling frame-
works—by inspecting the residuals. With discrete responses 

specifically, the Dunn–Smyth residuals, also known as ran-
domized quantile residuals (Dunn and Smyth 1996), are com-
monly employed, for they yield quantities on a continuous scale 
through clever application of sampling. Calling plot() on a gllvm 
object produces plots displaying the Dunn–Smyth residuals 
against the linear predictor, normal quantiles or row/column 
index. Figure 5 shows these plots for the p = 2 GLLVM fitted 
on the ant dataset. Here, no visible patterns deviating from the 
norm are revealed, suggesting that the model fits the data well.

5   |   Conclusions

In this article, we reviewed GLLVMs and some widely used 
computational approaches for model fitting focusing on meth-
ods based on likelihood inference. Six methods that are easily 
available in R were compared using two simulation studies and 
a real data example from community ecology. The simulation 
studies revealed that two recently implemented methods avail-
able in R package gllvm (Niku et  al.  2019, 2023), that is, the 
method based on variational approximations (VA, Hui  2017) 

FIGURE 4    |    Residual correlation plot resulting from a GLLVM fit. Blue and red squares indicate the pairs of ant species that exhibit co-occurrent 
or competitive relationships, respectively, along the environments or observational units present in the study.

TABLE 5    |    Akaike, corrected Akaike, and Bayesian information 
criteria resulting from GLLVMs fitted on the ant dataset using gllvm(), 
with differing number of assumed LVs p.

p AIC AICc BIC log df

1 1330.29 1342.16 1749.70 −583.14 82

2 1324.91 1352.02 1948.91 −540.45 122

3 1325.68 1374.52 2149.16 −501.84 161

4 1335.17 1412.45 2353.01 −468.59 199

5 1374.86 1487.51 2581.95 −451.43 236

6 1373.13 1528.32 2764.35 −414.57 272

Note: Corresponding values for the approximate log-likelihood and the degrees 
of freedom are also shown. The values of the criteria indicate, that either p = 1 
or p = 2 are the most likely to give the best model candidates, for this scenario. 
The lowest values for information criteria are marked in bold.
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and the method based on EVA (Korhonen et al. 2023), had the 
best overall performances when compared with the other meth-
ods. The method utilizing EVAs had the lowest computation 
times across all sample sizes in the first setting, followed closely 
by the other variational approach. As discussed in Korhonen 
et al. (2023), EVA seems to be a promising method for LV model 
fitting as one can obtain a closed-form approximation to the 
marginal likelihood for any response type and link function 
combination. However, as the second simulation setup shows, 
with a higher assumed LV count, the methods based on varia-
tional approximations start to exhibit scalability issues because 
of the rapidly increasing amount of variational parameters 
needed—prompting further development of scalable varia-
tional methods for estimation of GLLVMs. Related to this, see, 
for example, Zhang et al.  (2019) for a recent review from ma-
chine learning standpoint.

In this review, we focused only on exploratory methods. In 
confirmatory FA one builds a hypothetical factor model based 
on the prior knowledge on the phenomenon and then tries to 
confirm that base on the data; see, for example, Mulaik (2009). 
Confirmatory FA is also used in structural equation mod-
els (SEMs, Jöreskog  1969, 1970) to estimate LVs. SEM can 
be seen as an extension of the FA model as described in 
Section 2.1. The method stems from the path analysis devel-
oped in Wright  (1921) and is widely used in psychology and 
sociology to capture the relationship among a set of vari-
ables (Bollen  2002). SEMs consist of two types of LVs often 
referred to as dependent (endogenous) variables and indepen-
dent (exogenous) variable. Models allow causal relationships 
between LVs by relating variables by the LV model known as 
the structural model. For more details on SEMs, we refer to 
Bollen (1989) and Skrondal and Rabe-Hesketh (2004). For the 

FIGURE 5    |    Four kinds of residual plots from calling plot() on gllvm object, after fitting GLLVM with two LVs on the Australian ant dataset. 
Deviant patterns in the Dunn–Smyth residuals would be a sign of weak fit or violation of model assumptions.

Residuals vs.

Residuals vs.

Residuals vs.
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review of SEMs applied to the analysis of ecological data, see 
Fan et al. (2016). For R software packages for confirmatory FA 
and SEMs, see lavaan (Rosseel 2012) and sem (Fox, Nie, and 
Byrnes 2022), for example.

Standard GLLVMs as reviewed in this article have been ex-
tended to more general settings in various articles. Here 
we assumed that LVs are independent vectors from a stan-
dard multivariate normal distribution. When modeling spa-
tial and/or temporal data, one has to choose a more general 
covariance structure for LVs. FA for continuous responses 
has been extended to longitudinal data in Raffalovich and 
Bohrnstedt  (1987) and Marsh and Grayson  (1994), for ex-
ample. The ordinal response case is covered in Cagnone, 
Moustaki, and Vasdekis (2009). GLLVMs in spatial and spatio-
temporal settings and related computational approaches have 
been discussed in Wang and Wall  (2003), Zhu, Eickhoff, and 
Yan  (2005), Lopes, Gamerman, and Salazar  (2011), Hui, Hill, 
and Welsh (2022), and Hui et al. (2023) among others. For mod-
els specific for community ecology, see Thorson et  al.  (2015, 
2016), Ovaskainen et al. (Ovaskainen, Abrego, et al. 2016 and 
Ovaskainen, Roy, et al. 2016), and Tikhonov et al. (2020). For 
robust and semiparametric approaches for GLLVMs, we refer to 
Ma and Genton (2010), Irincheeva, Cantoni, and Genton (2012), 
and Moustaki and Victoria-Feser (2006), for example.
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