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The algorithmic nature of song-sequencing: statistical regularities in music
albums
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ABSTRACT
Based on a review of anecdotal beliefs, we explored statistical patterns of track-sequencing within
a large set of released music albums. We found that songs with high levels of valence, energy and
loudness are more likely to be positioned at the beginning of each album. We also found that tran-
sitions between consecutive tracks tend to alternate between increases and decreases of valence
and energy. These findings were used to build a system which automates the process of album-
sequencing. Our results and hypothesis have both practical and theoretical applications. Practically,
sequencing regularities can be used to inform playlist generation systems. Theoretically, we show
that professional musicians andmusic producers have significant levels of agreement about how to
determine the order of tracks in their albums.
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1. Introduction

Music is often described as a time-dependent phe-
nomenon. Contour, for instance, is defined as the pat-
tern of increases and decreases in frequency between
consecutive notes. The same is true for rhythms and
chord progressions, which are generally defined as pat-
terns of musical events that happen one after the other.
For the sake of illustration, consider melodies A and B
Figure 1, which might be readily perceived as different,
even though their constituent notes are the exact same.

The recognition of music’s sequential nature is
responsible for many important findings in the field of
cognitive science, as human perception seems to be fairly
related to the way that acoustic events happen in a given
timeline. The famous probe-tone paradigm showed, for
instance, that a single pitch can be perceived as radically
different, depending on the notes that were heard before
it (Krumhansl & Cuddy, 2010, – for a review). These
results are reliable formany different research paradigms,
which generally show that musical context can have a
drastic impact on listener behavioural and physiological
responses to music (Bharucha & Stoeckig, 2007; Koelsch
et al., 2007; Neto et al., 2021; Vuvan et al., 2011).

Although fairly robust, these studies have mainly
focussed on short-term measurements of contextual lis-
tening. For instance, a common priming paradigm will
assess the influence of a primer on an immediately

CONTACT Pedro A. S. O. Neto pdealcan@jyu.fi Department of Music, Art and Culture Studies PL 35, FI-40014 University of Jyväskylä, Musica,
M-building,Seminaarinkatu 15, Finland

subsequent stimulus (Vuvan et al., 2011), or on a stimulus
that comes one second after the primer (Neto et al., 2021).
Still, if we extend the idea of time-dependency to larger
musical units, it might be tempting to hypothesise that
the experience of listening to a classic sonata cannot
be reduced to the experience of simply listening to its
constituent movements (although, see section 2 for a
discussion).

In fact, music theorists and composers have suggested
that a ‘motive is heard as part of a theme, a theme as part
of a theme-group, and a section as part of a piece’ (Ler-
dahl & Jackendoff, 1996, p. 13). Similarly, André Hodeir
(as cited in Lalitte & Bigand, 2006, p. 811) states that a
‘musical phrase, no matter how beautiful it is, reaches
its expressive summit only when it is in perfect harmony
with preceding and following phrases’.

The view that music is experienced as a coherent
sequence of acoustic events is not an idiosyncrasy of
music theorists and classical composers. In contempo-
rary popular music, artists often suggest that there are
optimal ways of sequencing tracks in an album, in a party,
in a playlist or in a concert. This idea is mainly based,
however, on the anecdotal belief that the musical expe-
rience can be influenced by the order in which songs
are presented to the listener (Garvey, 2013; Nills, 2015;
Ruoff, 2018; Scammell, 2019). In an overview, artists pro-
pose threemain concepts of track-sequencing, which can

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
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Figure 1. Melody A is different frommelody B, even though they are composed of the exact same notes. This illustrates how sequential
factors might determine perceptually relevant musical features, such as contour and interval.

be described as (1) adjacent transitioning, (2) absolute
positioning, and (3) overall trajectory. We explore these
concepts in the next few paragraphs.

Adjacent transitioning relates to the contrasts and
similarities between consecutive songs. It has been sug-
gested, for instance, that pairs of tracks should not be
very similar in terms of key and tempo (Nills, 2015;
Ruoff, 2018; Scammell, 2019). According to Nills (2015),
‘I would not choose to put two slow songs next to each
other [. . . ] that could get a bit boring’. In an interview
with Garvey (2013), David Brewis goes in the opposite
direction, suggesting that ‘if you go straight from a quite
fast song [. . . ] to just a little bit of a slower song, it can
make the slower song seem like it’s dragging. We have to
avoid that’. In opposition, Guy Harvey adds that ‘if you
have two songs in the same key, but there is a dramatic
tempo increase, that can work’ (Garvey, 2013).

Absolute positioning concerns the specific segments
(i.e. beginnings, middles and ends) that tracks should
assume in an album, depending on their musical char-
acteristics. A common belief is that the first songs of an
album are the most relevant for the overall experience
of the listener (Hahn, 2018; Ruoff, 2018; Sawyer, 2021;
Wensem, 2016). This view is sometimes based on the
idea that attention spans are short, and that ‘if you don’t
catch people right off the bat, they might not hear the
hits at the end’ (Sawyer, 2021). In the same interview
to Garvey (2013), producers Peter Hammill and Ashley
Abram agree that there is a traditional view of sticking
‘all three hits on the front’ of the album (Garvey, 2013).
In fact, 2021 (2021) investigated 694 albums from seven
different genres, and found that the first tracks are usually
the faster ones.1

Overall trajectory, finally, is the concept that track-
sequences should follow some kind of well-established
rationale throughout the whole extension of the album.
For instance, Wensem (2016) suggests that ‘arranging
songs by key from lowest to highest’ creates a ‘positive
feeling’, and that a gradual increase in tempo through an
albummight evoke a ‘rising’ sensation. Hahn (2018) adds
that, if sequences of tracks ‘build and release tension over
the whole release [. . . ] tracks will hit harder individually,
and the overall effect [of the album] will be enhanced’.

1 This study was published in the author’s blog, and it was not scrutinised by
peer-review processes.

Although very popular, these ideas have not yet
received much attention from the scientific community.
We know that musicians and music producers believe
in the relevance of album-sequencing. We do not know,
however, the extent to which these beliefs actually deter-
mine the way that tracks are organised in an album. Here
we explore how sequences of tracks are organised within
Music Albums (MAs) and, based on the aforementioned
anecdotal evidence, we ask the following questions:

(1) Are there retrievable regularities in the way that
tracks are sequenced within MAs?

(2) Are there specific characteristics of tracks in differ-
ent segments of an album?

(3) Is there a general trend between the first and the last
songs of MAs?

(4) Can we use the concepts of adjacent transitioning,
absolute positioning and overall-trajectory to auto-
mate the process of track-sequencing within MAs?

These questions are proposed in the context of a
broader investigation, where we attempt to elucidate
more fundamental issues, such as:

(5) Are there perceptual consequences to different pat-
terns of song sequencing?

(6) To what extent is it true that what we hear now can
influence what we hear in the future?

(7) Can we optimise some dimension of the musical
experience (e.g. enjoyability or attention) bymanip-
ulating the order inwhich tracks are presented to the
listener?

Before we get to the specificities of our investigation,
we review two sets of studies focussing on (1) global ver-
sus local music perception, and (2) automatic playlist
generation. We interpret these studies in light of the
questions that were raised here, and we suggest that a
deeper understanding of howmusicians choose to organ-
ise tracks in an album can be beneficial for both of these
lines of research.

2. From sequences of movements to sequences
of tracks

The idea that music is globally perceived as a coher-
ent sequence of acoustic events is a common one
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amongst composers and musicologists (e.g. Schoenberg
et al., 1967, pp. 1–2; Lerdahl & Jackendoff, 1996, pp.
1–5). In contrast, the concatenationist hypothesis sug-
gests that most of our musical experience can be reduced
to the perception of local transitions between consecu-
tivemusical elements (Levinson, 2006, 2018). Essentially,
these opposing views are disputing the extent to which
human beings can perceive sequential structures in
music. Whereas proponents of a global view believe that
individuals appreciate the relationship between move-
ments of a symphony that are minutes or even an hour
apart, concatenationists believe that this perceptual pro-
cess takes place within very short time-windows, which
last for only a few seconds.

In contrast with the global-perception hypothesis,
the concatenationist view receives significant support
from the psychological literature (Eitan & Granot, 2008;
Gotlieb & Konečni, 1985; Karno & Konečni, 1992;
Konečni, 1984; Rolison & Edworthy, 2011; Tillmann
& Bigand, 2004). Konečni (1984), for instance, found
that randomly scrambling themovements of Beethoven’s
compositions affected neither the pleasantness nor the
emotional impact of these pieces. These findings are
consistent for different methods, composers and music
genres, Cook (1987), Eitan and Granot (2008), Gotlieb
and Konečni (1985), Karno and Konečni (1992), and
Rolison and Edworthy (2011).

It is interesting to note, here, that global and local
accounts of music perception can also be scrutinised in
the context of albums and playlists. Just like theorists sug-
gest that the overall structure of a classical piece is percep-
tually relevant, contemporary producers and musicians
believe that track-sequencing can ‘make it or break it’
for an album (Garvey, 2013). Conceptually, there is no
reason to believe that global/local relationships studied
by music psychologists do not translate to sequences of
tracks within an album. If, as suggestted by the studies
cited in the previous paragraph, the ordering of move-
ments within a classical composition does not affect its
perceived pleasantness or emotional impact, then the
ordering of tracks within an album or playlist may also
be immaterial.

Still, most studies that falsify the globalist view are
fairly idiosyncratic. As highlighted by Bigand andPoulin-
Charronnat (2006), research has mainly focussed on
complex variables that are related to harmonic progres-
sions, motivic development, and tonal closure (Eitan
& Granot, 2008; Gotlieb & Konečni, 1985; Karno
&Konečni, 1992; Konečni, 1984). In this context, it might
be fruitful to transpose the global-local discussion to
other musical contexts, such as albums and playlists, but
also to consider other types of variables, such as loudness,
valence, arousal and tempo.

As a last step before we present our methods and
results, we review some studies in the field of Automatic
Playlist Generation (APG) which, in our opinion, incor-
porate the essence of the dispute between proponents of
global and local views of music perception. As we will
see, some of the basic beliefs held by APG researchers are
also in line with the artists’ beliefs that track-sequencing
matters in the context of albums and playlists.

3. Playlists, algorithms and the craft of
track-sequencing

The main task of an APG system is to optimise some
dimension of the musical experience (e.g. attention,
enjoyability) by recommending sets of songs to be heard
in a sequence. As will be made evident in the next few
paragraphs, researchers generally agree that the quality
of a given music-recommendation cannot be reduced
to the quality of a single song, but rather to the con-
text in which this song is recommended to the listener
– a view that is challenged by music psychologists, but
cherished amongst theorists, composers, musicians and
album producers.

Here we argue that previous APG systems have
adopted a mixture of global and local strategies for
playlist generation, where both the contrasts between
consecutive songs and the overall characteristics of the
playlists are taken into account. Finally, empirical data
from these studies also suggests that track-sequencing
variables might hold some level of perceptual relevance.

3.1. Local accounts of playlist generation

The predominant view of next-track recommendation
systems is that pairs of songs should be coherent in a
given dimension, and various types of similarity mea-
surements have been proposed in the past (Bittner
et al., 2017; Flexer et al., 2008; Ikeda et al., 2016; Jan-
nach et al., 2015; Kamehkhosh & Jannach, 2017; Platt
et al., 2001; Pohle et al., 2007, 2005). These studies gener-
ally assume that intelligent sequencing algorithms would
optimise the similarity between pairs of songs, such
that the systems’ goal is to provide smooth transitions
between tracks in position k and k+ 1.

The assumption of similarity is empirically sound, as
listeners generally prefer transitions that are explicitly
optimised for smoothness, rather than randomly assem-
bled sequences of tracks (Ikeda et al., 2016; Kamehkhosh
& Jannach, 2017). In addition, professional DJs have
been shown to carefully select similar pairs of songs
in their sets (Kell & Tzanetakis, 2013), although the
concept of similarity might vary significantly between
studies.
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Sarroff and Casey (2012) attempted to automatically
differentiate true from artificial pairs of songs within
MAs. True pairs were defined as sequences of two songs
that appeared consecutively in an album, whereas arti-
ficial pairs were assembled with random permutations
of the album. Their model was trained on different sub-
sets of features computed by The Echo Nest (which today
is available through Spotify’s web API), and it was able
to differentiate true from artificial pairs with a 22.58%
accuracy, against a 20% baseline. Even though this result
was barely above chance levels, it shows some support for
the concept of adjacent transitioning, since pairs of songs
seem to follow some kind of transition regularity (Gar-
vey, 2013; Nills, 2015; Ruoff, 2018; Scammell, 2019).

Still in agreement with the concept of adjacent transi-
tioning, Baccigalupo and Plaza (2006) argued that APG
systems could replicate co-occurrences of song sequences
from manually-generated playlists. For instance, if songs
A and B appear together in many different playlists,
this pair of songs could be considered as a ‘meaning-
ful’ sequence, and could be automatically replicated to
improve the quality of automatic recommendations.

3.2. Global accounts of playlist generation

Cliff (2000) proposed a system where listeners would
explicitly determine the global trajectory of the playlist.
For instance, a user could set the loudest song at the mid-
dle of the playlist, and the quieter one at the end. The sys-
tem would then rank-order songs increasingly towards
the middle, and decreasingly towards the end. This view
is similar to the concept of overall trajectory (Hahn, 2018;
Wensem, 2016), which states that gradual movements
throughout the extension of the album can improve the
music-listening experience.

Language models (Liebman et al., 2019; Mayerl
et al., 2019; McFee & Lanckriet, 2011) can incorporate
both notions of global and local playlist generation, as
they generally compute the conditional probability of a
given track as function of the tracks that came before
it. Liebman et al. (2019) mapped user satisfaction to dif-
ferent transition states by using reinforcement learning.
Again, Liebman et al. (2019) showed that sequence-aware
algorithms are better for making next-track recommen-
dations, if compared to systems that disregard timeline
factors. Theoretically, language models can function in a
global level by allowing higher order models, which will
calculate the probability of song A given the n songs that
came before it.

If analysed together, these studies reveal that APG
researchers generally agree upon the idea that a track
is not perceived as an independent musical unit, but
rather as a member of a broader context. Also, we see

that different approaches to music recommendation can
assume global and/or local accounts of music organisa-
tion, as well as some of the concepts expressed by musi-
cians and producers interested in album-sequencing.

4. Epistemological notes

Not unlike previous studies, we make an arbitrary dis-
tinction between the concepts of global, local, adjacent
and overall musical structures. Conceptually, every seg-
ment of an album can be considered as adjacent to
another segment, depending on the time-frame that we
use as our unit of analysis. Similarly, any time-frame can
have a global, or an overall structure spanning from its
beginning to its end, nomatter how short this time-frame
may be.

In psychological studies, for example, sequential rela-
tionships are usually considered local if they hap-
pen within a window of up to 30 seconds (Lalitte
& Bigand, 2006). In our study, however, we conceive a
track as the minimal unit of analysis, and we assume
that the relationship between consecutive songs is local
(or adjacent) even though they occupy windows that are
usually longer than 60 seconds.

One could, in fact, argue that a better account of local
transitioning should be restricted to smaller time-frames,
such as the transition from the end of track k to the begin-
ning of track k+ 1.Whereaswe agreewith this argument,
and are interested in any results which might come from
such an analysis, we would still argue that our study does
not intend to provide a categorical and absolute account
of what is local and what is global, adjacent, or an over-
all trajectory. Rather, we simply consider the patterns
that might exist (1) between consecutive tracks, and (2)
throughout sequences of n tracks.

5. Methods

The main goal of the present study is to search for pat-
terns of track sequencing withinMAs. Albums were cho-
sen because deciding the order of the songs is practically
an unavoidable step in the album-production process. It
is fair to assume that, after the long and expensive record-
ing, mixing and mastering of their work, artists will not
settle for a random sequence of tracks, and that the final
sequence will be a deliberately chosen one.

In addition, those responsible for the release of an
album are often the musicians and/or the producers
themselves, which guarantees some level of musical
expertise throughout the process. Playlists, on the other
hand, can bemade andmodified quickly by anyone, with-
out additional costs, or knowledge barriers.We could not
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assume, therefore, that playlist sequences are createdwith
the same level of skill and deliberateness as MAs.

Based on the anecdotal evidence that we described
here, we were able to analyse MAs with regards to pat-
terns of (1) adjacent transitioning; (2) absolute position-
ing, and (3) overall trajectory of trackswithinMAs. These
patterns were investigated by means of (1) building a
Markovmodel to describe transition regularities between
adjacent tracks; (2) evaluating the frequency with which
different tracks are positioned throughout segments of an
album; and (3) evaluating the existence of global trends
from the first to the last tracks of each MA. Finally, we
created a system which attempts to automate the process
of track sequencing within MAs. Below we describe each
one of these approaches in detail, as well as the dataset
that we used in order to accomplish these goals.

5.1. Data

Using Spotify’s web API, we queried for artists names
from a list of 32 different genres. Each artist was then
queried for its complete discography, with a maximum
of 50 albums per artist. This method yielded 475,342
albums from 26,248 artists, which were then filtered
in order to remove duplicates, similar versions, and
albums with unusually large or small numbers of tracks
(i.e. k<6 or k>16). The final sample comprised 51,010
albums from 8190 artists and 548,852 tracks. Table 1
shows the distribution of albums per genre in the final
sample.

Each track within each album was described by a sub-
set of the features provided by Spotify. We chose to work
only with valence, energy, loudness, and tempo, discard-
ing features like danceability, speechiness, acousticness
and liveness, as these are either conceptually irrelevant to
our research question (e.g. liveness), or are hard to inter-
pret and/or replicate outside of Spotify’s web API (e.g.
danceability). Despite the fact that we do not handle the
computation of our musical features, nor have access to
the way that they were computed, we chose to work with
this dataset because, to our knowledge, it is the only one

Table 1. Distribution of albums per genre.

Genre Number of albums Percentage within the sample

1 country 2874 5.63
2 electronic 3908 7.66
3 indie 725 1.42
4 jazz 7884 15.46
5 latin 3000 5.88
6 pop 9504 18.63
7 rap 1947 3.82
8 reggae 370 0.73
9 regional 709 1.39
10 rock 19,329 37.89
11 soundtrack 760 1.49

that (1) provides information about where each track is
positioned within an album, and (2) provides complete
albums without missing tracks.

5.2. Adjacent transitioning

5.2.1. Feature representations
As a way to compute the direction of feature variation
between adjacent tracks, we represent song sequences as
patterns of ups and downs in a given feature domain
(i.e. valence, energy, loudness, and tempo). This approach
focuses on the direction of transitions between con-
secutive notes, in a way that is similar to the Parsons
Coding of melodic contour (Parsons, 1975). By making
our data discrete, rather than continuous, it allows us to
build aMarkovModel to describe transition probabilities
between consecutive songs.

We define an album a as a sequence of tracks T = (t1,
t2, . . . , tk), where tk ∈ T is represented by a vector of j
audio features F = {f1, f2, . . . , fj}. In Parsons coding, we
convert each feature of F, to a sequence of states repre-
senting the direction of consecutive transitions between
tracks in positions k and k+ 1. For each album a ∈ A,
and feature fj ∈ F where A is the complete set of albums
in our data set, we compute k′ = k − 1 transitions t′k′j as:

t′k′j =
{
up, if tk,j<tk+1,j

down, if tk,j>tk+1,j

After encoding track transitions, each album is repre-
sented by j vectors of k′ feature transitions, which assume
one of n = 2 possible states stn ∈ {up, down}. We ignore
the possibility of tk,j being equal to tk+1,j, as these are
highly unlikely for vectors of continuous audio features.
Still, one could consider that the feature of a track only
goes ‘up’ or ‘down’ if the difference between tk,j and tk+1,j
surpasses an arbitrarily small threshold. In which case, an
additional state of ‘same’ would be considered. For sim-
plicity, we choose to work with a binary category of ‘up’
and ‘down’.

5.2.2. Transition probabilities
Given a sequence of transitions T′

j = (t′1,j, t′2,j, . . . , t′k′j)
and its corresponding states stn, we are able to compute
P[t′k′+1,j = st | t′k′,j = stn] which represents the condi-
tional probability that transition k′ of feature fj goes from
one state to the other. This allows us to empirically derive
j transition matrices Tmj Table 2 and to calculate the
mean log-likelihood of T′

j as

L(T′
j |Tmj) = 1

k′
k′∑
i=1

log P[t′i+1,j = st | t′i,j = stn] (1)
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Table 2. Transition matrices representing the probability of
going from the state in a row to the state in a column.

Valence Energy

down up down up

down 0.309 0.690 0.299 0.700
up 0.664 0.334 0.664 0.335

Loudness Tempo

down up down up

down 0.310 0.689 0.328 0.671
up 0.654 0.345 0.666 0.333

Consequently, L(a |Tm) represents the overall log-
likelihood of an album a as the average of L(T′

j |Tmj)

across all features fj ∈ F. Similarly, Tm is the set of tran-
sition matrices for all fj ∈ F,

L(a |Tm) = 1
j

∑
j∈F

L(T′
j |Tmj) (2)

This approach would help us find local – or adjacent –
regularities in the way that tracks are sequenced within
MAs. Theoretically, transition matrices could be inter-
preted as the underlying criteria that musicians and
music producers use to determine transitions between
consecutive tracks. In the same sense, L(a |Tm) would
be a measure of how much an album a corresponds to
the patterns found in our set of transition matrices.

5.3. Absolute positioning

In order to evaluate the notion of absolute positioning,
we calculated themean values of fj ∈ F throughout differ-
ent segments of an album. Since MAs can have different
lengths, we performed k-bins discretizations based on
tercile values, which transformed track numbers to cat-
egorical values corresponding to the beginning, middle,
and end of each album. Feature values were normalised
within album prior to the discretization process.

5.4. Overall trajectory

With regards to global trends of feature variation,wewere
interested in evaluating whether our albums presented
a general trend of increasing or decreasing features.
Spearman-Rank correlations were calculated between (1)
track numbers and (2) raw feature values of each track,
separately for each album.

Positive coefficients indicate that the album is in an up
ramp, whereas negative coefficients indicate that it is in
a down ramp. The magnitude of coefficients would indi-
cate, in turn, the strength of the correlations between
track number and loudness values. The distribution of
up ramps and down ramps throughout the whole dataset

would indicate the extent to which album-sequences
favour down or up ramps.

5.5. Evaluationmethods

5.5.1. Adjacent transitioning
Essentially, Equation (2) calculates how likely a given
album is to occur if we assume that its sequences of
featuresT′

j were generated byTmj.We do not know, how-
ever, if this assumption is correct, and therefore we need
to evaluate the extent to which Tmj describes sequences
of tracks within MAs.

Arguably, if our transition matrices are used to sort
tracks within an album, we should be able to find that
the sequence of transitions within an original album a, is
more likely to occur than a random permutation of the
same album, which we refer to as a′. We test the hypoth-
esis that L(a |Tm)>L(a′ |Tm). With a paired-samples
t-test, we test this idea against the null hypothesis that
likelihood values are the same for random and original
albums. If the null is rejected, this would indicate that,
under the empirically derived transition matrices, the
original sequence from a is more likely to occur than its
random permutation a′.

Of course, our hypothesis should be tested on a set
of albums that was not used to empirically derive Tm.
This would indicate that Tm generalises to an album that
was never ‘seen’ by our model. We build the transition
matrices Table 2 on a subset of approximately 80% of
A, and evaluate it on the remaining 20%. In order to
avoid spill-over effects of having the same artist in both
the training and the testing samples, the split was per-
formed at the level of the artist. Additionally, we perform
a cross-validation procedure by training and testing our
model on 10 different subsets of A. Statistics and graphs
displayed in the results section refer to cross-validated
results, unless otherwise indicated.

5.5.2. Absolute positioning
A three-way Analysis of Variance (ANOVA) is used to
investigate the effect of album segment (i.e. begining,
middle, end), condition (i.e. randomised versus origi-
nal album position), and feature (i.e. valence, energy,
loudness, and tempo) on normalised feature values.

5.5.3. Overall trajectory
Spearman’s ρ values between fj and track number were
calculated separately for each album, and also for the ran-
domised albums. In order to evaluate if albums tend to
present up or down ramps, we computed a pairwise t-test
between the ρs of an album and its randomised version.
Each album contributes, therefore, with 4ρ values, one
for each feature.
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6. Results

6.1. Adjacent transitioning

The paired-samples t-test indicated that, under our
empirically derived transition matrices Table 2, origi-
nal sequences are more likely to occur than randomised
sequences [t(19) = 5.012, p<.001, d = 1.79]. The dif-
ference in likelihood for each feature was evaluated with
a set of Tukey corrected t-tests. As shown in Figure 2,
the difference in likelihood between random and origi-
nal sequences was significant for all features, with a less
pronounced difference for loudness and tempo (p<.001).

6.2. Absolute positioning

Figure 3 indicates that higher values of valence, energy
and loudness are present at the beginning of the each
album (Table 3), but only for the original condition.
Differences between album segments are again less pro-
nounced for tempo.

As shown in Figure 3, results of the ANOVA indi-
cated a main effect of album position [F(2, 4678) =
2586.3, p<.001, η2p = .00119], and interactions between
condition and album position [F(2, 4759) = 2631.5, p <

.001, η2p = .00118], albumposition and feature [F(6, 1279)
= 235.8, p<.001, η2p = .000321], and conditionn, album
position and feature [F(6, 1393) = 232.1, p<.001, η2p =
.00035].

6.3. Overall trajectory

Down ramps were more frequent than up ramps for all
the features, with a less pronounced effect for tempo
Figure 4. Results of the t-test indicated that Spearman
ρs are smaller for original albums (M = .073, SD =
.34) than for randomised ones (M = .000, SD = .33)
[t(407871) = −67.89, p<.001, d = −0.217].

7. Automated track sequencing

If notions of adjacent transitioning, absolute positioning
and overall trajectory are really used by human beings
who undertake the task of album-sequencing, we should
also be able to use it in order to automate this process.
This section describes the rationale and the strategies that
we adopted to build such a system.

Assuming that Tm reflects transition regularities, we
should be able to use L(a |Tm) as an objective function
to sort adjacent tracks within an album. Consider, again
a′ as an unordered set of tracks pertaining to an album
a. Then, we should be able to find a permutation of a′
which maximises its likelihood Equation (2). This would
arguably approximate a′ to a, and we could evaluate the

Table 3. Normalised feature values per feature and album posi-
tion.

Original Random
Album position feature mean (SE) mean (SE)

Beginning valence 0.067 (0.0021) 0.000 (0.0021)
Middle valence 0.007 (0.0023) 0.000 (0.0023)
End valence −0.080 (0.0023) 0.001 (0.0022)
Beginning energy 0.10 (0.0020) 0.000 (0.0021)
Middle energy −0.008 (0.0023) 0.000 (0.0023)
End energy −0.108 (0.0023) 0.001 (0.0022)
Beginning loudness 0.118 (0.0020) 0.000 (0.0021)
Middle loudness −0.008 (0.0023) 0.000 (0.0023)
End loudness −0.121 (0.0023) 0.000 (0.0022)
Beginning tempo 0.011 (0.0021) 0.000 (0.0021)
Middle tempo 0.003 (0.0023) 0.003 (0.0023)
End tempo −0.015 (0.0022) −0.002 (0.0022)

quality of Tm as the degree to which a′ approximates a in
a given dimension.

In order to incorporate the notions of absolute posi-
tioning and overall trajectory, we used Spearman’s ρ as
a penalty term to Equation (1). If the optimal solution
based onTmj yielded a sequence of tracks in a down ramp
(i.e. negative correlation between track numbers and
feature values) there would be no penalty, with ρ = 0.
Conversely, if correlations were positive, L(T′

j |Tmj) the
solution would be penalised by subtracting L(T′

j |Tmj)

with L(T′
j |Tmj)ρ. This approach would result in high

penalties for strong positive correlations, and no penalty
for negative ones (e.g. ρ = 1 would result in a likeli-
hood of 0). We do not represent patterns of absolute
positioning explicitly because, by optimising for nega-
tive correlations, we already provide an incentive for our
algorithm to position high feature values an the begin-
ning of the album.2 Our optimisation was conducted
with the method of Simulated Annealing (SA). We use
the function perm(a′, q), which provides random permu-
tations of q tracks from a′. Note that the initial input is not
a, as this would theoretically represent the best solution
to our ordering problem. The output of perm(a′, q) gen-
erates the alternative permutation a′′, and the probability
of accepting a′′ over a′ is a function of the improvement
�L = L(a′′ |Tm) − L(a′ |Tm), as well as of the system’s
temperature Temp:

Pr(a′′ | a′) =
⎧⎨
⎩
1, if �L ≥ 0

exp
(

�L
Temp

)
, otherwise

We repeat this process with periodic decrements of both
Temp and q, which means that, as likelihood increases,
there is a smaller probability of accepting a′′ over a′ when
�L<0, as well as in fewer tracks being permuted.

2 In the discussion of the paper, we expandon the idea that concepts of overall
trajectory and absolute positioning revealed to be redundant
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Figure 2. Likelihood of original albums versus random sequences (i.e. a versus ′a) under the same empirically derived transitionmatrices
(i.e. Tm).

7.1. Evaluation

To evaluate the performance of our system, we could
compute the extent to which optimised albums are sim-
ilar to the original ones. A standard accuracy test would
count the frequency with which track number one of the
original album appeared in position one of the optimised
album. In this case, a perfect score would be obtained if
the optimised album presented the exact same sequence
of tracks as the original one. Notice that equation two
cannot be used to evaluate our optimised albums, since
this is already used as an objective function to find per-
mutations of the tracks.

An alternative (and less rigorous) evaluation method
would be to compute the number of correct pairs of tracks
within each album. In this approach, we would com-
pute an accurate response every time our optimisation

method indicated that track k ismore likely to be followed
by track k+ 1. Notice that, with this approach, it does not
matter if the optimised album starts with track number 5,
as long as the next track is track number 6. The accuracy
score would then be the frequency with which correct
pairs occurred in our optimised albums.

Given the large permutation spaces imposed by our
problem,We chose to go with the less rigorous approach,
and we tested the hypothesis that optimised albums
would present more correct pairs of tracks than ran-
domly permuted albums. By means of bootstrapping, we
derived an empirical distribution of correct pairs for ran-
dom permutations of all albums in our test dataset. We
ran 10 thousand random permutations and computed
the mean of immediate sequences within each run. This
allowed us to derive sample means and its respective
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Figure 3. Feature values throughout album segments. Error bars represent Standard Error of the Mean.

standard deviation, which approximates the standard
error statistic.

This empirical distribution allowed us to compute a
one-sample t-test between (1) the number of sequences
yielded by our optimised albums, and (2) the statistics
derived from our bootstrap procedure. A good result
would be obtained where the optimised albums con-
tained a significantly higher number of sequences than
the random permutations.

7.2. Automated track sequencing results

Our bootstrap t-test revealed a significant difference
between random (M = 0.88, SEM = 0.009) and opti-
mised (M = 1.61, SEM = 0.02) permutations [t(10336)
= 35.69,CI = 1.57 − 1.65, p<.001] Figure 5. This indi-
cates that our approach offers an above-chance level of
finding the original next-track within an album.

8. Discussion

8.1. Main findings

Based on an overview of anecdotal beliefs (2021, 2021;
Garvey, 2013;Hahn, 2018;Nills, 2015; Ruoff, 2018, 2018?;
Sawyer, 2021; Scammell, 2019;Wensem, 2016), we identi-
fied three basic principles of album-sequencing, namely
(1) adjacent transitioning, (2) absolute positioning, and
(3) overall trajectory. These principles were, to some
extent, found in our dataset, which indicates that albums
are constructed with some level of attention to sequential
factors.

Regularities of adjacent transitioning were revealed
by our transition matrices Table 2, which suggested that
changes of direction (i.e. up to down; down to up) are
more probable than maintenance of direction (e.g. con-
secutive increases in loudness). This agrees with the
results of Nills (2015), but is in slight opposition to the
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Figure 4. Proportions of down ramps for original and randomised albums.

idea of maximum similarity expressed in the APG lit-
erature (Bittner et al., 2017; Flexer et al., 2008; Ikeda
et al., 2016; Jannach et al., 2015; Kamehkhosh & Jan-
nach, 2017; Platt et al., 2001; Pohle et al., 2007, 2005). At
least with regards to direction of feature values, change
seems to be the norm.

Our transition matrices Table 2 are indicative of
album-sequencing regularities to the extent that (1) tran-
sition probabilities differ from chance levels; and (2)
mean log-likelihoods Equation (2) are higher for origi-
nal albums than for randomised ones Figure 2. Regard-
ing transition matrices, we note that probabilities are
slightly above chance levels, but that they generally indi-
cate a higher chance of changing directions between con-
secutive tracks (i.e. if a value goes up from track k−1
to track k, then it will most likely go down in track
k+ 1).

One weakness of our adjacent transitioning approach
is that it completely negates an estimation of transi-
tion magnitudes. Basically, our Markov model does not
informus about the extent to which consecutive tracks go
up or down. Rather, it only informs us about the direction

which consecutive tracks usually take. A closer look at
transitionmagnitudes is arguably an interesting next step
towards a deeper understanding of adjacent transitioning
regularities.

On a global level, we showed that album sequences
tend to prefer down ramps to up ramps Figure 4. This
finding is consistent with the view that albums should fol-
low an overall trajectory. Notice that the prevalence of
down ramps is not inconsistent with our adjacent transi-
tioning findings. As long as down transitions are higher
inmagnitude than up transitions, the album can have the
same number of ups and downs, but still show a linear
downtrend in a given feature domain.

This finding also relates to a set of studies con-
ducted by Huron (1990), Huron (1991), Huron (1992),
Dean and Bailes (2008) and Dean and Bailes (2010),
in which it was found that up and down ramps
are not equally distributed within western composi-
tions. For instance (Huron, 1991) found that classical
music presents more crescendi than diminuendi. Dean
and Bailes (2008) and Dean and Bailes (2010) pre-
sented contrasting results, indicating that down ramps
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Figure 5. Normalised accuracy score represents the number of correct sequences divided by the length of the album. Our system
presents 17% of correct sequences, whereas the random bootstrapped model presents an average of 9%.

are more frequent within a specific set of electroacoustic
compositions.

The loudness patterns that we found go against
(Huron, 1990, 1991) and in favour of Dean and Bailes
(2008) and Dean and Bailes (2010). It should be noted,
however, that our time-frames are much larger than the
time-frames used in these previous studies, which looked
for dynamic changes between measures of single com-
positions. Still, it is interesting to note that different
increasing/decreasing trends might happen in different
time-scales, also in different musical contexts. Whereas
up ramps might be more frequent within a single clas-
sical composition (Huron, 1991), and still be used for
particular cases withinMAs, our sample showed a higher
frequency of down ramps.

Concerning absolute positioning, our findings indi-
cate that tracks with high levels of valence, energy and
loudness are more likely to be positioned at the begin-
ning of an album Figure 3. This suggests that musi-
cians and album producers generally agree that the first
segment of an album should have something different
from the remaining segments (Hahn, 2018; Ruoff, 2018;

Wensem, 2016). We note, however, that there are noth-
ing but vague suggestions regarding how albums should
begin. It is usually said, for instance, that the best songs
should be placed in the beginning, but we still do not
know what it means for a song to be the best one.

Conceptually, slow and quiet songs could be viewed as
the ‘best’ ones, and therefore be positioned at the begin-
ning of the albums. Still, this is notwhat our data shows. If
we consider that our albums tended to start with high lev-
els of valence, energy and loudness, we could hypothesise
that artists see these features as being indicative of quality,
or maybe as indicative of the subjective value that listen-
ers will assign to it. Still, we leave an open question: why
is it better to start an album with high levels of valence,
energy and loudness?

Finally, we showed that album-tracks can be sorted
algorithmically. If we optimise parameters of adjacent
transitioning and overall-trajectory, we end up with
albums that presentmore direct increases (e.g. track k+ 1
comes after track k), than if we randomly permutate
these albums. Future venues of research might incorpo-
rate deep-learning, alternative optimisation techniques,
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Figure 6. Normalised feature values across different segments of the albums, separated by genre.

as well as more robust evaluation procedures, such as
ablation studies and perceptual validation.

8.2. Perceptual implications – global or local?

With our computational approach, we have no direct
means for drawing conclusions about how album-
sequences are perceived. We do suggest, however, that
musicians and album producers agree, to some extent,
about the order in which songs should be presented to
the listener. If we assume that albums are assembled
by intelligent agents who are interested in optimising
some dimension of the musical experience, we could still
hypothesise that track ordering might have some degree
of perceptual relevance.

This assumption is strengthened by some stud-
ies suggesting that the perception of sound inten-
sity (i.e. loudness) is heavily shaped by time-related
factors. Patterson (1974), Geringer (1995), Geringer
and Madsen (2003) and Olsen (2014) show, for instance,
that sequential manipulations of sound intensity, such
as sudden and abrupt increases in Sound Pressure
Level, can have a significant effect on listener’s atten-
tion, chills, and levels of arousal. The phenomenon
known as loudness adaptation (Dange et al., 1993;
Kimura, 2004), on the other hand, indicates that the
perception of intensity decreases with time, even if
the stimulus is held at a constant SPL. This shows
that not only the immediate physical properties of
the stimulus is capable of influencing how a sound is
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perceived, but also the context in which the stimulus is
inserted.

In the context of our study, the effect of loudness adap-
tation can help us explain why consecutive tracks were
constantly going up and down. If true that the percep-
tion of sound-intensity can decrease asmuch as 50% after
three minutes of exposure (Miśkiewicz et al., 1993), it
might also be the case that musicians try to counter-
balance this effect by alternating between increases and
decreases of loudness throughout the album Figure 3.

Concerning the effect of overall-trajectory Figure 4
we hypothesise that down ramps are a mere by-product
of the absolute positioning effect Figure 3. It might be
the case that, by opening the albums with high levels of
valence, energy and loudness, the only tracks that remain
for the last segment are those with lower values of these
features. In this case, gradual decreases throughout the
album might not reflect any aesthetic or perceptual pur-
pose, but just the fact that first positions of an album are
reserved for songs which are more likely to impact the
listener.

We also acknowledge the possibility that our findings
have no perceptual basis, and that listeners are generally
oblivious to sequential factors when it comes to track-
ordering. This possibility is strengthened by the data
which supports a concatenationist view of music percep-
tion (Eitan & Granot, 2008; Gotlieb & Konečni, 1985;
Konečni, 1984; Levinson, 2006, 2018; Tillmann&Bigand,
2004; Tillmann et al., 2006). However, as previously
argued, the hypothesis of global perception is usually fal-
sified by studies focussing on classical repertoire, and
on highly abstract and idiomatic features, such as tonal
closure and motivic development.

Finally, we refrained from including genre as an inde-
pendent variable in our analyses, since we had no work-
ing hypothesis to test. Throughout our review of anecdo-
tal beliefs, there was no mention of different approaches
for genre. Also, the psychological effect of loudness adap-
tation – or any other psychoacoustic phenomenon that
is relevant to how we perceive songs in a sequence –
should be consistent between different genres. In fact,
Figure 6 shows that feature distributions are consistent
throughout album segments of different genres. Still,
these questions may be investigated in future studies.
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