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Applications of the Stone–Weierstrass
theorem in the Calderón problem

Tony Liimatainen and Mikko Salo

Abstract. We give examples on the use of the Stone–Weierstrass theorem in inverse problems.

We show uniqueness in the linearized Calderón problem on holomorphically separable Kähler man-

ifolds and in the Calderón problem for nonlinear equations on conformally transversally anisotropic

manifolds. We also study the holomorphic separability condition in terms of plurisubharmonic func-

tions. The Stone–Weierstrass theorem allows us to generalize and simplify earlier results. It also

makes it possible to circumvent the use of complex geometrical optics solutions and inversion of

explicit transforms in certain cases.

Stonen–Weierstrassin lauseen sovelluksia Calderónin ongelmassa

Tiivistelmä. Annamme esimerkkejä Stonen–Weierstrassin lauseen käytöstä käänteisongelmis-

sa. Osoitamme yksikäsitteisyyden linearisoidussa Calderónin ongelmassa holomorfisesti separoitu-

villa Kählerin monistoilla ja Calderónin ongelmassa epälineaarisille yhtälöille konformisesti trans-

versaalisesti anisotrooppisilla monistoilla. Tutkimme myös holomorfista erotteluehtoa plurisubhar-

monisten funktioiden avulla. Stonen–Weierstrassin lausetta käyttämällä voimme yleistää ja yksin-

kertaistaa aiempia tuloksia. Menetelmän avulla voidaan tietyissä tapauksissa välttää kompleksisten

geometrisen optiikan ratkaisujen tai eksplisiittisten muunnosten kääntämisen aiheuttamat rajoit-

teet.

1. Introduction

In this work we study versions of the geometric (or anisotropic) Calderón prob-
lem. This inverse problem was studied in [Cal80] for the purpose of determining the
electrical conductivity in a Euclidean domain from voltage and current measurements
on its boundary. There is a substantial literature on the Calderón problem and we
refer the readers to the survey [Uhl14].

The anisotropic Calderón problem corresponds to the case of matrix-valued con-
ductivities. In dimensions ≥ 3 the problem can be reformulated in geometric terms
as follows (see e.g. [DKSU09] for further details). Let (M, g) be a compact oriented
Riemannian manifold with smooth boundary, and let q ∈ C∞(M). Consider the
Cauchy data set

Cg,q = {(u|∂M , ∂νu|∂M) : u ∈ C∞(M) satisfies (∆g + q)u = 0 in M}.

Here ∆g is the Laplace–Beltrami operator and ∂ν is the normal derivative with respect
to g. The anisotropic Calderón problem corresponds to determining a Riemannian
metric g, up to a boundary fixing isometry, from the knowledge of Cg,0. For metrics
in a fixed conformal class the problem reduces to determining an unknown potential
q from the knowledge of Cg,q. In this work we will consider the case where g is fixed
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and we wish to recover q. A standard method for proving such results is to show a
density result of the following type.

Question 1.1. (Completeness of products) Let (M, g) be a compact Riemannian
manifold with smooth boundary, and let q1, q2 ∈ C∞(M). If f ∈ C∞(M) satisfies

ˆ

M

fu1u2 dV = 0

for any u1, u2 ∈ C∞(M) satisfying (∆g + qj)uj = 0 in M , is it true that f ≡ 0?

In other words, one would like to prove that the set {u1u2 : (∆g + qj)uj = 0} is
complete (i.e. its linear span is dense). This is known when dim(M) = 2 [GT11] but
it is an open problem for dim(M) ≥ 3. For Euclidean domains this was proved in
[SU87], and the works [DKSU09, DKLS16] establish this when (M, g) is conformally
transversally anisotropic (CTA, see Definition 1.5 below) and the transversal manifold
has injective geodesic X-ray transform. See [CFO23] for related rigidity results and
[UW21, MSS23] for results at a large fixed frequency.

One can also consider the linearized version of the above inverse problem (lin-
earized at zero potential). This corresponds to completeness of products of harmonic
functions:

Question 1.2. (Linearized problem) Let (M, g) be a compact Riemannian man-
ifold with smooth boundary. If f ∈ C∞(M) satisfies

ˆ

M

fu1u2 dV = 0

for any u1, u2 ∈ C∞(M) satisfying ∆guj = 0 in M , is it true that f ≡ 0?

This problem is also open when dim(M) ≥ 3 but there are partial results for CTA
manifolds with weaker assumptions on the transversal manifold [DKLLS20, KLS22].
There is also a result for Kähler manifolds [GST19] based on extending the methods
from dim(M) = 2 to higher complex dimensions.

The results above are based on constructing special complex geometrical optics
(CGO) solutions to (∆g+q)u = 0, and on reducing the uniqueness result to inverting
certain transforms. Transforms that have been used in this context include

• the Fourier transform [SU87],
• a mixed Fourier/geodesic X-ray transform [DKSU09, DKLS16],
• a mixed Fourier/FBI transform [DKLLS20, KLS22],
• a transform related to stationary phase [GST19].

In this work we introduce an alternative approach where completeness of products
is obtained from the Stone–Weierstrass theorem rather than from inverting explicit
transforms. This approach might work also in the absence of CGO type solutions,
and thus it avoids one of the main obstacles in the geometric Calderón problem.
However, the success of this approach relies on finding suitable algebras within the
closure of span{u1u2 : uj are solutions}. So far we have only been able to implement
this in the presence of suitable complex structure, and for our second main result we
also use CGO solutions to exhibit such algebras.

Our first result proves uniqueness in the linearized Calderón problem on compact
Kähler manifolds M with smooth boundary. We assume that M is holomorphically

separable, i.e. for any x, y ∈M with x 6= y there is f ∈ C∞(M) that is holomorphic in
M int such that f(x) 6= f(y). Previously this uniqueness result was proved in [GST19]
(see [MT21, KUY21] for related results) under the additional condition that M has
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local charts given by global holomorphic functions, and for measures µ = f dV where
f ∈ C∞(M) vanishes to high order at the boundary. The proof was based on CGO
solutions with Morse phase functions. Here we remove these additional conditions
and give a short proof that avoids CGO solutions and is much simpler than the one
in [GST19].

Theorem 1.3. Let (M, g) be a compact holomorphically separable Kähler man-
ifold with smooth boundary. If µ is a bounded measure on M (i.e. µ ∈ (C(M))∗)
and

ˆ

M

u1u2 dµ = 0

for any u1, u2 ∈ C∞(M) with ∆guj = 0 in M , then µ = 0.

Proof. Consider the set

A = {h1a1 + · · ·+ hNaN : hj ∈ C∞(M) holomorphic,

aj ∈ C∞(M) antiholomorphic, N ≥ 1}.

This set is a subalgebra of C(M) since products of holomorphic (resp. antiholomor-
phic) functions are holomorphic (resp. antiholomorphic). Moreover, A is unital and
closed under complex conjugation. By assumption A separates points in M . By the
complex Stone–Weierstrass theorem (see e.g. [Lan93, Chapter 3, Theorem 1.4]), A is
dense in C(M).

Since holomorphic and antiholomorphic functions on a Kähler manifold are har-
monic, our assumption on µ implies that

´

M
w dµ = 0 for any w ∈ A. Since A is

dense in C(M), we obtain µ = 0. �

In Section 3 we show that the holomorphic separability condition (stated for
holomorphic functions near M) is equivalent to the existence of a smooth strictly
plurisubharmonic function on M , and that this condition fails for manifolds M such
as a compact neighborhood of the equator in CP n. We also show that the second
assumption in [GST19] related to local charts given by global holomorphic functions
actually follows from a suitable version of holomorphic separability. We remark
that harmonic functions always separate points in M e.g. by Runge approximation
[LLS20], so the holomorphic separability assumption is probably just an artifact of
our method of proof.

The fact that one has uniqueness in the linearized problem yields uniqueness in
inverse problems for nonlinear equations by the method of higher order linearization.
Below is an example of such a result (see e.g. [ST23] for more details). It is likely
that one could also consider potentials in Lp(M) for suitable p as in [Nur23].

Corollary 1.4. Let (M, g) be a compact holomorphically separable Kähler man-
ifold with smooth boundary, let q1, q2 ∈ Cα(M), and let m ≥ 2 be an integer. Let
Λqj be the DN map for the equation ∆gu+ qum = 0 in M with small Dirichlet data.
If Λq1 = Λq2, then q1 = q2. This works even when the Neumann data is measured at
a single point x0 ∈ ∂M .

As another result, we give a simplified proof of the completeness of products of
four harmonic functions on a CTA manifold (M, g).

Definition 1.5. [DKLS16] Let (M, g) be a compact manifold with smooth bound-
ary. We say that (M, g) is transversally anisotropic (TA) if M ⊂⊂ R × M0 and
g = e⊕ g0, where e is the Euclidean metric on R and (M0, g0) is a compact manifold
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with smooth boundary. We say that (M, g) is conformally transversally anisotropic

(CTA) if (M, c−1g) is TA for some smooth positive function c.

The following result was proved for a TA manifold in [LLLS21] when f ∈ C1(M)
and uj solve ∆guj = 0, and for a CTA manifold in [FO20] with an additional assump-
tion on the invertibility of a certain weighted geodesic ray transform. For a general
CTA manifold with f ∈ C1,1(M) this result follows from [KU23]. Our proof avoids
all stationary and non-stationary phase arguments in the previous proofs and works
for f ∈ C(M).

Theorem 1.6. Let (M, g) be a compact CTA manifold with smooth boundary,
and let qj ∈ C∞(M) for 1 ≤ j ≤ m where m ≥ 4. If q ∈ C(M) satisfies

ˆ

M

fu1 · · ·um dV = 0(1.1)

for any uj ∈ C∞(M) solving (∆g + qj)uj = 0 in M , then f ≡ 0.

The main geometric simplification in our proof is the following. Consider the case
m = 4 and let uj be suitable CGO solutions as in [LLLS21] that depend on a large
parameter τ > 0. Instead of looking at two intersecting geodesics on the transversal
manifold, which produces pointwise concentration of u1u2u3u4 at the intersection
points as in [LLLS21, KU23], we use a fixed geodesic γ on the transversal manifold
M0. Let us consider here the case where γ does not self-intersect for simplicity.
Then the product u1u2u3u4 concentrates on a two-dimensional manifold Γ = R× γ.
We then use the fact that the amplitudes of the CGO solutions are holomorphic or
antiholomorphic functions on Γ. This yields the limit

0 = lim
τ→∞

ˆ

M

fu1u2u3u4 dV =

ˆ

Γ

fa1a2a3a4 dVΓ,

where a1, a2 are holomorphic functions on Γ and a3, a4 are antiholomorphic on Γ, and
dVΓ is a positive multiple of the Riemannian volume form on Γ. More specifically, the
construction gives amplitudes a1 = eiλ1z, a3 = eiλ2z̄ and a2 = a4 = 1 where λj ∈ R

are free parameters and z is a complex coordinate on Γ. The set A = span{a1a2a3a4}
is a unital subalgebra of C(Γ) that is closed under complex conjugation and separates
points. The Stone–Weierstrass theorem then implies that A is dense in C(Γ), which
implies that q|Γ = 0. Repeating this argument for many maximal geodesics γ on M0

implies that q = 0 everywhere.
Theorem 1.6 allows us to relax the regularity assumptions on the unknowns in

the main theorems of [LLLS21, FO20, KU23]:

Corollary 1.7. Let (M, g) be a compact CTA manifold with smooth boundary.
Let q1, q2 ∈ C(M), and let m ≥ 3 be an integer. Let Λq be the DN map for the
equation ∆gu+ qum = 0 in M with small Dirichlet data. If Λq1 = Λq2, then q1 = q2.

Remark 1.8. One could also consider the following refinement of Theorem 1.6.
Let (M, g) be a compact manifold with smooth boundary, and suppose that

ˆ

M

fu1u2u3u4 dV = 0

whenever ∆guj = 0 (or (∆g + qj)uj = 0) in M . It is likely that one could prove
that f |Γ = 0 whenever Γ is a good bicharacteristic leaf for some limiting Carleman
weight on (M, g) in the sense of [Sal17, Definition 1.2], if the definition of a good
bicharacteristic leaf is adapted to products of four quasimodes instead of two. We
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recall that on a TA manifold the good bicharacteristic leaves cover M up to a set of
measure zero [Sal17, Theorem 1.2], so this would indeed generalize Theorem 1.6.

Remark 1.9. We note that Theorem 1.6 also works in R2. That is, for products
of four solutions one can use standard CGO solutions with linear phase also in two
dimensions to get density results. This is in contrast with the case of products of two
solutions, where one has to use different CGO solutions with quadratic type phases
in two dimensions.

This article is organized as follows. In Section 2 we revisit the Euclidean case
and discuss density results for products of harmonic functions by using the Stone–
Weierstrass theorem. In Section 3 we consider the case of Kähler manifolds and
study the relation of holomorphic separability, plurisubharmonic functions and the
existence of charts given by global holomorphic functions. This involves some meth-
ods from the characterization of Stein manifolds via plurisubharmonic functions based
on the L2 estimates of Hörmander. Finally in Section 4 we consider the case of CTA
manifolds and give the proof of Theorem 1.6.

Acknowledgements. The authors would like to thank Bo Berndtsson for a helpful
remark related to plurisubharmonic functions. T.L. was supported by the Academy
of Finland (Centre of Excellence in Inverse Modeling and Imaging, grant numbers
284715 and 309963). The research of M.S. is supported by Research Council Fin-
land (CoE in Inverse Modelling and Imaging and FAME flagship, grants 353091 and
359208).

2. The Euclidean case

In this short section we review, from the point of view of the Stone–Weierstrass
theorem, some classical completeness results for products of special harmonic func-
tions in subsets of Rn. The case of exponential harmonic functions may be found
in [Cal80] and the case of Green functions follows from [Rie38] (see the discussion
in [Isa90] or [GSU20]). We also prove completeness of products of harmonic ho-
mogeneous polynomials; we do not know if this result has appeared before in the
literature.

Theorem 2.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set (with n ≥ 3 in the
case of S2 below). Then the sets

S1 = {u1u2 : uj = eρj ·x, ρj ∈ C
n, ρj · ρj = 0},

S2 = {u1u2 : uj(x) = |x− xj |
2−n, xj ∈ R

n \ Ω},

S3 = {u1u2 : uj is a harmonic homogeneous polynomial in R
n}

are complete in C(Ω).

Proof. For S1, we fix ξ ∈ Rn and choose uj = eρj ·x where ρ1 = η + iξ and
ρ2 = −η + iξ where η ∈ Rn satisfies |η| = |ξ| and η · ξ = 0. Then u1u2 = e2ix·ξ. This
shows that span(S1) contains the set

A = span{eix·ξ : ξ ∈ R
n}.

The set A is a unital subalgebra of C(Ω) that is closed under complex conjugation and
separates points in Ω. Thus A is dense in C(Ω) by the Stone–Weierstrass theorem.
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To prove that S2 is complete, it is enough to show that if µ is a bounded measure
on Ω satisfying

(2.1)

ˆ

Ω

|x− y|4−2n dµ(y) = 0, x ∈ R
n \ Ω,

then µ ≡ 0. Multiplying (2.1) by |x|2n−4 and letting |x| → ∞ we obtain
ˆ

Ω

dµ(y) = 0.

Applying powers of ∆x to (2.1) and using that n ≥ 3 yields
ˆ

Ω

|x− y|4−2n−2k dµ(y) = 0, k ≥ 0, x ∈ R
n \ Ω.

Now, applying ∂xj to (2.1), multiplying by a suitable power of |x| and letting |x| → ∞
gives

ˆ

Ω

|x− y|4−2n−2yj dµ(y) =

ˆ

Ω

yj dµ(y) = 0, 1 ≤ j ≤ n.

Repeating this for various higher order derivatives and taking limits as |x| → ∞
yields

ˆ

Ω

yα dµ(y) = 0, α ∈ N
n.

The set A = span{yα} is a unital subalgebra of C(Ω,R) that separates points. Thus
the real Stone–Weierstrass theorem implies that µ ≡ 0.

Next we consider S3. Let first n = 2m be even, and write points in Rn as
(x1, y1, . . . , xm, ym). Writing zj = xj + iyj and z = (z1, . . . , zm), we can choose
harmonic homogeneous polynomials u1 = zα and u2 = z̄β where α, β ∈ Nn. Thus
span(S3) contains the set

A = span{zαz̄β : α, β ∈ N
n}.

This is a unital subalgebra of C(Ω) that is closed under complex conjugation and
separates points. Hence A is dense in C(Ω) by the Stone–Weierstrass theorem.

Finally we consider S3 in the case where n = 2m + 1 is odd. For simplicity we
first show that if f ∈ Cc(Ω) satisfies

ˆ

Ω

fu1u2 dx = 0

for all harmonic homogeneous polynomials uj, then f ≡ 0. We extend f by zero to
R

2m+1 and write points in R
2m+1 as x = (x′, t) where x′ ∈ R

2m. Choosing uj = uj(x
′),

we obtain
ˆ

R2m

[
ˆ ∞

−∞

f(x′, t) dt

]
u1(x

′)u2(x
′) dx′ = 0.

Now if uj(x
′) are harmonic homogeneous polynomials in R

2m, the density argument
for even dimensions above (applied in a large ball in R2m) implies that

ˆ ∞

−∞

f(x′, t) dt = 0, x′ ∈ R
2m.

This means that the integrals of f along all lines in direction e2m+1 vanish. There
is nothing special about the direction e2m+1, and repeating this argument for other
directions implies that the integrals of f over all lines in R2m+1 must be zero. By
injectivity of the X-ray transform [Hel99] we see that f ≡ 0 as required. To show that
S3 is complete in C(Ω) it is enough to apply the argument above with f replaced by a
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bounded measure µ on Ω and to use injectivity of the X-ray transform on compactly
supported distributions [SU24]. �

3. Kähler manifolds

In the introduction we already proved that products of harmonic functions are
complete on compact holomorphically separable Kähler manifolds with boundary.
Here we first give a simple example of complex manifolds that are not holomorphically
separable.

Example 3.1. Let M be a compact complex manifold with C∞ boundary, and
suppose that S is a closed (i.e. compact without boundary) connected embedded
complex submanifold of M int. Then for any points x, y ∈ S with x 6= y and for any
holomorphic function f in M int, the function f |S is holomorphic in S and hence f |S
is constant in S. Thus in such a case holomorphic functions never separate points of
S.

An explicit example is obtained from the complex projective space CP n = (Cn+1\
{0})/ ∼ where (z0, . . . , zn) ∼ (w0, . . . , wn) if (w0, . . . , wn) = λ(z0, . . . , zn) for some
λ ∈ C \ {0}. Let S = {[z0, . . . , zn] : zn = 0} be the equator, and let M = f−1([0, ε])
where ε > 0 is small and

f([z0, . . . , zn]) =
|zn|

2

|z|2
.

Then M is a compact subdomain of CP n with smooth boundary such that S is an
embedded complex submanifold of M int. Thus holomorphic functions do not separate
points in M .

Next we will show that holomorphic separability (for functions holomorphic near
M) is equivalent to the existence of a smooth strictly plurisubharmonic function.
This is very similar to the argument that a manifold is Stein if and only if it admits
a strictly plurisubharmonic function (solution of the Levi problem, see e.g. [Hör73,
Theorem 5.2.10]). However, we need to verify that the argument works also for
compact manifolds with boundary.

Definition 3.2. Let X be an open complex manifold. A function ϕ ∈ C2(X)
is plurisubharmonic if for any x ∈ X, the Levi matrix (computed in some complex
coordinates at x)

Hϕ(x) =

(
∂2ϕ(x)

∂zj∂z̄k

)n

j,k=1

is positive semidefinite. We say that ϕ is strictly plurisubharmonic if this matrix is
positive definite at each x ∈ X.

More generally, a function ϕ ∈ L1
loc(X) is plurisubharmonic if for any a ∈ Cn,

the distribution ∑ ∂2ϕ

∂zj∂z̄k
ajāk

is a nonnegative measure on X.

If dimC(M) = 1, then plurisubharmonic functions are precisely the subharmonic
functions, and in general any plurisubharmonic function is subharmonic [Dem97,
§I.5]. We also note that if f is holomorphic, then |f |2 is plurisubharmonic.

We will prove the following equivalence. Below we assume that M is a compact
subdomain in an open complex manifold X, and we say that a property holds near
M if it holds in some open set in X containing M .
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Theorem 3.3. Let M be a compact Kähler manifold with C∞ boundary. The
following are equivalent:

(a) For any x, y ∈M with x 6= y, there is a holomorphic function f near M with
f(x) 6= f(y).

(b) There is a strictly plurisubharmonic function ϕ near M .

One direction is easy and we prove it following the argument in [Dem97, Lemma
6.17 in §I].

Proof of first implication in Theorem 3.3. Assume that (a) holds. Fix x0 ∈
M . Choose complex coordinates z in a neighborhood V of x0 in M such that x0
corresponds to 0 and (after scaling if necessary) V contains {|z| ≤ 1} ∩M . By (a),
for any y ∈ {|z| = 1} ∩M there is f y holomorphic near M with |f y(y)| = 2 and
f y(x0) = 0. Then by compactness there are finitely many functions f1, . . . , fN that
are holomorphic near M such that vx0 :=

∑
|fj|

2 satisfies vx0(x0) = 0 and vx0(y) ≥ 2
for y ∈ {|z| = 1} ∩ M . Note that vx0 is C∞, nonnegative and plurisubharmonic
in some neighborhood U of M . By continuity, one can further choose U so that
vx0(y) ≥ 1 whenever y ∈ {|z| = 1} ∩ U .

Next we define

ux0(z) =

{
vx0(z) in U \ {|z| < 1},

max{vx0(z), (|z|
2 + 1)/3} in {|z| ≤ 1} ∩ U.

Then ux0 = vx0 near {|z| = 1}∩U and ux0 = (|z|2+1)/3 near x0. The function ux0 is
not smooth everywhere, but it is continuous, nonnegative and plurisubharmonic in U
[Dem97, §I.5] and strictly plurisubharmonic near x0. By Richberg’s approximation
theorem [Dem97, §I.5] there is a plurisubharmonic function ũx0 that is C∞, nonnega-
tive and plurisubharmonic in U and strictly plurisubharmonic in some neighborhood
Ux0 of x0. After covering M by finitely many such neighborhoods Ux0, we obtain func-
tions ũ1, . . . , ũm such that ϕ := ũ1 + · · · + ũm is C∞ and strictly plurisubharmonic
everywhere near M . Thus (b) holds. �

We now move to the implication (b) =⇒ (a). This is a consequence of an
interpolation theorem.

Theorem 3.4. Let M be a compact subset of an open Kähler manifold X and
suppose that there is a strictly plurisubharmonic C∞ function near M . Given m ≥ 0
and a finite set of points xν in M , one can find a holomorphic function f near M
with prescribed Taylor expansions to order m at each xν .

We will give a proof based on plurisubharmonic weights having logarithmic sin-
gularities. See [Ohs02, Theorem 5.3] or [Dem96, Theorem 9.18] for corresponding
results on open pseudoconvex manifolds. The proof involves a scheme for approxi-
mating singular plurisubharmonic functions by smooth ones [Dem82] (this is the only
point where we need that the manifold is Kähler). It is convenient to state plurisub-
harmonicity in more invariant terms. If d = ∂ + ∂ where ∂ and ∂ are the Dolbeault
operators, one has

i∂∂ϕ = i
∂2ϕ(x)

∂zj∂z̄k
dzj ∧ dz̄k.

A (1, 1)-form u = iujk dz
j ∧ dz̄k is said to be positive semidefinite if the matrix (ujk)

is positive semidefinite. In this case we write u ≥ 0. Then ϕ is plurisubharmonic
if i∂∂ϕ ≥ 0. Moreover, if X is a Kähler manifold with fundamental (1, 1)-form ω
written in local coordinates as ω = i

2
hjk dz

j ∧ dz̄k where h = hjk dz
j ⊗ dzk is the
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corresponding Hermitian metric, the condition of strict plurisubharmonicity may be
written as i∂∂ϕ ≥ cω for some c > 0.

Proof of Theorem 3.4. We follow the argument in [Dem96, Theorem 9.18]. Let
{xν}

N
ν=1 be a finite subset of M and let Pν(z

ν) be polynomials of degree mν where
zν = (zν1 , . . . , z

ν
n) is a complex coordinate chart in a small neighborhood Uν of xν .

We want to find a holomorphic function f near M such that the Taylor expansion
of f to order mν at xν agrees with Pν . Let θν ∈ C∞

c (Uν) be a cutoff function with
θν = 1 near xν and 0 ≤ θν ≤ 1. The point is to find a holomorphic function f in the
form f =

∑
θνPν + u, where u solves

(3.1) ∂u = v := −∂(
∑

θνPν), and u vanishes to order mν at xν .

We first define a function

ϕ0 =
∑

ν

2(n+mν)θν log |zν |.

The function ϕ0 is in L1
loc(X), it has a logarithmic singularity at the points xν and

it is smooth elsewhere. The complex Hessian Hϕ0 is a nonnegative measure in the
sets where θν = 1, and the negative part of Hϕ0 is bounded from below away from
these neighborhoods. Next we let Ω ⊂ X be an open set such that M ⊂ Ω and ψ is
strictly plurisubharmonic near Ω, and consider

ϕ̃ = χ0(ψ) + ϕ0,

where χ0 is a strictly increasing convex function. Such Ω and ψ exist by assumption.
By adding a constant we may also assume ψ ≥ 0. Since

i∂∂(χ0(ψ)) = iχ′′
0(ψ)∂ψ ∧ ∂ψ + iχ′

0(ψ)∂∂ψ,

we can choose χ0 e.g. as χ0(t) = eλt for λ > 0 large so that ϕ̃ becomes plurisubhar-
monic near Ω. By [Dem82, Theorem 0.7], there is a nonincreasing sequence (ϕ̃j) of

C∞ functions near Ω with ϕ̃j → ϕ̃ pointwise on Ω and i∂∂ϕ̃j ≥ −ω on Ω. Finally
fix R > 0 large and choose

ϕj = χ1(ψ) + ϕ̃j , ϕ = χ1(ψ) + ϕ̃,

where χ1 is another convex function chosen so that i∂∂ϕj ≥ Rω for all j.
Define the norm

‖f‖2ϕ =

ˆ

Ω

|f |2e−ϕ dV.

The functions ϕj are smooth and strictly plurisubharmonic near Ω. If R > 0 was
chosen large enough to begin with, we can apply Hörmander’s L2-estimate and the
related solvability result [Hör73, Theorem 5.2.4 and Corollary 5.2.6] together with
the condition ∂v = 0 to obtain a C∞ solution uj of

∂uj = v in Ω

satisfying
‖uj‖ϕj

≤ ‖v‖ϕj
.

Whenever j ≥ j0 we have ϕj0 ≥ ϕj ≥ ϕ, which gives

‖uj‖ϕj0
≤ ‖uj‖ϕj

≤ ‖v‖ϕ.

Note that, writing χ = χ0 + χ1,

‖v‖2ϕ =
∑ˆ

Uν

|Pν |
2|∂θν |

2e−2(n+mν)θν log |zν |−χ(ψ) dV.
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Since ∂θν = 0 near the singular points xν , it follows that ‖v‖ϕ is finite. Thus for any
j0 there is a subsequence of (uj) converging weakly in the ‖ · ‖ϕj0

norm. A diagonal

argument gives u solving ∂u = v with ‖u‖ϕj0
≤ ‖v‖ϕ for any j0. Then monotone

convergence gives

‖u‖ϕ ≤ ‖v‖ϕ.

By looking at the norm on the left, we see that u must satisfy
ˆ

Uν

|u|2

|zν |2(n+mν)
<∞.

This means that u vanishes to order mν at xν , proving (3.1). �

To conclude this section we show that holomorphic separability implies the exis-
tence of local charts given by global holomorphic functions, thus proving that con-
dition (b) in [GST19] was not really necessary (at least if we consider holomorphic
functions near M).

Theorem 3.5. Let M be a compact Kähler manifold with C∞ boundary, and
suppose that for any x, y ∈M with x 6= y there is a holomorphic function f near M
with f(x) 6= f(y). Then for any x ∈ M there are holomorphic functions f1, . . . , fn
near M which form a coordinate system near x.

Proof. By Theorem 3.3 there is a strictly plurisubharmonic function near M . Fix
x ∈ M and choose some complex coordinates z near x. Theorem 3.4 ensures that
when 1 ≤ k ≤ n there is a holomorphic function fk near M with

fk(x) = 0, ∂zjfk(x) = δjk.

The functions f1, . . . , fn have the required property. �

4. CTA manifolds

In this section we prove Theorem 1.6 and Corollary 1.7. Before that, let us recall
the construction of CGO solutions on CTA manifolds. These are solutions to the
equation

(4.1) (∆g + q)v = 0

on a manifold M compactly contained in I×M0 equipped with metric g = c(e⊕ g0).
Here M0 is a manifold with boundary, I ⊂ R is a closed interval and c > 0 and q are
real valued C∞ functions on M . These solutions originate from the works [DKSU09]
and [DKLS16]. Higher order Sobolev estimates for the related correction terms have
been obtained in [FO20, LLLS21, KU23].

If we replace v above by c−
n−2
4 v, it is enough to construct solutions for the TA

metric g = e⊕g0 with a new potential q (see e.g. [KU23, Section 2]). We will assume
below that this reduction has been done.

Proposition 4.1. (CGO solutions [KU23]) Let (M, g) be a TA manifold with
smooth boundary ∂M , dim(M) = n ≥ 3, and q ∈ C∞(M). Let γ : [0, T ] → M0 be a
nontangential geodesic, and let λ ∈ C. For any K ∈ N and k ∈ N, there is a family
of functions u = us ∈ C∞(M), where s = τ + iλ ∈ C with τ ∈ R and |τ | large, such
that

(∆g + q)us = 0,

us = τ
n−2
8 e±sx1(vs + rs),

(4.2)
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where ‖rs‖Hk(M) = O(τ−K) as τ → ∞.
The functions vs have the following properties. If p ∈ γ([0, T ]), then there is

P ∈ N such that on a neighborhood U of p the function vs is a finite sum

(4.3) vs = v(1) + · · ·+ v(P )

on I×U , where t1 < · · · < tP are the times in [0, T ] such that γ(tl) = p, l = 1, . . . , P .
Each v(l) has the form

(4.4) v(l) = eisψ
(l)

a(l),

where each ψ = ψ(l) is a smooth complex function in U satisfying

ψ(γ(t)) = t, ∇ψ(γ(t)) = γ̇(t),

Im(∇2ψ(γ(t))) ≥ 0, Im(∇2ψ)(γ(t))|γ̇(t)⊥ > 0,
(4.5)

for t close to tl. Here a(l) = a
(l)
0 + OL∞(τ−1), where a

(l)
0 is independent of x1 and τ ,

a
(l)
0 (γ(t)) is nonvanishing, and the support of a(l) can be taken to be in any neigh-

borhood of I × γ([0, T ]) chosen beforehand.

The functions vs in the proposition above are called quasimodes. We use CGOs
to prove Theorem 1.6.

Proof of Theorem 1.6. Step 1. The choice of CGOs: Let us extend (M, g)

smoothly to a manifold M̃ := I×M0 equipped with the metric e⊕ g0. Here I ⊂ R is

a closed interval. We also extend f by zero to M̃ as an L∞(M̃) function. From the
assumption (1.1), it then follows that

(4.6)

ˆ

M̃

fu1 · · ·um dV = 0,

where each uk, k = 1, . . . , m, solves (∆g + qk)uk = 0 in M̃ . We first assume that
m = 4, and then consider the case m > 4 separately.

Assume that γ : [0, T ] → M0 is a unit speed nontangential geodesic in M0. We
choose complex geometrics optics solutions of the form (4.2) as the solutions uk,
k = 1, . . . , 4. We specifically choose them to be of the form

u1 = τ
n−2
8 e(τ+iλ1)x1(v1τ+iλ1 + r1),

u2 = τ
n−2
8 e−τx1(v2τ + r2),

u3 = τ
n−2
8 e(τ+iλ2)x1(v3τ+iλ2 + r3),

u4 = τ
n−2
8 e−τx1(v4τ + r4),

(4.7)

where ‖rk‖HK(M̃ ) . τ−N and n = dim(M̃) = dim(M0) + 1. We will choose K and

N large beforehand. The first and the third of these CGOs correspond to choosing
s = τ + iλ1 and s = τ + iλ2 in (4.2) respectively. Substitution of these CGOs uk into
(4.6) gives

(4.8) 0 = τ
n−2
2

ˆ

M̃

feiλ1x1e−iλ2x1v1τ+iλ1v
2
τv

3
τ+iλ2

v4τ dV +Rτ ,

where Rτ corresponds to the contributions from the correction terms rk. We take
‖rk‖HK(M) . τ−N for K and N large, so that ‖rk‖L∞(M) . τ−N by Sobolev embed-
ding. Thus Rτ satisfies

Rτ = O(τ−1).
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Here we also used the fact that q ∈ L∞(M̃). As the integral in (4.8) will be of size 1
as τ → ∞, we may neglect Rτ in the following analysis.

In the case where γ does not self-intersect, the quasimodes v1τ+iλ1 , . . . , v
4
τ on M̃

are given by

v1τ+iλ1 = ei(τ+iλ1)ψa(1),

v2τ = eiτψa(2),

v3τ+iλ2 = ei(τ+iλ2)ψa(3),

v4τ = eiτψa(4)

(4.9)

by Proposition 4.1. Moreover, we have

a(k)(x1, x
′) = a0(x

′) +OL∞(τ−1), k = 1, . . . , 4.

We consider the case where γ does not self-intersect separately in Step 2 below to
convey the idea of the proof better. A reader interested only in this case can jump
directly to Step 2 from here.

In general, the geodesic γ can have self-intersections. In this case the quasimodes
v1τ+iλ1 , . . . , v

4
τ have the following properties. Let p ∈ γ([0, T ]). By Proposition 4.1 the

quasimode v1τ+iλ1 is a finite sum

(4.10) v1τ+iλ1 |U = v(1,1) + · · ·+ v(1,P )

on a small enough neighborhood U of p, where

(4.11) t1 < · · · < tP

are the times in [0, T ] such that γ(tj) = p and P depends on p. We choose U so small
that the geodesic γ self-intersects only at p in U , or not at all in U . Moreover, there
are intervals Ij, j = 1, . . . , P , such that tj ∈ Ij and

(4.12) supp(v(1,j)) ∩ γ(Ij) = γ(Ij), γ(Ij) ∩ γ(Ij′) = {p}, Ij ∩ Ij′ = ∅ for j 6= j′

holding for all |τ | large. Each v(1,j) has the form

(4.13) v(1,j) = ei(τ+iλ1)ψ
(j)

a(1,j),

where each ψ = ψ(j) is a smooth complex function defined in U satisfying

ψ(γ(t)) = t, ∇ψ(γ(t)) = γ̇(t),

Im(∇2ψ(γ(t))) ≥ 0, Im(∇2ψ(γ(t)))|γ̇(t)⊥ > 0,
(4.14)

for t ∈ Ij . Each a(1,j) can be taken to be supported in any fixed neighborhood of

I × γ(Ij) in M̃ . We also have that

(4.15) a(1,j) = a
(j)
0 + s−1a

(1,j)
1 + s−2a

(1,j)
2 + · · · ,

with s = τ + iλ1, and

a
(j)
0 |I×γ(Ij) > 0.

We have representations similar to (4.10) for v2τ , v
3
τ+iλ2

and v4τ as a sum of P

functions v(k,j) of the form (4.13), k = 1, . . . , 4, j = 1, . . . , P . Especially, the phase

functions ψ(j) and leading order coefficients of the corresponding amplitudes a
(j)
0 are

the same for all k = 1, . . . , 4. Also the corresponding intervals Ij are the same for all
k = 1, . . . , 4.
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Step 2. The case of no self-intersections: Let us first consider the special case
where γ does not have self-intersections. In this case the quasimodes v1τ+iλ1 , . . . , v

4
τ

were given by (4.9). It follows that the integral identity (4.8) reads

(4.16) 0 = τ
n−2
2

ˆ

M̃

fe−4τ Im(ψ)eiλ1(x1+iψ)eiλ2(x1+iψ)a(1)a(2)ā(3)ā(4) dV +Rτ ,

where Rτ = O(τ−1) and a(k) = a0 +OL∞(τ−1).
Let us then compute the limit τ → ∞ of (4.16) using Fermi coordinates (t, y) ∈

R× R
n−2 (see e.g. [DKLS16, Lemma 3.5]). By the properties (4.5), we have that

(4.17) Im(ψ)(t, y) =
1

2
Hessy(ψ)(t, 0)y · y +O(|y|3),

where Hessy(ψ)(t, 0) is the Hessian in the y-directions. In Fermi coordinates, the am-
plitudes a(k) = a(k)(x1, t, y) are supported in I×[0, T ]×B, where B is a neighborhood
of the origin in the y-variables. By writing

f̃ = feiλ1(x1+iψ)eiλ2(x1+iψ),

we have that the integral in (4.16) equals

τ
n−2
2

ˆ

I×M0

f̃e−4τ Im(ψ)a(1)a(2)a(3)a(4) dV

= τ
n−2
2

ˆ

I×[0,T ]×B

f̃(x1, t, y)e
−4τ Im(ψ)(t,y)

(
|a0(x1, t, y)|

4

+OL∞(τ−1)
)
|g(x1, t, y)|

1/2 dt dy dx1

= τ
n−2
2 τ−

n−2
2

ˆ

I×[0,T ]×Rn−2

f̃(x1, t, y/τ
1/2)e−4τ Im(ψ)(t,y/τ1/2)

(
|a0(x1, t, y/τ

1/2)|4

+OL∞(τ−1)
)
|g(x1, t, y/τ

1/2)|1/2 dt dy dx1.

(4.18)

Here |g(x1, t, y)| is the determinant of the metric in the coordinates. The limit τ → ∞
of the above is

ˆ

I×[0,T ]×Rn−2

f̃(x1, t, 0)e
−4Im(Hess(ψ))(t,y)|a0(x1, t, 0)|

4|g(x1, t, 0)|
1/2 dt dy dx1

=

ˆ

I×[0,T ]

c(t)f̃(x1, t, 0)|a0(x1, t, 0)|
4|g(x1, t, 0)|

1/2 dt dx1,

(4.19)

where

c(t) =

ˆ

Rn−2

e−4Im(Hess(ψ))(t,y) dy 6= 0.

Here we have used (4.17) and the Lebesgue dominated convergence theorem. The
latter was justified by the conditions (4.14), which especially imply that

Im(Hess(ψ))(t, 0) > 0, t ∈ [0, T ].

We also have |g(x1, t, 0)| = 1 due to a property of Fermi coordinates, and (see e.g.
[FO20, Eqs. 56 and 62])

a0(x1, t, 0) > 0.

Step 3. Stone–Weierstrass theorem: Recall that f̃ = feiλ1x1e−λ1ψe−iλ2x1e−λ2ψ.
Then, using the first property in (4.14) and taking the limit τ → ∞ of (4.16) yields

(4.20) 0 =

ˆ

I×[0,T ]

c(t)eiλ1(x1+it)eiλ2(x1+it)f(x1, γ(t))|a0(x1, γ(t))|
4 dx1 dt.
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Here we used the limit (4.19) of (4.18). Let us now denote

f̂(x1, t) = c(t)f(x1, γ(t))|a0(x1, γ(t))|
4.

We may take λ1, λ2 ∈ R and differentiate (4.20) any number of times in λ1 and λ2 at
λ1 = λ2 = 0. This gives

(4.21) 0 =

ˆ

I×[0,T ]

(x1 + it)a(x1 − it)bf̂(x1, t) dt dx1

for any a, b ≥ 0. By the complex Stone–Weierstrass theorem, the algebra generated
by powers of z = x1+ it and z = x1− it is dense in C(I× [0, T ]) where I× [0, T ] ⊂ C.
It follows that

f̂ ≡ 0.

Since c(t) 6= 0 for all t ∈ [0, T ] and a0|I×[0,T ] > 0, it follows that

f |I×γ([0,T ]) = 0.

To conclude the proof (in the case where γ does not have self-intersections), we
use some well-known arguments. By [Sal17, Lemma 3.1], there is a dense set of points
D ⊂ M0 such that for all x ∈ D there is a non-tangential unit speed geodesic γx
that passes through x. Thus, by varying the non-tangential geodesic γ in the above
argument we obtain that f = 0 on a dense set. Thus f ≡ 0 by continuity. If m > 4,
we may choose the first four solutions as the solutions u1, . . . , u4 above, and the
remaining m− 4 solutions independent of τ . Using the above argument then shows

that fu5 · · ·um ≡ 0. By Runge approximation (see e.g. [LLS20]), for each x0 ∈ M̃
the solutions u5, . . . , um can be chosen so that u5(x0) · · ·um(x0) 6= 0. By letting x0
range over all points of M̃ , it follows that f ≡ 0 also in the case m > 4.

Step 4. Analysis of self-intersections: Let us finally consider the case where
γ can have self-intersections. Let χ be a smooth cutoff function supported in the
neighborhood U of p ∈ γ([0, T ]). According to (4.10), in I × U we have

v1τ+iλ1v
2
τv

3
τ+iλ2

v4τ =
P∑

j=1

v(1,j)v(2,j)v(3,j)v(4,j)

+
P∑

j1,j2,j3,j4=1,
ja 6=jb for some a,b=1,...,4

v(1,j1)v(2,j2)v(3,j3)v(4,j4).

(4.22)

Let us consider the integral

τ
n−2
2

ˆ

M̃

χf eiλ1x1e−iλ2x1v(1,j)v(2,j)v(3,j)v(4,j) dV

which corresponds to the first sum of (4.22). Integrals of this type will correspond
to the leading order part of our integral identity (4.8). Using the formula (4.13) for
v(k,j), k = 1, . . . , 4, the above integral reads

(4.23) τ
n−2
2

ˆ

M̃

χfe−4τ Im(ψ)eiλ1(x1+iψ)eiλ2(x1+iψ)a(1)a(2)a(3)a(4) dV.

Here, for simplicity of notation, we have denoted ψ = ψ(j) and a(k) = a(k,j) for
j = 1, . . . , P and k = 1, . . . , 4.

By writing

f̃ = χf eiλ1(x1+iψ)eiλ2(x1+iψ),
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the same computation as in (4.18) and (4.19) yields that the limit τ → ∞ of (4.23)
is

(4.24)

ˆ

I×Ij

c(t)f̃(x1, t, 0)|a(x1, t, 0)|
4|g(x1, t, 0)|

1/2 dt dx1.

Here

c(t) =

ˆ

Rn−2

e−4Im(Hess(ψ))(t,y) dy 6= 0

defines a smooth function on [0, T ]. Thus by the properties (4.12) of the intervals Ij
we see that

P∑

j=1

ˆ

M̃

χfv(1,j)v(2,j)v(3,j)v(4,j)

→

ˆ

I×[0,T ]

c(t)χ(γ(t))f(x1, γ(t))e
iλ1(x1+it)eiλ2(x1+it)|a0|

4|(x1,γ(t)) dt dx1

(4.25)

as τ → ∞. This is because the intersection of all the sets γ(Ij), j = 1, . . . , P , contains
only the point p (which has measure zero). Recall also that χ is supported in U .

Let us next consider the integral

(4.26) τ
n−2
2

ˆ

M̃

χf eiλ1x1e−iλ2x1v(1,j1)v(2,j2)v(3,j3)v(4,j4) dV,

where ja 6= jb for some a, b = 1, . . . , 4. We argue that this integral is O(τ−
1
2 ) and thus

negligible. Since ja 6= jb, we have tja 6= tjb by (4.11). If γ̇(tja) would be proportional
to γ̇(tjb), then the geodesic γ would be a loop by uniqueness of geodesics. Since γ is
non-tangential, this can not be the case and thus

γ̇(tja) is not proportional to γ̇(tjb).

It follows from the last two conditions of (4.14) that

Im(∇2(ψ(ja) + ψ(jb)))(p) > 0

and then using the third condition of (4.14) again we see that

(4.27) Im(∇2(ψ(j1) + ψ(j2) + ψ(j3) + ψ(j4)))(p) > 0.

It follows that the integrand in (4.26) is exponentially localized not only to the n− 2
directions transversal to the graph of γ, but to all n − 1 directions of M0 pointing
away from p. Consequently, if U is small enough,

∣∣∣∣τ
n−2
2

ˆ

I×U

χf eiλ1x1e−iλ2x1v(1,j1)v(2,j2)v(3,j3)v(4,j4) dV

∣∣∣∣ ≤ Cτ
n−2
2

ˆ

Rn−1

e−cτ |x|
2

dx

= O(τ−
1
2 ).

Here we used that χ is supported in U and c is some positive constant resulting from
(4.27). We note that no stationary phase argument was used here.

The above arguments and estimates hold if the neighborhood U of p ∈ γ([0, T ])
was small enough. Let us next consider choosing for each p ∈ γ([0, T ]) a neighborhood
Up such that the above arguments and estimates hold. Since γ([0, T ]) is compact, we
may choose a finite number of sets Up such that these sets cover a neighborhood of

γ([0, T ]) in M̃ . Denote the cover of γ([0, T ]) constituting of these sets by {Uα}. Let
{χα} be a partition of unity subordinate {Uα}.
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We have that the quasimodes v1τ+iλ1 , . . . , v
4
τ are supported in I×∪αUα. Combining

the above facts and estimates, we have

0 =

ˆ

M̃

fu1 · · ·u4 dV =
∑

α

ˆ

I×Uα

χαfu
1 · · ·u4dV

=
∑

α

Pα∑

j=1

τ
n−2
2

ˆ

I×Uα

χαf e
iλ1x1e−iλ2x1v(α,1,j)v(α,2,j)v(α,3,j)v(α,4,j) dV

+ O(τ−1) +O(τ−
1
2 ).

(4.28)

Here the terms O(τ−1) and O(τ−
1
2 ) correspond to Rτ and terms of the type (4.26)

respectively. Here, for k = 1, . . . , 4 and j = 1, . . . , Pα, we have denoted by

v(α,k,j),

the function v(k,j) in the presentation (4.10) with respect to the open set Uα. Taking
the limit τ → ∞ of (4.28), then gives

0 =
∑

α

Pα∑

j=1

ˆ

I×[0,T ]

χα(γ(t))f(x1, γ(t))c(t)e
iλ1(x1+it)eiλ2(x1+it)|a0(x1, γ(t))|

4 dx1 dt

=
∑

α

ˆ

I×[0,T ]

χα(γ(t))f(x1, γ(t))c(t)e
iλ1(x1+it)eiλ2(x1+it)|a0(x1, γ(t))|

4 dx1 dt

=

ˆ

I×[0,T ]

f(x1, γ(t))c(t)e
iλ1(x1+it)eiλ2(x1+it)|a0(x1, γ(t))|

4 dx1 dt,

where we used (4.18) and (4.25). The rest of the proof is as in Step 3 above. �

Proof of Corollary 1.7. The only thing to check is that also in the case where qj
is only continuous, Λq1 = Λq2 implies

ˆ

M

(q1 − q2)u1 · · ·um+1 dV = 0,

for uk solving (∆g + Vk)uk = 0. This however was verified for qj ∈ Ln/2+ε in [Nur23]
in Rn. The argument on Riemannian manifolds is the same. Thus Corollary 1.7
follows from Theorem 1.6. �

Remark 4.2. The case m = 2 of Theorem 1.6 corresponds to the integral iden-
tity of the Calderón problem for the linear Schrödinger operator. In this case one
obtains

0 =

ˆ

I×[0,T ]

f̃(x, t)eiλ(x1+it) dt dx1

by arguments analogous to those in the proof of Theorem 1.6 above. Here f̃ is a
smooth multiple of the difference of the unknown potentials of the problem. By
differentiating in λ at λ = 0 it follows that

0 =

ˆ

I×[0,T ]

zl f̃(z) dt dx1

for l ∈ N ∪ {0}. Here z = x1 + it and f̃(z) = f̃(x, t). Stone–Weierstrass does not
apply in this case since the algebra span{zl} is not closed under complex conjugation
(i.e. polynomials involving z̄ are missing). Indeed, if there were a sequence fn(z) of

polynomials of z converging uniformly to f̃(z), then since ∂fn = 0 it would follow
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that ∂f̃ = 0. Thus f̃ would have to be holomorphic. It follows that the method
of proof of Theorem 1.6 cannot be applied for the Calderón problem for the linear
Schrödinger operator.

The case m = 3 of Theorem 1.6 corresponds to the Calderón problem for the
equation ∆gu+ qu2 = 0 on CTA manifolds. Recovery of q from the DN map in this
case was shown in [FLL23]. We expect that the Stone–Weierstrass theorem can be
used for the qu2 nonlinearity as well, but proving this would require constructing
somewhat different solutions to the “overlinearized” equations in [FLL23]. For this
reason, we did not consider the case m = 3 in Corollary 1.7 in this paper.
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