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1 Introduction

In finance theory risk is defined as the dispersion of unexpected outcomes due
to movements in financial variables i.e. risk can be considered as a random
variable and it is best measured in terms of probability distribution functions.

Value-at-Risk (VaR) is a category of risk measures that describe prob-
abilistically the market risk of a trading portfolio. VaR is widely used in
banks, securities firms, commodity and energy merchants, and other trading
organizations.

We shortly introduce VaR, for more information see [1]. Computing VaR
requires first the definition of a period over which to measure unfavorable
outcomes. We consider X as the random variable of loss that might occur
over a chosen period of time. Let Fx be the distribution function of X,
Fx(z) =P(X <z). For 0 < a <1 the Value-at-Risk at probability level «
of X is its a-quantile, i.e.

VaR,(X) = Fy'(a) :=inf{z € R : Fx(z) > a},

which is the left-continuous inverse of the distribution function. It means
that with probability « the portfolios value will drop at most VaR,(X).

For example, express the time in trading days and let 0 be the current
time. We know our portfolio’s current market value 0,, but its market value
1, after one trading day is unknown. It is a random variable. We might for
example report the 90%-quantile of the portfolio’s single-period loss 0, — 1,,,
VaR0790(Op — 1p)

In the picture it is
shown the density func-
tion of the portfolio’s
value 1, after one trad-
ing day. VaR is the 90%-
quantile of the portfolio’s
single-period loss distribu-
tion, which is the same as
the distribution of 0, — 1,.
It means, that with prob-
ability 0,9 the portfolio’s
value after one trading
day will be at least 0, —
VaR.

The problem is to manage the VaR of a joint position ¥ (X, ..., X, ) result-
ing from the combination of different dependent risks Xi,...,X,,. In many



situations only partial or no information at all about the dependence between
X1,...,X, is available i.e. the joint distribution Fly, . x, is unknown.

We study the problem of finding the best-possible lower bound on the
distribution function of ¥ (X) = ¢(Xy,..., X,,). It will provide us an upper
bound for the VaR. This problem has a long history. The first result was
provided by Makarov [2]| in response to a question of A.N. Kolmogorov for
n = 2 and (X, Xs) := Xj + Xo. A few years later, in [3|, the bounds
were proved to be best-possible and to hold in arbitrary dimensions for any
continuous non-decreasing ©. Dependence information was used in [4] in
estimating the distribution for n = 2 and sharpness of the lower bound
was proved for non-decreasing functions ¢ : R* — R. In [3| and [4], the
distribution functions are left-continuous.

In this paper we will first study some properties of copulas, that are func-
tions that will later be used in estimating the right-continuous distribution
of Y(X) = (Xq,...,X,). In Section 3 there will be presented a lower bound
for the distribution of ¥(X) for an increasing function v in arbitrary dimen-
sions. This bound can be tightened in the case that we have some information
on dependence. We improve the bound presented in [5], and show that the
bound presented in [6] is indeed best-possible in two dimensions when ) is
left-continuous in its second coordinate. For a special case, there will be also
presented an improvement to this lower bound in the case nothing is known
about the dependence. The theorem was first introduced in [5].

There is also an upper bound. In [6] it is shown that one can provide a
best-possible upper bound in arbitrary dimensions when v is left-continuous
and one can also use information about dependence to tighten the bound.



2 Copulas

The dependence between random variables Xi,..., X,, on some probability
space (€, F,P) is completely determined by their joint distribution function
F(xy,...,z,) =P(X; <x1,...,X, <x,). We separate I into two parts: a
copula, which describes the dependence structure, and the marginal distrib-
utions. The word copula originates from the Latin word for connecting two
different things. And this is what copulas do; they connect the margins to
a joint distribution. To define a copula, we use the definition introduced in

[7]-
Definition 2.1 A function C : [0, 1]™ — [0, 1], is a copula provided that
1. (a) for every u € [0,1]",
C(u) =0 if at least one coordinate of u is 0,

and

(b)
Cu)=ug if ;=1 forall i€ {l,....k—1,k+1,...,n}

and

2. C is n-increasing, which means that if a € [0,1]" and b € [0, 1]" such
that a; < b; for all i =1,...,n, then

2 2
Z e Z(—l)j1+"'+j"0(u1jl, . 7unjn) > 0, (1)

Ji=1 Jn=1
where u;; = a; and u;p = b; foralle=1,...,n.

The left-hand side of (1) is called the C-volume of (a1, b1] X -+ X (@, by]
and we denote it by Ve ((ay, b1] X -+ X (ay, by)).

In Section 2.3. we will show that a copula is a distribution function on
its domain, and that its margins are standard uniformly distributed. By the
following theorem we can use copulas to describe any distribution function F'.
It is called Sklar’s Theorem after A. Sklar, who first published the theorem
in 1959. The proof in this paper follows the proof in [7] (Theorem 2.3.3).

Theorem 2.2 For any n-dimensional distribution function F with margins
Fi,..., F, there exists a copula C : [0,1]" — [0, 1] such that

F(xy,...,x,) = C(Fi(21),. .., Fo(z,)). (2)

Conversely, for any copula C : [0,1]" — [0,1] and any margins Fy, ... F,
the function C(Fi, ..., F,) is an n-dimensional distribution function.



For the convenience of the reader we recall here also the deﬁnitign of
an n-dimensional distribution function from [9]. We will denote by R the
extended real line, R := [—o0, o0].

Definition 2.3 A function F, F : R" — [0,1], is an an n-dimensional dis-
tribution function provided that

(i) F is n-increasing i.e. for a € R" and b € R" such that a; < b; for all
1 =1,...,n it holds

2 2

Z LY (=D R (g g,) >0, (3)

where u;; = a; and u;,p = b; foralle=1,...,n,

(ii) F is right-continuous i.e. if 2® | 2, then F(z®) | F(z) for all z €
R"\ {+o0,..., 400},

(iii) if 2™ | x and 2; = —oc for some i = 1,...,n, then F(x*) | 0 and
(iv) F(4o0,...,4+00) = 1.

We only prove the two-dimensional case of Sklar’s theorem following the
proof in [7]. For the proof we first introduce the concept of subcopulas.

Definition 2.4 A two-dimensional subcopula is a function C” with the fol-
lowing properties:

0. The domain of C’ is a cartesian product S; x S, where S; and Sy are
subsets of [0, 1] containing the points 0 and 1.

1. For all u; € S; and uy € Sy it holds

(a) C'(u1,0) =0=C"(0,uz) and
(b) C"(u1,1) = uy and C'(1,uz) = us.

2. (' is 2-increasing.

From 0.-2. it follows directly that C” is a copula if S} = S = [0, 1] and like
for copulas, we define the C’-volume of (a,c] x (b,d|, where a,c € S; and
b, d e SQ, by

Ver((a, ] x (b,d]) :==C'(c,d) — C'(¢,b) — C'(a,d) + C'(a,b) > 0.

We start the proof of Sklar’s Theorem with



Lemma 2.5 ([7] (Lemma 2.1.5)) Let Ty and Ty be subsets of R containing
the points —oo and co. Let H : Ty x Ty — [0,00) be a function that is 2-
increasing and grounded i.e. H(xi,—00) =0 = H(—o00,xs) for all x; € T}
and xo € Ty. Let Fy and F5 be the margins of H, meaning Fy(x1) = H(x1,00)
and Fy(x9) = H(00, 3) for all x1 € Ty and xo € Ty. Then for all © = (x1, x2)
and y = (y1,y2) in Ty X Ty one has

|H (y1,y2) — H(z1,22)| < [Fi(yr) — Fu(n)| + [Fa(ye) — Faz)].

Proof: From the triangle inequality we have for all x and y in T7 x T5,
that

|H (y1,y2) — H(z1, 22)| < |H(vy1,92) — H(z1,92)| + [H (21, y2) — H(x1, 22)|.

Now assume x; < y;. Since H is 2-increasing and grounded, for
(x1,—00), (y1,y2) € T1 x T3 it holds

Vir (1, 151] x (=00, 42]) = H(y1,y2) — H(x1,y2) — H(y1, —00) + H (1, —00)
= H(y1,y2) — H(21,92) > 0

and
Vir (1, 1] X (y2,00]) = H(y1,00) — H(z1,00) — H(y1,y2) + H(x1,92) > 0,

where the latter is equivalent to H(y;, 00)—H (z1,00) > H(y1, y2)—H (21, y2).
We get by the definition of £} and F3, that

0 < H(y1,y2) — H(z1,2) < H(y1,00) — H(x1,00) = Fi(y1) — Fi(z1).

An analogous inequality holds when y; < x71, hence it follows that for any
xr1 and yp in T}

[H (y1,y2) — H(z1,92)| < [Fi(y1) — Fi(z)].
Similarly, for any x5 and vy, in 75 we can show that

[H (21, y2) — H(z1,22)| < [Fa(y2) — Fa(a2)].
Now

|H(y1,92) — H(z1, 22)| < |[H(y1,92) — H(z1,y2)| + [H(21,92) — H(z1,22)]
<|Fi(y1) — Fi(x)] + |[Fa(y2) — Fa(xa)l.
]

The next lemma will show that the first statement of Sklar’s Theorem
holds for subcopulas.



Lemma 2.6 ([7] (Lemma 2.3.4)) Let H be a joint distribution function with
margins Fy and F,. Then there exists a unique subcopula C' such that

1. DomC’" = S; x Sy, where S1 and Sy are the ranges of Fy and Fs,
respectively, and

2. for all x1 and x5 in R, it holds H(x1,x5) = C"(Fy (1), Fy(x3)).
Proof: Let us define a relation C’,
C/ = {((F1($1),F2<I2)) ,H(Il,I‘Q)) 11, T € R} s

from the set A = {(Fl(xl),Fz(xg)) DT, T € R} to the set B :=
{H(xl, To) @ T1,Te € R}. We have to show that C’ is a subcopula.

We will first check whether the relation C’ is a function. For this let
(x129), (Y1, y2) € R such that by = H(x1,x2) and by = H(yy,y2). Now if a =
(Fi(xy1), Fy(z2)) = (Fi(y1), F2(ye)) for some a € A, it implies Fy(z1) = Fi(y1)
and Fy(x2) = Fy(y2). As a distribution function H satisfies the assumptions
of Lemma 2.5, so that

|H (y1,y2) — H(z1,22)| < [Fi(yr) — Fi(z)| + [Fa(ye) — Fa(2)| =0,

whence by = H(x1,22) = H(y1,y2) = by. We have shown that for all a € A
there exists b € B such that C'(a) = b and if a is in relation with b; =
H(zy,x9) and by = H(y1,y2), then by = by. These two assertions give that
(" is a function.

Next, let us check the three assertions of Definition 2.4 to show that C’
is a subcopula.

0. DomC’ = RanF} x RanF, = S; x Sy and for ¢ = 1,2 it holds
0= Fj(—o0) € S; and 1 = Fj(oc0) € S; and S; C [0, 1] since F; is nondecreas-
ing.

1. and 2. For any (uy,us) € Sy X Sy there exists (z1,x2) € R such that
u; = Fi(z1) and us = Fy(z3). Now

C,(Ul,O) = Cl (Fl(l'l), FQ(—OO)) = H(l’l, —OO) = 0

and
CI(O,UQ) = C, (Fl(—OO),FQ(I'Q)) = H(—OO,J?Q) = 0.

The same way we get
C”(ul, 1) = C/ (Fl(l’l),FQ(OO)) = H(l’l, OO) = FI(J,’l) = U

and
C'(1,up) = C" (Fi(00), Fy(x3)) = H(00, 1) = Fy(x9) = us.



To show that C’ is 2-increasing, take (uy,us), (vi,v2) € S; X Sy such that
u; < vy and ug < ve. There exist (z1,x2), (y1,Y2) € R such that Fi(x;) = u;
and Fj(y;) = v; for i = 1,2. Since F; and F5 are nondecreasing, we can
choose x; < y; for e = 1,2. Then

Ver ((ug,v1] X (ug,v9]) =C"(v1,v9) — C'(ug,v9) — C'(v1, uz) + C" (ug, uz)
=C" (Fi(), Fa(y2)) — O (Fi(21), Fa(y2))
= O (Fi(y1), Fa(a2)) + O (Fi(21), Fa(w2))
=H(y1,y2) — H(w1,y2) — H(z2,51) + H(21, 22)
>0,

since H is 2-increasing as a distribution function.
Clearly C" satisfies the two assertions of this lemma, since A = S} x S and
B =RanH C [0,1] and H(xy,2z5) = C' (Fi(x1), Fa(xs)) for all z1, 25 € R. O

The following theorem gives an interesting property of copulas and sub-
copulas, which is that they are continuous.

Theorem 2.7 (|7|(Theorem 2.2.4)) Let C" be a subcopula with domain Sy X
Sy. Then for every (uq,us), (v, v9) € S1 X Sa,

|C/(U17U2> — C/<U1,U2)| S |U1 - U1’ + |UQ — U2|.
Hence C' is uniformly continuous.

Proof: First note that C” is increasing in each coordinate when the other
coordinate is fixed, since for vi,u; € S1, v1 > u; and vy € Sy we have by
2-increasingness that

0 < Ver((ug, v1] x (0,v2]) = C'(v1,v9) — C'(ug, v2) — C'(vq,0) + C'(uy, 0)
= C/(Ul,UQ) — C/<U1, Ug)
and for vy, uy € Sy, v9 > ug and vy € 5
0 S VC/(<O, 'Ul] X (Ug, 'UQ]) = Cl(’Ul,Ug) — C/<O, Ug) — Cl(Ul,UQ) + C/(O,UQ)
= C"(vl,vg) — C,(Ul, U,Q).

Let (u1,us), (v1,v2) € S X S;. We can assume that vy > u; and we check
the cases vy > us and vy < ug separately.
It holds by 2-increasingness that

Vor((ug, v1] X (ug,1]) = C'(v1,1) — C'(uy, 1) — C'(v1, uz) + C'(uy, us)
= U1 — Uy — C/(Ul,UQ) + O/(Ul,UQ) Z 0,



which implies 0 < C"(vy, ug) — C'(uy, us) < vy — uy, hence
|C" (01, u2) = C'(ur, u2)| < |or — wi]. (4)
In the same way we get for us < v

VC'((U17 1] X (u2702]) = C/(17U2) - Cl(la UZ) - C/(U17v2) + Cl(“la u2)
= vy — ug — C'(vy,v9) + C'(vy,u2) > 0,

which gives
|C"(v1,v2) — C'(v1,u2)| < |vg — ugl. (5)

Now by the triangle inequality and the inequalities (4) and (5) we have

|C" (1, v2) — C"(ur, uz)| = |C'(v1,v2) — C'(v1,u2) + C'(v1,u2) — C'(uy, ug)|
S |Ol<vla1}2) - C/(U17U2)| + |C,(U17u2) - Cl(u17u2)|
(6)

< [vg — ug| + |v1 — uy].

In the same way (6) can be shown for vy < us.

Since any copula is also a subcopula, we get the following result:

Corollary 2.8 Any copula is continuous.

The following lemma states that subcopulas can be extended to copulas.

Lemma 2.9 (|7| (Lemma 2.3.5)) Let C" be a subcopula. Then there ezists a
copula C such that C(uy,uy) = C'(uy,us) for all (uy,us) € Dom C’.

Proof: We will extend the domain of C” first to its closure and then to
[0,1]2. In both steps we will define a function that is a subcopula (or a
copula) and equal to C’ on its domain.

First, let Dom C’ = S; x S5 and define a function C” on the closure S; x S,
such that C”(u) = C"(u) for all u € S; xSy. For u € (S;xS2)\ (51 x Sy) define
C"(u) := lim,_, C"(v). The limits exist because C’ is uniformly continuous.
Let us check the three assertions of Definition 2.4 to show that C” is a
subcopula as well.

0. DomC” = S; x S, € [0,1]? and 0,1 € S; C S; for i = 1, 2.

1. For all u; € S; and uy € S5 it holds

C"(uy,0) = lim C'(vy,0) =0 and C"(0,up) = lim C'(0,v9) = 0,

v1—ul v2—U2



C"(uy,1) = lim C'(vy,1) = lim v; =wu; and

V1 —UL v1—ul
C"(1,uz) = lim C'(1,v3) = lim vy = uy.
V2 —UQ vV2—U2
2. To show that C” is 2-increasing, take u,v € S; x S such that u; < v;
and ug < vy, If uy = vy or us = vy, then

VC”((”I, Ul] X (UQ, U?])
=C"(v1,v9) — C"(v1, uz) — C"(uy,v2) + C"(uy, us)

) C"(vr,v2) = C"(vr,ug) — C"(v1,v2) + C"(v1,u2) =0

C”('Ul, 'U2) - C”(Ul, 'UQ) — C”(Ul, U2) -+ C’”(ul, UQ) =0.
Assume u; < vy and uy < vy. There exists sequences (u})2°, and (v¥)2°, in
S such that u} — u; and v¥ — v;. Since u; < vy, there exists k; € {1,2,...}
such that uf < of for all k > k;. We will also consider sequences (u%)3°,
and (v5)%° | in Sy such that u5 — wuy and v§ — v,. Like above, there exists

ko such that u§ < o4 for all k > ko. Defining k* := max{ky, k»} it holds

VC”((U17U1] X (U’27U2])
=C"(v1,v9) — C"(v1,u2) — C"(u1,v2) + C" (uy, us)

= fim [C(ok.of) = €0k 0d) - C"(ub. ) + " )]
= im Ok o) — Ok ) — Ok o) + O (k)
>0.

Now define a function C on [0, 1]%. Let (a,b) € [0,1]? and define

ay =sup{z € Sy :x <a}, ay :=inf{z €S, :2>a}
by :=sup{xr € Sy : 2 < b} and by :=inf{x € Sy : x > b}.

It holds a1 <a<a and b; < b < by. Note that a € S, if and only if a; = as
and b € S, if and only if by = by. Now let

a—a : b—b .
)\1 = a2_al17 lf a1 < ag, and [y = b2_b11, lf bl < bg,
1, if a1 = ay 1 if by = by

and define

C(CL, b) = (1 - )\1)(1 — ul)C’/(al, b1> + (1 - )\1)#10,/(@1, b2)
+ A (1 = 1)C" (az, by) + A C" (ag, ba).

10



The function C' is defined on [0, 1]> and we will prove that it satisfies the two
assertions of Definition 2.1, hence it is a copula.

1. C(a,0) = (1 = A\)C"(a1,0) + \C"(ag,0) = 0 for all a € [0,1] and
C(0,b) = (1 — p1)C"(0,b1) + 11 C"(0,b2) = 0 for all b € [0,1]. For b =1 it
holds ;1 = 1, so that for all a € [0, 1] it holds

C(a,1)

=[(1= M)A =) + (1 = A)pa]C(ar, 1) + M (1 = 1) + Aipa]C7 (a2, 1)
=(1—M)ar + May
=ay + M\(ag — ay)

_{a1+ U (g9 —ay) = a, if a; < ag,

ag—al

a, if a1 = a9 = a.

The same way one can show that C'(1,b) = ... =b for all b € [0, 1].
2. Let us show that C'is 2-increasing. Let (a,b) € [0,1]? and (¢, d) € [0, 1]?
such that a < c and b < d and define ay,as, by, ba, A1, pu1 like before. Let

1, Co,dy, da, Ao, 1o be related to ¢ and d the same way. We want to show that
Ve ((a, c] x (b,d]) > 0.
By definition of V> and C' we have

Ve((a,c] x (b,d]) =C(c,d) — C(c,b) — Cla,d) + C(a,b)
= (1= X)L = p2)C" (1, dr) + (1 = A2)paC"(c1, da)

+ Ao (1 — p2)C"(ca, dy) + AauaC” (¢2, do)
— (1= A2)(1 = p1)C"(er, b1) = (1 = X)€" (cn, b)

— X1 = p1)C" (e, b1) — Aoapi C" (2, o) (7)
— (L= M) = p2)C"ar, di) — (1 = A)paC"(an, da)

— M (1 = p2)C"(az, dr) — MpaC"(az, da)
+ (1= A)(1 = p1)C"(ar, b1) + (1 = M) C"(as, bo)

+ A (1= p1)C"(ag,b1) + A1 C” (az, by).

If there is no element of S; between a and ¢ such that it is not equal to a
or not equal to ¢, then a; = ¢; and ay = co. It follows Ay = Xy and the
sum (7) becomes zero. Similarly, if there is no x € Sy such that b < z < d
and it holds x # b or x # d, then b; = dy, by = dy and pu; = ps. Hence
Ve ((a,c] x (b, d]) = 0.

Assume a < ¢ and b < d and that there is an element of S; between a
and ¢ and an element of Sy between b and d. Rearranging the terms in (7)
we get

Vo((a, ] x (b,d]) = (1 — M) (1 — p1)Ver((ar, az) x (by, b))

11



+ (1 — M) Ve ((ar, az] x (be, di])

+ (1 = M)pVer((ar, as] x (di, da])
+ (1 — p)Ver((az, e1] x (b1, b))

+ Ver((ag, c1] X (be, dq])

+ paVeor ((ag, ¢1] X (dy, ds))

+ (1 — p1) Ao Vier ((eq, 2] x (b1, ba))
+ X Ve (e, c2] X (ba, dy])

+ Aapa Vo (€1, co] X (du, dal),

which is a sum of nine nonnegative quantities with nonnegative coefficients
and therefore nonnegative. 0

Proof of Theorem 2.2: The first statement of the theorem follows directly
from Lemma 2.6 and Lemma 2.9. The second statement follows almost triv-
ially from the properties of marginal distributions and copulas. 0

2.1 Fréchet bounds

From now on, we will consider the componentwise order for real-valued func-
tions on R"™ defined as: f < g, if f(xy,...,2,) < g(x1,...,2,) for all
(1,...,2,) € R". Now we can present the lower and upper Fréchet bounds
C; and C, for a copula C. Fréchet bounds and their properties can be found
in many papers that concern copulas or multivariate distributions.

Proposition 2.10 Let C : [0,1]" — [0,1] be a copula and let the functions
C; :[0,1]" — [0,1] and C,, : [0,1]" — [0, 1] be defined by
n +
Ci(ut, ... up) = ui—n+1>
=1
and
Cu(ug, ... uy) == min{uy, ..., u,}.
Then C;, < C < (,.
Proof: Let us prove the upper Fréchet bound C, first.  Let
(u1,...,u,) €10,1]" and u; be the minimum of w,...,u,. In the proof

of Theorem 2.7 we saw that copulas are increasing in each coordinate, hence
Clury ... un) <C(L, o0 a1, 0000 1) = ue = min{ug, ..., up b

For the lower Fréchet bound C; we know that for all
(w1, ... up) €10,1]" it holds 0 < C(uy,...,u,). Now we have to show

12



that > u; —n+1<C(uy,...,u,). We get for standard uniformly
distributed random variables U; that

iui—n—i—l:l—i—i(ui—l)
i=1 i=1

=1- Z]P’(Ui(w) > )

<1-P (O {Ui(w) > uz}>
nz:1 C

— (U {Ui(w) > ul}>

i=1
=P (ﬂ {Ui(w) > uz}c)
=1
:]P(U1<U1, .,Un<un)
= C(ula ,Un)

OJ

The functions C, and C; have some interesting properties, which will be
introduced in the following propositions.

Proposition 2.11 C, is a copula on [0,1]" for alln = 2,3,... and C} is a
copula on [0,1)%.

Proof: ~ Let us first show that the upper Fréchet bound C,
Cul(u, ..., u,) = min{uy, ..., u,}, is a copula.

1. If u; = 0 for some i = 1,...,n, then Cy(u) = min{uy,...,u,} =0 and
ifu;=1foralli=1,....k—1,k+1,...,n, then Cy(u) = min{uy,...,u,} =
min{ug, 1} = uy.

2. Take a = (ay,...,a,) € [0,1]" and b = (by,...,b,) € [0, 1]" such that
a; < b;forall: =1,...,n and define x;1 = a; and z;o = b; forallt =1,...,n.

We will show that

vCu ((abbl] XX (anabn])
— Z . Z(_l)j1+-~+jn min{zy,, ..., 0, }

Ji=1 jn=1

= max {(min{by,...,b,} — max{a,...,a,}), 0}.
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We consider the two cases

1° max{a,...,a,} <min{by,...,b,} and

2° max{ay,...,a,} > min{by,...,b,}.
For any permutation 7 : {1,...,n} — {1,...,n}
min{us, ..., U, } = min{uzqy, ..., Urn)}
and there exists a permutation 7' : {1,...,n} — {1,...,n} such that

Qr/(1) < Qrr(2) <. < Q' (n)s

so that by the symmetry of Vi, we can assume that a; < ay < -+ < a,.
First note that if a; < min{by,...,b,}, then

2 2
y . +...+ ] .
E - (—1)]’+1 In ITlll’l{bl7 oo bis,ag, L(i41)jip1s - - - ,I’njn}
Ji+1=1 Jn=1

2

2
= Z e Z(—l)j”ﬁmﬂn [min{bla oy D1, @ b T 2) s - T )

Jit2=1 In=1

— mln{bl, Ce ,bifl, A, Aj11, ‘T"(i+2)jz‘+17 e 7xﬂjn}:|
2

= Z Z(—l)j’*ﬁmﬂ‘" [a; — a;]

Jit2=1 Jn=1

=0.
1°. Since a; < min{by,...,b,} for alli =1,... n, we have

2 2
Z s Z(—l)jiJrlerJrjn min{bl, ey bi,b ag, x(i+1)ji+17 e ,Injn} =0 (8)

Ji+1=1 Jn=1

forallz=1,...,n. Thus

n n
Z .. Z(—l)]1+~~+]” min{l’up cee axnjn}

Jji=1 Jn=1

2 2
= e Z(—l)j2+"’+j" (min{by, xaj,, . .., Tns, } — min{ay, aj,, . . ., Tnj,
jo=1  ja=1
2 2

_ o Z (_1)j2+"'+jn min{by, Ty - - ,J?njn}

Jo=1 Jn=1

14



2 2

— Z . Z (_1)j2+“'+jn min{al, Tojys - - - ’mnjn}

J2=1 Jn=1

2 2
— Z .. Z(—l)j2+m+j" min{bl, Loy e+ - 7$njn} +0
j2=1 jnzl
2 2
— Z .. Z(—l)]3+"'+h [min{bl, bQ, L3435 - - - axnjn}
j3:1 ]nzl
—min{by, ag, T3j;, - - - ; Tnj, }]

= .--=min{by,..., b} —min{by,...,b,_1,a,}
= min{by,...,b,} —a,

= min{by,...,b,} — max{ay,...,a,}.

2°. Now we assume that a,, > min{b,...,b,}. There exists a number
m € {2,...,n} such that

ayy ..., Am—1 Smin{bla--wbn} < am Sam+1 < S g

For all i = m, ..., n it follows min{by,...,b,} < b; since a; < b;. We get that

min{b,...,b,} = min{b,...,bp_1} = min{bi,...,bm_1,Tmjns---» Tnj,
and by (8)
Z e Z(—l)jﬁmﬂﬁ min{xy;,,..., Ty}
J1=1 Jn=
2 2

= Z e Z(—l)j2+"'+j" min{by, xoj,, . .., Tnj, } — min{a, xej,, . .., Tnj, }

2 2

== ) e (= mindby, b2, et T - - Tng )
— min{bl, ey bm_g, Am—1, J)mjm, Ce ,l‘n]‘n}]

2
= Z .. Z(_l)jm+1+.,.+jn [min{bl, o 7bm7 Tt 1)jmsss - - - >$njn}

jm+1 1 jnzl

—min{by, ..., b1, Gy Tmt1) gy - - - ,:L“njn}}
2

2
= Y D> (=1 mindby, by} — mindby . b}

jm+1 1 jnzl
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Now let us show that C; : [0
copula. Obviously, C;(0,us) =
ug for all uy,uq € [0, 1].

Take (ai,as) and (by,by) € [0,1]% such that a; < by and ay < by. Then
we get

112 — [0,1], Ci(uy,uz) = (ug +us — 1), is a

0 = Cy(u1,0) and Cy(uq,1) = uq, Cy(1,uz) =

Veo((ay, bi] x (az, ba])
=C(b1, ba) — Ci(a1,by) — Cy(by, az) + Ci(ay, as)
:(bl—I—bz—1)+—(a1+b2—1)+—(b1+a2—1)++(a1+a2—1)+

(0-0—-040=0, if by + by < 1
b+ by —1>0, ifby+by>1,by+as<1landa;+by <1
by +by—1— (a3 +by—1)
=b—a; >0, ifa; +by;>1and by +a9 <1
)bt by—1— (b +ax—1)
) =by—ay >0, if a1 4+ by <1 and by +ay > 1

by +by—1—(a;+by—1)
—(b1+ay—1)+ (a1 +ay—1) =0, ifa;+ay>1and
by +by—1—(ay+by—1)
—(b1+ay—1)+0>0, ifa;+by>1,by+as>1and a; +ay < 1.

\

So that C is 2-increasing, hence it is a copula. 0

Remark 2.12 () is not a copula for n > 2.
Proof: Choose a = (ay,...,a,) = (,4,120,...,0) and b = (1,...,1).

27292
Denote z;; = a; and ;0 = 1 for all i = 1,...,n. Since Cj(z1j,,-..,Zpnj,) =0

if j; =1 for some i =4,...,n, we have

Vo((ag, 1] X -+ x (an, 1])

M-
1]

(_1)‘j1+"'+jncl(xlj17 Ce ,xnjn)
Jji=1 Jn=1
2 2 2
=33 D (WP w1 1)
J1=1j2=1j3=1
2 2 2
= 33 S (y, + way, + 2y, — )
Jj1=1j2=1j3=1
1 11
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-41+%+1-2ﬁ+«%+1+%—2ﬁ—w%+1+1—2ﬁ
+€+%+1—m+—§+%+%—m+
—1—%+0—%+0—§+0—0
==
so that (] is not n-increasing, hence it is not a copula. O

2.2 Comonotonicity of random variables

Random variables Xi,..., X, with a C,-dependence structure are called
comonotonic. A necessary and sufficient condition for comonotonicity is that
there exist increasing functions f; : R — R, ¢ = 1,...,n, and a random
variable Z : 2 — R such that (Xy,...,X,) and (f1(Z),..., fu(Z)) have the
same distribution. It is obvious that this condition is sufficient, and that it is
necessary is shown in the proof of the proposition below. In [6] (Proposition
3.1) it is shown the following result.

Proposition 2.13 Assume v : R™ — R is increasing and left-continuous in

each coordinate, 0 < a <1 and Xq,...,X, are comonotonic random vari-
ables. Then it holds

VaR, (¥(X1,..., X)) =¥ (VaR,(X1),. .., VaR4 (X)), 9)
provided that the both sides are finite.
For the proof we introduce the following lemma:

Lemma 2.14 Let ¢ : R — R be an increasing function and define the gen-
eralized left- and right-continuous inverses of ¢ by o=, " 1 R — R,

o Hy) =inf{z €R:p(z) >y} and ¢"(y) :=sup{zr € R: ¢(x) <y}
Then one has the following assertions:

(i) ¢~ and ©" are increasing.

(i) ! is left-continuous and " is right-continuous.

(iii) If ¢ is right-continuous and ' (y) > —oo, then ¢(z) >y if and only
if v > 97\ (y).

17



(iv) If ¢ is left-continuous and @™ (y) > —oo, then o(x) <y if and only if
z < ©"(y).

Proof: (i) We take real numbers y,y2 € R such that y; < y, and show

that =" (y1) < ¢ (y2) and " (y1) < " (ya). Forallz € {z € R: p(z) >y}
it holds ¢(z) > y2 > yi, so that z € {z € R : ¢(z) > y1}. Tt follows
{z€R:p(z) >y} C{z€R:p(z2) >y}, which implies

o ) =inf{z €R:p(z) >y} <inf{z € R:p(2) >y} = ¢ ' (1p).

For all x € {z € R : p(z) < y1} it holds ¢(z) < y; < yo. Hence
{zeR:p(x) <y} C{reR:px) <y}. Now

™y1) = sup{z € R: () <y} <sup{z € R: p(z) <y} = " (12)-

(ii) We show that ¢! is left-continuous. Take y € R and a sequence
(yx)7>; € R such that y; T y. Since

{reR:0@) >y} S{r e R:p(x) > yi}

we have inf{z €eR:p(x) >y} >inf{z e R:p(x) >y} for all
k=1,2,..., hence limy_ . inf{x € R: ¢(x) > y;} exists. Define

5= khm o ) = klim inf{x € R: ¢(x) >y}

and show that z < p~1(y) and 2z > p ().
Since yr < y for all £ = 1,2,... we have inf{x € R : p(z) > y} <
inf{zx € R: ¢(x) >y} = ¢ (y), hence

i
z= klim inf{z € R: p(x) >y} <inf{z € R:p(x) >y} = *(y).

Because ¢! is increasing by (i) and z = limy_.. ¢ ' (yx) for yp < yps1

forall k =1,2,..., we have
z>inf{z e R:p(x) >y} forallk=1,2,....

This implies that for all for all £ = 1,2, ... and for all € > 0 the number z+¢
belongs to the set {x € R : p(z) > yi}, so that ¢(z + ) > yi. Taking the
supremum over k one gets

0(z+¢e)> sup Y =y.
k=1,2,...

This implies that for all ¢ > 0 it holds z +¢ € {z € R : p(z) > y}
and therefore z +¢ > inf{z € R: ¢(z) >y} = ¢ '(y). Now we have that
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limy, oo 9 (yx) +€ > ¢~ (y) for all € > 0, hence limy, .o o™ (yx) > ¢~ ().
Finally, limy. o ™" (yx) < ¢~ (y) and limy_.oo ™' () > ¢~ (y) imply
Jim o™ (yg) = 7 (y).

Let us show now that ¢” is right-continuous. Take y € R and a se-
quence (yx)52; C R such that y | y. Consider the function ¢(x) := —p(—x).
For z; and z5 € R such that x; < x5 it holds ¢(—x2) < ¢(—z7), so that
o(z1) = —p(—11) < —p(—x2) = ¢(2), hence ¢ is increasing. It follows by
the proof above that ¢! is left-continuous. Note that for any z € R we have

¢ '(2) =inf{z €eR: —p(—x) >z} =inf{r € R: p(—2) < —2}
=inf{—zeR:p(r)<—z} =sup{r € R: p(x) < -z}
=" (=2).

Now since —y;, T —y and ¢! is left-continuous, it holds

lim " (ye) = lim ¢~ (—yi) = ¢~ (—y) = " (y).

(ili) Assume that ¢ is right-continuous and y € R is such that
¢ (y) > —oo. If p(z) >y, then

¢l (y) =inf{z €eR:p(2) >y} < w.
Now let us consider the other direction. For all z € R with

z>p Hy) =inf{z € R: p(z) >y} it holds ¢(z) > y. Hence

< inf T
V= e #(@)

and, by the right-continuity of ¢, it holds

Lot el@) = ple™ (v)-

Hence y < p(p~(y)), so that for all z > »~!(y) it holds p(x) > y.
(iv) Assume that ¢ is left-continuous and y € R is such that ¢"(y) > —oo.
If p(z) <y, then

r <sup{z € R:p(z) <y} =" (y).

On the other hand, assume first that © < ¢"(y) = sup{z € R: ¢(2) < y}.
It means x € {z € R : ¢(2) < y}, hence p(z) < y. If z = ¢"(y), then we
get by the left-continuity of ¢ that p(¢"(y)) <y, so that z < ¢"(y) implies

p(z) <. O
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Proof of Proposition 2.13: Let Z be a real valued random variable and
suppose that ¢ : R — R is increasing and left-continuous. Suppose that
VaR,(Z) = F;'(a) is finite for a given « € [0,1]. The distribution function
of p(Z)is Fuz)(2) =P(p(Z) < 2). Let t € R. If ¢"\(t) = —o0, then p(x) >t
for all z € R and

Foz)(t) = P((Z) <1) = 0 = Fz(—00) = Fz (¢"(1)) -
And if " (t) > —o0, then by Lemma 2.14 (iv)
Foz)(t) =P (p(Z) <t) =P (Z < o"(1)) = Fz(¢" (1))

Since Fy is right-continuous and F,;'(a) > —oo, we have by Lemma 2.14 (iii),
that Fz(p"(t)) > « if and only if ¢"(t) > F,*(a). Now, since we can assume
that there exists a number ¢ € R such that ¢"(t) > —o0,

VaR, (p(Z)) =inf {t € R: Fyz)(t) > o} =inf {t € R: Fz(¢" (1)) > o}
=inf{t eR:o"(t) > F;'(a)}
=inf{teR:t> ¢ (F; (o))}

= ¢ (Fz' (@) = ¢(VaRa(2)). (10)

Let Fi,..., F), be the distribution functions of X, ..., X, and define
pla) = (F(a),.... F (o). (11)
The function ¢ is increasing since ¢ and F; ' ..., F.'! are increasing. We

get that ¢ is left-continuous, since v is left-continuous and the increasingness
of Fy’s imply by Lemma 2.14 (ii) that F; '’s are left-continuous for all i =
1,...,n.

Let U be standard uniformly distributed random variable. Then it holds

P (U{F;%U) = —oo}) <D P(F(U) = —0)
= iP(inf{x ER:F(zx)>U} = —o0)

:iP(Fi(x)<UVm‘eR)

<Y P(1<U)=0,
=1
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so that by Lemma 2.14 (iii)
IP’(FI_I(U)le,...,Fn (U)<xn} (ﬂ{ 0o < Fit )<xz})

=P (ﬂ{U < E(a:»})

=P (U < min{Fi(xy),..., F.(xn)})
= min{Fy(xy),..., F.(x,)}

= Cu(Fi(x1),..., Fu(z,))

=P(X; <xy,....X, < z,),

which ~ means  that the random  vectors (Xi,...,X,) and
(FFYU),...,E7YU)) have the same distribution. Now since

VaR,(U) = F;'(a) = inf{z € R : Fy(r) > a} = a, we have by (10)
and (11)

VaR, (Y(X1, ..., X)) = VaR, (v (B (U), ..., E, ' (U))) = VaRa (p(U))
= ¢ (VaRa(U)) = ¢(a)
:1/1( Ha ..,F_l(a))

), -
=1 (VaR,(X1),. .., VaR,(X,)).

OJ

The equation (9) is often used in evaluating Value-at-Risk when the de-
pendence structure is not known. But this approximation is not good, be-
cause it can be

VaR, (¢(X)) > 9 (VaR,(X1),. .., VaR,(X,))

or

VaR, (¥(X)) < ¥ (VaRa(X1), ..., VaRa(X,,)).

This was observed in [8] and we follow their example in showing the first
inequality.

Example 2.15 Let X and Y be independent random variables with identi-
cal distribution F(z) = 1—2Y2T,>1y(x). Let us approximate P(X+Y < s)
and calculate P(X + X < s) to show that for a € (0, 1) it holds that

VaRy (X +Y) > VaRa(X) + VaRa(Y).
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The density function of the random variables X and Y is
f(z) = 227321 ,51)(z). For s > 2 we obtain by convolution

[e.o]

MX+Y§@:/ F(s — y)dF(y)

—00

where we used a change of variables x = y/s.

Moreover, P(X + X < s) = P(X < 5/2) =1 — (s/2)7"/% and for s = 2
it holds P(X + X < 2) =0 and P(X +Y < 2) = 0. For s > 2 define
G(s) =P(X +Y <s)and H(s) :=P(X < s/2) and calculate

d d 1 _L _3/9
g(sG(s))ZE [s—s(s—l) 2 —5/2 (1—2x)"2z /dx]
:1_(3_1)—%+§(s—1)—%

(e N R MO

1 (s—1) z+§(s—1)—3—%(3—1)—3_%(3_1>—%
=1-(s—1)7z
and q d
1 _1
£<SH(S)):£<S_(25)2> —1— (25)73.
Now since for s > 2 it holds s — 1 < 2s, we have
d 1 1 d
— (sG(s)) =1— <1———=—(sH(s)).
3 (5G(5)) — o T ds (sH(s))

From 2G(2) = 2H(2) = 0 it follows sG(s) < sH(s) for s > 2, hence

PX+Y <s)=G(s) <H(s) =P(X + X <s) for s> 2.
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Since for x < 2it holds Fxy(z) = P(X+Y <z) = ff—l F(z—y)f(y)dy =0,
we have, for o € (0, 1), that
VaRo (X +Y) = Fyly(a) =inf{z € R: Fxiy(z) > o}
=inf{z>2: Fx.y(z) > a}

and, knowing that for x > 2 it holds Fx.y(z) < Fxyx(z), we have

VaRo(X +Y) =inf{x > 2: Fx,y(z) > a}
> inf{x > 2: Fx x(z) > a}
>inf{x €e R: Fx,x(z) > a}
= F¢! ¢(a) = VaRo (X + X).
The joint distribution of X and X is Fx x(z1,22) = P(X < 21, X < x9) =
min{ F'(xy), F'(x3)}, which means that X is comonotonic with itself. Hence by

Proposition 2.13 it holds VaR, (X +X) = VaR,(X)+VaR,(X) = VaR,(X)+
VaR,(Y). Tt follows

VaR, (X +Y) > VaR,(X) + VaR,(Y) for a € (0,1).

We can use this example of Embrechts et al. to show that the converse
inequality can also happen. Consider the random variables —X and —Y and
let s > 2. Since X and Y have continuous distribution functions, it holds

Fx y(=s)=P(-X-Y <—5)=P(X+Y >5)
—1-P(X+Y <s)=1-G(s)

and

Foox(—s) =P(—2X < —s5) =P(X > s5/2)
=1-P(X <s/2)=1-H(s).

Because G(s) < H(s) for s > 2, we have
F x y(x)=1-G(—z) >1— H(—z) = F_ox(z) for z < —2.

For « € (0,1) it follows by the fact that F ox(x) > 1 and F_x_y(z) > 1 for
x > —2 that

VaR,(—X) + VaR,(—Y) = VaR,(—2X)
=inf{r <-2:1—-H(-2) > a}
>inf{r < -2:1-G(—xz) > o}
= VaR,(—X —-Y).

23



2.3 Some properties of copulas

In the previous section we found out in Corollary 2.8 that copulas are con-
tinuous. In this section we introduce more of the interesting properties of
copulas. In many papers copulas are introduced as distribution functions
from [0,1]" to [0,1] with standard uniform margins. We show that it is
indeed a necessary and sufficient condition for a function to be a copula.

Proposition 2.16 Let C be a function from [0,1]" to [0,1]. It holds that
C is copula if and only if it is a distribution function which has standard
uniform margins. The latter means that

(i) C is n-increasing i.e. for a € [0,1]" and b € [0,1]™ such that a; < b;
foralli=1,...,n it holds

2 2
S D) (=1 C gy, ) 20, (12)
1=1 jn=1

where u;y = a; and up =b; for alli=1,...,n,

(ii) C is right-continuous i.e. if 2® | x, then C(z®) | C(z) for all
z® oz e [0, 1"\ {1,...,1},

(iii) if 2™ | @ and x; = 0 for somei=1,...,n, then C(z®) | 0,
(iv) C(1,...,1)=1 and

(v) the margins of C are standard uniformly distributed i.e. for all k =
1,...,n and ug € [0,1] it holds C(1,...,Lug, 1,...,1) = P(U < wy),
where U ~ U0, 1].

Proof: ~ Assertion (i) is equivalent to 2. in the definition of a cop-
ula, Definition 2.1. And since for a random variable U ~ U|[0, 1] it holds
P(U < uy) = uy, for ux € [0,1], it follows that assertions (v) and 1.(b) are
equivalent. 1.(a) follows from (iii), hence it is shown that (i), (iii) and (v)
imply that C'is a copula.

We have to show that (ii)-(iv) hold for a copula. By Corollary 2.8 a copula
is continuous and therefore right-continuous as is demanded in assertion (ii).
Right-continuity and 1.(a) imply (iii) and 1.(b) implies (iv). O

What is the copula of independent random variables? We introduce the
product copula IT : [0,1]" — [0,1], I(u) := [, w for all u € [0,1]™
IT is a copula, since it is a distribution function as a product of stan-
dard uniform distribution functions, II(u) = [[_, w; = [/, Fu,(u;) and
(1, ..., Lu,1,...,1) = u; = Fy,(u;) for U; ~ U[0,1] for all i = 1,...,n,
which means that the margins of II are uniformly distributed.
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Proposition 2.17 The random variables X1, ..., X, are independent if and
only if their joint distribution function can be presented by the product copula

IL.

Proof: Let Xi,...,X, be independent with distribution functions
Fy, ..., F, and a joint distribution function F' = F} --- F},. Then

H(F(z1)... Fo(z,)) = Fi(zy) - Fu(x,) = F(xy, ..., x4),

i.e. ITis a copula of Xy,..., X,,.
Now let us prove the other direction. Let X,..., X,, be random variables
with the copula II. Then

P(X; € (—o0,21],..., X, € (—00,x,])
=P(X, <a1,...,Xp <) = H(Fl( s Ful))

Since B(R) = o{(—00,z] : x € R}, we get by the Uniqueness Theorem, which
uses II-systems, that

P(X; € By,..., X, € By) =P(X, € By)---P(X,, € B,)

for all By, ..., B, € B(R), which means that the random variables X7, ..., X,
are independent. O

Proposition 2.18 If the distribution functions Fi, ..., F, of X1,...,X,, are
continuous, then the copula C' of X1, ..., X, is unique.

Proof: Let F be the joint distribution function of Xi,..., X, and as-
sume that C' and C” are two copulas that satisfy equation (2). Then for all
(w1, ...,uy,) € 10,1]" one has that

C(Ul,...,un)_C(Fl (F (ul))a '7Fn (Fn_l(un))>

= F (F (w),. .. Fy (un))
—C' (R (F7 (ul)) o Fo (F (u)))
=C'(ug,. .., uy).

O

One can find examples of random variables with non-unique copulas.
For instance, let X and Y be random variables with distribution functions
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Fx(x) = Igz>ay(2) and Fy(x) = Q> (z), where a,b € R. We get that

0, ifxr <aory<hb,

Ci(Fx(x), Fy(y)) = (Fx(z) + Fy(y) — 1’0)+ B {1 ifz>aandy>0b

and

Cu(Fx(x), Fy(y)) = min{ Fx (), Fy(y)} = {0, if 2 < aory<b

1, ifx >aand y > b,

which implies that Fxy(z,y) = C(Fx(x), Fy(y)) for any copula C.
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3 Lower bound for functions of dependent risks

Let X4,..., X, be n real-valued random variables on some probability space
(Q, F,P), with given distribution functions Fj(z) := P(w : X;(w) < z) for
i=1,...,n. The random vector X := (Xj,...,X,) can be seen as a vector

of one-period financial (or insurance) risks. Let ¢ : R™ — R be a Borel-
function of these risks, for instance the sum. We consider the problem of
bounding from below the distribution function of the random variable 1 (X),
over the class of possible distribution functions for X having fixed margins.
In fact, we search for

m:;(s) =inf{P({w:Y(X(w)) <s}): X;~F,i=1,...,n}.

Let C' be a copula and pc be the image-measure of Xy, ..., X, with C-
dependence structure and define

an(Fh e '7Fn)<3) L= Mo ({y € R": w(y) < S})

_ / C(Fi(z1),. .., Fo(y)).
{yeR™(y)<s}

Now we can denote m;j (s) = inf {uc (¢(y) < s) : C'is a copula } . For a func-
tion Cp, : [0,1]" — [0, 1] define

Top(F1, .. Fy)(s) :=  sup RCL (Fi(z1), ..., Faci(@aon), By (W5 ()
TP yeeny Tp—-1€

and

TgL,¢(F1,---7Fn)(5) = sup Cp (Fl(:zrl),...,Fn,l(xn,l),Fn ( ;\_n(s))) ,

where F) (x,) denotes the left limit of F, at x,, ¢, (s) is the right-
continuous inverse of the function ¢,_ (y) := ¢ (z_,,y), which means

Q_n(s) =sup{z, € R:¢(x_,,x,) < s}

and
T_p = (T1,...,2p_1) €ER"L

For n = 2 we will also use the notations v, (s) := sup{zs : ¥(z1,13) < s}
and ,lvbc/c\g(s) = sup{x; : (21, 72) < s}
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3.1 A lower bound using partial information about de-
pendence

Assume that we have some information about the dependence structure of
Xq,..., X, in form that we have a lower bound C7, for the copula C of the
portfolio. In this case we can reduce our search to

m(s) = inf {an(Fl’ L E)(s):C>CL}
=inf{P(Y(X)<s): X;~F,i=1,....,n, Fx >Cr(F\,...,F,)}.

This kind of dependence information can be used in evaluating m;f(s).
Unlike in [3] and [4], we consider right-continuous distributions and provide
a lower bound for mj (s) that was first introduced in [6]. Also a slightly more
general lower bound will be introduced.

In [5] the distribution functions are considered to be right-continuous,
and in Theorem 3.1 of [5], it is shown that for all s € R

po(W(X) <s)>  sup  Cp(Fi(a1),..., Faalza), Fy (¥0,(5)))

where ¢! (s) = sup{z, € R : ¢¥(x_p,x,) < s} is the left-continuous inverse
of the function ¥,  (y) = ¥(z_,,y). It provides a lower bound for the
distribution of (X).

In the following theorem we improve this bound by taking the right-
continuous inverse ¢, (s) instead of ¢, (s). We will also show as was done
in [6], Theorem 3.1, that if ¢ is left-continuous in its last coordinate, it is not
necessary to take the left limit of F},. The proof follows the proof of Theorem
3.1 in [5].

Theorem 3.1 Let X = (X1,...,X,) : Q@ — R" be a random wvector on
(Q,F,P) and let F,...,F, be the distribution functions of Xi,...,X,, re-
spectively. Let C be their copula. Assume there ezists a copula (or a grounded
function) Cp, : [0,1]™ — [0, 1] such that C(u) > Cr(u) for all w € [0,1]™. If
Y R" — R is a function, which is non-decreasing in each coordinate, then
for every s € R we have

an (Fiy...  Fo) (8) > 1o, (F1, .. F) (9). (13)

If, in addition, ¥ is left-continuous in its last coordinate, we have for all
s € R that

Oty (Fry oo Fo) () 278, (Fuy e F) (s). (14)
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Proof: By Corollary 2.8, for any = = (x1,...,2,) € R"

2%} ({y € Rn O S T1yeooyYn—1 S Tp—15Yn < xn})

e 1
= Ko <U {yeRnyl lea"'ayn—l an—byn an_%})

k=1
. . 1
:khm He ({?/ER CYLS 1 Yn-1 S Ty Yn an—E}>
1
= kllm C <F1(l’1>, c. 7Fn_1(l’n_1), Fn <J}n - E))

1
=C (Fl(xl)a s 7Fn—1(xn—1)7]}LI&Fn (xn - E))

=C (Fl(x1>, Ce 7anl<wn71)a F;(.’L’n)) .
Let s € R. We want to show the inequality

0y (Fi- o Fa) (8) = pe ({y € R" 9p(y) < s})
> sup Cp (F1(I1), o B (), B ( Q_n(‘S)))

z_p,€RNL

=TCL (Fl, ey Fn) (8)
For this, let (ay,...,a,_1) € R"! and define
an =, (s) =sup{z, € R: ¢(a_n,2,) < s}

We will consider the cases a,, € R, a,, = oo and a,, = —o0 and show that for
a, = oo and a, = —oo it holds

pe ({y € R" 1 9(y) < s}) > Cp (Fi(ar), ..., Foo1(an-1), Fu(an))
> (Cp (Fl(al), ooy Fai(an—), F_(an)) )

n

In the case a,, is finite, we will show that

pe ({y € R 1 (y) < s}) = Cp (Fila), .- . Faci(an), Fy (an))
and if 1 is left-continuous in its last coordinate, then

pe {y € R™ 1 9(y) < s}) = Cp(Fi(ar), -, Faoi(an-1), Falan)) -

If a,, = oo, then ¢¥(ay,...,an_1,2,) < s for all z, € R and

pe({y € R :h(y) <s}) > pc{y € R" 1y1 < an, oo, Yn1 < ano1,Yn € RY)
= C(Fi(ar), ..., Fo1(an_1), Fy(c0))
= C’(Fl(al), RPN Fn((ln))
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If a, = —o0, then ¥(ay,...,a,_1,2,) > s for all z, € R and

C’L(Fl(al), ey Fn(@n)) = C’L(Fl(al), . ,Fn,1<an,1), Fn(—OO))
= Cp(Fi(a1), -, Foi(an-1),0)
~0
< nc({y €R™ 1 Y(y) < s}).

Assume now that a, is finite. Then ¢ (y) < s for all y € R™ such that
< ayy e Ypo1 < a1 and y, < a, so that

{yeR" 1 y1 <ar, ;Y1 < o1, Yn <t} C{y € R" :9Y(y) < s}

Hence

po{y € R 9(y) <sh) Zpc{y € R :pn < ar,o o Y1 < nor, Yo < an})
= C (Fl(al), . ,Fn_l(an_1)7 Fn_(an))
Z CL (Fl(al), ey Fn_l(an_l), Fn_(an)) .

If 4 is left-continuous in its last coordinate, then 1 (y) < s for all y € R"
such that y; < a; for all 2 =1,...,n. Hence

{lyeR":y1 <ay,.yn <a,} C{yeR":Y(y) < s}

and

pe({y €R™ :(y) <s}) > pc{y € R" ty1 <an, .o yn < an})
=C(Fi(ay),...,F.(ay,))
Z CL(Fl((Il), . ,Fn(an)).

Since CL(Fi(ay),..., Fu(a,)) > CL (Fi(a1),. .., Fo_1(an—1), F, (a,)) and
an =}, (s), we have that

pe ({y € R 1 (y) < s}) > Op (Fi(ar), ..., Foci(an-), E, (95 (5)))
for all a_,, € R"~!. Hence

06y (Fiye o F) () = e ({y € R 14p(y) < s})
> sup Cp(Fi(ar),...,Foalan), Fy (05 (s)))

a_p€RN—1

=10, (F1,.. ., Fy) (s).

If @ is left-continuous in its last coordinate, then we have

pe({y € R 9(y) < s}) > Cp (Fi(a),. .., Faoa(an), Fo (¥, (5)))
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for all a_, € R*! which implies

ot (Fra o ) () = e ({y € B £ 0(y) < )
> sup Cp(Fi(ar),...,Fo1(an—), Fy (¥ (s)))

a_p€R7—1

=70 o (F1, o ) (9).

O

Remark 3.2 Taking the right-continuous inverse 17} (s) instead of left-
continuous ¢, (s) actually improves the bound, i.e. it can be

Topw (F1, .. Fo) (s) > sup Cp(Fi(z), ..., Faci(zaa1), B, (0,7 (5)))
For instance, take ¢ : R* — R, ¢)(x1, 22) := L(400)2(21, x2) for some positive
real number a. Then for s = 0 it holds

¢, (0) = inf{xs : (z1,22) > 0} =inf R = —o0

T —

and
2, (0) = supfs s U, 22) < 0} = {‘; e
Now
Tosp (P, F2) = sup Oy (F1(21), Fy (¥2,(0)))
> Cr(Fi(a), Fz(o0)) = Fi(a)
and

sup Cr, (Fi(x1), Fy (13, (0))) < CL(Fi(00), Fa(—00)) = 0.

1
r1€ER
Remark 3.3 Since for the lower Fréchet bound Cj it holds C' > C; for every

copula C' and (] is grounded, this bound will hold also for C;. Thus we get
a lower bound also in the case that there is no information on dependence.

Now one might ask how sharp are the bounds (13) and (14). We will
show that if 1 is left-continuous in its last coordinate, then for any copula
Cp, and any fixed s € R there exists a copula C > C}, such that equality
holds in (14) for n = 2. First we introduce the copula in a lemma, then we
will show that it attains the bound.
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Lemma 3.4 Let Cp, : [0,1]> — [0,1] be a copula and define for t € [0,1] the
function Cy : [0,1]* — [0,1] as follows:

max{t, Cp(uy,us)}, when (uy,ug) € [t, 1%

min{uy, us} otherwise.

Ct(ul,uz) = {

Then the function Cy is a copula.

Proof: 'We have to show that C; fulfills the two conditions of Definition
2.1.

1. Let (ui,us) € [0,1]® have at least one coordinate equal to 0. If
t > 0, then Cy(ug,us) = min{uy,us} = 0. If t = 0, then Cy(ui,us) =
max{t, Cr(uy,uz)} = 0, because t = 0 and Cp(u,uz) = 0 since Cf, is a
copula.

Cy(u1,1) = uy and Cy(1, uz) = ug, because for instance in the first case

max{t, Cr(u1, 1)}, when uy > t,

min{uy, 1} otherwise,

Ci(uq, 1) = {

max{t,u; }, when u; > t,
min{uy, 1} otherwise,

= Ug.

2. Let us show that C; is 2-increasing. Take (ai,as) € [0,1]* and
(b1,b) € [0,1]% such that a; < b; and ay < by. We have to show that

Ve, ((a1,b1] x (ag, ba]) = Ci(by, b2) — Cy(by, a2) — Ci(ar, ba) + Ci(ar, az) > 0.
Assume first that ay,ay > t. If C(a,a2) > t, then
VCt((a’labl] X (a2752]) = VCL((alabl] X (a2,b2]) >0,

since Cp, is a copula. If Cp(ay,as) < t, Cr(as,b) > t and Cp(ag, by) > t,
then

VCt((al’ bl] X (a2a b2]) = CL(blvbQ> - CL(b17a2) - CL(Ch,bQ) +t
Z CL(bl,bg) — OL(bl, CLQ) — C’L(al,bg) + OL((ll,CL2> 2 0.

If C’L(al, bg) Z t and OL(ag,bl) S t, then
Ve, (a1, b1] X (ag, bo]) = Cr(b1,b2) — Cr(as,by) —t + ¢,

which is non-negative since C, is increasing. The same is true for C7 (a1, by) <
t and CL(CLQ, bl) Z t. If CL(bl, bg) Z t, C’L(al, bg) S t and CL(CLZ, bl) S t, then

VCt<<a1,b1] X (ag,bg]) = CL(bl,bg) —t—t+t Z 0.
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In the case that C7, (b1, by) < t the volume Vi, ((aq, b1] % (ag, bo]) = t—t—t+t =
0.

Now assume that a; <t or ay < t. If a1 < aq, then

Ve, ((aq, b1] X (az, bs])
= Cy(b1,b2) — Cy(by1, az) — minf{ay, by} + min{ay, as}
=Cy(by,by) — Cy(br,a2) —ay + ax
>0,

since C} is increasing. The same holds when as < a;. O

In [5] (Theorem 3.2) it was shown that for the copula C; from the previous
lemma it holds

pe(W(X) < s) = sup Cp (Fi(a1), Fy (¥, (s))) (15)

r1ER

for an arbitrary but fixed number s, which means that the right-hand side of
(15) provides a sharp lower bound for my;(s) if uc, (¥(X) < s) = pe, (V(X) <
s). However in case that uc, (¢¥(X) < s) > pe, (¥(X) < s), this bound fails
to be sharp.

In [4] (Theorem 3.3.3/1) the same result, i.e. equality (15), was proved
for n = 2 and left-continuous distribution functions. Furthermore, it was
assumed that 1) is continuous and at least one of F; and F, should be con-
tinuous in a certain set of R2.

We provide a stronger result for right-continuous distribution functions
with less assumptions concerning ¢ and the marginal distributions. The
following theorem shows that for an increasing function ¢) which is continuous
in its last coordinate, the copula C; reaches the bound (14) stated in Theorem
3.1. To show this this we have combined the proofs in [4] (Theorem 3.3.3/1)
and a former version of [5] (Theorem 3.2) which no longer exists. In [5] the
theorem was formulated for an arbitrary n, but unfortunately, C} is no longer
a copula for n > 2 as will be shown later.

Theorem 3.5 Let X = (X, Xs) be a random vector on R? with marginal
distribution functions Fy and Fy. Let ¢ : R?> — R be a function, that is
non-decreasing in each coordinate and left-continuous in the second coordi-
nate for each fized first coordinate. Fiz s € R and for a copula Cp, set
t:= Tgva(Fl, F3)(s). If the corresponding copula of X1 and X is the copula
Cy from Lemma 3.4 defined for Cp, and t, then

UJCFt,uJ(Fh Fy)(s) = TéL,w(Fl, F>)(s).
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Proof: We already have that
ol W (F1, F2)(s) = 7, (F1, Fo)(s), (16)

since

Cr(u) < max{t,Cr(u)} = Cy(u) for u € [t,1]?

and
Cr(u) < min{uy,up} = Cy(u) for u € [0,1]*\ [¢, 1)

i.e. Cy > (', which implies by Theorem 3.1 that
08 o F2)(s) > 76, (Fy B (5).
Hence we have to prove the inequality
08P F2)(s) < 78, (R F)(s) = .

We consider the cases t = 1, and ¢t € [0,1) separately. For ¢t = 1 it is
clear, since

06,0 (F1, F2)(s) = po, {y € R" 1 p(y) < s}) < 1.
Let t € [0,1) and consider the set
By :={z e R*: ¢(z) < s}.

We want to show that uc, (Bs) = pe, {y € R" 1 (y) < s}) < t. If B, =0,
then for all ¢t € [0, 1)

06,01, F2)(8) = pie, (Bs) = pie, (0) =0 < t.

Assume that B is non-empty. We show that Cp (Fi(a1), Fa(az)) <t
for all (a1,a2) € B, and that this implies C;(Fi(a1), Fa(az)) =
min {¢, Fy(z1), Fo(z2)} . Then we will show for t = 0 and t € (0,1) that
O'gt,d)(Fl,Fg)(S) S t.

Let a = (a1, a2) € Bs. Then ¥(a) < s and

I (s) =sup{xs € R:1)(ar, x2) < s} > as.

ai
Now

Cr (Fi(ar), Fy(a2)) < Cp (Fl(al)aFQ (%\1(5)))
< sup Cp, (Fi(z1), F> (¥} (s)))

r1ER
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= 7¢, (1, F2)(s)

Hence for all x € B, it holds
Cr(Fi(z1), Fa(za)) <t (17)
Now recall that

Cy (F1(z1), Fo(2))

_ {max{t,C’L(Fl(xl),F2(x2))}, if Fy(21), Fo(xs) € [t,1)?
min {Fy(xy), Fo(xs)}, otherwise.

By (17) this implies for all x € B,
Ct (F1<.I‘1), FQ(I‘Q)) = min {t, Fl(acl), FQ(IQ)} . (18)
Ift =0, then

Cy (F1(71), Fa(w2)) = Co (Fi(21), Fa(2))
= min {0, F(x1), Fa(x9)} =0

for all x € B,. Define Z : R x R — R, Z(z) := 0. Then for all z € B, we
have Cy (Fi (1), Fa(xs)) = Z(x1,22) and

O o (Fl,Fg):/ dCo (Fy(z1), Fa(x2))

S

= / dZ(l’l,l'Q)
S / dZ(l'l,ng)
R2

= Z(00,00) — Z(00, —00) — Z(—00,0) + Z(—00, —0)
=0.

Now let t € (0,1) and define b = (b, b),

by :=sup{x; : Fi(r;) <t}, and
by =y, () = sup {wz € R : (b, x9) < s}

We will show that

He, (BS) < Hey <<_Oo7b1] X (_OovbQD <t

35



Since F} is a distribution function, b; = sup {z; : Fi(z1) < t} = oo implies

t =1, and by =sup{z; : Fi(z1) <t} = —oc0 means t =0, when we define

sup () := —oo. Hence b; is finite. Since F} is increasing the definition of b;
implies that

if T < bl, then Fl(l‘l) < t. (19)

Since F7 is right-continuous and F}(x1) > ¢ for all z; > by we have F(by) > t,
so that
Fi(x1) >t for all 1 > by. (20)

Next we show that Fy(xs) > ¢ whenever xo > by. To show this, assume
that there is a number ), > by such that Fy(x}) < t. Define

) =Py (s) = sup{zy : P(w1,75) < s}
In the case x| > by it would hold
by = sup{wy : (b1, x2) < s} > sup{ws : (2], 22) < s} >,

which contradicts to the assumption that z}, > bs. Hence x] < b; and by
(19) we have Fi(x]) < t. Now for all z; < )

Cr (Fi(z1), Fs (¥, (s))) < Fi(zy) < Fy(2h) < ¢

For x; > 2 it holds x5 > ¥} (s) = sup{y, € R : ¥(z1,12) < s}, because if
xy < 7 (s), then

oy =sup{y1 € R: (1, xy) < s} >sup{yn € R: ¢ (y1, 40 (s) < s)} >y,
which contradicts to z; > 7. Hence x5 > 1} (s), which implies
Cp (Fi(z1), B> (¢,(s))) < Fo (v) (s)) < Fa(ah) < t.
Hence for all x; > ] it holds
Cr (Fi(z1), B> (¥),(s))) < Cp (1, Fy(2h)) = Fa(ah) < t.

Now we have that Cp, (Fi(z1), F> (¢) (s))) < max{Fi(z}), Fao(x})} < t for
all z; € R which implies
t > max{Fi(z}), F»(z5)}
> sup Cp, (Fi(z1), Fa (¥, (5)))

z1€ER
= 7¢, » (F1, ) (5)
— ¢,
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which is a contradiction and we have that Fy(x2) > ¢ for all 5 > by. Because
F; is right-continuous, it follows that Fy(by) > ¢ so that

FQ(%Q) Z t for all ) 2 bg. (21)
From (19), (20) and (21) we get for all = € B,
Ci (Fi(z1), Fa(x2))
= min {t, Fl(xl),Fg(ZL‘Q)}
min {Fl(ilfl),Fg 33'2)}, if 1 <b; and z9 < bg,

= min {t, F1<.T1)}, if T2 > bQ, (22)
min {t,FQ(ZEQ)}, if T Z bl.

We want to show that
00 (F1s F2) = pe, (Bs) < t.
Let us consider the following covering of B;.
B, CLULUT,
where
I = {xGRQ:xi >bz~}ﬂBS, for 1 =1,2

and
T .= (—OO, bl] X (—OO, bg] .

Let us show that p¢, (I;) = 0 for ¢ = 1,2. Consider the functions g; : R - R,
gj(x1, x2) = min{¢, Fj(z;)} for j = 1,2. Now

,uct(h):/ dCt(Fl(ml),Fg(xg)):/ dmin{t, Fo(x9)}

I {zeR2:21>b1, P(z)<s}

/ dgo (21, 22)
{z€R2:x1>b1, P(x)<s}

< / dga(z1, z2)
(b17OO]><R

- 92<Oo7 OO) - 92(b17 OO) - 92(007 _OO) + 92<blv _OO>
= min{t, F5(0c0)} — min{¢, F»(oc0)}

— min{t, F5(—00)} + min{t, Fy(—o00)}
= 0.
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In the same way we get

pe, (I2) = / dmin{t, Fy(z1)} < / dgi(z1,22) = 0.

IQ RX(bQ,OO}

Since 1 is left-continuous in the second coordinate and by, =
sup {z2 € R : ¢(by,22) < s}, we have b = (b1, by) € Bs. Hence by (22)

pe(T) = pe, (=00, bi] X (=00, b)) = Ci(Fi(br), Fa(ba)) = t.
We get
pe, (Bs) < pic, (UL UT) < pe, (I) + pe, (I2) + pe, (T) = pe, (T) = t.
Since t < o, ,(F1, F2)(s) = pc, (Bs) < t, it follows that
aaﬂp(Fl,Fg)(s) =t.
O]

Remark 3.6 This result was formulated in [6] for arbitrary n, but the proof
contains a gap. See [5] (page 11) for more details. In [5] (page 10) it is also
noted that the result in [6] is not correct since pe (¥(X) < s) may have no
minimum over the set of copulas. This is closer studied in [7] (page 187).

However, for n = 2 the minimum exists: Since C; > Cp, we have
po, (W(X) <s) > inf{uc (¥(X) <s) : C > CL}. By Theorem 3.1 for all
C > Cy it holds e (W(X) <s) > 7¢ , (Fi, F2) (s), hence by Theorem 3.5
(e (4(X) < ) € > Cp) 2 7, (B (3) = oy (8(X) < ). 1t Tol
lows that

pie, (Y(X) < s) = min{uc (Y(X) < s): C > Cr}
and choosing C7, = C;, where C is the lower Fréchet bound, we have

pe, (h(X) < s) = min{uc ($(X) < ) : C'is a copula}.

By the following proposition, which has already been published in [5]
(Example 3.1), we obtain that the previous result holds only for n = 2.

Proposition 3.7 There exist numbers s such that the function Cy, defined
fort =15, (Fr,...,Fy)(s), by

Cy(u) = {maX{t’CL(u)}’ foru € [t,1]"

min{uy,...,u,}, otherwise

s not a copula for n > 2.
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Proof: Let n > 2 and choose

@D(Qfl, Ce ,l’n) =Ty wnﬂ{m120,...,zn20}(xla Ce ,.Zn).

Let Cp(u) := [[}, w; and let Fy,..., F, be the distribution functions of n
standard uniformly distributed random variables. For s > 0 it holds

wﬁn(S) = mf{xn ceR: Ty Inﬂ{xlzo,m@nzo}(ll, . ,.Tfn) Z S}
oo, if x; <0forsomei=1,...,n—1,
B s ifx; >0foralli=1,...,n—1,

L1 Tn—1

hence for s € (0,1) we get

t= Tg'_Lﬂ/) (Fl,--'aFn) (8)
= sup Cr, (Fl(flfl),---,Fn—1<xn—1)aFn (77Dén(8)))

CE1,...,!L’TL71€R

n—1
S
= sup Fi(z;) | Fu (—)
Z1,esrn—1€(0,1] (E ( )> Ty Tp—1

= S.

2
Set s = (Q(nn_l)> =te€(0,1) and let o = ﬁ Choose a,b € R™ such
that

a=(a,...,a) and b= (1,...,1).
We will show that C; is not n-increasing i.e. the sum

2 2

Z .. Z(—l)jl"m—’_jnct(u”l, s Ungy) (23)

is negative. We have a,b € [o? 1]" = [t,1]" and using the notation u;; = a;
and u; = b; for t = 1,...,n it follows that the sum (23) is equal to

Z R Z (—1)j1+'"+j" maX{t, H Ulﬁ} (24)

J1=1 Jn=1 =1

Since u;1 = o and u;p = 1 for alli =1,...,n, the product H?zl u;j, is always
of form o, where k is the number of u;;’s occuring in the product, having
the values k = 0,1,...,n. In the sum (24) the case k = 0 occurs only once,
that is when j; = 2 for all ¢ = 1,...,n. The case k = 1 occurs when j; =1
for one and only one ¢ = 1,...,n which means that it occurs n times. There
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are (g) cases where j; = 1 exactly two times and so on. Finally, there is one
case when k = n. Considering the sum like this, we get that the sum (24),
and therefore also the sum (23), is equal to

max{t,a®} — nmax{t,a'} + (Z) max{t, a?} — (g) masc{t, a*H+
4 (=1)" (Z) max{t,a"}
= ;O(—nk (Z) max{t, a*}.

From 0 < o < 1 and t = o? it follows for k = 2,...,n that t > o and the
maximum of ¢ and o is equal to t. For the values ¥ = 0 and k£ = 1 we have
max{t,a’} = max{t,1} = 1 and max{t, o'} = max{t,a} = a. Hence

g(—l)k (Z) max{t, "} = 1 — na +t§(—1)k (Z)

Recall that > (—=1)*(}) =0 for all n = 1,2, ... which implies that

z”:(_l)k@) == 21:(—1)’“(2) =n—1.

k=0
Now the sum (23) reduces to

1 —na+tn—1)
= 1—na+(n—1)a?

n2

B )

which is negative for n > 2. It means that C} is not n-increasing, hence it is
not a copula. 0

3.2 A lower bound in the case of no information on
dependence

The bounds (13) and (14) stated in Theorem 3.1 hold especially for the lower
Fréchet bound Cj and (14) is sharp for n = 2, but in a special case it can be
improved.

40



Assume for the rest of this chapter that the margins are identically dis-
tributed having a continuous distribution F' and let ¢ : R® — R be the sum.
Because of continuity we have

my(s) = my(s) == mf{P(Y(X) <s): X~ F, i=1,...,n}

and a duality result proved in [10] gives

my(s) = inf{]P’ ({w : iXi(w) < s}) Xy~ Fi= 1,...,n}

=1 —inf {n/de : f is a bounded measurable function on R s.t.

Z f(xi) > Mg o) <Z xz> for all z € [0, oo)”} . (25)

Using this expression it is shown in 5] that for every s > 0 it holds

n s—(n—1)r
my(s) > 1— inf / (1 - F(x))da.

- r€(0,s/n) S — Nr

However, if F' is very small on the interval (r, s— (n—1)r), the right-hand side
of the inequality above will be negative. We specify this bound by excluding
the negative cases and we show that this bound will be better (i.e. greater
or equal) than the bound (14) for some s. The proof follows the one in [5]
(Theorem 4.2).

Theorem 3.8 For every s > 0

n s—(n—1)r
my(s) > (1 — inf / (1 - F(x)) dx)

+

re(0,s/n) S — NI

Proof: For r € (0,2) define f, : R — R as follows:

S
n

0, rx<r
fr(x) =00, r<or<s—(n—1)r
1, otherwise.

We will first show that f,. is an admissible function in (25). f, is bounded
and measurable, hence we have to show that > 7" | f(2;) > Tjs00) (X0 )
for all z € [0, 00)™.
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Let x € [0,00)". Since f, is non-negative, it is sufficient to show
that 7, fo(z;) > 1, when S 2 > s If 2, > s — (n— 1)r
for some iy € {1,...,n}, then >0, fo(z) > folxi,) = 1.  Assume
Ty,...,x, <s—(n—1)r with Y_""  z; > s and define

I={ie{l,...;n}:x; >r} and J:={ie{l,....,n} a0, <r}.

Now since Y ;c;xi+) ;o5 > swehave Y, ;> 5=, ;x5 > s—#J 7.
It follows

o frle) =3 fila =30 S = S
=1 iel iel
SETRY TS _
>s H#J-r—F# r_s m"zl'
s—nr s—nr

By (25) we have that for all » € (0,s/n) it holds

my(s) > 1— inf n/fr JAF (z

re(0,s/n)

and using partial integration we get

[ Faara
s— ) T —7 oo
= dF dF
/r §—nr (:E) - \/s(nl)r <x)

Vr T —1T —(n=1) x
N / @) 42 4+ Ploo) = F(s — (n — 1)r)

S —nr S —nr

1 s—(n—1)r
F 1-F(s—(n—-1
= / (2)dz +1— F(s — (n— 1)r)

_ 1 /s_(n_l)r(l—F(x))dx,

S —nr

=F(s—(n—1r)—

which completes the proof. 0

Now we will show that for large s this bound is greater than or equal to
the bound presented in (14). First note that

s—(n—1)r 1—F s—(n—1)r I
inf / de <  lim [1 —/ ﬂdx] )

re(0,s/n) J, S —nr r>0,rTs/n S —nr

For some t € (r,s — (n — 1)r) it holds

/s(nl)T F(x) do — F(t) (s—=(n—1)r—r)=F(t),

S —nr s —nr
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so that
s—(n—1)r 1—F
inf 1= Fle)

r€(0,5/n) J, S —nr t>0,tTs/n

de <1— lim F(t)=1-F(s/n),

since r T s/n implies ¢ T s/n. We get

n

1— inf
re(0,s/n) S — N

/8—(n—1)r (1-F(x))de >1—n+nkF <%> .

Since F'is a continuous distribution function, there exists
zp :=inf{z > 0: F is concave on [z,00)}.

Let s > nF~! (M> We will show that

n

ZlFre P)s) = (nF (2) =nt1)

Since 1 was the sum, we have by the definition of Cj, that

Tu(Fro o F)(s) = sup (iF(xi)+F(£n(5))_n+1>

i=1 i=1
n +
= sup F(x;)) —n+1] .
$€Rn72$i:5 (; ( ) )

This is always greater than or equal to (nF(s/n) —n +1)", hence we have

F(zp)+n—1

to show that it is also less than or equal for s > nF 1 -

Since F is concave on [zp,00), for © € [xp, 00)" such that Y ), z; = s,
it holds >"1" | F'(x;)/n < F (> x;/n) = F(s/n). This implies

sup (iF(mi)—TH—l) < (nF(s/n) —n+1)".

€[z F,00)",> Ti=5 i1

Since F' is right-continuous and non-decreasing, it holds for s >
nkF=1 (%) by Lemma 2.14 (iii), that F(s/n) > w, which im-

plies F(xp) < nF(s/n) —n+ 1. Forx € R"\[xp, 00)" thereis iy € {1,...,n}
such that x;, < zp, hence

zn:F(xi)—nJrl§F(xi0)+(n—1)F(oo)—n+1SF(mp)

i=1
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<nF(s/n)—n+1.

It follows

sup (ZF(wi)—n—i—l) < (nF(s/n) —n+1)".

zeR™\[zp,00)" 3 xi=s \ ;|

+
We have shown that when s > (nF’1 <w>> , it holds

n s—(n—1)r +
m(s) > (1 ~ inf / (1 —F(q:))dx)

re(0,s/n) S — Nr

> 74 J(Fy . F)(s).

In [5] (pages 15-17) it is shown that for n > 2 it can be

+
- n /s—(n—l)r . F( )) 1
1— _
re(lg,ls/n) Ss—nr J,. ( o o

> sup  Cy(F(xy),...,F(xn_1), F‘(@b;n(s))). (26)

Since ¥, (s) = s — St = Y, (s) and F is continuous, the right-
hand side of (26) is equal to 7¢, , (F,..., F)(s). Hence this bound actually
improves estimation.
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