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RESEARCH ARTICLE

Correcting variance and polarity indeterminacies 
of extracted components by canonical polyadic 
decomposition

Yuxing Haoa, Huanjie Lia, Guoqiang Huc, Wei Zhaoa and  
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aSchool of Biomedical Engineering, Faculty of Medicine, Dalian University of 
Technology, Dalian, China; bFaculty of Information Technology, University of Jyv€askyl€a, 
Jyv€askyl€a, Finland; cCollege of Artificial Intelligence, Dalian Maritime University, Dalian, 
China; dKey Laboratory of Social Computing and Cognitive Intelligence (Dalian 
University of Technology), Ministry of Education, China 

ABSTRACT 
Background: Back-projection has been used to correct the variance and 
polarity indeterminacies for the independent component analysis. The vari-
ance and polarity of the components are essential features of neuroscience 
studies.
Objective: This work extends the back-projection theory to canonical poly-
adic decomposition (CPD) for high-order tensors, aiming to correct the vari-
ance and polarity indeterminacies of the components extracted by CPD.
Methods: The tensor is reshaped into a matrix and decomposed using a suit-
able blind source separation algorithm. Subsequently, the coefficients are pro-
jected using back-projection theory, and other factor matrices are computed 
through a series of singular value decompositions of the back-projection 
matrix.
Results: By applying this method, the energy and polarity of each compo-
nent are determined, effectively correcting the variance and polarity indeter-
minacies in CPD. The proposed method was validated using simulated tensor 
data and resting-state fMRI data.
Conclusion: Our proposed back-projection method for high-order tensors 
effectively corrects variance and polarity indeterminacies in CPD, offering a 
precise solution for calculating the energy and polarity required to extract 
meaningful features from neuroimaging data.
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1. Introduction

As a crucial method in Brain-Apparatus Communication (BAP) [1], blind 
source separation (BSS) is extensively utilized to identify and extract 
latent components of interest from neural signals. And there are some 
ambiguities, i.e. the variance and polarity indeterminacies for each com-
ponent and the order indeterminacy of all the components [2]. However, 
the variance and the polarity of each component can be essential features 
for some studies, such as analyzing the response to visual stimuli [3] and 
validating the extracted components from brain signals [4]. The back- 
projection scheme was proposed to correct the variance indeterminacy 
[3], and later, complete mathematical details [5–7] were listed when inde-
pendent component analysis (ICA) was applied. Extensive ICA-based 
applications also use ICA with back-projection to denoise the pre- 
processed data [8–11]. The back-projection theory was also introduced to 
principal component analysis to correct the variance and polarity indeter-
minacies of principle components [12,13]. However, its applications have 
mostly been limited to matrices. In the signal processing field, data is 
often collected in more than two modes, with intrinsic multi-dimensional 
patterns [14]. Unfolding (matrixing) the high-order tensors into matrices 
may result in a loss of information. Furthermore, the indeterminacies 
mentioned above, which exist in high-order tensor decompositions, have 
been largely overlooked. Correction of the variance indeterminacy of 
extracted components from tensors by canonical polyadic decomposition 
(CPD) [15,16] can also be a very significant process to many researches, 
for example, cognitive neuroscience utilizing functional Magnetic 
Resonance Imaging (fMRI) [17] and Electroencephalography (EEG) [18], 
which are two techniques used for studying brain function and the 
interactions between the brain and external stimuli, that are closely linked 
to BAC [1, 19].

In this article, we generalize the back-projection theory for the matrix 
decomposition to high-order tensor decomposition to solve the variance 
indeterminacy of the extracted components by CPD, one of the most 
important tensor decomposition models also named parallel factor ana-
lysis (PARAFAC) [20]. ICA was ever extended to high-order tensor ana-
lysis [17] and a single mode BSS based CPD method was proposed [21]. 
Unfortunately, they didn’t pay more attention to the indeterminacies of 
the factors from each mode or each component. We adopt this single 
mode BSS method to achieve the CPD of high-order tensors and solve 
the indeterminacies by extending the back-projection to high-order tensor 
decompositions. The high-order tensor is unfolded to a matrix first, then 
one selected factor matrix is extracted via ICA or any other suitable BSS 
method, and the coefficients of the factor matrix will be projected in 
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terms of the back-projection theory. Then, the other factor matrices are 
calculated from the back-projection matrix by a series of singular value 
decomposition (SVD) [21]. Then, by projecting these factors back to the 
selected source mode, the back-projection is extended to high-order ten-
sor decompositions. After getting the factor matrix for each mode, the 
energy of every component can be extracted by utilizing the L2-norm in 
vector-wise. Through these procedures, we theoretically prove that the 
variance and polarity indeterminacy of the components extracted by CPD 
can be corrected by the extended high-order back-projection.

The following notations are adopted. Euler script letters, e.g. X, signi-
fies tensors, and XðnÞ signifies the mode-n unfolding (matrixing) of X:
Bold capitals (e.g. U) and lowercase letters (e.g. y) signify matrices and 
vectors, respectively. ∘ signifies the outer product of vectors. ⨀ and � sig-
nify the Khatri-Rao product and Kronecker product, respectively.

2. Review of the single mode BSS based CPD

2.1. CPD model

For a given Nth order tensor X 2 RI1�I2�����IN , the CPD model can be 
characterized as the following equation:

X ¼
XR

r¼1
kr � v 1ð Þ

r ∘v 2ð Þ
r ∘∙∙∙∘v Nð Þ

r þ E ¼
XR

r¼1
Xr þ E ¼ X̂ þ E, (1) 

where v nð Þ
r is the rth factor in the mode-n and k v nð Þ

r k2 ¼ 1 for 
r ¼ 1, 2, . . . , R, n ¼ 1, 2, . . . , N;Xr ¼ kr � v 1ð Þ

r ∘v 2ð Þ
r ∘∙∙∙∘v Nð Þ

r ðr ¼ 1, 2, . . . , RÞ
is the rth component and kr is its corresponding scalar; X̂ is the approxi-
mate tensor of X and E 2 RI1�I2�����IN is the fitting error.

2.2. The single mode BSS method

In this part, we briefly review the single mode BSS based CPD method 
[21], which will be the fundamental framework for our high-order back- 
projection theory. For simplicity and without the loss of generality, we 
take the 3rd-order tensor to introduce our proposed theory. For tensors 
with more than three modes, only a series of extra SVDs are needed [21]. 
The back-projection for CPD with an order of any N> 3 is listed in 
Appendix B. The CPD model for 3rd-order tensor is:

X ¼
XR

r¼1
kr � v 1ð Þ

r ∘v 2ð Þ
r ∘v 3ð Þ

r þ E: (2) 
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Let the scalar of each component kr be absorbed into the first mode of 
its corresponding factors. Then we have

X ¼
XR

r¼1
u 1ð Þ

r ∘u 2ð Þ
r ∘u 3ð Þ

r þ E, (3) 

where u 1ð Þ
r ¼ krv 1ð Þ

r , u 2ð Þ
r ¼ v 2ð Þ

r , u 3ð Þ
r ¼ v 3ð Þ

r :

For Equation (3), the factor matrices of all modes (i.e. UðnÞ ¼
½u nð Þ

1 , u nð Þ
2 , . . . , u nð Þ

R �, n ¼ 1, 2, 3) are unknown, where the matrix of every 
mode can be the source matrix, and matrices of the other modes are 
regarded as the mixing matrices. Without losing generality, we take the 
second mode matrix Uð2Þ as the source matrix here. Taking fMRI data as 
an example, there are three modes: time, space, and subject, with spatial 
features assumed to be mutually independent. Before applying a BSS 
method to the second mode, the tensor data should be structured as a 
matrix along the second mode:

Xð2Þ¢ Uð3Þ⨀Uð1Þð Þ � U 2ð ÞT ¼ A 2ð Þ � U 2ð ÞT , (4) 

where Að2Þ ¼ Uð3Þ⨀Uð1Þ ¼ ½a 2ð Þ
1 , a 2ð Þ

2 , . . . , a 2ð Þ
R � 2 R

I1I3�R and a 2ð Þ
r ¼ u 3ð Þ

r 

�u 1ð Þ
r : Then (4) becomes a classical BSS problem. The CPD model for 

3rd-order fMRI data and its matrixing is shown in Figure 1. Actually, the 
matrixed fMRI data is the concatenated data from multiple subjects along 
the subject dimension [22].

Then, the source matrix U 2ð ÞT 
can be estimated as:

Yð2Þ ¼WXð2Þ ¼ ½y
2ð Þ

1 , y 2ð Þ
2 , . . . , y 2ð Þ

R �
T
2 RR�I2 , (5) 

where W 2 RR�I1I3 is the unmixing matrix generated by a BSS algorithm 
(usually I1I3 is far larger than RÞ: From (4) and (5) we have

Yð2Þ ¼WA 2ð Þ � U 2ð ÞT ¼ CU 2ð ÞT , (6) 

Figure 1. Illustration of CPD for multi-subject fMRI data and BSS for its matrixing 
data.
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where C 2 RR�R is the global matrix, of which only one nonzero element 
existing in each row and each column under a suitable BSS method with 
the theoretically global optimization [5,6]. Then we have

y 2ð Þ
p ¼ cp, qu 2ð Þ

q , (7) 

where cp, q is the only one nonzero element in pth row and qth column of 
the global matrix C: Let B ¼ b1, b2, . . . , bR½ � 2 RI1I3�R denotes the pseu-
doinverse matrix of W: Then we have

bp ¼ a 2ð Þ
q c−1

p, q, (8) 

which means bp is just a scaling of a 2ð Þ
q : Construct a matrix Bp by reshap-

ing bp to a matrix such that

Bp ¼ c−1
p, qu 3ð Þ

q ∘u 1ð Þ
q , (9) 

where Bp is a matrix of rank-1. As the SVD of a rank-1 matrix is essen-
tially unique, the left singular vector is the scaling of u 3ð Þ

q and the right 
singular vector is the scaling of u 1ð Þ

q (more details are listed in Appendix 
A). Recovering the factors form the other modes form (8) and (9) could 
also be regarded as the inverse of Khatri-Rao Product. In sum, we can 
have a good estimation of all the factor matrices. However, the indeter-
minacies of scaling and permutation of their columns are unavoidable. 
Thus the variance and polarity indeterminacies still existing for this single 
mode BSS based CPD method [21].

3. Back-projection for correcting the indeterminacies

In this part, we introduce our novel method for solving the variance inde-
terminacy of every single extracted component by CPD in the case of a 
high-order tensor by extending the back-projection in the matrix decom-
position [5–7] to high-order tensor decomposition.

First, after projecting the pth column of the back-projection matrix B 
to the pth estimated source, we have

bp∘y 2ð Þ
p ¼ a 2ð Þ

q c−1
p, q∘cp, qu 2ð Þ

q ¼ a 2ð Þ
q ∘u 2ð Þ

q , (10) 

the back-projection equation of the BSS with two modes of a matrix. As 
y 2ð Þ

p is the estimation of one source, its corresponding vector contains the 
information of all the other modes. Then by matrixing bp and a 2ð Þ

q , we 
have Bp and u 3ð Þ

q ∘u 1ð Þ
q : These two matrices are of rank-1 and just with 

scaling ambiguity. From Equation (9), we have the rank-1 decomposition 
of Bp :

Bp ¼ y 3ð Þ
p ∘y 1ð Þ

p ¼ c−1
p, qu 3ð Þ

q ∘u 1ð Þ
q : (11) 
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Then from Equations (7) and (11) we have

y 3ð Þ
p ∘y 1ð Þ

p ∘y 2ð Þ
p ¼ u 3ð Þ

q ∘u 1ð Þ
q ∘u 2ð Þ

q , (12) 

which y ið Þ
p and u ið Þ

q are colinear ði ¼ 1, 2, 3), and the order of the modes 
could be arranged in sequence:

y 1ð Þ
p ∘y 2ð Þ

p ∘y 3ð Þ
p ¼ u 1ð Þ

q ∘u 2ð Þ
q ∘u 3ð Þ

q : (13) 

Then we have

k y 1ð Þ
p k2 k y 2ð Þ

p k2 k y 3ð Þ
p k2 ¼k u 1ð Þ

q k2 k u 2ð Þ
q k2 k u 3ð Þ

q k2: (14) 

Equations (13) and (14) are the back-projection equations of high- 
order tensor decompositions. According to the high-order back-projection 
theory for CPD, the energies (variances) of the rank-1 tensor components 
are determined (Equation (14)). The energy definition of the pth compo-
nent is as follows:

kp ¼k y 1ð Þ
p k2 k y 2ð Þ

p k2 k y 3ð Þ
p k2: (15) 

Then the energy of every component can be determined and equals to 
its corresponding inherent one theoretically. And the polarity indetermin-
acy also emerges in Equation (12), in fact, if the first mode was selected 
to identify the polarity of features, then the source of pth component in 
the first mode and its corresponding qth estimation in global optimization 
could be mapped and projected as

yð2Þi2p � y
ð3Þ
i3p � y

1ð Þ
p ¼ u 2ð Þ

i2q � u
3ð Þ

i3q � u
1ð Þ

q , (16) 

for any i2 2 1, 2, . . . , I2f g, i3 2 1, 2, . . . , I3f g:

4. Datasets

4.1. Simulation

To verify the correction of variance indeterminacy by our tensor back- 
projection theory, we formed a 3rd-order fMRI-like tensor data and its 
decomposition results under global optimization, i.e. every decomposition 
result is obtained by a proper BSS algorithm, and the columns in any 
mode’s factor matrix only have scaling and permutation ambiguity. The 
fMRI-like data was formed by selecting ten spatially independent compo-
nents (networks) (67541 grey matte voxels for each component) [23] and 
ten serials (1000 points per serial) as the corresponding time courses 
from the ICALAB [24] (Figure 2). The spatial networks were found to 
have potential functional relevance, consisting of regions involved in 
motor function, auditory processing, memory, and the default-mode 
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network [23]. Moreover, the third mode was assumed as the subject 
mode, with entries generated randomly in a restricted range with positive 
numbers (the series are relatively uncorrelated from each other), i.e. the 
CPD model allows each subject to have its specific parameters for their 
common components (spatial maps and time courses) [17, 22]. Then, by 
combining these three modes with an identity core tensor, the third-order 
tensor fMRI-like data was obtained. Some basic tensor operations were 
adopted from the Tensrorlab [25].

Global optimization is an ideal case for theoretical analysis, so obtain-
ing global optimization is not achievable when running ICA algorithms. 
We also decomposed the simulated fMRI-like tensor data to obtain locally 
optimized decomposition results using the single-mode BSS method [21]. 
As one of the classical BSS methods, ICA is a data-driven method widely 
applied for medical signal processing, especially for analyzing fMRI data-
sets. The tensor fMRI-like data was unfolded along the spatial mode into 
a matrix first, and then the InfomaxICA [26,29] method was utilized 
to find the estimation of the spatial sources. After obtaining the back- 
projection matrix, the sources of the other two modes were estimated by 
Equations (10) and (11).

4.2. Resting-state fMRI data

We selected resting-state fMRI data of 4 participants scanned at five dif-
ferent centers in the DecNef Project Brain Data Repository (https://bicr- 
resource.atr.jp/srpbsts/) to form a 3rd-order tensor of time � space �

Figure 2. Simulated time courses and spatial maps for fMRI-like data.
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subjects for testing the back-projection theory. The data were collected 
during rest with the following scan parameters: TR: 2.5 s, TE: 30 ms, Flip 
angle: 80 deg, Phase encoding: PA, Matrix: 64� 64, FOV: 212 mm, 
In-plane resolution: 3.3� 3.3 mm [27]. Due to varying scan counts per 
participant (ranging from 234 to 230), data exceeding 230 scans were 
trimmed for consistency across all datasets. Data preprocessing was com-
pleted with the DPABI [28] for slice timing correction, realignment for 
motion correction, and spatial normalization to MNI standard space. 
Temporal band pass filtering 0.01–0.1 Hz was applied to the data.

We applied the single-mode BSS method for the real fMRI data, and 
InfomaxICA was selected to extract the independent spatial maps from 
the matrixed data. After obtaining the spatial maps and their coefficients 
(the back-projection matrix), the sources of the temporal and subject 
modes were estimated by Equations (10) and (11).

5. Results

5.1. Results of simulated data

Figure 3 shows the global matrix under global and local optimization, 
respectively. For the global optimization case, there is precisely one non-
zero entry in each row and each column of the global matrix. For the 
local optimization case, the global matrix has only one element with a 
comparatively large absolute value in each row and column, and this 
covers the locally optimized CP decomposition [6].

Figure 3. Global matrix under global optimization and local optimization. Under 
global optimization, there is only one nonzero element in each row and column of 
the global matrix; for local optimization, there is only one element with a compara-
tively large absolute value in each row and column.
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The energies for all the estimated components were computed by 
Equation (15) to validate the correction of the variance indeterminacy. 
After unifying the order of the sources and the estimations in descending 
way, the energy for every source component and its estimation were com-
pletely identical under global optimization. As the global matrix simulated 
under local optimization has only one element with a comparatively large 
absolute value in each row and each column, the energy for every source 
component and its estimation were almost identical (Figure 4).

Besides, the correlation between the sources and estimations was calcu-
lated along each mode to check the indeterminacy of polarity. We also cal-
culated the Hadamard product that combines all the correlation matrices 
for all modes to form the component correlation coefficients, and the 
polarity indeterminacy automatically emerged as we analyzed from 
Equations (12) and (16) (Figure 5). Then, the first mode of the simulated 
fMRI-like data was used to assess the correction of polarity indeterminacy. 
The projected courses are shown in Figure 6 and the index of the other 
modes, i.e. i2 and i3, are randomly selected. Under global optimization, 
the projections in the first mode were completely identical between the 
sources and their global estimations. Though the polarity of the projec-
tions was corrected under local optimization, the amplitudes may not be 
completely identical between some of the local estimations and sources.

5.2. Results of resting-state fMRI data validation

For the real third-order tensor data, 15 components were selected, and 
single-model blind source separation was performed 30 times. The results 

Figure 4. The energy of each component under (a) global optimization and (b) local 
optimization.
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Figure 6. Projection of two components to the first mode. (source data and the 
estimation data).

Figure 5. The correlation matrix of the three modes and the whole components 
under global and local optimization, respectively.
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of clustering estimated independent components using agglomerative 
hierarchical clustering are shown in Figure 7(a), where Iq represents 
the difference between the within-class average similarity (absolute value 
of Pearson correlation coefficient) and the between-class average similar-
ity. For the first few clusters, the Iq values are relatively close to 1, 
whereas for the later clusters, the Iq values are relatively lower, and there 
is a slight deviation in the number of features in the last two clusters. 
Figure 7(b) shows the correlation matrix for each mode and the whole 
component. For each mode, the Pearson correlation coefficients were cal-
culated for all features in two different runs to form the correlation 
matrix. For the whole component, the correlation was calculated for the 
tensor components (reshaped as a long vector) in different runs, and the 
polarity indeterminacy was removed. Due to the statistical independence 
constraint applied to the matrix factorization of the second mode, the 
matrix factors of the other two modes exhibited correlated components. 
However, this correlation did not affect the elimination of polarity 
indeterminacy.

Figure 8(a) compares the energies of the same component under 
different runs, and the corresponding values for the same component 
were roughly identical. The variance and polarity of the two loadings 
were different in different runs (Figure 8(b)). Then, the subject 
mode was used to assess the correction of polarity indeterminacy. 
Under two randomly selected indexes of the other two modes, the 
polarity indeterminacy of the loadings was corrected, while the vari-
ance indeterminacy was not corrected well in real data analysis 
(Figure 8(c)).

Figure 7. The clustering results of multiple runs and the correlation between two 
different runs. (a) Cluster feature count and quality index. (b) Correlations between 
two different runs.
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6. Conclusion

In this article, encouraged by the back-projection of ICA to solve the vari-
ance and polarity indeterminacies, we extended it to the single mode BSS 
based CPD for high-order tensors. We formed the one-to-one corres-
pondence between the inherent components and the estimated compo-
nents, evaluated the estimated energy for every single component, and 
theoretically solved the indeterminacy problem of variance and polarity 
for every component. From the simulation data, we validated the theory 
successfully under global optimization. We also tested the theory in local 
optimization for simulated data and real fMRI data analysis, the variance 
and polarity indeterminacies were corrected effectively. It is promising 
that our proposed high-order back-projection theory for CPD can be 
applied to some real-world neuroscience data decomposition.
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Appendix A
A. 1. Khatri-Rao product

The Kronecker product of two matrices A 2 RI�J and B 2 RK�L is

A� B ¼

a11B a12B
a21B a22B

. . . a1JB

. . . a2JB
..
. ..

.

aI1B aI2B
. .

. ..
.

. . . aIJB

2

6
6
6
4

3

7
7
7
5
2 RIK � JL: (A.1) 

And the Khatri-Rao product of two matrices A 2 RI�J and B 2 RK�J (the 
number of columns of these two matrices should be identical) is a matrix defined 
as:

A⨀B ¼ a1 � b1, a2 � b2, . . . , aJ � bJ½ � 2 RIK � J, (A.2) 

which can be considered as the column-wise of Kronecker product.

A.2. The uniqueness of SVD for rank-1 matrix

Given a m� n ðm � nÞ real matrix A, its singular value decomposition is 
defined as the following equation

A ¼ URVT , (A.3) 

where U ¼ ½u1, u2, . . . , um� is a m�m orthogonal matrix, V ¼ ½v1, v2, . . . , vn� is a 
n� n orthogonal matrix; The diagonal elements, r1, r2, . . . , rn, of R are the sin-
gular values of A, and r1 � r2 � . . . � rn � 0:

In matrix summation form, Equation (A.3) can be transformed into:

A ¼
Xn

k¼1
rk � uk � vk

T : (A.4) 

If r1 � r2 � . . . � rm > rmþ1 ¼ . . . ¼ rn ¼ 0, m < n, then we have the trun-
cated SVD of A :

A ¼
Xm

k¼1
rk � uk � vk

T : (A.5) 

The truncated SVD of a matrix is essentially unique. Especially, if A is a matrix 
of rank-1, then 1

r1
A ¼ u1 � v1

T and k u1k2 ¼ 1, k v1k2 ¼ 1, k u1 � v1
Tk2 ¼ 1:

If there are also two different column-wise vectors, a, b satisfy k a�b1
T k2 ¼ 1 

and 1
rk

A ¼ a � bT , then we have

a ¼
1
c

u1, b ¼ cv1 (A.6) 

where c is a non-zero scalar.
Proof:

1
rk

A � v1 ¼ u1 � v1
T � v1 ¼ u1 (A.7) 
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1
rk

A � v1 ¼ a � bT � v1 ¼ a � bT � v1
� �

¼ ca, (A.8) 

where c ¼ bT � v1: Then from Equations (A.7) and (A.8) we have a ¼ 1
c u1:

Then we have

u1
T � a � bT ¼ u1

T � a � bT ¼
1
c

bT , (A.9) 

and

u1
T � a � bT ¼ u1

T � u1 � v1
T ¼ v1

T : (A.10) 

Then, from Equations (A.9) and (A.10), we have b ¼ cv1:

Appendix B. Back-projection for CPD with mode N> 3

B.1. Review of the single mode BSS based CPD for N-way tensor

The CPD model for Nth-order tensor X 2 RI1�I2�����IN is

X ¼
XR

r¼1
kr � v 1ð Þ

r ∘v 2ð Þ
r ∘ . . . ∘v Nð Þ

r þ E: (B.1) 

Let the scalar of each component kr be absorbed into the nth mode of its cor-
responding factors. Then we have

X ¼
XR

r¼1
u 1ð Þ

r ∘u 2ð Þ
r ∘ . . . ∘u Nð Þ

r þ E, (B.2) 

where u nð Þ
r ¼ krv

nð Þ
r and u nð Þ

r ¼ v nð Þ
r for n ¼ 1, 2, . . . , n − 1, nþ 1, . . . , N: And the 

mode-n matrixing of X is

XðnÞ¢A nð Þ � U nð ÞT 2 R IN�����Inþ1�In−1�����I1ð Þ�In , (B.3) 

where A nð Þ ¼ ⨀k6¼nU nð Þ, and U nð Þ is the source matrix. Then we can use a BSS 
method to calculate an unmixing matrix W to estimate the source from 
Equation (B.3) such that

YðnÞ ¼WXðnÞ ¼ ½y
nð Þ

1 , y nð Þ
2 , . . . , y nð Þ

R �
T
2 RR�In : (B.4) 

Then we have

Y nð Þ ¼WA nð Þ � U nð ÞT ¼ CU nð ÞT , (B.5) 

where C 2 RR�R is the global matrix, of which only one nonzero element existing 
in each row and each column under a suitable BSS method with the theoretically 
global optimization. Then we have

y nð Þ
p ¼ cp, qu nð Þ

q , (B.6) 

where cp, q is the only one nonzero element in pth row and qth column of the 
global matrix C, indicating that the uniqueness for the features along each mode 
of the tensor is still up to a scalar indeterminacy even the estimation is under the 
global optimization.
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Let B ¼ b1, b2, . . . , bR½ � 2 R IN�����Inþ1�In−1�����I1ð Þ�R denotes the pseudoinverse 
matrix of W: Then we have

bp ¼ a nð Þ
q c−1

p, q, (B.7) 

thus bp is just a scaling of a nð Þ
q : And from Equation (B.3) the qth column of A 

could de denoted as

a nð Þ
q ¼ �k6¼nu nð Þ

q : (B.8) 

Then u nð Þ
q could be calculated from a series of SVD of rank-1 matrices.

B.2. Back-projection for correcting the indeterminacies

Then, we extend the back-projection theory to Nth-order CPD.
Firstly, projecting the pth column of the back-projection matrix B to the pth 

estimated source, we have

bp∘y nð Þ
p ¼ a nð Þ

q c−1
p, q∘cp, qu nð Þ

q ¼ a nð Þ
q ∘u nð Þ

q , (B.9) 

the back-projection equation of the BSS with two modes of a matrix. As y nð Þ
p is 

the estimation of one source, its corresponding vector bp contains the informa-
tion of all the other N − 1 modes. Reshaping bp to a matrix of size ðIN, IN−1 �

� � � � Inþ1 � In−1 � � � � � I1Þ, and from Equations (B.7) and (B.8) we have

BN−2
p ¼ c−1

p, qu Nð Þ
q ∘ �k6¼n, Nu nð Þ

q

� �
, (B.10) 

where BN−2
p 2 RIN�ðIN−1����Inþ1�In−1�����I1Þ is the matrix of rank-1 reshaped from 

bp, and N − 2 here just symbols the column of BN−2
p containing the information 

from N − 2 mode of the tensor. As the rank-1 SVD is essentially unique for a 
rank-1 matrix, we can estimate u Nð Þ

q up to a scalar indeterminacy by the left sin-
gular vector y Nð Þ

p :

BN−2
p ¼ y Nð Þ

p ∘b N−2ð Þ
p ¼ c−1

p, q u Nð Þ
q ∘ �k6¼n,Nu nð Þ

q

� �
, (B.11) 

where the only nonzero singular value is contained in one of the singular vectors. 
Then the right singular vector b N−2ð Þ

p is the estimation of �k6¼n, Nu nð Þ
q up to a scalar 

indeterminacy. Then reshaping b N−2ð Þ
p to a matrix BN−3

p of size ðIN−1, IN−2 � � � � �

Inþ1 � In−1 � � � � � I1Þ, and from the procedure above we have

BN−3
p ¼ y Nð Þ

p ∘y N−1ð Þ
p ∘b N−3ð Þ

p ¼ c−1
p, q u Nð Þ

q ∘ �k6¼n,N,N−1u nð Þ
q

� �
: (B.12) 

Then repeating the procedure several times we finally have

y Nð Þ
p ∘ . . . ∘y nþ1ð Þ

p ∘y n−1ð Þ
q ∘ . . . ∘y 1ð Þ

p ¼ c−1
p, q u Nð Þ

q ∘ . . . ∘u nþ1ð Þ
q ∘u n−1ð Þ

q ∘ . . . ∘u 1ð Þ
q (B.13) 

Then from (B.6) and (B.13) we have

y Nð Þ
p ∘y N−1ð Þ

p ∘ . . . ∘y 1ð Þ
p ¼ u Nð Þ

q ∘u N−1ð Þ
q ∘ . . . ∘u 1ð Þ

q , (B.14) 

and
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k y Nð Þ
p k2 k y N−1ð Þ

p k2 . . . k y 1ð Þ
p k2 ¼k u Nð Þ

q k2 k u N−1ð Þ
q k2 . . . k u 1ð Þ

q k2: (B.15) 

Then, we finally established a one-to-one correspondence between any 
estimated component and one latent component. The two equations above 
extended the back-projection to N-way CPD by eliminating the indeterminacies, 
i.e. the scalar indeterminacy, and calculating the energy of pth estimated compo-
nent. The polarity indeterminacy of any feature from any mode could also be 
eliminated by projecting the coefficients to it (the N-way extension of Equation 
(16)):

yð2Þi2p � . . . � yð3ÞiNp � y
1ð Þ

p ¼ u 2ð Þ
i2q � . . . � u 3ð Þ

iNq � u
1ð Þ

q : (B.16) 
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