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Abstract:

The technological development of quantum computers has advanced dramatically in recent

years as organizations and governments seek to take advantage of the increasing computing

power of quantum computers. Although quantum computers have the potential to benefit

people and economies in many areas, they also threaten the security of modern cryptogra-

phy, especially the widely used public key cryptography such as RSA, DH, ECC, and DSA.

Since these algorithms will be completely broken in the future, quantum-safe alternatives

are being developed and researched to mitigate the threat. History has shown that replacing

cryptographic algorithms is a long and difficult process, and given the complexity of mod-

ern information systems, automated tools are needed to support post-quantum cryptography

migration and cryptographic agility. In this research, an automated Cryptography Bill of

Materials (CBOM) generator was built as a solution to this need and it’s feasibility was an-

alyzed. Design science principles were used to guide the research process, as well as the

building and evaluation of the created artifact. The main result of the research is an artifact

capable of generating CBOMs by scanning cryptographic algorithms from JavaScript source

files that implement the Node.js Crypto module. In addition, the research proved that an au-

tomated CBOM tool based on regular expression searches is a feasible and accurate solution

i



for capturing cryptographic components.

Keywords: PQC, post-quantum cryptography, quantum computing, public-key cryptogra-

phy, private-key cryptography, CBOM, Cryptography Bill of Materials, PQC migration,

cryptographic agility

Suomenkielinen tiivistelmä: Kvanttitietokoneiden tekninen kehitys on edennyt hurjaa vauh-

tia viime vuosina, organisaatioiden ja valtiollisten toimijoiden toivoessa pääsevänsä hyödyn-

tämään kvanttikoneiden jatkuvasti kasvavaa laskentatehoa. Vaikka ihmiset ja talous voivat

hyötyä kvanttitietokoneista monilla aloilla, ne myös uhkaavat nykyaikaisia salausmenetelmiä,

erityisesti laajasti käytössä olevia julkisen avaimen salausmenetelmiä, kuten RSA, DH, ECC

ja DSA. Tulevaisuudessa nämä salausalgoritmit tulevat olemaan täysin murrettuja, minkä

vuoksi vaihtoehtoisia kvanttiturvallisia salausmenetelmiä luodaan ja tutkitaan parhaillaan,

jotta uhka saadaan torjuttua. Historiasta tiedetään, että haavoittuneiden salausmenetelmien

korvaaminen on pitkä ja vaikea prosessi, ja varsinkin nykyajan monimutkaisten tietojär-

jestelmien kanssa automatisoituja työkaluja tarvitaan tukemaan migraatiota kvanttiturval-

lisiin salausmenetelmiin sekä lisäämään järjestelmien kryptografista ketteryyttä. Tässä tutkimuk-

sessa automatisoitu Cryptography Bill of Materials (CBOM) työkalu luotiin vastaamaan

edellä mainittuihin tarpeisiin ja työkalun soveltuvuutta analysoitiin. Suunnittelutieteen pe-

riaatteita käytettiin ohjaamaan tutkimusprosessia sekä työkalun rakentamista ja evaluoin-

tia. Tutkimuksen tuloksena valmistui työkalu, joka kykenee luomaan CBOM tiedostoja

etsimällä kryptografisia algoritmeja JavaScript tiedostoista joissa on hyödynnetty Node.js

Crypto moduulia. Lisäksi, tutkimus osoitti, että säännöllisiin lausekkeisiin perustuva au-

tomatisoitu CBOM työkalu on käyttökelpoinen ja tarkka ratkaisu kryptografisten kompo-

nenttien poimimiseen.

Avainsanat: PQC, kvanttikoneturvalliset salausmenetelmät, kvanttilaskenta, julkisen avaimen

salaus, yksityisen avaimen salaus, CBOM, salausmenetelmien materiaaliluettelo, PQC mi-

graatio, kryptografinen ketteryys
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Glossary

Asymmetric-key cryptography Method for securely sharing secrets over public channels.

Consists of public- and private key pairs, where the public key

is used for encryption and private key is used for decryption.

The following terms are often used as synonyms: public-key

cryptography, public-key encryption, public-key algorithm, asymmetric-

key encryption and asymmetric-key algorithm.

CBOM Cryptography Bill of materials is a nested list of cryptographic

components.

DH Diffie-Hellman is a key exchange method based on public-key

cryptography.

ECC Elliptic curve cryptography is a public-key encryption method

based on the use of elliptic curves.

IND-CCA2 Key-indistinguishability under chosen ciphertext attacks.

KEM Key encapsulation mechanism is a method for sharing a secret

(like a secret key) over a public channel in a secure way.

NIST National Institute of Standards and Technology.

PQC Post-quantum cryptography. Cryptography that is safe against

attacks done with quantum computers and traditional comput-

ers.

Quantum cryptography Cryptography that uses quantum physics as a part of it’s secu-

rity solution.

RSA Rivest-Shamir-Adleman is a public-key encryption algorithm.

SBOM Software-bill-of-materials is a nested list of software compo-

nents.

Symmetric-key cryptography A shared secret key between communicating participants is

used to encrypt and decrypt messages. The following terms

are often used as synonyms: private-key cryptography, secret-

key cryptography, symmetric-key encryption and symmetric-

key algorithm.
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1 Introduction

The development of quantum computers has progressed rapidly since the first quantum com-

puters were built in the late 1990’s. With the exponential increase in computational power

compared to classical computers, quantum computers exhibit remarkable possibilities in

fields such as weather forecasting (R. A. Grimes 2019), drug development (Cao, Romero,

and Aspuru-Guzik 2018), chemical development (Cao et al. 2019), cybersecurity (Wallden

and Kashefi March 2019), artificial intelligence, battery development (R. A. Grimes 2019),

machine learning (Maria Schuld and Petruccione 2015), optimization problems, finance

(Orús, Mugel, and Lizaso 2019) and manufacturing (Bova, Goldfarb, and Melko Decem-

ber 2021). It is estimated that the quantum technology market size will be 106 billion USD

by 2040, with quantum computing being the most lucrative of the quantum technology fields,

possibly reaching even a 93 billion USD market size by 2040 (”Quantum Technology Mon-

itor” 2023). With all these positive scientific and monetary predictions, it is easy to see why

quantum computing has gained so much interest.

Advances in quantum computing have additionally created security concerns, which also

contribute to the increased interest in quantum computing. With sufficiently powerful quan-

tum computers it is possible to break many of our modern day cryptographic algorithms,

which are widely used to secure our communications over the internet. Particularly, public-

key cryptography, like RSA, DH, ECC, and DSA will be vulnerable. Although the threat is

not imminent, replacing widely used algorithms has proven to be a long and slow process,

as was the case with SHA1, which was found vulnerable in 2004 but was still used in 2018

by some old browsers and servers that did not support SHA256 (National Academies of Sci-

ences and Meidicine March 2019, p. 109). Because replacing widely used cryptographic

algorithms is such a long process, the U.S. government’s National Institute of Standards

and Technology (NIST) began a competition-like standardization process in 2016 to find

secure post-quantum cryptography (PQC) algorithms (Standards and Technology January

2017; NIST December 2016).

In addition to the slowness of adapting new protocols, a major driver of PQC development is

the fact that malicious actors could harvest the quantum-vulnerable data today and decrypt
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it later, when a sufficiently powerful quantum computer is built. This could expose critical

governmental, political, or industrial secrets that could be relevant years or even decades

later.

As of the writing of this paper in 2023-2024, NIST has already selected and standardized

three PQC algorithms (Technology August 2024b, August 2024a, August 2024c), and other

algorithm candidates are still being assessed and may later be added to the NIST PQC

standards. Ultimately, the standardized algorithms will need to be used to replace specific

quantum-vulnerable cryptographic algorithms. However, modern IT/OT systems can be ex-

tremely large and complex, making the management of cryptographic algorithms a tedious

and demanding task. Especially, since many organizations do not even have an inventory

of where cryptographic algorithms are used (Barker, Polk, and Souppaya April 2021). For

the security of existing IT and OT systems, it is imperative to increase cryptographic agility

and thereby accelerate the replacement of vulnerable components. As stated by NIST, "tools

are urgently needed to facilitate the discovery of where and how public-key cryptography is

being used in existing technology infrastructures" (Barker, Polk, and Souppaya April 2021).

The goal of this research is to address this need by providing a Cryptography Bill of Mate-

rials (CBOM) tool capable of automatically scanning systems and extracting cryptographic

data from specific files to create a list of cryptographic components. In addition, the crypto-

graphic components will receive a NIST-categorized quantum security level to indicate the

algorithms security level against powerful quantum computers. This goal aims to produce

an innovative artifact that provides practical value to the artifact’s application domain. An-

other goal is to produce new knowledge about automated CBOM generators by answering

the research questions based on the knowledge gained from the artifact creation process.

The structure of the paper is as follows: chapter 2 provides general information about the

reasons behind the emerging quantum threat, including quantum computers and Shor’s and

Grover’s algorithms. Chapter 3 discusses the most common cryptographic algorithms that

are vulnerable to the quantum threat. Chapter 4 provides insight into the solutions that

are currently being researched or standardized as quantum-safe alternatives to some of the

quantum-vulnerable algorithms mentioned in chapter 3. Chapter 5 provides general informa-

tion about Bill of Materials (BOMs), specifically Software BOMs (SBOMs) and Cryptogra-
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phy BOMs (CBOMs). Chapter 6 explains the research methods, questions, and strategies.

Chapter 7 presents the steps involved in planning the artifact and motivates choices made.

Chapter 8 presents the artifact and chapter 9 evaluates the artifact with two different data

sets. Chapter 10 discusses and presents the results of the research and finally, chapter 11

provides a summary of the thesis.
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2 The quantum threats

Our modern digital information and communication systems rely heavily on the security pro-

vided by symmetric-, asymmetric- and hashing algorithms. Some of the most common use

cases for these cryptographic systems include: encryption, authentication, digital signing,

secure web browsing, cryptocurrencies, smart cards, network encryption, virtual private net-

works, wireless security, and email encryption (R. A. Grimes 2019). With so many important

applications relying on these cryptographic methods, it is extremely important that they are

secure and trustworthy. However, the development of quantum computers is gradually bring-

ing us closer to a reality where these cryptosystems will be weakened or completely broken

by specific quantum algorithms that were invented back in the 1990s (will be introduced later

in sections 2.2 and 2.3). It is uncertain when such quantum computers, capable of running

the quantum algorithms that pose a threat to our modern cryptography, will be built, but

according to some estimates it is theoretically possible by 2030-2035 (National Academies

of Sciences and Meidicine March 2019; Moody March 2024; Presman April 2024). Figure

1 presents the impact that large-scale quantum computers can have on specific cryptographic

algorithms.

This chapter is dedicated for providing general information about the main inventions that

pose a threat to our modern cryptography, namely: quantum computers, Shor’s algorithm,

and Grover’s algorithm. First, a brief introduction to quantum computers will be given,

followed by a very general descriptions of Shor’s and Grover’s algorithms.
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Figure 1. A table made by NIST about the "Impact of quantum computing on common

cryptographic algorithms" (Chen et al. April 2016).

2.1 Quantum computing and quantum computers

This section provides readers with essential background information on the origins of quan-

tum computing, helping them understand the rapid advancements in quantum technology.

It also includes a general introduction to quantum computers, explaining why they possess

such immense computing power.

2.1.1 History

The modern theory of quantum mechanics took its shape in the 1920s, as a result of the

research of several physicists who independently contributed to its development over many

decades. Initially, the interest in quantum mechanics was purely theoretical, as practical

applications were lacking and technological development was still in its early phases. This

started to gradually change in 1980 when mathematician Yuri Manin first proposed the idea

of using quantum mechanical computers to simulate quantum systems (Manin 1980). Physi-

cist Richard Feynman independently developed the concept further in 1982 (Feynman 1982;

Nielsen and Chuang 2010).
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In 1993, Bernstein and Vazirani proved that quantum Turing machines (formulated by Deutcsh

in 1985 (Deutsch and Penrose 1985)) are capable of solving certain problems in polynomial

time, whereas a classical probabilistic Turing machine requires exponential time to solve

the same problem (Bernstein and Vazirani 1993). This was the first time that a computa-

tional model was able to violate a foundational principle of computer science - the extended

Church-Turing thesis, which states that a probabilistic Turing machine can efficiently (mean-

ing that the difference in speed can only be polynomial) simulate any computational devices

(National Academies of Sciences and Meidicine March 2019; Nielsen and Chuang 2010).

Roughly a year later, in 1994, quantum computing research gained even more interest, when

mathematician Peter Shor showed that with a sufficiently powerful quantum computer it

would be possible to solve the discrete logarithm problem as well as the integer factorization

problem in polynomial time (Shor 1994). As the difficulty of these mathematical prob-

lems is the basis for many cryptographic algorithms, Shor’s findings and the development of

quantum computers became a big theoretical threat to information security (more on Shor’s

algorithm in section 2.2).

In 1996, Lov Grover showed that quantum computers could be used to provide a quadratic

speed-up for searches in unstructured search spaces (such as finding a specific number from

an unsorted list of numbers) (Grover 1996). Together with powerful quantum computers,

Grover’s algorithm could pose a threat to cryptographic methods such as symmetric cryp-

tographic keys and cryptographic hash functions. However, this threat can be overcome by

doubling the size of the hashes and symmetric keys (R. A. Grimes 2019), and therefore is

not as harmful as Shor’s algorithm. More details on Grover’s algorithm will be presented in

section 2.3.

Shor’s and Grover’s algorithms theoretically proved that quantum computers could expo-

nentially outperform classical computers in certain computational tasks, making quantum

computing an even more interesting topic for researchers and investors around the world.

This led to an increase in investments in quantum computing research and development. Al-

ready in 1998, the first 2-qubit NMR (nuclear magnetic resonance) quantum computer was

built (Jones, Mosca, and Hansen May 1998), soon to be followed by another one (Chuang,

Gershenfeld, and Kubinec April 1998). Now, over two decades later, as one of the quantum

6



computing industry leaders, IBM released their 1121-qubit quantum processor, Condor, at

the end of 2023 (Gambetta 2023).

2.1.2 Quantum computer introduction

Conventional computers use bits (binary digits) as their basic unit of information, which can

only have a value of 1 or 0. Since a single bit can represent a single value out of two choices

(0 or 1), with two bits, there are four possible outcomes (01, 10, 11, 00) and with three

bits, there are eight possible outcomes (000, 001, 010, 100, 110, 101, 011, 111). As seen

from this pattern, adding a single additional binary digit increases the number of end results

exponentially (21,22,23...). (R. A. Grimes 2019).

For quantum computers, the basic unit of information is called a qubit. A single qubits

state can be 1 and 0 at the same time, at least before the qubits quantum state is measured.

What makes this possible, is a quantum property known as quantum superposition. Quantum

superposition is the main reason why quantum computers are capable of performing certain

operations so much faster than conventional computers, as it enables each qubits bit state to

be exponential to itself and to additionally added qubits. Meaning that a single qubit can be

two states (0 and 1) of out two choices (0,1) at the same time, and two qubits can be four

states out of four choices (00 and 01 and 10 and 11), and so on. Therefore, a similar amount

of bits and qubits will have the same number of possible states, but a bit can only be one

state at a time, while a qubit can be all of them simultaneously. (R. A. Grimes 2019).

However, when the value of a qubit is measured, the quantum superposition state collapses,

causing it to behave similarly to a bit, providing a single binary outcome (1 or 0). Bits, on

the other hand, have the same state whether they are measured or not. Because qubits are

extremely sensitive to disturbance (noise), they must to be isolated from the outside world

in order to maintain their quantum state, which is one of the many challenges in building

quantum computers.

The qubits sensitivity to noise causes quantum computers to have high error rates, which

can cause quantum algorithms to produce wrong results or even prevent the algorithm from

running properly. To reduce error rates to acceptable levels, quantum computers need to run
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quantum error correction algorithms and create so-called "logical" qubits, which are stable

and have very low error rates. Logical qubits are essential for the successful execution of

quantum algorithms such as Shor’s algorithm. The issue with quantun error correction al-

gorithms is that they are extremely resource-intensive to produce, requiring many physical

qubits to create a single logical qubit. Until recently, researchers believed that at least 1000

physical qubits were needed to create a single logical qubit (Castelvecchi December 2023;

Fowler et al. 2012), or a maximum of 10 logical qubits (Bravyi et al. August 2023). However,

interesting research was published in December 2023, where researchers were able to use a

logical quantum processor that was based on reconfigurable atom arrays to achieve an aston-

ishing number of 48 logical qubits with only 280 physical qubits (Bluvstein et al. December

2023).

Another challenge with quantum computers is that large amounts of classical data cannot

yet be efficiently converted to a quantum computer readable quantum state. Therefore, it

is challenging to utilize quantum computers to analyze previously collected classical data,

because the time required to convert the data into quantum state would typically be so long

that the benefits of using a quantum computer would be diminished. (National Academies

of Sciences and Meidicine March 2019).

Because quantum computers and qubits are so sensitive and complex, it is not feasible to

simply compare the number of qubits in a quantum computer to determine which computer

is more powerful, as there are many factors besides the number of qubits that affect the ef-

ficiency of quantum computers. To address the need for comparing the power and speed of

quantum computers, IBM developed a metric called "quantum volume" (Cross et al. Septem-

ber 2019) that describes the amount of quantum work a quantum computer can do in a given

period of time (R. A. Grimes 2019). Measuring the quantum volume of a quantum computer

requires determining the number of qubits a quantum computer has, as well as gate and mea-

surement error rates, device cross-talk, coherence time, connectivity (between qubits and

other components), and circuit software compiler efficiency (R. A. Grimes 2019). IBM’s

quantum volume is not the only method used for quantum benchmarking, as cross-entropy

benchmarking (Arute et al. October 2019) and IonQ’s Algorithmic Qubits (Staff January

2024) have also been used. So far, there is no general consensus on which quantum bench-
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marking method should be used.

2.2 Shor’s algorithm

As briefly mentioned in subsection 2.1.1, Peter Shor published a paper in 1994 in which he

mathematically proved that factoring large prime integers and computing discrete logarithm

problems could be done in polynomial time with sufficiently powerful quantum computers

(Shor 1994). Shor’s algorithm can be used to refer to multiple different algorithms that were

created by Peter Shor, but it is typically used to refer to the method of factoring large prime

integers, as it has had the biggest impact on the security of our cryptosystems. In this paper,

Shor’s algorithm will be used to refer to the quantum algorithms that Shor published in his

1994 paper (Shor 1994) and if needed, the algorithm (integer factoring or discrete log) will

be specified.

R. A. Grimes 2019 does a good job of explaining how Shor’s algorithm works without going

into too much mathematical detail: "Shor’s algorithm allows quantum computers to factor

prime numbers faster by using an equation that takes a purely random guess at one of the

prime numbers and turns it into a much closer guess, which then quickly finds the actual

prime numbers. Shor’s algorithm uses the mathematical relationship of the two involved

prime numbers in a way that dramatically cuts the number of guesses needed as compared

to a classical brute-force method. A very large number of guesses is still needed, but when

those guesses are done using the quantum property of superposition, they can be generated

nearly instantaneously on a quantum gate computer. Within all those guesses are the right

two prime numbers.".

Before Shor’s discovery, factoring large prime integers and computing discrete logarithm

problems were thought to be such difficult computational problems that they were trusted to

be secure and therefore implemented into specific cryptosystems like RSA, Diffie-Hellman,

and elliptic curve cryptography. Even though Shor published his paper three decades ago,

these cryptosystems are still widely used because in the early 1990s quantum computers - and

therefore the threat too - was only theoretical. Additionally, Shor’s algorithm requires a lot of

resources from a quantum computer, so despite the advancements in quantum mechanics, it
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will still take some time until such quantum computers are built that could break the currently

used asymmetric cryptography.

According to some estimates, breaking RSA (with key sizes ranging from 1024 to 4096

bits) with Shor’s algorithm would require a quantum computer to have approximately 2050

to 8194 logical qubits. For elliptic curve cryptography (with key sizes ranging from 256

to 521 bits), it would require around 2330 to 4719 logical qubits (National Academies of

Sciences and Meidicine March 2019). At the time of writing this paper, the highest number

of logical qubits that has been achieved is 48 logical qubits (Bluvstein et al. December 2023),

which highlights how much progress is still required in quantum computing for the threat to

actualize.

Although there still seems to be some time before there is a sufficiently powerful and stable

quantum computer that is capable of running Shor’s algorithm, replacing these vulnerable

algorithms needs to be done urgently, as new scientific breakthroughs could dramatically

shorten the time until such quantum computers exist. Additionally, there is no guarantee that

someone hasn’t already secretly built such a quantum computer, or might do so in the future.

Although very unlikely, as it would require vast investments without the possibility to reap

the publicity and monetary benefits.

2.3 Grover’s algorithm

Grover’s algorithm is a quantum search algorithm. This means that it uses quantum me-

chanical properties to achieve faster search results, and in the case of Grover’s algorithm,

this is done within unstructured search spaces. For classical binary computers, the best way

to solve this unstructured search space problem is to simply go through every value in the

search space and compare it to the searched value; if the values match, the search is stopped;

otherwise, the search continues until the correct value is found. This method requires at most

going through all N (where N is the total number of values within the search space) values

within the search space, whereas, using a quantum computer and Grover’s algorithm, the

same problem can be solved within a square root of N, thus providing a quadratic speedup

over classical computers. (Grover 1996).
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As briefly mentioned in subsection 2.1.1, Grover’s algorithm was invented by Lov Grover

in 1996 and it slightly threatens the safety of our modern symmetric-key cryptography and

hashing algorithms. Unlike Shor’s algorithm, which provides an exponential speed-up for

breaking asymmetric algorithms, Grover’s algorithm provides a polynomial speed-up for

breaking symmetric algorithms. Therefore, the current security level of symmetric algo-

rithms can be maintained by doubling the key and hash lengths.

Similar to Shor’s algorithm, Grover’s algorithm is currently only a theoretical threat, as not

enough powerful quantum computers have been built to successfully run Grover’s algorithm.

Research suggests that about 3000 to 7000 logical qubits are needed to break AES with key

lengths of 128, 192 or 256 (Grassl et al. 2016).
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3 Quantum threatened cryptography

This chapter introduces the most common modern cryptographic algorithms that are affected

by the development of quantum computers and the aforementioned quantum algorithms.

Additionally, the concepts of symmetric and asymmetric cryptography are explained and

some of the most relevant practical implementations of these cryptographic methods are

presented. The mathematical side of the cryptographic functions will not be discussed in

detail, as it is outside the scope of this research and has already been explained in the original

reference materials.

As previously discussed, symmetric-key cryptography is believed to be safe against powerful

quantum computers, provided that their key lengths are doubled. However, the currently used

asymmetric-key cryptography will be unsafe against quantum computers and will therefore

be replaced with quantum computer safe alternatives. The National Academies of Sciences,

Engineering, and Medicine have created an interesting table of literature-reported estimates

of the quantum resilience of current cryptosystems (National Academies of Sciences and

Meidicine March 2019, p.98). Figure 2 is a modified and simplified version of the same

table and it presents the estimates about the quantum resilience of some popular currently

used cryptosystems.
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Figure 2. Estimates for the quantum resilience of modern cryptosystems. Derived from

National Academies of Sciences and Meidicine March 2019, p.98.

3.1 Symmetric-key

Symmetric-key cryptography (also known as private-key cryptography) is based on a shared

secret key between two (or more) communicating parties. The shared secret key is used

to encrypt and decrypt the data sent between the communicating parties, so that only those

who have obtained the shared key can participate in the communication. The issue with

private-key cryptography is that the secret key needs to be shared remotely among the com-

municating parties while minimizing the risk of eavesdroppers also obtaining the secret key.

The solution to this problem is asymmetric-key cryptography (also called public-key cryp-

tography), which will be introduced in section 3.3.

Symmetric-key cryptography and hashing are unlikely to be broken by quantum computers,

only weakened. Grover’s algorithm will make it four times faster to break these crypto-

graphic methods, which will require the use of longer keys to maintain the current levels of

security. Currently, AES is most commonly used with 128-bit keys and SHA with 256-bit

keys. Figure 3 shows NIST’s classification of AES-128 at security level 1 and SHA-256 at

security level 2, where level 1 represents the lowest security and level 5 the highest. This

means that they are not very resilient against attacks made with quantum computers, and

therefore their use in governmental and critical infrastructure systems will likely be prohib-
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ited in the future. Fortunately, when the bit size of both is doubled (AES to 256 bits and

SHA to 512 bits), they belong to the most secure category of said classifications and can be

trusted to be quantum resistant.

Figure 3. NIST security strength classifications for symmetric-key algorithms. Table derived

from R. A. Grimes 2019
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3.1.1 AES

In 1997, NIST set out to develop an encryption algorithm that would be secure enough

to protect sensitive government data. NIST issued a call for algorithms in an effort to find

promising candidates. The winner of this competition would get their algorithm standardized

by NIST as the Advanced Encryption Standard (AES). The call had specific requirements for

the algorithms, such as: "... the AES would specify an unclassified, publicly disclosed en-

cryption algorithm(s), available royalty-free, worldwide. In addition, the algorithm(s) must

implement symmetric-key cryptography as a block cipher and (at a minimum) support block

sizes of 128-bits and key sizes of 128-, 192-, and 256-bits." (Computer Security Division

December 2016). A total of 15 algorithm candidates were initially selected, of which five

were chosen as finalists, and they were: MARS, RC6, Rijndael, Serpent, and Twofish. NIST

couldn’t differentiate the finalists based on security alone, since they seemed to be equally

secure. Therefore, Rijndael was chosen based on its strong performance on most platforms

and its ease of implementation to hardware (Burr March 2003). In November 2001, NIST

selected Rijndael as the proposed algorithm for AES and published the Advanced Encryption

Standard as Federal Information Processing Standard (FIPS) 197. (Computer Security Di-

vision December 2016). AES is a variant of the Rijndael algorithm, as some modifications

were made after its selection as the encryption standard (Daemen April 2004).

Since NIST published AES in 2001, it has been the most popular symmetric cipher in the

public and private sectors (R. A. Grimes 2019). In addition to its security, AES is popular

due to its fast encryption and decryption speeds and ease of implementation. While quantum

computers and Grover’s algorithm will not completely break AES, they will require updates

to hardware and software, as many systems still default to AES-128 and are not equipped to

use AES-256 or higher (R. A. Grimes 2019). This is particularly true for many IoT devices,

which, due to their small size, have limited resources and are therefore prone to latency issues

and memory deficiencies. For a more detailed description of AES, see the FIPS Publication

197 (Dworkin May 2023).
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3.2 Hashing

Hash functions are one-way functions that use the binary information of the data as part of

the hash creation process. Hashing is mainly used for verifying the integrity and ensuring the

authenticity of data (see figures 4 and 5), but it is also used for secure password management

and in the bitcoin mining process (Sampaio de Alencar 2022).

Figure 4. Message authentication using symmetric encryption (Fall and Stevens 2011).

Figure 5. Digital signature using public-key encryption (Fall and Stevens 2011).

From a security perspective, it is unwise to store passwords as plaintext, which is why most

UNIX-based operating systems instead store the hash values of passwords. To add a layer

of security, the system combines the password with a salt value, which is typically a pseu-

dorandom number, and passes this value as an input to a slow hash function that outputs a
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hash code (see figure 6). A slow hash function is used to make attacks against the system

more laborious. The hashed password and a plaintext copy of the salt are then stored in a

password file that corresponds to the user ID. When a user provides the system with a user

ID and a password, the system uses the user ID to find the correct password file from which

it retrieves the hashed password and the plaintext salt. The salt and the user-given password

are provided as input into the hashing algorithm, and the resulting hash value is compared

to the stored password hash value. If the results match, the password is accepted. (Stallings

2018, p. 315).

Figure 6. The use of hashed passwords (Stallings 2018, p. 315).

Hashing algorithms typically produce hash values of fixed length, and the length varies de-

pending on the hashing algorithm. If even a small portion of the original data is altered (for

example, a single character in the message is changed) and then hashed, the new hash value

would be completely different from the original hash value. Because hashing functions typ-

ically repeat the same hash operation, and only the input data affects the output hash value,

a single unaltered data file will always produce the same hash value when the same hashing

algorithm is used.

Key aspects of hashing algorithms include hashing speed and minimizing duplicate hash

values, known as hash collisions. This occurs when two or more distinct data sets produce
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the same hash value. Hash collisions are a security concern and can be exploited for different

types of malicious activities, such as the hash collision attack (Liang and Lai January 2007).

Another important feature of a good hash algorithm is irreversibility, which means that it is

impractical to revert the hash back to the original message.

Good hash algorithms rarely have collisions, and it should be difficult to intentionally create

them. One way to increase the rarity of hash collisions is to have an algorithm that randomly

selects the hash algorithm used from a set of hash algorithms, making it more difficult for the

malicious actor to at least use the system’s own hash function to try to figure out the original

message.

Currently, Secure Hash Algorithm-2 (SHA-2) is the most commonly used hashing algorithm

and it can be used with different output sizes like 224, 384, 256 and 512 bits (R. A. Grimes

2019). Particularly, SHA-256 is widely used, even though NIST published an upgraded ver-

sion, SHA-3, in 2015 (Technology August 2015). The main reason for SHA-256’s popularity

is its balance between speed and security; while SHA-3 is more secure, it can be up to two

times slower than SHA-512 (R. Grimes February 2018). When SHA-3 was standardized,

most hardware and software did not support the fast computation of the SHA-3 underlying

Keccak function, which caused it to be slower and less popular than the still-secure SHA-

2. However, with the correct hardware and software, SHA-3 is faster and more secure than

SHA-2, which is why it is likely to become more common in the future as SHA-2 eventually

weakens and the majority of hardware supports the fast computation of the Keccak function.

The security of hashing typically relies on three important properties (Fall and Stevens 2011,

p. 817):

• Preimage resistance: It should be difficult to determine the original message from the

hash function’s output value.

• Second preimage resistance: For a specified input, it is computationally infeasible to

find another input which produces the same output.

• Collision resistance: It should be difficult to find two distinct messages that produce

the same hash value.

Note: In a system that is under attack, the difference between Second Preimage Re-
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sistance (SPR) and Collision Resistance (CR) is as follows:

- SPR: The attacker has obtained a message and its hash value and is trying to find

another message that produces the same hash value.

- CR: The attacker tries to find two messages that produce the same hash value; the

goal could be to weaken a digital signature, for example.

These security properties are useful against modern computers, but the exponential increase

in computing power provided by quantum computers, along with the speedup offered by

Grover’s algorithm, poses a risk to the currently used hashing algorithms. Hence, it is likely

that in the near future SHA-256 will no longer be secure, and SHA-512 will need to be used

to maintain the same level of security in hashing that we have today.

3.3 Asymmetric-key

Asymmetric-key cryptography is mostly used for digital signatures and key establishment.

In other words, to authenticate and to establish a secure communication channel between

two or more parties over the internet. This is achieved by having the communicating parties

create their own public and private key pairs, sharing the public keys with each other, and

keeping the private keys confidential. So if Alice wants to send a message to Bob, she can

use Bob’s public key to encrypt the message, which can then only be decrypted and read

by using Bob’s corresponding private key. Public keys are often distributed using digital

certificates signed by a trusted entity known as the Certificate Authority (CA). This helps

ensure the authenticity of the public key.

Although asymmetric-key cryptography can encrypt messages, it is much slower and less ef-

ficient than symmetric-key cryptography. Therefore, symmetric-key cryptography is mainly

used to encrypt data, while asymmetric-key cryptography is used to securely share the se-

cret key (or session key) used in symmetric encryption. This hybrid cryptosystem is the

most common way to use asymmetric and symmetric-key cryptography because they com-

plement each other perfectly. R. A. Grimes 2019 even called the discovery of public-key

cryptography as the "holy grail" of encryption to emphasize its significance: "The holy grail

in encryption was to find a method that allowed two or more parties to exchange symmet-
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ric keys across an untrusted (even knowingly malicious) communications channel without

having to first establish ahead of time a private communication method to exchange the

symmetric-keys for each participant".

Public-key encryption methods typically rely on three main computationally difficult math-

ematical problems: integer factorization, discrete logarithms, and elliptic curves (Buchanan

2017). However, quantum computers are expected to efficiently solve all of these problems,

rendering them insecure for use in future cryptographic algorithms.

3.3.1 Diffie-Hellman

The Diffie-Hellman key-exchange is a cryptographic algorithm for establishing a secure

communication channel in insecure public networks. It was invented by Whitfield Diffie

and Martin Hellman in 1976 (Diffie and Hellman 1976) and was one of the first public key

cryptosystems. Ralph Merkle also contributed significantly to the invention of the algorithm,

which is why it’s also called the Diffie-Hellman-Merkle key exchange, as suggested by Hell-

man in 2002 (Hellman May 2002). Unfortunately, the extended name didn’t quite catch on,

so Merkle’s contribution isn’t as well known.

With the Diffie-Hellman key exchange, two entities that wish to establish a secure and private

communication channel first agree on a shared public key over an insecure public channel.

Then, using specific mathematical operations, they combine their personal private keys with

the shared public key and exchange the resulting new public keys. Finally, they use their own

private keys and mathematically combine them with the "new public key", to create a shared

secret key that is ultimately the same for both participants. Now, through mathematical

calculations, both entities have the same shared symmetric key, without ever exposing the

entire secret to the insecure public channel. The shared symmetric key can then be used to

efficiently and securely encrypt and decrypt messages that they send to each other. (Diffie

and Hellman 1976; Ahmed et al. November 2012).

Although some information is transmitted over an insecure public channel, the security of

the secret key is not compromised because the Diffie-Hellman key exchange is based on the

computationally difficult discrete logarithm problem (Diffie and Hellman 1976). Attempting
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to solve the secret key from the bits of shared information would require too many compu-

tational resources and too much time to be a practical option for malicious actors. However,

in his paper, Peter Shor proved that powerful quantum computers could efficiently compute

discrete log problems (Shor 1994), making Diffie-Hellman vulnerable.

Diffie-Hellman is typically used only in key-exchange implementations, and its typical key

sizes range from 2048 to 4096 (R. A. Grimes 2019). Practical implementations of Diffie-

Hellman include applications such as virtual private networks (VPNs), secure shell (SSH),

and secure file transfer protocol (SFTP) (Buchanan 2017). Additionally, Diffie-Hellman is

used in SSL (Freier, Karlton, and Kocher August 2011), S/MIME (Schaad, Ramsdell, and

Turner April 2019), and OpenPGP (Finney et al. November 2007).

3.3.2 RSA (Rivest-Shamir-Adleman)

RSA was invented by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977 (Gardner

August 1977), and the formal paper was published in 1978 (Rivest, Shamir, and Adleman

1978). The name RSA is derived from the initials of the inventors. It is by far the most com-

monly used asymmetric-key encryption method, possibly accounting for up to 95 percent

of all asymmetric-key encryption use cases (National Academies of Sciences and Meidicine

March 2019, p. 68).

RSA is commonly used for digital signatures and to exchange shared keys used in symmetric

encryption schemes. While symmetric encryption schemes, such as AES, use small 128- to

256-bit keys for encryption, RSA’s key lengths range from 1024 to 4096 bits, which makes

it slow and computationally expensive as a primary encryption scheme. Especially since

1024-bit RSA keys are now considered weak, the recommendation is to use at least 2048-

bit keys (Barker and Dang January 2015). As a result, RSA is often used in combination

with symmetric-key cryptography in hybrid cryptosystems, where RSA provides a secure

method for exchanging private keys, and symmetric-key algorithms handle the actual data

encryption. RSA is widely used in various security protocols and applications, including

SSL/TLS (Krawczyk, Paterson, and Wee 2013), SSH (”How to Use ssh-keygen to Gener-

ate a New SSH Key?”, no date), GPG and PGP (Finney et al. November 2007), S/MIME
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(Schaad, Ramsdell, and Turner April 2019), digital certificates, key management protocols,

and DNSSEC (Wouters and Surý June 2019).

The security of RSA is based on the difficulty of factoring large prime numbers. The larger

the prime number, the longer and more secure is the resulting key. This means that the length

of the RSA keys is directly related to their robustness. However, even though longer keys

generally provide greater security, they also require more computational resources. RSA is

already considered slow and computationally expensive, so simply making keys infinitely

longer is not a viable option to save RSA from the threats posed by Shor’s algorithm and

quantum computers.

Other important security practices for RSA include key rotation and secure storage practices,

as well as the use of padding schemes to prevent chosen ciphertext attacks. One such scheme

is Optimal Asymmetric Encryption Padding (OAEP), which ensures that the input to the RSA

algorithm is unpredictable, thus reducing the risk of successful chosen ciphertext attacks

(Jonsson and Kaliski February 2003).

3.3.3 Digital Signature Algorithm (DSA)

As its name suggests, the Digital Signature Algorithm is used to generate and authenticate

digital signatures. It is derived from the ElGamal signature scheme (Elgamal July 1985)

and its security relies on the discrete logarithm problem (Kravitz July 1993). DSA was in-

vented by a former NSA employee, David W. Kravitz, and the patent was granted to "The

United States of America, as represented by the Secretary of Commerce, Washington, D.C."

(Kravitz July 1993). In 1994, DSA was specified in the U.S. Government’s Federal Infor-

mation Processing Standard (FIPS) 186 and was titled the Digital Signature Standard (DSS)

(Standards and Technology May 1994). DSA is no longer approved for digital signature gen-

eration in the latest FIPS publication (Chen et al. February 2023). More secure algorithms

like RSA, EdDSA or ECDSA should be used instead.

OpenSSH already disabled DSA back in 2015 from all the OpenSSH versions starting with

7.0. They claimed it was too weak and therefore advised against using it (”OpenSSH Legacy

Options”, no date). Unfortunately, despite DSA’s omission from FIPS 186-5 and OpenSSH,
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no inherent weaknesses or explanations for DSA’s omission were found during this research.

One possible explanation could be that DSA couldn’t compete with better alternatives and

was therefore deemed impractical. Since DSA uses large keys, ranging from 1024 bits to

3072 bits, it cannot compete with RSA’s versatility (RSA can be used for multiple tasks,

while DSA only handles signatures) or with the much smaller key sizes and faster computa-

tions of more modern digital signature algorithms like ECDSA. Additionally, 1024-bit keys

are considered weak for DSA, so at least 2048-bit keys are recommended. However, such

long keys are too resource-intensive for digital signatures, and much better alternatives are

available.

3.3.4 Elliptic curve cryptography-based algorithms

Elliptic curve cryptography (ECC) was developed independently by Neil Koblitz in 1985

(Koblitz, Menezes, and Vanstone March 2000) and Victor Miller in 1986 (Miller 1986). It is

based on the mathematical properties of elliptic curves and its security relies on the difficulty

of the elliptic curve discrete logarithm problem. Elliptic curve methods are typically im-

plemented in other discrete-logarithm problem-based cryptographic algorithms (such as DH

and DSA), which increases their complexity and thus enables faster computation and smaller

keys and certificates while maintaining the same level of security (Johnson, Menezes, and

Vanstone August 2001). For the reasons mentioned above, the relatively new ECC’s have

gained much popularity over older cryptographic algorithms like RSA, DSA, and DH, which

need to use very large keys to provide sufficient security, as can be seen from figure 7. Ad-

ditionally, small key and signature sizes are major advantages, especially when dealing with

IoT devices, which tend to have limited computational resources (Johnson, Menezes, and

Vanstone August 2001).

Some of the most relevant ECC algorithms are Elliptic Curve Diffie-Hellman (ECDH) (Hous-

ley August 2018), Elliptic Curve Digital Signature Algorithm (ECDSA) (Standards and

Technology February 2023a), and Edwards-Curve Digital Signature Algorithm (EdDSA)

(Bernstein et al. 2011). These ECC algorithms can be viewed as enhanced versions of their

traditional cryptographic counterparts, as they offer improved security with smaller key sizes

and faster computations. The elliptic curve "variants" serve the same purposes as the algo-
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rithms from which they are derived, meaning that ECDH is used for key exchange imple-

mentations, while ECDSA and EdDSA are utilized for digital signatures. ECC’s are used

in applications and protocols such as TLS/SSL, PGP, IKE for IPsec, SSH, Bitcoin, Wi-Fi,

Bluetooth security, and smart cards.

Figure 7. Estimated cryptographic algorithm security levels based on key lengths. Table

derived from (Hankerson and Menezes 2011)
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4 Quantum resistant solutions

Post-quantum cryptography (PQC) refers to cryptographic algorithms that are designed to

be secure against attacks made on both classical and quantum computers, and should not be

confused with quantum algorithms, which are algorithms that are designed to use quantum

mechanical properties (like Shor’s and Grover’s algorithms). This chapter introduces the

most common types of PQC algorithms and the most promising PQC algorithm solutions

that aim to replace the vulnerable public-key cryptography.

4.1 Families of PQC algorithms

There are four main types of PQC algorithm categories, of which lattice-based algorithms

are the most prominent among the NIST PQC algorithm candidates. However, NIST ac-

knowledges that vulnerabilities may be found in lattice-based (or any other) PQC algorithms

in the future, and therefore seeks to standardize several different types of PQC algorithms

as a precaution. In the event that a single type of PQC algorithm family was deemed to be

insecure, there would still be other types of secure and already standardized PQC algorithms

that could be quickly be used as replacements for the vulnerable PQC algorithm type.

This section introduces the four most common types of PQC algorithm categories. Other

types of PQC algorithm categories, such as isogeny-based cryptography, which are less

prominent in the NIST PQC standardization project,are left out of the scope of this study.

For example, SIKE was the only isogeny-based candidate, and it was disqualified in the third

round for being insecure (Moody 2022).

4.1.1 Code-based

The history of code-based cryptography dates back to 1978, when Robert McEliece first

proposed a code-based encryption scheme, the McEliece cryptosystem (McEliece. April

1978). Such schemes are based on the use of error correcting codes (ECC), and their se-

curity is based on the difficulty of correcting errors for random linear codes (Cybersecurity

May 2021). Essentially, specific algorithms are used to create "errors" in plaintext so that

25



its original message is obscured (encrypted), and corresponding "error-correcting" codes are

used to restore the plaintext to its original form (decrypted) (R. A. Grimes 2019).

When the McEliece cryptosystem was invented, there was no knowledge of quantum com-

puters and the threats that they would pose to cryptography, but coincidentally, the code-

based cryptosystems appear to be quantum-safe when presented with sufficiently large keys

(Mavroeidis et al. 2018). Due to their long history, code-based encryption schemes are

among the most studied post-quantum schemes (Cybersecurity May 2021) and have so far

withstood decades of security testing. Nevertheless, the McEliece cryptosystems and other

code-based schemes haven’t gained much popularity because they suffer from very large key

sizes. While the encryption and decryption processes are fast, overly large keys were un-

appealing when computational resources were more limited than they are today. Even for

some modern technologies, such as IoT devices, the large key sizes can be a problem. In

a 2009 study, the security levels and key sizes of different algorithms were compared, and

the results were as follows: to provide an 80-bit security level, RSA had a public key size of

1kb and DSA and DH had 2kb, while the McEliece encryption key was 500kb and the signa-

ture key was 4000kb (Perlner and Cooper 2009). However, regardless of the large key size,

NIST is currently evaluating a version of the original McEliece cryptosystem, called "clas-

sic McEliece", for PQC standardization, as it appears to provide sufficient security against

quantum computers. Classic McEliece is presented in more detail in the subsection 4.3.1.

4.1.2 Hash-based

As the name suggests, hash-based cryptography is based on hash functions, which was al-

ready covered in section 3.2. Hash functions have been used and studied for a long time,

so their strengths and weaknesses are well understood. SPHINCS+ is the only hash-based

signature scheme selected for PQC standardization, and will be discussed in more detail in

subsection 4.2.4.
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4.1.3 Lattice-based

Lattice-based cryptography is based on hard mathematical problems, such as the Short Vec-

tor Problem (SVP), Learning With Rounding (LRW), Learning With Errors (LWE), and their

variants. The use of lattices in cryptography was first proposed by Ajtai in 1996 (Ajtai 1996)

and it was based on the short vector problem. Another major milestone in lattice-based cryp-

tography was achieved in 2005 when Regev introduced the use of LWE in lattice-based cryp-

tography (Regev 2005). Since Ajtai’s discovery, lattice-based cryptography has been studied

and developed continuously, but prior to the emerging quantum threat, it wasn’t widely used

because of its relatively large key sizes. Additionally, there is still a healthy suspicion in

the cryptography community about the security of lattice-based schemes because they are

based on difficult mathematical problems that are not yet well understood. For now, lattice-

based cryptography is believed to be safe against classical and quantum computer attacks,

and therefore NIST has already selected a couple of lattice-based algorithms, Crystals Kyber

and Crystals Dilithium, to be standardized. Of all the algorithms submitted to NIST’s PQC

evaluation, lattice-based cryptography has been the most popular (R. A. Grimes 2019). Of

these, most have been based on the problems of Module Learning With Errors (MLWE) and

Module Learning With Rounding (MLWR) (Cybersecurity May 2021).

R. A. Grimes 2019 provides a great simplified explanation of the use of lattices in cryptog-

raphy: "With lattice-based cryptography, a complex lattice function is created as the private

key. The public key is generated as a modified version of the original lattice. Content is

encrypted using the modified version (the public key), and only the holder of the original

lattice version (the private key) can easily recover the encrypted message back to its original

plaintext state".

4.1.4 Multivariate-system based

Multivariate cryptography is based on the difficulty of solving systems of multivariate poly-

nomials over finite fields (Chen et al. April 2016). They have been thoroughly studied and

researched since the late 1980’s, when the first multivariate cryptosystem was proposed by

Matsumoto and Imai 1988, and are believed to be secure against quantum computers. How-
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ever, many such schemes have since then been broken or found to be vulnerable to classical

computer attacks, so their usability and security is still uncertain. Of the nineteen signature

schemes that were submitted to the NIST PQC project, seven were multivariate based, and

only two of them, Rainbow and GeMMS, proceeded to the third round of the evaluation

process. In the end, they didn’t make it past the third round because they required too large

performance trade-offs to achieve adequate levels of security against known attack scenarios

(Cybersecurity May 2021; Alagic et al. September 2022).

Multivariate algorithms are not well suited for encryption/decryption because they tend to

have very large public keys and slow decryption. Instead, they are better suited for signature

schemes, since despite of their large public keys (160 KB or more), they can provide very

short signatures (as small as 33 bytes). (Cybersecurity May 2021).

4.2 NIST solutions

In the third round of the NIST PQC evaluation competition, one Key Encapsulation Mech-

anism (KEM) algorithm (Kyber) and three digital signature algorithms (Dilithium, Falcon,

and SPHINCS+) were selected for standardization. Although these algorithms have under-

gone extensive security and performance testing, they are still relatively new and may have

undetected vulnerabilities. For this reason, it is currently advised to use hybrid cryptosystems

rather than moving directly to using only post-quantum cryptography. Hybrid cryptosystems

use both conventional cryptographic algorithms and PQC algorithms simultaneously. The

conventional cryptographic algorithms work as a safety precaution in case the PQC algo-

rithms prove to be insecure. Next, brief introductions are provided for each NIST PQC

competition (third round) finalist.

4.2.1 Crystals - Kyber

Kyber is the only KEM that was selected for NIST PQC standardization in the third round

of the PQC project. As such, NIST is assigning it as the primary PQC algorithm to be

used for quantum-safe key exchanges. It is based on structured lattices and, according to

NIST: "has good all-around performance and security" (Moody March 2024). Its security
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is based on the Module Learning With Errors (MLWE) problem, and it uses a square ma-

trix (instead of the usual rectangular matrix) as its public key. Additionally, Kyber’s MLWE

problem has been modified to use polynomial rings instead of integers. It is IND-CCA2

(Key-indistinguishability under chosen ciphertext attacks) -secure against chosen ciphertext

attacks and can be used in three different sizes, all of which achieve different levels of secu-

rity. See figure 8 for comparisons of AES and KYBER security levels. Kyber’s public keys

range from 800 to 1568 bytes, secret keys from 1632 to 3168 bytes, and ciphertexts from

768 to 1568 bytes. It is mainly used with the following three parameter sets: Kyber-512,

Kyber-768 and Kyber-1024. (Schwabe December 2020).

Figure 8. Comparison of the security levels of KYBER and AES.
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4.2.2 Crystals - Dilithium

Dilithium is one of the three digital signature algorithms selected for standardization in the

third round of NIST’s PQC standardization project. NIST proposes it to be used as the

primary PQC digital signature scheme because of its efficiency, security, and relatively sim-

ple implementation (Moody 2022). Like Kyber, Dilithium is also based on structured lat-

tices. Dilithium’s security is based on the MLWE problem and it is EUF-CMA (Existen-

tial Unforgeability under Chosen Message Attacks) secure. It has three different versions:

Dilithium2, -3 and -5 and their public key sizes range from 1312 to 4595 bytes and signatures

from 2420 to 4595 bytes (Schwabe February 2021).

4.2.3 Falcon

Falcon was selected for PQC digital signature standardization as an alternative solution. Its

name is derived from "Fast-Fourier Lattice-based Compact Signatures over NTRU", and

as the name suggests, it is based on structured lattices. Some of the main reasons for its

selection were fast verification speed, small bandwidth, and good security (Moody 2022).

However, its implementation can be complicated for some applications, which is one of

the reasons why it "lost" to Dilithium. The underlying hard problem for Falcon is the Short

Integer Solution (SIS) over NTRU lattices. Falcon has two versions: Falcon-512 and Falcon-

1024. According its creators, Falcon-512 is roughly equivalent to RSA-2048, with a public

key size of 897 bytes and a signature size of 666 bytes. Using the same test equipment,

Falcon-1024 achieved a public key size of 1793 bytes and a signature size of 1280 bytes.

(”Fast-Fourier Lattice-based Compact Signatures over NTRU”, no date).

4.2.4 SPHINCS+

SPHINCS+ is a stateless hash-based signature scheme. It includes parameter sets based on

three different hash functions (specified in the name): SPHINCS+-SHAKE256, SPHINCS+-

SHA-256, and SPHINCS+-Haraka (Schwabe August 2023). NIST accepted only the SHAKE-

and SHA-versions for standardization and proposes using them with parameter sets: SHA2-

128, SHA2-192, SHA2-256, SHAKE128, SHAKE192 and SHAKE256 (Standards and Tech-
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nology August 2023b). Security is one of the main reasons why SPHINCS+ was selected,

but also because, unlike the other third-round finalists, it is not based on lattices and therefore

remains a secure PQC alternative, even if lattice-based cryptography is deemed insecure. Of

the three digital signature algorithms selected, it has the worst performance (slow and large

signatures). SPHINCS+ has very small public keys, ranging from 32 to 64 bytes, but the

signatures range from 7856 to 49856 bytes, which is much larger compared to the other third

round finalists (A. e. al. November 2022; Standards and Technology August 2023b).

4.3 Possible solutions

This section presents the three KEMs that are currently being evaluated for standardization

in the fourth round of the NIST PQC project. While Kyber is lattice-based, all of the KEMs

in the fourth round are code-based. NIST estimates that the fourth round will conclude in the

fall of 2024, resulting in the selection of additional KEMs for PQC standardization. Figures

9 and 10 compare the performance differences (in NIST security category 1 and 3) of the

PQC third round finalist KEM (Kyber) and the fourth round contestants.

Figure 9. Comparison of KEM’s in the NIST security category 1. Derived from R. e. al. April

2024.

Figure 10. Comparison of KEM’s in the NIST security category 3. Derived from R. e.

al. April 2024.
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4.3.1 Classic McEliece

Classic McEliece is based on the McEliece cryptosystem, which was already mentioned

in section 4.1.1. As Classic McEliece inherits the McEliece cryptosystems stable security

history of over 40 years (B. e. al. April 2024), it is the most researched and trusted PQC algo-

rithm in the PQC standardization project. Classic McEliece is based on binary Goppa codes

and it is designed to be an IND-CCA2 secure KEM even against quantum computers (”Clas-

sic McEliece: Intro” March 2023). It has fast encapsulation/decapsulation algorithms and the

smallest ciphertexts in the project, but also the largest public keys and slow key generation

(B. e. al. April 2024) (Moody March 2024). There are four main variants: mceliece348864,

mceliece460896, mceliece6688128, mceliece6960119, and mceliece8192128. Their cipher-

texts range from 96 to 208 bytes and their public keys range from 261120 to 1357824 bytes

(”Classic McEliece: Implementation” October 2022). Although Classic McEliece has ex-

tremely large public keys, its creators argue that with CCA security, key pairs can be reused,

and therefore the drawbacks of having large public keys may not be as serious in practice

(B. e. al. April 2024).

4.3.2 BIKE

BIKE (derived from Bit Flipping Key Encapsulation) is a code-based KEM scheme that is in-

stantiated with Quasi-Cyclic Moderate Density Parity-Check (QC-MDPC) codes (Suite, no

date). Of the fourth round candidates, it has the best performance with public key sizes rang-

ing from 1541 to 5122 bytes, and ciphertext sizes ranging from 1573 to 5154 bytes (”BIKE

- Open Quantun Safe” October 2022). BIKE has some similarities to Classic McEliece, as it

is based on the Niederreiter cryptosystem (proposed by Harald Niederreiter in 1986), which

is a variant of the McEliece cryptosystem (Niederreiter 1986). Classic McEliece and BIKE

both use error-correcting codes in their public keys, but with BIKE, the public key can be

compressed due to its quasi-cyclic structure (Cybersecurity May 2021). For decoding, BIKE

uses the Black-Gray-Flip (BGF) decoder, which repeatedly flips the input bits that seem most

likely to be errors (Cybersecurity May 2021; Aragon October 2022). BIKE has parameter

sets for NIST security levels 1, 3, and 5, with each set being referred to accordingly: BIKE-

L1, BIKE-L3, and BIKE-L5 (”BIKE - Open Quantun Safe” October 2022; Labs October
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2023).

4.3.3 HQC

HQC (Hamming Quasi-Cyclic) is an IND-CCA2 secure code-based KEM that is based on

the problem of decoding random quasi-cyclic codes. One of the advantages of HQC is

that the decoding of cyclic codes has a long history (Prange September 1962), which gives

credibility to its security. On the other hand, the decoding process is subject to failures,

which is a minor inconvenience. The failure rate is extremely low and would only require an

additional round of decryption (R. A. Grimes 2019), but it is a fault nonetheless. HQC has

three different instances: HQC-128, HQC-192, and HQC-256, with public key sizes ranging

from 2249 to 7245 bytes and ciphertext sizes ranging from 4433 to 14421 bytes (”HQC -

Open Quantum Safe” April 2023).
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5 Bill of Materials

A Bill of Materials (BOM) is a structured list of items that can have a variety of use cases

depending on the type of BOM that is used. Typically, BOM’s are used to describe all of the

items needed to create a finished product and can thought of a set of instructions for product

engineering, design, manufacturing, and repairing. For many organizations, BOMs are an

essential part of supply chain management. Although BOMs were originally designed for

product manufacturing and engineering, over the years they have been adopted in several

different areas and use cases, such as: finance, marketing, human resources, accounting, and

information technology (Formlabs September 2020). In the information technology field,

BOMs are primarily used for software (Software Bill of Materials, SBOM), hardware (Hard-

ware Bill of Materials, HBOM), and the newest addition is cryptography (Cryptography Bill

of Materials, CBOM). For the purposes of this study, only SBOMs and CBOMs are relevant

and will be discussed in more detail below.

5.1 Software Bill of Materials (SBOM)

A software bill of materials is a nested inventory of the software components and depen-

dencies that make up a software product. It is typically used to manage supply chains

and improve software security, which is why it is included in many guides related to Cy-

bersecurity Supply Chain Risk Management (C-SCRM) (Agency January 2024; Boyens et

al. October 2021). SBOMs can be depicted in various file formats, but XML and JSON

are the most common because they are supported by most standards. Analyzing SBOMs

provides information about software vulnerabilities, licenses, and versions, making it easier

to manage risks and outdated software components. Using SBOMs also promotes software

transparency, which enables software consumers to make more informed decisions about the

products they purchase. The importance of software transparency was highlighted in 2020-

2021 by the infamous SolarWinds (”SolarWinds Security Advisory” April 2021) and Apache

Log4j (Cybersecurity and Agency April 2022) incidents, which revealed how compromised

software updates and widespread dependencies on a single open source component can lead

to significant security risks, emphasizing the need for SBOMs and effective software com-
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ponent management.

There are three main SBOM standards: the Open Worldwide Application Security Project

(OWASP) foundation’s CycloneDX, the Software Package Data eXchange (SPDX) by The

Linux Foundation, which is defined in the ISO/IEC 5962:2021 standard, and finally, the

NIST-created Software Identification (SWID) tagging, which is defined in the ISO/IEC 19770-

2:2015 standard (Telecommunications and Administration 2021). Although these standards

have many similarities, they have their own main focus areas and supported file types that

guide the decision for choosing one over the other. SWID tag’s main focus is on software

lifecycle management, and it is a "standardized XML format for a set of data elements that

identify and describe a software product" (Waltermire et al. April 2016). SPDX’s strength

and focus is on licensing, and it supports JSON, YAML, tag/value, and RDF/XML formats.

Since OWASP is a foundation focused on cybersecurity, CycloneDX is naturally focused

on software security and it supports JSON and XML file types. In a study by Stalnaker et

al. 2024, out of 50 surveyed participants, 16 reported using SPDX, 8 CycloneDX, 12 used

both, and SWID was only used by 5 respondents. While this is by no means conclusive, it

does gives insight into the popularity of each of the three standards.

The popularity of SBOMs has been growing steadily, driven by the increase in cyberse-

curity threats and awareness, as well as regulatory requirements or recommendations from

governments and international organizations (Rangari March 2023). For example, the U.S.

government strongly advocates and requires SBOMs from software suppliers that sell prod-

ucts to the U.S. federal agencies (House May 2021; Anchore February 2024). Additionally,

the European Union (EU) Cyber Resilience Act (CRA) suggests that the use of SBOMs is

likely increase in the EU, as the objectives of the CRA and the benefits of SBOMs go hand

in hand (Commission September 2022). According to The Linux Foundation’s report in Jan-

uary 2022, of the 412 surveyed organizations, 47% were already using SBOMs and 76% had

some level of SBOM readiness (Stephen Hendrick January 2022). In addition, the report

predicts that 78% will be using SBOMs by the end of 2022 and 88% by 2023. However,

according to research by Xia et al. May 2023, of 17 interviewed and 65 surveyed SBOM

practitioners, 83.1% agreed that "most existing third-party software or components, either

open source or proprietary, are not equipped with SBOMs", which contradicts the predic-
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tions of The Linux Foundations report.

Altough SBOMs can increase software security and transparency when correctly imple-

mented, there are still some unresolved challenges. The lack of an industry SBOM standard

and the pressure to meet government deadlines can drive immature SBOM production and

consumption. In addition, too much focus on SBOMs can distract attention from other se-

curity issues, such as network vulnerabilities. The immaturity of SBOM generation tools is

also an issue, as many tools only support specific environments and generate different types

of SBOMs, requiring SBOM consumers to spend a significant amount of time and resources

selecting several different SBOM generation tools, customizing them to their needs, and test-

ing to ensure that they work properly. This problem is highlighted by the findings of Zahan

et al. March 2023, which indicates that practitioners want tools that can automatically gener-

ate SBOMs for different use cases, thereby reducing the burden of SBOM implementation.

There are also concerns that the public distribution of SBOMs could make it easier to find

exploits within an application, since all of the software used and its versions can be found in

the SBOM document (”Why we need to put the brakes on public software bills of material”

June 2021). However, this concern promotes the ideology of "security through obscurity",

which is a criticized security practice that should not be relied upon. It is even listed in

the Common Weakness Enumeration project as one of the top 25 most dangerous software

weaknesses for 2023 (Corporation October 2023). (Martins December 2023).

5.2 Cryptography Bill of Materials (CBOM)

A Cryptography Bill of Materials is similar to an SBOM, but focuses on describing the cryp-

tographic components and dependencies of a piece of software. CBOMs are used to discover,

manage, and report cryptographic assets, which promotes cryptographic agility and makes

it easier to identify weak cryptographic algorithms (Foundation April 2024b). Although

CBOM documents could be embedded in SBOMs (if they follow the same standard), it is

important to manage them separately for the sake of cryptographic agility. Additionally, re-

creating an entire SBOM document because of a minor change in cryptographic algorithms

would be a waste of resources.
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CBOMs are still a very new concept and there are only a few organizations involved in

creating CBOM-related standards or tools. CBOM was originally developed by IBM as a

part of their commercial quantum-safe Explorer tool, which is marketed to aid in the tran-

sition process to quantum-safe systems and applications (IBM September 2023). IBM’s

CBOM scheme is an extension of the CycloneDX SBOM scheme, and altough the tool for

creating CBOMs is only commercially available, IBM’s CBOM scheme is publicly avail-

able on GitHub (IBM April 2024). In addition to IBM’s CBOM scheme and tool, there is

the recently released (April 2024) CycloneDX CBOM scheme (Foundation April 2024a),

and the OWASP SBOM tool’s (cdxgen) added functionality of creating CBOMs for Java

projects (”CycloneDX Generator” May 2024). Santander Security Research also has their

cryptobom-forge tool, which can create CBOMs out of CodeQL outputs (”CodeQL” May

2024; Research January 2024). Apart from these, no other CBOM tools or standards were

found during this research, highlighting the immaturity of the field. However, as prepa-

rations for PQC migration begin and new cryptographic policies and advisories emerge

(Agency September 2022; House May 2022; ”OMB M-23-02” November 2022), the need

for CBOMs and CBOM tools increases. It is likely that many SBOM generator tools will

soon be modified to include a CBOM generation functionality, just like cdxgen, since the

main concept behind generating SBOMs and CBOMs is very similar. On GitHub, the topic

tag of "sbom-generator" returns 75 public repositories, which gives some idea of how many

SBOM generators might be available if all the other SBOM generators (such as commercial

tools) are included in this list. If even a small fraction of these eventually include CBOM

generation, in addition to the newly emerging separate CBOM tools, the number of CBOM

generators is likely to increase dramatically in the future.

The threat that quantum computers pose to modern public-key cryptography will require a

significant effort to overcome, as never before have so many cryptographic algorithms been

threatened simultaneously. Automated CBOM tools are optimal solutions for reducing the

burden of PQC migration and achieving cryptographic agility. Due to the immaturity of the

field, there is a very limited amount of information about CBOMs and no research data is

available. However, as more CBOM generators emerge and the use of CBOMs increases,

so does the list of possible research topics and the need for such data. Comparing existing

CBOM generators will certainly be an important research topic in the future, as will deter-
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mining the perceived usefulness of CBOMs and CBOM generators. This research aims to be

at the forefront of creating CBOM research data and will hopefully prove useful for future

research.
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6 Research questions and strategy

This chapter introduces the selected research strategy and its implementation in this study.

Additionally, the research questions will be presented.

6.1 Design science

Design science is a practical research paradigm that focuses on creating purposeful artifacts

to solve identified problems for the benefit of people and organizations (Hevner et al. 2004).

It bridges the gap between theory and practice by providing a set of guidelines for the artifact

creation and evaluation processes. According to Iivari January 2007, there are two factors

that differentiate IS design science from the practice of building IT artifacts, and they are the

rigor of constructing IT artifacts and the scientific evaluation of the artifacts.

Walls, Widmeyer, and El Sawy March 1992 argue that since "design" is a noun and a verb, a

product and a process, design theory in information systems (IS) must also consist of some-

thing that is produced and the plan for achieving the desired end result. March and Smith

December 1995 extended the design science definitions by identifying four design artifacts

and two design processes that can be used or created in IS design science research. The pro-

duced artifacts can be broadly categorized as: "constructs (vocabulary and symbols), models

(abstractions and representations), methods (algorithms and practices), and instantiations

(implemented and prototype systems)" (Hevner et al. 2004; March and Smith December

1995). The processes consist of evaluating and building artifacts. The artifact is built for a

specific task and evaluated to determine if progress has been made, so the basic questions

are: "does it work?" and "how well does it work?" (March and Smith December 1995). Addi-

tionally, it is integral to design science research that the artifacts have a formal specification

and that their utility has been evaluated, for example, by comparing them to other similar

artifacts or by testing them in the intended organizational environment (Hevner et al. 2004).

According to Hevner et al. 2004, IS design science research aims to find solutions to so-

called "wicked problems". Rittel and Webber 1973 defined the traits of wicked problems,

which Hevner et al. 2004 summarizes as follows:
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• "unstable requirements and constraints based upon ill-defined environmental contexts

• complex interactions among subcomponents of the problem and its solution

• inherent flexibility to change design processes as well as design artifacts (i.e., mal-

leable processes and artifacts)

• a critical dependence upon human cognitive abilities (e.g., creativity) to produce ef-

fective solutions

• a critical dependence upon human social abilities (e.g., teamwork) to produce effective

solutions"

The evaluation process is an integral part of the design science research paradigm. It pro-

vides feedback on the artifact design and increases knowledge about the research problem,

thus enabling more informed decisions about how to improve the product and the design

process (Hevner et al. 2004). Markus, Majchrzak, and Gasser 2002 noticed that this iterative

process had to be repeated several times before the final design artifact was created in their

study. In the end, it took 70 functional prototypes to arrive at a solution that satisfied the

requirements of the artifact. IT artifacts can be evaluated using various different quality at-

tributes, such as functionality, accuracy, performance, reliability, completeness, consistency,

or usability (Hevner et al. 2004). Therefore, design science researchers must select appropri-

ate quality metrics for analyzing the effectiveness of the artifacts. Additionally, as Rittel and

Webber 1973 defined that "wicked problems have no stopping rule" and "solutions to wicked

problems are not true-or-false, but good-or-bad", the end goal of the evaluation process is to

produce an artifact that is a satisfactory solution to the identified problem, in accordance with

the research resources.

Hevner et al. 2004 summarized the methods typically used in the artifact evaluation process

into five main categories: observational, analytical, experimental, testing, and descriptive.

The observational evaluation method can be either a case study, where the artifact is stud-

ied in a business environment, or a field study, where it is used and monitored in multiple

projects. The analytical evaluation method consists of four different subgroups, which are,

static analysis, architecture analysis, optimization and dynamic analysis. The experimen-

tal methods include simulations and controlled experiments, and the testing can be done as

functional (black box) testing or structural (white box) testing. Finally, the descriptive evalu-
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ation methods can be either informed arguments or detailed constructed scenarios. For more

detailed definitions of the subgroups, see Hevner et al. 2004, p.86.

Hevner et al. 2004 created seven guidelines to guide design science research. First guideline:

the artifacts created in design science research must be innovative and purposeful. Second

guideline: the artifacts must be created for a specific problem domain. To ensure that the arti-

fact is purposeful within the problem domain, the third guideline emphasizes the importance

of a thorough evaluation of the artifact. Because the artifact must be innovative, the fourth

guideline specifies that it must either improve the way known problems are solved or provide

a solution to an unsolved problem. This distinguishes design science research from routine

design, which uses existing knowledge to create artifacts. The fifth guideline is as follows:

"The artifact itself must be rigorously defined, formally represented, coherent, and internally

consistent". The sixth guideline explains that the creation process and the artifact itself typi-

cally include a search process that presents the problem space and the method for finding an

effective solution. The final, seventh guideline promotes the importance of communicating

the research results effectively. Hevner et al. 2004 advised against the mandatory use of the

guidelines and stated that the guidelines must be adjusted to the needs of the research project.

In his essay, Iivari January 2007 discusses the ontology, epistemology, methodology, and

ethics of design science. He summarized his ideas to twelve theses, several of which were

used by Hevner 2007 for the creation of a three cycle view of design science research. Hevner

combined the three cycles into the IS research framework from Hevner et al. 2004, resulting

in the following figure 11. In this modified framework, the relevance cycle bridges the ap-

plication domain to the design science research activities and includes the iterative processes

of field testing the artifact and updating its requirements based on the test results. Since the

relevance cycle determines the requirements of the artifact, it also defines the final accep-

tance criteria. The core of design science research is in the design cycle, which is influenced

and supported by the relevance and rigor cycles. The design cycle iterates between building

the artifact and its design processes and the evaluating of the artifact. The evaluation process

continues to modify the artifact design and the design process until all of the requirements

set in the relevance cycle are met. Thus, the design cycle evaluation process defines when the

final acceptance criteria are met and the artifact building process can be stopped. Finally, the
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rigor cycle bridges the design science research activities with the existing knowledge base,

providing the grounding theories and methods for research and adding new knowledge to

the knowledge base. According to Hevner 2007, good design science research is defined by

the synergy and contributions of the relevance and rigor cycles. This is logical, as contribu-

tions to the knowledge base (rigor cycle) are the key selling point to the academic audience,

while the contributions to the application environment (relevance cycle) are of interest to the

practitioner audience. (Hevner 2007).

Figure 11. A replica of Hevner’s three cycle view framework for design science research

(Hevner 2007).

As with any research methodology, design science has some issues that need to be consid-

ered. For example, rapid advances in technology can render the results of design science

research obsolete before the artifact has even been effectively implemented in an organiza-

tional setting or before adequate compensation from the artifact creation has been received.

March and Smith December 1995 pointed out that artifacts are perishable, and therefore the

results of design science research are perishable as well. Another potential problem with

design science research is an excessive focus on the solvable problem and the artifact, while

neglecting to build a strong theoretical foundation. This can result in an artifact that doesn’t

fit the intended organizational setting or meet the needs of the people who will use it. (Hevner

et al. 2004).
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Ultimately, the goal of all research is to provide new and interesting contributions. For design

science research, the contributions can be based on the generality, novelty, and significance

of the designed artifact. Typically in design science research, the contribution comes from

the designed artifact, but extending the foundations of the design science knowledge base

or improving design science methodologies are also important contributions. In conclusion,

it is integral to design science research to clearly present and demonstrate the utility of the

designed artifact, along with sufficient evidence. (Hevner et al. 2004).

6.2 Implementation in this research

As mentioned in chapter 1, the goal of this research is to create a CBOM tool to facilitate the

discovery of cryptographic components in existing technologies, thereby increasing cryp-

tographic agility. Additionally, the CBOM generator will produce NIST quantum security

levels for cryptographic components, which will support PQC migration by increasing the

knowledge of cryptographic components that are quantum vulnerable.

With these goals in mind, design science was chosen as the research method because it en-

ables building a practically useful tool while providing guidelines for conducting the design

process in a scientifically rigorous and justified manner. While there are other practical re-

search methods that have been widely used in IS research, they tend to have slightly different

goals and emphases compared to design science. For example, action research, which has

been debated as being similar to design science research (Järvinen February 2007), focuses

on addressing the problems of a specific client. In contrast, design science research aims to

create innovative artifacts that pursue general, unsituated goals, typically targeting potential

clients rather than existing ones (Iivari and Venable January 2009). Additionally, Iivari and

Venable January 2009 argues that design science has a focus on creating "new reality" and

that much of action research is focused on understanding "existing reality", such as organiza-

tional problems and human behaviour. These definitions are consistent with the selection of

design science as the research method for this study because a completely new IT artifact is

being created, the problem it addresses is not limited to a specific client, and it has a general

goal of supporting PQC migration and cryptographic agility.
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Hevner’s three cycle view (see figure 11) provides the main theoretical framework for the

artifact creation process in this research. The previously mentioned goals of this research are

focused on providing value to the application domain and thus relate to the relevance cycle.

Since automated CBOM tools are a very new concept and few such tools exist, there is a

lack of research data or information regarding their accuracy, development, and feasibility.

Therefore, an additional goal of this research is to provide additions to the knowledge base

about CBOM tools by answering the following research questions:

• What are the challenges of creating an automated CBOM tool?

• Can a automated CBOM tool accurately capture cryptographic components from source

code?

• Is it feasible to build a CBOM generator by using regular expression searches?

This additional goal is related to the rigor cycle and aims to provide value to the research

community. To achieve these goals, the three cycles will be iterated until sufficient results

are obtained or time and resource constraints prevent continuing further.

As mentioned in section 6.1, Hevner et al. 2004 categorized the artifact evaluation meth-

ods into five main categories, which include additional subgroups. Of these categories, the

following will be used in this research:

• Method: Experimental

– Subgroup: Simulation

– Description: Execute artifact with artificial data

Figure 12 provides an illustration of the design process for this research. It contains six sep-

arate steps that revolve around the three design cycles (relevance, design, and rigor cycles),

and the design process begins at the green dot (1. Grounding) and ends at the red dot (6.

Addition to Knowledge base (KB)). Each step is situated above the cycle to it belongs, and

the number or letter included within brackets at the end of each step explains how many

times the cycle is iterated during the step. The +1 means that the cycle is iterated once, and

the +n means that the cycle is iterated multiple times. Thus, the relevance and rigor cycles

are iterated twice, and the design cycle is iterated 1+n times (where n >= 1). Going forward,
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the design process and its steps are explained in more detail.

Figure 12. Representation of the design science process for this research. Together with the

starting and ending points, as well as the number of iterations planned for each process.

The research begins from the rigor cycle with the introduction of the key topics motivating

this research, which are: quantum algorithms, the progress of quantum computers, and the

standardization process of PQC algorithms (discussed in chapters 1, 2, 3, and 4). This first

iteration of the rigor cycle establishes the motivation for the research and presents the the-

oretical background (1. Grounding (+1) in figure 12). It is followed by an iteration of the

relevance cycle (2. Gather requirements (+1) in figure 12), where already existing technical

systems are researched, and requirements are gathered to guide the artifact design process

(discussed in chapters 5, 6, and 7).

After the artifact requirements are gathered, the design and build process begins. The design

cycle will be iterated a number of times as the artifact is repeatedly evaluated during the

design process to ensure that the built components work as intended (3. Build and evaluate

(+n) in figure 12 and chapter 8 of thesis). During this phase, the artifact is evaluated with

artificial JavaScript data created solely for the purpose of this study. This build and evaluate

cycle will be iterated until the artifact succeeds in processing the artificial data in a reasonable

manner. Only the final iteration of this phase will be reported because the preceding iterations

are done with an incomplete artifact. This final iteration will be discussed in section 9.1

(named "First evaluation" because it is the first evaluation reported in this thesis).
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Finally, the design process moves to the second (and final) iteration of the relevance cycle,

where the artifact will go through final testing to ensure that the minimum requirements

are met (section 9.2 of the thesis). Originally, this phase (4. (Field) testing (+1) in figure

12) was intended to be done by scanning open source Node Crypto projects gathered from

GitHub, but unfortunately no suitable data was found for this method. Therefore, the "field"

testing is conducted with data provided by ChatGPT (OpenAI 2024). The data was created

by ChatGPT when it was asked to do the following: "Create a JavaScript file that contains

many examples of the following NodeJS method calls:"-followed by the list of method calls

in the NodeCrypto class presented in chapter 8. After testing the artifact with this data,

found deficiencies are fixed and the artifact is evaluated one last time, completing the final

iteration of the design cycle (5. Evaluate (+1) in figure 12 and section 9.2 of the thesis). The

final iteration of the rigor cycle follows as the research results are presented in chapters 10

and 11 of the thesis, thus providing additions to the existing knowledge base (6. Addition to

KB (+1) in figure 12).
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7 Artifact planning

This chapter presents the planning phase of the artifact, along with the reasoning behind the

decisions made. The planning began by verifying the need for the artifact and confirming

the absence of similar tools, followed by selecting the CBOM scheme, programming lan-

guage, and defining the target and scope of the tool. It then continued with the selection

of the scanning method, supported cryptographic library, supported CBOM data fields, and,

finally, the data extraction method. Additionally, a brief description of the minimum artifact

requirements is provided.

7.1 Verifying the need

The artifact planning began with researching already existing CBOM and SBOM tools to

find out what kind of tools exists and what would still be needed. As a result, it became clear

that there is a lack of open-source CBOM tools, and with the increase in laws and regulations

related to enhancing cybersecurity and mandating the use of SBOMs (as was discussed in

chapter 5), the need for such tools exists now and probably even more so in the future as

applications become more complex and difficult to manage. Additionally, the regulations

might later be extended to include the usage of CBOMs also.

As mentioned in the introduction chapter 1, NIST said that there is an urgent need for tools

that can locate where and how public-key cryptography is used in existing technology in-

frastructures (Barker, Polk, and Souppaya April 2021), which is something that CBOM gen-

erators can accomplish. In addition, Ott, Peikert, and al. September 2019 identified the

key challenges of PQC migration, which included the "problem of obsoleting deprecated

algorithms", which they emphasized to be "suprisingly hard within a complicated world of

deeply entrenched deployments and frameworks with little or no support for phased retire-

ment". Additionally, Ott, Peikert, and al. September 2019 mentioned that the extensiveness

of modern cryptographic infrastructure calls for automated tools to make PQC migration

more achievable. In conclusion, there is a clear need for automated CBOM generators, and

creating such tools can support PQC migration.
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7.2 Selecting the scheme

After confirming the need and lack of such tools, the next step was to determine if an existing

CBOM scheme could be used or if one should be created during this study. Of the most

popular SBOM schemes (CycloneDX, SPDX, and SWID), CycloneDX is the most security-

oriented and was used by IBM to create their CBOM scheme. These two reasons alone made

CycloneDX a compelling choice. In addition, there are many open-source tools that support

CycloneDX, which can be useful for SBOM (and possibly CBOM) presentation, analysis,

modification, and vulnerability scanning. IBM’s CBOM scheme was excluded from the

scheme selection, because it is a part of their consumer product and the artifact created in

this study is intended to be an open-source application.

For the reasons above, CycloneDX was initially chosen as the foundation for the CBOM

scheme developed in this study. However, during the artifact’s development, CycloneDX

released their CBOM scheme and related documentation, which was an optimal solution for

this study. Therefore, a pivot was made and the CycloneDX CBOM scheme was selected

to guide the artifact development. As it happens, the CycloneDX CBOM scheme was the

result of collaboration with IBM and the OWASP Foundation, making it very similar to the

IBM’s CBOM scheme. Nevertheless, they are separate from each other and also operate

under different licenses, as IBM’s CBOM scheme is under the Apache License Version 2.0

and CycloneDX CBOM scheme is mostly under the Creative Commons Attribution 4.0 In-

ternational license and only partially under the Apache License Version 2.0.

7.3 Programming language

After researching existing SBOM tools and considering the technical skills available for this

research, JavaScript was selected as the most suitable programming language for the artifact

creation. One of the reasons for choosing JavaScript was that an already existing BOM tool,

cdxgen (”CycloneDX Generator” May 2024), proved to be compherensive, impressive, and

it was created with JavaScript. Cdxgen was proof that JavaScript could work well for the

intended artifact creation, and it was also a skill set that was available for this research. Ad-

ditionally, CycloneDX supports JSON and XML formats, and JSON in particular is highly
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compatible with JavaScript, which further supported the selection of JavaScript as the pro-

gramming language for this project.

7.4 Target and scope

Much time was spent considering what would be the intended scan target of the artifact:

would it be an operating system, a file directory, or a Docker container? At the time of the

artifact planning, there did not exist any open source CBOM generators. Thus, there was no

need to consider overlap with other similar tools, and there were no such restrictions on the

target and scope of the artifact.

The scope was decided to be file directories and the scan targets would be specific source

files related to cryptographic component management. Ideally, the scope would have been

wider, allowing for the scanning of Docker containers and GitHub repositories, but time

and resource limitations required for restricting the scope. The popularity of JavaScript

(Overflow July 2024) guided the decision to prioritize the scanning of JavaScript source

files, and to extend the functionality to other programming languages later if possible. To

conclude, the artifact would be used to recursively scan file directories for JavaScript source

files, find cryptographic components from them, and create a single CBOM file containing

the results.

7.5 Scanning method

The next decision to be made was how the tool should function to achieve its goals of cryp-

tographic component scanning. Using artificial intelligence for the cryptographic compo-

nent analysis and CBOM creation process would be a great solution, but due to the lack of

available time and resources, this was not a viable option for this research. Therefore, two

different methods were considered, which were: using regular expressions to find matching

patterns and to extract relevant information, or creating a database containing cryptographic

algorithms and their properties and using this data to find cryptographic components from

file systems. The former method could be more accurate and provide more detailed crypto-

graphic components, but it could also be tedious to create, and its scope would have to be

49



quite limited to fit within the allocated resources of a master’s thesis. On the other hand, the

latter method would be less accurate, but its scope would be much larger, meaning that it

could be able to scan many different types of files and systems much earlier than the regular

expression-method.

Eventually, the decision came down to what was more important for this research: captur-

ing cryptographic data accurately, or being able to scan large systems, but possibly with

more false positives and with less accurate data. Since the whole idea of CBOMs is to im-

prove cryptography management and increase cybersecurity resilience, having a large num-

ber of false positives or inadequate data seemed counterproductive, which is why the regular

expression-method was selected as the scanning method.

7.6 Cryptographic libraries

The next step was to be determine what kind of data should be extracted from the JavaScript

source files in order to build sufficiently comprehensive cryptographic CBOM components.

This required researching the relevant cryptographic libraries and their methods for creating

cryptographic components. For JavaScript, the most commonly used cryptographic libraries

are the Node.js Crypto module and the Web Crypto API. The Node.js Crypto module is

primarily used for backend (server-side) applications, while the Web Crypto API is typically

used in client-side web applications, such as browsers. Since it was necessary to start with

one library, Node.js Crypto was selected due to its popularity and broader range of use cases.

If time permitted, the Web Crypto API would be included later.

7.7 Data fields

At this stage, it was necessary to determine which data fields from the CycloneDX BOM

specification would be included in the artifacts cryptographic component data extraction.

Three criteria guided the selection process: the fields relevance to the research topic, the

resources required to implement a working solution capable of extracting the field values,

and adherence to the CycloneDX BOM specification by including the ’required’ fields (Cy-

cloneDX 2024). The selected fields are presented in the BOM specification shown in figure
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13, along with their parent fields, requirement information, type, and description. Figure 14

presents an example BOM file where the hierarchy of each field can be seen more clearly.

Figure 13. BOM specification for the artifact. Derived from CycloneDX 2024.

Most of the fields do not require additional explanation beyond what is written in the spec-

ification in figure 13, but a few selected ones are presented in more detail. The type field,

under the parent field component, is always assigned the value application. Similarly, the

name field, also under component, consistently receives the value PQCBOM tool. Ideally,

these values should change depending on the scanned component, but doing so would have

required significant additional resources for minimal added value. As a result, these fea-

tures were deferred for future development. The planned assetType values are algorithm,

certificate, protocol, and related-crypto-material, as shown in the specification in figure 13.

However, the primary focus of this research will be on capturing cryptographic algorithms,

and capturing the other asset types will be included if possible within the time and resource

constraints.
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Figure 14. Example BOM file that displays the hierarchy of the components.

7.8 Data extraction

The next key step involved studying the Node.js Crypto module to understand how crypto-

graphic components are created and how data can be extracted. After reviewing the library

documentation (Node.js Developers 2024) and examining use cases found online, it became

apparent that the most important method calls to search for typically included the words

create (such as createCipher or createPrivateKey) or generate (such as generateKeyPair).

There were a few exceptions, such as hash or getDiffieHellman. The method call parame-

ters typically include the specifications of the cryptographic components, which need to be

extracted for the cryptographic component creation process. Therefore, the data extraction

plan involves searching for JavaScript source files that implement the Node.js Crypto mod-

ule, and, if found, identifying specific method calls used to create cryptographic components

and extracting data from their parameter values.
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7.9 Minimum requirements

The following list outlines the minimum requirements that the artifact aims to meet. The

requirements are limited to the artifact’s scope of functionality.

• Accurately capture cryptographic components.

• Follows the CycloneDX standard v1.6.

• Captures the "required"-fields defined by CycloneDX standard.

• Capture and present the following cryptographic component BOM fields:

– Name of the component (name)

– Type of the component (type)

– The directory location of the scanned file (value)

– The asset type of the component. At least capture cryptographic algorithms

(assetType)

– The identifier for the parameter set of the cryptographic algorithm

(parameterSetIdentifier)

– Bit representation of the classical security level of the cryptographic algorithm

(classicalSecurityLevel)

– The NIST-categorized quantum security level for the cryptographic algorithm

(nistQuantumSecurityLevel)
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8 Artifact

This chapter provides an overview of how the artifact was constructed and how it functions.

To see the code behind the functionalities described in this chapter, refer to Appendix A.

8.1 Setup and interface

The setup process requires downloading the source directory from the link in Appendix A

and installing Node.js. The artifact is a JavaScript (JS) file named pqcbom.js, which

features a simple command-line interface that utilizes the Yargs Node.js library (Yargs De-

velopers 2024). To run the script, use the following command:

node /location/of/file/pqcbom.js

Ensure that the path is updated to match the actual location of the script. Alternatively, if the

script is added as an executable to the $PATH, it can be executed by typing the following

command (with the [argument] updated to some argument presented in

the next paragraph) in the command line of your operating system:

pqcbom -[argument]

From this point forward, the explanation of the artifact usage is done with the assumption

that it has been made executable. Figure 15 presents the different arguments that can be given

to the command-line interface. This manual page is displayed when the artifact is executed

with the -h or -help argument. The -i and -input arguments must be followed by

the directory path, which will then be recursively scanned for JavaScript files. The -o and

-output arguments can be specified after the input arguments and directory path to define

the name of the output BOM file, as shown below:

pqcbom -i /home/files/application1 -o application1

This will result in a file named application1.json. If no output file name is given,

then the output file will be bom.json by default. If no input directory path is given, the
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tool will scan the current directory from which the pqcbom command is executed.

Figure 15. The command line interface of the created artifact.

8.2 Example data flow

After receiving the command to scan a file directory, the pqcbom.js starts by calling

the createBomFile function. This function creates a JavaScript bom object contain-

ing the header and metadata information for the BOM fileand initializes the components

array, to which all discovered cryptographic components will be added. At this stage, the

scanDirectory function is called (as shown in figure 16), with the directory path passed

as a parameter.

Figure 16. Code snippet of pqcbom.js. A JavaScript BOM object is created and

scanDirectory function is called.

The scanDirectory function recursively searches all directories within the given di-

rectory path for JavaScript files. When a JavaScript file is found, the getComponents
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function is called to check whether the file uses the Node.js Crypto module. If the module is

not used, the function resumes scanning the directories. If the module is found, it calls the

function findNodeCryptoComponents, which uses regular expressions to search for

cryptographic components within the file.

The findNodeCryptoComponents function receives a string array as a parameter, con-

taining the names of relevant Node.js Crypto method calls that are used to search for crypto-

graphic components. The function returns a set of the discovered cryptographic components.

A class called NodeCrypto is created to store and categorize method calls into their re-

spective cryptographic component categories. Additionally, the NodeCrypto class is used

to store the bit lengths for MODP 1,2,5, and 14-18 algorithms, as this information is not

included in the method names.

Figure 17 presents the calls for the findNodeCryptoComponents function and the

nodeCryptoObj object, which is an instance of the NodeCrypto class. The Node.js

Crypto method calls related to cryptographic algorithms are stored in the algorithm prop-

erty of the nodeCryptoObj, following the same pattern for relatedCryptoMaterials,

as shown in figure 18.

Figure 17. Function call for findNodeCryptoComponents.
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Figure 18. The algorithm and relatedCryptoMaterial properties of the

NodeCrypto class are used to store and categorize Node.js Crypto method calls.

Within the findNodeCryptoComponents function, different regular expressions have

been formed for searching related crypto materials (see figure 19) and algorithms (see figure

20). These regular expressions include the method calls stored in the NodeCrypto class

and are used to search for matching patterns within the scanned JavaScript file. If a match is

found, it is added to an array of found components, which is later converted to a JavaScript

Set object to eliminate duplicates, and then returned to the getComponents function. If

no components are found, an empty Set is returned.

Figure 19. The regular expression for searching related-crypto-material method calls related

to the Node.js Crypto module.
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Figure 20. The regular expression for searching cryptographic algorithm method calls related

to the Node.js Crypto module.

After the findNodeCryptoComponents function returns the Set containing the raw

data of cryptographic component method calls to the getComponents function, each regu-

lar expression match is individually sent to the addComponent function for data extraction

and cryptographic component creation (see figure 21). First, the addComponent function

calls the extractFirstParameter function (see figure 22), which uses regular expres-

sions to retrieve the name value of the cryptographic component from the regular expression

match string. The function is named extractFirstParameter because the first param-

eter of the method call typically contains information about the used cryptographic algorithm

(in the Node.js Crypto module).

Figure 21. Function call for addComponent, which extracts relevant data from found

regular expression matches and uses it to create cryptographic components.
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Figure 22. Call for extractFirstParameter function.

After extractFirstParameter function returns the name of the cryptographic com-

ponent, the addComponent function extracts the remaining cryptographic data from the

regular expression match string. Different sets of rules are used for data extraction depend-

ing on whether the crypto asset type is algorithm or related-crypto-material.

However, due to time and resource constraints, the creation of related-crypto-material com-

ponents was left for future versions of the artifact. As a temporary solution, related-crypto-

material components are handled as if they were cryptographic algorithm components (see

figure 23).

Figure 23. As a temporary solution, only the cryptographic algorithm data is extracted from

related-crypto-material components, and thus they are treated similarly to cryptographic al-

gorithm components.

Figure 24 shows the part of the code where cryptographic components are assigned their

values and created. These fields, which are detailed in the minimum requirements section

7.9 of the thesis, are also presented with example values in figure 14. While the values for

parameterSetIdentifier, mode, and classicalSecurityLevel are extracted

from the found method calls, the nistQuantumSecurityLevel is generated by the ar-

tifact. To assign quantum security levels to the identified cryptographic algorithms, a class

called NistQuantumSecLevel was created. It is used for storing and categorizing dif-

ferent cryptographic algorithms to their specified quantum security levels, which range from

level 0 to level 6. An example of this categorization is shown in figure 25.
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When all the values of a cryptographic algorithm component have been extracted or created,

the addComponent function returns the component to the getComponents function,

which adds it to a Set of components. This set is then returned to the scanDirectory

function, which in turn passes it to the createBom function. The createBom function

now has a JavaScript object containing all of the search results, which it converts into JSON

format, and generates a JSON BOM file that contains this data. The final output is a Cy-

cloneDX CBOM file listing all cryptographic algorithms found within the JavaScript files

that used the Node.js Crypto module in the specified directory path.

Figure 24. The creation of the cryptographic components in the addComponent function.
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Figure 25. A code snippet of the NistQuantumSecLevel class used for retrieving the

NIST quantum security levels of different cryptographic algorithms.
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9 Evaluations

In this chapter, the artifact is evaluated twice, and a summary of both evaluations is provided.

The first evaluation, discussed in section 9.1, corresponds to step three of the used design

process (see figure 12), where the evaluation is conducted multiple times during the artifact’s

construction phase. The second evaluation corresponds to steps four and five of the design

process, where the artifact is tested and evaluated for the final time. As mentioned in section

6.2, the evaluation method used in this research falls under the experimental category and

simulation subgroup of the design evaluation methods outlined by Hevner et al. 2004, where

the artifact is executed using artificial data.

The most important evaluation criteria for this artifact is accuracy, though other quality at-

tributes may also be briefly analyzed. The CBOM fields parameterSetIdentifier,

classicalSecurityLevel, and nistQuantumSecurityLevel are the most crit-

ical and error-prone, which is why their success rate will be evaluated in the summaries of

both evaluations.

9.1 First evaluation

The first evaluation of the artifact is conducted using artificial data created specifically to

test the artifact’s functionality and address any identified errors. The used test files are listed

in Appedix A, under the file names jsTestFile.js, jsInvavlidTestValues.js,

and relatedCryptoMatTestFile.js. During this evaluation, the artifact will scan

each of the three test files separately, and the resulting BOM files will be analyzed.

9.1.1 First test file

Figure 26 shows the artifact’s output when a CBOM file is generated by scanning jsTestFi

le.js. The console displays two different Set objects: the first contains 32 entries rep-

resenting method calls and parameters of found cryptographic algorithms, while the second

contains 6 entries for related-crypto-materials.
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Figure 26. Demonstration of the pqcbom-tool: A CBOM file named jsTestFileBOM was

created by scanning jsTestFile.js. Only 38 components were generated instead of the

expected 39.
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Overall, the jsTestFile.js was expected to produce 39 cryptographic components, but

only 38 components were created in the CBOM file. The missing component was associated

with the following method call:

crypto.createHash(’RSA-SHA512/224’);

The problem occurred because the parameter included the character /, which was not ac-

counted for in the regular expressions used. After incorporating the missing character into the

regular expressions in functions findNodeCryptoComponents and extractFirst

Parameter, all 39 components were successfully created. The final CBOM file produced

during this evaluation phase is available in Appendix A under the file name jsTestFileBO

M.json. The output and all 39 found components can be seen in figure 27.
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Figure 27. The updated jsTestFileBOM.json after correcting the coding error. All 39

components are now correctly identified from jsTestFile.js.

65



9.1.2 Second test file

The file jsInvalidTestValues.js is used primarily to verify that the tool does not

generate components from invalid values, that is, those that do not match the intended regular

expression search criteria. As shown in figure 28, the first scan produced an empty CBOM

file, which is the expected outcome.

No components were created during this first scan because jsInvalidTestValues.js

did not reference the Node.js Crypto module, which is one of the first criteria for the tool

to continue with searching for cryptographic components. In the second run, after adding a

reference to the Node.js Crypto module in jsInvalidTestValues.js, the tool created

nine cryptographic components, which all contained a parameter called invalidValue.

This was also an expected outcome because the artifact does not yet validate that method

call parameters contain actual algorithms, as this would be difficult to achieve. As a result,

test values like algorithm and invalidValue result in the creation of cryptographic

components.

Figure 28. With the addition of the Node.js Crypto module reference to the file, the sec-

ond scan of jsInvalidTestValues.js identified a set of 9 cryptographic components.

Thus, the artifact functioned as intended.
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9.1.3 Third test file

The previous two test files were primarily used to test the extraction of cryptographic data

from method calls with differently named parameters. However, relatedCryptoMatTe

stFile.js contains more complex use cases, some of which are based on examples from

the Node.js Crypto documentation (Node.js Developers 2024).

As the name suggests, relatedCryptoMatTestFile.jswas intended to test the iden-

tification and creation of related-crypto-material components. However, during this stage of

the build-and-evaluate cycle, it became evident that enabling the tool to generate related-

crypto-material components (or certificate components) would be outside the resources al-

located for this research. These cryptographic components contain so much important data

that creating regular expression rules for their extraction would have required more time than

was available. Therefore, as previously mentioned, at this stage the tool only extracts cryp-

tographic algorithms from related-crypto-material components and uses that data to create

cryptographic algorithm components.

Figure 29 presents the tool’s output when relatedCryptoMatTestFile.jswas scanned.

The output CBOM file can be found from Appendix A under the name relatedCryptoMat

TestFileBOM.json. A Set of 14 cryptographic components was found, while 15 was

expected. Upon inspection, the missing method call was identified to be:

generateKey(’hmac’...

The absence was due to deficiencies in the regular expression that extracts related-crypto-

material method calls. After fixing the regular expression, all 15 components were found, as

seen in figure 30.
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Figure 29. A Set of 14 related-crypto-material method calls was found in the scan of

relatedCryptoMatTestFile.js, when 15 were expected.

Figure 30. After a quick fix to the regular expression, all 15 components where found and

created to relatedCrypoMatTestFileBOM2.json.
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9.1.4 Summary

When the test method calls with incorrect parameter values (such as algorithm or invalidValue)

where removed, the three test files mentioned above contained a total of 45 actual crypto-

graphic components. Of the 30 actual cryptographic components in jsTestFileBOM.json,

19 components received parameterSetIdentifier and classicalSecurityLevel

values, meaning that the artifact was unable to extract these values from 11 components. The

same pattern followed with the nistQuantumSecurityLevel, where 19 components

received the value, while 11 did not. Since jsInvalidTestValues.js contained only

faulty values, it will not be further analyzed here. For relatedCryptoMatTestFileBOM.json,

all 15 components received the parameterSetIdentifier and classicalSecurityLevel

values, while 7 out of 15 received the nistQuantumSecurityLevel value. Over-

all, 34 out of 45 components correctly received the parameterSetIdentifier and

classicalSecurityLevel values, and 26 out of 45 components received the

nistQuantumSecurityLevel as intended.

The reasons for the missing values were easily identified when the artifact and the produced

CBOMs were analyzed. The nistQuantumSecurityLevel values were missing due to

a lack of data regarding NIST quantum security levels for cryptographic algorithms and their

variants. In this research, a small dataset of cryptographic algorithms and their corresponding

NIST quantum security levels was created in the nistQuantumSecLevels.js file. However, it

includes only some of the main cryptographic algorithms that are frequently highlighted

in discussions about quantum computers and post-quantum cryptography. Creating a more

comprehensive dataset that contains a large number of cryptographic algorithms and their

NIST quantum security levels would be extremely useful for generating CBOMs and could

additionally provide valuable information about the security status of the used cryptographic

algorithms. While this was outside the scope of this study, it could be an excellent topic for

future research.

As for the missing parameterSetIdentifier and classicalSecurityLevel

values, the explanation also lies mostly within missing data. The artifact extracts the needed

values from the names of the cryptographic algorithms (such as 192 from AES-192), but

this method does not work with algorithms that do not include the classical security level
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in their name, such as des3, blowfish, or id-smime-alg-CMS3DESwrap. Con-

sequently, these cryptographic algorithms do not receive the required values. Similarly to

the nistQuantumSecurityLevel, addressing this deficiency would require generat-

ing a comprehensive list of cryptographic algorithms and their classical security levels. This

would allow the artifact to locate the algorithm and then search a database for additional

information. Although creating such a database was beyond the resources allocated for this

research, its development would greatly enhance the accuracy of CBOMs and is a great topic

for future research.

9.2 Second evaluation

The second evaluation follows a similar approach to the first, with the key difference being

the use of test data created by ChatGPT (OpenAI 2024). Additionally, the artifact will be

analyzed to determine if the minimum requirements outlined in section 7.9 have been met.

The file created by ChatGPT (OpenAI 2024), along with the resulting CBOM file, can be

found in Appendix A, under the names of cryptoExamples_by_ChatGPT.js and

cryptoExamplesBOM.json.

The cryptoExamples_by_ChatGPT.js contained 21 method calls for creating cryp-

tographic components, four of which contained parameters that the artifact was unable to

interpret. Figure 31 shows that 16 method calls were found during the scan, leaving one

component missing. Upon inspection, the missing component was identified as an intention-

ally removed duplicate value (generateKeyPairSync(’rsa’...), confirming that

the artifact worked as expected.
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Figure 31. Scanning cryptoExamples_by_ChatGPT.js resulted a Set of eight cryp-

tographic algorithms and eight related-crypto-materials.

Of the four method calls that contained unreadable parameters, three used variables as pa-

rameters, and one had a byte buffer parameter (crypto.createSecretKey(crypto.

randomBytes(32));). The issue with extracting data from the createSecretKey

method call is that the Node.js Crypto documentation does not specify which cryptographic

algorithms can be used. The documentation simply states that the method "creates and re-

turns a new key object containing a secret key for symmetric encryption or Hmac". This

challenge needs to be addressed in the future development of the artifact by further ana-

lyzing the createSecretKey method call. The issue regarding the use of variables as

parameters was already identified in the early stages of the artifact’s development, but creat-

ing a working solution was not possible within the time restrictions of this research.

Further analysis of the cryptographic components in the CBOM file revealed an issue with

the code. Two cryptographic components that had the name SHA256 were created, but both

were missing the fields and values of parameterSetIdentifier, classicalSecur

ityLevel, and nistQuantumSecurityLevel. The findNodeCryptoComponent

function correctly found both components (createSign(’SHA256’) and createVeri

fy(’SHA256’)), as shown in figure 31. Additionally, their parameters were extracted as

expected, which means that the extractFirstParameter function also worked as in-
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tended. Therefore, the issue is likely to be in the addComponent function.

Inspection of the addComponent function revealed that the issue was caused by case sensi-

tivity. The addComponent function uses the Node.js Crypto method calls getCiphers()

and getHashes() to retrieve arrays of the supported ciphers and hashes in the Node.js

Crypto module. These arrays are used in the artifact to check if the found method calls con-

tain any of the corresponding ciphers or hashes, and if a match is found, the data extraction

begins. In this case, SHA256 is not listed in getHashes(), but sha256 is. Fortunately,

this was easily fixed by adding the i-flag to the regular expression, allowing case to be

ignored. A new scan of cryptoExamples_by_ChatGPT.js generated a CBOM file

named cryptoExamplesBOM2.json. In this CBOM, both components received the

previously missing values, resulting in a total of 16 cryptographic components that were

successfully created from the scanned test file.

9.2.1 Summary

The second evaluation was conducted with a test file that contained 21 cryptographic com-

ponents, of which the artifact successfully captured 17 and created 16 (one duplicate was

removed). Thus, the artifact was unable to capture four cryptographic components. All of

the 16 components received the values for parameterSetIdentifier and

classicalSecurityLevel, while 13 received the nistQuantumSecurityLevel.

As mentioned in the first evaluation, the missing NIST quantum security level values are due

to a lack of data regarding cryptographic algorithms and their security categories. Further

development of the artifact will require creating such a data set to expand the artifact’s scope

of functionality.

The minimum requirements set in section 7.9 were designed to guide the artifact develop-

ment process and establish clear stopping criteria. Next, the results from both evaluations

are summarized to assess how effectively the artifact’s minimum requirements have been

met. The minimum requirements consisted of four main requirements, one of which in-

cluded a list of sub-requirements. The requirements "Follows the CycloneDX standard

v1.6" and "Captures the "required"-fields defined by CycloneDX standard" are closely
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related, and both have been completely achieved by following the CycloneDX-derived BOM

specification (see figure 13) during the artifact development process. The requirements of

"Accurately capture cryptographic components" and "Capture and present the follow-

ing cryptographic component BOM fields:" are also closely related, and both have been

at least moderately achieved, as proven in the following analysis where the captured crypto-

graphic components from both evaluations are summarized.

In the first evaluation, 45 out of 45 cryptographic components were successfully identified,

while 17 out of 21 were found in the second evaluation. Thus, resulting in a total of 62

out of 66 components identified, with 61 created after a single duplicate was removed. The

following modified list of the minimum requirements presents the completion percentage or

success rate for each minimun requirement:

• Accurately capture cryptographic components. (62/66)

• Follows the CycloneDX standard v1.6. (100%)

• Captures the "required"-fields defined by CycloneDX standard. (100%)

• Capture and present the following cryptographic component BOM fields (61 non-

duplicate components created):

– Name of the component (name) (61/61)

– Type of the component (type) (61/61)

– The directory location of the scanned file (value) (61/61)

– The asset type of the component. At least capture cryptographic algorithms.

(assetType) (61/61)

– The identifier for the parameter set of the cryptographic algorithm

(parameterSetIdentifier) (50/61)

– Bit representation of the classical security level of the cryptographic algorithm

(classicalSecurityLevel) (50/61)

– The NIST-categorized quantum security level for the cryptographic algorithm

(nistQuantumSecurityLevel) (39/61)

As shown by these statistics, the artifact met the minimum requirements with good results.

However, the results were achieved with a relatively small amount of artificial test data,
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which may affect the reliability. If actual applications had been scanned in a field test-

ing scenario, the results could have been different, especially since imported cryptographic

components and variables as parameters are probably used more than in the test data. Nev-

ertheless, the artifact produced promising results with the time and resources available. The

concept was proven successful, but further development is needed to increase the artifact’s

scope of functionality and value as a tool for supporting PQC migration and cryptographic

agility.
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10 Conclusions and discussion

In this chapter, the research questions are answered, conclusions are presented, and the limi-

tations of this research, as well as the weaknesses of the artifact, are discussed. Additionally,

potential topics for future research are presented.

10.1 Discussion

A primary goal of this research was to gain knowledge through the process of creating and

evaluating a CBOM generator. This knowledge will be used to address the following research

questions.

• What are the challenges of creating an automated CBOM tool?

Throughout the research, several challenges related to the creation of automated CBOM tools

were identified. For instance, including the NIST quantum security level with cryptographic

components in CBOMs is important because CBOMs are promoted as tools for enhancing

cryptographic agility and preparing for the transition to post-quantum cryptography. How-

ever, accurately representing these levels requires a comprehensive dataset in which most

cryptographic algorithms, along with their variants, are evaluated and classified according

to their respective NIST quantum security levels. Another identified challenge was the dif-

ficulty in determining the classical security level of certain cryptographic algorithms, which

do not display this information in their names. To address this, a comprehensive dataset

containing cryptographic algorithms, their NIST quantum security levels, classical security

levels, and other relevant information is needed. Creating such a dataset would be highly

valuable for CBOM generation and provide critical insights into the security classifications

of various cryptographic algorithms, making it a promising topic for future research.

One of the main challenges identified in this research was the difficulty of accurately ex-

tracting cryptographic data. When using regular expressions, as was done in this study, the

patterns tend to become long and complex, making them difficult to manage. Additionally,

this method requires a deep understanding of the supported programming languages in order
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to create accurate regular expressions based on how each language functions, is structured,

and is used. Alternative solutions or a hybrid combination of both might perform better in

data extraction or require less effort to function properly.

Although some challenges were identified during this study, the scope of functionality of the

created artifact is fairly limited. Therefore, CBOM generators that include features like in-

tegrity verification, dependency scanning, operating system scanning, or container scanning

may have additional challenges that were not encountered in this research.

• Can a automated CBOM tool accurately capture cryptographic components from source

code?

As demonstrated in the evaluations, accurately capturing cryptographic components from

source code is achievable with a CBOM tool. However, developing such solutions can be

resource-intensive, necessitating a limitation on the tool’s scope of functionality. If a more

generic method for capturing cryptographic components had been used, it is likely that the

tool could already scan a variety of systems and different programming language source

codes. However, this would also result in less accurate CBOMs, with more false positives

and missing cryptographic data. Additionally, increasing the number of captured crypto-

graphic components (including related-crypto-materials, certificates, and their properties)

would add complexity to the extracted data and likely further decrease the accuracy of the

CBOM tool. In this research, accuracy was valued above the scope of functionality.

• Is it feasible to use regular expressions as a cryptographic component data extraction

method?

Regular expressions proved effective for extracting the cryptographic data needed for this

study and are likely to remain effective as the CBOM tool evolves and becomes more com-

prehensive. During the development and evaluation phases, no significant issues arose that

would indicate this method would fail in later stages. However, maintaining and updating

the long and complex regular expressions could present challenges, which is why alternative

methods for storing, managing, and using the regular expressions could be useful as the tool

evolves. For example, creating a database for storing and reusing regular expressions could
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be beneficial in future development. Additionally, the lack of knowledge and documentation

regarding the cryptographic libraries used can complicate the creation of accurate regular

expressions, as was the case with the createSecretKey() method call in section 9.2.

10.2 Conclusions

This research had two distinct goals: to create a practical tool for supporting PQC migra-

tion and cryptographic management, and to generate new knowledge about the creation of

automated CBOM generators. The artifact achieved the first goal by accurately capturing

cryptographic components from JavaScript files and producing NIST quantum security lev-

els for over 50 percent of the captured components. The second goal was met by answering

the research questions in the previous chapter 10.1 and by presenting the conclusions in this

chapter.

Although the artifact has been demonstrated as a functional prototype, its impact on sup-

porting PQC migration and cryptographic agility remains limited due to its narrow scope of

functionality. Further development of this tool and similar solutions is essential to address

the challenges posed by PQC migration. CBOM generators must be capable of scanning

various systems (such as Docker containers, GitHub repositories, and operating systems)

and handling multiple formats to be sufficiently comprehensive for modern information sys-

tems. Additionally, because CBOMs and CBOM generators are relatively new concepts with

limited prior research, further studies are necessary as these tools and frameworks evolve.

The lack of prior research also limited the possibilities to reflect the study’s results based on

existing research, which may affect the reliability of this research.

Despite its limitations, the artifact achieved promising results, and the identified deficien-

cies can be fixed as development continues. The created artifact speaks for the possibilities

that such tools can have in increasing the cryptographic agility of systems and thus also

in supporting PQC migration. While PQC migration has elements that are independent of

cryptographic agility challenges, and vice versa, it is still well established that they also

have overlapping challenges (Ott, Peikert, and al. September 2019; Barker, Polk, and Soup-

paya April 2021; TEAM July 2020). This suggests that enhancing cryptographic agility can
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address certain PQC migration challenges, and as a result, CBOM generators like the one

developed in this study can aid in supporting PQC migration.

Some aspects of the research may have influenced the results in a favorable manner. For

example, the test files used in the first evaluation were created by the artifact’s developer,

which could introduce various biases, such as confirmation bias. In this case, the test files

may have been unintentionally designed to confirm the expected output of the program (Mo-

hanani et al. December 2020). The second evaluation was conducted using data generated by

artificial intelligence, as suitable open-source test data was unavailable. The data created by

AI may also contain deficiencies or errors that might not have been detected. Additionally,

because the artifact is unable to capture components that are defined outside the method call,

predefined variables, such as imported cryptographic keys, are not captured by the artifact.

Since variables are commonly used in method calls, the field testing of the artifact could

result in lower cryptographic component capture rates. It is also worth noting that the test

files included only a portion of the ciphers and hashes supported by the Node.js Crypto mod-

ule. If all supported ciphers and hashes had been included in the test files, the cryptographic

component capture rate and the NIST quantum security level creation rates might have been

lower.
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11 Summary

In this research, an automated CBOM generator was developed in response to the challenges

that quantum computer development poses to modern cryptography. The CBOM tool was

built using JavaScript as the programming language, and design science principles guided

the design and evaluation processes.

The evaluations demonstrated that the created solution can accurately capture cryptographic

components from JavaScript source files. However, some deficiencies were found, includ-

ing the absence of data on the NIST quantum security level categorization of various cryp-

tographic algorithms, which will need to be addressed. The literature review and practical

experiments highlighted the possibilities and benefits of CBOMs and automated CBOM gen-

erators for enhancing cryptographic agility in modern, complex information systems, which

is an essential step for easing the transition to post-quantum cryptography. In addition to

validating the effectiveness of automated CBOM generators in supporting PQC migration

and cryptographic agility, the research also provided novel insights into the process and

challenges of developing CBOM generators. Furthermore, it demonstrated the feasibility of

using regular expression searches as a method for extracting cryptographic component data.

Due to resource limitations, the CBOM generator’s functionality was restricted to scanning

JavaScript source files that use the Node.js Crypto module for creating and managing cryp-

tographic components. Additionally, this version of the artifact only captured and generated

cryptographic algorithms, although the capturing and generation of cryptographic certificates

and related cryptographic materials were originally intended to be included. Ideally, the arti-

fact would have also been able to scan cryptographic components from JavaScript files using

the Web Crypto API. However, these features had to be left for future versions of the artifact

due to time constraints.

The evaluation phase of the research was conducted with two separate data sets: one cre-

ated by the artifact developer and the other generated by created by AI (ChatGPT). Ideally,

according to design science research principles, the second evaluation would have been per-

formed as a field test within the intended application environment. However, this was not

79



possible due to time constraints, and finding suitable open-source datasets for evaluation also

proved challenging. These limitations in the test scenarios may have impacted the reliability

of the artifact’s performance results. Furthermore, the lack of prior research on CBOMs and

CBOM generators made it difficult to compare the findings with existing research, poten-

tially affecting the validity of the research.

In the future, the artifact could be developed to include the previously mentioned components

for certificates and related-crypto-materials, as well as support for scanning cryptographic

components related to the Web Crypto API. Then, functionality for scanning other program-

ming languages could be added, along with the capability to scan GitHub repositories and

Docker containers. As development progresses, it will be essential to optimize the creation,

usage, and storage of regular expressions to avoid making management and updates overly

tedious.
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Wouters, Paul, and Ondřej Surý. June 2019. Algorithm Implementation Requirements and

Usage Guidance for DNSSEC. Request for Comments, RFC 8624. Internet Engineering Task

Force. https://doi.org/10.17487/RFC8624. https://datatracker.ietf.org/doc/rfc8624.

Xia, Boming, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming Zhu. May 2023. ”An

Empirical Study on Software Bill of Materials: Where We Stand and the Road Ahead”.

In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2630–

2642. Melbourne, Australia: IEEE. ISBN: 978-1-66545-701-9. https : / / doi . org / 10 . 1109 /

ICSE48619.2023.00219. https://ieeexplore.ieee.org/document/10172696/.

Yargs Developers. 2024. Yargs. https://yargs.js.org/.

Zahan, Nusrat, Elizabeth Lin, Mahzabin Tamanna, William Enck, and Laurie Williams.

March 2023. ”Software Bills of Materials Are Required. Are We There Yet?” IEEE Security

& Privacy 21, number 2 (): 82–88. ISSN: 1558-4046. https://doi.org/10.1109/MSEC.2023.

3237100.

96

https://doi.org/10.6028/NIST.IR.8060
https://doi.org/10.6028/NIST.IR.8060
https://csrc.nist.gov/pubs/ir/8060/final
https://doi.org/10.17487/RFC8624
https://datatracker.ietf.org/doc/rfc8624
https://doi.org/10.1109/ICSE48619.2023.00219
https://doi.org/10.1109/ICSE48619.2023.00219
https://ieeexplore.ieee.org/document/10172696/
https://yargs.js.org/
https://doi.org/10.1109/MSEC.2023.3237100
https://doi.org/10.1109/MSEC.2023.3237100


Appendices

A Artifact source code and test files

Source code: https://github.com/krmapale/CBOM_tool/tree/main/tool

Test files: https://github.com/krmapale/CBOM_tool/tree/main/testing/testdirs/javascript
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