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A review of Tyler’s shape matrix and its
extensions

Sara Taskinen, Gabriel Frahm, Klaus Nordhausen, and Hannu Oja

Abstract In a seminal paper, Tyler (1987a) suggests an M-estimator for shape,
which is now known as Tyler’s shape matrix. Tyler’s shape matrix is increasingly
popular due to its nice statistical properties. It is distribution free within the class of
generalized elliptical distributions. Further, under very mild regularity conditions, it
is consistent and asymptotically normally distributed after the usual standardization.
Tyler’s shape matrix is still the subject of active research, e.g, in the signal-processing
literature, which discusses structured and regularized shape matrices. In this article,
we review Tyler’s original shape matrix and some recent developments.

Key words: M-estimator, generalized elliptical distribution, high dimension, robust
estimator, regularization

1 Introduction

Maronna (1976) and Huber (1981) propose robust M-estimators for location and
scatter of multivariate elliptically distributed data. Since their seminal work, we can
find many contributions finding new ways to estimate the location vector and scatter
matrix. See Maronna et al. (2018) for a nice overview of robust multivariate methods.
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In this work, we focus on the robust M-estimator for shape, introduced by Tyler
(1987a). We start by fixing some notation. Consider first a location-scatter model.
This means that the p-variate observations Xy, X3, . . . , X,, are independent copies of

X = pu+ Qe

where u € R” is a location vector and @ € RP*4 is a transformation (or mixing)
matrix with rk(Q) = p. Hence, we have that p < ¢ and the symmetric positive-
definite matrix X := QQT € RP*P is referred to as the scatter matrix. Without loss
of generality, we may choose the decomposition X = ED I , Where X7 is the unique
symmetric root of X > 0.

Different multivariate models are obtained by making specific assumptions about
the g-variate random vector e (Nordhausen & Oja, 2018b). For example, it is typically
assumed that p = g and that e has a spherically symmetric absolutely continuous
distribution on R”, i.e., the density function of e is of the form f(e) = exp{—p(||e||)}
for some function p: R — R, where || - || denotes the Euclidean norm (Fang et al.,
1990). Then, we can decompose e into a radial part and an angular part by e = ru,
where the modulus, i.e., the radius, = ||e|| > 0 and the direction u = ||e||"'e are
stochastically independent with u being uniformly distributed on the unit hypersphere
in R”. The density of the modulus is proportional to 77~ exp{—p(r)}.

For all 7 > 0 we have that x = g + Qru = u + Ysu with ¥ := Q/7 and
s := 7tr. Hence, the scatter matrix of x is defined only up to scale. To fix X we

could assume that E(7?) = p or Med(r?) = )(127 0.5 Where )(120 0.5 is the median of

the y?-distribution with p degrees of freedom. The first assumption requires that
the second moment of r is finite, whereas the second assumption does not require
any moment condition on r at all. If the first assumption is satisfied, we have that
COV(e) =1, where I, is the p X p identity matrix, and COV(x) = X. However, it
is more common to impose the scaling condition

E(¢(r")) =p (1)

with ¢(r?) := w(r?) r%, where w is a real-valued partial function on R}.! In fact,
this is typically done both in M-estimation and in ML-estimation of scatter (Tyler,
1982; Frahm et al., 2020). The chosen weight function w is considered appropriate
if and only if there exists no scaling constant 7 # 1 such that E(¢((7r)?)) = p.2 In
the special case of w : 72 > 1, we obtain the simple scaling condition E(r?) = p
mentioned above.

Under the above mentioned assumptions, X1, Xo, . . . , X, are independent copies of
the p-variate random vector x, which follows an elliptically symmetric distribution
with density function

F(x) = det(Z) Tg((x— ) "= (x — ).

1 A partial function f : D — C is a function from a subset of D to C.
2 See Frahm (2022) for a detailed explanation.
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The function g: R — R{ is referred to as the density generator of x. Given that the
first moment of r is finite, the location vector u is the mean vector of x, and if the
second moment of r is finite, COV(x) = E(r2)/p - X is the covariance matrix of x.

If we allow 7 to be negative and to depend on u, then x is generalized elliptically
distributed (Frahm & Jaekel, 2010). It is worth noting that, in this case, we can
no longer assume that p = g without loss of generality. A particular generalized
elliptical distribution, which will be of interest later on, is obtained by setting u = 0
and r = ||Qu|~" with p = ¢. The random vector x = Qu/||Qu|| follows an angular
central Gaussian distribution on the sphere (Tyler, 1987b). In the bivariate case,
i.e., p = 2, the angular central Gaussian distribution turns into the wrapped Cauchy
distribution after angle doubling (Kent & Tyler, 1988).

The last location-scatter model relevant later on is the so-called independent com-
ponent model where it is assumed that the components of e are mutually independent.
In independent component analysis the goal is to estimate e based on x alone (for an
overview see for example Nordhausen & Oja, 2018a). If not stated otherwise, in the
following we will assume that x follows an elliptically symmetric distribution.

The scatter matrix X can be written as £ = 0>V, where 0> = ¢-*(X) represents the
scale of X. A scale function o%(+) is such that 0'2(1,,) =1 and o2(72X) = 20%(X)
for all T > 0. Further, the matrix V = £/0%(X) is the unique shape matrix associated
with X. Classical choices of o2 (X) are X (Hettmansperger & Randles, 2002; Hallin
& Paindaveine, 2006; Hallin et al., 2006), tr(X)/p (Tyler, 1987a; Diimbgen, 1998;
Frahm & Jaekel, 2015; Taskinen & Oja, 2016) and det(X)!/P (Tatsuoka & Tyler,
2000; Diimbgen & Tyler, 2005; Salibidn-Barrera et al., 2006; Taskinen et al., 2006;
Paindaveine, 2008).

Note that tr(X)/p and det(X)!/” correspond to the arithmetic and geometric
means of the eigenvalues of X, respectively. The use of det(X)!/? as a scale function
yields a canonical definition of shape, meaning that the scale and shape estimators
are asymptotically independent if the data are elliptically distributed (Paindaveine,
2008). The scale describes the “size,” whereas the shape describes the “orientation”
of an elliptical distribution and it is well-known that several multivariate methods,
such as principal component analysis, canonical correlation analysis, and multivari-
ate regression, require the shape matrix only (Croux & Haesbroeck, 2000; Taskinen
et al., 2006; Salibian-Barrera et al., 2006).

In the robust-statistics literature, several functionals for multivariate distributions
are proposed. Let x be a p-variate random vector with cumulative distribution
function Fy. Then a functional u(Fyx) € R” is said to be a location vector if it is
affine equivariant in the sense that u(Faxp) = Au(Fx) + b for any nonsingular
matrix A € RP*P and vector b € R”. A symmetric positive-definite functional
S(Fx) € RP*P is called a scatter matrix if S(Faxp) = AS(Fx)AT. Further, a
symmetric positive-definite functional V(Fx) € RP*P is referred to as a shape
matrix if V(Fyx) = S(Fx)/0?(S(Fy)) and thus

AV(F)AT

V(Fax+b) = TZAV(FOAT)’
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Hence, in general, a shape matrix is not affine equivariant and V(Fax+p) €ven is
not proportional to AV(Fyx)AT. However, if we use the canonical scale function
det(X)"/?, we have that

AV(Fy)AT

o2(AAT)

Thus, at least for c?(AAT) = 1, i.e., if not the scale, but only the shape of the
distribution of x is affected by the transformation A, the canonical shape matrix
remains equivariant (Frahm, 2009).

If the distribution of x is elliptically symmetric, then p(Fx) = u. This means that
all location vectors correspond to the same population quantity u. By contrast, all
scatter matrices are related to each other by S(Fx) = 0>(S(Fy))V, where V is the
(unique) shape matrix of x. Put another way, a scatter matrix is always a multiple
of the shape matrix V. Finally, if the functionals p(-), S(-), and V(-) are applied
to an empirical distribution function ﬁx, i.e., the empirical distribution of a random
sample x, X2, . . ., X,,, we obtain the corresponding estimators, which we denote by
1= p(Fy), S =S(Fy), and V = V(Fy), respectively.

As mentioned above, several multivariate methods can be based on shape matrices
only. Such matrices can be easily defined by normalizing any scatter matrix with a
scale parameter. On the other hand, sometimes shape matrices arise naturally as a
result of some estimation procedure. In this review we discuss Tyler’s shape matrix,
proposed in the seminal paper by Tyler (1987a), which was initially motivated via
estimating equations utilizing spatial sign scores. Recall that spatial sign scores
are defined as U(x) = x/||x||, for x # 0, and U(0) = 0 (Motténen & Oja, 1995).
We define Tyler’s shape matrix and review its statistical properties in Section 2.
Section 3 is devoted to some recent extensions of Tyler’s shape matrix and the paper
is concluded with some discussion on Section 4.

V(Faxsh) =

2 Definition and statistical properties

Assume that X, X, . . ., X, with n > p is arandom sample from a centered p-variate
elliptical distribution, i.e., g = 0. Further, suppose that  has no atom at 0, which
means that P(r = 0) = 0. In Tyler (1982, 1983) tests for sphericity and related
shape estimators based on Huber’s M-estimators were considered. It was noted that
it is possible to use in the M-estimation procedure a weight function that yields
a distribution-free test and estimate under the elliptical model. This served as a
motivation in Tyler (1987a) to propose a shape matrix estimator V as a solution of

n T
A p Xin-
V== —_ 2

" ”

Tyler (1987a) considers the solution of (2) an M-estimator for scatter, since it can
be written as
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n
Dl
i=1

with 2 = x] £ !x; for i = 1,2,...,n, where the weight function w is > — p/r?.
However, we prefer to call it Tyler’s shape matrix. This term is commonly used in
the literature, too. The shape matrix can also be seen as the limit of two popular
M-estimators for scatter, namely Huber’s M-estimator and the ML-estimator under
the assumption that the data have a multivariate ¢-distribution.

More precisely, Huber’s weight function is

2 Y, r2<a
wircr—
ya/r?, r’>2,

ﬁ:

S| =

2

where the parameters y, 1 > 0 are such that E(¢(x;)) = p. Now, Tyler’s weight
function occurs for A4 \ 0, i.e., A approaching zero form above. Alternatively, we
obtain Tyler’s weight function by setting v = 0 in the Student-type weight function
r2 — (p+v)/(r?> +v) or @ = 1 in the power M-weight function r> — (r?/p)~@
proposed by Frahm et al. (2020).

Another way to write down the estimation equation in (2) is via spatial sign scores,

which are defined in Méttonen & Oja (1995). Then Tyler’s shape matrix V solves

n xr-1 -1 n
p Vixx; V' p
= Z — T =, 2, V@U@) =1,
nam 1IVTexl| oy
with z; := \A"%xi fori = 1,2,...,n and U(z;) := ||z;||"'z;. This means that V is
chosen such that the spatial signs of the transformed observations zy, 2, . . ., Z, are,

approximately, uniformly distributed on the unit hypersphere.
In any case, (2) can be re-written, equivalently, as

VP r2Viwu! (V2)T p Z Vauu! (V2)T
nH T (V)TVEIVIY, 1S T (V) TV-1V g,
which means that the sample observations 1,77, ..., r, of the modulus » have no

impact on Tyler’s shape matrix at all. This holds true even if some r; becomes
negative, since rl.2 does not depend on the sign of r;, and also if ; depends on u;.
Hence, Tyler’s shape matrix is distribution free if the data are generalized elliptically
distributed—provided that » has no atom at 0 and we know the location vector
p (Frahm & Jaekel, 2015). Here, we have chosen V% as a transformation matrix.
Indeed, the decomposition of V, i.e., the precise meaning of the p X p matrix U in
V = UU", is not arbitrary if r depends on u, but our arguments still remain valid if
we choose any other decomposition of V.

Originally, conditions for the existence of Tyler’s shape matrix were listed in Tyler
(1987a) and it was shown that the matrix is unique up to a positive scaling constant.
In Tyler (1987a) the shape matrix was chosen so that tr(V) = p and in Tatsuoka &
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Tyler (2000) det(V) = 1 was used. We use here the first option. Tyler’s shape matrix
can be computed simply by starting with an initial value, e.g., Vo = I,,, and then
iterating

A — L

-V 2
z;, = Vk—lxi’

. LoD 1
Ve Vi, - > U@)U@) V],
i=1

until convergence. The scale can be fixed either at each iteration step or in the end so
that tr(V) = p. In Tyler (1987a) weak conditions for the convergence are given. See
also Kent & Tyler (1988) for the existence of the solution under general distributions.

Recently, in Wiesel (2012) a new viewpoint for the investigation of covariance
matrices was developed. In this framework covariance matrices can be seen as
elements of the Riemannian manifold of symmetric positive definite matrices which
can also be used to study Tyler’s shape matrix. The use of the concept of geodesic
convexity provides then a new set of tools to prove existence and uniqueness of
Tyler’s shape matrix. Diimbgen & Tyler (2016) give a very detailed treatment of the
geodesic approach to M-estimation of scatter in general and to Tyler’s shape matrix in
particular. Another advantage of this framework is the development of fast Newton-
Raphson type algorithms for Tyler’s shape matrix (Diimbgen et al., 2016; Diimbgen
& Tyler, 2016) which are from a computational point of view more efficient than the
fixed point algorithm mentioned above. Franks & Moitra (2020) show the connection
between Tyler’s shape matrix and operator scaling. This connection is then used to
derive non-asymptotic bounds and to show that the iterative algorithm from above
converges in polynomially many steps. Other results concerning non-asymptotic
performance are given in Soloveychik & Wiesel (2015).

Now, consider the limiting behavior of Tyler’s shape matrix, more precisely, the
consistency of V and the asymptotic distribution of v (\7 - V), where V is based
on a random sample X, Xy, ...,X, ~ X. We need not require that x is elliptically
distributed. The matrix V just represents a solution of

.
V=pE( xx )

xTV-Ix

This solution exists and is unique—up to scale—if the distribution of x is continuous
(Tyler, 1987a). Further, in this case, Vis strongly consistent, i.e., it converges almost
surely to V. In order to prove that v7(V = V) — N,x,(0,C) as n — oo, Tyler
(1987a) applies the normalization Vo = pV/tr(V~'V). The asymptotic covariance
matrix of (Vo — V) is quite complicated (Tyler, 1987a, Theorem 3.2).

If x is elliptically distributed, the asymptotic covariance matrix of vn (Vo -V)
simplifies, essentially. More precisely, it holds that

N 2(p+2)

2
_pb* —= vee(V) vece(V),
V4

p

C

(L:+K,2) (Ve V)
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where L2 is the p? x p? identity matrix, K > is the p* X p> commutation matrix,
and vec(V) is the p?-variate vector obtained by stacking the columns of V on top
of each other. Frahm (2009, Corollary 1) shows that we obtain the same asymptotic
covariance matrix for Vn (\7 - V) when choosing the canonical scale function, i.e.,
requiring that det(V) = 1.

It can be seen that V) is affine equivariant. However, in general, this is no longer
true if we choose another normalization of V. The chosen scale function has an
essential impact on the asymptotic covariance matrix. More precisely, we have that

+2
c="2

(L +K,2) (Ve V)yT

with ¢ := 1> — vec(V) 7,2, where J;2 is the Jabobian of the scale function o?
(Frahm, 2009; Frahm & Jaekel, 2010; Frahm et al., 2020). See also Sirkii et al.
(2009) and Taskinen & Oja (2016), among others, for the limiting distributions of
Vn (V — V) under different choices of o2. In any case, since Tyler’s shape matrix is
distribution free within the class of generalized elliptical distributions, the asymptotic
covariance matrix never depends on the distribution of the generating variate r.
Further, the breakdown point of Tyler’s shape matrix is between 1/(p + 1) and 1/p
(Yohai & Maronna, 1990; Diimbgen & Tyler, 2005). In Adrover (1998) the Tyler’s
shape matrix is shown to be minimax bias-robust.

Tyler (1987a) points out that his shape matrix is the “most robust” estimator for
the shape matrix of an absolutely continuous elliptical population. More precisely,
let i be a real-valued, differentiable, and scale invariant function of X > 0. That
is, we have that A(aX) = h(X) for all @ > 0 and £ > 0. Consider some parameter
6 = h(Z) and some estimator § = h(£). It is clear that we can substitute X with V and
£ with V. Now, Tyler’s shape matrix minimizes the maximum asymptotic variance
of = h(V) among all consistent estimators V such that yi2(V = V) — N, (0, C).

Tyler’s shape matrix is usually introduced as a general M-estimator of shape,
however it can also be derived as the ML-estimator for X under the angular central
Gaussian distribution, as shown in Tyler (1987b). Later Ollila & Tyler (2012) showed
the similar result under more general model of elliptical distributions of proportional
covariance matrices. See also Gini & Greco (2002); Conte et al. (2002).

Above, we assumed that the location vector of the elliptical distribution is known.
However, Tyler (1987a) considers also the case in which the location is unknown. One
can, for example, center the observations using any +/n-consistent location estimate
before computing the shape matrix. The asymptotic properties of the resulting shape
matrix estimate will remain the same. Tyler (1987a) also mentions a possibility of
estimating the location vector and shape matrix simultaneously in a similar fashion as
in Maronna (1976); Huber (1981) and recognizes the limitations of such an approach.
We will discuss the simultaneous estimation in Section 3 along with other extensions
of Tyler’s shape matrix.

To conclude this section, note that Paindaveine & Van Bever (2019) introduce the
concept of Tyler shape depth which can be used to order shape matrices. The deepest
shape matrix is then related to the definition of Tyler’s shape matrix.
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3 Extensions

In the exposition above Tyler’s shape matrix was considered for real data observations
with known location and for data without missing values. It was also assumed that
the shape matrix does not follow any special structure and that the sample size n is
larger than the dimension p. All the issues listed above have been recently addressed
in the literature and in the following we will give an overview of the approaches that
tackle these issues.

As custom in statistics we will continue focusing on real valued data. Especially in
the signal processing community the theory is however often developed considering
complex-valued data and most of the methods described below can also be applied
in such a context. The interested reader is referred for example to Kent (1997); Gini
& Greco (2002); Conte et al. (2002); Pascal et al. (2008); Ollila & Tyler (2012);
Ollila et al. (2012), and references therein.

3.1 Joint estimation of location and Tyler’s shape matrix - the
Hettmansperger-Randles estimators

Hettmansperger & Randles (2002) tackle the problem of simultaneous estimation
of location vector and shape matrix utilizing spatial sign scores. Write now z; =
A (x; — fr),i=1,...,n, for transformed observations. Then the Hettmansperger-
Randles (HR) estimators of location vector and shape matrix, j1 and V, solve

1 n n
- ; U(z) =0 and ;—’ ;: U(z)U(z))T =1, 3)

and V is standardised so that tr(V) = p (for example). The resulting location vec-
tor estimate is known as the transformation-retransformation (TR) spatial median
(Chakraborty et al., 1998) and the shape matrix is the Tyler’s shape matrix with
respect to the TR spatial median. Notice that the classical spatial median that solves
n! >, U(x; — f1) is only rotation equivariant whereas the TR spatial median is
affine equivariant. For the robustness properties and limiting distributions of HR es-
timates, see Hettmansperger & Randles (2002); Méttonen et al. (2010); Oja (2010).

HR estimates are easy to compute as estimating equations in (3) yield to following
iteration steps

1
z; =V, 2 (Xi = fiy_y),
1
Vi 2imy U(zi)
Szt

1 " 1
A N p A=
Vi = Vi, = > U@ U@) TV,
i=1

By — gy +
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See also Hettmansperger & Randles (2002) for computation of HR estimates. Un-
fortunately, as far as we know, there is no proof for the convergence of the above
algorithm. Also, as Tyler (1987a) already pointed out, the existence and uniqueness
of the HR estimates remains an open question as the estimates do not satisfy the
conditions that guarantee the existence and uniqueness of simultaneous M-estimates
(Maronna, 1976; Huber, 1981). Motivated by this, Taskinen & Oja (2016) pro-
posed k-step HR estimators for location and shape, that is, one starts with initial
yn-consistent estimates fr, and V¢ and repeats the above iteration steps k times.
Resulting estimates are affine equivariant if the initial estimates are affine equivari-
ant. The limiting distributions depend on the limiting distributions of the initial pair
of estimates and those of HR estimates. The larger the k, the more similar are the
distributions to those of the HR estimates (Taskinen & Oja, 2016). For the robustness
properties of k-step estimates, see Croux et al. (2010); Taskinen & Oja (2016).

3.2 The symmetrized variant of Tyler’s shape matrix - Diimbgen’s
estimator

Tyler (1987a) assumes that the location center is known or given. Diimbgen (1998)
avoids this assumption and proposes a symmetrised version of the Tyler’s shape
matrix. Write now z; = V‘%xi, i = 1,...,n. Dimbgen’s shape matrix V is then
chosen to solve

L e e 9= ) (s — ) TV
;Ip:(;) ZZ (x; —x;j)(X; —X;)

A4 V=2 (x; — x;)|2
-1
= (Z) Z ZU(Z,’ — Z]')U(Zi — Zj)T
i<j

and standardised so that tr(V) = p (for example). This shape matrix is thus Tyler’s
shape matrix computed on pairwise differences.

Statistical properties of Diimbgen’s shape matrix are studied in detail in Dimbgen
(1998); Diimbgen & Tyler (2005); Rublik (2021), and later in Sirkii et al. (2007);
Diimbgen et al. (2015) under a framework of symmetrized M-estimators of scatter.
The shape matrix obtained using pairwise differences is highly efficient (under ellip-
tical model). It also possesses the so-called joint (and block) independence properties
which means that the matrix is a (block) diagonal matrix if the components of x are
mutually (block) independent (Nordhausen & Tyler, 2015). The joint independence
property is rare among scatter and shape functionals and needed for example in
the independent component model. The use of symmetrized scatter functionals for
independent component analysis is discussed in Oja et al. (2006). Other multivariate
methods which require the joint or block independence property are discussed in
Nordhausen & Tyler (2015).
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Diimbgen’s shape matrix can be computed using the algorithm proposed in Tyler
(1987a), that is, one can simply start with an initial value, e.g., Vo = I,, and then
iterate

-1
A A1 A
ViV, (;) Z ZU(zi -z;)U(z; —z;)" A

i<j

The standardisation can be done after the algorithm has converged. Although the
above algorithm is easy to apply in practise, it has a drawback of being highly
intensive when the sample size is large. Due to this issue, several new computa-
tional approaches and variants of the Diimbgen’s shape matrix are introduced in the
literature. For alternative algorithms, see Miettinen et al. (2016); Diimbgen et al.
(2016). In Taskinen et al. (2010) k-step estimator of the Diimbgen’s shape matrix
was considered. Finally notice that iteration steps

Vi V2 - 1)2ZZZU(11 2)U(z - )" Vi

i#j,i#k

yield a related shape matrix estimator based on spatial rank vectors (Motténen &
Oja, 1995). We refer interested readers to Sirkié et al. (2009), for more details.

3.3 Estimation under missing data

In real-life applications, practitioners often face the problem that some data are miss-
ing. Nevertheless, it may be of interest to estimate the scatter matrix by using all
available observations—not only the observations that are complete. Under the as-
sumption that the data are missing at random, maximum-likelihood methods based on
the so-called observed-data likelihood function are well-developed (Schafer, 1997).
In order to generalize Tyler’s shape matrix to the case of incomplete data Frahm &
Jackel (2010) use the fact that Tyler’s shape matrix V is a ML-estimator under the
angular central Gaussian distribution. More precisely, they show that V represents
an observed-data ML-estimator under the assumption that the data stem from a gen-
eralized elliptical distribution. They also point out that the incomplete data must be
missing completely at random to guarantee the consistency of V.

Frahm & Jaekel (2010) provide a fixed-point algorithm for the computation of
Tyler’s shape matrix in the case of incomplete data. An extension to the case of the
Hettmansperger-Randles estimator is also given. Since the notation convention in
the missing-data framework is nonstandard, we omit details here and refer to Frahm
& Jaekel (2010). Theoretical properties of M-estimators, in particular for Tyler’s
shape matrix, in the case of independent and dependent observations are derived by
Frahm et al. (2020). The aforementioned authors show that, when applying M-weight
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functions to incomplete data, the critical scaling condition expressed by (1) must
be satisfied, correspondingly, for each incomplete observation, in order to guarantee
that the given M-estimator for scatter is consistent. They resolve the scaling problem
by introducing the class of power M-estimators for location and scatter. Both the
Gauss-type weight function, > — 1, and Tyler’s weight function, > — d/r?,
represent two distinguished power M-weight functions, which implicitly satisfy the
critical scaling condition for incomplete data.

3.4 Structured Tyler’s shape estimation

In many applications there is some prior knowledge about the structure of the scat-
ter/shape matrix available. Such structures include for example Toeplitz structure,
spiked covariance structure, group symmetry and Kronecker structure, among many
others. Originally, structured estimation was considered in the context of the co-
variance matrix estimation for iid Gaussian data and it was shown that enforcing
the structure improves the performance of the estimator. Recently, especially in the
signal processing community, there has been an increasing interest in estimating
robust structured scatter matrices in the context of elliptical distributions, and the
research has focused especially on Tyler’s shape matrix (see for example Soloveychik
& Wiesel, 2014; Soloveychik et al., 2016; Sun et al., 2016; Soloveychik & Trushin,
2016; Mériaux et al., 2021, and references therein). In general, algorithms to esti-
mate the structured shape matrix are usually tailored for the specific structure. A lot
depends on the convexity of the assumed structure. As the unstructured Tyler’s shape
matrix is geodesic convex, it can be concluded that the minimizer of the cost function
under a constraint that is also geodesic convex leads to a global maximizer, which is
for example the case under a group symmetric constraint (Soloveychik et al., 2016).

In the following assume a centered sample X, Xy, ..., X, with an unstructured
estimate V of Tyler’s shape matrix and denote S as a known closed convex subset
of all positive semi-definite p X p matrices V under an appropriate scale constraint,
i.e., S € P. The subset S’ of P is closed but not necessarily convex. In the following
we only outline some general approaches for structured estimation and provide some
references for more details.

Convex projection projects an unconstrained estimate onto the closest element of
the constrained set, that is, structured shape matrix V¥ is found as a solution to

min ||V* - V]|,
VseS

where || - || denotes some norm. This is a convex optimization problem but it consists
of a two-step procedure and therefore does not couple structural and distributional
properties in the estimation process (Soloveychik & Wiesel, 2014).

Convex constrained covariance estimation (COCA, Soloveychik & Wiesel, 2014)
is based on the general methods of moments (GMM) approach and it seeks an
approximate solution to
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n ~ T
VAN

min [|V* —
n xl.TVS‘lxi
=

VseS

This problem is however not convex and for general practical computation a convex
relaxation of the above equation is suggested which then allows the use of general
optimizers for solving the problem. It is then shown that in the unconstrained case
COCA is equivalent to Tyler’s shape matrix and in the constrained case the two
matrices are asymptotically equivalent.

The most general form is the majorization-minimization (MM) approach of Sun
et al. (2015, 2016) which starts from a log-likelihood point of view and aims at
solving

n
. s p Tys—lg.
Vr?ég, logdet(V?®) + - ; log(x; V°7'x;). @)

Due to the complexity of the problem, the MM approach searches for stationary
points of (4) and therefore does not necessarily provide the global optimum. Sun
et al. (2015, 2016) then provide many tailored MM algorithms for specific structures
whose properties depend on the structure at hand. These include convex (e.g. Toeplitz
structure, sum of rank one matrices structure) and non-convex structures (e.g. spiked
covariance model structure, Kronecker structure).

3.5 Regularized estimators

A topic of increasing interest in multivariate statistics is high-dimensionality, as the
dimension p of modern data can be very large and increasingly often even larger
than the available sample size n. Therefore, the behaviour of multivariate methods
is nowadays often investigated in settings where n and/or p grow.

A key result regarding scatter matrix estimation is given in Tyler (2010) which
states that for finite data, if n < p + 1 and the data is in general position, then
any affine equivariant scatter matrix is proportional to the covariance matrix, where
the proportionality factor does not depend on the data. The question is then, what
is the behaviour of Tyler’s shape matrix if n and p grow, i.e., if p/n — ¢ when
n — oo and p — oo. Diimbgen (1998); Frahm & Glombek (2012) consider the
case ¢ = 0 and show that the condition number of Tyler’s shape matrix is 1 +
4yp/n + O(W) and that the spectral distribution of \/}W(V —I,,) converges
weakly to a semicircle distribution. Further, Zhang et al. (2016) show that in the
case 0 < ¢ < 1 the spectral distribution of Tyler’s shape matrix converges weakly to
the Marcenko—Pastur distribution. Notice that these results are derived in the context
of iid samples from elliptical distributions while similar results for the covariance
matrix require usually iid samples from the Gaussian distribution or are less useful
in case of elliptical distributions (Karoui, 2009; Zhang et al., 2016).

As the estimation in high-dimensional setting is quite challenging, often esti-
mators are regularized in such a setup and include shrinkage. For Tyler’s shape
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matrix basically three different options for shrinkage are considered: (i) shrinking
the eigenvalues of an already computed shape matrix, (ii) adding an penalty term to
the M-estimation objective function or (iii) modifying the M-estimation equation.
In the following we outline some recent suggestions to regularize Tyler’s shape
matrix and refer for further details to the provided references. We first consider
shrinking the eigenvalues which assumes a framework with n > p and that we are
able to compute Tyler’s shape matrix V with tr(V) = p for the centered sample
X|,X2, ..., X,. The shrinkage regularized Tyler’s shape matrix is then defined as

Vo, =aV+(1-a)l,,

where « € [0, 1] is aregularization parameter. Thus VR shares the same elgenvectors
as V but the eigenvalues of it are shrank towards the mean of the eigenvalues of V.
This type of estimator is considered for example in Chen et al. (2011); Ollila et al.
(2021). Ollila et al. (2021) suggest to choose a as the minimizer of

@, = min MSE(V;),
a

where MSE(\A’Q) = E[||\A7f, — V||?], for which a closed-form expression can be
obtained in case of elliptical distributions or using cross-validation (CV).

To allow p > n Abramovich & Spencer (2007) suggest to load the diagonals in
the fixed point algorithm of Tyler’s shape matrix by modifying the updating steps as
follows

Vi, Hﬂpz TVR V+(1—ﬁ)1,,,

k.8 X
Vr V2+1 B
k+1 ﬁ ’
tr(VkH’B)

and iterate until convergence. Here B8 € [0, 1] is a shrinkage coefficient. Chen et al.
(2011) establish uniqueness of the estimator and suggest a way to choose 5. The
above estimator has however been criticized for being heuristic as it is not related
to any cost function which it would minimize. Therefore, Wiesel (2012) start again
from a log-likelihood point of view and suggest to minimize the following penalized
log-likelihood function, that is, to solve

n
. P Tv-lg.
Vmensl log det(V) + o ; log(x; V7'x;) + yP(V), &)

where P(V) is the penalty function and y > 0 is a regularization parameter. Wiesel
(2012) uses P(V) = plog(tr(V™'T)) + log(|V|) which has its minimum at T which
is the desired target matrix towards which V should be shrunk to. The minimizer of
(5) is denoted as V;. Wiesel (2012) and Diimbgen & Tyler (2016) also list several
other penalty functions and discuss their appropriateness for different data settings.
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The regularization parameter can either be fixed or chosen data dependent using
so-called oracle type estimator as discussed in Chen et al. (2011); Ollila & Tyler
(2014). The use of cross validation was suggested in Diimbgen & Tyler (2016). It
is shown that statistical properties, such as existence and uniqueness, depend on
the used penalty function and special attention is given to penalty functions which
are geodesic convex in V. For example Sun et al. (2014) show that if one uses as
penalty the Kullback-Leibler distance between two zero mean Gaussian distributions
with covariance matrices V and T, an estimate very similar to the diagonal loading
method mentioned above is obtained.

For further discussions on regularized Tyler’s shape matrices we refer to Pascal
et al. (2014); Couillet & McKay (2014); Sun et al. (2014); Ollila & Tyler (2014);
Diimbgen & Tyler (2016), where maybe Diimbgen & Tyler (2016) provide the
most general treatment of regularized Tyler’s shape matrices and suggest also a
cross validation procedure.Corresponding algorithms are discussed for example in
Sun et al. (2014); Diimbgen & Tyler (2016). Robustness properties of previous
regularized estimator are studied in Tyler & Yi (2020) showing that, under certain
conditions on the tuning parameter, the breakdown point of regularized Tyler’s shape
matrix could be 1, if not estimating the center .

None of the above methods guarantee a sparse solution. To obtain a sparse estimate
based on a (regularized) Tyler’s shape matrix, Goes et al. (2020) discuss thresholding.
Entry-wise thresholding of a matrix A = (a;;) and a threshold ¢ > 0 is defined as

7 (A) = (I(laij| > Daij).

Applying such a entry-wise tresholding to an estimate of Tyler’s shape matrix, which
can also be regularized, yields the thresholded estimate

Vt =Tt (V)’

where it is assumed that V has unit trace. Under the assumption of elliptical data with
approximately sparse scatter matrix, Goes et al. (2020) provide many properties of
V!, especially that these estimators are rate optimal, meaning that the rate coincides
with the minimax rate for sparse covariance estimation for sub-Gaussian ellipitical
data but in addition holds also for heavy tailed ellipitical data. There seems, however,
to be no suggestion yet for choosing the threshold # in a data-driven fashion.

4 Discussion

The seminal paper introducing Tyler’s shape matrix (Tyler, 1987a) has been cited
according to the Web of Science up to date 378 times3. Since its appearance, Tyler’s
shape matrix has been used in many application areas such as antenna array pro-
cessing (Ollila & Koivunen, 2003), radar detection (Ollila & Tyler, 2012) or image

3 Access date: 09.05.2022.
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analysis based subspace recovery (Zhang, 2015). Applications in the field of finance
are discussed for example in Frahm & Jaekel (2015) and Yang et al. (2015).

This paper is a short and restricted review which shows that due to its nonparamet-
ric nature with many excellent statistical properties and computational simplicity,
Tyler’s shape matrix is still, 35 years after its introduction, an active research area.
Tyler’s shape matrix continues to exhibit great promise and can be extended in
different directions driven by the complex nature of modern data sets.
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