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Background: The effects of physical activity and sedentary behavior on human health are well known, however, 
the molecular mechanisms are poorly understood. Growing evidence points to physical activity as an important 
modulator of the composition and function of microbial communities, while evidence of sedentary behavior is 
scarce. We aimed to synthesize and meta-analyze the current evidence about the effects of physical activity 
and sedentary behavior on microbiome across different body sites and in different populations. 
Methods: A systematic search in PubMed, Web of Science, Scopus and Cochrane databases was conducted until 
September 2022. Random-effects meta-analyses including cross-sectional studies (active vs. inactive/athletes 
vs. non-athletes) or trials reporting the chronic effect of physical activity interventions on gut microbiome 
alpha-diversity in healthy individuals were performed. 
Results: Ninety-one studies were included in this systematic review. Our meta-analyses of 2632 participants in-
dicated no consistent effect of physical activity on microbial alpha-diversity, although there seems to be a trend 
toward a higher microbial richness in athletes compared to non-athletes. Most of studies reported an increase in 
short-chain fatty acid-producing bacteria such as Akkermansia, Faecalibacterium, Veillonella or Roseburia in active 
individuals and after physical activity interventions. 
Conclusions: Physical activity levels were positively associated with the relative abundance of short-chain fatty 
acid-producing bacteria. Athletes seem to have a richer microbiome compared to non-athletes. However, high 
heterogeneity between studies avoids obtaining conclusive information on the role of physical activity in micro-
bial composition. Future multi-omics studies would enhance our understanding of the molecular effects of phys-
ical activity and sedentary behavior on the microbiome. 
© 2024 The Authors. Published by Elsevier Ltd on behalf of Sports Medicine Australia. This is an open access article 

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
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Key points 

• Most studies indicate that physical activity alters the microbiome 
composition, mainly affecting the relative abundance of short-chain 
fatty acid-producing bacteria with health benefits, although its influ-
ence on microbiome diversity is unclear. Therefore, the existing evi-
dence needs to be quantified using meta-analytic methods in the 
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ae@ugr.es (S. Altmäe). 
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physical activity-microbiome field. 
• Our search identified high heterogeneity in study populations and 
characteristics of physical activity interventions, most of evidence 
based on cross-sectional studies using self-reported questionnaires 
to assess physical activity, lack of reference pipelines for microbiome 
analysis and relevant covariates missing in statistical analyses, espe-
cially diet. 

• More research on the effect of sedentary behavior on microbiome 
composition is needed. 

• Integrated multi-omics studies on bigger sample size are warranted to 
clarify the molecular effects of physical activity and sedentary behav-
ior on human microbial communities.
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Table 1 
Definition of main microbiome-related terms used in this systematic review. 

Term Definition 

Microbiota Collection of microorganisms, including bacteria, archaea, 
viruses and fungal communities, that collectively inhabit a 
particular environment (e.g., gut, blood, vagina, etc.) 

Microbiome Collection of genomes of the microorganisms inhabiting 
a particular environment 

Alpha-diversity Diversity within a sample taking into account both the 
number of microorganisms in a sample (richness) and 
their distribution (evenness) 

Shannon Diversity Index Alpha-diversity estimator of microbial richness and 
evenness within a sample or niche 

Chao1 Index Alpha-diversity abundance-based estimator of microbial 
richness within a sample or niche 

Beta-diversity Diversity between samples taking into account a distance 
matrix that reflects how compositionally different the 
samples are from one another (i.e., dissimilarity between 
samples) 

Meta-omics Refers to those techniques, including marker gene 
sequencing, metagenomics, meta-transcriptomics, 
meta-proteomics, and meta-metabolomics, which directly 
examine the phylogenetic markers, genes, transcripts, 
proteins, or metabolites from a microbial community 

Marker gene sequencing 
(e.g., 16S rRNA gene 
sequencing) 

DNA sequencing method to identify the microbes present 
in a given microbial community through the analysis of a 
sequence variation (i.e., hypervariable region) of a single 
ubiquitous gene (e.g., 16S ribosomal RNA gene) 

Metagenomics (or 
shotgun 
metagenomics) 

DNA sequencing method to assess the entire functional 
gene content of a given microbial community. It provides 
a much greater specific identification of the microbes 
compared to marker gene analysis (e.g., 16S rRNA gene), 
in which classification is normally limited to the genus 
level as multiple species may have the same sequence 
within the studied hypervariable region 

Meta-transcriptomics RNA sequencing method to assess the transcriptionally 
active microbes of a given microbial community, 
providing knowledge of the functional activity of these 
microorganisms 

Meta-proteomics Method to characterize the entire microbial protein 
complement of a sample 

Meta-metabolomics Method to identify the microbial metabolites present in a 
sample
• Our systematic review and meta-analysis suggests that (1) physical 
activity levels were positively associated with the relative abundance 
of short-chain fatty acid-producing bacteria; and that (2) athletes 
seem to have a richer microbiome compared to non-athletes. 

1. Introduction 

It is well known that physical activity (PA) (i.e., any movement pro-
duced by skeletal muscles which demands a higher energy expenditure 
than in resting conditions) can improve different health-related out-
comes such as insulin resistance, adiposity, and fitness, among others.1,2 

A related yet different construct is sedentary behavior (SB) (i.e., a be-
havior characterized by an energy expenditure of 1.5 or fewer metabolic 
equivalents [METs]), and is associated with a higher risk of different 
diseases.3,4 Thus, increasing PA and reducing SB have been considered 
to prevent and treat multiple chronic diseases.5 However, the molecular 
mechanisms underlying the health benefits of PA (acute or chronic ef-
fects) and the adverse effects of SB on health are poorly understood.6 

In the last decades, a new insight of the human being as a set of 
microbial and human cells has emerged.7 The collection of microor-
ganisms including bacteria, viruses, fungi and archaea that inhabits 
our body is defined as the microbiota and is at least as abundant as 
the number of human cells.8 The genomes of the abovementioned 
microorganisms (i.e., microbiota) are called the microbiome, which 
is considered “our second genome” and “our last organ” due to its im-
portant role in human physiology.9,10 Microbiome composition is pro-
filed through metagenomics approaches such as marker gene and 
shotgun metagenomic sequencing. While marker gene sequencing 
targets a specific sequence of a gene (e.g., 16S rRNA gene) to provide 
a microbial classification that lacks accuracy at the species level, shotgun 
metagenomics consists of the sequencing of all microbial genomes within 
a sample, allowing a deeper taxonomic composition at species level and 
detecting viral and eukaryotic DNA. Metagenomics studies (e.g., marker 
gene sequencing and shotgun metagenomic sequencing) led to the char-
acterization of microbial composition using three common analyses: 
(1) alpha-diversity, that characterizes the microbial diversity within a 
sample considering richness and evenness (i.e., the number and the 
relative abundance of microbes); (2) beta-diversity, which measures 
the diversity between samples assigning a numerical value for every 
pair of samples to determine microbial community-level dissimilarities; 
and (3) differential abundance analysis, that identifies those microorgan-
isms that differ in abundance when compared different samples. 

There is evidence indicating that environmental and lifestyle factors 
such as pollutants, drugs, diet, lack of PA and increased SB, among 
others, may have a negative impact on microbiome composition and 
function leading to the disruption of the microbial homeostasis.11–14 

In fact, microbial imbalances have been associated with the develop-
ment of multiple diseases such as obesity,15,16 type 2 diabetes,17 and 
cancer,18,19 among others. Thus, there is a growing interest to determine 
the composition of the “healthy core” microbiome and the factors that 
could shape the microbial communities, such as PA and SB, in order to 
design new therapeutic interventions.20,21 

Particularly, PA has been proposed as one of the modulators of the 
host-associated microbiome, while little is known about the effect of 
SB on microbial communities due to the limited number of studies.22–24 

Recent advances in meta-omics-based studies (i.e., marker gene se-
quencing, metagenomics, meta-transcriptomics, meta-proteomics, and 
meta-metabolomics) allow the identification of the molecular pathways 
regulated by PA.25 Thus, the effect of PA on the microbiome, especially 
on the gut microbial communities, is a research topic of increasing 
interest.26,27 In the last years, several systematic reviews reported the 
effects of PA on the gut microbiome of healthy adults,23,28–30 older 
adults31 and adults with obesity and type 2 diabetes.32,33 In addition, a 
systematic review on the effect of aerobic athletic performance has 
been recently published.34 However, the aforementioned systematic 
reviews showed inconsistent findings from observational and 
794
intervention studies.23,28–33 Therefore, there is a need to synthesize 
the whole body of knowledge about the effect of PA and SB on the 
microbiome including healthy (e.g., non-athletes and professional ath-
letes), unhealthy populations (e.g., obesity, diabetes, cancer), different 
stages of life (i.e., children, young and older adults), and different body 
niches (e.g., gut, saliva, vagina, etc.) through metagenomics approaches. 
In addition, there is still a lack of meta-analytic studies quantifying the 
effect of PA on the microbiome within non-athletic populations so far. 

Therefore, the current study aimed: (1) to summarize all the studies 
available about the relationship of PA and SB (observational and inter-
vention studies) with the human-associated microbiome performing 
metagenomics and (2) meta-analyze the available data. 

2. Material and methods 

This systematic review and meta-analysis was conducted follow-
ing the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines (PRISMA).35 The review protocol was registered 
in the International Prospective Register of Systematic Reviews 
(PROSPERO; http://www.crd.york.ac.uk/PROSPERO) with the refer-
ence number: CRD42022298526. 

2.1. Search strategy 

A systematic search was conducted in PubMed, Web of Science, 
SCOPUS, and Cochrane electronic databases from inception to Septem-
ber 29, 2022. Search terms were included based on the sport science 
and microbiome terms of interest. Table 1 includes a list with the

http://www.crd.york.ac.uk/PROSPERO
move_t0005
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main terms and their definitions related to microbiome field used in this 
systematic search. Electronic Supplementary Table S1 illustrates the 
search terms and strategy for each database.

2.2. Study selection criteria 

The inclusion criteria were as follows: (1) all observational studies 
(longitudinal or cross-sectional) that report the association of PA and/or 
SB with microbiome; and (2) all original studies that included the effect 
of PA (acute and/or chronic effects) on microbiome. The exclusion criteria 
were: (1) studies addressing the effect of PA (acute or chronic effects) on 
microbiome containing diet modifications, probiotics and prebiotic sup-
plements or caloric restriction, in which it was not possible to isolate the 
independent effect of PA, (2) non-eligible publication types, such as edito-
rials, study protocols, letters to the editors, meeting abstracts, or review ar-
ticles, and (3) studies written in any language other than English or 
Spanish. 

The selection process of the studies resulting from the literature search 
was performed using the software “Covidence” (https://www.covidence. 
org/), which detected duplicates. After removing the duplicates, the arti-
cles were first independently filtered by title/abstract screening by two re-
searchers (I.P.P and A.P.F). Those articles that met the inclusion criteria 
were selected for the full-text review. Conflictive articles were solved 
through common consensus by the same researchers (I.P.P and A.P.F). 
Any article that did not meet the eligibility criteria was excluded. The 
quality assessment of the included studies was independently conducted 
by I.P.P and A.P.F (see Electronic Supplementary Material Appendix S1). 

2.3. Data extraction 

For each study, one researcher (I.P.P) conducted the data extraction 
including the following information: (1) author's name and date of 
publication, (2) study design, (3) characteristics of the population 
(number of participants, sex, age and ethnicity), (4) characteristics of 
the exposure (i.e., PA or SB), (5) sample origin, (6) dependent outcome 
(i.e., DNA extraction method, detection method of the microbiome and 
sequencing platform), (7) dietary record, (8) microbiome analyses, 
(9) main findings and (10) raw data availability. A second researcher 
(A.P.F) performed a double-check for data correction. 

2.4. Data synthesis and meta-analysis 

We conducted three meta-analyses including cross-sectional studies 
(active vs. inactive/athletes vs. non-athletes) or trials reporting the 
chronic effect of PA interventions on gut microbiome diversity (specifi-
cally alpha-diversity, expressed by the Shannon diversity and Chao1 in-
dexes) in healthy individuals. This decision was made considering the 
limited availability of microbiome data and the heterogeneity observed 
across the identified studies (see Electronic Supplementary Material 
Appendix S1 for detailed explanation). 

Statistical analyses were performed using the Comprehensive Meta-
Analysis software (version 3; Biostat Inc., 1385, NJ, USA). The effect 
size was calculated using Cohen's d and 95 % confidence intervals (CIs) 
for standardized mean difference (SMD). Pooled SMD was estimated 
using a random-effects model. Heterogeneity between studies was 
assessed using the I2 statistics, which represents the percentage of total 
variation across studies, considering I2 values of 25 %, 50 %, and 75 % as 
low, moderate and high heterogeneity, respectively.36 A p  value  of less  
than 0.05 was considered statistically significant. 

3. Results 

3.1. General overview 

PRISMA checklist 2020 reflects the appropriateness of the methods 
performed in this systematic review and meta-analysis (Electronic 
795
Supplementary Tables S2, S3). Fig. 1 illustrates the PRISMA flow 
diagram of the search process. A total of 12,503 articles were detected 
across the four databases, and after removing the duplicates and non-
eligible articles, 91 studies were included in this systematic review: 
50 observational studies (all cross-sectional),37–86 9 studies reported 
the acute effects of PA (e.g., following a marathon, rowing, etc.) on 
microbiome,25,87–94 and 32 studies reported the chronic effects of 
PA on microbiome (17 non-RCT, 13 RCT and 2 randomized controlled 
cross-over trials).24,95–125 Of the 50 cross-sectional studies, 8 were 
eligible (based on availability of microbiome diversity data and 
healthy participants) for the first meta-analysis comparing groups 
of high and low PA levels in non-athletes,41,42,44,46,53,73,76,84 and 11 
were included in the second meta-analysis comparing athletes vs. 
non-athletes.42,56,57,59,64,67,80,82,84,85,112 Of the 32 intervention studies, 
7 were selected for the third meta-analysis, to evaluate the chronic 
effects of PA on microbiome alpha-diversity.102,104,105,107,116,119,125

Seventeen studies reported significant associations between 
PA40,44–47,50,52,53,70,72–75,78 or SB39,41,71 and microbial diversity 
(i.e., alpha- and/or beta-diversity), and 19 studies found significant 
differences in the relative abundance of specific bacteria in active  
vs. inactive participants37,39–41,45–48,50,51,53–55,70,73,75–77,84 (Table 
S8). Sixteen studies found significant differences in microbial 
diversity56,57,59,60,62–66,68,69,80–82,85,86 and 13 in the abundance of specific 
microbial taxa56,60,61,63–66,80–82,84,85,112 between athletes vs. non-athletes, 
professional vs. amateur or athletes from different sports. Three 
studies detected significant differences in alpha-diversity,90,91,93 while 8 
studies described significant changes in the relative abundance of 
certain bacteria after acute PA interventions.25,87,88,90–94 Seventeen 
studies detected significant differences in alpha- and/or beta-
diversity,24,95,97,98,101,103,106,109,110,112,115,118,119,121,122,124,125 and 24 studies 
described significant changes in the relative abundance of certain bacteria 
after chronic PA interventions.24,95,97,99–103,105–107,109,110,113–116,118–123,125 

The sample sizes ranged from 191 to 2183.72 Fifty-three studies 
involved both male and female participants, while 12 were exclu-
sively conducted on women and 25 on men (see Table S8). One 
study did not report the gender of the participants.118 Regarding age, 
5 studies recruited children (i.e., 7–12 years) and/or adolescents 
(i.e., 13–17 years), 67 included young and middle-aged adults 
(i.e., 18–64 years), 12 older adults (i.e., ≥65 years), 3 studies combined 
adolescents and adults and 4 adults of different ages (Table S8). Fifty-
nine studies were performed on healthy individuals, while 32 studies 
included participants with different diseases such as obesity or breast 
cancer, among others (Table S8). 

Regarding the exposure, 26 cross-sectional studies recorded PA 
using self-reported questionnaires,37–42,44–55,72–75,77–79,84 whereas 8 
studies included PA data registered by accelerometry39,43,45,46,51,70,73,76 

(Table S8). Additionally, four studies reported SB data expressed as 
time per sedentary breaks/bouts or screen time.39,41,71,79 Twenty-two 
cross-sectional studies recruited athletes from different sports 
such as rugby, athletics or football, among others.56–69,80–86,112 Six 
studies analyzed the effects of a marathon, footrace or rowing race 
on microbiomes,25,88,90,91,93,94 three reported the effect of a single 
bout of PA (i.e., no sport competition) on microbiomes87,89,92 

and 32 conducted a long-term PA intervention ranged from two 
weeks99 to thirty-four weeks,122 mostly consisting of aerobic 
training24,95,98,99,105,106,111,113,114,116,118–120,122,125 or a combination of 
aerobic and resistance training.96,97,100–104,107–110,112,115,117,121,123,124 

Most of the studies analyzed the gut microbiome, with the ex-
ception of ten which collected saliva, oral, oropharyngeal, muscle, 
blood or vaginal samples.37,52,60,71,86,87,89,110,120,123 Concerning 
the detection method, 78 studies conducted the 16S rRNA gene se-
quencing approach to characterize the microbiome, 16 performed 
metagenomics analyses and two studies focused on meta-
transcriptomics (i.e.,  microbial RNA-sequencing) (see Table S8). 
Twenty-one studies did not report dietary data for all the partici-
pants (Table S8). One study performed a control of diet (each

https://www.covidence.org/
https://www.covidence.org/
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Records identified from: 

Databases (n = 12503)

- PubMed

- Web of Science

- SCOPUS

- Cochrane Library 

Records removed before 
screening: 

Duplicate records removed 

using automated function in 

the tool COVIDENCE (n = 

6744) 

Records screened by title/abstract 

(n = 5759) 

Records excluded 

(n = 5630) 

Reports assessed for eligibility 

(n = 129) 

Reports excluded: 

Reason 1: Experimental studies with 

other lifestyle intervention (n = 6) 

Reason 2: Irrelevant independent 

variable (n = 12) 

Reason 3: Irrelevant outcome (n = 5) 

Reason 4: Congress abstract (n= 8) 

Reason 5: Book chapter (n=1) 

Reason 6: Duplicate (n = 5) 

Reason 7: No accessible (n = 1) 

Studies included in review 

(n = 91) 

Studies included in meta-analysis 

(n = 24) 

Identification of studies via databases and registers 
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Fig. 1. Search process according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram.
participants received the same kind of food) during the PA 
intervention.88 

Fig. 2 shows a graphical summary of the main findings. Specific out-
comes of microbial composition identified in the articles are discussed 
and interpreted in the context of the current knowledge in the 
Discussion section. For further details, see Electronic Supplementary 
Appendix S2.

3.2. Quality assessment 

Among the 50 cross-sectional studies, 26 were categorized as high 
quality (quality score ≥ 75 %), whereas 24 as low quality (quality score 
< 75) (Electronic Supplementary Table S4). Regarding the 9 studies 
about the acute effects of PA, 8 studies were considered to have a high 
quality and 1 showed a low quality (Electronic Supplementary 
Table S5). Concerning the 32 studies (15 RCTs and 17 non-RCTs) that re-
ported the chronic effects of PA interventions, one RCT presented a high 
quality and 14 a low quality (Electronic Supplementary Table S6), while 
12 non-RCTs were categorized as high quality and 5 as low quality stud-
ies (Electronic Supplementary Table S7). 
796
3.3. Meta-analysis 

3.3.1. First meta-analysis (cross-sectional studies): high vs. low PA levels 
This meta-analysis united 1814 participants from 8 studies, where 

1157 belonged to the high PA and 657 participants to the low PA groups. 
No significant differences were reported between the groups of high 
and low PA levels on alpha-diversity represented by the Shannon diver-
sity index (SMD = −0.101, 95 % CI −0.386–0.184, p = 0.488, I2 = 
33.581) and Chao1 index (SMD = −0.127, 95 % CI −0.563–0.309, 
p = 0.568, I2 = 13.774) (Fig. 3A).

3.3.2. Second meta-analysis (cross-sectional studies): athletes vs. non-athletes 
This meta-analysis comprised 651 participants from 11 studies, in-

cluding 329 athletes and 322 non-athletes. No significant differences 
were reported between the groups of athletes and non-athletes on 
alpha-diversity using the Shannon diversity index (SMD = −0.113, 
95 % CI −0.441–0.215, p = 0.501, I2 = 0.000). However, athletes tended 
to present a higher alpha-diversity compared to non-athletes when 
Chao1 index was used as an indicator of microbial alpha-diversity 
(SMD = 0.482, 95 % CI −0.026–0.991, p = 0.063, I2 = 0.000)  (Fig. 3B).

move_f0010
move_f0015
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Fig. 2. Summary of the main characteristics and findings of the studies included in this systematic review. A) Exposure: in cross-sectional studies, the effect of physical activity (PA), 
sedentary behavior (SB) or athletic performance on microbiome was analyzed. In intervention studies, the acute or chronic effects of PA on microbiome were evaluated.  
B) Microbiome outcomes: samples from different body sites (gut, saliva, blood, muscle and vagina, among others) were analyzed by distinct detection methods (16S rRNA sequencing 
and shotgun metagenomic sequencing for DNA-based microbiome analysis; meta-transcriptomic [RNA sequencing] for RNA-based microbiome analysis). C) Main findings: relevant 
results concerning alpha- and beta-diversity and differential abundance analysis are shown. D) Metabolic effects of PA-microbiome interaction. Growing evidence indicates that PA 
increases the abundance of members of the Firmicutes phylum, bacteria able to produce short-chain fatty acids (SCFAs). SCFAs produced by the gut microbiome by processing nutrients 
from diet may have positive effects in the intestine, improving barrier function and inflammation state. A crosstalk between the gut microbiome and skeletal muscle through lactate 
(generated during PA) and its conversion to SCFAs may improve athletic performance. SCFAs have been also linked to promoting neurogenesis (through brain-derived neurotrophic factor 
[BDNF]), improving hypothalamic–pituitary–adrenal (HPA) axis control, reducing inflammation and the risk of psychological diseases (e.g., depression, anxiety). A microbiome-dependent 
gut-brain connection mediated by microbial metabolites (i.e., fatty acid amides [FAAs], such as N-oleoylethanolamide [OEA]) has been discovered in mice, which enhances exercise 
performing and motivation by increasing dopamine signaling during PA. Recent studies suggest that disruption of microbial ecosystem may lead to the growth of proteolytic microbes 
able to produce trimethylamine-N-oxide (TMAO), an important metabolite that in elevated concentration has been linked to adverse cardiac events and chronic kidney diseases (CKD). 
This figure was created with BioRender.com.
3.3.3. Third meta-analysis (intervention studies): chronic effects of PA 
The third meta-analysis united 167 participants from 7 studies, 

where 118 were allocated to a PA group and 49 to a control group. 
No significant differences were found between the PA and control 
groups on alpha-diversity using the Shannon diversity index (PA group: 
SMD = 0.132, 95 % CI −0.124–0.388, p = 0.312, I2 = 0.000; control 
group: SMD = 0.110, 95 % CI −0.288–0.508, p = 0.587; I2 = 0.000) or 
Chao1 index (PA group: SMD = −0.080, 95 % CI −0.454–0.295, p = 
0.677, I2 = 0.000; control group: SMD = 0.001, 95 % CI −0.454–0.457, 
p = 0.995; I2 = 0.000) (Fig. 3C). 

4. Discussion 

This is the first systematic review that summarizes the current 
evidence about the effects of PA and SB on the human-associated 
microbiome across different body sites and in different populations. 
The main findings of this systematic review and meta-analysis were: 
(1) there was no consistent effect of PA on modifying microbial alpha-
diversity, although most of studies support that PA (observational and 
intervention studies) induces changes in microbiome composition 
with the increase of short-chain fatty acid (SCFA)-producing bacteria 
such as Akkermansia, Roseburia or Veillonella, among others; (2) there 
is very limited evidence of the effect of SB on microbiome; (3) few 
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studies assessed PA data by objective methods (i.e., accelerometry); 
(4) there are few studies about the acute effect of PA on microbiome; 
(5) available studies are hardly comparable due to heterogeneity of 
the participants (i.e., age, sex, health status), wide use of different self-
reported questionnaires to record PA, lack of standardized criteria to 
stratify participants in active/sedentary groups in cross-sectional stud-
ies and different characteristics of PA interventions (e.g., type, intensity, 
duration); (6) most of studies did not include diet as a confounder in 
their statistical analyses; and (7) well-designed multi-omics studies 
(i.e., metagenomics, meta-transcriptomics, meta-proteomics and 
meta-metabolomics) are warranted to clarify the effect of PA and SB 
on the human-associated microbiomes. 

4.1. Cross-sectional studies: physical activity and sedentary behavior 
(non-athletes) 

Microbiome diversity is considered a direct measure of gut health 
in humans, and a loss of diversity has been linked to a higher risk of 
obesity, type 2 diabetes, and cancer, among others.126 In this systematic 
review, four studies found that the gut microbiome of children and 
adults with higher PA levels showed higher alpha-diversity, compared 
to those who rarely or never exercised.40,46,72,73 Similarly, two studies 
reported a positive association between PA level and gut alpha-

http://BioRender.com
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Fig. 3. Panel A) shows the meta-analysis of the high-PA vs. low-PA level's effects on Shannon diversity and Chao1 indexes (i.e., alpha-diversity metrics). Eight studies were finally included 
(Shannon diversity index42,44,46,53,73,76,84 ; Chao1 index41,42,46,53,84 ). Panel B) indicates the meta-analysis of the athletes vs. non-athletes' effects on both alpha-diversity metrics, 
i.e., Shannon diversity (8 studies42,56,57,59,67,82,84,85 ) and Chao1 indexes (9 studies42,56,59,64,80,82,84,85,112 ). Panel C) shows the meta-analysis of the PA intervention (up) vs. control's effects 
(down) on the Shannon diversity (7 studies102,104,105,107,116,119,125 ) and Chao1 index (3 studies105,107,119 ). Due to the lack of studies, we included both RCTs104,105,107,116,125 and non-
RCTs102,119 in the same meta-analysis. The bottom meta-analyses reflect the effect of time in the absence of PA intervention since it only includes the control groups that were available 
from the RCTs. We did not use the control groups of Cronin et al.104 and Bielik et al.125 , as they consumed a protein or probiotic supplement.
diversity in participants with different diseases.47,74 A positive correlation 
between average PA intensity and vaginal microbiome alpha-diversity 
was also found in healthy college-aged women.52 However, other studies 
in individuals with different age and health conditions reported negative 
or no associations,37,39,41–45,48,50,53,70,75–77,84 as is also detected in our 
meta-analysis of 1814 participants (Fig. 3A). Heterogeneity in study 
population (i.e., health status, sex, age), methodological aspects (i.e., use 
of diverse self-reported questionnaires, different pipelines to analyze 
the microbiome, etc.), varying criteria to stratify participants based on 
PA level and lack of control of relevant covariates (e.g., diet) in statistical 
analyses may contribute to the discrepant findings across studies.  In fact,  
Langsetmo et al. demonstrated different results depending on the 
method for measuring PA, where self-reported PA was positively as-
sociated with beta-diversity,45 while objectively measured PA recorded 
by accelerometry (expressed as step counts) showed no associations.45 

Regarding SB, Bressa et al. reported that less time in sedentary 
bouts was positively associated with alpha-diversity (Shannon and 
Chao1 indexes) in premenopausal women.39 In contrast, there were 
no significant differences in alpha-diversity when compared the 
gut microbiome of physically active women (those who perform at 
least 3 h of PA per week) and sedentary women (i.e., those who perform 
<3  h).39 Whisner et al. did not find any significant differences in 
alpha-diversity parameters across quartiles of SB in a cohort of 
college students.41 However, a later study detected a lower alpha-
diversity in the saliva of children who reported high sedentary screen 
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(sitting) times.71 Interestingly, recent evidence indicates a positive 
association between SB and Streptococcus, detected in feces and 
saliva.70,71 Streptococcus has been described as a key bacteria in disease 
such as old-onset colorectal cancer.127 The existence of an oral-gut 
microbiome crosstalk has been proposed, highlighting a possible associ-
ation between oral microbial alterations, oral–gut microbiome axis and 
the pathogenesis of different diseases such as gastrointestinal disease or 
colorectal cancer.128 Thus, more future research is needed to unravel 
the role of SB as a potential modulator of microbial communities. 

There are more consistent findings about the associations be-
tween PA and the gut microbiome, mostly at lower taxonomic cate-
gories. At phylum level, Firmicutes seems to be more abundant in 
the gut of those individuals with higher PA levels,40,50 although sev-
eral studies found the inverse association.53–55 Since Firmicutes has 
been associated with fiber,129 different dietary habits may be par-
tially explaining variability between the studies. Interestingly, grow-
ing evidence supports that PA increases the abundance of a 
Firmicutes-belonging group of commensal bacteria able to produce 
SCFAs from non-digestible carbohydrates ingested through diet, 
such as butyrate, propionate and acetate.130 Most of the included 
studies reported higher abundances of SCFA-producing bacteria 
from Lachnospiraceae and Erysipelotrichaceae families,40,41,51,70,73 

and Roseburia, Coprococcus, Lachnospira, Blautia and Faecalibacterium 
genera, among others, in more active individuals compared to those 
with lower PA levels.40,41,45,46,51,77 Particularly, Bressa et al. quantified
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the relative abundance of Akkermansia muciniphila, Faecalibacterium 
prausnitzii and Roseburia hominis by real-time PCR (qPCR) and detected 
higher abundances in physically active compared to inactive women.39 

SCFAs have been linked to good health due to their role on metabolic 
function, being substrates for energy metabolism as well as important 
signaling molecules implicated in the gut-microbiota axis and in the reg-
ulation of the immune response.131,132 Since the availability of SCFAs is 
influenced by both, the ingestion of nutritional components and 
their digestion directed by the gut microbes,130 the previous results 
could indicate SCFAs as the key molecular link between PA, diet 
and microbiome. 

4.2. Cross-sectional studies: athletes vs. non-athletes 

Available evidence generally agrees on a trend toward the increase 
of the gut microbial diversity in athletes of different sport disciplines 
compared to non-athletes (see our meta-analysis of 651 participants; 
Fig. 3B). Further, a recent meta-analysis evaluated microbial alpha-
diversity of shotgun metagenomics data of the gut microbiomes of 
207 athletes of different sports and 107 non-athletes and found a signif-
icantly higher species richness in athletes compared to non-athletes.133 

However, it is also well known that specific dietary requirements are 
usually implemented based on the duration and intensity of PA 
training,134 which makes it difficult to determine the isolated effect of 
athletic performance on the microbial communities. In 2014, Clarke 
et al. reported, for the first time, a positive association between athletic 
performance and alpha-diversity parameters, when compared the gut 
microbiome by 16S rRNA sequencing of a group of professional rugby 
players and sedentary participants with low and high BMI (i.e., BMI 
≤25 or >28, respectively).56 However, the athletes' enhanced diversity 
was also associated with high protein consumption in this group. Barton 
et al.57 re-analyzed the participants from Clarke et al. to evaluate the 
microbiome diversity with the shotgun metagenomic sequencing, 
confirming the previous results.56 More recently, Penney et al. analyzed 
the combined effects of diet and athletic performance in the gut 
microbiome of those participants, and found a significant association 
with alpha-diversity when combined the effect of both athletic perfor-
mance and dietary habits.67 Later studies described an enriched micro-
bial diversity in athletes with special diets, compared to sedentary 
participants,68,69 and others did not find any significant differences be-
tween athletes and non-athletes with similar dietary patterns.60,61,65 

In contrast, 2 studies reported a higher alpha-diversity in athletes com-
pared to sedentary participants with similar dietary habits.59,64 Large 
variety of sports disciplines included in the abovementioned studies 
(marathon runners, bodybuilders, cross-country skiers, rugby players, 
etc.) can be also contributing to inconsistency of the results. So far, the iso-
lated effect of athletic performance, independently of diet, is still unclear. 

Since diet is one of the most important modulators of the 
microbiome, differences in nutritional habits may also affect the relative 
abundance of specific microorganisms.135 In fact, high-digestible carbo-
hydrate diets have been related to the growth of SCFA-producing bacte-
ria. Clarke et al. reported a higher abundance of Firmicutes phylum and 
a decreased abundance of Bacteroidetes in rugby players compared to 
sedentary individuals with high BMI.56 Both groups presented a distinct 
nutritional profile, with an increased consumption of protein, fiber, 
carbohydrate and monounsaturated and polyunsaturated fat in the 
athletes group. A later study also described a higher abundance of 
Firmicutes and lower levels of Bacteroidetes in rugby players compared 
to non-athletes.82 Accordingly to these findings, animal and human 
studies have positively associated Firmicutes to fiber intake but nega-
tively to fat consumption, while Bacteroidetes showed the opposite 
association.129 Additionally, later metabolic pathway analyses revealed 
that rugby players had an enriched profile of SCFAs.57 Other SCFA-
producer, F. prausnitzii,  was  also  found  to be  more abundant  in  senior  
athletes compared to older sedentary participants after adjusting for 
different covariates, including diet.65 Morishima et al. found an increase 
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of Faecalibacterium in female runners compared to non-athletes, and 
a higher abundance of succinate, a SCFA that can be produced by 
Faecalibacterium.80 

Liang et al. reported that professional martial art athletes had an 
enriched microbiome compared to amateurs, and identified changes 
in the abundance of several bacteria after adjusting for different con-
founders including diet.63 Furthermore, one study found higher diversity 
and Firmicutes/Bacteroidetes ratio in female elite compared to non-elite 
athletes.66 However, metagenomics and meta-transcriptomics analyses 
conducted by Petersen et al. only detected differences at transcriptomic 
(RNA) level, highlighting the need for more microbiome studies at func-
tional level.58 

Few studies have identified significant microbial shifts in relation 
with the type of sport.61,62,64 Interestingly, O'Donovan et al. compared 
athletes from 16 different sports and found specific bacterial taxa such 
as Anaerostipes hadrus, F. prausnitzii and Bacteroides caccae, differently 
abundant between sports with a moderate-dynamic component (e.g., 
fencing), high-dynamic and low-static components (e.g., field hockey), 
and high-dynamic and static components (e.g., rowing).62 

4.3. Acute effects of PA 

Most of the studies aimed to analyze potential changes in the gut 
microbial composition following a marathon.25,88,91 In this sense, two 
studies detected an increase in Firmicutes/Bacteroidetes ratio of the 
gut microbiome in long-distance runners post-race.91,93 Significantly, 
Grosicki et al. also detected a higher abundance of Veillonella, 
accordingly to the results obtained by Scheiman et al.25,91 The last 
study proposed a microbiome-encoded enzymatic mechanism that 
could partially explain how microbiome and its metabolites (i.e., 
SCFAs) may contribute to enhance athletic performance.25 After detect-
ing a higher abundance of Veillonella in runners after the race, they ob-
served that administration of Veillonella atypica in a mouse model 
improved run time and demonstrated its capability of metabolically 
converting the exercise-induced lactate into propionate in the colon to 
subsequently re-enter the systemic circulation. In search of confirming 
these findings, Moitinho-Silva et al. quantified the relative abundance 
of V. atypica by qPCR and sequencing in a subset of elite athletes (mainly 
cyclists and triathletes) and sedentary participants, but failed to find any 
significant differences between the groups.112 These contrasting results 
could be partially explained by several limitations of the last study 
such as the lack of dietary data for the athletes group. Other studies 
have detected an increase in several SCFA-producing bacteria, including 
Coprococcus_2, Dorea or Roseburia after a marathon or a transoceanic 
rowing race.88,90 Although the number of human studies is still lim-
ited, these findings support emerging evidence of the existence of 
a crosstalk between the gut microbiota and skeletal muscle through lac-
tate (generated during exercise) and its conversion to SCFAs by the gut 
microbes which, consequently, could improve athletic performance.27 

In fact, SCFAs have been recently defined as “biotics” (substances able 
to modulate the microbiome by increasing the abundance of beneficial 
microbes) that could be used as an exogenous microbiome modulation 
approach for improving health and athletic performance.136 Interest-
ingly, a recent study discovered a gut–brain connection in mice that 
enhances athletic performance by increasing dopamine signaling dur-
ing PA.137 These results indicate that motivation for PA is influenced 
by the gut microbes derived-metabolites, suggesting a microbiome-
dependent mechanism for explaining inter-individual variability in PA 
motivation and performance. 

On the other hand, the acute effect of a bout of PA on the microbiome 
continues to be a scarcely investigated topic. Tabone et al. followed this 
approach analyzing fecal samples from athletes who underwent a 
moderate-intensity treadmill session until volitional exhaustion and de-
tected changes in six bacteria (Romboutsia, Escherichia coli TOP498, 
Ruminococcaceae UCG-005, Blautia, Ruminiclostridium 9 and  Clostridium 
phoceensis).92 Overall, acute interventions collect serum samples where
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potential changes can be detected earlier compared to fecal ones. In 
this context, one study collected blood and fecal samples of myalgic 
encephalomyelitis/chronic fatigue syndrome participants and detected 
changes at major bacterial phyla such as Actinobacteria, Bacteroidetes, 
Firmicutes and Proteobacteria, in both samples after a cycle ergometer 
maximal exercise test.87 A later study exclusively analyzed viral reads 
(i.e., virome) from blood samples by RNA-seq and did not detect any dif-
ferences after acute PA.89 Thus, more research directed to analyze blood 
microbiome is needed to accurately assess the short-term effect of PA, 
specially, meta-transcriptomics and meta-metabolomics could be a 
novel and useful approach to study the active microbiome in the context 
of acute effects of PA. 

4.4. Chronic effects of PA 

To further deepen the overall knowledge of the chronic effects of PA 
on human microbiome and, generally, the host health, several clinical 
trials have been published in the last years.24,95–125 Our meta-analysis 
of 167 participants is the first analysis that quantifies those trials in 
healthy participants, indicating that controversial results for alpha-
diversity are consistently found (Fig. 3C). Two studies performed in 
healthy adults that underwent a 12-week aerobic PA intervention (3 
sessions of 30 min per week) or 7-week high-intensity interval training 
(consisting of swimming lengths) reported an increase in microbial 
alpha-diversity.118,125 Conversely, Moitinho-Silva et al. detected a slight 
decrease in alpha-diversity after an aerobic PA intervention (6 weeks; 
3 sessions of 30 min per week) in healthy adults,112 although no dif-
ferences were observed in another group subjected to a strength 
training.112 Another study recruited healthy adults to undergo a PA 
intervention (aerobic and resistance training; 8 weeks; 3 sessions of 
90 min per week), but no significant changes in alpha-diversity were 
detected after the intervention.104 Most of the studies in unhealthy in-
dividuals did not report any significant changes in alpha-diversity 
after a PA intervention.24,95,96,99,100,102,103,110,114,115,121,122,124 However, 
the chronic effect of PA on microbiome composition becomes clearer 
in the beta-diversity analysis, where more studies agree on a significant 
dissimilarity in the microbial communities of the individuals after long-
term PA.24,95,98,101,103,106,109,110,115,118,119,121,122,124,125 Interestingly, 
Allen et al. observed how differences in the beta-diversity detected 
at baseline between the participants with normal-weight and obesity 
disappeared after an aerobic PA intervention (6 weeks; 3 of 30–60 min 
sessions per week).24 Different study designs (17 non-RCT, 13 RCT and 
2 randomized controlled cross-over trials), health status of participants 
(15 studies with healthy and 17 with unhealthy populations), character-
istics of PA interventions (type, duration, and intensity), and methodo-
logical differences in microbiome analysis, diet, among other factors, 
might partially influence the varying results obtained. 

In accordance with observational studies,39,40,46,47,70,73,76,77,80 

an increase in SCFA-producing bacteria such as Lachnospiraceae, 
Verrucomicrobiaceae, Lachnospira, Akkermansia, Veillonella, 
Faecalibacterium, Bifidobacterium and Roseburia was also reported in 
participants with different age and health conditions (including obesity, 
prediabetes and insulin resistance, among others) after PA interven-
tions ranging from 2 to 34 weeks.24,95,99–102,109,110,114,115,119,121,122 

More specifically, Liu et al. described an increase in A. muciniphila and 
an improvement in insulin sensitivity after a 12 weeks-concurrent PA 
intervention in men with prediabetes that were classified as responders 
compared to non-responders.100 Later studies have also reported an 
increase in A. muciniphila in participants with overweight/obesity or 
type 2 diabetes after long-term PA.109,121 A. muciniphila has been related 
to prevention of multiple metabolic diseases such as obesity, metabolic 
syndrome and type 2 diabetes.138 In a recent publication, a multi-omics 
approach (transcriptomics, proteomics, metabolomics and lipidomics) 
investigated the underlying molecular mechanism of A. muciniphila in 
obesity. It concluded that A. muciniphila reduced lipid accumulation 
and downregulated the expression of genes related to adipogenesis 
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and lipogenesis in adypocites.139 These studies point to A. muciniphila 
as a promising microbial target (potentially modulated by PA) with 
therapeutic effects in obesity and other metabolic diseases. At genus 
level, Akkermansia has also been widely found to be positively asso-
ciated with PA in cross-sectional studies39,56 and increased after PA 
interventions.95,100 

4.5. Future directions 

Our comprehension about the effect of PA (little research is 
conducted on SB) on microbial communities is still in its infancy, 
which is partially attributed to significant methodological variability be-
tween the studies. This heterogeneity highlights the need to perform 
well-designed studies focusing on specific detailed populations and 
establishing reference pipelines to ensure the accuracy and comparabil-
ity of the results. To ensure the reproducibility and comparability of the 
future studies in the field, we recommend the researchers to follow the 
recent good practice guidelines140,141 when microbiome analyses are 
performed. 

Most of cross-sectional studies in this systematic review recorded PA 
measures by self-reported questionnaires. Accelerometry has been 
widely demonstrated to be a more valid and comparable method for ob-
jectively collecting participants' PA and SB levels.142 Therefore, more 
accelerometry-based studies will allow researchers to apply standard-
ized criteria to classify participants based on the use of cut-points for 
PA and SB which will reduce the inconsistency between study findings 
and reveal the accurate association of PA and SB with microbiome. In in-
tervention studies that assess the chronic effects of PA on microbiome, 
we detected a low quality in the RCTs. These results could be partially 
explained by the use of a checklist143 with a stricter scale for the quality 
assessment. 

Since most of the studies analyzed DNA sequences regardless of 
microbial variability or functionality (only two studies performed 
a meta-transcriptomic analysis), we are not close to determine the 
functional microbes susceptible to PA. Moreover, future multi-
omics analyses (i.e.,  combining metagenomics, meta-
transcriptomics, meta-proteomics and meta-metabolomics) 
would further unravel the complex host-microbial molecular 
pathways implicated in the molecular response to PA. In this re-
gard, the Molecular Transducers of Physical Activity Consortium 
(MoTrPAC)6 will provide a powerful source of information to advance 
our understanding of PA's effects on the microbiome in humans and an-
imal models performing multi-omics analyses. 

4.6. Limitations and strengths 

Due to the lack of available information, an important limitation of 
our meta-analyses was the use and transformation of directly reported 
data from the articles instead of re-analyzing raw data to reduce poten-
tial bias introduced by applying different methodologies and pipelines 
across studies. Besides, limited information prevented us from addition-
ally analyzing other microbiome outcomes of interest, such as the differ-
ential abundance of key bacteria. Future studies should make publicly 
available raw sequences generated from sequencing platforms to 
allow future meta-analyses to cover these gaps in the literature. To 
our knowledge, we present the first meta-analysis conducted within 
non-athletes population, including more than 2600 participants from 
24 studies. We also performed sub-group analyses according to study 
design to ensure homogeneity. Moreover, we followed a rigorous 
and reliable methodology previously validated144,145 to obtain numeri-
cal data when they were unavailable. Additional strengths of our sys-
tematic review are the elaboration according to PRISMA guidelines, 
use of four different search databases (PubMed, Web of Science, 
SCOPUS and Cochrane), and performance of quality assessment with 
validated tools specific for each study design, which ensure the scientific 
rigor.
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5. Conclusions 

Our systematic review summarizes the available knowledge about 
the relationship between PA and SB and the microbiome from multiple 
body sites and across different human populations. So far, growing evi-
dence points to higher abundances of SCFA-producing bacteria in more 
active individuals or after a PA intervention. Our meta-analysis uniting 
2632 participants indicated no consistent effect of PA on microbial 
alpha-diversity, although there seems to be a trend toward a higher 
richness in athletes compared to non-athletes. Thus, accelerometry-
based observational studies and RCTs are needed to face this inconsis-
tency. Additionally, there is scarce information about the effect of 
SB on microbiome. In conclusion, precisely-designed, well-controlled 
and multi-omics studies are needed to reduce heterogeneity, obtain 
comparable results and, therefore, gain reliable knowledge about the 
effect of PA and SB on the human microbiome. 
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