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The Bateman gradient is a central concept in sexual selection theory
that relates reproductive success to mate number, with important
consequences for sex-specific selection. The conventional expectation is
that Bateman gradients are steeper in males than females, implying that
males benefit more from multiple mating than females do. This claim is
supported by much empirical evidence as well as mathematical modelling.
However, under some reproductive systems, reversed Bateman gradients
are observed, perhaps most notably in syngnathid fishes with male
pregnancy. Unlike conventional Bateman gradients, the causal basis of
such reversed Bateman gradients has never been modelled mathematically.
Here, we present a sex-neutral mathematical model demonstrating how
restrictions in capacity for carrying or incubating gametes and embryos
(brooding) interact with anisogamy, generating both conventional and
reversed Bateman gradients from a single mathematical model. The results
clearly demonstrate how anisogamy tends to cause conventional Bateman
gradients, but diminishing male brooding capacity under male pregnancy
or nesting causes a gradual reversal from conventional to fully ‘reversed’
Bateman gradients.

1. Introduction
Reproductive biology shows great diversity in nature, but one repeatedly
observed pattern is that males tend to benefit more from mating multiply than
females do. The relationship of reproductive success against mate number
(the Bateman function [1,2]) typically differs between the sexes: its gradient,
the Bateman gradient [2], is steeper in males than in females [3] across
most species (see [2,4] for the distinction and link between the Bateman
function and the Bateman gradient). Bateman gradients play multiple roles
in sexual selection. While they are empirically measurable summary statistics
of the intensity of mating competition (the sex with the steeper gradient is
expected to compete more strongly for matings), they also offer a partial
causal explanation for sexual selection [2,5,6] (see §4 for further detail and
some caveats). It is the latter role where mathematical models are particu-
larly important. Furthermore, mathematical models of Bateman gradients
can subsequently be used as components of more detailed models of sexual
selection or of phenomena such as the evolution of male pregnancy.

Although male Bateman gradients are typically steeper than those for
females, there are exceptions where Bateman gradients are reversed, such
that females benefit more from multiple matings than males do (figure
1). This phenomenon is best studied empirically in a few fishes: particu-
larly the male-pregnant syngnathids (seahorses, pipefish and seadragons), in
which reversed Bateman gradients have been observed [7,8]. Male pregnancy,
defined as the brooding of embryos on or in the body of a male (reviewed in
[9]), is a rare trait also exhibited by an anuran (Rhinoderma darwinii, in which
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males incubate embryos in a vocal sac) [10], various invertebrates (e.g. the back-brooding waterbug Belostoma flumineum (e.g.
[11], brooding pycnogonid sea spiders [12) and several other teleosts (e.g. forehead brooding Kurtus gulliveri [13], ‘armpit’
brooding dactyloscopids [14], the frogfish skinbrooder Antennarius caudimaculatus [15) (figure 2).

While empirical work on Bateman gradients in male-pregnant species is rare, in terms of conceptual and theoretical work,
Arnold [16] discussed various combinations of female–male Bateman gradients (including ‘reversed’ ones) but did not explicitly
link these to anisogamy or provide a mathematical model. Avise & Liu [17] presented verbal and graphical conjectures on
Bateman gradients under male pregnancy and other reproductive systems with a more explicit link to anisogamy (i.e. gamete
dimorphism, where, in a species, smaller gametes are produced by males and larger gametes by females), but again did
not present a mathematical model. To our knowledge, no formal mathematical model exists linking anisogamy to Bateman
gradients under such unconventional reproductive systems. Current models show that the characteristic shape of conventional
Bateman gradients is inherent in the mathematics of fertilization ([4]; see also [6]) and provide insight into the causes of
conventional Bateman gradients, but these models apply only to systems with either female pregnancy or no pregnancy.
Furthermore, while the external fertilizer models of Lehtonen [4] are sex-neutral (the same equation applies to both sexes), the
internal fertilization model (which is empirically the most commonly studied case) in the same study is not. Given that a logical
and mathematical link from anisogamy to conventional Bateman gradients has been shown, the obvious question becomes:
can a similar mathematical framework, generalized so that it applies symmetrically to both sexes, generate both conventional
and reversed Bateman gradients depending on the reproductive system? It is important to keep in mind that there are two
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Figure 1. A sketch of conventional and reversed Bateman gradients. The figure presents an extreme example of both cases, where reproductive success for one sex
plateaus after one mating, while that for the other increases linearly with the number of matings.

(a) (b)

(c) (d)

Figure 2. Space for embryo incubation is limited in male brooding species, as in female pregnancy. (a) Male Hippocampus spp. seahorses carry developing offspring
inside an enclosed brood pouch (photo credit: Rudy Kuiter). (b) Male Phyllopteryx taeniolatus seadragons incubate embryos on an open brood ‘patch’ (photo credit: Tom
Burd). (c) Male Rhinoderma darwinii (Darwin’s frog) brood embryos in the vocal sac (photo credit: Claudio Azat). (d) Giant waterbug (Belostoma flumineum) males carry
developing offspring on their back (photo credit: Kansas Department of Agriculture, Bugwood.org).
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related but distinct questions: (i) Under what circumstances are Bateman gradients positive in females? and (ii) Under what
circumstances are Bateman gradients reversed? In fact, a recent meta-analysis suggests that Bateman gradients are commonly
positive in females [18]. The question of reversed Bateman gradients is, however, a much more restrictive one, and a positive
female Bateman gradient does not imply that it is steeper than the male Bateman gradient (i.e. reversed). It is also conceptually
and theoretically easier to answer question (i) than question (ii): for example, females can potentially benefit from multiple
mating whenever the first mating does not guarantee fertilization of all eggs, and subsequent matings improve fertilization
prospects.

Here, we develop mathematical models of Bateman gradients accounting for the fundamental constraints that exist in
male pregnancy reproductive systems with separate sexes and show that the empirically observed Bateman gradient reversal
indeed arises logically from these constraints. The same model accounts for both conventional and reversed Bateman gradients:
diminishing brooding capacity causes a gradual reversal from conventional to fully reversed Bateman gradients.

2. Methods
Our aim is to construct a model with the following properties: (i) under specific parameter values it should remain compatible
with the internal fertilization (i.e. females receive sperm) model of Lehtonen [4] and replicate its results; (ii) it should allow
the gamete recipient to be of either sex or mating type (i.e. the model must accommodate male as well as female pregnancy,
brooding or nesting); (iii) it should accommodate brood space limitations in the number of gametes the recipient can receive;
and (iv) it should accommodate brood space limitations in the number of maturing embryos it can carry (with distinct values for
gamete and embryo limits, as in the verbal models of [17]).

We label the gamete recipient with x and the donor with y—these labels can correspond to either sex, depending on
whether we model female or male pregnancy/brooding. Sex is not assigned in the model itself and becomes defined only if
parameters are chosen such that the two types produce different numbers of gametes. The number of gametes produced by a
single recipient and donor individual is denoted nx and ny, and the total number of donor gametes donated to a fertilization
arena (i.e. in the female reproductive tract, the male brood pouch, a nest, etc.) is Ny (the total number of recipient gametes
in the fertilization arena is always simply Nx = nx, as they all originate from one individual). Following many earlier models
(e.g. [4,19–21]), we compute the number of successful fertilizations using a fertilization function first derived by Togashi et
al. [22] from biophysical principles with no assumptions about differences between the two sexes/mating types (for a review
and comparison to other functions, see function F7 in table 1 of Lehtonen & Dardare [23]). The fertilization model determines
the number of gametic fusions with equal or unequal gamete numbers from each sex/mating type, permitting the sex-neutral

labelling of the two types with x and y. The fertilization function is f Nx,Ny = NxNy eaNx − eaNyNxeaNx − NyeaNy  , where a is a parameter

controlling fertilization efficiency; if Nx = Ny the function is defined as f Nx,Ny = aNx2
1 + aNx  [22,23], which can either be derived

from the fertilization kinetics on which the model is based, or as the limit of f when Ny Nx.
Next, we assume a large population with an unbiased sex ratio, and a simple distribution of matings such that in the

initial population, all females and males mate exactly m times. Following Lehtonen [13], we then consider how a rare ‘mutant’
individual’s (of either sex) fitness depends on its number of matings m. Using this framework, we can show how variation in the
number of matings achieved by a focal individual (m) influences reproductive success in a given mating environment (with m
matings on average) while maintaining an analytically tractable level of complexity in mathematics.

From the recipient perspective (labelled with x), the situation is as follows: each recipient produces nx gametes and retains
all of them. Each donor mates with m recipients, who also mate with m donors, and we assume here that each donor divides

their gametes evenly over these matings. Therefore, a mutant recipient who mates with m donors receives Ny = mnym  donor
gametes. Here, the first constraint comes into play: the recipient has an upper limit G of how many donor gametes it can
receive (note that once anisogamy develops, for a female recipient this limit can be very large, and for a male recipient it can

be very small). Hence the actual fertilizing set of donor gametes the recipient receives is φ = min Ny,G = min mnym ,G . Using
the fertilization function defined above, the number of fertilizations in this fertilization arena is thus f nx,φ . Now, a second
constraint potentially comes into play: the zygotes might grow after fertilization, and it is thus possible that a recipient can
retain a smaller number of embryos than it can retain donor gametes (Z < G, where Z is the maximum number of embryos a
recipient can carry). A mutant recipient’s reproductive output is thus

(2.1)bx m,m = min Z,f nx,φ
where φ = min Ny,G = min mnym ,G , and (2.1) is the recipient Bateman function.

Now take the donor perspective, which is slightly more complicated. A mutant donor mates with m recipients, each of which
mate with m − 1 additional donors. Therefore, the mutant donor’s mating partners will receive a total of Ny = ny/m + m − 1 ny/m
donor gametes. Thus, if we assume ‘fair raffle’ competition between donor gametes, the mutant donor gains a fractioncy = ny/m /Ny of the fertilizations with each recipient. What is the total reproductive success per each of the donor’s mating
partners? Again, we must consider recipient gamete retention capacity G, so that the fertilizing set of donor gametes his/her
partners receive is τ = min Ny,G  where Ny is as above. The number of fertilized gametes per each of his/her partners is then
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f nx, τ  and by the same logic as above, reproductive output per mating partner is min Z,f nx, τ . Finally, we can write about
the mutant donor’s reproductive success:

(2.2)by m̂,m = m̂cy  min Z,f nx, τ
where all the components of the function are described in the above paragraph. To avoid division by 0, we additionally defineby 0,m = 0 (i.e. with no mating there are no offspring).

We now have compact equations that can describe recipient and donor Bateman functions under e.g. male pregnancy and
other reproductive systems where the father can receive a limited number of eggs, or rear a limited number of embryos, or both
—but it can equally well describe e.g. female pregnancy where the recipient may be able to receive thousands of donor gametes
or more. The model is constructed on a minimal number of fundamental assumptions and restrictions, which are arguably
almost necessarily present in nature in some form. While this analytical model considers ‘fair raffle’ situations, we separately
investigate the effect of ‘first donor precedence’ using a simulation model the code for which we present in the electronic
supplementary material. This is an important addition, because in syngnathids, water bugs and sea spiders that accept eggs
from multiple females, we found no evidence in the works cited above in relation to figure 2 that newly deposited eggs can
displace older ones or that females or males actively remove eggs from previous females; rather, females simply add eggs to
the remaining available male brood space (e.g. water bugs [24]), suggesting first female precedence. Thus, while the analytical
model provides a clear exposition of the logic of reversed Bateman gradients under analytically tractable assumptions, it is
important to confirm that the results remain qualitatively valid under first female precedence.

3. Results
We first zoom out and consider the big picture of the interaction between anisogamy and the constraints arising from the
brooding system (figure 3). Here the entire population is initially monogamous (i.e. one mating per reproductive event), and we
examine the fitness of a deviant multiply mating individual of both sexes. In our model notation, this implies m = 1, while m
varies on the x-axis within each panel in figure 3. Across the panels, we vary two factors: vertically we alter the gametic system,
while horizontally we alter gamete storage capacity G (which here is assumed to be equal to Z). See figure 3 legend for further
details.

In figure 3, the top left panel illustrates the conventional situation: females are gamete recipients and can accommodate
a very large number of sperm while males are gamete donors, resulting in steeper Bateman gradients for males. The
bottom right panel, on the other hand, illustrates the reversed situation where females are gamete donors and males can
receive a limited number of eggs, resulting in reversed Bateman gradients. Most of the remaining panels are hypothetical,
but by filling in the ‘gaps’ that we do not typically observe in nature, we can expose the logic of both conventional
and reversed Bateman gradients. Taken as a whole, figure 3 isolates the effects of three factors on Bateman gradients:
anisogamy, brood space limitation and the donor/recipient roles. Let us examine each effect in turn: anisogamy has the
overall effect that the type making the smaller gametes (males) tends to have steeper Bateman gradients. This effect
appears in the top row, where the male Bateman gradient is steeper regardless of brood space (even for unrealistically
small capacity to receive sperm); it also appears in the leftmost panel of the bottom row. The middle row (which
represents isogamy), on the other hand, isolates the effect of brood space limitation from the effect of anisogamy: its two
rightmost panels show that in the absence of anisogamy but in the presence of limited brood space, Bateman gradients
are steeper for the gamete donor. Thus, figure 3 is consistent with both classical predictions (top left) and reversed
Bateman gradients (bottom right). For the model to be logically consistent, a fundamental constraint that must be fulfilled
is that (given an even sex ratio) the average reproductive success of females must equal that of males; this is often
referred to as the ‘Fisher condition’ [25]. In the analytical model, this is easy to confirm: because deviant individuals are
vanishingly rare, population mean reproductive success is determined by the ‘resident’ type, and thus the female and
male curves must coincide at m matings as they do in all figures representing the analytical model.

Having established that the model can explain the broad outlines of Bateman gradients under variation in gametic and
reproductive systems, we now focus on how limited male brood space can influence Bateman gradients under typical anisog-
amy ratios and male pregnancy or related reproductive systems. Again, we initially assume that the number of embryos a
male can carry is at least equal to the maximum number of eggs a male could carry (Z ≥ G in our model notation). This
could correspond to, for example, shrinkage or constant size of the developing embryo, or to a brood pouch that can stretch
to accommodate growing embryos so that no eggs need to be discarded. We will later consider a scenario where Z < G, but in
figures 4–6 we have Z ≥ G.

Figures 4 and 5 show the transition of the bottom row of figure 3 in finer detail: increasingly limited brood space under male
pregnancy gradually causes the sex-specific Bateman gradients to reach equality and finally reverse entirely. The difference
between figures 4 and 5 is that the former presents an initially monogamous population (as in figure 3), while figure 5 shows
the same effect in an initially polygamous population (m = 2) with the consequence that gamete donors face egg competition
from other individuals. While egg competition slightly decreases the difference between sex-specific Bateman gradients (in
line with earlier theory [4,26]) particularly in the bottom row, it does not change the qualitative conclusions. The simulation
results of figure 6 show that these qualitative results are not altered by first female precedence either. Although not as visually
clear from the figure as it is with the analytical model, the ‘Fisher condition’ is also fulfilled in the simulation results. In this
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case, the consistency arises directly from the simulation structure, where in each mating event, the same fertilized eggs add
simultaneously to the reproductive success of one individual of each sex.
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Figure 3. How the gametic system and brooding system influence Bateman gradients. The top left corner illustrates the conventional scenario with female pregnancy.
Even when the female’s sperm capacity is hypothetically decreased to unrealistically low numbers (moving to the right along the top row), the conventional Bateman
gradient pattern remains. The middle row isolates the effect of brood space limitation by considering the hypothetical combination of isogamy with one mating type
being gamete recipient and the other gamete donor: brood space limitation here causes steeper Bateman gradients in the gamete donor. The bottom row considers
male pregnancy (and related systems) such that the female acts as gamete donor, and the male brood space varies. While anisogamy maintains conventional Bateman
gradients in the bottom left panel, these become entirely reversed as brood space decreases moving to the right along the bottom row. The population is initially
monogamous (in all panels, m = 1). Fertilization is efficient such that almost all eggs received by a male are fertilized (parameter a = 1).
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The internal fertilization (with female as recipient) model of Lehtonen [4] of conventional Bateman gradients showed a
surprising theoretical result: Bateman gradients can hypothetically be reversed by very inefficient fertilization even when
females are gamete recipients and male donors, although this effect seems rather unlikely in nature. Importantly, the effect
is completely independent of the ‘male pregnancy’ type of reversal presented above. Therefore, one might think that the two
reversal effects could in principle cancel each other out. It turns out such a ‘reversal of reversal’ could hypothetically happen,
but under a very specific set of circumstances: fertilization must be very inefficient, and males must be able to receive a large
number of eggs relative to the number of embryos they can carry (figure 7).
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4. Discussion
Since Bateman’s work more than 75 years ago [1], Bateman gradients have become a central topic of study in sexual selection
research (e.g. [2,3]), and have also become surprisingly controversial (e.g. [27]). While Bateman gradients do not by themselves
directly tell us how sex-specific selection ultimately acts on traits in the two sexes (see e.g [2,5,28,29], for the theoretical and
causal role Bateman gradients play), they are nevertheless intimately linked to questions on sexual selection and the evolution
of sex-specific traits we tend to associate with females and males (so-called ‘sex roles’: e.g. [30]).

There is both an empirical and a logical side to these debates and to the importance of Bateman gradients. Bateman’s original
empirical methodology has been criticized (e.g. [27,31]), but similar experiments have later been conducted numerous times,
and the big picture of Bateman’s conclusions generally holds up (e.g. [3,32]). At the same time, we now know that this big
picture is more nuanced (e.g. Bateman gradients are quite commonly positive in females: [18]). But aside from the growing
empirical understanding, the consistency of the internal logic of theory is equally important, particularly given that theory in
sexual selection and sex role evolution has at times been criticized for missing or circular logic (e.g. [33,34]; see also [35] for
discussion). While a mathematical and logical basis for conventional Bateman has recently been shown [4], in a fully consistent
theory, it is equally important to demonstrate how deviations from the conventional pattern can arise. That is what we have
done here: we have shown, from first principles using a mathematical model, how one model with no pre-defined ‘males’
and ‘females’ gives rise to both conventional and reversed Bateman gradients depending only on the parameter combinations.
In the conventional scenario where females receive gametes from males and can accept a very large number of sperm, we
find conventional Bateman gradients (top left panel of figure 3). In the opposite scenario where males receive gametes from
females and can accept a very limited number of eggs, we find reversed Bateman gradients (bottom right panel of figure 3).
Thus, both conventional Bateman gradients and reversed Bateman gradients in commonly studied mating systems arise from
a single logical and mathematical structure that has no pre-assigned ‘male’ or ‘female’ built into it. Note that the reversed
Bateman gradients modelled here are very different from the hypothetical reversed Bateman gradients found in Lehtonen [4],
which require an unlikely combination of assumptions; a similar hypothetical effect reappears in figure 7, where in principle
the Bateman gradient reversal due to brood space limitation can be secondarily re-reversed—but again, only under an unlikely
combination of assumptions. The main results in figure 3–6, however, do not require any unrealistic assumptions.

Thus, anisogamy causes gamete numbers to be male-biased so that ova become a limited resource for males, typically
resulting in steeper male Bateman gradients (for theory, see top row of figure 3 in this study and [4]; for evidence, see [3]). On
the other hand, our present model shows that when males provide a limiting resource necessary for female reproduction (in
our model, brood space for eggs to develop), Bateman gradients can be entirely reversed. Rather than an opposite-sex resource
constraint operating on just males (limited female gametes through anisogamy), we now also have an opposite-sex resource
constraint acting on females (with the inclusion of limited male brood space). In figures 3–6 we see that under anisogamy
and when brood space is not limiting, typical Bateman gradients apply regardless of which sex is in the role of gamete donor
and recipient, with the male gradient steeper than the female gradient. Reversed Bateman gradients are generated beyond the
central panel in figures 4–6 (i.e. when male brood space becomes limiting). While this ‘dual constraint case’ can cause Bateman
gradient reversal, the anisogamy constraint generates wider parameter space for the typical, male-steeper Bateman gradients
(figure 3).

Why do our results depend on anisogamy? An earlier model of Bateman gradients under internal fertilization (model 3
in [4]) demonstrated how anisogamy leads to steeper Bateman gradients in males, showing the transition from equality of

M
u
ta

n
t 

re
p
ro

d
u
ct

iv
e 

su
cc

es
s

Fertilization is efficient (α = 1) Fertilization is inefficient (α = 0.000001)

10100

80 8

60

40

20

100

80

60

40

20

6

4

2

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

30

20

10

Mutant number of matings (m)ˆ

Z = 30
G = 30

Z = 30
G = 300

Figure 7. A theoretical ‘reversal of reversal’ effect. In a study by Lehtonen [4], Bateman gradients could be reversed under internal fertilization, if fertilization was very
inefficient. Under male pregnancy, extreme conditions (see text) can cause reversed Bateman gradients to reverse again so that they become conventional Bateman
gradients. Fertilization is efficient in the two panels on the left (parameter a = 1), and very inefficient in the two panels on the right (a = 0.000001). In all panels
males can carry at most 30 embryos (Z = 30). In the top row, males can also only carry 30 eggs (G = 30), while in the bottom row they can carry 300 eggs (G = 300,
whereas they can still only hold 30 embryos which are now considered to be significantly larger than eggs). m = 1, nx =100,000 and ny =100 in all panels. Blue lines
and crosses represent females, black lines and dots represent males.

7

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20242126

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 N

ov
em

be
r 

20
24

 



gradients under isogamy to the typically male-biased gradients under anisogamy. However, model 3 in [4] was ‘asymmetric’ in
the sense that the roles of the two sexes as donor and recipient were fixed, as were the equations used to model females and
males: the model was silent on male pregnancy and related reproductive systems. Here, we have a single model where either
sex can play either role, and it is the parameter values that retrospectively determine the sexes. When females play the role of
gamete recipient and can accommodate a large number of sperm, the model coincides with that of Lehtonen [4]. In contrast,
when females play the role of donor and males can receive a limited number of eggs, the model corresponds to reproduction
via male pregnancy and related systems with brood limitation on the male side. Note that while reversed Bateman gradients
occur and are of great interest, they are relatively rare in metazoans. We stress that while we see anisogamy as having a central
role in determining an ancestral flow towards male–male competition in sex role evolution [36], its effect appears to saturate
rapidly with little or no further correlation to the magnitude of anisogamy (for theoretical reasoning why this is the case, see
Janicke et al. [3], who found a binary correlation; Mokos et al. [37], who did not find a sustained correlation beyond that; and
Lehtonen & Parker [38] ). Ecological, sociobiological and other factors both shape the degree of anisogamy and will modify
Bateman gradients and can (in certain rather rare cases) secondarily reverse the typical male-steeper Bateman gradient pattern.

This is, to our knowledge, the first mathematical model of Bateman gradients under brooding constraints. It has direct
application to species in which male brood space is limited and there is no sperm competition between males (some examples
are provided in electronic supplementary material, table S1, indicating which aspects of their biology fit the current model
and which do not). In this article, our aim has been to understand some of the systems where reversed Bateman gradients are
commonly studied—male pregnancy and some cases of male nesting (termed ‘external male pregnancy’, by [17], defined as
males who tend to eggs from one or more females, with little sperm competition). With our approach, we deliberately kept
the number of parameters and complexity of the model minimal, showing areas of parameter space where reversed Bateman
gradients are theoretically expected and which broadly match with empirical observations in syngnathid fishes (e.g. [39]). It
is important to note that we do not suggest that this is the only way reversed Bateman gradients can arise; in the future,
we suggest that further models could be constructed for other systems. For example, a few birds (e.g. wattled jacanas, Jacana
jacana) show sex role reversal and males brood their offspring [40], with possibly analogous results. Such a model would
need to account for females initially receiving gametes from multiple males who potentially face sperm competition, and then
subsequently donating fertilized eggs to brooding males.

Our work also has implications for the ongoing discussion on the definitions of sexual selection. In his pioneering survey,
Darwin [41] defined sexual selection solely in terms of competition for mates. His definition was extended to include competi-
tion for access to gametes, which allows inclusion of post-ejaculatory traits [42]. Though it usefully broadened the scope of
sexual selection, Janicke [43] has recently pointed to certain flaws in this wider definition, proposing that a better and more
general definition should be based on competition for resources provided by the other sex (note that ‘provided by the opposite
sex’ is important, since it can be argued that natural selection covers competition for resources in general). Our analysis shows
that a limiting resource for females, such as brood space provided by males, can generate higher Bateman gradients in females
than males. Thus while anisogamy results in female gametes becoming the limiting resource that commonly generates higher
Bateman gradients in males, Janicke’s wider definition seems more appropriate, covering cases of ‘sex role reversal’, where
females do not compete for male gametes, but some other limited resource provided by males, such as brood space.
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