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Abstract

Canonical correlation analysis is a statistical method used to examine linear
relationships between two sets of variables measured on the same statistical
units, by forming highly correlated linear combinations of the variables in
each set. This method cannot be used in the context of high-dimensional
data, where the number of variables in either variable set exceeds the sam-
ple size. In this setting, sparse canonical correlation analysis (SCCA) can
be utilized to perform regularized canonical correlation for high-dimensional
data, producing sparse solutions more feasible for interpretation.

In this thesis SCCA was used to explore the associations between temper-
amental traits and interoception. Temperamental traits decribe a person’s
dispositional responses to changes in their environment, while interoception
refers to a person’s sensitivity to stimuli originating from inside their own
body, such as heart beat. Both of these attributes have a neurobiological ba-
sis, and some temperamental traits, especially ones related to anxiety have
been found to be linked to interoceptive sensitivity. A data set consist-
ing of magnetoencephalography (MEG) measurements of neuronal activity
recorded during an interoception task and temperament questionnaire an-
swers from 28 subjects was analyzed using SCCA with and without penal-
ization in high dimensional setting, and after dimension reduction achieved
by principal component analysis (PCA).

While a pattern of higher α-oscillation activity during an interoception
task in the left parietal and right frontal lobe associated with lower scores on
the Beck Anxiety Inventory and Fun seeking section of Behavioral Activation
Scale, and higher α-activity in the left frontal lobe associated with higher
scores on the same questionnaires was observed, no statistically significant
canonical pairs were found based on permutation tests. SCCA was found to
ease interpretation of the canonical coefficients of the questionnaire variables
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via sparse coefficients, but overly sparse coefficients for MEG variables can
hinder interpretation, as the spatial resolution of MEG is not enough to
discern small areas of neuronal activation. For this reason larger areas of
brain activation are preferred and canonical coefficients gained through PCA
can be more useful for interpretation.

Keywords: interoception, temperamental trait, magnetoencephalography,
canonical correlation analysis, lasso, penalized canonical correlation analysis
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Tiivistelmä

Kanoninen korrelaatioanalyysi on tilastollinen menetelmä, jota voidaan hyö-
dyntää kahden samoilta tilastoyksiköiltä mitattujen muuttujajoukkojen välis-
ten lineaaristen yhteyksien tarkastelemiseen, muodostamalla korkeasti kor-
reloituneita lineaarikombinaatioita kummankin joukon muuttujista. Tätä
menetelmää ei voida käyttää korkeaulotteisen datan yhteydessä, jossa jom-
mankumman muuttujajoukon muuttujien määrä ylittää datan otoskoon. Täs-
sä tilanteessa harvaa kanonista korrelaatioanalyysiä voidaan hyödyntää sa-
kotetun kanonisen korrelaatioanalyysin toteuttamiseksi korkeaulotteiselle da-
talle, tuottaen harvoja, tulkinnallisesti käyttökelpoisempia tuloksia.

Tässä tutkielmassa harvaa kanonista korrelaatioanalyysiä käytettiin tem-
peramenttipiirteiden ja interoseption välisten yhteyksien tutkimiseen. Tem-
peramenttipiirteet kuvaavat henkilön taipumuksellisia reaktioita ympäristön
muutoksiin, kun taas interoseptio kuvaa henkilön herkkyyttä reagoida oman
kehon sisältä peräisin oleviin ärsykkeisiin, kuten sydämen sykkeeseen. Mo-
lemmilla näistä ominaisuuksista on neurobiologinen pohja, ja joidenkin, e-
tenkin ahdistukseen liittyvien temperamenttipiirteiden on huomattu olevan
yhteydessä interoseptiiviseen herkkyyteen. 28 koehenkilöltä magnetoenke-
falografialla (MEG) interoseptiotehtävän aikana tehtyjen aivoaktiivisuuden
mittauksista ja temperamenttikyselyvastauksista koostuvaa aineistoa analy-
soitiin harvalla kanonisella korrelaatioanalyysillä sekä hyödyntäen sakotusta,
että ilman sakotusta korkeaulotteisen datan kontekstissa. Sama analyysi
tehtiin myös hyödyntäen pääkomponenttianalyysiä aineiston ulottuvuuksien
vähentämiseen.

Vaikka menetelmällä olikin havaittavissa yhteys interoseptiotehtävän ai-
kana korkeamman, vasemman päälakilohkon ja oikean otsalohkon α-aktiivi-
suuden, sekä Beck Anxiety Inventory -mittarin ja Behavioral Activation Scale
-mittarin Fun seeking -osion matalampien tulosten välillä, ja korkeamman,

iii



vasemman otsalohkon α-aktiivisuuden ja samojen mittareiden korkeampien
tulosten välillä, tilastollisesti merkitseviä kanonisia pareja ei permutaatiotes-
tien perusteella löydetty. Harvan kanonisen korrelaatioanalyysin havaittiin
helpottavan harvojen kanonisten kertoimien myötä kyselymuuttujien ker-
toimien tulkintaa, mutta liian harvat kanonisten parien kertoimet MEG-
muuttujille voivat vaikeuttaa tulkintoja, koska MEG:n spatiaalinen tarkkuus
ei riitä erottamaan pienien aivoaluiden neuronaalista aktivaatiota. Tästä
syystä suurempien aivoalueiden aktivaatiot on tulkinnan kannalta suotavam-
pia, ja pääkomponenttianalyysin avulla saatavat tasaisemmat kanoniset ker-
toimet voivat olla tulkinnallisesti hyödyllisempiä.

Avainsanat: interoseptio, temperamenttipiirre, magnetoenkefalografia, ka-
noninen korrelaatioanalyysi, lasso, sakotettu kanoninen korrelaatioanalyysi
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1 Introduction
The aim of this thesis is to explore the association between neural oscillation
measured by magnetoencephalography during an interoception task and cer-
tain temperament traits via penalized canonical correlation analysis. This
introductory section focuses on explaining the key terms related to the topic
and on establishing the motivation for the thesis.

Rothbart and Bates (2007) define temperament as biologically based indi-
vidual differences in self-regulation and reactivity in the context of expressing
emotions, attention and activity. That is to say that temperament describes
a person’s responsiveness to changes in their environment and their ability to
modulate those responses. Temperament is observable from early childhood
and its development is influenced by experience and maturation. Haslam
(2007) gives the example of noticeable differences in behavioral styles of in-
fants, such as frequency of crying, sleep regularity and reactions to strange
faces, as variations of temperament. Due to this early emergence, tempera-
ment has a neural basis and neuroimaging techniques may be used to shed
light on individuals temperamental differences on a neurobiological level.
Rothbart and Bates (2007) note that temperament forms the activational,
attentional and affective core of personality, and when personality develops
with maturation and temperamental processes become more moderated by
social cognition, temperament still remains an underlying factor in tendency
to react to one’s environment.

Temperament consists of several temperament traits, classifications of
which differ for different phases of human development. For example Haslam
(2007) mentions activity level, negative emotionality and task persistence as
childhood temperament factors, which are associated with adult personal-
ity traits of extraversion, neuroticism and conscientiousness, respectively. In
the context of this thesis, some examples of adult temperament traits would
include responsiveness to bodily sensations, and tendency for behavioral in-
hibition and activation. Temperament is usually studied via questionnaires,
measuring different temperament traits.

Interoception refers to sensitivity for sensing visceral stimuli i.e., stim-
uli that originates from within one’s own body (Garfinkel and Critchley,
2013). Its counterpart is exteroception, which refers to sensitivity for stimuli
originating from outside the body. Like temperament, interoception has a
biological basis and has been linked to temperamental traits such as anxiety,
negative affect, emotional intensity, introversion and behavioral inhibition
(Lyyra and Parviainen, 2018). Interoception is most commonly studied by
heartbeat detection tasks, in which subjects either count their own heartbeats
within a certain time span or report whether or not an external stimulus is
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in sync with their heartbeat.
Magnetoencephalography (MEG) is a technique for investigating neu-

ronal activity in the brain via measuring weak magnetic fields generated by
electric currents flowing in large amounts of synchronously firing neurons
(Hämäläinen et al., 1993). MEG is a noninvasive method, as the magnetic
fields are measured outside the body by magnetometers placed close to the
head. MEG can be used to map neuronal oscillation, the synchronous firing
of neurons at different frequency bands, on the brain as a whole, which is
useful for observing the differences and similarities of neuronal activation be-
tween individuals during the same experimental task. In the context of this
thesis, the most relevant neuronal oscillation is the so called α-oscillation. As
stated by Palva and Palva (2007) α-oscillations (∼10Hz) are most commonly
linked to internal tasks such as mental calculations or mental imagery, and
inhibition of cortical areas, which are not relevant to the current task.

The MEG scanner used in the collection of the data provided for this the-
sis, has 102 sensor units divided evenly in a helmet shape around the head of
a subject, recording measurement from all parts of the cortex (CIBR, 2024).
Each of the 102 sensor units houses three sensors, one magnetometer and
two planar gradiometers perpendicular to each other. Different sensor types
are sensitive to different orientations of the magnetic fields generated by neu-
ronal activity, so the different sensors complement each other and increase
the accuracy of measurements at each sensor location. The magnetometer
is most sensitive to magnetic fields at the edges of a sensor unit, while the
planar gradiometers are most sensitive to magnetic fields of different orien-
tations directly beneath a sensor unit. An array of 102 sensor units results
in measurements of 306 separate MEG channels divided in groups of three
channels around the cortex.

Now, to recount the research problem mentioned in the beginning, the
aim is to study the association between two biologically based attributes,
interoception and temperament traits. To phrase this problem as a research
question: Do people with different temperamental traits differ in neuronal
processing of interoceptive stimuli? The data to be used for the purposes
of this thesis consists of two distinct sets of variables measured on the same
subjects during an MEG study.

The first set is comprised of the results of three temperament question-
naires, the Body Vigilance Scale (BVS) (Schmidt, Lerew, and Trakowski,
1997), the Behavioral Inhibition Scale (BIS) and the Behavioral Activation
Scale (BAS) (Carver and White, 1994), as well as two clinical questionnaires,
the Beck Anxiety Inventory (BAI) (Beck et al., 1988) and the Beck Depres-
sion Inventory (BDI) (Beck et al., 1961). BVS measures conscious attention
to internal sensations, such as palpitations or sweating (Olatunji et al., 2007),
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BIS measures disposition to inhibit behavior to avoid punishment or nega-
tive outcomes, and BAS measures disposition to actively seek out reward
and nonpunishment (Carver and White, 1994). BVS and BIS both result in
one total value for the questionnaires and BAS results in three sum values
for different segments of the scale. BAI and BDI are used to measure the
severity of the symptoms of clinical anxiety and depression, both resulting
in a sum value with higher values indicating higher symptoms (Beck et al.,
1988; Beck et al., 1961).

The second set of variables are derived from MEG measurements taken
during interoception and exteroception tasks. During an interoception task,
subjects tried to discern whether or not an auditory stimulus was played
synchronously or unsynchronously with their own heartbeat. During an ex-
teroception task, the same auditory stimulus was played as in the intero-
ception task, but this time the objective was to detect a slightly differing
tone sometimes inserted into the auditory stimuli. The exteroception task
serves as a baseline for the interoception task, differing only by the target
to which attention is fixed, heartbeat during interoception and sound during
exteroception.

The MEG recordings from both tasks were converted into power spec-
trums and the differences in power for the α-frequency band (7-12Hz) were
calculated between the two tasks for each MEG channel, resulting in 306
α-power contrasts for each subject. As the MEG channels are divided evenly
around the head during recording, each variable corresponds to one of 102
spatial location on the cerebral cortex, meaning that the variables describe
which parts of the brain differ in α-power for the two tasks and by how much.

So, as a whole, the data set to be used consist of a set of 306 α-power
variables derived from MEG recordings, and a set of seven temperament
questionnaire variables measured with five different questionnaires, the BVS,
BIS and BAS scales and the BDI and BAI inventories.

As a description of the structure of this thesis, section 2 establishes the
methods to be used for the analysis, section 3 describes the data set men-
tioned here in more detail, section 4 presents the analyses carried out to
address the research problem, section 5 describes the results of each analyses
and section 6 offers discussion and conclusions based on the results.

2 Methods
This section describes the statistical methods used for the analysis of the

interoception data, starting with the classical version of canonical correla-
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tion analysis (CCA), then covering variable selection done via least absolute
shrinkage and selection operator (lasso) and finally introducing the sparse
canonical correlation analysis, which generalizes the classical CCA into high-
dimensional settings.

2.1 Canonical Correlation Analysis
Canonical correlation analysis is used to examine the linear relationship

between two sets of variables measured on the same statistical units (Johnson
and Wichern, 2013). The method was first introduced by Hotelling (1936). In
the context of this thesis the two variable sets are the temperament question-
naire variables and the MEG measurement variables. Canonical correlation
analysis finds a linear combination of the first set and a linear combination
of the second set of variables, which have the largest correlation. Then a sec-
ond pair of linear combinations is found with the largest correlation, that is
uncorrelated with the first pair. This process is continued with each new pair
having the largest possible correlation with the restraint of being uncorre-
lated with the preceding pairs. The pairs of linear combinations are referred
to as canonical variates and their correlations are referred to as canonical
correlations (Johnson and Wichern, 2013).

Represent random samples of size n of the two sets of variables by matrices
Y = (Y1, Y2, . . . , Yn)> and X = (X1, X2, . . . , Xn)>, where Y1, . . . , Yn are p-
vectors and X1, . . . , Xn are q-vectors. Y is an n×p data matrix and X is an
n × q data matrix. Then the sample covariance matrices are cov(Y ) = Σ̂yy,
a p × p matrix, cov(X) = Σ̂xx, a q × q matrix and cov(Y , X) = Σ̂yx = Σ̂>

xy,
a p × q matrix, where Σ̂yx = 1

n−1
∑n

i=1(Yi − Ȳ )(Xi − X̄)>. The joint sample
covariance matrix of Y and X can be expressed as the (p + q) × (p + q)
partitioned matrix

Σ̂ =
[
Σ̂yy Σ̂yx

Σ̂xy Σ̂xx

]
,

with exact dimensions of the partitions of[
(p × p) (p × q)
(q × p) (q × q)

]
.

As stated by Johnson and Wichern (2013), the covariance matrix Σ̂yx

captures the association between the two sets of variables, but with large
amount of variables p and q it becomes difficult to interpret these pq elements
collectively. The goal of canonical correlation analysis is to represent this
variable set relationship with just a few highly correlated pairs of variable
linear combinations.
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Denote these linear combinations as Û = â>Y and V̂ = b̂>X for some
coefficient vector pair â = (â1, . . . , âp)> and b̂ = (b̂1, . . . , b̂q)>. Then var(Û) =
â>Σ̂yyâ, var(V̂ ) = b̂>Σ̂xxb̂ and cov(Û , V̂ ) = â>Σ̂yxb̂. The correlation of the
linear combinations is then

cor(Û , V̂ ) = â>Σ̂yxb̂√
â>Σ̂yyâ

√
b̂>Σ̂xxb̂

(2.1)

and the coefficient vectors â and b̂ should be chosen so that this correlation
is maximized.

Then define the first canonical variate pair Û1, V̂1 as the pair that max-
imizes correlation (2.1) and having unit variances. The second canonical
variate pair Û2, V̂2 maximizes correlation (2.1) while having unit variances
and being uncorrelated with the first canonical variate pair. Finally, the kth
canonical variate pair Ûk, V̂k , maximizes correlation (2.1) under the con-
straints of having unit variances and being uncorrelated with all preceding
pairs. The correlation between the kth canonical variate pair is referred to as
the kth canonical correlation (Johnson and Wichern, 2013). The total num-
ber of canonical variate pairs will be min(p, q) (Rencher and Christensen,
2012).

If p ≤ q and Σ̂ has full rank, the first canonical correlation

max
â,b̂

cor(Û , V̂ ) = ρ̂1

is obtained by the first canonical variate pair Û1 = â>Y = ê>
1 Σ̂−1/2

yy Y and
V̂1 = b̂>X = f̂>

1 Σ̂−1/2
xx X, with ê1 being calculated as the first eigenvector of

Σ̂−1/2
yy Σ̂yxΣ̂−1

xx Σ̂xyΣ̂−1/2
yy

and f̂1 being calculated as the first eigenvector of

Σ̂−1/2
xx Σ̂xyΣ̂−1

yy Σ̂yxΣ̂−1/2
xx .

The kth canonical variates Ûk, V̂k maximize cor(Ûk, V̂k) = ρ̂k, for k = 2, . . . , p
while being uncorrelated with all preceding canonical variate pairs.

These ρ̂1 ≥ ρ̂2 ≥ . . . ≥ ρ̂p are the canonical correlations and ρ̂2
1 ≥ ρ̂2

2 ≥
. . . ≥ ρ̂2

p are the eigenvalues of

Σ̂−1/2
yy Σ̂yxΣ̂−1

xx Σ̂xyΣ̂−1/2
yy
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with ê1, . . . , êp being the corresponding eigenvectors. ρ̂2
1, . . . , ρ̂2

p are also the
p largest eigenvalues of

Σ̂−1/2
xx Σ̂xyΣ̂−1

yy Σ̂yxΣ̂−1/2
xx

with f̂1, . . . , f̂p being the first p eigenvectors (Johnson and Wichern, 2013).
For all canonical variates Ûk, V̂k, var(Ûk) = var(V̂k) = 1 and they are

uncorrelated with each other canonical variate, excluding their corresponding
pair.

Johnson and Wichern (2013) and Rencher and Christensen (2012) note
that if the variables are standardized, the eigenvalues (and the canonical
correlations) remain unchanged, but the eigenvectors differ. This is the case
if correlation matrices are used instead of the covariance matrices.

One way to frame the classical CCA is to think of it as a form of multiple
regression with several predictors on both sides of a standard linear model
(Tabachnick and Fidell, 2014). With just a few predictors p and q, the
interpretation of the coefficients as relationships between the variable sets
is feasible, but as p and q grow larger, the task quickly becomes unfeasible.
To remedy this issue, regularization methods may be used to shrink the
coefficient estimates to zero for better interpretability. One such method is
discussed in the next section.

2.2 Least absolute shrinkage and selection operator
Assume a data set of size n with responses si and p predictors t =

(ti1, . . . , tip)>, i = 1, . . . , n. Observations are independent and the predic-
tors are standardized to have zero mean and unit variance. In this section S
and T1, . . . , Tp denote the response and predictor variables of a linear model.
For the standard linear model

S = β0 + β1T1 + . . . + βpTp + ε,

with ε being homoscedastic random error terms with mean zero and inde-
pendent of the predictors, describing the relationship between the response S
and predictor variables T1, . . . , Tp, the least squares fit estimates for the coef-
ficients β0, β1, . . . , βp are usually calculated using the values which minimize
the Residual Sum of Squares (RSS),

RSS =
n∑

i=1
(si − β0 −

p∑
j=1

βjtij)2

(James et al., 2021). If the relationship between the response S and the
predictor variables T is linear and the sample size n is much larger than the
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amount of predictors p the least squares estimates will have low variance
and low bias. But if p is close to n, the least squares fit can have a lot of
variability and be prone to overfitting and if p is larger than n there is no
unique least squares solution. James et al. (2021) note that in such cases
shrinking the coefficients towards zero can reduce variance with a small bias
increase trade-off, increasing prediction accuracy. Shrinking some coefficients
to zero also has the benefit of greatly increasing model interpretability, as
less impactful predictors are essentially removed from the model.

One method to perform this coefficient shrinkage is the least absolute
shrinkage and selection operator (lasso). First proposed by Tibshirani (1996),
the lasso coefficients minimize the quantity

n∑
i=1

(
si − β0 −

p∑
j=1

βjtij

)2

+ λ
p∑

j=1
|βj|, (2.2)

where λ ≥ 0 is a tuning parameter and ∑ |βj| = ||βj||1 is the so called
l1 penalty (James et al., 2021). This quantity differs from the RSS by the
added shrinkage penalty, λ

∑p
j=1 |βj|. This term is small when the coefficients

are close to zero, so it effectively shrinks the coefficient estimates. When the
tuning parameter λ = 0, lasso produces the least squares estimates and when
λ grows sufficiently large, all of the coefficients are forced to exactly zero due
to the l1 penalty.

The lasso estimates β̂ = (β̂1, . . . , β̂p)> can also be defined as

β̂ = arg min
{

n∑
i=1

(
si − β0 −

p∑
j=1

βjtij

)2}
subject to

p∑
j=1

|βj| ≤ κ (2.3)

(Tibshirani, 1996). For every λ there exists κ so that (2.2) and (2.3) give
the same coefficient estimates. The intercept β0 is not affected by the pe-
nalization and can be omitted when the data is standardized to have zero
mean.

When fitting a linear model using the lasso, all available predictor vari-
ables p are included in the model. This is computationally a clear improve-
ment over subset selection where a separate model for each combination of
the desired amount of predictors has to be fitted (James et al., 2021). Subset
selection also has the drawback of being prone to large changes in the chosen
model due to only small changes in the data (Tibshirani, 1996).

The proper value for the tuning parameter λ is usually chosen via k-fold
cross-validation. The data set is randomly divided into k evenly sized groups
and one of the groups is used as a validation set, while the others form a
unified training set. For a single candidate λ-value, a linear model is fit using
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that λ on the training set, and the mean squared error (MSE) is calculated
by using the fitted model to predict the responses of the validation set and
calculating the mean of the squared errors. Then the MSE is calculated for
each of the other k − 1 groups in a similar way and the cross-validation error
estimate is received as the mean of all k MSEs. If the amount of observations
in a given group is m, the mean squared error of a single group j is

MSEj = 1
m

m∑
i=1

(si − ŝi)2,

and the k-fold cross-validation error is

CV(k) = 1
k

k∑
j=1

MSEj.

Then a large grid of possible λ-values can be selected as candidates and the
cross-validation error is calculated for models with each of these λ-values.
The λ-value with the smallest cross-validation error is selected for the final
model and this model is fitted with all available observations (James et al.,
2021).

To illustrate the use of the lasso, a data set of n = 1000 vectors ti =
(ti1, . . . , tip)> with p = 25 were generated from standard normal distribution.
Then a response variable s was created as a function of the first four variables
so that si = β0 +β1ti1 +β2ti2 +β3ti3 +β4ti4 +ε, where ε ∼ N (0, 5), β0 = 3 and
(β1, β2, β3, β4)> = (2, 4, 6, 8)>, so the response variable was unassociated with
the variables t5, . . . , t25. Now fitting a multiple linear regression model with
s as a response and all 25 predictors yields least squares estimates for the
coefficients, which are quite close to the real coefficient values of the first four
predictors, and small but non-zero estimates for the coefficients β5, . . . , β25.
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λ

Figure 2.1: Effect of the tuning parameter λ on the coefficient estimates.

Fitting the same model using the lasso yields the same coefficient esti-
mates when λ = 0, but even a slight increase in λ quickly drops the coefficient
estimates β̂5, . . . , β̂25 to exactly zero. This effect of the tuning parameter can
be seen in Figure 2.1. When λ is increased enough, even the estimates of the
real predictors β1, . . . , β4 shrink to zero, with the coefficient of least impact
on y reaching zero first. 10-fold cross-validation results in an optimal λ-value
of 0.5, which shrinks all β5, . . . , β25 to zero, with only a small effect on the
real coefficients.

2.3 Sparse Canonical Correlation Analysis
The classical canonical correlation analysis described in the beginning of

this section does not lend itself effortlessly to the analysis of high-dimensional
data sets, where the amount of variables, p and q, in the two variable sets are
much larger than the sample size n. In this case the sample covariance ma-
trices Σ̂yy and Σ̂xx are not invertible, and classical CCA no longer produces
unique canonical variates. In addition, interpretation of possibly hundreds
of coefficients in each canonical pair could prove inordinately difficult and
impractical, while sparse estimates with a small number of coefficients differ-
ing from zero would be ideal for interpretation. Many sparse CCA methods
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have been developed for producing these sparse canonical pair estimates in
the high dimensional context, such as the Penalized Matrix Decomposition
(PMD) (Witten, Tibshirani, and Hastie, 2009) and the Convex program with
group-Lasso Refinement (CoLaR) (Gao, Ma, and Zhou, 2017).

The Penalized Matrix Decomposition (PMD) (Witten, Tibshirani, and
Hastie, 2009) is a regularized version of the singular value decomposition,
and can be employed to estimate canonical variates in high-dimensional set-
tings where p, q or both exceed the sample size n. PMD substitutes the
sample covariance matrices Σ̂yy and Σ̂xx with identity matrices to negate
their non-invertibility and implements penalization to produce sparse canon-
ical variates. This identity matrix substitution imposes an assumption on
covariance matrices Σyy and Σxx, and thus PMD might not produce consis-
tent estimates in situations where these differ greatly from identity matrices
(Mai and Zhang, 2019).

Convex program with group-Lasso Refinement (CoLaR) (Gao, Ma, and
Zhou, 2017) is a computationally feasible procedure for estimating sparse
canonical coefficient vectors in a high-dimensional setting, while achieving
minimax estimation risk, and without making any assumptions on the co-
variance matrices. However, CoLaR imposes conditions on the sample size
of the data set it is to be applied to, and as pointed out by Mai and Zhang
(2019), does not produce nested solutions resulting in ambiguity of the re-
sults.

For the purposes of this thesis, only the SCCA method proposed by Mai
and Zhang (2019) will be discussed here in more detail. This method dif-
fers from other prominent SCCA methods by reformulating high-dimensional
canonical correlation analysis as an iterative penalized least squares problem,
directly generalizing CCA to a high-dimensional setting, producing nested
solutions. Notably, SCCA does not impose any assumptions on the covari-
ance matrices Σ̂yy and Σ̂xx, and can be applied to small data sets, which is
beneficial given the small sample size of the data to be used in this thesis.

Assume independent and identically distributed data consisting of n mea-
surements of two sets of variables: Y = (Y1, Y2, . . . , Yn)>, a set of p variables
and X = (X1, X2, . . . , Xn)>, a set of q variables, with both Y and X being
centered, and the sample covariance matrices being defined as Σ̂yy = 1

n
Y >Y ,

Σ̂xx = 1
n
X>X and Σ̂yx = 1

n
Y >X. Then, when n > max(p, q) the coeffi-

cients of the kth canonical variate pair, âCCA
k and b̂CCA

k for the classical
canonical correlation can be defined as:

(âCCA
k , b̂CCA

k ) = arg max
ak,bk

a>
k Σ̂yxbk,

so that a>
k Σ̂yyak = 1, b>

k Σ̂xxbk = 1, a>
k Σ̂yyâl = 0 and b>

k Σ̂xxb̂l = 0 for any
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l < k, so âl, b̂l are any of the previous k − 1 canonical variate pairs.
Then, according to Mai and Zhang (2019), this classical CCA solution

for the kth canonical pair can be reformulated as a constrained quadratic
optimization problem as:

(â′

k, b̂
′

k) = arg min
ak,bk

{ 1
2n

n∑
i=1

(Y >
i ak − X>

i bk)2

+ a>
k

(∑
l<k

(â′

l)>Σ̂yxb̂
′

lΣ̂yyâ
′

l · (b̂′

l)>Σ̂xx

)
bk

}
,

so that a>
k Σ̂yyak = 1 and b>

k Σ̂xxbk = 1. Then â
′
k = âCCA

k and b̂
′
k = b̂CCA

k .
Mai and Zhang (2019) note that this solution consist of two terms.

1
2n

∑n
i=1(Y >

i ak − X>
i bk)2 is a measure of linear dependancy between the kth

canonical pair, with a small value resulting in strong correlation between the
canonical variates. The second term is used to account for the variability
of the previous k − 1 canonical pairs, and the constraints a>

k Σ̂yyâl = 0 and
b>

k Σ̂xxb̂l = 0 of the classical CCA solution are removed by this term.
When p, q > n, the coefficient vectors ak and bk are assumed sparse,

with most of the values being zero. The sparse canonical correlation analysis
solution proposed by Mai and Zhang (2019) is then

(âk, b̂k) = arg min
ak,bk

{ 1
2n

n∑
i=1

(Y >
i ak − X>

i bk)2

+ a>
k

(∑
l<k

â>
k Σ̂yxb̂kΣ̂yyâ

′

l · b̂>
l Σ̂xx

)
bk (2.4)

+ λak
||ak||1 + λbk

||bk||1
}

,

so that a>
k Σ̂yyak = 1 and b>

k Σ̂xxbk = 1 and λak
, λbk

≥ 0 are tuning param-
eters. The solution incorporates the penalty terms for the absolute values
of the coefficient similar to the lasso, but the coefficients of both canonical
variates are penalized separately with their own tuning parameter.

This formulation uses the l1 penalty to impose the sparsity structure on
the canonical pairs, but other penalty function can be applied to either or
both coefficient vectors. When the tuning parameters are set to zero, the
classical canonical correlation solution is produced.

Mai and Zhang (2019) also propose and implement an algorithm for find-
ing the solution to (2.4). For any k ∈ Z+, they define Âk = (â1, . . . , âk),
B̂k = (b̂1, . . . , b̂k) as matrices of the k canonical variates,
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Rk = diag(a>
1 Σ̂yxb1, . . . , a>

k Σ̂yxbk) as a diagonal matrix of the canonical cor-
relations and Ω1 = In, Ωk = In − Y Ak−1Rk−1Bk−1X

>/n, where In is the
n × n identity matrix. The algorithm is motivated by the result that when
the previous k − 1 canonical pairs are known and if ak is fixed, then the
solution for b̂k in (2.4) is

b̂k = {(b̌k)>Σ̂xxb̌k}−1/2 · b̌k,

where
b̌k = arg min

bk

{ 1
2n

||Ω>
k Y ak − Xbk||22 + λbk

||bk||1
}
,

and if bk is fixed, the solution for âk in (2.4) is

âk = {(ǎk)>Σ̂yyǎk}−1/2 · ǎk,

where
ǎk = arg min

ak

{ 1
2n

||Ω>
k Xbk − Y ak||22 + λak

||ak||1
}
.

So finding âk and b̂k boil down to solving ǎk and b̌k, when one canonical vari-
ate is fixed, through l1 penalized least squares problems. Then the algorithm
proposed by Mai and Zhang (2019) is:

1. Compute Ωk using the previous k − 1 canonical pairs Ak−1, Bk−1.

2. Choose initialization values {â
(0)
k , b̂

(0)
k }.

3. For m = 1, 2, . . . repeat steps 4. and 5. until convergence.

4. Set Ỹ
(m)
k = Ω>

k Y â
(m)
k , compute

b̌
(m)
k = arg min

bk

{ 1
2n

||Ỹ (m)
k − Xbk||22 + λbk

||bk||1
}
,

and then set
b̂

(m)
k = {(b̌(m)

k )>Σ̂xxb̌
(m)
k }−1/2 · b̌

(m)
k .

5. Set X̃
(m)
k = Ω>

k X b̂
(m)
k , compute

ǎ
(m)
k = arg min

ak

{ 1
2n

||X̃(m)
k − Y ak||22 + λak

||ak||1
}
,

and then set
â

(m)
k = {(ǎ(m)

k )>Σ̂yyǎ
(m)
k }−1/2 · ǎ

(m)
k .

6. Output (âk, b̂k).
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R implementation of the iterative penalized least squares algorithm for
solving (âk, b̂k) can be found in the supplementary material of Mai and Zhang
(2019).

The values of {â
(0)
k , b̂

(0)
k } for initialization in the second step of the algo-

rithm are recommended by Mai and Zhang (2019) to be chosen by one of two
methods. When the canonical pairs are not very sparse the initial values can
be calculated via singular value decomposition as the first pair of singular
vectors of Σ̂yx −∑k−1

l=1 ρ̂lâlb̂
>
l , where ρ̂l = â>

l Σ̂yxb̂l, l < k. If the pairs are ex-
cessively sparse, an alternate initialization method is recommended. While
knowing the preceding k − 1 canonical pairs (âj, b̂j)k−1

j=1 , define

Σ̂(k−1)
yx = Σ̂yx − Σ̂yy(

k−1∑
j=1

ρ̂j âj b̂
>
j )Σ̂xx = (σ̂(k−1)

yx,lm).

Then define γ as the
√

n’th largest entry in |σ̂(k−1)
yx,lm |, l = 1, . . . , q; m = 1, . . . , p

and identify the sets:

D(k)
y = {l : ∃ m so that |σ̂(k−1)

yx,lm | ≥ γ or ∃ j so that b̂jl 6= 0},

D(k)
x = {m : ∃ l so that |σ̂(k−1)

yx,lm | > γ or ∃ j so that âjl 6= 0}.

Then the initialization values can be calculated as the first pair of singular
vectors of {Σ̂(k−1)

yx }
D

(k)
y ,D

(k)
x

, meaning a submatrix of Σ̂(k−1)
yx for which maxi-

mum value of each row and column are greater than γ.
The tuning parameters λa and λb can be chosen via k-fold cross-validation,

R implementation of which for the first canonical pair can be found in the
supplementary material of Mai and Zhang (2019). A candidate set of possible
λ-values is chosen for both λa and λb and the data set is randomly divided into
k subgroups as evenly sized as possible. For each possible pairing of λ-values
from different candidate sets, a performance measure value ρi, i = 1, . . . , k,
is calculated for each of the k subgroups, by using one of the groups as
a validation set and combining the others into a training set. SCCA is
performed on the training set using the λ-value pairing for which ρi is to
be obtained, to receive a coefficient pair âi and b̂i, and the ρi-value is then
calculated as ρi = |cor(X ib̂i, Y iâi)|, where X i and Y i are the corresponding
validation sets. The final performance measure ρ for a pair of λ-values is the
sum of the ρi-values from each fold, ρ = ∑k

i=1 ρi. After the ρ-value has been
calculated for each possible λ pairing, the pair resulting in the highest ρ is
used in the final SCCA estimation of the canonical pairs.

Mai and Zhang (2019) further note that if prior information on the spar-
sity structure exists and other penalties than the l1 penalty seem appropriate,
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other penalty functions such as group, fused or adaptive lasso may be used
instead. Group lasso is best used in situations where some of the variables
in the data are known to function together as a group. In this situation
the group lasso enables simultaneous handling of the grouped variables, by
shrinking the coefficients of the group all together to zero or keeping the
whole group in the model, so the variable selection is done on group level
instead of individual variable level (Yuan and Lin, 2005). The fused lasso
incorporates a penalty for the differences of successive coefficients so if vari-
ables with similar effect are placed next to each other in the data, fused
lasso may be used to include or exclude these segments of variables together
(Tibshirani et al., 2004). Adaptive lasso, where different coefficients are as-
signed data-dependent adaptive weights, may be used if the l1 penalty proves
unstable in cross-validation (Zou, 2006).

3 Data
This section describes the data in more detail, summarizes the question-

naires used in collecting the temperament variables and outlines the data
preprocessing steps taken before carrying out the analysis.

The data set used in this thesis was provided by Suvi Karjalainen and was
collected in 2020 and 2021 by recruiting participants from the Central Finland
area via university mailing lists, social media and posters. Questionnaire data
were collected from 31 participants, but the MEG measurements could not
be collected from three participants due to the Covid-19 pandemic, resulting
in the final participant count of 28. Of these participants, 20 were female
and 8 male, with a mean age of 23.6 years and ages ranging from 19 to 30
years.

The original data set consisted of both MEG measurements and ques-
tionnaire answers from 28 subjects. The MEG data comprised 306 power
spectrums between 1 and 40 Hz range for each of the two task conditions,
interoception and exteroception, for each subject. In other words, the MEG
measurements resulted in 56 distinct 306 × 40 data matrices, one for each
task condition, and two for each subject. For these matrices, each obser-
vation describes the neuronal activity at 40 different frequency bands for a
single MEG channel.

The questionnaire data consisted of sum values of the answers to five dif-
ferent questionnaires, the Body Vigilance Scale (BVS), the Behavioral Inhi-
bition Scale (BIS), the Behavioral Activation Scale (BAS), the Beck Anxiety
Inventory (BAI) and the Beck Depression Inventory (BDI). Each subject has
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one sum value for each questionnaire, with the exception of BAS, for which
each subject has three different sum values, representing the different sub-
sections of the questionnaire. All in all, each subject has seven different sum
values for the five applied questionnaires. The following section describes
these in more detail.

3.1 Temperament questionnaires
The Body Vigilance Scale measures sensitivity to internal bodily sensa-

tions via a four item self-report questionnaire (Schmidt, Lerew, and Trakowski,
1997). The questions are answered based on one’s personal observations of
the past week. The first three items assess tendency to pay attention to,
notice changes in and spending time on observing one’s bodily sensations.
The fourth item asks to estimate the attention paid to each of 15 different
physical symptoms associated with panic attacks according to DSM-IV, such
as heart palpitations, dizziness, sweating and shortness of breath. The first
three items each give a score from 0 to 10 and the fourth is evaluated as a
mean value of 15 answers given on a scale from 0 to 10. The final result of
the questionnaire is the sum of all four items, so the possible values range
from 0 to 40.

The BIS/BAS Scales form one self-report questionnaire to assess the sen-
sitivity of two motivational systems, the behavioral inhibition system (BIS)
and the behavioral activation system (BAS) (Carver and White, 1994). Acti-
vation of the BIS promotes inhibition of behavior that could lead to negative
outcomes such as punishment or non-reward, while activation of the BAS pro-
motes behavior that could lead to reward, achieving of goals or escape from
punishment. As designed by Carver and White (1994), the BIS/BAS Scale
questionnaire consist of 4-point Likert-scale items and has four subscales,
one BIS-related and three BAS-related scales, as three types of behavioral
activation can be separated, drive, fun seeking and reward responsiveness.
A higher score in a scale relates to higher sensitivity to the activation of
the respective motivational system. As an example, a high BIS score would
relate to a higher tendency to inhibit behavior which could lead to negative
outcomes, a high BAS Drive score to tendency to persistently pursue desired
goals, a high BAS Fun Seeking score to tendency to seek out potentially re-
warding events, and a high BAS Reward Responsiveness score to tendency
for high positive response to anticipation and occurrence of new rewards. The
questionnaire results in four sum values of the 4-point Likert-scale items, one
for each subscale.

The Beck Anxiety Inventory (BAI) is a clinical self-report inventory used
to measure the severity of symptoms of anxiety. (Beck et al., 1988). BAI
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consist of 21 items each corresponding to a single common symptom, and each
item is answered on a Likert-scale ranging from 0 to 3, with higher values
indicating higher symptom severity. The respondent answers how much each
symptom has bothered them during the past week, with 0 indicating “not at
all” and 3 indicating “severely”. All answers are summed up to a final value,
with possible values ranging from 0 to 63.

The Beck Depression Inventory (BDI) is used equivalently to the BAI for
assessing the severity of clinical depression symptoms via a 21-item self-report
inventory (Beck et al., 1961), with each item corresponding to a common de-
pression symptom or attitude. Like the BAI, each item is answered on a 0 to
3 Likert-scale, probing the severity of the symptoms experienced during the
past week. The answers are summed to a final score, which can be used to
estimate the severity of clinical depression, with scores lower than 10 indi-
cating none or minimal depression, 10–18 indicating mild, 19–29 indicating
moderate, and 30–63 indicating severe depression (Beck, Steer, and Carbin,
1988).

While the BAI and the BDI are not specifically temperament question-
naires, the questionnaire answers were considered to be useful to include in
the analysis, since especially the behavioral inhibition system relates to the
experience of anxiety (Carver and White, 1994) and the attendance to bodily
sensations related to the BVS are central in experiencing anxiety (Olatunji
et al., 2007). Also the answers can be used to determine that no participants
had moderate or severe symptoms of clinical depression or anxiety.

The means and standard deviations of the sums of the questionnaire
results included in the data can be seen in Table 1. All BDI and BAI results
were in the minimal-to-mild symptoms range.

Table 1: Means and standard deviations of the sums of the questionnaire
answers

Questionnaire Mean SD
BVS 17.79 7.67
BIS 23.96 5.70
BAS Drive 14.50 2.87
BAS Fun Seeking 14.96 3.05
BAS Reward Responsiveness 19.61 2.86
BAI 4.71 3.49
BDI 5.46 3.53

With the different questionnaires having such widely differing answer
scales, a rank transformation was carried out for the questionnaire variables,
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with the lowest values being replaced with the lowest and highest values with
the highest rank. Tied values were replaced by the mean of the correspond-
ing tied ranks. Tied questionnaire variable values were much more prominent
in the BDI, BAI and the three BAS variables, for which the answers of 28
subjects resulted in only 10 to 12 unique sum values. For the BDI and BAI
variables, this can be explained by all of the subjects scoring in the minimal
to mild symptom range of 0 to 18, resulting in many equal scores. For the
BAS variables, each of the scores are the results of sums of a fairly small
number of 4-point Likert-scale items, so for 28 subjects many similar scores
are likely.

Sample correlations of the questionnaire variables can be seen in Figure
3.1. Notably, the two clinical inventories, BDI and BAI are positively corre-
lated with each other and the BIS and BVS questionnaires, while the BAS
scales seem positively correlated with each other, but weakly or negatively
correlated with all other questionnaire variables. The relatively high positive
correlations between BAI, BIS and BVS seem natural since both body vigi-
lance and the behavioral inhibition system are closely associated with anxiety
sensitivity (Carver and White, 1994; Schmidt, Lerew, and Trakowski, 1997).
Similarly, the positive correlations between the BAS scales seems reasonable,
since they all measure different types of behavioral activation.
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Figure 3.1: Correlation matrix of the questionnaire variables after rank trans-
formation. Blue indicates positive, and red negative correlation.
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3.2 MEG measurements
Since the aim of the analysis was to focus on the α-frequency band of

the MEG recordings, the mean value of frequencies 7–12 Hz was calculated
for each of the 1–40 Hz power spectrums, resulting in 56 data matrices of
size 306 × 1 containing only the α-activity measurements during the MEG
recording of the interoception and exteroception tasks. Then the difference
in α-power between each task for each subject was calculated by subtracting
the exteroception measurements from the interoception measurements, and
the results were combined into one 28 × 306 data matrix, where each row
corresponds to the α-power difference or contrast in each of the 306 channels
between the two tasks for a single subject. As the channels are distributed
evenly in groups of three around the head during an MEG recording, one of
the 102 corresponding spatial location on the cerebral cortex can be discerned
from the number of a channel.

As an example, the α-power contrast values of the 306 MEG channel vari-
ables for a single subject are plotted in Figures 3.2 and 3.3. As the channel
variables are grouped in the data in groups of three as they are in the MEG
sensor units, i.e. magnetometer, and two perpendicular planar gradiometers,
Figure 3.2 shows every third channel variable of the data set, the magnetome-
ter channels, and Figure 3.3 shows the alternating planar gradiometers. For
example, channel 1 from Figure 3.2 and channels 1 and 2 from Figure 3.3 all
together form the three sensors of the first sensor unit. From the two figures
can be discerned that the magnetometer variables gain considerably smaller
values than the planar gradiometer variables. This is due to magnetometers
measuring magnetic fields in different units than planar gradiometers. Simi-
lar shapes of the plots in Figures 3.2 and 3.3 show how channels of the same
sensory unit gain similar values, despite the difference in scales. If plotted
in the same figure, magnetometer alpha-powers would not be distinguishable
from zero due to the scale difference.
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Figure 3.2: Scatter plot of 102 magnetometer channel variables for one sub-
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4 Analysis
This section describes the analyses carried out to investigate the associa-

tions between the questionnaire and MEG measurement variables, with the
aim of discovering combinations of psychological traits associated with dis-
tinct patterns of α-activity during the interoception task, and comparing the
practicability of the analysis methods for this research problem. Four sep-
arate analyses were performed using SCCA described in Section 2.3. First,
SCCA was used without any regularization, effectively performing equivalent
analysis to classical CCA on a high dimensional data set, for which the CCA
described in Section 2.1 would be unfeasible due to the larger amount of
MEG variables compared to the sample size. Second, SCCA with regulariza-
tion was carried out to induce sparse canonical coefficients to reveal the most
relevant variables for the canonical pairs and to produce more interpretable
results. Third, principal component analysis was used to reduce the dimen-
sions of the MEG variable set, and SCCA was performed substituting the
MEG variables with a set of 12 principal component score variables, account-
ing for 95% of the variance in the MEG variable set. For the fourth analysis,
the third principal component was omitted from the data due to it possibly
accounting for a heart beat artifact, i.e. noise irrelevant to the α-activity,
and similar analysis to the previous one was carried out. The results of these
analyses are reported in Section 5.

Each of the four analyses involved estimation of seven canonical pairs,
number of which is determined by the number of variables in the smaller
variable set, in this case the questionnaire variables. Functions provided in
the supplementary material of Mai and Zhang (2019) were used to determine
the initial values for the SCCA algorithm, performing cross-validations for
choosing the tuning parameters of the first canonical pair and calculating
the estimates of the canonical pairs. Cross-validation function intended for
the first canonical pair from the material was further modified for use with
canonical pairs beyond the first one. This involved altering the function to
estimate ρ-values based on a given pair number, instead of the first pair. The
altered version of the supplementary code from Mai and Zhang (2019) used
for the analysis can be found in Appendix D.

Since the sample size of 28 subjects is fairly low, splitting the data into
training and validation sets for the purpose of choosing the optimal tuning
parameter values seems impractical. Instead, k-fold cross-validation, as de-
scribed in Section 2.3, was used to choose the tuning parameters for each
canonical pair. 5-fold cross-validation was chosen for this purpose, leaving 5
to 6 observations for each validation set, achieving a decent balance between
the bias and variance for the cross-validation, and being computationally
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manageable when performed seven times for three separate analyses. The
first analysis did not require cross-validation, since the tuning parameters
were all set to zero.

The initialization values for the SCCA algorithm in each analysis were
calculated using functions of the supplementary material of Mai and Zhang
(2019), choosing the first initialization method described in Section 2.3.
This choice was made motivated by the result that the second initialization
method, assuming that the canonical pairs are excessively sparse, assigned
all canonical weight on a single variable in the smaller, questionnaire set, and
performed worse in the terms of the cross-validation performance measure ρ.

Permutation tests similar to the ones performed by Witten, Tibshirani,
and Hastie (2009) and Mai and Zhang (2019) were used to test the validity
of the first canonical pair. For each analysis, the questionnaire variable set
was permuted N times, and SCCA was applied again to calculate the first
canonical pairs using the permuted variable sets and the MEG variables
corresponding to the analysis. Then, canonical correlations ĉi, i = 1, . . . , N
of each of the N new pairs were calculated and a p-value was computed as
1
N

∑N
i=1 = I(ĉi > ĉ), where ĉ is the canonical correlation of the first pair

calculated using the original data, and I denotes an indicator function for
which

I =

1 when ĉi > ĉ,
0 when ĉi ≤ ĉ.

N = 500 was chosen as a compromise between adequate accuracy and rea-
sonable computation time.

In the first analysis, SCCA was used without any regularization, meaning
tuning parameters λa and λb were both set to be zero, allowing the equivalent
of the classical CCA to be performed even with the number of 306 MEG vari-
ables greatly exceeding the number of 28 observations. Since the scales of the
MEG measurements differ based on the sensor types, data standardization
was used to diminish the effect of scale differences, of giving too much empha-
sis on the measurements taken by the planar gradiometers. So in practice,
the sample correlation matrices instead of the sample covariance matrices
were used in calculating the canonical pairs with SCCA, which was also the
case in the other three analyses. Since no regularization was used, the result-
ing canonical pairs give non-zero weights to all variables, which makes the
interpretation of the canonical weights exceedingly difficult. Additionally,
with such a high number of MEG variables the SCCA is able to find seven
canonical pairs with extremely high canonical correlations, making it difficult
to discern which pairs would be most relevant for further interpretation.

The second analysis incorporated regularization by applying SCCA after
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choosing separate tuning parameters for the two variable sets via 5-fold cross-
validation. The l1 penalty was used for both variable sets in all three analyses
which used regularization, as this penalty produces sparse canonical weights
more desirable for interpretation. Two groups of 25 candidate penalty values
were set, each ranging from 0.001 to 0.049 with an increment of 0, 002 between
each value, which formed a 25 × 25 grid of possible λa and λb combinations.
The combination resulting in the largest ρ-value in the 5-fold cross-validation
was chosen for the SCCA. This search for optimal tuning parameters was
repeated for each canonical pair separately. However, the tuning parameter
of the MEG variable set for the seventh canonical pair was lowered to avoid
excessive penalization resulting in zero weights for all variables, since the
cross-validation favored a relatively high λa-value.

The resulting canonical weights are considerably more sparse for each
variable set, making the questionnaire weights especially better for interpre-
tation. However, the MEG coefficients corresponding to just a few individ-
ual sensor locations are challenging to interpret from a theoretical α-activity
standpoint, considering the relatively low spatial resolution of MEG, while
larger areas of activation might be more desirable. Also, all of the canon-
ical correlations are still extremely high, making all pairs close to equal in
interpretational importance.

For the third analysis, the number of variables in the MEG set were re-
duced via principal component analysis, by substituting the MEG variables
with the scores of the first 12 principal components. Figure 4.1 illustrates
the non-zero eigenvalues of the principal components calculated from the
standardized MEG data, and Figure 4.2 shows the variance explained by the
same principal components, quickly diminishing after the sixth component.
The number of components to use was determined by including enough prin-
cipal components to account for 95% of the variance in the data, which was
achieved with 12 components. The analysis was performed similarly to the
second analysis, but now with 7 and 12 variables in the two sets, resulting
in a noticeable drop-off in the canonical correlations of the estimated pairs.
The canonical weights of the principal component score variables also pro-
duce larger groups of MEG sensor locations gaining similar weights, when
the principal component rotation matrix is used to calculate the canonical
weights for the original 306 variables. These larger areas of activation are
more desirable for interpretation as they are more in line with the spatial
resolution of MEG.

Lastly, the previous analysis was performed again without the scores of
the third principal component, as it was deemed possible to represent a heart
artifact, which would represent noise unrelated to α-activity of interest. The
remaining 11 principal components accounted for roughly 83% of the vari-
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ance in the MEG data. The tuning parameter associated with the principal
component variable set of the second canonical pair was lowered to avoid
all score variables gaining zero weights, since cross-validation resulted in a
relatively high tuning parameter value being chosen.
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Figure 4.1: Scree plot, eigenvalues the of the 28 non-zero principal compo-
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5 Results
This section presents the results of the four analyses described in Section

4. Only the MEG figures relevant to interpretation and illustrative examples
of the results are included, while all other figures are included in Appendix
A. The analysis results are discussed in the same order as the analyses in the
previous section.

5.1 SCCA without penalization
When no penalization is used, all canonical coefficients of each canonical

pair gain non-zero values as can be seen in Table 2 for the questionnaire
variables. Plots of the coefficient values gained by the MEG variables for the
first canonical pair are presented in Figure 5.1. Each of the plots shows a 102
sensor unit array that surrounds the head during an MEG imaging, and a
top-down illustration of a head to help approximate the areas the sensor units
correspond to. The sensor array points are used to create a topographic map
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of the sensors i.e. the MEG variables that gain coefficient values, with blue
signifying negative, red positive and white zero coefficient values. While there
are three types of sensors, four images are plotted for each canonical pair,
the magnetometers, the two types of planar gradiometers individually, and
a plot showing the root mean squares (RMS) of the two planar gradiometers
in each sensor location. This last type of plot shows a better overall view of
the coefficients gained by the planar sensors, but due to RMS, all coefficients
are positive valued. Figure 5.1 and other MEG coefficient plots were created
using the MNE-Python package (Gramfort et al., 2013). The time stamps
at the top and units of measure should be ignored.

The coefficients of the magnetometer variables are shown in Figure 5.1a,
while the root mean square values of planar gradiometer variables are shown
in Figure 5.1b. From Figure 5.1 can be seen that all MEG variables gain non-
zero coefficients, as no sensor locations appear completely white. Also, the
signs of the coefficients vary frequently from sensor to sensor, making inter-
pretations of α-activity in the corresponding brain areas difficult, as MEG’s
spatial resolution would not be enough to detect such frequent changes in
magnetic fields. Larger joint areas of similar coefficient values would be more
desirable for interpretation. Additionally, Table 3 shows that the canonical
correlations of all canonical pairs are extremely close to one, making priori-
tization for interpretation between canonical pairs highly difficult.

Table 2: Canonical coefficients of the questionnaire variables for all seven
canonical pairs from SCCA without penalization.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7
BDI -0.449 0.377 -0.546 0.038 0.874 -0.321 -0.132
BAI -0.564 0.194 -0.042 -0.989 -0.406 0.221 0.382
BAS Drive 0.134 0.373 0.520 -0.422 0.845 -0.255 0.567
BAS Fun -0.226 0.404 -0.191 0.425 -0.203 -0.231 0.977
BAS Reward 0.075 0.321 0.084 0.173 -0.622 -0.468 -1.026
BIS -0.101 0.053 0.459 0.552 -0.157 1.301 -0.149
BVS -0.169 -0.460 0.462 0.529 0.044 -1.287 0.335
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(a) Magnetometer channels (b) Planar gradiometer channels

Figure 5.1: Pair 1 canonical coefficients of magnetometer channels and root
mean squares of coefficients of planar gradiometer channels plotted according
to sensor locations from SCCA without penalization.

Table 3: Canonical correlations of all canonical pairs from SCCA without
penalization.

Pair number 1 2 3 4 5 6 7
Canonical correlation 0.999 0.999 0.999 0.999 0.999 0.999 0.999

5.2 SCCA with penalization
Figure 5.2 shows a perspective plot of the cross-validation performance

measure ρ in the 25 × 25 grid of candidate tuning values between 0 and
0.049, for the first canonical pair. The cross-validation can be seen to be
quite unstable with many possible ρ-values gaining similar large values. This
instability can cause largely varying tuning parameter values being chosen
for different cross-validations. As an example, cross-validation of the first
canonical pair resulted in values λa = 0.013 and λb = 0.039 prompting very
sparse coefficients for the first canonical pair. Table 4 lists the canonical
coefficients for the questionnaire variables for each canonical pair, and it can
be seen that the sparsity between pairs varies highly, with the third pair
being reduced to almost one variable and pairs 2 and 5 barely retaining all
non-zero coefficients.
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•

Figure 5.2: ρ-values plotted in the 25×25 grid of candidate tuning parameter
values.

Table 4: Canonical coefficients of the questionnaire variables for all seven
canonical pairs from SCCA with penalization.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7
BDI 0 -0.541 0 0 0.794 0.592 -0.540
BAI -0.979 0.096 0 -0.625 -0.330 0.244 0.095
BAS Drive 0 -0.304 1.009 0 0.018 0.629 0.112
BAS Fun -0.479 -0.194 0 0.207 0.596 0 0.857
BAS Reward -0.099 -0.061 0 0 0.031 -1.070 -0.719
BIS 0 1.354 0 0.606 -0.047 0.126 0
BVS 0 -1.212 0.050 0.814 -0.256 -0.142 0.267
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Similarly, Figure 5.3 illustrates that the MEG variable coefficients are
highly sparse after penalization, showing high coefficient values for only a
few sensor areas for both magnetometer and planar gradiometer variables.
From an interpretational standpoint, the first canonical pair seems much
simpler to interpret when compared to coefficients of the first canonical pair
from the first analysis. As an example, a possible interpretation would be
that higher α-activity during the interoception task in the left parietal and
right frontal lobe (positive areas of Figure 5.3) would be associated with
lower scores on the Beck Anxiety Inventory and Fun seeking section of the
BAS Scale, while higher α-activity in the left frontal lobe (negative areas of
Figure 5.3) during the interoception task would be associated with higher
scores on the same questionnaires. The second set of planar channels were
ignored in this example since coefficients shown in Figure 5.3b seem larger
based on Figure 5.4, showing the RMS of planar channel coeffiecients. This
interpretation is done without expert knowledge of the field and should be
treated only as an illustrative interpretation of the method used.

(a) Magnetometer channels (b) Planar 1 channels

Figure 5.3: Pair 1 canonical coefficients of magnetometer channels and coeffi-
cients of planar 1 gradiometer channels plotted according to sensor locations
from penalized SCCA. Areas approximately in the left parietal and the right
frontal lobe gain positive coefficients and an area in the left frontal lobe gains
negative coefficients.
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Figure 5.4: Root mean squares of canonical coefficients of planar gradiometer
channels for the first canonical pair.

As shown in Table 5 all canonical pairs still have very high canonical
correlations, and not much difference in these values makes choosing pairs for
interpretation difficult. To remedy this issue, Principal Component Analysis
was used to decrease the number of variables in the MEG variable set, as
described in Section 4.

Table 5: Canonical correlations of all canonical pairs from SCCA with pe-
nalization.

Pair number 1 2 3 4 5 6 7
Canonical correlation 0.992 0.992 0.979 0.960 0.961 0.966 0.943

5.3 SCCA with 12 principal components
To give some interpretation to the first few principal components (PCs),

the first PC gives all sensor variables similar weights, acting as a mean value
component, while the other PCs give different weights to sensors in different
brain areas. Figure 5.5 illustrates the principal component loading of the
second and the third PC. From Figure 5.5a can be seen that the second PC
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gives opposing weights to sensor variables in the frontal and posterior parts
of the head. Figure 5.5a shows how the third PC gives opposing weights to
sensors situated at the top and the peripheral areas of the head. As further
examples but not illustrated here, the fourth PC assigns opposing weights to
the right side of the head as opposed to the top and peripheral areas, and
the fifth PC gives opposite weights to the left side of the head as opposed to
all other areas. The first 12 PCs included in this analysis explained 95% of
the variance in the data.

(a) Second principal component loadings (b) Third principal component loadings

Figure 5.5: Second and third principal component loadings plotted according
to sensor locations.

With a much lower number of 12 PC score variables replacing the 306
MEG variables, the canonical correlations as seen in Table 6 show a clear
drop-off in value for the larger pair numbers. This indicates a higher impor-
tance for the first few canonical pairs in terms of interpretation. However,
tuning parameters chosen by cross-validation achieve less sparsity on the co-
efficients of each variable set as can be seen from Tables 7 and 8, showing
all coefficients of the canonical pairs for each variable set. Despite lack of
sparsity, similarities to the previous analysis questionnaire coefficients can
be seen in Tables 7 and 4. For the first canonical pair, BAI and BAS Fun
questionnaires still gain large coefficients with same signs, but the signs dif-
fer between the analyses. However, this sign change does not change the
interpretation of the pair entirely, since the signs of the coefficients seen in
topographic maps in Figures 5.3b and 5.6b also change. The magnetometer
channel coefficients seen in Figure 5.6a now show somewhat similar area ac-
tivations as well, while the left frontal lobe still gains high coefficient values
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similar to coefficients seen in Figure 5.3. Also in the second canonical pair,
BIS and BVS gain high opposing weights in both analyses.

Table 6: Canonical correlations of all canonical pairs from SCCA using 12
principal components.

Pair number 1 2 3 4 5 6 7
Canonical correlation 0.930 0.844 0.783 0.684 0.508 0.513 0.234

Table 7: Canonical coefficients of the questionnaire variables for all seven
canonical pairs from SCCA using 12 principal components.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7
BDI 0.116 0.220 1.045 -0.360 0.361 -0.186 0
BAI 0.850 -0.583 -0.114 0 0 -0.641 0
BAS Drive -0.433 0 0.492 0.471 0.127 -0.705 -0.672
BAS Fun 0.503 0.233 0.455 0.462 -0.053 0.511 -0.437
BAS Reward 0.035 0 -0.697 -0.634 0.792 0.468 0
BIS 0.298 0.772 -0.621 0.687 0 -0.252 0.522
BVS -0.546 -0.700 0.398 0.508 0.329 0.963 0

The coefficient values for the original MEG variables to produce Figure
5.6 were calculated by multiplying the rotation matrix of the principal com-
ponent analysis by the SCCA coefficient matrix, values of which are shown
in Table 8. The resulting topographic maps, as seen in Figure 5.6, of the sen-
sor variable coefficients show much larger areas of similarly signed weights,
preferable for topographic map interpretation of brain areas. These maps
are more in line with the spatial resolution of MEG.
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Table 8: Canonical coefficients of the principal component score variables
from SCCA using 12 principal components.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7
PC1 -0.311 0.097 -0.363 0.586 -0.186 0.296 -0.138
PC2 0.106 0.398 -0.406 0.030 0.448 -0.074 0.407
PC3 -0.480 0.265 -0.059 -0.417 0.010 -0.184 -0.212
PC4 -0.061 -0.030 -0.237 -0.009 -0.125 -0.104 -0.364
PC5 0.362 0.058 -0.070 -0.255 -0.674 -0.213 0.409
PC6 0 -0.423 -0.597 -0.005 -0.088 -0.335 0
PC7 -0.095 -0.305 -0.238 -0.152 -0.090 -0.069 0
PC8 -0.027 -0.634 0.136 0.042 0.391 -0.107 0
PC9 0.213 -0.004 -0.442 -0.441 0.283 0.336 0
PC10 0.684 0.050 -0.013 0.231 0.110 0.016 -0.476
PC11 -0.061 -0.223 -0.090 0.120 -0.184 0.479 0.444
PC12 0 0.178 -0.059 0.360 0 -0.588 0.217

(a) Magnetometer channels (b) Planar1 channels

Figure 5.6: Pair 1 canonical coefficients of magnetometer channels and pla-
nar1 gradiometer channels plotted according to sensor locations from SCCA
using 12 principal components.
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5.4 SCCA with 11 principal components
Based on expert opinion of Tiina Parviainen from the Center for Interdis-

ciplinary Brain Research (CIBR), the third principal component was identi-
fied as a possible heart artifact, and was removed from the data for a final
analysis with 11 PCs, explaining 83% of the variance in the MEG data. Table
9 shows that the canonical correlations diminish even more when the number
of variables in the PC score set is further dropped by one. The canonical
coefficient values for the questionnaire variables now differ considerably from
previous analyses, with BDI and BVS gaining largest weights in addition to
BAS Fun for the first pair, and BAI and BAS Drive for the second pair. The
first pair planar gradiometer variables still retain high weights for the left
occipital lobe, however, as shown by Figures 5.6b and 5.7b as a red area in
the lower left of both figures. The magnetometer variables also show slight
similarities in weights in Figures 5.6a and 5.7a

Table 9: Canonical correlations of all canonical pairs from SCCA using 11
principal components.

Pair number 1 2 3 4 5 6 7
Canonical correlation 0.875 0.817 0.739 0.545 0.554 0.409 -0.398

Table 10: Canonical coefficients of the questionnaire variables from SCCA
using 11 principal components.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7
BDI 0.518 -0.177 -0.953 0.218 0.035 0.400 0.459
BAI 0 0.987 0 0.267 -0.478 0.200 0
BAS Drive -0.130 -0.599 0 0.493 -0.256 0.843 -0.231
BAS Fun 0.600 -0.083 0 0.223 -0.546 -0.470 0
BAS Reward 0 0.472 0.188 0 1.209 0 -0.714
BIS 0.478 -0.210 0.953 0 0 0 0
BVS -0.646 -0.483 -0.247 0.758 0 -0.641 0.042
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(a) Magnetometer channels (b) Planar gradiometer channels

Figure 5.7: Pair 1 canonical coefficients of magnetometer channels and root
mean squares of coefficients of planar gradiometer channels plotted according
to sensor locations from SCCA using 11 principal components.

As a final note to this section, the p-values of the permutation tests
performed on the first canonical pair of each analysis can be found in Table
11. None of the first canonical pairs are significant, since all of the p-values
are much greater than 0.05.

Table 11: p-values of the permutation tests performed on the first canonical
pairs of each of the four analyses

Analysis CCA SCCA 12 PC SCCA 11 PC SCCA
p-value 0.26 0.76 0.31 0.49

6 Conclusion
None of the first canonical pairs of the four previous analyses were signifi-

cant based on the permutation tests described in Section 4, so interpretations
of the results should be made with caution. Also, patterns most expected
based on the correlation matrix of the questionnaire variables in Figure 3.1
were not found, that is, opposing weights to the three BAS variables and any
of the other questionnaire variables, and similarly signed weights to the four
strongly correlated questionnaires, BDI, BAI, BIS and BVS.
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The most consistent results were the similarly signed high weights for
BAI and BAS Fun seeking in the first canonical pair and oppositely signed
high weights of BIS and BVS for the second pair in analyses using SCCA
with penalization and SCCA with 12 PCs. The sensor variables in these
pairs also gained somewhat similar weights, even though the latter analysis
had weaker sparsity in the coefficients. As to the research question, the lower
BAI and BAS Fun scores associated with higher α-activity in the left parietal
and right frontal lobe and and higher BAI and BAS Fun scores associated
with higherα-activity in the left frontal lobe during the interoception task
would be the main observed pattern, but without significant canonical pairs,
the result seems speculative.

Overall, sparse canonical correlation eases the interpretation of canonical
pairs in high dimensional setting, where several coefficients gain similarly
high values, and can help reveal variables of most interest. With MEG data,
however, overly sparse coefficients corresponding to certain brain areas can
be questionable to interpret, when the spatial resolution of MEG should
not be able to identify large changes in magnetic field of neighboring areas.
For this purpose, the larger areas of activation present in topographic maps
produced from PCA score variables are more beneficial. PCA is also use-
ful when dimension reduction achieves smaller canonical correlations of the
canonical pairs by limiting the number of variables available for SCCA. This
can help discern canonical pairs which are most important for interpretation.
Still dimension reduction feels counter-intuitive for SCCA, method created
specifically for high dimensional data. Maybe the problem of several pairs of
high correlation can be circumvented by focusing only on the first canonical
pair.

To further the analyses carried out, a larger sample size might help with
stabilizing the cross-validations to achieve more consistent tuning parameter
values. This might be problematic with MEG, when collecting data takes
considerable time and effort. With a large enough sample, dedicated test and
validation sets could be used to validate the choice of tuning parameters, as
was done by Mai and Zhang (2019). Also increasing folds in the k-fold
cross-validation could remedy the instability, with the cost of computation
time. Performing fairly unstable cross-validation for each canonical pair leads
to inconsistent choices of tuning parameters between different analyses. If
easier interpretation is the main goal of the analysis, the tuning parameter
values could also be set manually for each pair to produce sufficiently sparse
coefficients, with the cost of canonical correlations.

Also using different penalization for the MEG variables might improve the
analyses, since the l1 penalty does not take into consideration the grouping
of the sensors in the sensor units. Especially the group lasso penalty could be
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ideal for this data, to include or drop the sensor variables as groups defined
by the sensor units.
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Appendix A
The canonical coefficient plots for the MEG variables for each canonical pair
of each analysis are included in this appendix section. Each canonical pair
has plots in groups of 4, canonical coefficients of the magnetometer channels
(top left), the root mean squares of the planar gradiometer channels (top
right) the planar gradiometer 1 (bottom left) and the planar gradiometer 2
channels (bottom right) plotted separately. Each of the four analyses has 28
plots, four plots for each of the seven canonical pairs.
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A1: CCA Canonical pair 1
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A2: CCA Canonical pair 2
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A3: CCA Canonical pair 3
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A4: CCA Canonical pair 4
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A5: CCA Canonical pair 5
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A6: CCA Canonical pair 6
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A7: CCA Canonical pair 7
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A8: SCCA Canonical pair 1
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A9: SCCA Canonical pair 2
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A10: SCCA Canonical pair 3
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A11: SCCA Canonical pair 4
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A12: SCCA Canonical pair 5
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A13: SCCA Canonical pair 6
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A14: SCCA Canonical pair 7
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A15: PCA12 Canonical pair 1
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A16: PCA12 Canonical pair 2
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A17: PCA12 Canonical pair 3
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A18: PCA12 Canonical pair 4
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A19: PCA12 Canonical pair 5
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A20: PCA12 Canonical pair 6
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A21: PCA12 Canonical pair 7
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A22: PCA11 Canonical pair 1
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A23: PCA11 Canonical pair 2
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A24: PCA11 Canonical pair 3
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A25: PCA11 Canonical pair 4
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A26: PCA11 Canonical pair 5
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(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A27: PCA11 Canonical pair 6

66



(a) Magnetometers (b) Gradiometer RMS

(c) Planar1 (d) Planar2

Figure A28: PCA11 Canonical pair 7
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Appendix B
The R code used to perform the four SCCA analyses is included in this
appendix section.

1 # Data preparation. As the data is not publicly available, reading
data into R is commented out

2 # Reading MEG data
3 # alphadif <- read.csv("MEG_data.csv", header = FALSE)
4 # alphadif <- as.matrix(alphadif)
5 # Reading questionnaire data
6 # library(readxl)
7 # quest <- read_excel("Questionnaire_data.xlsx")
8 #quest <- quest[-c(2, 11, 14), ] # Removing NA rows
9 #quest <- quest[, 2:9] # Removing subject ID column

10 #quest <- quest[, -7] # Dropping sum of BISBAS, keeping BDI, BAI,
BIS, BAS and BVS

11 #rquest <- as.matrix(sapply(quest[, 1:7], rank)) # Rank
transformation, ties averaged for the remaining 7 variables

12
13 # Analysis 1: CCA i.e. SCCA without penalization
14 # Loading SCCA implementation code and required libraries
15 library(glmnet)
16 source("SCCA_functions_Koskinen.R") # Assumes SCCA_functions_

Koskinen.R is in the working directory
17 # Sample covariances
18 sigma.X.hat <- cov(rquest) # Questionnaires = X
19 sigma.Y.hat <- cov(alphadif) # MEG data = Y
20 sigma.YX.hat <- cov(alphadif, rquest)
21 # Initial values for CCA
22 initsvd1 <- init0(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", npairs =
1, n = 28)

23 # Calculating first canonical pair, Unpenalized CCA, both lambdas =
0

24 CCAresult1 <- SCCA(rquest, alphadif, lambda.alpha = 0, lambda.beta
= 0, alpha.init = initsvd1$alpha.init, beta.init = initsvd1$beta
.init, niter = 200, standardize = TRUE)

25 # CAlculating the other six canonical pairs similarly
26 # Pair 2
27 initsvd2 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 2, npairs0 = 1, alpha.current = CCAresult1$alpha, beta.
current = CCAresult1$beta)
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28 CCAresult2 <- SCCA(rquest, alphadif, lambda.alpha = 0, lambda.beta
= 0, alpha.current = CCAresult1$alpha, beta.current = CCAresult1
$beta, alpha.init = initsvd2$alpha.init, beta.init = initsvd2$
beta.init, niter = 200, npairs = 2)

29 # Pair 3
30 initsvd3 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 3, npairs0 = 2, alpha.current = CCAresult2$alpha, beta.
current = CCAresult2$beta)

31 CCAresult3 <- SCCA(rquest, alphadif, lambda.alpha = 0, lambda.beta
= 0, alpha.current = CCAresult2$alpha, beta.current = CCAresult2
$beta, alpha.init = initsvd3$alpha.init, beta.init = initsvd3$
beta.init, niter = 200, npairs = 3)

32 # Pair 4
33 initsvd4 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 4, npairs0 = 3, alpha.current = CCAresult3$alpha, beta.
current = CCAresult3$beta)

34 CCAresult4 <- SCCA(rquest, alphadif, lambda.alpha = 0, lambda.beta
= 0, alpha.current = CCAresult3$alpha, beta.current = CCAresult3
$beta, alpha.init = initsvd4$alpha.init, beta.init = initsvd4$
beta.init, niter = 200, npairs = 4)

35 # Pair 5
36 initsvd5 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 5, npairs0 = 4, alpha.current = CCAresult4$alpha, beta.
current = CCAresult4$beta)

37 CCAresult5 <- SCCA(rquest, alphadif, lambda.alpha = 0, lambda.beta
= 0, alpha.current = CCAresult4$alpha, beta.current = CCAresult4
$beta, alpha.init = initsvd5$alpha.init, beta.init = initsvd5$
beta.init, niter = 200, npairs = 5)

38 # Pair 6
39 initsvd6 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 6, npairs0 = 5, alpha.current = CCAresult5$alpha, beta.
current = CCAresult5$beta)

40 CCAresult6 <- SCCA(rquest, alphadif, lambda.alpha = 0, lambda.beta
= 0, alpha.current = CCAresult5$alpha, beta.current = CCAresult5
$beta, alpha.init = initsvd6$alpha.init, beta.init = initsvd6$
beta.init, niter = 200, npairs = 6)

41 # Pair 7
42 initsvd7 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,

69



npairs = 7, npairs0 = 6, alpha.current = CCAresult6$alpha, beta.
current = CCAresult6$beta)

43 CCAresult7 <- SCCA(rquest, alphadif, lambda.alpha = 0, lambda.beta
= 0, alpha.current = CCAresult6$alpha, beta.current = CCAresult6
$beta, alpha.init = initsvd7$alpha.init, beta.init = initsvd7$
beta.init, niter = 200, npairs = 7)

44 # Calculating canonical correlations of each pair
45 cc <- rep(0, 7)
46 for (i in 1:7) {
47 cc[i] <- cor(scale(rquest) %*% CCAresult7$beta[, i], scale(

alphadif) %*% CCAresult7$alpha[, i])
48 }
49 # Beta (questionnaire) coefficients for all 7 pairs
50 round(CCAresult7$beta, 3)
51 # Significance testing function of the first canonical pair, CCA

version
52 signiCCA <- function(N, x, y, ccor) {
53 counter <- 0
54 for (i in 1:N) { # Creating permutations of the data
55 samx <- sample(nrow(x), 28, replace = FALSE)
56 X1 <- x[samx, ]
57 Y1 <- y
58
59 # Calculating first pair with permuted data, increasing counter

if resulting correlation larger than that of original data
60 CCAres <- SCCA(X1, Y1, lambda.alpha = 0, lambda.beta = 0, init.

method = "svd", niter = 200, standardize = TRUE)
61 c <- cor(scale(X1) %*% CCAres$beta, scale(Y1) %*% CCAres$alpha)
62
63 if (c > ccor) {
64 counter <- counter + 1
65 }
66 }
67 counter / N # p-value, number of times canonical correlation was

larger with permuted data / number of permutations
68 }
69 # Calculating the p-value
70 cc1 <- cor(scale(rquest) %*% CCAresult7$beta[, 1], scale(alphadif)

%*% CCAresult7$alpha[, 1])
71 pval <- signiCCA(500, rquest, alphadif, cc1)
72
73 # Analysis 2: SCCA, lambda values chosen via 5-fold cross

validation
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74 # Two lambda grids, candidate values for tuning parameter values to
be used

75 lambda1 <- seq(from = 0.001, to = 0.05, by = 0.002) # lambda grid
for MEG-variables (Y)

76 lambda2 <- seq(from = 0.001, to = 0.05, by = 0.002) # lambda grid
for Questionnaire variables (X)

77 # Calculating the first canonical pair
78 # Calculating initial values
79 initsvd1 <- init0(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 1)

80 set.seed(13102024) # Setting seed for reproducibility
81 # Using cross-validation function for the first canonical pair to

choose tuning parameter values
82 tuningsvd1 <- cv.SCCA(x = rquest, y = alphadif, lambda.alpha =

lambda1, lambda.beta = lambda2, alpha.init = initsvd1$alpha.init
, beta.init = initsvd1$beta.init, nfolds = 5, niter = 10)

83 # Using the chosen tuning parameter values to calculate the first
canonical pair

84 SCCAresult1 <- SCCA(rquest, alphadif, lambda.alpha = tuningsvd1$
bestlambda.alpha, lambda.beta = tuningsvd1$bestlambda.beta,
alpha.init = initsvd1$alpha.init, beta.init = initsvd1$beta.init
, niter = 200, npairs = 1)

85 # Perspective plot of the rho values in the 5-fold cross-validation
.

86 persp(lambda1, lambda2, tuningsvd1$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣first␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

87 # Canonical correlation of first pair of the second analysis
88 cc2 <- cor(scale(rquest) %*% SCCAresult1$beta, scale(alphadif) %*%

SCCAresult1$alpha)
89 # Significance testing funcion of first canonical pair, p-values as

in the paper, SCCA version
90 signi <- function(N, x, y, lambda.a, lambda.b, ccor) {
91 counter <- 0
92 for (i in 1:N) {
93 samx <- sample(nrow(x), 28, replace = FALSE)
94 X1 <- x[samx, ]
95 Y1 <- y
96
97 SCCAres <- SCCA(X1, Y1, lambda.alpha = lambda.a, lambda.beta =

lambda.b, init.method = "svd", niter = 200, standardize =
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TRUE)
98 c <- cor(scale(X1) %*% SCCAres$beta, scale(Y1) %*% SCCAres$alpha

)
99 if (c > ccor) {

100 counter <- counter + 1
101 }
102 }
103 counter / N
104 }
105 # Calculating the p-value
106 pval <- signi(500, rquest, alphadif, tuningsvd1$bestlambda.alpha,

tuningsvd1$bestlambda.beta, cc2)
107 # Other six canonical pairs calculated like the first pair, but

using modified cv-function
108 # Pair 2
109 initsvd2 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 2, npairs0 = 1, alpha.current = SCCAresult1$alpha, beta
.current = SCCAresult1$beta)

110 set.seed(13102024)
111 # Using the cross validation function modified for pairs beyond the

first one
112 tuningsvd2 <- cv.SCCA2(x = rquest, y = alphadif, lambda.alpha =

lambda1, lambda.beta = lambda2, alpha.init = initsvd2$alpha.init
, beta.init = initsvd2$beta.init, nfolds = 5, niter = 10, alpha.
cur = SCCAresult1$alpha, beta.cur = SCCAresult1$beta, npair = 2)

113 SCCAresult2 <- SCCA(rquest, alphadif, lambda.alpha = tuningsvd2$
bestlambda.alpha, lambda.beta = tuningsvd2$bestlambda.beta,
alpha.current = SCCAresult1$alpha, beta.current = SCCAresult1$
beta, alpha.init = initsvd2$alpha.init, beta.init = initsvd2$
beta.init, niter = 200, npairs = 2)

114 persp(lambda1, lambda2, tuningsvd2$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣second␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda
.beta")

115 # Pair 3
116 initsvd3 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 3, npairs0 = 2, alpha.current = SCCAresult2$alpha, beta
.current = SCCAresult2$beta)

117 set.seed(13102024)
118 tuningsvd3 <- cv.SCCA2(x = rquest, y = alphadif, lambda.alpha =

lambda1, lambda.beta = lambda2, alpha.init = initsvd3$alpha.init
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, beta.init = initsvd3$beta.init, nfolds = 5, niter = 10, alpha.
cur = SCCAresult2$alpha, beta.cur = SCCAresult2$beta, npair = 3)

119 SCCAresult3 <- SCCA(rquest, alphadif, lambda.alpha = tuningsvd3$
bestlambda.alpha, lambda.beta = tuningsvd3$bestlambda.beta,
alpha.current = SCCAresult2$alpha, beta.current = SCCAresult2$
beta, alpha.init = initsvd3$alpha.init, beta.init = initsvd3$
beta.init, niter = 200, npairs = 3)

120 persp(lambda1, lambda2, tuningsvd3$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣third␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

121 # Pair 4
122 initsvd4 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 4, npairs0 = 3, alpha.current = SCCAresult3$alpha, beta
.current = SCCAresult3$beta)

123 set.seed(13102024)
124 tuningsvd4 <- cv.SCCA2(x = rquest, y = alphadif, lambda.alpha =

lambda1, lambda.beta = lambda2, alpha.init = initsvd4$alpha.init
, beta.init = initsvd4$beta.init, nfolds = 5, niter = 10, alpha.
cur = SCCAresult3$alpha, beta.cur = SCCAresult3$beta, npair = 4)

125 SCCAresult4 <- SCCA(rquest, alphadif, lambda.alpha = tuningsvd4$
bestlambda.alpha, lambda.beta = tuningsvd4$bestlambda.beta,
alpha.current = SCCAresult3$alpha, beta.current = SCCAresult3$
beta, alpha.init = initsvd4$alpha.init, beta.init = initsvd4$
beta.init, niter = 200, npairs = 4)

126 persp(lambda1, lambda2, tuningsvd4$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣fourth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda
.beta")

127 # Pair 5
128 initsvd5 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 5, npairs0 = 4, alpha.current = SCCAresult4$alpha, beta
.current = SCCAresult4$beta)

129 set.seed(13102024)
130 tuningsvd5 <- cv.SCCA2(x = rquest, y = alphadif, lambda.alpha =

lambda1, lambda.beta = lambda2, alpha.init = initsvd5$alpha.init
, beta.init = initsvd5$beta.init, nfolds = 5, niter = 10, alpha.
cur = SCCAresult4$alpha, beta.cur = SCCAresult4$beta, npair = 5)

131 SCCAresult5 <- SCCA(rquest, alphadif, lambda.alpha = tuningsvd5$
bestlambda.alpha, lambda.beta = tuningsvd5$bestlambda.beta,
alpha.current = SCCAresult4$alpha, beta.current = SCCAresult4$
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beta, alpha.init = initsvd5$alpha.init, beta.init = initsvd5$
beta.init, niter = 200, npairs = 5)

132 persp(lambda1, lambda2, tuningsvd5$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣fifth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

133 # Pair 6
134 initsvd6 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 6, npairs0 = 5, alpha.current = SCCAresult5$alpha, beta
.current = SCCAresult5$beta)

135 set.seed(13102024)
136 tuningsvd6 <- cv.SCCA2(x = rquest, y = alphadif, lambda.alpha =

lambda1, lambda.beta = lambda2, alpha.init = initsvd6$alpha.init
, beta.init = initsvd6$beta.init, nfolds = 5, niter = 10, alpha.
cur = SCCAresult5$alpha, beta.cur = SCCAresult5$beta, npair = 6)

137 SCCAresult6 <- SCCA(rquest, alphadif, lambda.alpha = tuningsvd6$
bestlambda.alpha, lambda.beta = tuningsvd6$bestlambda.beta,
alpha.current = SCCAresult5$alpha, beta.current = SCCAresult5$
beta, alpha.init = initsvd6$alpha.init, beta.init = initsvd6$
beta.init, niter = 200, npairs = 6)

138 persp(lambda1, lambda2, tuningsvd6$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣sixth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

139 # Pair 7
140 initsvd7 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 7, npairs0 = 6, alpha.current = SCCAresult6$alpha, beta
.current = SCCAresult6$beta)

141 set.seed(13102024)
142 tuningsvd7 <- cv.SCCA2(x = rquest, y = alphadif, lambda.alpha =

lambda1, lambda.beta = lambda2, alpha.init = initsvd7$alpha.init
, beta.init = initsvd7$beta.init, nfolds = 5, niter = 10, alpha.
cur = SCCAresult6$alpha, beta.cur = SCCAresult6$beta, npair = 7)

143 # lambda.alpha manually lowered to avoid all coefficients shrinking
to zero

144 SCCAresult7 <- SCCA(rquest, alphadif, lambda.alpha = 0.019, lambda.
beta = tuningsvd7$bestlambda.beta, alpha.current = SCCAresult6$
alpha, beta.current = SCCAresult6$beta, alpha.init = initsvd7$
alpha.init, beta.init = initsvd7$beta.init, niter = 200, npairs
= 7)
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145 persp(lambda1, lambda2, tuningsvd7$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣seventh␣canonical␣pair")), xlab = "lambda.alpha", ylab = "
lambda.beta")

146 # Canonical correlation of each canonical pair
147 cc <- rep(0, 7)
148 for (i in 1:7) {
149 cc[i] <- cor(scale(rquest) %*% SCCAresult7$beta[, i], scale(

alphadif) %*% SCCAresult7$alpha[, i])
150 }
151 # Beta (questionnaire) coefficients for all 7 pairs
152 round(SCCAresult7$beta, 3)
153
154 # Analysis 3:SCCA using 12 first principal components of MEG data,

95% of variance explained
155 # Principal component analysis, data standardized
156 pca_alphadif <- prcomp(alphadif, center = T, scale. = T)
157 summary(pca_alphadif)
158 # Screeplot
159 eigen <- pca_alphadif$sdev^2
160 plot(eigen / sum(eigen), type = "o", main = "Screeplot", xlab = "

Principal␣component", ylab = "Percentage␣of␣variance␣explained")
161 # Plotting cumulative proportion of variance explained by each non-

zero principal component
162 plot(1:28, cumsum(eigen / sum(eigen)), type = "o", xlab = "

Component␣number", ylab = "Explained␣variance", main = "
Cumulative␣proportion␣of␣variance␣explained")

163 # Scores of the first 12 PCs used for SCCA
164 Y <- pca_alphadif$x[, 1:12]
165 U <- pca_alphadif$rotation[, 1:12] # PCA rotation matrix of the

first 12 PCs (loadings)
166 # Sample covariances
167 sigma.X.hat <- cov(rquest) # Questionnaires = X
168 sigma.Y.hat <- cov(Y) # MEG data, 12 PCs = Y
169 sigma.YX.hat <- cov(Y, rquest)
170 # Calculating first canonical pair similarly to previous analysis,

12 PCs
171 initsvd1 <- init0(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 1)

172 set.seed(13102024)
173 tuningsvd1 <- cv.SCCA(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd1$alpha.init, beta.
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init = initsvd1$beta.init, nfolds = 5, niter = 10)
174 SCCAresult1 <- SCCA(rquest, Y, lambda.alpha = tuningsvd1$bestlambda

.alpha, lambda.beta = tuningsvd1$bestlambda.beta, alpha.init =
initsvd1$alpha.init, beta.init = initsvd1$beta.init, niter =
200, npairs = 1)

175 persp(lambda1, lambda2, tuningsvd1$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣first␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

176 # Canonical correlation of first pair of the third analysis
177 cc3 <- cor(scale(rquest) %*% SCCAresult1$beta, scale(Y) %*%

SCCAresult1$alpha)
178 cc3
179 # Significance testing for the first canonical pair, SCCA version
180 pval <- signi(500, rquest, Y, tuningsvd1$bestlambda.alpha,

tuningsvd1$bestlambda.beta, cc3)
181 pval
182 # Other six canonical pairs calculated like the first pair, but

using modified cv-function
183 # Pair 2
184 initsvd2 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 2, npairs0 = 1, alpha.current = SCCAresult1$alpha, beta
.current = SCCAresult1$beta)

185 set.seed(13102024)
186 tuningsvd2 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd2$alpha.init, beta.
init = initsvd2$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult1$alpha, beta.cur = SCCAresult1$beta, npair = 2)

187 SCCAresult2 <- SCCA(rquest, Y, lambda.alpha = tuningsvd2$bestlambda
.alpha, lambda.beta = tuningsvd2$bestlambda.beta, alpha.current
= SCCAresult1$alpha, beta.current = SCCAresult1$beta, alpha.init
= initsvd2$alpha.init, beta.init = initsvd2$beta.init, niter =

200, npairs = 2)
188 persp(lambda1, lambda2, tuningsvd2$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣second␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda
.beta")

189 # Pair 3
190 initsvd3 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 3, npairs0 = 2, alpha.current = SCCAresult2$alpha, beta
.current = SCCAresult2$beta)
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191 set.seed(13102024)
192 tuningsvd3 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd3$alpha.init, beta.
init = initsvd3$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult2$alpha, beta.cur = SCCAresult2$beta, npair = 3)

193 SCCAresult3 <- SCCA(rquest, Y, lambda.alpha = tuningsvd3$bestlambda
.alpha, lambda.beta = tuningsvd3$bestlambda.beta, alpha.current
= SCCAresult2$alpha, beta.current = SCCAresult2$beta, alpha.init
= initsvd3$alpha.init, beta.init = initsvd3$beta.init, niter =

200, npairs = 3)
194 persp(lambda1, lambda2, tuningsvd3$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣third␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

195 # Pair 4
196 initsvd4 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 4, npairs0 = 3, alpha.current = SCCAresult3$alpha, beta
.current = SCCAresult3$beta)

197 set.seed(13102024)
198 tuningsvd4 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd4$alpha.init, beta.
init = initsvd4$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult3$alpha, beta.cur = SCCAresult3$beta, npair = 4)

199 SCCAresult4 <- SCCA(rquest, Y, lambda.alpha = tuningsvd4$bestlambda
.alpha, lambda.beta = tuningsvd4$bestlambda.beta, alpha.current
= SCCAresult3$alpha, beta.current = SCCAresult3$beta, alpha.init
= initsvd4$alpha.init, beta.init = initsvd4$beta.init, niter =

200, npairs = 4)
200 persp(lambda1, lambda2, tuningsvd4$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣fourth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda
.beta")

201 # Pair 5
202 initsvd5 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 5, npairs0 = 4, alpha.current = SCCAresult4$alpha, beta
.current = SCCAresult4$beta)

203 set.seed(13102024)
204 tuningsvd5 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd5$alpha.init, beta.
init = initsvd5$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult4$alpha, beta.cur = SCCAresult4$beta, npair = 5)
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205 SCCAresult5 <- SCCA(rquest, Y, lambda.alpha = tuningsvd5$bestlambda
.alpha, lambda.beta = tuningsvd5$bestlambda.beta, alpha.current
= SCCAresult4$alpha, beta.current = SCCAresult4$beta, alpha.init
= initsvd5$alpha.init, beta.init = initsvd5$beta.init, niter =

200, npairs = 5)
206 persp(lambda1, lambda2, tuningsvd5$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣fifth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

207 # Pair 6
208 initsvd6 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 6, npairs0 = 5, alpha.current = SCCAresult5$alpha, beta
.current = SCCAresult5$beta)

209 set.seed(13102024)
210 tuningsvd6 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd6$alpha.init, beta.
init = initsvd6$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult5$alpha, beta.cur = SCCAresult5$beta, npair = 6)

211 SCCAresult6 <- SCCA(rquest, Y, lambda.alpha = tuningsvd6$bestlambda
.alpha, lambda.beta = tuningsvd6$bestlambda.beta, alpha.current
= SCCAresult5$alpha, beta.current = SCCAresult5$beta, alpha.init
= initsvd6$alpha.init, beta.init = initsvd6$beta.init, niter =

200, npairs = 6)
212 persp(lambda1, lambda2, tuningsvd6$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣sixth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

213 # Pair 7
214 initsvd7 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 7, npairs0 = 6, alpha.current = SCCAresult6$alpha, beta
.current = SCCAresult6$beta)

215 set.seed(13102024)
216 tuningsvd7 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd7$alpha.init, beta.
init = initsvd7$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult6$alpha, beta.cur = SCCAresult6$beta, npair = 7)

217 SCCAresult7 <- SCCA(rquest, Y, lambda.alpha = tuningsvd7$bestlambda
.alpha, lambda.beta = tuningsvd7$bestlambda.beta, alpha.current
= SCCAresult6$alpha, beta.current = SCCAresult6$beta, alpha.init
= initsvd7$alpha.init, beta.init = initsvd7$beta.init, niter =

200, npairs = 7)
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218 persp(lambda1, lambda2, tuningsvd7$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣seventh␣canonical␣pair")), xlab = "lambda.alpha", ylab = "
lambda.beta")

219 # Canonical correlation of each canonical pair
220 cc <- rep(0, 7)
221 for (i in 1:7) {
222 cc[i] <- cor(scale(rquest) %*% SCCAresult7$beta[, i], scale(Y) %*%

SCCAresult7$alpha[, i])
223 }
224 # Alpha (MEG PCs) coefficients for all 7 pairs
225 round(SCCAresult7$alpha, 3)
226 # Beta (questionnaire) coefficients for all 7 pairs
227 round(SCCAresult7$beta, 3)
228 # Calculating canonical coefficients for the original 306 MEG

variables via PCA rotation matrix
229 OrigWeights <- U %*% SCCAresult7$alpha
230
231 # Analysis 4: SCCA using 11 principal components, 3rd PC excluded,

83% of variance explained
232 Y <- Y[, -3] # Dropping third PCA, possible heart artifact
233 U <- U[, -3]
234 # Sample covariances
235 sigma.X.hat <- cov(rquest) # Questionnaires = X
236 sigma.Y.hat <- cov(Y) # MEG data, 11 PCs = Y
237 sigma.YX.hat <- cov(Y, rquest)
238 # First canonical pair, 11 PCs
239 initsvd1 <- init0(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 1)

240 set.seed(13102024)
241 tuningsvd1 <- cv.SCCA(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd1$alpha.init, beta.
init = initsvd1$beta.init, nfolds = 5, niter = 10)

242 SCCAresult1 <- SCCA(rquest, Y, lambda.alpha = tuningsvd1$bestlambda
.alpha, lambda.beta = tuningsvd1$bestlambda.beta, alpha.init =
initsvd1$alpha.init, beta.init = initsvd1$beta.init, niter =
200, npairs = 1)

243 persp(lambda1, lambda2, tuningsvd1$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣first␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

244 # Canonical correlation of first pair, fourth analysis
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245 cc4 <- cor(scale(rquest) %*% SCCAresult1$beta, scale(Y) %*%
SCCAresult1$alpha)

246 # Significance testing for the first canonical pair
247 pval <- signi(500, rquest, Y, tuningsvd1$bestlambda.alpha,

tuningsvd1$bestlambda.beta, cc4)
248 # Other six canonical pairs calculated like the first pair, but

using modified cv-function
249 # Pair 2
250 initsvd2 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 2, npairs0 = 1, alpha.current = SCCAresult1$alpha, beta
.current = SCCAresult1$beta)

251 set.seed(13102024)
252 tuningsvd2 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd2$alpha.init, beta.
init = initsvd2$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult1$alpha, beta.cur = SCCAresult1$beta, npair = 2)

253 # lambda.alpha lowered to avoid zero coefficient vector
254 SCCAresult2 <- SCCA(rquest, Y, lambda.alpha = 0.020, lambda.beta =

tuningsvd2$bestlambda.beta, alpha.current = SCCAresult1$alpha,
beta.current = SCCAresult1$beta, alpha.init = initsvd2$alpha.
init, beta.init = initsvd2$beta.init, niter = 200, npairs = 2)

255 persp(lambda1, lambda2, tuningsvd2$rho, theta = 20, phi = 30, main
= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣second␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda
.beta")

256 # Pair 3
257 initsvd3 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 3, npairs0 = 2, alpha.current = SCCAresult2$alpha, beta
.current = SCCAresult2$beta)

258 set.seed(13102024)
259 tuningsvd3 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd3$alpha.init, beta.
init = initsvd3$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult2$alpha, beta.cur = SCCAresult2$beta, npair = 3)

260 SCCAresult3 <- SCCA(rquest, Y, lambda.alpha = tuningsvd3$bestlambda
.alpha, lambda.beta = tuningsvd3$bestlambda.beta, alpha.current
= SCCAresult2$alpha, beta.current = SCCAresult2$beta, alpha.init
= initsvd3$alpha.init, beta.init = initsvd3$beta.init, niter =

200, npairs = 3)
261 persp(lambda1, lambda2, tuningsvd3$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
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␣third␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

262 # Pair 4
263 initsvd4 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 4, npairs0 = 3, alpha.current = SCCAresult3$alpha, beta
.current = SCCAresult3$beta)

264 set.seed(13102024)
265 tuningsvd4 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd4$alpha.init, beta.
init = initsvd4$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult3$alpha, beta.cur = SCCAresult3$beta, npair = 4)

266 SCCAresult4 <- SCCA(rquest, Y, lambda.alpha = tuningsvd4$bestlambda
.alpha, lambda.beta = tuningsvd4$bestlambda.beta, alpha.current
= SCCAresult3$alpha, beta.current = SCCAresult3$beta, alpha.init
= initsvd4$alpha.init, beta.init = initsvd4$beta.init, niter =

200, npairs = 4)
267 persp(lambda1, lambda2, tuningsvd4$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣fourth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda
.beta")

268 # Pair 5
269 initsvd5 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 5, npairs0 = 4, alpha.current = SCCAresult4$alpha, beta
.current = SCCAresult4$beta)

270 set.seed(13102024)
271 tuningsvd5 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd5$alpha.init, beta.
init = initsvd5$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult4$alpha, beta.cur = SCCAresult4$beta, npair = 5)

272 SCCAresult5 <- SCCA(rquest, Y, lambda.alpha = tuningsvd5$bestlambda
.alpha, lambda.beta = tuningsvd5$bestlambda.beta, alpha.current
= SCCAresult4$alpha, beta.current = SCCAresult4$beta, alpha.init
= initsvd5$alpha.init, beta.init = initsvd5$beta.init, niter =

200, npairs = 5)
273 persp(lambda1, lambda2, tuningsvd5$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣fifth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

274 # Pair 6
275 initsvd6 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
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npairs = 6, npairs0 = 5, alpha.current = SCCAresult5$alpha, beta
.current = SCCAresult5$beta)

276 set.seed(13102024)
277 tuningsvd6 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd6$alpha.init, beta.
init = initsvd6$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult5$alpha, beta.cur = SCCAresult5$beta, npair = 6)

278 SCCAresult6 <- SCCA(rquest, Y, lambda.alpha = tuningsvd6$bestlambda
.alpha, lambda.beta = tuningsvd6$bestlambda.beta, alpha.current
= SCCAresult5$alpha, beta.current = SCCAresult5$beta, alpha.init
= initsvd6$alpha.init, beta.init = initsvd6$beta.init, niter =

200, npairs = 6)
279 persp(lambda1, lambda2, tuningsvd6$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣sixth␣canonical␣pair")), xlab = "lambda.alpha", ylab = "lambda.
beta")

280 # Pair 7
281 initsvd7 <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat = sigma.

X.hat, sigma.Y.hat = sigma.Y.hat, init.method = "svd", n = 28,
npairs = 7, npairs0 = 6, alpha.current = SCCAresult6$alpha, beta
.current = SCCAresult6$beta)

282 set.seed(13102024)
283 tuningsvd7 <- cv.SCCA2(x = rquest, y = Y, lambda.alpha = lambda1,

lambda.beta = lambda2, alpha.init = initsvd7$alpha.init, beta.
init = initsvd7$beta.init, nfolds = 5, niter = 10, alpha.cur =
SCCAresult6$alpha, beta.cur = SCCAresult6$beta, npair = 7)

284 SCCAresult7 <- SCCA(rquest, Y, lambda.alpha = tuningsvd7$bestlambda
.alpha, lambda.beta = tuningsvd7$bestlambda.beta, alpha.current
= SCCAresult6$alpha, beta.current = SCCAresult6$beta, alpha.init
= initsvd7$alpha.init, beta.init = initsvd7$beta.init, niter =

200, npairs = 7)
285 persp(lambda1, lambda2, tuningsvd7$rho, theta = 20, phi = 30, main

= expression(paste("Perspective␣plot␣of␣", rho, "␣values␣for␣the
␣seventh␣canonical␣pair")), xlab = "lambda.alpha", ylab = "
lambda.beta")

286 # Canonical correlations of each canonical pair
287 cc <- rep(0, 7)
288 for (i in 1:7) {
289 cc[i] <- cor(scale(rquest) %*% SCCAresult7$beta[, i], scale(Y) %*%

SCCAresult7$alpha[, i])
290 }
291 # Alpha (MEG PCs) coefficients for all 7 pairs
292 round(SCCAresult7$alpha, 3)
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293 # Beta (questionnaire) coefficients for all 7 pairs
294 round(SCCAresult7$beta, 3)
295 # Calculating canonical coefficients for the original 306 MEG

variables via PCA rotation matrix
296 OrigWeights <- U %*% SCCAresult7$alpha

Appendix C
The modified version of the R code from the supplementary material of Mai
and Zhang (2019), used in this thesis for the four SCCA analyses, is included
in this appendix section.

1 library(glmnet)
2 #### SCCA is the main functions that produces estimates of the

canonical pairs.
3 SCCA <- function(x, y, alpha.init = NULL, beta.init = NULL, lambda.

alpha, lambda.beta, niter = 100, npairs = 1, init.method = c("
sparse", "uniform", "svd", "random"), alpha.current = NULL, beta
.current = NULL, standardize = TRUE, eps = 1e-4) {

4 p <- ncol(x)
5 q <- ncol(y)
6 n <- nrow(x)
7
8 x <- scale(x, center = T, scale = standardize)
9 y <- scale(y, center = T, scale = standardize)

10
11 sigma.YX.hat <- cov(y, x)
12 sigma.X.hat <- cov(x)
13 sigma.Y.hat <- cov(y)
14
15 alpha <- matrix(0, q, npairs)
16 beta <- matrix(0, p, npairs)
17 rho <- matrix(0, npairs, npairs)
18
19 if (length(init.method) > 1) {
20 init.method <- init.method[1]
21 }
22
23 if (missing(alpha.current)) {
24 npairs0 <- 0
25 } else {
26 npairs0 <- ncol(alpha.current)
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27
28 alpha[, 1:npairs0] <- alpha.current
29 beta[, 1:npairs0] <- beta.current
30 }
31
32 if (missing(alpha.init)) {
33 if (missing(alpha.current)) {
34 obj.init <- init0(sigma.YX.hat, sigma.X.hat, sigma.Y.hat, init

.method = init.method, npairs, n = n)
35
36 alpha.init <- obj.init$alpha.init
37 beta.init <- obj.init$beta.init
38 } else {
39 alpha.current <- as.matrix(alpha.current)
40 beta.current <- as.matrix(beta.current)
41
42 obj.init <- init1(sigma.YX.hat = sigma.YX.hat, sigma.X.hat =

sigma.X.hat, sigma.Y.hat = sigma.Y.hat, init.method = init
.method, npairs = npairs, npairs0 = npairs0, alpha.current
= alpha.current, beta.current = beta.current, n = n, eps

= eps)
43 alpha.init <- obj.init$alpha.init
44 beta.init <- obj.init$beta.init
45
46 alpha[, 1:npairs0] <- alpha.current
47 beta[, 1:npairs0] <- beta.current
48 }
49 }
50
51 n.iter.converge <- rep(0, npairs - npairs0)
52
53 for (ipairs in (npairs0 + 1):npairs) {
54 alpha.init <- as.matrix(alpha.init)
55 beta.init <- as.matrix(beta.init)
56
57 omega <- find.Omega(sigma.YX.hat, ipairs, alpha = alpha[, 1:(

ipairs - 1)], beta = beta[, 1:(ipairs - 1)], y = y, x = x)
58
59 x.tmp <- omega %*% x
60 y.tmp <- t(omega) %*% y
61
62 lambda.alpha0 <- lambda.alpha[ipairs - npairs0]
63 lambda.beta0 <- lambda.beta[ipairs - npairs0]
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64
65 alpha0 <- alpha.init
66 beta0 <- beta.init
67
68 obj <- SCCA.solution(x = x, y = y, x.Omega = x.tmp, y.Omega = y.

tmp, alpha0, beta0, lambda.alpha0, lambda.beta0, niter =
niter, eps = eps)

69
70 alpha[, ipairs] <- obj$alpha
71 beta[, ipairs] <- obj$beta
72 n.iter.converge[ipairs - npairs0] <- obj$niter
73
74 if ((ipairs < npairs) & (init.method == "sparse")) {
75 obj.init <- init1(sigma.YX.hat, sigma.X.hat, sigma.Y.hat, init

.method = init.method, npairs, npairs0 = ipairs, alpha.
current = alpha[, 1:ipairs], beta.current = beta[, 1:
ipairs])

76 alpha.init <- obj.init$alpha.init
77 beta.init <- obj.init$beta.init
78 }
79 }
80
81 list(alpha = alpha, beta = beta, alpha.init = alpha.init, beta.

init = beta.init, n.iter.converge = n.iter.converge)
82 }
83
84 #### The function init0 finds the initial value when no canonical

pairs have been obtained. If init.method="sparse",
85 #### only one pair of initial value will be returned. For other

options of init.method, the number of pairs of initial
86 #### values can be specified with the argument npairs.
87 init0 <- function(sigma.YX.hat, sigma.X.hat, sigma.Y.hat, init.

method, npairs, n, d = NULL) {
88 p <- ncol(sigma.X.hat)
89 q <- ncol(sigma.Y.hat)
90
91 if (init.method == "svd") {
92 obj.svd <- svd(sigma.YX.hat, nu = npairs, nv = npairs)
93 alpha.init <- obj.svd$u[, 1:npairs, drop = F]
94 beta.init <- obj.svd$v[, 1:npairs, drop = F]
95 }
96 if (init.method == "uniform") {
97 alpha.init <- matrix(1, q, npairs)
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98 beta.init <- matrix(1, p, npairs)
99 }

100 if (init.method == "random") {
101 alpha.init <- matrix(rnorm(q * npairs), q, npairs)
102 beta.init <- matrix(rnorm(p * npairs), p, npairs)
103 }
104 if (init.method == "sparse") {
105 alpha.init <- matrix(0, q, npairs)
106 beta.init <- matrix(0, p, npairs)
107 if (missing(d)) d <- sqrt(n)
108 thresh <- sort(abs(sigma.YX.hat), decreasing = T)[d]
109 row.max <- apply(abs(sigma.YX.hat), 1, max)
110 col.max <- apply(abs(sigma.YX.hat), 2, max)
111 obj.svd <- svd(sigma.YX.hat[row.max > thresh, col.max > thresh])
112
113 alpha1.init <- rep(0, q)
114 beta1.init <- rep(0, p)
115 alpha1.init[row.max > thresh] <- obj.svd$u[, 1]
116 beta1.init[col.max > thresh] <- obj.svd$v[, 1]
117
118 alpha.init[, 1] <- alpha1.init
119 beta.init[, 1] <- beta1.init
120 }
121 alpha.scale <- diag(t(alpha.init) %*% sigma.Y.hat %*% alpha.init)

[1:npairs, drop = F]
122 alpha.init <- sweep(alpha.init[, 1:npairs, drop = F], 2, sqrt(

alpha.scale), "/")
123 beta.scale <- diag(t(beta.init) %*% sigma.X.hat %*% beta.init)[1:

npairs, drop = F]
124 beta.init <- sweep(beta.init[, 1:npairs, drop = F], 2, sqrt(beta.

scale), "/")
125 list(alpha.init = alpha.init, beta.init = beta.init)
126 }
127
128 #### The function init1 finds the initial value when npairs0

canonical pairs have been obtained. If init.method="sparse",
129 #### only one pair of initial value will be returned. For other

options of init.method, init1 returns npairs - npairs0 pairs
130 #### of initial values.
131 init1 <- function(sigma.YX.hat, sigma.X.hat, sigma.Y.hat, init.

method, npairs, npairs0, alpha.current, beta.current, n = n, eps
= 1e-4, d = NULL) {

132 p <- ncol(sigma.X.hat)
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133 q <- ncol(sigma.Y.hat)
134
135 alpha.init <- matrix(0, q, 1)
136 beta.init <- matrix(0, p, 1)
137 alpha.current <- as.matrix(alpha.current)
138 beta.current <- as.matrix(beta.current)
139
140 npairs0 <- ncol(alpha.current)
141
142 if (init.method == "svd") {
143 obj.svd <- svd(sigma.YX.hat)
144 alpha.init <- obj.svd$u[, npairs0 + 1, drop = F]
145 beta.init <- obj.svd$v[, npairs0 + 1, drop = F]
146 }
147 if (init.method == "uniform") {
148 alpha.init <- matrix(1, q, 1)
149 beta.init <- matrix(1, p, 1)
150 }
151 if (init.method == "random") {
152 alpha.init <- matrix(rnorm(q * npairs), q, 1)
153 beta.init <- matrix(rnorm(p * npairs), p, 1)
154 }
155 if (init.method == "sparse") {
156 id.nz.alpha <- which(apply(abs(alpha.current), 1, sum) > eps)
157 id.nz.beta <- which(apply(abs(beta.current), 1, sum) > eps)
158
159 rho.tmp <- t(alpha.current) %*% sigma.YX.hat %*% beta.current
160
161 sigma.YX.tmp <- sigma.YX.hat - sigma.Y.hat %*% alpha.current %*%

rho.tmp %*% t(beta.current) %*% sigma.X.hat
162
163 if (missing(d)) d <- sqrt(n)
164
165 thresh <- sort(abs(sigma.YX.tmp), decreasing = T)[d]
166 row.max <- apply(abs(sigma.YX.tmp), 1, max)
167 col.max <- apply(abs(sigma.YX.tmp), 2, max)
168
169 id.row <- unique(c(id.nz.alpha, which(row.max > thresh)))
170 id.row <- sort(id.row, decreasing = FALSE)
171 id.col <- unique(c(id.nz.beta, which(col.max > thresh)))
172 id.col <- sort(id.col, decreasing = FALSE)
173
174 sigma.tmp <- sigma.YX.tmp[id.row, id.col]
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175 obj.svd <- svd(sigma.tmp)
176
177 alpha.init[id.row] <- obj.svd$u[, 1]
178 beta.init[id.col] <- obj.svd$v[, 1]
179 }
180 alpha.scale <- drop(t(alpha.init) %*% sigma.Y.hat %*% alpha.init)
181 alpha.init <- alpha.init / sqrt(alpha.scale)
182 beta.scale <- drop(t(beta.init) %*% sigma.X.hat %*% beta.init)
183 beta.init <- beta.init / sqrt(beta.scale)
184
185 list(alpha.init = alpha.init, beta.init = beta.init)
186 }
187
188 #### The function find.Omega is used by SCCA.solution.
189 find.Omega <- function(sigma.YX.hat, npairs, alpha = NULL, beta =

NULL, y = NULL, x = NULL) {
190 n <- nrow(y)
191 if (npairs > 1) {
192 rho <- t(alpha) %*% sigma.YX.hat %*% beta
193 omega <- diag(rep(1, n)) - y %*% alpha %*% rho %*% t(beta) %*% t

(x) / n
194 } else {
195 omega <- diag(rep(1, n))
196 }
197 omega
198 }
199
200 #### The function SCCA.solution is used by SCCA.
201 SCCA.solution <- function(x, y, x.Omega, y.Omega, alpha0, beta0,

lambda.alpha, lambda.beta, niter = 100, glmnet.alg = NULL, eps =
1e-4) {

202 n <- nrow(x)
203 p <- ncol(x)
204 q <- ncol(y)
205
206 for (i in 1:niter) {
207 x0 <- x.Omega %*% beta0
208
209 m <- glmnet(y, x0, standardize = FALSE, intercept = FALSE,

lambda = lambda.alpha)
210
211 alpha1 <- coef(m, s = lambda.alpha)[-1]
212
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213 if (sum(abs(alpha1)) < eps) {
214 alpha0 <- rep(0, q)
215 break
216 }
217 id.nz <- which(alpha1 != 0)
218 alpha1.scale <- y[, id.nz, drop = F] %*% alpha1[id.nz, drop = F]
219
220 alpha1 <- alpha1 / drop(sqrt(t(alpha1.scale) %*% alpha1.scale /

(n - 1)))
221
222 y0 <- y.Omega %*% alpha1
223
224 m <- glmnet(x, y0, standardize = FALSE, intercept = FALSE,

lambda = lambda.beta)
225
226 beta1 <- coef(m, s = lambda.beta)[-1]
227
228 if (sum(abs(beta1)) < eps) {
229 beta0 <- rep(0, p)
230 break
231 }
232 id.nz <- which(beta1 != 0)
233 beta1.scale <- x[, id.nz, drop = F] %*% beta1[id.nz, drop = F]
234
235 beta1 <- beta1 / drop(sqrt(t(beta1.scale) %*% beta1.scale / (n -

1)))
236
237 if (sum(abs(alpha1 - alpha0)) < eps & sum(abs(beta1 - beta0) <

eps)) break
238 alpha0 <- alpha1
239 beta0 <- beta1
240 }
241
242 list(alpha = alpha0, beta = beta0, niter = i)
243 }
244
245 # The function cv.SCCA is the cross validation function for the

first canonical pair.
246 cv.SCCA <- function(x, y, lambda.alpha, lambda.beta, nfolds = 5,

alpha.init, beta.init, eps = 1e-3, niter = 10, standardize =
TRUE) {

247 n <- nrow(x)
248 id.folds <- cut(seq(1:n), breaks = nfolds, labels = 1:nfolds)
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249 id.folds <- sample(id.folds, n, replace = FALSE)
250 id.folds <- as.numeric(id.folds)
251 rho <- matrix(0, length(lambda.alpha), length(lambda.beta))
252
253 for (i.lambda in 1:length(lambda.alpha)) {
254 for (j.lambda in 1:length(lambda.beta)) {
255 for (i in 1:nfolds) {
256 obj <- SCCA(x[id.folds != i, ], y[id.folds != i, ], alpha.

init = alpha.init, beta.init = beta.init, lambda.alpha =
lambda.alpha[i.lambda], lambda.beta = lambda.beta[j.
lambda], eps = eps, niter = niter, standardize =
standardize)

257
258 rho[i.lambda, j.lambda] <- rho[i.lambda, j.lambda] + abs(cor

(x[id.folds == i, ] %*% obj$beta, y[id.folds == i, ] %*%
obj$alpha))

259 }
260 }
261 }
262 rho[is.na(rho)] <- 0
263 id.alpha.max <- max(which(apply(rho, 1, max) == max(rho)))
264 id.beta.max <- max(which(apply(rho, 2, max) == max(rho)))
265 rho[is.na(rho)] <- 0
266
267 list(rho = rho, bestlambda.alpha = lambda.alpha[id.alpha.max],

bestlambda.beta = lambda.beta[id.beta.max])
268 }
269
270 # Creating a cross validation function for canonical pairs beyond

the first based on the original function.
271 cv.SCCA2 <- function(x, y, lambda.alpha, lambda.beta, nfolds = 5,

alpha.init, beta.init, eps = 1e-3, niter = 10, standardize =
TRUE, alpha.cur, beta.cur, npair) {

272 n <- nrow(x)
273 id.folds <- cut(seq(1:n), breaks = nfolds, labels = 1:nfolds)
274 id.folds <- sample(id.folds, n, replace = FALSE)
275 id.folds <- as.numeric(id.folds)
276 rho <- matrix(0, length(lambda.alpha), length(lambda.beta))
277
278 for (i.lambda in 1:length(lambda.alpha)) {
279 for (j.lambda in 1:length(lambda.beta)) {
280 for (i in 1:nfolds) {
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281 obj <- SCCA(x[id.folds != i, ], y[id.folds != i, ], alpha.
init = alpha.init, beta.init = beta.init, lambda.alpha =
lambda.alpha[i.lambda], lambda.beta = lambda.beta[j.
lambda], alpha.current = alpha.cur, beta.current = beta.
cur, eps = eps, niter = niter, standardize = standardize,
npairs = npair)

282
283 rho[i.lambda, j.lambda] <- rho[i.lambda, j.lambda] + abs(cor

(x[id.folds == i, ] %*% obj$beta[, npair], y[id.folds ==
i, ] %*% obj$alpha[, npair]))

284 }
285 }
286 }
287 rho[is.na(rho)] <- 0
288 id.alpha.max <- max(which(apply(rho, 1, max) == max(rho)))
289 id.beta.max <- max(which(apply(rho, 2, max) == max(rho)))
290 rho[is.na(rho)] <- 0
291
292 list(rho = rho, bestlambda.alpha = lambda.alpha[id.alpha.max],

bestlambda.beta = lambda.beta[id.beta.max])
293 }
294
295 # The function cv.SCCA.equal is the cross validation function for

the first canonical pair, assuming that alpha and beta uses the
same tuning parameter.

296 cv.SCCA.equal <- function(x, y, lambda, nfolds = 5, alpha.init,
beta.init, eps = 1e-3, niter = 20) {

297 n <- nrow(x)
298 id.folds <- cut(seq(1:n), breaks = nfolds, labels = 1:nfolds)
299 id.folds <- sample(id.folds, n, replace = FALSE)
300 id.folds <- as.numeric(id.folds)
301 rho <- matrix(0, length(lambda), nfolds)
302 for (i.lambda in 1:length(lambda)) {
303 for (i in 1:nfolds) {
304 obj <- SCCA(x[id.folds != i, ], y[id.folds != i, ], alpha.init

= alpha.init, beta.init = beta.init, lambda.alpha =
lambda[i.lambda], lambda.beta = lambda[i.lambda], eps =
eps, niter = niter)

305
306 rho[i.lambda, i] <- abs(cor(x[id.folds == i, ] %*% obj$beta, y

[id.folds == i, ] %*% obj$alpha))
307 }
308 }
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309 rho <- apply(rho, 1, mean)
310 list(rho = rho, lambda = lambda, bestlambda = lambda[which.max(rho

)])
311 }
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