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Abstract

The aim of this thesis is to consider the strong and weak convergence of
the Euler scheme for a one-dimensional diffusion process whereas the results
for the strong convergence are more classical, and the more recent results
concerning the weak convergence are due to Bally and Talay, [1, 2].
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Chapter 1

Introduction

1.1 Stochastic Differential Equations

Stochastic differential equations play an important role in stochastic model-
ing. They are very popular in many areas of science and economics because
of their ability to imitate the behavior of random phenomena. The difference
between a stochastic differential equation and an ordinary differential equa-
tion is the random component added to the latter. A stochastic differential
equation has the general form of

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = x

or, equivalently

Xt = x +

∫ t

0

b(s,Xs)ds +

∫ t

0

σ(s,Xs)dWs,

where the function b is called drift coefficient and the function σ is called
diffusion coefficient. The initial value of the process is X0 = x and t ∈ [0, T ]
with T > 0 represents the time. The drift describes the steepness of the
process whereas the diffusion describes the variation of the process around
its mean. There are two main definitions of a solution to an stochastic dif-
ferential equation, the strong solution and the weak solution. The difference
between these two solutions lies in the underlying probability space.

An important example is the equation for the geometric Brownian motion

dXt = bXtdt + σXtdWt, X0 = x

which is the equation used to describe the dynamics of the price of a stock in
the famous Black-Scholes options pricing formula in financial mathematics.
In this equation one has b(t,Xt) = bXt and σ(t, Xt) = σXt. Figure 1.1
represents a trajectory of the geometric Brownian motion.
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Figure 1.1: Trajectory of a geometric Brownian motion on [0, 1], where b = 0,
σ = 1 and X0 = 10.

1.2 On Simulations of Stochastic Processes

Simulations are an important tool in stochastic modeling. There are often
situations where we do not obtain an exact solution of a stochastic differential
equation and therefore we need to use a computer simulation method to
obtain an approximate solution to the problem. To be able to simulate a
stochastic process (Xt) we need to have a discretization scheme (Xn

t ). This
means that we divide the corresponding time-interval into n sub-intervals
and compute the approximated value of the process in each discrete time-
point. There are various schemes for this, see for example the article of Talay
and Tubaro, [10]. The precision or rate of convergence of an approximation
scheme can be measured in various ways whereas there are two principal ones:
the strong convergence and the weak convergence. The strong convergence
plays a role, for example, in evaluating or estimating the risk of a portfolio
in Stochastic Finance. The weak convergence is used in the pricing of bonds
and options in Stochastic Finance. In this context the mathematical problem
consists of two parts: Firstly, one has to determine the rate of convergence
for an appropriate approximation scheme (in this thesis done for the Euler
scheme), secondly one has to simulate the discretized process by a Monte
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Carlo method. The source of the error depends now on two factors: the
number of sub-intervals n, the discretization scheme works with, and the
number of simulated trajectories N . We focus on the first one.

1.3 About This Thesis

In this thesis we study the strong convergence and weak convergence of the
Euler scheme, an important discrete-time approximation of diffusion pro-
cesses. The main results are Proposition 3.2 and Proposition 3.3. The first
one concerns the strong convergence and is based on the book of Gard, [5].
The latter concerns the weak convergence and is based on articles of Bally
and Talay, [1, 2].



Chapter 2

Preliminaries

We start by introducing some basics of probability theory. In this thesis we
are considering a one dimensional diffusion process of type

Xt = X0 +

∫ t

0

b(s,Xs)ds +

∫ t

0

σ(s,Xs)dWs.

In general, we do not know (Xt) or its law, and therefore we need an appro-
priate approximation for it. We consider the Euler scheme to approximate
the process (Xt) and denote it by (Xn

t ). There are several other schemes
to approximate the process (Xt), for example the Milstein scheme and the
second order scheme considered by Talay and Tubaro, [10].

Remark 2.1. The coefficients b and σ has the following properties throughout
the thesis:

• b and σ are time homogeneous, that means: b(t, x) = b(x) and σ(t, x) =
σ(x),

• infx∈R σ2(x) > 0,

• b, σ ∈ C∞b (R),

and we implicate these properties on b and σ by writing b, σ ∈ D.

2.1 Probability Theory

In this section we introduce some basics of probability theory like, the con-
cepts of a σ-algebra, a probability measure, a probability space, a filtration,
a stochastic basis and a random variable.

Definition 2.2. A system of subsets F of Ω is called σ-algebra, if

5
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(i) ∅ ∈ F and Ω ∈ F ,

(ii) A ∈ F implies that the complement of A belongs to F ,

(iii) A1, A2, . . . ∈ F implies that
⋃∞

i=i Ai ∈ F .

An algebra is defined by replacing the condition (iii) by:

(iv) A,B ∈ F implies that A ∪B ∈ F .

The pair (Ω,F) is called measurable space.

Definition 2.3. A mapping P : F −→ [0, 1] is called probability measure if
the following conditions hold:

(i) P(Ω) = 1,

(ii) P
( ⋃∞

i=1 Ai

)
=

∑∞
i=1 P(Ai), for A1, A2, . . . ∈ F with Ai ∩ Aj = ∅ when

i 6= j.

The triple (Ω,F ,P) is called probability space.

Definition 2.4. Assume a family of σ-algebras (Ft)t∈[0,T ] and let (Ω,F ,P)
be a probability space. If

Fs ⊆ Ft ⊆ F ,

for 0 ≤ s < t ≤ T , then the sequence (Ft)t∈[0,T ] is called filtration.
The probability space (Ω,F ,P) equipped with a filtration (Ft)t∈[0,T ] is

called stochastic basis and denoted by (Ω,F ,P, (Ft)t∈[0,T ]).

Definition 2.5. Let (Ω,F) be a measurable space. A map f : Ω −→ R is
called a random variable, if for every B ∈ B(R) one has that

{ω ∈ Ω : f(ω) ∈ B} ∈ F .

In some context the function f is also called F-measurable.

Remark 2.6. For Ω := R and F := B(R), the fuction f : R −→ R is called
Borel-measurable provided that for all B ∈ B(R) one has

{ω ∈ Ω : f(ω) ∈ B} ∈ B(R).

Definition 2.7. Let (Ω,F ,P) be a probability space and f : Ω → R be a
random variable. The expected value or mean of f is

Ef :=

∫

Ω

f(ω)dP(ω)

and the variance of f is

V ar(f) := E(f − Ef)2.
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Definition 2.8. Let (Ω,F ,P) be a probability space, f : Ω −→ R be a
random variable and 1 ≤ p < ∞. The Lp-semi-norm of f is defined by

‖f‖p :=
(∫

Ω

|f(ω)|pdP(ω)
) 1

p

and the L∞-semi-norm of f by

‖f‖∞ := sup
t≥0

{
P({ω ∈ Ω : |f(ω)| ≥ t}) > 0

}
.

Proposition 2.9 (Hölder’s inequality). Let f, g : Ω → R be random variables
with E|fg| < ∞, p > 1 and q = p

p−1
. Then

Efg ≤ ‖f‖p‖g‖q.

2.2 Stochastic Processes

Definition 2.10. Suppose (Ω,F ,P) is a probability space, and J is an ar-
bitrary set. A family

Xt(ω), ω ∈ Ω, t ∈ J (2.1)

of random variables with Xt : Ω −→ R is called a stochastic process with
index set J . In our case the index set is the time interval [0, T ] with T > 0
and we denote the process X by (Xt)t∈[0,T ].

Remark 2.11. There are two different views of the stochastic process (2.1).
For each fixed t ∈ J ,

Xt = Xt(·)
denotes a random variable on the probability space (Ω,F ,P) and for each
fixed ω ∈ Ω,

X·(ω)

corresponds to a real-valued function defined on J , which is called a trajectory
or sample path of the process, [5].

Remark 2.12. For now on, if X0 = x (Xn
0 = x resp.), we write (Xt(x))t∈[0,T ]

((Xn
t (x))t∈[0,T ] resp.) to emphasize the starting value of the process.

Definition 2.13. Let (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis and X =
(Xt)t∈[0,T ] a stochastic process. Then,

(i) X is called measurable, if the function (ω, t) → Xt(ω) considered as map
from Ω× [0, T ] into R is measurable with respect to F ×B([0, T ]) and
B(R).
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(ii) X is called progressively measurable with respect to a filtration (Ft)t∈[0,T ],
if for all T ≥ T ′ ≥ 0 the function (ω, t) → Xt(ω) considered as map
from Ω × [0, T ′] into R is measurable with respect to FT ′ × B([0, T ′])
and B(R).

(iii) X is called adapted with respect to a filtration (Ft)t∈[0,T ], if for all t ∈
[0, T ] one has that Xt is Ft-measurable.

Next we introduce the concept of the Brownian motion, which describes
a certain type of random movement. The range of applications of the Brow-
nian motion goes far beyond a study of microscopic particles in suspension
and includes modeling of stock prices, of thermal noise in electrical circuits,
of certain limiting behavior in queueing and inventory systems, and of ran-
dom perturbations in a variety of other physical, biological, economic, and
management systems (Karatzas, Shreve, [7]).

Definition 2.14. Let (Ω,F ,P) be a probability space which is complete, and
let T > 0 be fixed. A stochastic process W = (Wt)t∈[0,T ] is called Brownian
motion provided that the following conditions are satisfied:

(i) the map t −→ Wt(ω) in continuous for all ω ∈ Ω,

(ii) W0 ≡ 0,

(iii) for all 0 ≤ s < t ≤ T the increment Wt − Ws is independent from
(Wu)u∈[0,s], that means for all 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ s and
A,A1, . . . , An ∈ B(R),

P(Wt −Ws ∈ A,Ws1 ∈ A1, . . . , Wsn ∈ An)

= P(Wt −Ws ∈ A)P(Ws1 ∈ A1, . . . , Wsn ∈ An),

(iv) and each of these increments has a Gaussian distribution with

E(Wt −Ws) = 0,

V ar(Wt −Ws) = t− s.

Now we take a probability space (Ω,F ,P) and Brownian motion (Wt)t∈[0,T ].
Without loss of generality we can choose the filtration F to be the completion
of the σ-algebra σ(Ws : s ∈ [0, T ]) and Ft = σ(Ws : s ≤ t) ∨N where

N := {A ⊆ Ω : ∃B ∈ F with A ⊆ B and P(B) = 0}.

This leads to the following Lemma.
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Lemma 2.15 (Karatzas, Shreve, [7]). Let W = (Wt)t∈[0,T ] be a Brownian
motion in the sense of Definition 2.14 and F and (Ft)t∈[0,T ] as defined above.
Then (Wt)t∈[0,T ] is an (Ft)t∈[0,T ]-Brownian motion, that means that (Wt)t∈[0,T ]

is (Ft)t∈[0,T ]-adapted and satisfies the conditions (i), (ii) and (iv). The con-
dition (iii) is replaced by the following:

(iii)′ for all 0 ≤ s < t ≤ T the random variable Wt −Ws is independent of
Fs.

As mentioned before, there are two main definitions of a solution to an
stochastic differential equation. In this thesis we consider only strong solu-
tions, that meas we fix a stochastic basis (Ω,F ,P, (Ft)t∈[0,T ]), a Brownian
motion W = (Wt)t∈[0,T ] and then we define a solution of the stochastic dif-
ferential equation as:

Definition 2.16. Let x ∈ R and b, σ ∈ D. A continuous, adapted and
square integrable process (Xt)t∈[0,T ] with X0 = x is a solution of the stochastic
differential equation

dXt = b(Xt)dt + σ(Xt)dWt, (2.2)

provided that the following conditions hold:

(i) X0 ≡ x.

(ii) Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs for t ∈ [0, T ] almost surely.

Remark 2.17. The principle of weak solutions is that we do not start with a
stochastic basis but we construct a particular basis to our problem.

Now we obtain the strong uniqueness and existence of solutions of stochas-
tic differential equations.

Proposition 2.18 (Strong uniqueness, [7], Theorem on page 287). Let b, σ ∈
D and assume that (Xt)t∈[0,T ] and (Yt)t∈[0,T ] are solutions of (2.2). Then

P(Xt = Yt, t ≥ 0) = 1.

Proposition 2.19 (Existence of solutions, [7], Theorem on page 289). Let
b, σ ∈ D. There exists a solution of the stochastic differential equation (2.2).

Now we introduce the famous formula of Itô1 which is widely used in
stochastics and especially in financial mathematics.

1Kiyoshi Itô (born 1915) is a Japanese mathematician whose work is now called Itô
calculus. He was awarded the Gauss prize in 2006 for his lifetime achievements.
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Definition 2.20. Let (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis and (Wt)t∈[0,T ]

be an (Ft)t∈[0,T ]-Brownian motion. Let b(s) and σ(s) be progressively mea-
surable stochastic processes such that

∫ T

0

σ2(s)ds < ∞ P-a.s.

and ∫ T

0

|b(s)|ds < ∞ P-a.s.

An Itô process is a stochastic process X = (Xt)t∈[0,T ] of the form

Xt = x +

∫ t

0

b(s)ds +

∫ t

0

σ(s)dWs, t ∈ [0, T ], a.s.,

where X0 = x ∈ R.

Proposition 2.21 (Itô’s formula, [5]). Let (Xt)t∈[0,T ] be an Itô-process with
representation

Xt = x +

∫ t

0

b(u)du +

∫ t

0

σ(u)dWu,

for all t ∈ [0, T ], almost surely, and let f ∈ C1,2
b . Then one has that

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂u
(u, Xu)du +

∫ t

0

∂f

∂x
(u,Xu)σ(u)dWu

+

∫ t

0

∂f

∂x
(u,Xu)b(u)du +

1

2

∫ t

0

∂2f

∂x2
(u,Xu)σ

2(u)du

for all t ∈ [0, T ], almost surely.

The following Proposition establishes a link between partial differential
equations and stochastic processes.

Proposition 2.22 (Feynman-Kac). Let dXt = b(Xt)dt + σ(Xt)dWt, with
b, σ ∈ D, be a stochastic differential equation and f be a Borel-measurable
function which satisfies

|f(x)| ≤ c(1 + |x|q)
for some c > 0 and q ≥ 1. Define

u(t, x) := Ef(XT−t(x)) for (t, x) ∈ [0, T ]× R.

Then u(t, x) solves the partial differential equation

∂u

∂t
(t, x) + b(x)

∂u

∂x
(t, x) +

1

2
[σ(x)]2

∂2u

∂x2
= 0
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on [0, T )× R with the terminal condition

u(T, x) = f(x).

For the proof we need the following Proposition presented in [4] on page
263, and Lemma 2.24.

Proposition 2.23. For b, σ ∈ D there exists a transition density Γ : (0, T ]×
R×R→ [0,∞) ∈ C∞ such that P(Xt(x) ∈ B) =

∫
R Γ(t, x, ξ)dξ for t ∈ (0, T ]

and B ∈ B(R), where (Xt(x))t∈[0,T ] is the strong solution of the stochastic
differential equation (2.2) starting from x, such that the following is satisfied:

(i) For (s, x, ξ) ∈ (0, T ]× R× R one has

∂Γ

∂s
(s, x, ξ) =

σ(x)2

2

∂2Γ

∂x2
(s, x, ξ) + b(x)

∂Γ

∂x
(s, x, ξ).

(ii) For k, l ∈ {0, 1, 2, . . .} there exists a constant c = c(k, l) > 0 such that
for (s, x, ξ) ∈ (0, T ]× R× R one has that

∣∣∣ ∂k+lΓ

∂sk∂xl
(s, x, ξ)

∣∣∣ ≤ cs−k−l/2γcs(x− ξ) where γt(η) :=
1√
2πt

e−
η2

2t .

Consequently, for f ∈ Cγ one has

∂k+l

∂sk∂xl

∫

R
Γ(s, x, ξ)f(ξ)dξ =

∫

R

∂k+lΓ

∂sk∂xl
(s, x, ξ)f(ξ)dξ

on (0, T ]×R for k, l ∈ {0, 1, 2, . . .}, where the differentiation can be taken in
any order and where Cγ is defined (Geiss, [6]) as the linear space of all Borel
measurable functions f : R→ R such that there is some m > 0 with

sup
x∈R

e−m|x|Ef 2(x + tg) < ∞

for all t > 0, where g ∼ N (0, 1).

Lemma 2.24. Let f : R× Ω → R such that

(i) ∂
∂x

f(·, ω) is continuous for all ω ∈ Ω,

(ii) ∂
∂x

f(x, ·) and f(x, ·) are random variables,

(iii) there exists a random variable g : Ω → [0,∞) such that

∣∣∣ ∂

∂x
(x, ω)

∣∣∣ ≤ g(ω), for all x ∈ R, ω ∈ Ω

and Eg(ω) < ∞,
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(iv) ∫

Ω

|f(x, ω)|dP(ω) < ∞, for all x ∈ R.

Then
∂

∂x

∫

Ω

f(x, ω)dP(ω) =

∫

Ω

∂

∂x
f(x, ω)dP(ω).

Proof of Proposition 2.22. The function u can be written as follows

u(t, x) = Ef(XT−t(x)) =

∫

R
f(ξ)Γ(T − t, x, ξ)dξ

and by taking derivatives with respect to t one has

∂u

∂t
(t, x) =

d

dt

∫

R
f(ξ)Γ(T − t, x, ξ)dξ

=

∫

R
f(ξ)

d

dt
Γ(T − t, x, ξ)dξ

= −
∫

R
f(ξ)

∂Γ

∂s
(T − t, x, ξ)dξ,

where we have used the Lemma 2.24 to interchange integration and differen-
tiation. Taking derivatives with respect to x one has

∂u

∂x
(t, x) =

∫

R
f(ξ)

∂Γ

∂x
(T − t, x, ξ)dξ.

Now, by using the Proposition 2.23, one has that

∂u

∂t
(t, x) + b(x)

∂u

∂x
(t, x) +

1

2
σ(x)2∂2u

∂x2
(t, x)

=

∫

R
f(ξ)

[
− ∂Γ

∂s
(T − t, x, ξ) + b(x)

∂Γ

∂x
(T − t, x, ξ)

+
σ(x)2

2

∂2Γ

∂x2
(T − t, x, ξ)

]
dξ

= 0.

Lemma 2.25 (Gronwall, [5]). Let A, B, T ≥ 0 and f : [0, T ] → R be a
continuous function such that

f(t) ≤ A + B

∫ t

0

f(s)ds

for all t ∈ [0, T ]. Then one has that f(T ) ≤ AeBT .
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Let b, σ ∈ D and assume (Xt)t∈[0,T ] is the strong solution of the stochastic
differential equation

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x.

This leads to the following two properties of the solution (Bouleau and
Lépingle, [3]).

Proposition 2.26. For 1 ≤ p < ∞ and t ≤ T

‖Xt‖p ≤ C(p, T )(1 + |x|).

Proof. We have that

‖Xt‖p ≤ |x|+
∥∥∥

∫ t

0

σ(Xu)dWu

∥∥∥
p
+

∥∥∥
∫ t

0

b(Xu)du
∥∥∥

p

≤ |x|+ cp

∥∥∥
( ∫ t

0

σ2(Xu)du
)1/2

∥∥∥
p
+ t‖b‖∞

≤ |x|+ cp‖σ‖∞
√

t + ‖b‖∞t,

where have used the Burkholder-Davis-Gundy inequality, [7] (Theorem 3.28
on page 166).

Proposition 2.27. For 1 ≤ p < ∞ and t ≤ T

‖Xt −Xs‖p ≤ c(p, T )(1 + |x|)(t− s)1/2.

Proof. Here we have that

‖Xt −Xs‖p ≤
∥∥∥

∫ t

s

σ(Xu)dWu

∥∥∥
p
+

∥∥∥
∫ t

s

b(Xu)du
∥∥∥

p

≤ cp

∥∥∥
( ∫ t

s

|σ(Xu)|2du
)1/2

∥∥∥
p
+ ‖b‖∞(t− s)

≤ cp‖σ‖∞
√

t− s + ‖b‖∞(t− s)

≤ (cp‖σ‖∞ +
√

T‖b‖∞)
√

t− s,

where have used again the Burkholder-Davis-Gundy inequality.



Chapter 3

Convergence Rate of the Euler
Scheme

In this chapter the strong and weak convergence of the Euler scheme for
a one-dimensional diffusion processes is studied. The results for the weak
convergence go back to articles of Bally and Talay [1, 2]. Let the process
(Xt(x))t∈[0,T ], which takes values in R, be the unique strong solution of

Xt(x) = x +

∫ t

0

b(Xs(x))ds +

∫ t

0

σ(Xs(x))dWs, (3.1)

where (Wt)t∈[0,T ] is a 1-dimensional Brownian motion.
We start by defining the Euler scheme of a diffusion process. Then we

study the strong and weak convergence of the Euler scheme.

Definition 3.1. Let (Xt(x))t∈[0,T ] be the solution of (3.1). The Euler scheme
for (Xt(x))t∈[0,T ] with step-size T

n
and T > 0 is defined by

Xn
(p+1)T/n(x) := Xn

pT/n(x) + b
(
Xn

pT/n(x)
)T

n
+σ

(
Xn

pT/n(x)
)(

W(p+1)T/n −WpT/n

)

and, for pT
n
≤ t < (p+1)T

n
,

Xn
t (x) := Xn

pT/n(x) + b
(
Xn

pT/n(x)
)
(t− pT

n
)

+σ
(
Xn

pT/n(x)
)(

Wt −WpT/n

)
,

where p = 0, . . . , n− 1.

14
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3.1 Strong Convergence

Here we represent the strong convergence of the Euler scheme based on the
book of Gard, [5]. Because we are considering time homogeneous processes,
the following Proposition will slightly differ from [5].

Proposition 3.2. Let b, σ ∈ D. Then we have

E
∣∣XkT/n(x)−Xn

kT/n(x)
∣∣2 ≤ c2

n
(1 + |x|2)

for some constant c > 0 and k = 0, . . . , n.

Proof. From our assumptions on b and σ we have that there is a constant K
such that for all s, t ∈ [0, T ], x, y ∈ R,

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K|x− y| (3.2)

and
|b(x)|2 + |σ(x)|2 ≤ K2(1 + |x|2).

Let us denote kT
n

by tk, Xtk −Xn
tk

by Dtk and ED2
tk

by γk. We obtain

Dtk = Xtk(x)−Xn
tk

(x)

= X0 +

∫ tk

0

b(Xs(x))ds +

∫ tk

0

σ(Xs(x))dWs

−Xn
tk−1

(x)−
∫ tk

tk−1

b
(
Xn

tk−1
(x)

)
ds−

∫ tk

tk−1

σ
(
Xn

tk−1
(x)

)
dWs

= X0 +

∫ tk−1

0

b(Xs(x))ds +

∫ tk−1

0

σ(Xs(x))dWs

+

∫ tk

tk−1

b(Xs(x))ds +

∫ tk

tk−1

σ(Xs(x))dWs

−Xn
tk−1

(x)−
∫ tk

tk−1

b
(
Xn

tk−1
(x)

)
ds−

∫ tk

tk−1

σ
(
Xn

tk−1
(x)

)
dWs

= Dtk−1
+

∫ tk

tk−1

b(Xs(x))− b
(
Xn

tk−1
(x)

)
ds

+

∫ tk

tk−1

σ(Xs(x))− σ
(
Xn

tk−1
(x)

)
dWs a.s.

Now we apply Itô’s formula to f(t, x) = x2, bs := b(Xs(x))− b(Xn
tk−1

(x)) and
σs := σ(Xs(x))− σ(Xn

tk−1
(x)) and get that
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D2
tk

= f(tk, Dtk)

= f(tk−1, Dtk−1
) +

∫ tk

tk−1

2DsσsdWs +

∫ tk

tk−1

(2Dsbs + σ2
s)ds

= D2
tk−1

+

∫ tk

tk−1

2DsσsdWs +

∫ tk

tk−1

(2Dsbs + σ2
s)ds a.s.

and, by taking expected value on both sides,

γk = γk−1 +

∫ tk

tk−1

E
[
2
(
Xs(x)−Xn

s (x)
)[

b(Xs(x))− b(Xn
tk−1

(x))
]

+
[
σ(Xs(x))− σ(Xn

tk−1
(x))

]2
]
ds

≤ γk−1 +

∫ tk

tk−1

E
[∣∣Xs(x)−Xn

s (x)
∣∣2 +

∣∣b(Xs(x))− b(Xn
tk−1

(x))
∣∣2

+
∣∣σ(Xs(x))− σ(Xn

tk−1
(x))

∣∣2
]
ds, (3.3)

where the stochastic integral disappears because we have that

∫ tk

tk−1

ED2
sσ

2
sds < ∞.

By (3.2) we get that

∣∣b(Xs(x))− b(Xn
tk−1

(x))
∣∣2

≤ 2
[∣∣b(Xs(x))− b(Xtk−1

(x))
∣∣2 +

∣∣b(Xtk−1
(x))− b(Xn

tk−1
(x))

∣∣2
]

≤ 2K2
(∣∣Xs(x)−Xtk−1

(x)
∣∣2 +

∣∣Xtk−1
(x)−Xn

tk−1
(x)

∣∣2
)
, (3.4)

and the same for σ. From Proposition 2.27 we get that there is a constant
K1 depending on b, σ and T only, such that

E
∣∣Xs(x)−Xtk−1

(x)
∣∣2 ≤ K1(s− tk−1)(1 + |x|2). (3.5)

To shorten the notation we let K2 := K1(1 + |x|2). Applying (3.4) and (3.5)
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to (3.3) we get,

γk ≤ γk−1 +

∫ tk

tk−1

E
[∣∣Xs(x)−Xn

s (x)
∣∣2

+4K2
(∣∣Xs(x)−Xtk−1

(x)
∣∣2 +

∣∣Xtk−1
(x)−Xn

tk−1
(x)

∣∣2
)]

ds

≤ γk−1 +

∫ tk

tk−1

E
∣∣Xs(x)−Xn

s (x)
∣∣2ds

+

∫ tk

tk−1

4K2
(
K2(s− tk−1) + γk−1

)
ds

= γk−1 +

∫ tk

tk−1

E
∣∣Xs(x)−Xn

s (x)
∣∣2ds + 2K2K2h

2 + 4K2γk−1h

= γk−1(1 + 4K2h) + 2K2K2h
2 +

∫ tk

tk−1

E
∣∣Xs(x)−Xn

s (x)
∣∣2ds,

where h is the time increment with constant length of T/n. From the previous
computation we have that

E
∣∣Xtk(x)−Xn

tk
(x)

∣∣2 ≤ α +

∫ tk

tk−1

E
∣∣Xs(x)−Xn

s (x)
∣∣2ds

for α := γn−1(1 + 4K2h) + 2K2K2h
2. Following the same proof we also have

E|Xt(x)−Xn
t (x)|2 ≤ α +

∫ t

tk−1

E|Xs(x)−Xn
s (x)|2ds

for t ∈ [tk−1, tk]. Letting

ψ(t) := E|Xt(x)−Xn
t (x)|2,

we obtain a continuous function ψ : [tk−1, tk] → [0,∞) with

ψ(t) ≤ α +

∫ t

tk−1

ψ(s)ds

for all t ∈ [tk−1, tk]. We obtain the continuity of ψ by

|ψ(t)1/2 − ψ(s)1/2| =
∣∣‖Xt(x)−Xn

t (x)‖L2 − ‖Xs(x)−Xn
s (x)‖L2

∣∣
≤ ‖(Xt(x)−Xs(x))− (Xn

t (x)−Xn
s (x))‖L2

≤ ‖Xt(x)−Xs(x)‖L2 + ‖Xn
t (x)−Xn

s (x)‖L2

= ‖A + B‖L2 + ‖An + Bn‖L2

≤ ‖A‖L2 + ‖B‖L2 + ‖An‖L2 + ‖Bn‖L2
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where A :=
∫ t

s
b(Xu(x))du, B :=

∫ t

s
σ(Xu(x))dWu, An :=

∫ t

s
bn(u)du and

Bn :=
∫ t

s
σn(u)dWu with

bn(u) =
n∑

k=1

b(X(k−1)T/nn(x))I((k−1)T/n,kT/n](u)

and

σn(u) =
n∑

k=1

σ(X(k−1)T/nn(x))I((k−1)T/n,kT/n](u).

Now we have that |bn| ≤ ‖b‖∞, |σn| ≤ ‖σ‖∞ and

‖A‖L2 ≤ (t− s)‖b‖∞,

‖An‖L2 ≤ (t− s)‖b‖∞,

‖B‖L2 ≤
(
E

∫ t

s

|σ(Xu(x))|2du
)1/2

≤ (t− s)1/2‖σ‖∞,

‖Bn‖L2 ≤
(
E

∫ t

s

|σn(u)|2du
)1/2

≤ (t− s)1/2‖σ‖∞.

Finally,
|ψ(t)1/2 − ψ(s)1/2| ≤ 2[(t− s)‖b‖∞ +

√
t− s‖σ‖∞].

Applying Lemma 2.25 gives that

ψ(t) ≤ αeh. (3.6)

From the initial condition γ0 = 0 and iterating (3.6) one gets that,

γn ≤ 2K2K2h
2eh

(1− rn

1− r

)
, (3.7)

where r = (1 + 4K2h)eh and r > 1. In detail, let us denote 1 + 4K2h by Γ
and 2K2K2h

2 by Υ so that one gets from (3.6) that

γn ≤ (γn−1Γ + Υ)eh.
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Using the same inequality for γn−1, . . . , γ1 one gets that

γn ≤ [
(γn−2Γ + Υ)ehΓ + Υ

]
eh

= γn−2Γ
2e2h + ΥΓe2h + Υeh

≤ (γn−3Γ + Υ)ehΓ2e2h + ΥΓe2h + Υeh

= γn−3Γ
3e3h + ΥΓ2e3h + ΥΓe2h + Υeh

...

≤ γ0Γ
nenh + ΥΓn−1enh + . . . + ΥΓe2h + Υeh

= Υeh
[
(Γeh)n−1 + . . . + (Γeh)2 + Γeh + 1

]

= Υeh 1− (Γeh)n

1− Γeh
,

which proves (3.7). Now the right-hand side of (3.7) can be arranged as

2K2K2(1− r
T
h )

( heh

1− r

)
h, (3.8)

where h = T/n. When h → 0, r
1
h = (1 + 4K2h)

1
h e → e4K2+1, and by

L’Hôspital’s rule,

heh

1− r
=

h

e−h − (1 + 4K2h)
−→ −1

1 + 4K2
.

This implies that (3.8) divided by h converges to

2K2K2

[e(4K2+1)T − 1

4K2 + 1

]
,

as h → 0. Now we can conclude that,

γn = O(h).

Recent results about convergence properties of approximation schemes
for stochastic differential equations based on the notion of complexity can be
found in Müller-Gronbach, [8, 9].

3.2 Weak Convergence

Before we formulate the main result of this chapter in Proposition 3.3 we
introduce some notation. Let us denote by L the second-order differential
operator

L := b(x)
∂

∂x
+

1

2
σ2(x)

∂2

∂x2
.
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Let f be a bounded and measurable function and u(t, x) := Ef(XT−t(x)) for
(t, x) ∈ [0, T ]× R. By Proposition 2.22 we have

∂u

∂t
+ Lu = 0 on [0, T )× R and u(T, ·) = f(·). (3.9)

Let Ψ(t, x) be defined by

Ψ(t, x) :=
1

2
b2(x)

∂2u

∂x2
(t, x) +

1

2
b(x)σ2(x)

∂3u

∂x3
(t, x)

+
1

8
σ4(x)

∂4u

∂x4
(t, x) +

1

2

∂2u

∂t2
(t, x)

+b(x)
∂2u

∂t∂x
(t, x) +

1

2
σ2(x)

∂3u

∂t∂x2
(t, x),

where (t, x) ∈ [0, T )× R.

Proposition 3.3. Let b, σ ∈ D. If f is a measurable and bounded function,
then the error of the Euler scheme satisfies

|Ef(Xn
T (x))− Ef(XT (x))| ≤ c‖f‖∞(1 + |x|Q)

1

n
.

where c,Q > 0 depend at most on b, σ and T .

The following lemmas are needed to prove Proposition 3.3. Lemma 3.5 is
not proven in this thesis, but the proof can be found in [1].

Lemma 3.4. Let u be a function as in (3.9). Then, for any smooth function
g such that each derivative is of polynomial growth and α ∈ {0, 1, 2, . . .} there
exist K,Q > 0 depending on g, b, σ, α and T such that

∣∣∣∣E
(
g(Xt(x))∂x

αu(t,Xt(x))
)∣∣∣∣ ≤ K‖f‖∞(1 + |x|Q) for all t ∈ [0, T ), (3.10)

and
∣∣∣∣E

(
g(Xn

t (x))∂x
αu(t,Xn

t (x))
)∣∣∣∣ ≤ K‖f‖∞(1 + |x|Q) for all t ∈ [

0, T − T

n

]
.

(3.11)

Proof of Lemma 3.4. We prove (3.10) and (3.11) only for 0 ≤ t ≤ T/2.
First, remind that

u(t, x) =

∫

R
pT−t(x, y)f(y)dy
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with ps(x, y) = Γ(s, x, y) where Γ is the transition density as in Proposition
2.23. By taking partial derivative with respect to x, we get

∂x
αu(t, x) =

∫

R
∂x

αpT−t(x, y)f(y)dy.

Using the estimate from Proposition 2.23 we get

|∂x
αu(t, x)| ≤

∫

R
|∂x

αpT−t(x, y)||f(y)|dy

≤ c

(T − t)α/2
‖f‖∞

∫

R
γcs(x− y)dy

=
c

(T − t)α/2
‖f‖∞.

Consequently, for some Q ≥ 1,

|Eg(Xt(x))∂x
αu(t,Xt(x))| ≤ E|g(Xt(x))| c

(T − t)α/2
‖f‖∞

≤ c′E(1 + |Xt(x)|Q)
c

(T − t)α/2
‖f‖∞

= (c′ + c′‖Xt(x)‖Q
Q)

c

(T − t)α/2
‖f‖∞

≤ c′′(1 + |x|Q)
1

(T − t)α/2
‖f‖∞,

where we used Proposition 2.26. Because of

1

T − t
≤ 2

T
for 0 ≤ t ≤ T/2

we obtain (3.10) for those t. Let us turn to (3.11). Here we get in the same
way

|Eg(Xt(x))∂x
αu(t,Xt(x))| ≤ (c′ + c′‖Xn

t (x)‖Q
Q)

c

(T − t)α/2
‖f‖∞

≤ [
c′ + c′(‖Xt(x)‖Q + ‖Xn

t (x)−Xt(x)‖Q)Q
]

× c

(T − t)α/2
‖f‖∞.

Now we can finish the proof by Proposition 3.2 and, again, Proposition 2.26.

Lemma 3.5 (Bally and Talay, [1]). Under the assumptions of the Proposition
3.3, for some integer Q and some non decreasing function K(T ), one has that∣∣∣∣Ef(Xn

T (x))− E
[
PT/nf(Xn

T−T/n(x))
]∣∣∣∣ ≤

K(T )

n2
‖f‖∞(1 + |x|Q)

with u(t, ·) = PT−tf(·) = Ef(XT−t(·)).
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The following Lemma is the key point in the proof of Proposition 3.3.
For the proof of Proposition 3.3 we need only to find an upper bound for the
terms of the expansion given below.

Lemma 3.6. It holds that

Ef(Xn
T (x))− Ef(XT (x)) =

T 2

n2

n−2∑

k=0

EΨ
(kT

n
,Xn

kT/n(x)
)

+Ef(Xn
T (x))− E

[
PT/nf(Xn

T−T/n(x))
]

+
n−2∑

k=0

In
k , (3.12)

where

In
k = E

∫ (k+1)T
n

kT
n

∫ t

kT
n

∫ v

kT
n

ϑn
k(s)dsdvdt

and ϑn
k(s) is a sum of differentials ∂α

∂xα u(s,Xn
s ) up to order 6 multiplied by

products of b(Xn
kT/n) and σ(Xn

kT/n).

Proof. One defines the differential operator Lz by

Lzg(·) := b(z)
∂g

∂x
(·) +

1

2
σ2(z)

∂2g

∂x2
(·)

where z ∈ R is being fixed. Let u be defined by Ef(XT−t(x)). This implies
that

Ef(Xn
T (x)− Ef(XT (x)) = Eu(T, Xn

T (x))− u(0, x) =
n−1∑

k=0

δn
k ,

with

δn
k := E

[
u
((k + 1)T

n
,Xn

(k+1)T/n(x)
)
− u

(kT

n
,Xn

kT/n(x)
)]

.

For u(s,Xn
s (x)) with s ∈ (tnk , t

n
k+1] and k = 0, . . . , n − 1 Itô’s formula gives,

P-a.s.,

u(s, Xn
s (x)) = u(tnk , X

n
tnk

(x)) +

∫ s

tnk

∂u

∂t
(t,Xn

t (x))dt

+

∫ s

tnk

∂u

∂x
(t,Xn

t (x))σ(Xn
tnk

)dWt +

∫ s

tnk

∂u

∂x
(t, Xn

t (x))b(Xn
tnk

)dt

+
1

2

∫ s

tnk

∂2u

∂x2
(t,Xn

t (x))σ2(Xn
tnk

)dt.
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Then, for z = Xn
kT/n, tnk = kT/n and s = (k + 1)T/n, one has that

δn
k = E

∫ (k+1)T/n

kT/n

(∂u

∂t
(t,Xn

t (x)) +
∂u

∂x
(t,Xn

t (x))b(z)

+
1

2

∂2u

∂x2
(t,Xn

t (x))σ2(z)
)
dt

= E
∫ (k+1)T/n

kT/n

(∂u

∂t
(t,Xn

t (x)) + Lzu(t,Xn
t (x))

)
dt.

Let us define

û(t,Xn
t (x)) :=

∂u

∂t
(t, Xn

t (x)) + Lzu(t,Xn
t (x)).

Now we apply Itô’s formula to û which gives that, almost surely,

û(t,Xn
t (x)) = û

(kT

n
,Xn

kT/n(x)
)

+

∫ t

kT/n

(
∂û

∂v
(v,Xn

v (x))

+
∂û

∂x
(v, Xn

v (x))b(z) +
1

2

∂2û

∂x2
(v,Xn

v (x))σ2(z)

)
dv

+

∫ t

kT/n

∂û

∂x
(v,Xn

v (x))σ(z)dWv

=
∂u

∂t

(kT

n
,Xn

kT/n(x)
)

+ Lzu
(kT

n
,Xn

kT/n(x)
)

+

∫ t

kT/n

( ∂

∂v
+ Lz

)∂u

∂v

(
v, Xn

v (x)
)

+
( ∂

∂v
+ Lz

)
Lzu

(
v, Xn

v (x)
)
dv

+

∫ t

kT/n

∂û

∂x
(v,Xn

v (x))σ(z)dWv,

where t ∈ (kT
n

, (k+1)T
n

] and, by taking the expected value one gets that

δn
k = E

∫ (k+1)T/n

kT/n

∫ t

kT/n

( ∂

∂v
+ Lz

)∂u

∂v

(
v,Xn

v (x)
)

+
( ∂

∂v
+ Lz

)
Lzu

(
v, Xn

v (x)
)
dvdt

because
∂u

∂t

(kT

n
,Xn

kT/n(x)
)

+ Lzu
(kT

n
,Xn

kT/n(x)
)

= 0.
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The integrands gets the following form:
( ∂

∂v
+ Lz

)∂u

∂v

(
v, Xn

v (x)
)

=
( ∂

∂v
+ b(z)

∂

∂x
+

1

2
σ2(z)

∂2

∂x2

)∂u

∂v

(
v, Xn

v (x)
)

=
(∂2u

∂v2
+ b(z)

∂2u

∂v∂x
+

1

2
σ2(z)

∂3u

∂v∂x2

)(
v,Xn

v (x)
)

and
( ∂

∂v
+ Lz

)
Lzu

(
v, Xn

v (x)
)

=
[
b(z)

∂2

∂v∂x
+

1

2
σ2(z)

∂3

∂v∂x2
+ LzLz

]
u
(
v,Xn

v (x)
)
,

where

LzLzu
(
v, Xn

v (x)
)

= Lz

(
b(z)

∂

∂x
+

1

2
σ2(z)

∂2

∂x2

)
u
(
v,Xn

v (x)
)

=

[
b(z)

(
b(z)

∂2

∂x2
+

1

2
σ2(z)

∂3

∂x3

)

+
1

2
σ2(z)

(
b(z)

∂3

∂3x
+

1

2
σ2(z)

∂4

∂x4

)]
u
(
v,Xn

v (x)
)

=
(
b2(z)

∂2

∂x2
+ b(z)σ2(z)

∂3

∂x3
+

1

4
σ4(z)

∂4

∂x4

)
u
(
v,Xn

v (x)
)
.

Combining the above equations one gets that
( ∂

∂v
+ Lz

)∂u

∂v

(
v, Xn

v (x)
)

+
( ∂

∂v
+ Lz

)
Lzu

(
v, Xn

v (x)
)

=
(
b2(z)

∂2u

∂x2
+ b(z)σ2(z)

∂3u

∂x3
+

1

4
σ4(z)

∂4u

∂x4
+

∂2u

∂v2
+ 2b(z)

∂2u

∂v∂x

+σ2(z)
∂3u

∂v∂x2

)
(v, Xn

v (x)).

Then apply Itô’s formula to all partial derivatives of u. For ∂2u
∂v2 one has

∂2u

∂v2
(v,Xn

v (x)) =
∂2u

∂v2

(
kT

n
, Xn

kT/n(x)

)
+

∫ v

kT/n

[
∂3u

∂v2∂s
(s,Xn

s (x))

+
∂3u

∂v2∂x
(s,Xn

s (x))b(z) +
1

2

∂4u

∂v2∂x2
(s,Xn

s (x))σ2(z)

]
ds

+

∫ v

kT/n

∂3u

∂v2∂x
(s,Xn

s (x))σ(z)dWs.
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The calculations of other partial derivatives are similar and they are not
presented here. Finally we collect the first terms of Itô’s formula and get
that

δn
k = E

∫ (k+1)T/n

kT/n

∫ t

kT/n

(
b2(z)

∂2u

∂x2
+ b(z)σ2(z)

∂3u

∂x3
+

1

4
σ4(z)

∂4u

∂x4

+
∂2u

∂v2
+ 2b(z)

∂2u

∂v∂x
+ σ2(z)

∂3u

∂v∂x2

)(kT

n
,Xn

kT/n(x)
)
dvdt

+E
∫ (k+1)T/n

kT/n

∫ t

kT/n

∫ v

kT/n

ϑn
k(s)dsdvdt

= E
∫ (k+1)T/n

kT/n

∫ t

kT/n

2Ψ
(kT

n
, Xn

kT/n(x)
)
dvdt + In

k

=
T 2

n2
EΨ

(kT

n
,Xn

kT/n(x)
)

+ In
k .

Since u(t, ·) = PT−tf(·) = Ef(XT−t(·)), one has that

δn
n−1 = E

[
u
(
T, Xn

T (x)
)− u

(
T − T/n, Xn

T−T/n(x)
)]

= Ef(Xn
T (x))− E

[
PT/nf(Xn

T−T/n(x))
]

which implies that

Ef(Xn
T (x))− Ef(XT (x)) = δn

n−1 +
n−2∑

k=0

δn
k

= Ef(Xn
T (x))− E

[
PT/nf(Xn

T−T/n(x))
]

+
T 2

n2

n−2∑

k=0

EΨ
(kT

n
,Xn

kT/n(x)
)

+
n−2∑

k=0

In
k .
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Proof of Proposition 3.3. The expansion given in Lemma 3.6 gives that

∣∣Ef(Xn
T (x))− Ef(XT (x))

∣∣ ≤ T 2

n2

n−2∑

k=0

∣∣∣EΨ
(kT

n
,Xn

kT/n(x)
)∣∣∣

+
∣∣∣Ef(Xn

T (x))− E
[
PT/nf(Xn

T−T/n(x))
]∣∣∣

+
n−2∑

k=0

|In
k |

≤ 1

n

(
T 2 sup

k=0,...,n−2

∣∣∣EΨ
(kT

n
,Xn

kT/n(x)
)∣∣∣

+ sup
k=0,...,n−2

n2E|In
k |

)

+
∣∣∣Ef(Xn

T (x))− E
[
PT/nf(Xn

T−T/n(x))
]∣∣∣.

By Lemma 3.5 the last term is bounded by

K(T )

n2
‖f‖∞(1 + |x|Q).

It remains to show that

sup
n=1,2,...

sup
k=0,...,n−2

[∣∣∣EΨ
(kT

n
,Xn

kT/n(x)
)∣∣∣ + n2E|In

k |
]

< ∞.

But this follows from Lemma 3.4 and Lemma 3.6.

The next proposition is a variant of Proposition 3.3 which provides for
n →∞ an explicit constant for Proposition 3.3.

Proposition 3.7. Let b, σ ∈ D. If f is a measurable and bounded function,
then the error of the Euler scheme satisfies

Ef(XT (x))− Ef(Xn
T (x)) = −Cf (T, x)

n
+

Qn(f, T, x)

n2
,

where Cf (T, x) :=
∫ T

0
EΨ(s,Xs(x))ds ∈ R and Qn(f, T, x) satisfy the follow-

ing property: there exists K > 0 depending on b, σ, and T , and a positive
real number Q such that

|Cf (T, x)|+ sup
n
|Qn(f, T, x)| ≤ K‖f‖∞(1 + |x|Q).
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Proof. The expansion (3.12) can be written as

Ef(Xn
T (x))− Ef(XT (x))

=
T

n

∫ T

0

EΨ(s,Xs(x))ds +
T 2

n2

n−2∑

k=0

EΨ
(kT

n
,XkT/n(x)

)

−T

n

∫ T

0

EΨ(s,Xs(x))ds

+
T 2

n2

n−2∑

k=0

E
[
Ψ

(kT

n
,Xn

kT/n(x)
)
−Ψ

(kT

n
,XkT/n(x)

)]

+
n−2∑

k=0

In
k + Ef(Xn

T (x))− E
[
PT/nf(Xn

T−T/n(x))
]

=
T

n

∫ T

0

EΨ(s,Xs(x))ds− T

n2
Qn(f, T, x),

where

−Qn(f, T, x) := T

n−2∑

k=0

EΨ
(kT

n
,XkT/n(x)

)
− n

∫ T

0

EΨ(s,Xs(x))ds

+T

n−2∑

k=0

E
[
Ψ

(kT

n
,Xn

kT/n(x)
)
−Ψ

(kT

n
, XkT/n(x)

)]

+
n2

T

n−2∑

k=0

In
k +

n2

T

[
Ef(Xn

T (x))− E[
PT/nf(Xn

T−T/n(x))
]]

.

Equation (3.10) implies that
∫ T

0
EΨ(s,Xs(x))ds is finite. In order to prove

the proposition one can show that

(i)

∣∣∣T
n

n−2∑

k=0

EΨ
(kT

n
,XkT/n(x)

)
−

∫ T

0

EΨ(s,Xs(x))ds
∣∣∣ ≤ K‖f‖∞(1+|x|Q)

1

n
,

(3.13)

(ii)

∣∣∣EΨ
(kT

n
,XkT/n(x)

)
− EΨ

(kT

n
,Xn

kT/n(x)
)∣∣∣ ≤ K‖f‖∞(1 + |x|Q)

1

n
,

for k = 0, . . . , n− 2,
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(iii)
∣∣∣

n−2∑

k=0

In
k

∣∣∣ ≤ K‖f‖∞(1 + |x|Q)
1

n2
,

(iv) ∣∣∣Ef(Xn
T (x))− E[

PT/nf(Xn
T−T/n(x))

]∣∣∣ ≤ K‖f‖∞(1 + |x|Q)
1

n2
,

where K > 0 is a constant depending at most on b, σ and T . Inequality (iv)
we mentioned in Lemma 3.5. From the remaining inequalities we only show
(i). We use Itô’s formula and the estimate (3.10). For simplicity we denote
kT
n

by tnk . To estimate (3.13) we start with

∣∣∣T
n

n−2∑

k=0

EΨ(tnk , Xtnk
(x))−

∫ T

0

EΨ(s,Xs(x))ds
∣∣∣

=
∣∣∣

n−2∑

k=0

E
∫ tnk+1

tnk

[Ψ(tnk , Xtnk
(x))−Ψ(s,Xs(x))]ds−

∫ T

tnn−1

EΨ(s,Xs(x))ds
∣∣∣

≤
n−2∑

k=0

∫ tnk+1

tnk

∣∣∣E[Ψ(tnk , Xtnk
(x))−Ψ(s,Xs(x))]

∣∣∣ds

+

∫ T

tnn−1

∣∣∣EΨ(s,Xs(x))
∣∣∣ds. (3.14)

Itô’s formula gives, almost surely, that

Ψ(s,Xs(x)) = Ψ(0, X0(x)) +

∫ s

0

∂Ψ

∂u
(u,Xu(x))du

+

∫ s

0

∂Ψ

∂x
(u,Xu(x))σ(Xu(x))dWu

+

∫ s

0

∂Ψ

∂x
(u,Xu(x))b(Xu(x))du

+
1

2

∫ s

0

∂2Ψ

∂x2
(u,Xu(x))σ2(Xu(x))du

and by taking the expected value we have

EΨ(s,Xs(x)) = EΨ(0, X0(x)) + E
∫ s

0

Ψ̂(u, Xu(x))du,

where

Ψ̂(u,Xu(x)) :=
∂Ψ

∂u
(u,Xu(x)) +

∂Ψ

∂x
(u,Xu(x))b(Xu(x))

+
1

2

∂2Ψ

∂x2
(u,Xu(x))σ2(Xu(x)).
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For s = tnk we have

EΨ(tnk , Xtnk
(x)) = EΨ(0, X0(x)) + E

∫ tnk

0

Ψ̂(u,Xu(x))du.

Now the difference between above expectations can be written as

E[Ψ(Xs(x), s)−Ψ(tnk , Xtnk
(x))] =

∫ s

tnk

EΨ̂(u,Xu(x))du.

Using the above difference in (3.14) we have

∣∣∣T
n

n−2∑

k=0

EΨ(tnk , Xtnk
(x))−

∫ T

0

EΨ(s, Xs(x))ds
∣∣∣

≤
n−2∑

k=0

∫ tnk+1

tnk

∫ s

tnk

∣∣∣EΨ̂(u,Xu(x))
∣∣∣duds +

∫ T

tnn−1

∣∣∣EΨ(s, Xs(x))
∣∣∣ds.

By replacing all partial derivatives of the form ∂u
∂t

by Lu in Ψ̂(t,Xt(x)), the

expansions EΨ̂(t,Xt(x)) and EΨ(t,Xt(x)) are of the form treated in Lemma
3.4. Hence

∣∣∣T
n

n−2∑

k=0

EΨ
(kT

n
,XkT/n

)
−

∫ T

0

EΨ(s,Xs)ds
∣∣∣ ≤ C‖f‖∞(1 + |x|Q)

1

n
.

3.3 Conclusions

With b, σ ∈ D and (Xn
t (x))t∈[0,T ] being the Euler scheme related to the

process (Xt(x))t∈[0,T ], we have proved that,

• the strong L2-error supk=0,...,n ‖XkT/n(x)−Xn
kT/n(x)‖L2 is of order 1/

√
n,

• and in contrast to this, the weak error |Ef(XT (x)) − Ef(Xn
T (x))| is

of order 1/n even in the case no smoothness assumptions on f are
imposed. This better rate of convergence is useful, for example, in
Value at Risk (VaR) computations in Stochastic Finance.
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