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RESEARCH ART ICLE

Changes in satellite-derived spectral variables and their
linkages with vegetation changes
after peatland restoration
Aleksi Räsänen1,2,3 , Aapo Jantunen4, Aleksi Isoaho1,5, Lauri Ikkala5,6, Parvez Rana1,
Hannu Marttila5, Merja Elo4,7,8

Remote sensing (RS) can be an efficient monitoring method to assess the ecological impacts of restoration. Yet, it has been used
relatively little to monitor post-restoration changes in boreal forestry-drained peatlands, and particularly the linkages between
changes in RS and plant species remain vague. To understand this gap, we utilize data from the Finnish peatland restoration
monitoring network spanning 150 sites and a 10-year post-restoration monitoring period. We employ Bayesian joint species
distribution models (Hierarchical Modeling of Species Communities) to study (1) the changes in optical Sentinel-2 and Landsat
satellite spectral signatures, (2) whether the RS variables improve predictions of vascular plant andmoss species and functional
type occurrence and cover, and (3) what kinds of associations exist between RS variables and plant species or functional types.
Our results show that peatland restoration increases the reflectance of red and near-infrared (NIR) bands in sparsely treed pine
mire forests and open mires but not in densely treed spruce mire forests. Impacts on other tested RS variables consisting of
moisture and greenness indices are less clear. Additionally, RS variables increase species- or functional type-specific predictive
power only modestly, and there are few clear links between the changes in RS variables and species or functional-type occur-
rence and cover. We suggest that red and NIR reflectance can be used as satellite-based indicators for peatland restoration suc-
cess and further studies are required to develop usable methods for detecting species-specific changes with RS.

Key words: bryophytes, joint species distribution models, plant functional types, remote sensing, satellite imagery, vascular
plants

Implications for Practice

• Satellite remote sensing is suitable for monitoring post-
restoration changes in ground vegetation, land cover,
and wetness in peatlands with few or no trees, as trees
hamper visibility to the ground.

• High spatial and temporal resolution remote sensing com-
plements field work, and it can be used to scale field-
based knowledge to larger area extents or to other sites.

• It should be further tested whether changes in reflectance
can be used in operational peatland restoration monitor-
ing and to which kind of changes the reflectance changes
are attributable.

• There is a need for cross-fertilization of researchers’ and
practitioners’ knowledge to develop restoration outcome
indicators that are ecologically meaningful, operationally
implementable, and detectable with remote sensing.

Introduction

Many of the peatlands in northern latitudes have been drained to
facilitate forest growth and timber production for the forestry
industry (Vasander et al. 2003). However, this drainage has
caused widespread and harmful environmental impacts,

including loss of peatland species and habitats, greenhouse gas
emissions, and deterioration of water quality in recipient water
bodies (Chapman et al. 2003; Ur�ak et al. 2017; Nieminen
et al. 2018).

To reverse peatland degradation, ecological restoration has
been conducted during the past few decades (Andersen
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et al. 2017). In the future, peatland restoration activities are fur-
ther projected to increase globally. In the European Union (EU)
alone, the restoration law targets to restore 90% of the degraded
area of the ecosystems, including peatlands before 2050
(Regulation [EU] 2024/1991).

In forestry-drained peatland sites, restoration includes filling
or damming of ditches and removal of trees that have grown
after the drainage (Haapalehto et al. 2011). The visible changes
after restoration include, e.g. (1) decrease in tree cover,
(2) replacement of ditches with flow-blocking structures,
(3) increase in wetness and local water table level, and
(4) changes in ground vegetation composition (Haapalehto
et al. 2011). Of these changes, the first three occur almost imme-
diately after restoration, while the changes in ground vegetation
are slower (Haapalehto et al. 2011, 2017; Menberu et al. 2016).
The most recent studies have indicated that during the first
10 years after restoration, there are changes in the vegetation:
particularly the more common species of pristine mires start to
colonize the restored sites, but vegetation in the restored sites
does not resemble that of pristine counterparts (Elo et al. 2024).

Typical ecological targets of restoration are related to the
return of original peatland community structure and functioning.
The success can be measured, e.g. through inventories of differ-
ent taxa, such as plants (e.g. Haapalehto et al. 2011, 2017).
Overall, monitoring restoration success is important for validat-
ing restoration methods and outcomes but also for improving
our understanding of peatland ecosystem changes and pro-
cesses. Nevertheless, traditional field-based monitoring
methods require a considerable amount of labor and other
resources, and they are restricted to a limited number of points
that are not necessarily representative of the whole peatland in
question. Therefore, cost-effective and spatially extensive mon-
itoring methods are required, particularly because of the increas-
ing amount of restoration activities.

A potential solution for detecting changes over large areas
cost-effectively is the utilization of satellite remote sensing
(RS), as it can provide high spatial and temporal resolution
observations of global land cover. The studies so far have indi-
cated that particularly optical satellite data are usable for track-
ing changes in peatland wetness (Räsänen et al. 2022; Burdun
et al. 2023; Isoaho et al. 2024) and land cover and vegetation
such as habitat types and plant community structure (Kolari
et al. 2022; Ball et al. 2023). The key strength of optical satellite
imagery is its temporal availability: seamless and cross-
comparable high-resolution data has been available since the
1980s (Wulder et al. 2022; Radeloff et al. 2024).

In peatlands, post-restoration RS assessments have mainly
focused on tracking changes inwetness (Räsänen et al. 2022; Bur-
dun et al. 2023; Isoaho et al. 2024), while changes in spectral sig-
natures and vegetation have gained less attention. The few studies
include the work by Ball et al. (2023) analyzing whether the spec-
tral signatures of restored sites start to resemble those of pristine
peatland areas assessing the possibility of using RS for detecting
changes in ground vegetation floristic gradients related to wetness
and productivity.

The lack of focus on vegetation changes has been evident
overall in RS studies in peatlands, not just those related to

restoration. This is surprising given that changes in vegetation
composition and abundances of individual species are consid-
ered key indicators of peatland restoration success (Haapalehto
et al. 2011; Elo et al. 2024; Kyrkjeeide et al. 2024). Even though
broad-scale patterns in habitat type changes have been moni-
tored (Kolari et al. 2022; Steenvoorden et al. 2022), more
detailed analyses of temporal vegetation changes have not been
conducted.

Despite the lack of assessments about temporal changes in veg-
etation, there have been multiple studies mapping the spatial pat-
terns of vegetation at a specific time point. Examples of
monitored vegetation characteristics include plant communities
and floristic gradients (Harris et al. 2015; Räsänen et al. 2020b),
plant functional types (PFTs), such as shrubs, forbs, graminoids,
and mosses (Räsänen et al. 2020b; Pang et al. 2024), functional
traits, such as leaf-area index and plant nutrient content
(Kalacska et al. 2015; Räsänen et al. 2020a), and the occurrence
and cover of single species (Kalacska et al. 2013; Pang
et al. 2024; Simpson et al. 2024). It can be hypothesized that the
temporal changes after restoration in these characteristics can be
monitored if there are systematically collected long-termmonitor-
ing data and if the scale of the changes is detectable. Furthermore,
for revealing the post-restoration vegetation succession, the RS
approaches should simultaneously account for several changes
in land cover, including in tree cover and wetness.

We utilize globally unique 10-year before-after control-
impact (c.f. Christie et al. 2020) Finnish peatland restoration
monitoring initiative data spanning 150 sites that belong to six
different peatland types (Elo et al. 2024). We use Bayesian joint
species distribution models (Ovaskainen et al. 2017; Ovaskai-
nen & Abrego 2020) that can be used to assess plant community
change and the associations between different plant species,
PFTs, and RS variables. Our objective is to study how the
post-restoration land cover changes in peatlands are linked with
spectral signature changes and what kinds of associations there
are between spectral and vegetation changes in different peat-
land types and treatments (pristine, drained, and restored). Our
broader objective is to contribute to the work developing RS-
based ecological restoration success indicators (c.f. Skidmore
et al. 2021) that can be used for automatic restoration success
analysis.

Our specific research questions are as follows:

(1) What is the effect of peatland restoration on spectral signa-
tures in different peatland types?

(2) Do satellite imagery variables improve predictions of plant
species and PFT occurrences and covers in restored,
drained, and pristine sites?

(3) What kinds of associations exist between RS variables and
plant species and PFT occurrence/cover?

Methods

Study Sites and Field Data

We used data from 150 sites belonging to the Finnish Metsähal-
litus Parks & Wildlife peatland restoration monitoring network
(Fig. 1; description in Elo et al. 2024). The sites in the network
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are located throughout Finland (60–68�N, 21–31�E; Fig. 1; Elo
et al. 2024) across elevation and climatic gradients (Fig. S1).
They are divided into six different peatland types based on their
vegetation: rich and poor spruce mire forests, rich and poor pine
mire forests, and rich and poor open mires. For each type, there
are data for 10 restored sites and 10 nearby located pristine coun-
terparts, with the exceptions being 9 + 9 sites for poor open
mires and 11 + 11 sites for rich open mires. Additionally, there
are 30 drained control sites (4–6 sites per type). The restored
sites have been drained for forestry between the 1960s and
1970s and subsequently restored between 2007 and 2014, while
pristine sites have not been drained, and drained sites have been
drained approximately concurrently with the restored sites but
have not been restored.

Spruce mire forests are densely treed by Picea abies in oligo-
trophic poor sites, while in meso-eutrophic rich sites, there are
also some deciduous trees (esp. Betula pubescens). The ground
vegetation consists of forbs, graminoids, and Sphagnum and
feather mosses. Pine mire forests are sparsely treed by low-
growth Pinus sylvestris, accompanied by B. pubescens in rich
sites. Pine mire forests are in general more nutrient-poor than
spruce mire forests, with poor sites being ombrotrophic and rich
sites oligo-mesotrophic. Ground vegetation consists typically of

various evergreen and deciduous shrubs (e.g. Rhododendron
tomentosum and Vaccinium uliginosum) and Sphagnummosses.
Open mires are mostly treeless sites, with the few trees being
P. sylvestris in the ombrotrophic poor sites and deciduous trees
(e.g. B. pubescens) in oligo-mesotrophic rich sites. The ground
vegetation in poor sites consists of Sphagnum mosses and
shrubs, while in the rich sites, the cover of sedges, forbs,
and wet brown mosses increases.

Restoration aims to raise the water table and to return the can-
opy structure as similar as possible to the pre-drained state or an
undrained reference site. Typical restoration measures in each
type consist of filling in and damming the ditches as well as fell-
ing of trees at various extents, depending on the peatland type. In
spruce mire forests, a relatively dense tree cover has usually
been left after restoration, while in pine mire forests, only some
trees have been left, and in open mires, practically all trees have
been cut.

In each site, vegetation has been monitored in 10 one-square-
meter squared plots. These plots are arranged in two parallel
lines, with each line containing five plots spaced four meters
apart from each other (see Fig. 1). The lines are located to repre-
sent typical vegetation of each site, and the minimum distance to
the nearest ditch is 10 m. The exact location of the first plot has

Figure 1. Finnish peatland monitoring network, with locations of the monitoring sites (A), number of monitoring sites for each peatland type and productivity
(B), and sampling of vegetation inventory at each site (C).
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been randomized within the criteria defined above. The vegeta-
tion sampling has been conducted before restoration (year 0) and
2, 5, and 10 years after restoration. In pristine and drained sites,
a similar inventory interval has been utilized. During each
inventory, the %-cover of each vascular plant and moss species
(Table S1) has been visually estimated. For each site, we have
calculated a site-level community by averaging the cover over
plots for each site. While the differences between sites are larger
in spruce mire forests than in pine mire forests and open mires
(Elo et al. 2016), within-site variability is approximately equal
between the peatland types (Fig. S1).

For PFT-level analyses, we divided the plant species into the
following PFTs that have been widely used in peatland research
before (e.g. Räsänen et al. 2020a, 2020b): deciduous shrubs,
evergreen shrubs, forbs, graminoids, Equisetum, Pteridophy-
tina, Sphagnum, and other mosses (Table S1). We further
divided the shrub, forb, and graminoid PFTs by their primary
habitat requirements into mire and other groups, while Sphag-
num and other mosses were divided into hummock, lawn, and
hollow species (Eurola et al. 1995; Finnish Biodiversity Info
Facility 2024). This was done because the habitat requirements
and potential restoration impact are not uniform within a PFT,
but species within a single PFT can react differently to
restoration.

Remote Sensing Data

We used five different optical RS variables: red reflectance,
near-infrared (NIR) reflectance, shortwave infrared transformed
reflectance (STR; Sadeghi et al. 2015), soil-adjusted vegetation
index (SAVI; Huete 1988), and normalized difference moisture
index (NDMI; Gao 1996). We selected variables that do not
strongly correlate with each other and that have been shown to
be useful in peatland studies related to land cover, vegetation,
and wetness.

Of the visible and NIR wavelength bands, we chose red and
NIR due to their capability to track changes in peatland vegeta-
tion, habitats (Kolari et al. 2022), and wetness (Isoaho
et al. 2023, 2024). STR is a transformation of shortwave infrared
(SWIR) reflectance, and it has been shown to function well in
wetness prediction (Isoaho et al. 2024; Jussila et al. 2024). Of
different vegetation greenness indices, we included SAVI due
to its relatively good performance in predicting changes in pro-
ductivity gradient in open and sparsely treed peatlands. We
complemented the list with NIR-SWIR index NDMI that has
correlated with peatland soil moisture, water table, and wet area
(Meingast et al. 2014; Ludwig et al. 2019). Overall, a versatile
set of variables has been recommended due to site-specific dif-
ferences in the most important variables (Räsänen et al. 2022).

We calculated the variables from the bottom-of-atmosphere
reflectance products of 10–20 m spatial resolution European
Space Agency Copernicus Sentinel-2 and 30 m spatial resolu-
tion National Aeronautics and Space Administration/United
States Geological Survey Landsat 5-9 datasets that we harmo-
nized to Landsat 8-9 reflectance (Roy et al. 2016; Zhang
et al. 2018). For each variable, we calculated early summer
(ES; May 1–June 15) and midsummer (MS; July 1–August 15)

annual median imagery, from which we calculated median
imagery for each monitoring period (1–5 years before restora-
tion; 1–3 years after restoration, 4–6 years after restoration,
and 9–11 years after restoration) for both seasons. We used
two seasons as multitemporal analysis has been shown to boost
model performance in various studies (Räsänen et al. 2020b;
Pang et al. 2022;Wu et al. 2023) and as these seasons have strik-
ingly different hydrological and phenological conditions
(Sallinen et al. 2023; Isoaho et al. 2024. We calculated median
imagery to filter out noise present in single images and to con-
struct representative datasets for the selected phenological
stages. During the ES season, the snow has melt, vegetation
starts to emerge, and the water table is at its highest. During
the MS season, vegetation peaks and the water table is typically
at its lowest. We did not include imagery during late summer or
autumn due to persistent cloud coverage during that season. We
utilized only images with a maximum of 30% cloud cover and
masked out remaining clouds, haze, snow, and shadow with
Scene Landcover Classification (Sentinel-2) and Quality
Assessment pixel classification (Landsat).

For each variable, we calculated mean values for a 15-m-
radius buffer area that contained all vegetation plots in the sites.
For dates with multiple Sentinel-2 or Landsat satellite image
observations, we calculated the mean values over the observa-
tions. We conducted all satellite image processing in Google
Earth Engine (Gorelick et al. 2017).

Statistical Analysis

We applied a type of Bayesian joint species distribution model-
ing: Hierarchical Modeling of Species Communities (HMSC;
Ovaskainen & Abrego 2020; Ovaskainen et al. 2017). We con-
ducted two different sets of HMSC analyses: (1) plant species-
level and (2) PFT-level analyses. In both analyses, RS variables
were included. In Section 3, we mostly report species-level anal-
ysis results but complement the information with PFT analysis
results.

HMSCs can be used to examine the species-to-species associ-
ations (here also RS variable-species and RS variable-PFT asso-
ciations) when controlling for other covariates, as well as
changes in plant communities in different management types.
For each peatland type separately, we modeled the occupancy
(presence/absence) of the species or PFT having greater than
20 occupancies by a probit model, and conditionally on the
occurrence, we modeled the cover (log-transformed, normalized
to zero mean and unit variance within each species) of the same
species or PFT with a normal model. We included RS variables
(normalized to zero mean and unit variance) as response vari-
ables in the same model to infer their associations with species.
As random effects, we included site, modeled as a spatially
explicit random effect and sampling year. As explanatory vari-
ables, we included treatment (a factor with three levels:
restored/drained/pristine), time (a continuous variable; 0, 2,
5, and 10 since restoration or corresponding period), and its
second-order polynomial to allow for unimodal responses, as
well as the interaction of treatment and time squared.

Restoration Ecology4 of 15
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We ran the models using R package Hmsc 3.0 (Tikhonov
et al. 2020). The package uses the Bayesian framework with
Gibbs Markov chain Monte Carlo (MCMC) sampling. We
assumed the default prior distributions, with the exception of
a1 and a2 parameters for the random effect site, which were
set both to 100 to increase the shrinkage and thus avoid model-
ing noise. We sampled the posterior distribution with four
chains, each for 250 samples with thinning of 10,000, using a
transient phase of 500,000 and adaptation (the number of
MCMC steps at which the adaptation of the number of latent
factors is conducted) of 400,000.We evaluated the chain mixing
by assessing the effective size of the posterior sample with a
potential scale reduction factor (Fig. S2) and assessed the
explanatory power by Tjur’s r2 (occupancy) and r2 (cover)
(Fig. S3).

Based on the fitted models, we predicted the values of each
RS variable in time for different treatments. From these predic-
tions, we calculated the following three measures informing
about different aspects of the effects of restoration on the RS
variables.

First, we calculated whether restoration affected RS vari-
able as

Resp¼ vR10�vR0
� �� vD10� vD0

� �

where vR10 and vR0 are values of RS variables in restored sites in
the years 10 and 0, respectively, and vD10 and v

D
0 represent corre-

sponding values in drained sites. Resp takes positive values if
the change is positive in relation to change in drained sites and
negative values if the change is negative in relation to change
in drained sites.

Second, values for RS in drained and in restored sites may dif-
fer as they were not randomly selected. To assess the reliability
of inferences of how RS variables respond to restoration, we cal-
culated whether they differed at the beginning of the experiment
between the drained and restored sites:

Diff1¼ vR0 � vD0

Third, we calculated whether the difference between restored
and pristine control sites grew smaller (or larger) during the
study period:

Diff2¼ abs vR10� vP10
� �� abs vR0 �vP0

� �

For all three measures, we calculated the median as well as the
posterior probability for the median being larger than zero. We
considered the measure to have high support for the median
being positive/negative if the posterior probability is greater
than 95% and moderate support if the posterior probability is
greater than 80%. We calculated the same measures for abun-
dance of each species, or PFT (probability of
occurrence � cover given occurrence). As the species-specific
responses to restoration merely reinforce the previous findings
(Elo et al. 2024), we present them only in Fig. S4 together with
the PFT-level information.

To answer whether RS variables improve predictive power of
the species- or PFT-specific models, we first calculated twofold
cross-validation. Then, we performed conditional cross-
validation, where we used data from each RS variable, one at a
time, and it’s estimated associations with the species or PFTs
to calculate the predictions. Finally, we compared whether
including information on the RS variable yielded an improve-
ment in predictive power by subtracting the cross-validated pre-
dictive power from the conditionally cross-validated predictive
power (CCV). We did the cross-validations with parameter
values based on thin = 10 due to the high computational
demand of the calculations and because predictive powers tend
to converge with a relatively low number of thinning. Further-
more, variance partitioning of the explanatory variables
remained similar when thinning of 10 or 10,000 was used.
Finally, we calculated association matrices, which represent
the residual associations of RS variables and species, or PFTs,
after controlling for the treatment, time, and their interaction.

Results

Effect of Restoration on Spectral Signatures

Almost all RS variables were affected by restoration (Fig. 2).
Especially, both ES and MS red and NIR reflectance increased
after restoration in most peatland types. Moreover, SAVI MS
increased, whereas for SAVI ES, the response had low statistical
support (posterior probability <95%). STR and NDMI
decreased or showed no highly supported response to restora-
tion, with STR showing highly supported response in more peat-
land types than NDMI. The only peatland type where no high
support was seen in any of the RS variables was rich spruce mire
forests, whereas the clearest effects were seen in pine mire for-
ests and open mires. In pine mire forests and open mires, the
red and NIR reflectance of restored sites had similar values than
drained sites before restoration and approached those of pristine
sites after restoration (Figs. 3 & 4). For other variables and peat-
land types, the temporal trends in restored, pristine, and drained
sites were less clear, and the spectral signatures in restored sites
did not clearly move closer to the signatures in pristine
sites (Figs. 3–5).

Improvement in Predictive Power From RS Variables

For most species or PFTs, at least one of the RS
variables improved the predictive power and resulted in a pre-
dictive power higher than 0 (Figs. 6 & S5). There were differ-
ences between species and peatland types, which RS variables
improved the predictive power, and none of the variables was
clearly better than the others (Fig. 7). The resulting predictive
powers were generally relatively modest both for species and
PFTs. The mean was typically circa 0.1–0.2, but for some spe-
cies, CCV was very high (up to 0.65; Table S2). The same
applied to the improvement in predictive power when including
the best RS variable: typically, the improvement was small
(<0.1), but for some species, it was very high (up to 0.52;
Table S2).
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Associations Between Species or PFTs and Remote Sensing
Variables

When concentrating on those RS-species or RS-PFT linkages in
which (1) restoration had an effect on both the RS variable and
species or PFT and (2) incorporating RS variable increased pre-
dictive power (Figs. 8 & S6), the improvement in predictive
power was typically small (<0.05 in improvement in cross-
validated predictive power [CCV-CV]). The exceptions were
mainly the negative associations of graminoids with NDMI
and red reflectance (Carex chordorrhiza in poor pine mire for-
ests and rich open mires, and also C. lasiocarpa cover in rich
open mires; Fig. 8) and graminoid PFTs in rich open mires
(Fig. S6). Additionally, a somewhat clear improvement (>0.05
in CCV-CV) was seen for Vaccinium uliginosum cover associ-
ated negatively with NDMI ES in rich pine mire forests. There
were also other associations, both negative and positive, but in
these cases, RS variables increased the predictive power little
(<0.05 in CCV-CV).

Discussion

Our results show that (1) peatland restoration affects satellite-
derived spectral signatures, (2) satellite image variables
increase modestly species- or PFT-specific predictive power
in joint species distribution models, and (3) there are few
clear links between the changes in RS variables and the
changes in post-restoration species or PFT occurrence and
cover.

Restoration Effects on Spectral Signatures

Over time, the spectral signatures of restored sites moved closer
to those of pristine sites. As pristine-like ecosystem structure
and functioning is the goal for restoration, the result suggests
that restoration can be successfully monitored with RS data.
The trend toward pristine was particularly evident in red and
NIR reflectance for sparsely treed pine mire forests and open
mires, whereas for other tested variables and especially for
densely treed spruce mire forests, the trends were not as clear.
These findings align with Ball et al. (2023), who observed the
convergence between restored and pristine sites with optical
Sentinel-2 and synthetic aperture radar Sentinel-1 data. In their
analysis, the similarity increased relatively strongly during the
first 10–15 years after which the signatures between restored
and pristine sites were close to each other. We could not verify
this finding due to our 10-year post-restoration monitoring
period but instead showed that during the first 10 years, the har-
monization in variable values between restored and pristine sites
was evident only for certain variables and peatland types. Ball
et al. (2023) did not analyze the trends in different bands and
indices but focused on overall spectral similarity using Mahala-
nobis distance and limited analysis to 1-year sampling of peat-
lands restored during different years. Therefore, our analysis
complements the work by Ball et al. (2023) by showing (1) that
there are differences between peatland types and RS variables
and (2) what kind of trend is seen after restoration.

Our results indicate that reflectance of the red, NIR, and
SWIR (STR is transformed SWIR reflectance and negatively
correlated with it) increases after restoration, particularly in pine

Figure 2. The response to restoration of remote sensing variables in different peatland types. Note that the values are based on the original values of each remote
sensing variable; therefore, the range for shortwave infrared transformed reflectance (STR) is much larger than for non-transformed bands (STR is circa 50 and
1 for shortwave infrared reflectance of 1 and 26%, respectively). In the figure, NDMI refers to normalized difference moisture index, SAVI to soil-adjusted
vegetation index, ES to early summer, andMS to midsummer. The statistical support is “Positive 95%” if the posterior probability of the median being larger than
zero is greater than 95%; “Negative 95%” if the posterior probability of the median being smaller than zero is greater than 95%; and “Weak” if the posterior
probability of the median being larger/smaller than zero is less than 95%.
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mire forests and open mires. This is probably largely attributed
to the felling of trees and increased openness in the landscape
in these peatland types, as especially red reflectance and RS-

measured albedo is negatively associated with woody canopy
cover (Yang & Prince 1997; Kuusinen et al. 2016). Felling of
trees is conducted during restoration to make room for

Figure 3. Changes in remote sensing variables over time in drained, pristine, and restored open mires. The plots are drawn only for those changes in remote
sensing variables that responded either positively or negatively to restoration with a high support (a posterior probability of the median being larger/smaller than
zero greater than 95%; Fig. 2). In the figure, NDMI refers to normalized difference moisture index, SAVI to soil-adjusted vegetation index, STR to shortwave
infrared transformed reflectance, ES to early summer, and MS to midsummer.
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excavators along the ditches, bring back pristine-like canopy
structure, and decrease evapotranspiration by trees. Although
the effects of restoration occur short-term and are evident in

2 years after restoration data, our modeling approach, where
time is used as a continuous variable, tends to extend this effect.
However, the felling of trees during the time of restoration does

Figure 4. Changes in remote sensing variables over time in drained, pristine, and restored pine mire forests. The plots are drawn only for those changes in remote
sensing variables that responded either positively or negatively to restoration with a high support (a posterior probability of the median being larger/smaller than
zero greater than 95%; Fig. 2). In the figure, NDMI refers to normalized difference moisture index, SAVI to soil-adjusted vegetation index, STR to shortwave
infrared transformed reflectance, ES to early summer, and MS to midsummer.
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not probably fully explain the changes. Another possible reason
is increased wetness, a key target of restoration, which, how-
ever, should decrease reflectance, as wetter peatland surfaces
have lower reflectance than drier ones (Tahvanainen 2011;
Kolari et al. 2022), and STR is lower during drier years in wet
aapa mires (Jussila et al. 2024). Therefore, the changes are
related probably also to other changes in land cover, such as fill-
ing of wet ditches and their gradual vegetation, and changes in
ground vegetation composition, such as changes in floristic gra-
dients, that are targeted for in restoration.

For the included indices utilizing two bands (SAVI and
NDMI), the results were not as clear as for the indices based
on the individual bands (Red, NIR, and STR). SAVI MS was
weakly but positively affected by restoration in pine mire for-
ests and open mires. In principle, greenness indices such as
SAVI should correlate positively with vegetation biomass
(Berner & Goetz 2022); therefore, the pre-restoration state with
denser tree cover should have higher SAVI than the post-
restoration state. However, there have been contradicting
results on whether greenness indices correlate with vegetation
biomass in open peatlands (McPartland et al. 2019; Räsänen
et al. 2021). In addition, in our case, SAVI MS had a clearer

relationship with restoration instead of SAVI ES that was
observed to be important for predicting changes in floristic gra-
dients. One possible reason for the positive SAVI-restoration
relationship might also be the undesired outburst of Betula
pubescens seedlings after restoration in some of the poorer
sites (Haapalehto 2013), since strong growth in deciduous veg-
etation increases satellite-derived summertime greenness
(Fiore et al. 2020). However, this cannot fully explain the
SAVI changes, as seedling outburst does not happen in every
restoration site.

NDMI, instead, should be positively correlated with soil
moisture, an increase of which is targeted in restoration. In
peatlands, a positive relationship has been found when utiliz-
ing SWIR reflectance of circa 1200 nm for index calculation
(Meingast et al. 2014), but not when NDMI based on the
SWIR band of circa 1800 nm, measured by Sentinel-2 and
Landsat, has been utilized in water table modeling (Räsänen
et al. 2022; Isoaho et al. 2024). In our results, the NDMI-res-
toration linkage was mostly negative but, in some cases, pos-
itive with low support. As the relationship between NDMI
and restoration was unclear, no robust conclusion can be
derived.

Figure 5. Changes in remote sensing variables over time in drained, pristine, and restored spruce mire forests. The plots are drawn only for those changes in
remote sensing variables that responded either positively or negatively to restoration with a high support (a posterior probability of the median being larger/
smaller than zero greater than 95%; Fig. 2). In the figure, STR refers to shortwave infrared transformed reflectance, ES to early summer, and MS to midsummer.
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Remote Sensing of Single Species and Plant Functional Types

While RS variables moderately improved the predictive power
of single species or PFT occurrence and cover, they were weakly
linked to changes in species or PFT composition following res-
toration. This suggests that the changes in RS variables after res-
toration are related to general characteristics of land cover and
plant communities rather than specific responses of individual
species or PFTs.

We have examined the vegetation changes through Bayesian
joint species distribution models, HMSC. Earlier, RS variables
were used only a little in HMSC (e.g. Palmroos et al. 2023)
while abundantly used in traditional species distribution models.
While the interpretation of RS-species or RS-PFT associations
in HMSC might be less intuitive than direct RS of species or
PFTs, HMSC enables the analysis of residual correlations
between RS variables and plants when the fixed effects
(i.e. treatment, time, and their interactions) are accounted for.
Therefore, HMSC should increase the possibilities for finding
the linkages in cases of heterogeneous vegetation that is present
in peatlands, but we have found only weak species-RS variable
or PFT-RS variable linkages.

The problems of developing RS models for single species in
peatland landscapes have been highlighted before (Pang
et al. 2024). The difficulties are related to the spatially heteroge-
neous vegetation patterns, with different plant communities and
species growing in various horizontal layers and co-occurring at
similar spots. The problems are evident also due to the lack of
studies developing reliable models for single species. The rare

examples have mostly been very high-resolution studies for
either very abundant species or relatively simple landscapes
(Husson et al. 2014; Belcore et al. 2024; Simpson et al. 2024),
or for species with unique spectral signatures (Kalacska
et al. 2013).

Surprisingly, the RS variables had even fewer clear associa-
tions with PFTs than with species. This contradicts earlier stud-
ies that have indicated that PFTs are easier to detect with RS data
than species (Pang et al. 2024). One of the reasons behind this
surprising result might be the fact that there is no uniform
response to restoration within a PFT, even though we further
divided the PFTs based on species’ habitat requirements. To
be more precise, a single PFT can contain species that have pos-
itive, negative, and no responses to restoration. Therefore, the
presence or cover of a specific PFTmight not be an optimal indi-
cator for monitoring peatland restoration success. One future
research avenue could be to develop indicators of restoration-
sensitive PFTs or functional traits that can be observed with
RS data.

Furthermore, in future studies, change assessments of spe-
cies or PFTs in restored peatlands could be conducted with
repeated uncrewed aerial vehicle surveys targeting the most
abundant species indicative of restoration. Alternatively, the
focus could be on broader vegetation type or plant commu-
nity changes in sites that have experienced clearly observable
changes, such as a large increase of Sphagnum or sedge veg-
etation, or monitoring restoration in sites with clearer overall
changes, such as peat extraction areas or agricultural

Figure 6. The number of species (y-axis), grouped according to whether their conditionally cross-validated predictive power (CCV) is lower or higher than 0, and
whether in the latter case, CCV was larger than mere cross-validated predictive power, for at least one of the RS variables. The result is shown separately for
predicting species occurrence and cover, given occurrence, and for different peatland types.
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peatlands (e.g. Knoth et al. 2013). Our attempt was to gener-
ate generalizable models from a large sample of sites. It might
be that evident changes in some sites cannot be seen in the
data due to relatively large differences between and within
peatland sites (e.g. Elo et al. 2016; Räsänen et al. 2020b,
2022), since the vegetation can drastically differ between
peatland sites within one peatland type or even between veg-
etation plots at one site.

We had a spatial resolution mismatch: we linked satellite
observations from a circa 700 m2 circular area to 10 one-square
meter vegetation plots within that area. While the vegetation
plots constitute a reasonable sample within the circular area,
they do not fully describe all vegetation within the area. On
the one hand, it might be that there are also other land cover
and vegetation changes within the area that are not captured in
the sample. On the other hand, earlier studies have indicated that
RS variables calculated from larger neighborhoods of vegetation
sampling sites can provide better estimates than those from
smaller neighborhoods (Palmroos et al. 2023). However, further
studies should be conducted to test the impact of the scale of RS
and field monitoring on model performance (c.f. Marignani
et al. 2007).

Another possible reason for relatively weak results is the
10-year monitoring period, which is clearly not enough to allow
full recovery of slowly recovering ecosystems, such as boreal

peatlands (Elo et al. 2024). In 10 years, many species show
responses to restoration, but in general, the changes in individual
species abundance are rather small (Elo et al. 2024). Most nota-
ble exceptions are the rapid increase of several Sphagnum spe-
cies and the decrease of some forest mosses such as
Pleurozium schreberi and Hylocomium splendens, while the
restoration responses within PFTs are heterogeneous. Alto-
gether, to fully capture the species-specific responses to restora-
tion, especially for the rare species with restricted dispersal,
long-term monitoring is required. It might be that during the first
10 years, the changes in satellite imagery signatures are mostly
driven by other land cover changes (wetness, tree canopy, and
filling of ditches) rather than shifts in vegetation composition,
while the situation might be reversed during longer monitoring
periods. Long-term monitoring is required to test this assump-
tion. Nevertheless, earlier research has shown that changes in
spectral signatures in post-restoration peatlands during a
10-year monitoring period are connected to changes in floristic
gradients. This suggests that ground vegetation change partially
explains satellite-derived changes even within the first 10 years
after restoration.

Even though the RS species relationships were mostly weak,
there were some clearly observable changes. For instance,
Carex chordorrhiza showed a negative association with NDMI
in rich pine mire forests and open mires, as well as with red

Figure 7. The number of species for which the RS variable (denoted by color) yields the highest conditionally cross-validated predictive power. Only the species
with CCV greater than 0 and CCV greater than CV are shown. The result is shown separately for predicting species occurrence (presence/absence) and cover,
given occurrence, and for different peatland types.
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reflectance in rich open mires. Carex chordorrhiza is a typical
species for nutrient-rich wet flark areas, and it is positively asso-
ciated with restoration in rich pine mire forests and open mires.
Red reflectance has been found to be lower in wet flarks com-
pared to drier peatland surfaces (Kolari et al. 2022), and it is pos-
itively associated with restoration in our data. Therefore, the

negative red-C. chordorrhiza association might be related to
the fact that red reflectance is not increased as much or even
decreased after restoration in those sites that have wet flarks with
abundant C. chordorrhiza cover. However, in sparsely treed
pine mire forests, the C. chordorrhiza-red association was posi-
tive, but the predictive power was not largely improved by red

Figure 8. The combinations of the species and the remote sensing variables (ES, early summer; MS, midsummer; NDMI, normalized difference moisture index;
SAVI, soil-adjusted vegetation index; STR, shortwave infrared transformed reflectance) that both responded to restoration in the given peatland type (OP, open
mire poor; OR, open mire rich; PP, pine mire forest poor; PR, pine mire forest rich; SP, spruce mire forest poor) and for which including information on RS
variable in conditional cross-validation yielded a better (and positive) predictive power in comparison to cross-validation only. The value shows the conditionally
cross-validated predictive power (o = occurrence model, c = cover), and the values for which the improvement is larger than 0.05 are shown in bold. The color
shows the sign of the association (negative, positive) and the level of statistical support (“Positive 95%”/“Negative 95%” if the posterior probability of the median
being larger/smaller than zero is greater than 95%; “Positive 80%”/“Negative 80%” if the posterior probability of the median being larger/smaller than zero is
greater than 80 but ≤95%; and “Weak” if the posterior probability of the median being larger/smaller than zero is ≤80%. Note that for spruce mire forest rich and
SAVI ES, there was no response to restoration. Species’ full names are given in Table S1.
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reflectance, complicating the interpretation. NDMI, instead, had
a negative relationship with restoration in these peatland types,
pointing out that this relationship was less negative or even pos-
itive in the sites with C. chordorhhiza. Even though NDMI has
had mixed evidence in tracking peatland wetness (Meingast
et al. 2014; Räsänen et al. 2022; Isoaho et al. 2024), it can be
useful for tracking changes in some species or environmental
changes, suggesting that multiple RS variables should be tested
in future studies.

Finally, our results indicate that increases in red and NIR
reflectance can be used as RS-based indicators for monitoring
peatland restoration success in open and sparsely treed peat-
lands. Their increases are attributed to increased openness of
landscape (reflection of peatland surface instead of canopy and
shadow), filling of ditches (more peat surfaces in the short term),
increased wetness, and changes in ground layer vegetation (suc-
cession toward hydrophilic vegetation in the longer term).
Future studies should test if the red-NIR reflectance changes
can be used as universal indicators of restoration success and
further test how the reflectance reacts to different types of
post-restoration changes in land cover, wetness, and vegetation
across climatic, topographic, and other environmental gradients.
Furthermore, due to the weak linkages between RS variables
and plant species, or PFTs, we cannot give definite suggestions
for species- or PFT-specific restoration indicators trackable with
RS. Therefore, more restoration monitoring studies of the asso-
ciations between RS variables and plant species or vegetation
traits are required to develop suitable indicators for tracking suc-
cessful ecological restoration of boreal forestry-drained peat-
lands from space.
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