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Abstract

Genomic best linear unbiased prediction (GBLUP) is a method widely used
in animal and plant breeding. It uses individuals’ genomic information to es-
timate breeding values. Breeding values are an essential part of animal and
plant breeding, and they tell the genetic merit of an individual compared
to the others. Using estimated breeding values (EBVs), breeders can select
the best individuals to be the ancestors of the next generation. To estimate
breeding values accurately, relationship information from the breeding pop-
ulation should be used. A relationship matrix is constructed using either
pedigree or genetic information. In GBLUP, the relationships of a popu-
lation are presented in a genomic relationship matrix, which is constructed
using the individuals’ genetic information. The genomic information is usu-
ally based on single nucleotide polymorphisms (SNPs), which tell the variant
of a gene an individual carries.

A linear mixed model is a typical choice for estimating breeding values. In-
dividual breeding values are treated as random effects in the linear mixed
model. Using Henderson’s mixed model equations (MMEs) makes it possible
to obtain the estimates for the fixed and random effects simultaneously. A
hybrid model in plant breeding is a linear mixed model in which phenotypic
observations are explained by both maternal and paternal effects separately
and a cross effect. A cross is a plant that emerges when two plants reproduce.
This thesis shows how a hybrid model is fitted using a GBLUP model.

When the number of individuals is large, the use of exact solving meth-
ods becomes computationally infeasible, making the use of iterative solving
methods for solving the MME and approximate methods for obtaining pre-
diction error variances (PEVs) necessary. The behaviour of four methods for
approximating PEVs was studied using a hybrid model. The methods are
called PEV1, PEV2, PEV3, and NF2, and they are widely used methods
to approximate the exact PEV of a model. PEV measures the accuracy of
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an EBV. These methods, which are based on Monte Carlo (MC) sampling
of the model, were compared across different genetic groups and situations.
The results indicate that the methods PEV3 and NF2 work better than the
methods PEV1 and PEV2. Especially the method PEV2 behaved poorly
when the distribution of the exact PEV values was narrow. Overall, the
thesis demonstrates that all the methods work in a hybrid model framework
when the MC sample size is large enough.

Keywords: plant breeding, prediction error variance, estimated breeding
value, GBLUP, linear mixed model, Monte Carlo sampling

ii



JYVÄSKYLÄN YLIOPISTO
Matematiikan ja tilastotieteen laitos
Antero Heikkilä: Kasvinjalostuksessa käytettävän hybridimallin ennustevirhe-
varianssien estimointi hyödyntäen Monte Carlo -simulointia, Pro gradu -
tutkielma, tilastotiede ja datatiede, 49 sivua + 42 liitesivua
20.9.2024

Tiivistelmä

Jalostusarvoilla ilmaistaan yksilön geneettistä hyvyyttä jalostettavan omi-
naisuuden suhteen verrattuna muihin yksilöihin jalostettavassa populaatios-
sa. Seuraavan sukupolven vanhemmiksi valitaan tyypillisesti yksilöt, joiden
jalostusarvojen ennusteet ovat suurimmat toivoen, että heidän jälkeläisillään-
kin olisi hyvät ominaisuudet jalostettavan ominaisuuden suhteen. G-BLUP
(genomic best linear unbiased prediction) -menetelmä on laajasti käytössä
eläin- ja kasvinjalostuksessa. Siinä jalostusarvojen ennustamiseen käytetään
yksilöiltä kerättyä geneettistä tietoa. Jotta jalostusarvojen ennusteet olisivat
mahdollisimman hyviä ja tarkkoja, on tärkeää, että populaation sukulaisuus-
suhteet tiedetään. Erityisesti eläinpopulaatioissa on tavallisesti tiedossa po-
pulaation sukupuu, jonka avulla jalostusarvojen ennustamiseen käytetyissä
menetelmissä, kuten BLUP- ja G-BLUP -menetelmässä, voidaan muodostaa
niissä tarvittava sukulaisuusmatriisi. Nykyisin, kun yksilöiden genotyypittä-
misen hinta on laskenut, on entistä yleisempää muodostaa sukulaisuusmat-
riisi hyödyntäen yksilöiltä kerättyä tietoa snipeistä (SNP), eli yhden nukleo-
tidin polymorfismeista. Snipit ovat edustava otos genomia, ja kuvaavat siinä
olevaa geneettistä vaihtelua.

Tilastollisena mallina jalostuksessa käytetään tavallisesti lineaariseen seka-
malliin pohjautuvaa mallia. Siinä yksilöiden fenotyyppisiä havaintoja seli-
tetään joukolla kiinteitä tekijöitä, kuten ikää, sukupuolta ja painoa, ja sa-
tunnaistekijöitä. Satunnaistekijöinä mallissa ovat erityisesti yksilöiden jalos-
tusarvot, joten ratkaisemalla satunnaistekijöiden ennusteet saadaan ennus-
teet jalostusarvoille. Kasvinjalostuksessa käytettävässä hybridimallissa sa-
tunnaistekijöitä on usein kolme: risteytyksen molempien vanhempien sekä
itse risteytyksen satunnaisvaikutus fenotyyppiseen havaintoon. Tässä tut-
kielmassa hybridimalli sovitetaan käyttäen G-BLUP -menetelmää.

Tutkielman varsinaisena tavoitteena oli selvittää, miten ennustevirhevarians-
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seja (PEV) approksimoivat menetelmät toimivat hybridimallin kanssa. En-
nustevirhevarianssilla mitataan sitä, kuinka lähellä jalostusarvon ennuste on
todellista jalostusarvoa. Approksimoivat menetelmät perustuvat mallin si-
muloimiseen Monte Carlo -menetelmällä. Approksimoivien menetelmien toi-
mivuutta tutkittiin kolmen geneettisen ryhmän välillä, jotka olivat risteytyk-
sen vanhempaiskasvit ja risteytys itse, jonka lisäksi tutkittiin, miten mene-
telmät toimivat tilanteessa, joissa geneettisiä variansseja ja jäännösvarianssia
muutettiin, ja tilanteessa, jossa analyysiin otettiin mukaan vain puolet ha-
vainnoista. Tutkielmaan otettiin mukaan neljä tunnettua menetelmää, joita
kutsutaan nimillä PEV1, PEV2, PEV3 ja NF2. Menetelmät perustuvat mal-
lin simuloimiseen ja niissä verrataan simuloidun jalostusarvon ja simuloidun
datan perusteella saadun jalostusarvon estimaatin välistä eroa. Tämä tut-
kielma osoitti, että kaikki (tutkittavat) ennustevirhevarianssia approksimoi-
vat menetelmät toimivat asymptoottisesti Monte Carlo -näytteiden määrän
kasvaessa myös hybridimallin kanssa. Tutkielmassa kuitenkin selvisi, että me-
netelmien välillä on myös eroja. Parhaimmiksi havaittiin menetelmät PEV3
ja NF2. Sen sijaan erityisesti menetelmä PEV2 toimi huonosti tilanteessa,
jossa ennustevirhevarianssin vaihteluväli oli pieni.

Avainsanat: kasvinjalostus, ennustevirhevarianssi, jalostusarvon ennuste,
G-BLUP, lineaarinen sekamalli, Monte Carlo -simulointi
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1 Introduction

The increasing number of genotyped individuals in plant and animal breed-
ing models causes computational challenges when using exact methods to
calculate estimated breeding values (EBVs) and their reliabilities. The rea-
son for this is the size of the matrices required to compute the breeding value
estimates. Inverting large matrices takes time and memory; even relatively
small matrices cannot be inverted in a feasible amount of time. The time
complexity, even for the best algorithms for matrix inversion and multiplica-
tion, is clearly over O(n2), where n is the dimension of the matrix (Ambainis,
Filmus, and Le Gall, 2015). Since the size of the matrices is directly related
to the number of animals and plants, the limit of direct matrix inversion is
reached quickly. Therefore, there is a need to develop both algorithms for
estimating the breeding values, such as preconditioned conjugate gradient
(Strandén and Lidauer, 1999), and for approximating the reliabilities of the
breeding values, such as Monte Carlo (MC).

In the first part of this thesis, we will introduce the basics of animal and plant
breeding models so that statisticians unfamiliar with the field of breeding will
understand the basic concepts. The basics of animal and plant breeding are
discussed in Section 2. As gene technology in animal and plant breeding
models has increased rapidly, we will explain how genetic information can be
included in the models. The main focus of this thesis is the accuracy and
reliability of the EBVs, especially the concept of prediction error variance
(PEV). We will show with examples of how we can express the relationships
of animals and plants using either pedigree or genetic information of the
individuals. A useful reference for animal breeding is provided by Juga et al.
(1999).

Charles Roy Henderson (1911–1989) invented Henderson’s mixed model equa-
tions (MMEs) in the mid-20th century. Using Henderson’s MMEs, it is pos-
sible to simultaneously obtain the estimates for the fixed and random effects
of a linear mixed model. After inventing Henderson’s MMEs, Henderson
developed many other important and useful methods and practices, which
animal and plant breeders have used since then. Even though it sounds like
a cliché, it can be said that Henderson is the father of animal breeding (Van
Vleck, 1998).

Relationship matrices play an essential role in the models extensively used
in animal and plant breeding. In Section 3, we will explore the construction
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of relationship matrices using two alternative methods. Most animal and
plant breeding models are based on best linear unbiased prediction (BLUP),
which is discussed in more detail in Section 4. We will also examine the
extensions of this basic breeding model, namely genomic best linear unbiased
prediction (GBLUP) and SNP-BLUP, where SNP stands for single nucleotide
polymorphism. The different models used in animal breeding are discussed
thoroughly by Mrode and Thompson (2014).

After the first part of the thesis, we will apply these models in practice using
exact methods on data supplied by Natural Resources Institute Finland. The
data are simulated and try to mimic real-world data as well as possible. A
GBLUP model is applied to the data in Section 5. When using simulated
data, we know and can decide the parameters, such as genetic variances.
As implied, this thesis aims to evaluate how well the approximate methods
for obtaining the accuracies of the EBVs work and how many MC samples
are needed to achieve sufficient results. The MC simulation is presented in
Section 6.

One of the first methods for estimating PEVs using resampling was presented
by García-Cortés et al. (1995), and some new formulations were introduced
by Hickey et al. (2009). Hickey et al. (2009) compared ten different MC-
based methods for computing the approximated PEVs, and this thesis will
have a similar perspective when comparing these methods. Although the
methods have been tested and used for tens of years, they have not been
used with a hybrid model in plant breeding. This thesis will show how these
methods work with a hybrid model. The results are presented in Section
7. On the whole, this thesis provides an introduction to statistical models
in animal and plant breeding and creates a foundation for further research
on this topic. In Section 8, we will summarize the thesis and consider what
could be done in the future.

This thesis was conducted in collaboration with Natural Resources Institute
Finland. The author expresses gratitude to research professors Ismo Strandén
and Martin Lidauer, as well as research scientist Anna-Kaisa Ylitalo, for
providing the topic and data and guiding the project. The author also wishes
to acknowledge CSC – IT Center for Science, Finland, for computational
resources.

The analysis was done with the statistical software R (R Core Team, 2023).
Grammarly was used to improve the grammar of this thesis (Grammarly,
2024). ChatGPT was used to edit the drawing code for the correlation plots
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and scatterplots drawn with the function ggplot2 in R (OpenAI, 2024; Wick-
ham, 2016).

2 Basics of animal and plant breeding models

The main goal in animal and plant breeding is to improve a population by
selecting the best individuals to be the ancestors of the next generation. The
selection is usually based on EBVs, which are calculated for each individ-
ual. EBVs measure the genetic potential of an individual relative to the
population to which it belongs. Breeding values in a statistical context are
discussed in Isik, Holland, and Maltecca (2017) and Mrode and Thompson
(2014). We will introduce two crucial terms to understand breeding: pheno-
type and genotype. A phenotype is “an organism’s appearance or observable
traits” (Campbell et al., 2018, pp. 319-326). Examples of phenotypes are
the colour of a flower, the height of a human, the milk production of cows, or
basically any physical characteristic. In practice, a phenotype is a character-
istic that can be observed and measured. Phenotypes are usually affected by
both genetic and environmental factors. For example, the weight of an ani-
mal depends on both its genes and environmental factors, such as the amount
and quality of food available. Conversely, a genotype is an individual’s “ge-
netic makeup” (Campbell et al., 2018). It refers to an individual’s genome,
which is the inherited genetic information, including genes and DNA. The
phenotypes of two individuals can be the same, even if their genotypes differ.
For example, two flowers can have the same colour while having different
genotypes. More precisely, these two flowers have different alleles, which are
alternative versions of a gene. Therefore, different genotypes do not always
result in different phenotypes. Conversely, the same genotype can result in
a different phenotype due to environmental factors.

Breeders can base their decisions on one or more phenotypes or traits they
want to breed in their population. In animal and plant breeding, breeders
can use single or multiple-trait models. The difference between these two is
that there is only one response variable in a single-trait model, while in a
multiple-trait model, there are two or more response variables. A single-trait
model is less complicated to fit, but with multiple-trait models, it is possible
to get more accurate results.

In general, we want to determine how the variation in a phenotype is divided
between genotypic and environmental variations. In other words, we want to
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know how much genes and genotype affect the phenotype compared to how
much environmental factors, such as food, sunlight and maternal effects,
affect the phenotype. The more the phenotype is affected by the genotype,
the easier it is for breeders to estimate breeding values of the next generation’s
parents based on genetic information. On the other hand, if the phenotype
is affected more by environmental factors, then the selection of the parents
for the next generation based on genotypes is not as effective, and breeders
should instead pay attention to a favourable environment.

In the next subsections, we will examine breeding values and genetic models
more closely; the subsections are mainly based on Mrode and Thompson
(2014).

2.1 Breeding value

A breeding value is an individual’s genetic merit for a trait, which can be
weight, milk production, fertility, or any other physical characteristic. The
breeding value can be specific to only one trait or a combined value for many
different traits. The breeding value indicates how good or bad an individual
is compared to other individuals in the population. Breeding values cannot
be measured directly from an animal or a plant but can be estimated. We
will denote the true breeding value as a and the EBV as â. Usually, breeders
select individuals with the highest EBVs to reproduce with other individuals
with high EBVs, hoping the offspring will also have high breeding values for
the trait(s) of interest.

EBVs are presented in the same unit as the measurable trait. For exam-
ple, if the trait is weight in kilograms, the breeding values are also in kilo-
grams. Breeding values are usually presented as deviations from the pop-
ulation mean. Therefore, positive EBVs indicate that the individual has a
better chance of producing offspring with good characteristics for the desired
trait. There is a connection between an individual’s breeding value and the
breeding values of its sire and dam. Since an individual inherits half of its
genes from the sire and half from the dam, on average, the breeding value
of an individual is approximately the average of its parents’ breeding values.
However, since genetic variation exists between the genes that parents pass
to their offspring, an individual’s breeding value is not exactly the average
of its parents’ breeding values. The difference is called Mendelian sampling.
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Thus,
ai = 1

2ai,s + 1
2ai,d + mi, (1)

where ai is the breeding value of individual i and ai,s, and ai,d are the breeding
values of its sire and dam, respectively. The last term, mi, is the Mendelian
sampling term, which is assumed to follow a normal distribution with mean
zero.

For example, if the trait of interest is milk production per 305 days, and a
cow has a breeding value of 200 litres of milk per 305 days, then the expected
breeding value of its offspring would be 100 litres of milk per 305 days. This
means that, on average, offspring of that cow would produce 100 litres more
milk per 305 days compared to the offspring of a cow with a breeding value
of 0.

2.2 Basic genetic model

As said in the previous section, genetic and environmental effects affect an
individual’s phenotype. Nevertheless, as usual in statistics and life, there is
always an element of chance and unpredictability that cannot be attributed
to genetic or environmental factors. It is something that our model can
not explain, and we usually refer to it as a residual, which is the difference
between our estimate and the true value. Mrode and Thompson (2014) define
the basic genetic model as follows:

Phenotypic observation = Systematic environmental effects +
Genetic effects + Random environmental effects,

or more mathematically
yij = µi + gi + ϵij,

where yij is the jth record for the individual i, µi represents the environmental
fixed effects for the individual i, like location or year of birth, gi is the sum
of the additive (ga,i), dominance (gd,i), and epistatic (ge,i) genetic effects of
the genotype of individual i, and ϵij is the sum of random environmental
effects. The additive genetic effect is the average additive effect of genes the
individual inherits from its parents, so ga,i is the breeding value presented
in (1) (Mrode and Thompson, 2014). The dominance means that if a gene
has a dominant allele, the phenotype is determined directly regardless of the
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other allele (Campbell et al., 2018). For example, a locus that determines the
colour of a flower might have two alleles, let us say P and p. Locus (plural
loci) is the position of a gene on a chromosome (Alberts et al., 2002). It is
the “address” of the gene. Then we have four options for the locus: PP, Pp,
pP, and pp. If P is dominant over p, the three first options will yield the
same colour, while the pp will yield a different colour. In summary, epistasis
means that two or more genes at different loci affect together to a phenotype
(Campbell et al., 2018). In other words, the alleles of two genes interact,
which will affect the phenotype.

The effects of dominance and epistasis are often ignored because they make
the calculations harder, and usually, their effect on the phenotype is relatively
small. Also, in this thesis, we assume that their effect is zero if it is not
otherwise mentioned. Alternatively, it is possible to assume that the effect
of dominance and epistasis are included in ϵij. The connection between the
breeding values and the genetic model (when the dominance and epistasis
are ignored) is:

yij = µi + ga,i + ϵij = µi + ai + ϵij,

where ai is the breeding value of the individual. The above genetic model
can be presented also in a matrix form:

y = µ + a + ϵ, (2)

where y, µ, a, and ϵ are all nobs-dimensional vectors. The number of obser-
vations is denoted as nobs. In the context of animal and plant breeding, it is
usually assumed that the random vectors a and ϵ follow multivariate normal
distributions (MVN): a ∼ MVN(0, G) and ϵ ∼ MVN(0, R). The actual
structure of a breeding model is discussed in Section 4.

The genetic model presented in (2) is a starting point for a linear mixed
model typically used in breeding. We are especially interested to solve the
predictions for a in (2) since a holds the breeding values. The linear mixed
model and BLUP are discussed in more detail in Section 4.

In the framework of a genetic model, we assume additionally that all the
variance components, Var(y), Var(a), and Var(ϵ), are known. It is usually
assumed that there is no correlation between environmental and genetic ef-
fects, nor a correlation between the individuals. However, there are some
exceptions when there is a correlation between genotype and environment.
Falconer and Mackay (1996) give an example related to dairy cattle: if the
cows are fed according to their yield, the cows with better milk yield get
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more food. Even though there are some situations with a correlation be-
tween genotype and environment, the magnitude of the covariance between
them is almost always unknown.

Assuming no correlation between environment and genetic effects, we get
that Cov(a, µ) = 0 and Cov(a, ϵ) = 0. The phenotypic variance is then:

Var(y) = Var(µ + a + ϵ)
= Var(µ) + Var(a) + Var(ϵ)
= Var(a) + Var(ϵ).

As we can see, we can partition the phenotypic variance into different sources
of variation and estimate how much of the variation in a phenotype is due
to genetics and how much it is due to random environmental factors. With
these variance components, an estimate for heritability can be calculated,
which will be discussed in the next section.

2.3 Heritability

Breeders are interested in how much the differences between individuals’
phenotypic observations are affected by genetic differences between them.
Heritability of a trait expresses the proportion of the phenotypic variation
Var(y) explained by the genotype (Juga et al., 1999). It is defined as a ratio:

h2 = Var(a)
Var(y) ,

where Var(a) is the additive genetic variance of the population and Var(y) is
the phenotypic variance. It is (clearly) a value between 0 and 1. The higher
the heritability is, the easier it is for the breeders to make the selection since
the variation is mainly in genes and not in things that breeders could not
maybe affect so easily. Breeders hope to see as high heritability values as
possible. According to Juga et al. (1999), irrespective of animal species, traits
related to fertility and vitality have low heritabilities h2 ≈ 0.0 − 0.1, most
of the structural traits of animals have high heritabilities: h2 over 0.40, and
most of the production traits, such as growth rate and milk production, have
h2 ≈ 0.15 − 0.30. The heritability of human height is about 0.8, which is
high value (McEvoy and Visscher, 2009). This means that genes control 80%
of the variation in height between humans.
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As we can see from the definition of heritability, if the random environmental
effects affect a lot to the phenotypic observation, meaning that Var(ϵ) is
relatively large, then the heritability is low. Correspondingly, if the effect
of random environmental effect is low, meaning that Var(ϵ) is low, then the
heritability is high (Juga et al., 1999).

2.4 Reliability and accuracy of an estimated breeding
value

The accuracy of an EBV is defined as the correlation between the true breed-
ing value and the estimated one. Thus, it can be calculated as follows:

r = Corr(â, a) = Cov(â, a)
σâσa

, (3)

where a is the true breeding value, and â is the EBV. In (3), the components
Cov(â, a) and σâ are estimated with breeding models, such as BLUP, which
is discussed in Section 4. Additive genetic variance σ2

a = Var(a) can be
estimated different time as the other components. Reliability r2 is the square
of accuracy.

PEV measures the precision of an EBV:

PEV = Var(a − â). (4)

PEV can also be estimated with BLUP. The main goal in this thesis is how we
can approximate PEV using MC sampling. We will follow up by calculating
the reliabilities, and especially the PEVs in Section 4.3.

3 Relationship matrices

One of the most important parts of animal and plant breeding models is
to have information about the relationships among individuals in the pop-
ulation. The relationship information can be presented in two alternative
ways. One way is to construct a pedigree-based relationship matrix. It is
constructed using information about the parents of each individual. When
constructing a pedigree-based relationship matrix, we must have the popu-
lation’s pedigree available. The pedigree-based approach is extensively used
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in animal breeding, where the pedigree is usually available. Nowadays, it is
more common to construct a relationship matrix using the genotype informa-
tion; in this approach, the pedigree is not needed. The genomic relationship
matrix requires the genotype information of all individuals to be collected.
When genomic information is known only from some of the individuals, then
a relationship matrix combining genomic and pedigree information can be
constructed.

3.1 Pedigree-based relationship matrix

The pedigree-based relationship matrix, also known as a numerator relation-
ship matrix, A is a square and symmetric n × n matrix, where n is the
number of individuals, and which, in the simplest case, has ones on the diag-
onal (Mrode and Thompson, 2014). However, if the inbreeding is considered,
the diagonal values are 1 + Fi, where Fi is the inbreeding coefficient of the
animal i. Inbreeding can (accidentally) occur in small populations, where, for
example, an animal’s father and grandfather could be the same animal. In
other words, inbreeding means that the individuals are very closely related.
According to Mrode and Thompson (2014), the exact interpretation of the
diagonal value of A is “twice the probability that two gametes taken at ran-
dom from animal i will carry identical alleles by descent.” The off-diagonal
values of A express the degree of the relatedness between two individuals.
They are called the coefficients of relationship (Henderson, 1976). A good
rule of thumb is that the off-diagonal values lie substantially in the range of
0 to 1. Values close to one indicate that the animals are more related, and
values close to zero indicate that the animals are less related. Multiplying
the matrix A with the additive genetic variance σ2

a, we will get the variance-
covariance matrix for the population. There are many ways of constructing
the pedigree-based matrix A and directly constructing its inverse; the in-
verse of the relationship matrix is needed in most animal and plant breeding
models.

Next, we will have a simple example of constructing A matrix using a so-
called recursive method (Henderson, 1976). Let us have the following pedi-
gree as presented in Table 1. When constructing the relationship matrix
A, the parents must precede the descendants in the corresponding pedigree.
Next, we will introduce the rules to form the elements of A. In this exam-
ple, we have inbreeding in the population because the sire and grandsire of
animal number six is the animal number one.
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Table 1: An example of a pedigree for six animals.

Animal Sire of animal Dam of animal
1 Unknown Unknown
2 Unknown Unknown
3 1 2
4 1 2
5 Unknown 4
6 1 4

The rules for constructing A follow Henderson (1976) and Mrode and Thomp-
son (2014, pp. 22-33). We will denote the elements of A as qij, where i is
the ith row of the matrix, and j is the jth column. Here, the letter s refers
to the sire of the animal i, and the letter d refers to the dam of the animal i.

i) If both parents of the animal i are known, then the elements are

qji = qij = 1
2 · (qjs + qjd), when i > j or

qii = 1 + 1
2 · qsd.

ii) If only one parent of the animal i is known (sire or dam), then the
elements are

qji = qij = 1
2 · qj(s or d), when i > j or

qii = 1.

iii) If both parents of the animal i are unknown, then the elements are

qji = qij = 0, when i > j or
qii = 1.

Using these three rules, we can build up A for our example using the pedigree
given in Table 1. Below are some calculations of how these elements are
calculated in our example. The resulting relationship matrix A is given in
Table 2.
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q11 = 1 (both parents of animal 1 are unknown, so we use the rule iii))
q12 = q21 = 0 (both parents of animal 2 are unknown, so we use the
rule iii))
q22 = 1

q13 = q31 = 1
2 · (q11 + q12) = 1

2 · 1 = 1
2 (both parents of animal 3 are

known, so we use the rule i))

q23 = q32 = 1
2 · (q21 + q22) = 1

2 (both parents of animal 3 are known,

so we use the rule i))
q33 = 1

q14 = q41 = 1
2 · (q11 + q12) = 1

2 (both parents of animal 4 are known,

so we use the rule i))
...

q66 = 1 + 1
2 · q14 = 1 + 1

2 · 1
2 = 1.25

Table 2: The numerator relationship matrix A for six animals based on the
pedigree given in Table 1.

Animal 1 2 3 4 5 6
1 1.000 0.000 0.500 0.500 0.250 0.750
2 0.000 1.000 0.500 0.500 0.250 0.250
3 0.500 0.500 1.000 0.500 0.250 0.500
4 0.500 0.500 0.500 1.000 0.500 0.750
5 0.250 0.250 0.250 0.500 1.000 0.375
6 0.750 0.250 0.500 0.750 0.375 1.250

In our example, most of the diagonal values of A are 1s, which means that
those animals are not inbred. However, the inbreeding coefficient of animal
number six is 0.25, which means the animal is inbred. The inverse of A is
needed in animal models, so the next step is to invert the matrix. Here,
we demonstrated one method to construct the pedigree-based relationship
matrix. There are faster methods of constructing A and directly constructing
its inverse. But we do not go deeper into those methods in this thesis.
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More information about these methods is found, for example, in Mrode and
Thompson (2014, pp. 22-33).

A numerator relationship matrix provides information about the expected
relationships between individuals. The values in the matrix A indicate the
expected relationships between the individuals (Wang, Misztal, and Legarra,
2014). The expected relationships are based on expectations for actual iden-
tity at individual loci (Hill and Weir, 2011). For instance, the expected
relationship value for full-sibs is 0.5, and for half-sibs, it is 0.25. The ex-
pected genetic relationship between the parent and the offspring is 0.5, as
the offspring inherits half of its genes from one parent. If two individuals are
not connected by pedigree and do not share common ancestors, the expected
relationship value is 0. Usually, it is assumed that the founders of the pedi-
gree are unrelated. However, these assumptions might not hold in nature
because there is a limited number of genes, and there might be linkage dise-
quilibrium between the alleles of loci. This means that there is an association
of alleles at two or more different loci, which is not random (Slatkin, 2008).

Next, we will introduce the alternative relationship matrix, the genomic re-
lationship matrix. But before that, we will shortly tell what SNPs are, as
genomic relationship matrices are based on SNP information of individuals.

3.2 Single nucleotide polymorphism

SNPs are specific locations in the genome sequence where the nucleotide dif-
fers within a population. Some fraction of the population has one nucleotide,
and some fraction has another nucleotide (Alberts et al., 2002). Most of the
SNPs do not affect phenotype, but a subset is responsible for the differences
in a phenotype. For example, the DNA sequences of a human and a chim-
panzee are 99 % identical, while the DNA sequences of two different humans
are over 99.9 % identical (Alberts et al., 2002). This shows that even slight
discrepancies can be noticeable.

3.3 Genomic relationship matrix

Instead of having a pedigree showing the relatedness of the individuals, we
might have genetic information from the individuals. Including genetic in-
formation in animal breeding models began in the early 21st century when
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Meuwissen, Hayes, and Goddard (2001) presented a method for estimat-
ing breeding values using genotypic data. A couple of years later, Schaeffer
(2006) said that genotyping animals for thousands of SNPs could reduce
the cost of proving bulls by over 90 %. Genomic estimated breeding value
(GEBV) is a breeding value estimated using SNP data. Generally speaking,
we have a marker matrix containing SNP information for all the individuals.
The individuals can be genotyped for over 50,000 SNPs. Nowadays, when
it is actually possible to measure the genotype of an animal or plant—with
DNA marker technology—genotyping the individuals is on the up and up.
The genetic similarity estimates obtained using SNP information are more
accurate than the pedigree-based relationship estimates (Isik, Holland, and
Maltecca, 2017). In this thesis, the genomic relationship matrix is denoted
as Ω. As the pedigree-based relationship matrix, the genomic relationship
matrix is also n × n matrix, where n is the number of individuals.

We will call the matrix that contains the SNP information for every individ-
ual as M. It is an n × m -matrix, where n is the number of individuals and
m is the number of markers. In the process of constructing the genomic rela-
tionship matrix Ω, there must not be any missing data in the M matrix, so
either the missing cells must be deleted, or the values can be imputated with
some method. In this context deleting means either deleting an individual
having a lot of missing SNP information or deleting a marker having a lot
of missing data. The marker matrix should be coded as 0s, 1s and 2s, such
that homozygotes (AA or BB) are coded as 0s or 2s and heterozygotes (AB
or BA) are coded as 1s. Homozygote means that an individual has a pair of
identical alleles for a gene, and heterozygote means that an individual has
different alleles for a gene (Campbell et al., 2018). For example, in Table 3,
we see that plant 1 is homozygous for SNP1 and SNP3 and heterozygous for
SNP2, SNP4, and SNP5. In our example, we will have the following marker
matrix with three plants and five SNPs:

Table 3: An example of a marker matrix M for three plants. Plants are
genotyped for five markers.

Plant SNP1 SNP2 SNP3 SNP4 SNP5
1 0 1 0 1 1
2 2 2 1 0 1
3 0 0 1 2 0

First, we need to create a P matrix that contains twice the minor allele fre-
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quencies (MAFs) for each SNP. This means that each column of the matrix
will represent twice the MAF for the corresponding SNP. To calculate the
allele frequencies for each SNP, we can choose either allele A or B and de-
termine the proportion of that allele in each column. In this case, we will
calculate the allele frequencies with respect to allele B. The allele frequency
of the first column is 1

3 , because plant 1 has (AA), plant 2 has (BB), and
plant 3 has (AA). The allele frequency of B in the first column is:

count of B
count of A and B = 2

6 = 1
3 .

With the same logic, we can count the allele frequency of the second column,
which is 1

2 , because 1 means (AB or BA), 2 means (BB), and 0 means (AA),
so if we count the frequency of the letter B, we get 3

6 = 1
2 . This way we get

all allele frequencies for SNP1, SNP2, SNP3, SNP4, and SNP5, which are
1
3 , 1

2 , 1
3 , 1

2 , and 1
3 , respectively.

Remark 3.1. The allele frequencies can also be counted by simply counting
the mean of the column and dividing it by two. The allele frequency for the
jth SNP is pj = 1

2n

∑n
i=1 mij, where mij is the ith row and jth column of the

marker matrix M.

After counting the allele frequencies, we can continue constructing the ge-
nomic relationship matrix Ω using VanRaden’s first method (VanRaden,
2008). The calculations are done in a similar way as Putz (2018). As said,
P contains twice the allele frequency of each SNP. In this case, our P is

P =


2
3 1 2

3 1 2
3

2
3 1 2

3 1 2
3

2
3 1 2

3 1 2
3

 .

The next step is to center the marker matrix M; the centered M is called C
matrix. Using our P matrix, we can obtain the C matrix:

C = M − P =

0 1 0 1 1
2 2 1 0 1
0 0 1 2 0

−


2
3 1 2

3 1 2
3

2
3 1 2

3 1 2
3

2
3 1 2

3 1 2
3



=

−2
3 0 −2

3 0 1
3

4
3 1 1

3 −1 1
3

−2
3 −1 1

3 1 −2
3

 .
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As VanRaden (2008) presented, a genomic relationship matrix Ω has the
following form, where pj is the allele frequency of the jth SNP:

Ω = CC′

2∑m
j=1 pj(1 − pj)

. (5)

Thus, applying (5) to our example, we finally have the genomic relationship
matrix Ω, presented in Table 4.

Table 4: The genomic relationship matrix Ω for three plants using genotype
information from Table 3.

Plant 1 2 3
1 0.429 -0.429 0.000
2 -0.429 1.714 -1.286
3 0.000 -1.286 1.286

In R, genomic relationship matrices can be constructed using the function
G.matrix in the R package ASRgenomics (R Core Team, 2023; Gezan et al.,
2022).

The genomic inbreeding coefficient for individual i is Ωii −1, and the genomic
relationship coefficient between individuals i and j is Ωij√

ΩiiΩjj
(VanRaden,

2008). “The genomic relationship matrix is an estimator of the actual pro-
portion of genome that is identical by descent across individuals” (Hill and
Weir, 2011). In theory, both the pedigree-based A and the genomic rela-
tionship matrix Ω should reflect the actual relationships in the population.
Additionally, these matrices should be quite similar when created for the
same population. Significant differences between them indicate errors in the
pedigree or in the genotyping (Hill and Weir, 2011).

3.4 Blending genomic relationship matrix

A common problem with Ω matrices is that they are usually not invertible.
That is a problem because, in GBLUP, introduced in the next section, we
need to have the inverse of Ω. Fortunately, there are methods to overcome
this problem. One alternative is to blend Ω with the corresponding pedigree-
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based A matrix. As pedigree is not always available, this approach is not
always possible.

Instead of blending Ω with A, we can blend it with a proportion of an identity
matrix In, which is multiplied by a small value (Hollifield et al., 2022; Gezan
et al., 2022). If the original genomic relationship is Ω, then the blended one
is:

Ωblended = (1 − b) · Ω + b · In,

where b is the desired proportion of an identity matrix. The proportion of
b used changes according to the situation, but small proportions are usually
favoured. For example, Himmelbauer, Schwarzenbacher, and Fuerst (2021)
presented that b = 0.01 caused some bias to the modelling, whereas using
b = 0.001 caused hardly any bias.

As Hollifield et al. (2022) discussed, the differences between blending Ω with
the pedigree-based matrix or with a weighted identity matrix were insignifi-
cant in terms of reliability and inflation of breeding values. In our example
in Section 3.3, our Ω is not invertible, but after blending it with a proportion
of 1% of an identity matrix, inverting it is possible.

4 Best linear unbiased prediction

BLUP is a prevalent method in animal and plant breeding, and it is also the
foundation for more complex models, such as GBLUP, which is discussed
later. In the context of animal and plant breeding, the meaning of the words
in BLUP is presented greatly and concisely by Mrode and Thompson (2014).
In this context, best means that it maximizes the correlation between the
true breeding value and the EBV. Linear means that “predictors are linear
functions of observations” (Mrode and Thompson, 2014). Unbiased means
that the estimates for fixed effects and random effects are unbiased. Pre-
diction stands simply for the fact that we are estimating the true values,
such as animal breeding values. Next, we will define a linear mixed model
and see how the estimates for the fixed and random effects can be estimated
simultaneously using so-called Henderson’s MMEs.
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4.1 Linear mixed model

Usually, in animal or plant models, we have both fixed and random effects
in our models. Thus, the starting point is a simple linear mixed model
presented, for example, by Isik, Holland, and Maltecca (2017):

y = Xβ + Zu + e, (6)

where y is an nobs-dimensional response vector, and nobs is the number of
observations. The incidence matrix X is an nobs × k matrix, where k is the
sum of the number of levels of categorical variables and continuous variables
used as a fixed effect. The incidence matrix relates the fixed effects to the
corresponding observation. The vector β = (β1, β2, ..., βk)′ contains the un-
known fixed effects and its size is k×1. The incidence matrix Z is an nobs ×n
matrix, where n is the number of individuals with at least one observation,
and it relates the random effects to the corresponding observation. The ran-
dom vector u is an n-dimensional vector of unknown random effects. The
residual vector e is an nobs × 1 vector containing the values of the residuals.
The EBVs are obtained as predictions of u. Assumptions for the random
effects u and e depend on the situation. However, we will assume that they
both follow a MVN. Thus:

u ∼ MVN(0, G)
e ∼ MVN(0, R),

where G and R are the corresponding variance-covariance matrices.
Remark 4.1. The linear mixed model presented in (6) is presented without
the intercept. If the intercept is included in the model, the incidence matrix
X would be nobs × (k + 1) matrix having a column of ones as a first column.
In this case β = (β0, β1, ..., βk)′.

As u and e follow MVNs, it follows that y also follow a MVN. Usually,
it is assumed that random effects and residuals are uncorrelated, meaning
Cov(u, e) = 0. With these assumptions, it holds that (Isik, Holland, and
Maltecca, 2017, pp. 74-77):

E(y) = E(Xβ + Zu + e) = Xβ and
Var(y) = Var(Xβ + Zu + e)

= Var(Zu + e)
= ZVar(u)Z′ + R + 0
= ZGZ′ + R.
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The variance structure of the random effects depends on the situation. For
example, if we assume that the observations are uncorrelated, the structure
of R could be σ2

eInobs , where σ2
e is the residual variance. In the context of an-

imal and plant breeding, the variance-covariance matrix G is, usually, either
a weighted pedigree-based relationship matrix σ2

uA or a weighted genomic
relationship matrix σ2

uΩ, where σ2
u is additive genetic variance. Relationship

matrices were discussed in Sections 3.1 and 3.3.

Standard notation is to mark V = ZGZ′ + R. Therefore, the model can be
presented as follows (Isik, Holland, and Maltecca, 2017, pp. 74-77):

y ∼ MVN(Xβ, V)
u ∼ MVN(0, G)
e ∼ MVN(0, R).

The connection to the genetic model, presented in Section 2.2, is that u
presents the breeding values of the individuals: genetic effects. The fixed
effects part Xβ presents the environmental effects, and the residual part e
refers to the random environmental effects. The linear mixed model presented
in (6) is one way of modelling genetic effects.

Since the response variable y follows a MVN, the log-likelihood function for
the model is

log L(β, V) = −1
2 log |V| − 1

2(y − Xβ)′V−1(y − Xβ),

where the constant part of the likelihood function has been ignored (Agresti,
2015). And if the variance-covariance matrix V is known, then maximizing
the log-likelihood function log L(β, V) gives the maximum likelihood esti-
mate for the fixed effects:

β̂ = (X′V−1X)−1X′V−1y.

Using the estimate for the fixed effects β̂, it is then possible to solve the
predictors for the random effects û as Henderson (1963) proved. The solution
is

û = GZ′V−1(y − Xβ̂).

If the variance-covariance matrix V is unknown, it has to be estimated.
Estimation of variance parameters can be done, for example, by using Gibbs
sampling. This thesis does not handle variance component estimation, as
the variance parameters are assumed to be known. More information can be
found from Mrode and Thompson (2014, pp. 251-297).
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4.2 Henderson’s mixed model equations

To obtain BLUP estimates for a linear mixed model, Henderson (1975) devel-
oped a method for simultaneously solving estimates for the fixed effects β̂ and
the random effects û. One of the main advantages of Henderson’s method is
that there is no need to construct or invert the variance-covariance matrix
V. Henderson’s MMEs are presented as follows:

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

] [
β̂
û

]
=
[
X′R−1y
Z′R−1y

]
(7)

[LHS]
[
β̂
û

]
= [RHS].

The solutions for parameters are obtained by inverting the left-hand side
of the equation. It is also a common and convenient practice to call the
parts of (7) the left-hand side of the MME (LHS) and the right-hand side of
the MME (RHS). This practice is beneficial when expanding models to be
more complex. The predictor of random effects û is the BLUP of u (Agresti,
2015), and the estimate for the fixed effects β̂ yields the same results as the
generalized least squares for the β, which means that they are equivalent.

The difference between BLUP and GBLUP is that in a BLUP model G =
σ2

uA, whereas in GBLUP G = σ2
uΩ. Thus, depending on the relationship

matrix used, the model is called differently. The formulas for accuracies and
PEVs, discussed in the next subsection, hold true for both approaches.

4.3 Accuracy of BLUP

As discussed in Section 2.4, the accuracy r of a prediction is the correlation
between the true value and the predicted value. Sometimes, researchers want
to calculate the reliability r2 of the prediction, and that is simply the square
of the accuracy r. We assume that the values of the variances σ2

e and σ2
u are

known or estimated beforehand. If we define the LHS from (7) as[
C11 C12
C21 C22

]
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and the inverse of it as [
C11 C12

C21 C22

]
,

then the PEV vector can be calculated as follows (Mrode and Thompson,
2014, pp. 44-45):

PEV = Var(u − û) = C22σ2
e ,

where σ2
e is the residual variance. For an individual i, the PEV is

PEVi = Var(ui − ûi) = C22
ii σ2

e .

PEV measures the magnitude of the additive genetic variance that is not
explained by the model.

There is a deterministic connection between PEV and reliability. The relia-
bility can be calculated as follows:

r2 = 1 − PEV
σ2

u

, (8)

where σ2
u is the additive genetic variance. The standard error of prediction

is SEP =
√

Var(u − û) =
√

C22.

4.4 SNP-BLUP

A method equivalent to GBLUP is SNP-BLUP (Mrode and Thompson,
2014), where we estimate the effect of each single SNP on the phenotype.
That is the main difference from GBLUP, where we get the EBVs for the in-
dividuals, not for the SNPs, even though we use SNPs when constructing the
genomic relationship matrix. Nevertheless, since the models are equivalent,
we can indirectly calculate the EBVs using SNP-BLUP model’s estimates.

We will use otherwise similar notation as Mrode and Thompson (2014), but
we will have our own notation for the variance matrix of the markers. We
assume that the markers follow a common normal distribution with mean
zero and common variance σ2

g . The marker variance is something that we do
not usually know, but we must instead estimate it with the additive genetic
variance and with a number of markers or with the allele frequencies. The
marker variance can be estimated either as σ2

g = σ2
u

m
, where m is the number

of SNPs or σ2
g = σ2

u

2
∑m

j=1 pj(1−pj) , where pj is the mean of the SNP j and σ2
u is

the additive genetic variance.
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The linear mixed model for estimating the SNP effects can be presented as
follows:

y = Xβ + Wg + e,

where y is an nobs-dimensional response vector, and nobs is the number of
observations. The incidence matrix X is an nobs × k matrix, where k is the
sum of the number of levels of categorical variables and continuous variables
used as a fixed effect. The incidence matrix relates the fixed effects to the
corresponding observation. The vector β = (β1, β2, ..., βk)′ contains the un-
known fixed effects and its size is k × 1. W is an nobs × m centralised marker
matrix as discussed in Section 3.3, so basically W = M − P, where m is the
number of SNPs. The random vector g is an m-dimensional vector of un-
known marker effects. The residual vector e is an nobs × 1 vector containing
the values of the residuals. The marker effects are obtained as predictions
of g. Assumptions for the random effects g and e depend on the situation.
However, we will assume that they both follow a MVN. Thus:

g ∼ MVN(0, σ2
gIm)

e ∼ MVN(0, R),
where R is the variance-covariance matrix for the residuals, usually having
a diagonal form: R = σ2

eInobs (Mrode and Thompson, 2014).

Thus, in a SNP-BLUP model, the effects of SNPs are treated as random,
and SNP effects get direct predictions using a SNP-BLUP model. However,
the breeding values can also be estimated from the SNP-BLUP model using
the following formula: û = Wĝ. Those estimated breeding values û should
be the same as obtained with GBLUP, thus, the results should be the same
when applying SNP-BLUP and GBLUP for the same data. However, since
there are a couple of different methods for constructing G, the estimates for
the breeding values might not be identical. Also, the blending of a genomic
relationship matrix affects the results slightly. Similarly, as in BLUP and
GBLUP, SNP-BLUP model can also be presented conveniently as a MME,
where the results for the fixed and random effects can be obtained simulta-
neously. The MME for the SNP-BLUP is (Mrode and Thompson, 2014):[

X′R−1X X′R−1W
W′R−1X W′R−1W + αI

] [
β̂
ĝ

]
=
[

X′R−1y
W′R−1y

]
,

where the value of α is defined as α = σ2
e

σ2
g
.

One of the main advantages of the SNP-BLUP occurs when the number of
genotyped individuals in the data exceeds the number of SNPs because the
number of SNPs limits the number of random effects in the SNP-BLUP.
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5 Application of a GBLUP model

Next, we will fit a GBLUP model to a simulated data set. We will use a subset
of data from Natural Resources Institute Finland. The reason for only using
the subset is to ensure that the computer’s RAM memory is sufficient for
conducting the exact modelling. The specifications of the computer used
in this thesis are found in Appendix F. From now on, the data means the
subset which we conduct the analysis. The data mimics a typical plant
breeding scheme, where we have two heterotic groups, one male group and
one female group. A male from the male group is crossed with a female from
the female group to produce several genetically identical offspring (clones)
that are tested on different locations. In the following, we name the offspring
of the same parents as a cross, which has repeated phenotypic observations
from different locations. The response variable in this application is the
grain yield, and the observations are made on crosses. In this application,
the parents of the crosses have been genotyped, which means that we can
construct genomic relationship matrices for the parents. The crosses have
not been genotyped.

Our interest in this application is to fit a single-trait GBLUP model for the
data. The model is a linear mixed model with one fixed effect and four
random effects. We will estimate the fixed effect of the location, where
the crosses have been planted, and random effects, which are the general
combining ability (GCA) of the male plants, the GCA of the female plants,
and the specific combining ability (SCA) of the crosses. In addition to that,
we have the residual effect, which is treated as random. In this case, GCA
measures a parent’s impact on the cross’s phenotypic observation, which
is the grain yield. Generally, GCAs predict parental breeding values (Isik,
Holland, and Maltecca, 2017). SCA measures the effect of each independent
cross on the phenotypic observation.

We have SNP information for both male and female plants in the data set:
50,000 SNPs are available from all the individual male and female plants.
In this application, we have separate marker matrices for the male heterotic
group and the female heterotic group because the genotypic variance differs
in those heterotic groups. Since the data are simulated data set, there are
no missing values in the marker matrices, so we do not have to imputate
any missing SNPs. As said before, we will use a single-trait GBLUP model
for the data; in other words, we will use a hybrid model with two genomic
relationship matrices.
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There are 3,000 (nc) unique crosses in the data set: each has eight obser-
vations, so we have 24,000 (nobs) observations in total. Each of the eight
observations has been planted in a different location, so we will see if the
location has some effect. In the data, there are 1,492 (nm) male plants and
1,510 (nf) female plants. The main male plant has been crossed with all
the other 1,491 female plants except the main female plant. Similarly, the
main female plant was crossed with all the other 1,509 male plants except
the main male plant. From each unique cross, eight clones were tested at
eight locations out of 31 possible locations. The covariate used in this ap-
plication, location, is a categorical variable. It has 31 levels, meaning there
are 31 different locations where the crosses have been planted. The range of
observations per location is 9–1,500, while the median is 755.

The linear mixed model, which we are going to use for this situation, is a
single-trait GBLUP hybrid model:

grain_yieldi = locationi + GCAfemale,i + GCAmale,i + SCAcross,i + ϵi. (9)

The random effects are assumed to follow the following distributions:

GCAfemale ∼ MVN(0, σ2
femaleΩfemale)

GCAmale ∼ MVN(0, σ2
maleΩmale)

SCAcross ∼ MVN(0, σ2
crossInc)

ϵ ∼ MVN(0, σ2
e Inobs),

(10)

where Ωfemale and Ωmale are the genomic relationship matrices, with dimen-
sions nf×nf and nm×nm, constructed using VanRaden’s method 1 introduced
in Section 3.3 (VanRaden, 2008).

In plant breeding, it is usual to estimate the variance components at different
times, as the EBVs. In this application, the variance values are σ2

female = 15,
σ2

male = 10, σ2
cross = 6, and σ2

e = 233.

Let us formulate the model using matrix notations for linear mixed models
as in Section 4.1. We have a similar situation as Luo et al. (2023), and we
will use a similar matrix notation:

y = Xβ + Z1u1 + Z2u2 + Z3u3 + ϵ, (11)

where β is a 31-dimensional vector of fixed effects, and we denote u1, u2, and
u3 for the respective BLUPs of GCAfemale, GCAmale, and SCAcross effects,
with dimensions of nf × 1, nm × 1, and nc × 1, respectively. These random
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vectors contain the breeding values. The incidence matrix for the fixed effect,
X, is an nobs × 31 matrix. The incidence matrices for the random effects Z1,
Z2, and Z3 have dimensions of nobs×nf, nobs×nm, and nobs×nc, respectively.
The response vector y and the residual vector ϵ are nobs-dimensional vectors.

The variance-covariance matrix for the residuals R = σ2
e Inobs . The variance-

covariance matrices for the random effects G1 = σ2
femaleΩfemale, G2 = σ2

maleΩmale,
and G3 = σ2

crossInc .

As expressed in the previous section, we can construct the MME to solve the
fixed and random effects simultaneously. In this case, the MME to be solved
is the same as Luo et al. (2023) have:


X′R−1X X′R−1Z1 X′R−1Z2 X′R−1Z3
Z′

1R−1X Z′
1R−1Z1 + G−1

1 Z′
1R−1Z2 Z′

1R−1Z3
Z′

2R−1X Z′
2R−1Z1 Z′

2R−1Z2 + G−1
2 Z′

2R−1Z3
Z′

3R−1X Z′
3R−1Z1 Z′

3R−1Z2 Z′
3R−1Z3 + G−1

3




β̂
û1
û2
û3



=


X′R−1y
Z′

1R−1y
Z′

2R−1y
Z′

3R−1y

 . (12)

The estimates for the fixed and random effects are obtained by inverting the
LHS. The MME is directly constructed using R (R Core Team, 2023). The
genomic relationship matrices G1 and G2 are blended with a function called
G.tuneup from the R package ASRgenomics. The matrices were blended with
one per cent of an identity matrix. After blending the matrices, they were
invertible. Blending genomic relationship matrices were discussed in Section
3.4.

In this example, we do not do any marker selection because there is no missing
marker information, and we do not specify any MAF threshold even though
there are SNPs whose MAF is zero, which means that every plant has the
same allele of that particular SNP.

5.1 Calculating the prediction error variances

As discussed in Section 4.3, PEVs of a model can be obtained using the
diagonal values of the LHS. We denote the inverse of the left-hand side of
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(12) as:

X′R−1X X′R−1Z1 X′R−1Z2 X′R−1Z3
Z′

1R−1X Z′
1R−1Z1 + G−1

1 Z′
1R−1Z2 Z′

1R−1Z3
Z′

2R−1X Z′
2R−1Z1 Z′

2R−1Z2 + G−1
2 Z′

2R−1Z3
Z′

3R−1X Z′
3R−1Z1 Z′

3R−1Z2 Z′
3R−1Z3 + G−1

3


−1

=


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

 .

The PEV vector of this model is:

PEV = diag


C22 C23 C24

C32 C33 C34

C42 C43 C44


 . (13)

PEV contains PEVs for all the predicted random effects: û1, û2, and û3, so
its dimension is 6, 002 × 1. In this thesis, the components of PEV are called
the exact PEV values, and they are used later when comparing the sampled
PEV values to the exact PEV values.

The reliabilities from a GBLUP model can be obtained as follows. The
reliability for an individual i can be calculated (Ben Zaabza, Van Tassell,
et al., 2023):

r2
i = 1 − PEVi

Gii

, (14)

where PEVi is the ith element of the PEV vector. In our case Gii is the
corresponding diagonal value of G1, G2, or G3, depending on the genetic
group to which the individual i belongs. For example, if we are calculating
the reliability for a female plant, we would use G1 since that is the variance-
covariance matrix for the female plants.

If we would like to calculate the reliability of the third female plant in our
data, PEV3 would be the third element from PEV. In the divisor, we would
have the third diagonal element from the matrix G1. So, the reliability for
the third female plant can now be calculated:

r2
3 = 1 − PEV3

diag(G1)3
= 1 − 9.897

30.682 ≈ 0.677,

where diag(G1)3 is the third diagonal element from the matrix G1.
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6 Approximating the prediction error vari-
ances using Monte Carlo sampling

Data sets involved in plant and animal breeding are usually very large. They
can contain observations from millions of individuals. In such a scenario,
exact modelling is not computationally possible. Because of this, we need
to use approximate methods. According to Ben Zaabza, Mäntysaari, and
Strandén (2020) and Ben Zaabza, Van Tassell, et al. (2023), inverting the
genomic relationship matrix with one million genotyped individuals would
take 70 days with 10 CPU threads. One important part of breeding is to
determine how accurate EBVs are. As discussed before, we can measure
that with reliabilities (r2). Since there is a deterministic connection between
PEVs and reliabilities, we will see how methods approximating PEVs work
with a hybrid model.

PEVs obtained using (13) are called the exact PEV values. The sampled
PEVs are values estimating the exact PEVs using MC samples. The sample
size (nMC) refers to the number of MC samples used to calculate the sampled
PEV.

This thesis will compare different formulations to obtain the PEVs using
MC sampling. We will use a similar perspective as Hickey et al. (2009).
They compared ten different formulations to estimate the exact PEVs using
MC sampling. In this thesis, we will compare four different formulations, of
which three are presented by García-Cortés et al. (1995). We will see how
they behave when the sample size increases and how they behave between
the three different genetic groups: male plants, female plants, and crosses. In
addition to comparing these three methods, we will study the behaviour of a
new formulation, which was presented by Hickey et al. (2009). The methods
from García-Cortés et al. (1995) were chosen because they are well-known,
widely used, and easy to implement. The so-called New Formulation 2 (NF2)
from Hickey et al. (2009) was chosen, as it worked well.

We will inspect the correlations between the exact PEVs and the sampled
PEVs, calculate the root mean square errors (RMSEs), and fit linear regres-
sions, where we explain the exact PEVs with the sampled PEVs; with linear
regression, we can measure how biased the sampled PEV estimators are. We
will also observe the maximum absolute differences (MADs) between the ex-
act PEVs and the sampled PEVs. There is also a visualisation of how those
indicators behave as the sample size increases.
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Next, we will introduce how to use MC simulation with the hybrid model,
and in Section 6.3, we will present the formulations for approximating PEVs.

6.1 Notations for Monte Carlo sampling

As MC simulation or sampling can mean many different things, we will state
shortly what we mean by MC in this context. As presented in Section 5,
we have assumed the distributions for the random variables as expressed in
(10). We also assume that the variance components are known. The genomic
relationship matrices Ωfemale and Ωmale are also known since we have the
marker matrices and can construct them with VanRaden’s method. Thus,
the variance values and the genomic relationship matrices do not change
between simulation rounds. However, what does change are the random
effects GCAfemale, GCAmale, and SCAcross, which are denoted as u1, u2,
and u3, respectively. Using these simulated random effects, we will generate
new y using the equation (9). After that, we will solve the MME (12) and
get estimates for the fixed effects and the random effects. We will call it MC
sampling when repeating this process multiple times.

Before introducing the formulations, we must present some notations. The
number of MC samples is denoted as nMC. We will simulate nMC indepen-
dent MC samples for the random effects: ufemale, umale and ucross, assuming
their distributions, shown in (10). For clarity, we will denote ufemale = u1,
umale = u2, and ucross = u3, introduced in (11). After the simulation, we will
have nMC samples for each individual and each cross. We will denote the sim-
ulated values as ũfemale, ũmale and ũcross, whose dimensions are nfemale × nMC,
nmale ×nMC, and ncross ×nMC, respectively. We combine all of those simulated
random effects into one matrix

ũ =

ũfemale
ũmale
ũcross

 =

ũ[1]
female ũ[2]

female · · · ũ[nMC]
female

ũ[1]
male ũ[2]

male · · · ũ[nMC]
male

ũ[1]
cross ũ[2]

cross · · · ũ[nMC]
cross

 ,

with dimension n × nMC. The number of female plants is denoted as nfemale,
nmale is the number of male plants, ncross is the number of crosses, and n =
nfemale + nmale + ncross. For clarity, we will denote the column j of ũ , where
j = 1, ..., nMC, as ũ[j].

Next, we will demonstrate how to simulate data from a breeding model.
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6.2 Simulating data from a breeding model

Multivariate normal samples can be simulated using the following procedure
(Rasmussen and Williams, 2006, pp. 200-201). To generate samples from
y ∼ MVN(m, K), where m is a d-dimensional mean vector and K is a
positive definite symmetric covariance matrix that can be presented as K =
LL′. The lower triangular matrix L is called the Cholesky decomposition of
K. Generating an auxiliary variable x ∼ MVN(0, Id). Then y = m + Lx
has the desired distribution MVN(m, K).

In our case, we will simulate the random effects ũfemale and ũmale with the
procedure mentioned above:

x[j]
female ∼ MVN(0, Infemale)
x[j]

male ∼ MVN(0, Inmale)
ũ[j]

female = Lfemalex[j]
female

ũ[j]
male = Lmalex[j]

male,

where j = 1, . . . , nMC and Lfemale and Lmale are the corresponding lower-
triangular matrices. They can be obtained by solving the Cholesky decom-
positions of the blended genomic relationship matrices Ωfemale and Ωmale.

In practice, the auxiliary variables can be simulated from a univariate normal
distribution such that xfemale

i.i.d.∼ N(0, σ2
female) and xmale

i.i.d.∼ N(0, σ2
male). We

will take nfemale-sized and nmale-sized samples from those distributions and
denote them as x[j]

female and x[j]
male.

To simulate the random effects of the crosses ũ[j]
cross, we do not have to use

Cholesky decomposition because the covariance structure is uncomplicated.
They can be simulated such that ũ[j]

cross ∼ MVN(0, σ2
crossIncross). And, in

practice, we can draw ncross samples from the corresponding distribution like
this: ũ[j]

cross
i.i.d.∼ N(0, σ2

cross).

After we have simulated the random effects, we can generate the response
variable y, which we need to obtain the solutions of the MME (12). Since the
relation between y and the random effects, as expressed in equations (9) and
(11), is yi = locationi + ufemale,i + umale,i + ucross,i + ϵi, we can construct the
simulated observations such that ỹ[j] = Xβ+Z1ũ[j]

female+Z2ũ[j]
male+Z3ũ[j]

cross+ϵ,
where Z1, Z2, and Z3 are the same incidence matrices as presented in (11).
However, in practice, we do not have to simulate any values for the fixed
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effects β, because the expectation of Xβ does not affect the distribution
of random variables (García-Cortés et al., 1995). In other words, we can
assume that E(Xβ) = 0, because we are interested only in PEVs of the
random effects. The generation of the simulated observations is made simply
such that

ỹ[j] = Z1ũ[j]
female + Z2ũ[j]

male + Z3ũ[j]
cross + ϵ,

which yields
ỹ =

[
ỹ[1] ỹ[2] · · · ỹ[nMC]

]
.

We will use a similar notation to the simulated observations ỹ, such that
ỹ[j] means the jth column of ỹ. Using these simulated observations, we will
solve the MME (12) nMC times to obtain estimates with different values of
random effects. We will denote the estimates that we get using the simulated
observations ỹ[j] as û[j]

female, û[j]
male, and û[j]

cross, combining them will result in

û =

ûfemale
ûmale
ûcross

 =

û[1]
female û[2]

female · · · û[nMC]
female

û[1]
male û[2]

male · · · û[nMC]
male

û[1]
cross û[2]

cross · · · û[nMC]
cross

 ,

whose dimension is n × nMC. We will denote the column j of û, where
j = 1, ..., nMC, as û[j].

The formulations for approximating the exact PEV introduced in the next
section rely on measuring how much the simulated random values ũ differ
from the estimates û. The formulations also depend on the number of MC
samples (nMC) used. Comparing the results from different rounds of MC iter-
ations will tell us how much variation there is in the random effects estimates
between the iterations. Our primary interest is determining how the different
methods of approximating the PEV behave as the sample size increases. We
will also compare the accuracy and differences between these methods.

6.3 Methods for estimating prediction error variances

This section will present the four selected methods and their formulations
to obtain the sampled PEV. They were selected as they are easy to imple-
ment and because they are well-known and widely used. The methods have
different assumptions. The first three are presented by García-Cortés et al.
(1995). The first three methods assume that Var(u) = Ωσ2

u. Here, Ω is the
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genomic relationship matrix, and σ2
u is the corresponding additive genetic

variance.

The first method from García-Cortés assumes additionally that Cov(u, û) =
Var(û). The formula for method PEV1 is:

PEV1(ûi) = Var(ui) − VarMC(ûi) = Ωiiσ
2
u − û′

iûi

nMC
, (15)

where ûi is the ith row of û and σ2
u is the corresponding additive genetic

variance.

The second method from García-Cortés does not make any assumption of
Cov(u, û), so it handles the situations where Cov(u, û) ̸= Var(û). The for-
mulation for the method PEV2 is:

PEV2(ûi) = VarMC(ui − ûi) = (ũi − ûi)′(ũi − ûi)
nMC

, (16)

where ũi is the ith row of the simulated random effects.

The third method from García-Cortés et al. (1995) combines the PEV esti-
mates from methods PEV1 and PEV2, and it uses information from both
VarMC(ûi) and VarMC(ui − ûi). As García-Cortés et al. (1995) said, we need
to weight the pooled estimate with a covariance matrix when combining
estimates of the same parameter. For the method PEV3 we assume that
Cov(u− û, û) = 0. We also need to know the asymptotic sampling variances
of the methods PEV1 and PEV2.

PEV3(ûi) = w1iPEV1(ûi) + w2iPEV2(ûi)
w1i + w2i

, (17)

where w1i = 1
Var(PEV1(ûi))

and w2i = 1
Var(PEV2(ûi))

.

The asymptotic sampling variances can be approximated as follows:

Var(PEV1(ûi)) ≈ VarMC(û2
i )

Var(PEV2(ûi)) ≈ VarMC((ũi − ûi)2).

The fourth method we are using in the thesis is introduced by Hickey et al.
(2009), and it is called NF2. It only assumes that Cov(u − û, û) = 0, but
does not make any assumption of Var(u). It uses the PEV estimate obtained
using method PEV2.

PEVNF2(ûi) = PEV2(ûi)
PEV2(ûi) + VarMC(ûi)

Ωiiσ
2
u. (18)
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6.4 Algorithm for estimating prediction error variances
of a hybrid model

This section will provide an algorithm to simulate random effects and solve
the MME using the simulated values. The algorithm uses Cholesky decom-
position to sample from a MVN. Algorithm 1 provides instructions on how
a hybrid model can be simulated and how to produce MC samples from a
hybrid model. It combines the information discussed in Section 6.

7 Comparing the methods approximating pre-
diction error variances

In this section, we will implement the MC sampling to generate replicates of
the data and solve the MME multiple times. We will compare the goodness
of the four different methods approximating the exact PEV values, and we
will also check how close those approximations are to the exact PEV values
obtained via the direct method, presented in Section 5. We will also compare
the accuracies between the three genetic groups and check for differences
among them. The methods and principles used in the comparison follow the
same perspective presented by Hickey et al. (2009). Next, we will present
the tools we will use to determine the goodness of the methods.

7.1 Techniques for comparing formulations

First, to check for the bias of the approximated PEV, we will fit a basic linear
regression, where the response variable is the exact PEV, and the explanatory
variable is the sampled PEV:

PEVexact,i = β0 + β1PEVsampled,i + ϵi, (19)

where
ϵi ∼ N(0, σ2).

Estimates for the slope and intercept tell us how unbiased our approximated
PEVs are. The closer the slope is to one, and the closer the intercept is to
zero, the better our sampled PEV values are. We assume and hope that
the approximated PEV values are as identical as possible compared to the
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Algorithm 1 An algorithm for approximating PEVs of a GBLUP hybrid
model.

Data: A data set with male and female plants and their crosses. Phe-
notypic observations are made on crosses. Male and female plants have
been genotyped.

We will denote the three genetic groups as 1, 2, and 3, such that females
are 1, males are 2, and crosses are 3.

Assumptions: Values for variances σ2
1, σ2

2, σ2
3, and σ2

4 are assumed to be
known. Incidence matrices Z1, Z2, and Z3 for random effects are assumed
to be known. Genomic relationship matrices Ω1 and Ω2 are assumed to
be known.

Set nMC then do:

1: Solve Cholesky decompositions of the genomic relationship matrices Ω1
and Ω2. Denote them as L1 and L2.

2: for j = 1 to nMC do
3: Simulate x[i]

female
i.i.d.∼ N(0, σ2

1), i = 1, ..., nfemale.
4: Calculate ũ[j]

female = L1x[i]
female.

5: Simulate x[i]
male

i.i.d.∼ N(0, σ2
2), i = 1, ..., nmale.

6: Calculate ũ[j]
male = Lmalex[i]

male.
7: Simulate x[i]

cross
i.i.d.∼ N(0, σ2

3), i = 1, ..., ncross.
8: Set ũ[j]

cross = x[i]
cross.

9: Generate simulated data ỹ. ỹ[j] = Z1ũ[j]
female + Z2ũ[j]

male + Z3ũ[j]
cross + ϵi,

where ϵi
i.i.d.∼ N(0, σ2

4) and i = 1, ..., n.
10: end for
11: Construct the MME (12).
12: Solve the MME and calculate the exact PEVs for the random effects

ufemale, umale and ucross using (13).
13: for j = 1 to nMC do
14: Solve the MME such that y is replaced with ỹ[j]. Save the solutions

of the random effects û[j]
female, û[j]

male and û[j]
cross.

15: end for
16: Calculate the sampled PEVs using formulas (15), (16), (17) and (18).
17: Compare the exact PEVs and the sampled PEVs.
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exact PEVs, meaning that each unit of increase in the exact PEV would also
increase the sampled PEV value by one. It is also meaningful to assume that
if the exact PEV is zero, the sampled one is also zero.

When fitting a linear regression, we can also calculate the coefficient of de-
termination, usually R-squared or R2. It is a value between 0 and 1, and
it is the proportion of the variability in the response variable that can be
explained using the explanatory variable(s) (Gareth et al., 2021). If R2 is
close to 1, the linear regression explains almost all the variability in the re-
sponse variable. Correspondingly, a value close to 0 indicates that the linear
regression does not explain the variability in the response variable.

We will also calculate the RMSE, which tells us how much the approximated
PEVs differ from the exact PEVs.

RMSEPEV =
(

1
n

n∑
i=1

(PEVexact,i − PEVsampled,i)2
) 1

2

.

We can also calculate the correlation coefficient q between the exact PEV and
the sampled PEV. In simple linear regression, where there is one response
variable and one explanatory variable, there is a connection between q and
R2 because, in this simple case, it holds that R2 = q2 (Gareth et al., 2021).
In a more general setting, the correlation coefficient can be calculated as

Cor(PEVexact, PEVsampled) =∑n
i=1(PEVexact,i − PEVexact)(PEVsampled,i − PEVsampled)(∑n

i=1(PEVexact,i − PEVexact)2
) 1

2
(∑n

i=1(PEVsampled,i − PEVsampled)2
) 1

2
,

where PEV is the mean of PEV values.

In addition to the above-mentioned techniques, we will also calculate the
MAD between the exact PEV and the sampled PEV. MAD is simply the
largest deviation between those values.

Even though there are many possible statistics to calculate, we will also draw
scatter plots to show how the sampled PEVs and the exact PEVs differ. We
will also see plots showing how the correlation behaves as the sample size
increases. All the plots are drawn using the R-package ggplot2.
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7.2 Main results

In the previous subsection, we discussed various statistics for evaluating four
different formulas that approximate the exact PEVs. One approach is to
compare the absolute difference between the sampled PEV and the exact
PEV. Another method is to calculate the RMSE. Our preferred method is
to calculate the correlation between the sampled PEV and the exact PEV.
However, it is worth noting that the correlation coefficient may not be as reli-
able as the RMSE (García-Cortés et al., 1995). We can also measure the bias
of the estimation by fitting a basic linear model, where the response variable
is the exact PEV and the explanatory variable is the sampled PEV. Ideally,
we want to see the intercept close to zero and the regression coefficient close
to one. Appendix A demonstrates how these measurements improve as the
sample size increases. These statistics are calculated using four sample sizes
(nMC): 100, 1,000, 10,000, and 200,000. The sample size of 200,000 mainly
checks that everything works and that the calculations are implemented cor-
rectly. The statistics are found in Appendix A, and all the plots related to
the analysis of this original design are found in Appendix D.

Using the direct method introduced in Section 5, we can obtain the exact
PEVs, which we can use to compare with the sampled PEVs. The distribution
of the exact PEVs for females was in the range of 3.89–12.09, with a mean
of 7.75 and a standard deviation of 0.96. For males, the same statistics were
4.90–8.73 and (6.44, 0.48). For crosses, they were 5.09–5.33 and (5.18, 0.03).
As we can see, the range of cross’ PEVs is very narrow compared to the male
and female plants.

It was surprising, when comparing to Hickey et al., 2009, how slowly the
correlation between the sampled PEV values and the exact PEV values con-
verged to 1. However, this is happening almost surely, as we see from the
correlation plots in Figures 1, 2, and 3. Maximum number of MC samples
used in this thesis was 200,000. With this number of samples, most of the
correlations were over 0.99. In general, there were differences between the
methods and between the genetic groups. PEV1 converges most slowly with
the males and females, as seen in Figures 1 and 2, as the blue line yields reg-
ularly lower correlations. The method NF2 yields slightly higher correlations
than the methods PEV2 and PEV3. However, what is highly satisfying is
that all the methods seem to work: some converge slower and some faster.

The convergence is faster for the female plants than for the male plants.
Nevertheless, there is a major difference when comparing the convergence
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of the cross group to the male and female groups: the convergence is much
slower with all the methods, as seen in Figure 3. In addition, PEV2 is working
very poorly with the crosses. The correlation after 200,000 MC samples was
still less than 0.9 when using the method PEV2. Overall, the same story
is true for the cross group; the method NF2 works well. With crosses, the
method PEV3 works even better than the method NF2.

Figure 1: Correlation plots with the exact PEV and the sampled PEV us-
ing four different methods approximating the exact PEV. The correlation is
calculated using different numbers of MC samples. Genetic group: females.
Design: original.

More or less, it was the same phenomenon as seen in Figure 4, which hap-
pened at different paces using different methods and with different genetic
groups. As the sample size increases, the sampled PEV values tend to be
closer to the exact ones as presumed. The convergence was slowest with
crosses. The reason for that is not self-evident. One reason might be that
the range for the PEV values for crosses is small compared to the male and
female groups. It is only from 5.09 to 5.33. It might be reasonable to think
that it might take relatively many samples to estimate these PEV values
precisely; however, the RMSEs and the MADs are small. The reason why
PEV2 behaves so poorly might be related to this relatively small range of
these values. Nonetheless, all methods seem to be working when the number
of MC samples is large enough, as demonstrated using 200,000 MC samples.
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Figure 2: Correlation plots with the exact PEV and the sampled PEV us-
ing four different methods approximating the exact PEV. The correlation is
calculated using different numbers of MC samples. Genetic group: males.
Design: original.

7.3 Estimating reliabilities

As discussed in Section 4.3, there is a deterministic connection between PEV
and the reliability of BLUP. As the breeders are usually more interested in
the reliabilities of breeding values rather than PEVs, it is easy to present
these same results in the reliability scale. As the main interest in this thesis
was PEVs, we will not thoroughly analyse the accuracy and goodness of
the prediction of the reliabilities. However, because reliability is always a
value between 0 and 1, and PEVs can take any positive value, it is fruitful to
investigate these reliabilities as well. We will use the same statistics presented
in Section 7.1. Table 5 shows the same statistics for reliabilities calculated
using 10,000 MC samples. Instead of comparing the exact PEV and the
sampled PEV, we will compare the exact and sampled reliability. Thus, we
will use the equation (14) with the corresponding diagonal values from Gii.

As Table 5 shows, the MADs are very low with almost all the methods.
However, the recommended methods for approximating the reliabilities are
PEV3 and NF2. They seem to work with all genetic groups.
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Table 5: Comparison of different methods approximating the exact PEV and
their estimates of the reliabilities with different statistics using 10,000 MC
samples. Design: original.

Statistic Genetic group PEV1 PEV2 PEV3 NF2
Correlation female 0.92 0.99 0.99 0.99

male 0.89 0.97 0.98 0.98
cross 0.93 0.37 0.93 0.90

RMSE female 0.011 0.004 0.004 0.004
male 0.010 0.005 0.004 0.004
cross 0.000 0.002 0.000 0.000

Slope female 0.84 0.98 0.98 0.98
male 0.81 0.95 0.96 0.96
cross 0.86 0.14 0.86 0.80

Intercept female 0.12 0.01 0.01 0.02
male 0.13 0.04 0.03 0.03
cross 0.12 0.74 0.12 0.17

MAD female 0.04 0.01 0.01 0.01
male 0.03 0.02 0.01 0.01
cross 0.00 0.00 0.00 0.00
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Figure 3: Correlation plots with the exact PEV and the sampled PEV us-
ing four different methods approximating the exact PEV. The correlation is
calculated using different numbers of MC samples. Genetic group: crosses.
Design: original.

7.4 Analysis with adjusted variances and with differ-
ent number of observations

The behaviour of four different methods approximating the exact PEVs was
also studied with changed variance components and a different number of ob-
servations. We changed the variances such that we doubled all the additive
genetic variances while we halved our residual variance. Thus, the variance
values in this design were: σ2

female = 30, σ2
male = 20, σ2

cross = 12, and σ2
e =

116.5. The same analysis was done, and no significant differences were no-
ticed, according to Appendix B. The distribution of the exact PEV with the
changed variances for females was in the range of 4.98–14.25, with a mean
of 9.39 and a standard deviation of 1.11. For males, the same statistics were
6.06–13.24 and (8.16, 0.61). For crosses, they were 7.60–9.49 and (8.37, 0.22).

We also conducted the analysis in a scenario where we used only half of the
observations, such that we randomly took only four observations from each
cross into the analysis. In this design, where only half of the observations
were used, the exact PEV values for females were in the range of 5.01–15.46,
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Figure 4: Scatterplots of the exact PEVs and the sampled PEVs using the
method NF2. The scatterplots are drawn using four different numbers of MC
samples. The red line represents the straight y = x. Genetic group: female
plants. Design: original.
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with a mean of 10.07 and a standard deviation of 1.25. These same statistics
for males were 6.26–10.11 and (8.14, 0.59), and for crosses, 5.48–5.59 and
(5.52, 0.01).

We will call the design, where we use all observations and original variances as
the original design. The original design was presented in detail in Section 5.
The design where we changed the variance components is called the changed
variances -design. The design where we randomly took only half of the
observations into the analysis is called the smaller data -design. Captions
related to the figures and tables mention which design is in question. In
addition, at the beginning of all appendices is a brief text indicating to which
design pictures in that appendix are related.

Figures related to the changed variances -design are found in Appendix B.
Figures related to the smaller data -design are found in Appendix C. All
figures related to the original design introduced in Section 5 are found in
Appendix D.

We will compare statistics between these three different designs: original
design, changed variances -design, and smaller data -design using 10,000 MC
samples. The results are found in Tables 6, 7, and 12. When comparing the
correlations, we see that when there are fewer observations, the correlation
of the exact PEV2 and the sampled PEV2 is only 0.14 for crosses. For other
genetic groups, there were no significant differences in the correlations. The
comparison of the correlation estimates between the designs is presented in
Table 8. In Table 7, the correlation for PEV2 is 0.88 for crosses, so it seems
that when there is more variance, the method PEV2 works better. RMSEs
and MADs are not directly comparable between the designs since the absolute
values of the exact PEVs are not the same due to a change in the designs.
Overall, the method PEV2 is not recommended if the distribution of the
exact PEV values is assumed to be very narrow. Also, the method PEV1
converges slower than the three other methods, so it is recommended to use
the methods PEV3 and NF2: they work best in every situation covered in
this thesis.

7.5 Computing times

The simulation (and analysis) was done using a computer, whose specifica-
tions are found in Appendix F. The simulation for 200,000 MC samples was
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Table 6: Comparison of different methods approximating the exact PEV and
their estimates with different statistics using 10,000 MC samples. Design:
smaller data.

Statistic Genetic group PEV1 PEV2 PEV3 NF2
Correlation female 0.98 0.99 0.99 0.99

male 0.96 0.98 0.99 0.99
cross 0.87 0.14 0.87 0.81

RMSE female 0.27 0.15 0.13 0.13
male 0.17 0.12 0.10 0.10
cross 0.01 0.08 0.01 0.01

Slope female 0.97 0.99 0.99 0.99
male 0.92 0.96 0.97 0.97
cross 0.75 0.02 0.76 0.65

Intercept female 0.18 0.14 0.09 0.05
male 0.67 0.29 0.23 0.24
cross 1.36 5.40 1.35 1.92

MAD female 1.02 0.62 0.43 0.50
male 0.58 0.43 0.35 0.34
cross 0.02 0.25 0.02 0.03
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Table 7: Comparison of different methods approximating the exact PEV and
their estimates with different statistics using 10,000 MC samples. Design:
changed variances.

Statistic Genetic group PEV1 PEV2 PEV3 NF2
Correlation female 0.83 0.99 0.99 0.99

male 0.81 0.98 0.98 0.98
cross 0.97 0.88 0.98 0.97

RMSE female 0.71 0.13 0.13 0.16
male 0.45 0.11 0.11 0.13
cross 0.05 0.11 0.05 0.05

Slope female 0.72 0.98 0.98 0.98
male 0.64 0.97 0.97 0.95
cross 0.95 0.77 0.96 0.95

Intercept female 2.66 0.18 0.16 0.17
male 2.95 0.25 0.25 0.39
cross 0.42 1.90 0.36 0.42

MAD female 2.61 0.56 0.55 0.62
male 1.60 0.40 0.40 0.43
cross 0.18 0.45 0.17 0.19
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Table 8: Comparison of different methods approximating the exact PEV and
their estimate of the correlation between the exact and sampled PEV using
10,000 MC samples. Design A refers to the original design. Design B refers
to the changed variances -design. Design C refers to the smaller data -design.

Method Genetic group Design
A B C

PEV1 female 0.95 0.83 0.98
male 0.94 0.81 0.96
cross 0.93 0.97 0.87

PEV2 female 0.99 0.99 0.99
male 0.98 0.98 0.98
cross 0.37 0.88 0.14

PEV3 female 0.99 0.99 0.99
male 0.99 0.98 0.99
cross 0.93 0.98 0.87

NF2 female 0.99 0.99 0.99
male 0.99 0.98 0.99
cross 0.90 0.97 0.81
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done using Puhti super computer provided by CSC - IT Center for Science,
Finland (2024). Computing times for some MC sample sizes (nMC) are pre-
sented in Table 9. In this context, computing time presents the combined
time for simulating the random effects and solving the MME (12). The re-
ported computing time is the median of five measurements. Computing times
are measured in R using the function system.time (R Core Team, 2023).

The computing time measures both our functions generate_simulated_
u_and_y and solve_mme_s_times. The code for the functions is found in
Appendix E, where the R-code for this thesis is provided. As seen from
Table 9, the time complexity for simulating and solving seems linear, as ex-
pected. It means that by doubling the MC sample size, the computing time
also doubles. Thus, producing more MC samples is not a problem.

Table 9: Computing times in seconds for simulating the random effects and
solving the MME (12) using different numbers of MC samples (nMC). Com-
puting time is the median of five measurements.

Sample size (nMC) Time (s)
1,000 119
2,000 178
4,000 302
8,000 552
16,000 1,046
32,000 2,054

8 Conclusion

As we have seen, the basic methods for estimating PEVs of breeding values
using GBLUP work, even with a hybrid model. The convergence for the PEVs
of the crosses was slow, at least when using measures such as correlation,
slope, and intercept. This may be due to the small range of the exact PEV
values discussed in the previous section. Since the effects of the cross effect
in the model are relatively small, one might argue that the cross effect should
be left completely out of the model. However, when we changed the genetic
variances, the range of the exact PEV values was wider for crosses, and the
convergence was faster for crosses as well.

Based on the scenarios covered in this thesis, we recommend using the method
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NF2 to approximate the exact PEVs of a single-trait hybrid model. The
method performed best in almost every scenario handled in this thesis. How-
ever, for the crosses the method PEV3 worked even better.

The convergence of the correlation was slower than in Hickey et al. (2009),
where the correlations exceeded 0.9 even with only 50 MC samples. However,
the genetic and residual variances were much smaller there: genetic variance
was 1.0, and the residual variance was 3.0; this might affect the correlation
rate. Also, the values of the PEVs were all in the range of 0 to 1. Hickey et al.
(2009) did not present any calculations for the reliabilities, so the comparison
is not straightforward here. They also used the pedigree-based relationship
matrix, not the genomic relationship matrix. Moreover, they did not have
any genetic groups.

According to this thesis, the sufficient sample size depends on how accurate
estimates we want to have and how much time we can use to simulate. 10,000
MC samples may be enough, at least with the methods PEV3 and NF2. The
poor behaviour of crosses must be kept in mind. The sufficient sample size
depends, at least, on genetic variances and the number of observations. It still
remains unclear how the number of individuals affects the sufficient sample
size.

The next step would be to try these methods with more complicated models,
such as multi-trait models, and with more covariates. Also, the use of a SNP-
BLUP model could be interesting. Another aspect that could be explored
further is how the different levels of genetic and residual variances affect
the behaviour of the sampled PEVs. As discussed, the expected values of
the fixed effects do not affect the estimation of random effects, so adding
the covariates to the model should not affect these calculations. However,
the variance values certainly affect the approximation of PEV values. The
structure of the genetic covariance matrix for the crosses is still questionable.
Is it too simple?

The questions we would like to answer in the future are: How do the methods
approximating the exact PEVs work using multi-trait models? How do the
values of the genetic and residual variances affect the sufficient number of
MC samples? How does the more accurate structure of the genetic covariance
matrix for the crosses affect these results? Nevertheless, this thesis offers a
thorough picture of using GBLUP with a hybrid model, even for statisticians
with little animal and plant breeding knowledge. The first part of the thesis
provides examples of animal and plant breeding basics and genetic models.
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This thesis is an introduction to the still unanswered questions that were
presented. The thesis is a good foundation for further research on this topic.
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Appendix A

In this appendix there is additional tables of statistics calculated using 100,
1,000, 10,000, and 200,000 MC samples (nMC). They are calculated using
the original design. The simulation using 200,000 MC samples were done
using Puhti super computer, the results are in Table 13 (CSC - IT Center
for Science, Finland, 2024).
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Table 10: Comparison of different methods approximating the exact PEV
and their estimates with different statistics using 100 MC samples. Design:
original.

Statistic Genetic group PEV1 PEV2 PEV3 NF2
Correlation female 0.27 0.68 0.70 0.66

male 0.22 0.45 0.48 0.47
cross 0.26 0.06 0.27 0.22

RMSE female 3.10 1.08 1.04 1.14
male 1.90 0.94 0.87 0.89
cross 0.12 0.74 0.12 0.15

Slope female 0.08 0.44 0.46 0.42
male 0.06 0.21 0.23 0.23
cross 0.06 0.00 0.06 0.04

Intercept female 7.13 4.34 4.18 4.51
male 6.07 5.13 4.94 4.98
cross 4.86 5.17 4.85 4.96

MAD female 11.34 4.79 3.79 3.99
male 6.78 4.35 3.40 3.54
cross 0.49 3.29 0.49 0.65
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Table 11: Comparison of different methods approximating the exact PEV
and their estimates with different statistics using 1,000 MC samples. Design:
original.

Statistic Genetic group PEV1 PEV2 PEV3 NF2
Correlation female 0.73 0.94 0.95 0.94

male 0.61 0.85 0.88 0.86
cross 0.63 0.14 0.63 0.56

RMSE female 1.00 0.35 0.33 0.37
male 0.64 0.29 0.26 0.28
cross 0.04 0.24 0.04 0.04

Slope female 0.48 0.89 0.89 0.86
male 0.36 0.74 0.77 0.74
cross 0.39 0.02 0.40 0.30

Intercept female 4.04 0.82 0.82 1.09
male 4.13 1.69 1.47 1.66
cross 3.16 5.09 3.12 3.61

MAD female 3.46 1.12 1.10 1.45
male 2.32 0.99 0.83 0.95
cross 0.12 0.82 0.13 0.17
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Table 12: Comparison of different methods approximating the exact PEV
and their estimates with different statistics using 10,000 MC samples. Design:
original.

Statistic Genetic group PEV1 PEV2 PEV3 NF2
Correlation female 0.95 0.99 0.99 0.99

male 0.94 0.98 0.99 0.99
cross 0.93 0.37 0.93 0.90

RMSE female 0.32 0.11 0.11 0.12
male 0.19 0.09 0.08 0.08
cross 0.01 0.07 0.01 0.01

Slope female 0.90 0.99 0.99 0.99
male 0.83 0.97 0.97 0.96
cross 0.86 0.14 0.86 0.80

Intercept female 0.77 0.08 0.09 0.11
male 1.10 0.18 0.20 0.27
cross 0.74 4.48 0.73 1.05

MAD female 1.42 0.40 0.37 0.42
male 0.60 0.37 0.29 0.30
cross 0.04 0.26 0.04 0.05
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Table 13: Comparison of different methods approximating the exact PEV and
their estimates with different statistics using 200,000 MC samples. Design:
original.

Statistic Genetic group PEV1 PEV2 PEV3 NF2
Correlation female 0.997 >0.999 0.999 >0.999

male 0.996 0.999 0.999 0.999
cross 0.996 0.868 0.970 0.994

RMSE female 0.072 0.026 0.038 0.027
male 0.045 0.021 0.025 0.021
cross 0.003 0.017 0.007 0.003

Slope female 0.989 0.999 0.995 0.997
male 0.988 0.996 0.995 0.996
cross 0.992 0.763 0.945 0.990

Intercept female 0.101 0.009 0.043 0.024
male 0.088 0.022 0.038 0.027
cross 0.041 1.226 0.284 0.051

MAD female 0.232 0.093 0.128 0.102
male 0.175 0.078 0.091 0.075
cross 0.010 0.078 0.034 0.012
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Appendix B

In this appendix, there are all the figures related to the changed variances
-design.

Figure 5: Correlation plots with the exact PEV and the sampled PEV us-
ing four different methods approximating the exact PEV. The correlation is
calculated using different numbers of MC samples. Genetic group: females.
Design: changed variances.

54



Figure 6: Correlation plots with the exact PEV and the sampled PEV using
four different methods approximating the exact PEV. Genetic group: males.
Design: changed variances.

Figure 7: Correlation plots with the exact PEV and the sampled PEV using
four different methods approximating the exact PEV. Genetic group: crosses.
Design: changed variances.
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Figure 8: Scatterplots of the exact PEVs and the sampled PEVs using method
PEV1 with four different numbers of MC samples. The red line represents
straight y = x. Genetic group: females. Design: changed variances.

Figure 9: Scatterplots of the exact PEVs and the sampled PEVs using method
PEV1 with four different numbers of MC samples. The red line represents
straight y = x. Genetic group: males. Design: changed variances.
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Figure 10: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV1 with four different number of MC samples. The red line rep-
resents straight y = x. Genetic group: crosses. Design: changed variances.

Figure 11: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different number of MC samples. The red line rep-
resents straight y = x. Genetic group: females. Design: changed variances.
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Figure 12: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different number of MC samples. The red line
represents straight y = x. Genetic group: males. Design: changed variances.

Figure 13: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different number of MC samples. The red line rep-
resents straight y = x. Genetic group: crosses. Design: changed variances.
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Figure 14: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different number of MC samples. The red line rep-
resents straight y = x. Genetic group: females. Design: changed variances.

Figure 15: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different number of MC samples. The red line
represents straight y = x. Genetic group: males. Design: changed variances.
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Figure 16: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different number of MC samples. The red line rep-
resents straight y = x. Genetic group: crosses. Design: changed variances.

Figure 17: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different number of MC samples. The red line repre-
sents straight y = x. Genetic group: females. Design: changed variances.
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Figure 18: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different number of MC samples. The red line repre-
sents straight y = x. Genetic group: males. Design: changed variances.

Figure 19: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different number of MC samples. The red line repre-
sents straight y = x. Genetic group: crosses. Design: changed variances.
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Appendix C

In this appendix, there are all the figures related to the smaller data -design.

Figure 20: Correlation plots with the exact PEV and the sampled PEV
using four different methods approximating the exact PEV. The correlation
is calculated using different numbers of MC samples. Genetic group: females.
Design: smaller data.
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Figure 21: Correlation plots with the exact PEV and the sampled PEV using
four different methods approximating the exact PEV. Genetic group: males.
Design: smaller data.

Figure 22: Correlation plots with the exact PEV and the sampled PEV using
four different methods approximating the exact PEV. Genetic group: crosses.
Design: smaller data.
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Figure 23: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV1 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: females. Design: smaller data.

Figure 24: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV1 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: males. Design: smaller data.
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Figure 25: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV1 with four different number of MC samples. The red line
represents straight y = x. Genetic group: crosses. Design: smaller data.

Figure 26: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different number of MC samples. The red line
represents straight y = x. Genetic group: females. Design: smaller data.
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Figure 27: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different number of MC samples. The red line
represents straight y = x. Genetic group: males. Design: smaller data.

Figure 28: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different number of MC samples. The red line
represents straight y = x. Genetic group: crosses. Design: smaller data.
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Figure 29: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different number of MC samples. The red line
represents straight y = x. Genetic group: females. Design: smaller data.

Figure 30: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different number of MC samples. The red line
represents straight y = x. Genetic group: males. Design: smaller data.
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Figure 31: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different number of MC samples. The red line
represents straight y = x. Genetic group: crosses. Design: smaller data.

Figure 32: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different number of MC samples. The red line repre-
sents straight y = x. Genetic group: females. Design: smaller data.
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Figure 33: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different number of MC samples. The red line repre-
sents straight y = x. Genetic group: males. Design: smaller data.

Figure 34: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different number of MC samples. The red line repre-
sents straight y = x. Genetic group: crosses. Design: smaller data.
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Appendix D

In this appendix, there are all the figures related to the original design.

Figure 35: Correlation plots with the exact PEV and the sampled PEV
using four different methods approximating the exact PEV. The correlation
is calculated using different numbers of MC samples. Genetic group: females.
Design: original.
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Figure 36: Correlation plots with the exact PEV and the sampled PEV using
four different methods approximating the exact PEV. Genetic group: males.
Design: original.

Figure 37: Correlation plots with the exact PEV and the sampled PEV using
four different methods approximating the exact PEV. Genetic group: crosses.
Design: original.
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Figure 38: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV1 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: females. Design: original.

Figure 39: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV1 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: males. Design: original.
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Figure 40: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV1 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: crosses. Design: original.

Figure 41: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: females. Design: original.
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Figure 42: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: males. Design: original.

Figure 43: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV2 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: crosses. Design: original.
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Figure 44: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: females. Design: original.

Figure 45: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: males. Design: original.
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Figure 46: Scatterplots of the exact PEVs and the sampled PEVs using
method PEV3 with four different numbers of MC samples. The red line
represents straight y = x. Genetic group: crosses. Design: original.

Figure 47: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different numbers of MC samples. The red line rep-
resents straight y = x. Genetic group: females. Design: original.
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Figure 48: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different numbers of MC samples. The red line rep-
resents straight y = x. Genetic group: males. Design: original.

Figure 49: Scatterplots of the exact PEVs and the sampled PEVs using
method NF2 with four different numbers of MC samples. The red line rep-
resents straight y = x. Genetic group: crosses. Design: original.
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Appendix E

Part of the R-code used in the analysis and simulation is provided in this
appendix.

# Reading the data into R. The data is simulated by Natural
# Resources Institute Finland. The data is not publicly
# available.
MWY3000 <- read.table("MWY3000.data",

quote = "\"",
comment.char = ""

)
# Changing the names of the columns.
library(dplyr)
MWY3000 <- MWY3000 %>%

rename(
female_id = V1,
male_id = V2,
cross_id = V3,
type_of_cross = V4,
location = V5,
loc_spec_cov1 = V7,
loc_spec_cov2 = V8,
loc_spec_cov3 = V9,
moisture = V10,
weigth = V11,
grain_yield = V12

)
# Loading the genotype information into R.
geno_male <- read.table("GenotypesM.txt", header = FALSE)
geno_female <- read.table("GenotypesF.txt", header = FALSE)
# Constructing the genetic relationship matrix by hand as
# an example.
m_female <- as.matrix(geno_female)
rownames(m_female) <- m_female[, 1]
m_female <- m_female[, -1]
# Counting the allele frequencies.
p_female <- apply(m_female, 2, mean) / 2
# Creating P matrix for females.
P_female <- matrix(rep(p_female * 2, nrow(m_female)),

78



ncol = ncol(m_female), nrow = nrow(m_female), byrow = TRUE
)
rownames(P_female) <- rownames(m_female)
colnames(P_female) <- colnames(m_female)
# Creating Z matrix for females.
Z_female <- m_female - P_female
# Scaling for the final G matrix.
q_female <- 1 - p_female
sum2pq_female <- 2 * sum(p_female * q_female)
# Now we have G matrix for females
G_female <- (Z_female %*% t(Z_female)) / sum2pq_female
# Now we will try the package ASRgenomics to see if we get the
# same results.
library(ASRgenomics)
G_female_v2 <- qc.filtering(M = m_female, impute = FALSE)
Ghat_female <- G.matrix(

M = G_female_v2$M.clean,
method = "VanRaden", na.string = NA

)$G
# Here we used VanRaden's first method of
# constructing G matrix
# Even though we get the same results, these matrices are
# not invertible.

# Now we will construct the genetic relationship matrices.
# We must make sure that the individuals are in the same order
# in all of our matrices.
# We start with sorting the genotypic matrix of females.
unique_ids_female <- unique(MWY3000$female_id)
sorted_indices_female <- match(

unique_ids_female,
rownames(m_female)

)
sorted_m_female <- m_female[sorted_indices_female, ]
m_female <- sorted_m_female
# We will do the same for males.
m_male <- as.matrix(geno_male)
rownames(m_male) <- m_male[, 1]
m_male <- m_male[, -1]
unique_ids_male <- unique(MWY3000$male_id)
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sorted_indices_male <- match(unique_ids_male, rownames(m_male))
sorted_m_male <- m_male[sorted_indices_male, ]
m_male <- sorted_m_male
# Now we can construct G matrices, when the individuals are
# in the correct order.
Ghat_female <- G.matrix(

M = m_female, method = "VanRaden",
na.string = NA

)$G
Ghat_male <- G.matrix(

M = m_male, method = "VanRaden",
na.string = NA

)$G
# They are still not invertible, so we will blend them a
# little with an identity matrix.
G_female.blend <- G.tuneup(

G = Ghat_female, blend = TRUE,
pblend = 0.01

)$Gb
G_male.blend <- G.tuneup(

G = Ghat_male, blend = TRUE,
pblend = 0.01

)$Gb
# After that they are invertible.

# Now we can construct the variance-covariance matrices.
# Defining the variances.
var_female <- 15
var_male <- 10
var_sca <- 6
var_e <- 233
library(Matrix)
n <- nrow(MWY3000)
G_1 <- var_female * G_female.blend
G_2 <- var_male * G_male.blend
G_3 <- Matrix(var_sca * diag(length(unique(MWY3000$cross_id))))
# Variance-covariance matrix for residuals.
R <- Matrix(var_e * diag(n), sparse = TRUE)
# Inverting the matrices.
G_1_inv <- solve(G_1)
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G_2_inv <- solve(G_2)
G_3_inv <- solve(G_3)
inverse_R <- solve(R)
# Then we can construct incidence matrices Z_1, Z_2, Z_3 and X.
# Factorizing the location.
MWY3000$location <- as.factor(MWY3000$location)
# Incidence matrix for the fixed effects.
X <- model.matrix(~ 0 + location, MWY3000)
X <- Matrix(X, sparse = T)
# Incidence matrix for the female effect.
MWY3000$female_id <- as.factor(MWY3000$female_id)
Z_1 <- model.matrix(~ 0 + female_id, data = MWY3000)
# Removing the text from the column names.
colnames(Z_1) <- as.integer(gsub("[^0-9]", "", colnames(Z_1)))
# The order in Z matrices must be the same as in
# the corresponding G matrix.
sorted_indices <- match(rownames(G_1), colnames(Z_1))
Z_1_sorted <- Z_1[, sorted_indices]
Z_1 <- Z_1_sorted
Z_1 <- Matrix(Z_1, sparse = TRUE)
# Incidence matrix for the male effect.
MWY3000$male_id <- as.factor(MWY3000$male_id)
Z_2 <- model.matrix(~ 0 + male_id, data = MWY3000)
colnames(Z_2) <- as.integer(gsub("[^0-9]", "", colnames(Z_2)))
sorted_indices <- match(rownames(G_2), colnames(Z_2))
Z_2_sorted <- Z_2[, sorted_indices]
Z_2 <- Z_2_sorted
Z_2 <- Matrix(Z_2, sparse = TRUE)
# Incidence matrix for the cross effect.
MWY3000$cross_id <- as.factor(MWY3000$cross_id)
Z_3 <- model.matrix(~ 0 + cross_id, data = MWY3000)
Z_3 <- Matrix(Z_3, sparse = TRUE)
# Now we have all the elements for the MME.
# First we will make LHS of the MME.
col1_lhs <- rbind(

t(X) %*% inverse_R %*% X,
t(Z_1) %*% inverse_R %*% X, t(Z_2) %*% inverse_R %*% X,
t(Z_3) %*% inverse_R %*% X

)
col2_lhs <- rbind(
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t(X) %*% inverse_R %*% Z_1,
t(Z_1) %*% inverse_R %*% Z_1 + G_1_inv,
t(Z_2) %*% inverse_R %*% Z_1, t(Z_3) %*% inverse_R %*% Z_1

)
col3_lhs <- rbind(

t(X) %*% inverse_R %*% Z_2,
t(Z_1) %*% inverse_R %*% Z_2, t(Z_2) %*% inverse_R %*% Z_2

+ G_2_inv, t(Z_3) %*% inverse_R %*% Z_2
)
col4_lhs <- rbind(

t(X) %*% inverse_R %*% Z_3,
t(Z_1) %*% inverse_R %*% Z_3, t(Z_2) %*% inverse_R %*% Z_3,
t(Z_3) %*% inverse_R %*% Z_3 + G_3_inv

)
left_lhs <- cbind(col1_lhs, col2_lhs, col3_lhs, col4_lhs)
# Inverse of LHS.
inv_left_lhs <- solve(left_lhs)
# Response vector y.
y <- MWY3000$grain_yield
# RHS of the MME.
row1_rhs <- t(X) %*% inverse_R %*% y
row2_rhs <- t(Z_1) %*% inverse_R %*% y
row3_rhs <- t(Z_2) %*% inverse_R %*% y
row4_rhs <- t(Z_3) %*% inverse_R %*% y
rhs <- rbind(row1_rhs, row2_rhs, row3_rhs, row4_rhs)
results <- inv_left_lhs %*% rhs

# PEVs and reliabilities.
female_indices <- 32:1541
male_indices <- 1542:3033
cross_indices <- 3034:6033
pev_values <- diag(inv_left_lhs)
pev_female <- pev_values[female_indices]
pev_male <- pev_values[male_indices]
pev_cross <- pev_values[cross_indices]
G_female_diagonals <- diag(G_female.blend)
reliability_female <- 1 - pev_values[female_indices] /

(var_female * G_female_diagonals)
G_male_diagonals <- diag(G_male.blend)
reliability_male <- 1 - pev_values[male_indices] /
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(var_male * G_male_diagonals)
G_cross_diagonals <- diag(G_3)
reliability_cross <- 1 - pev_values[cross_indices] /

(var_sca * G_cross_diagonals)
# Accuracies.
accuracies_female <- sqrt(reliability_female)
accuracies_male <- sqrt(reliability_male)
accuracies_cross <- sqrt(reliability_cross)

# Here is the function to simulate random effects and generate
# then the response y.
generate_simulated_u_and_y <- function(s) {

# s is the number iterations.
# Initializing the matrices, where we will store the
# simulated random effects and simulated data.
simulated_y <- matrix(ncol = s, nrow = nrow(MWY3000))
ordered_samples_female <- matrix(

ncol = s,
nrow = nrow(MWY3000)

)
ordered_samples_male <- matrix(

ncol = s,
nrow = nrow(MWY3000)

)
ordered_samples_cross <- matrix(

ncol = s,
nrow = nrow(MWY3000)

)
unique_crosses <- unique(MWY3000$cross_id)
# Solving the Cholesky decomposition of the
# genomic relationship matrices.
L_female <- chol(G_female.blend)
L_male <- chol(G_male.blend)
for (i in 1:s) {

# Sampling the random effects assuming their distributions
# and using the genomic relationship matrix and known
# variance.
# samples_female <- mvrnorm(n_samples, mu_female, G_1)
# The above line is just for reference.
x_a_female <- matrix(rnorm(ncol(Z_1),
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mean = 0,
sd = sqrt(var_female)

), ncol = 1)
samples_female <- t(L_female) %*% x_a_female
# samples_male<- mvrnorm(n_samples, mu_male, G_2)
# The above line is just for reference.
x_a_male <- matrix(rnorm(ncol(Z_2),

mean = 0,
sd = sqrt(var_male)

), ncol = 1)
samples_male <- t(L_male) %*% x_a_male
# samples_cross<- mvrnorm(n_samples, mu_cross, G_3)
# The above line is just for reference.
x_a_cross <- matrix(rnorm(ncol(Z_3),

mean = 0,
sd = sqrt(var_sca)

), ncol = 1)
samples_cross <- x_a_cross # t(L_cross) %*% x_a_cross
# Here we make sure that the simulated data is in right
# order: the same order as in MWY3000 data set.
names(samples_cross) <- unique_crosses
ordered_samples_female[, i] <-

samples_female[match(
MWY3000$female_id,
row.names(samples_female)

)]
ordered_samples_male[, i] <-

samples_male[match(
MWY3000$male_id,
row.names(samples_male)

)]
ordered_samples_cross[, i] <-

samples_cross[match(
MWY3000$cross_id,
names(samples_cross)

)]
# Generating the y: simulated data.
y_simulated <- ordered_samples_cross[, i] +

ordered_samples_female[, i] + ordered_samples_male[, i] +
rnorm(nrow(MWY3000), 0, sqrt(var_e))
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simulated_y[, i] <- y_simulated
}
list(

simulated_y = simulated_y,
ordered_samples_female = ordered_samples_female,
ordered_samples_male = ordered_samples_male,
ordered_samples_cross = ordered_samples_cross

)
}

# Next we will make the function that will solve the MME for s
# times. It will use the output from the function
# "generate_simulated_u_and_y".
# It uses the simulated_y to solve the MME.
solve_mme_s_times <- function(s, simulated_y_df) {

results_sim <- matrix(nrow = nrow(results), ncol = s)
col_lhs_1_sim <- rbind(

t(X) %*% inverse_R %*% X,
t(Z_1) %*% inverse_R %*% X, t(Z_2) %*% inverse_R %*% X,
t(Z_3) %*% inverse_R %*% X

)
col_lhs_2_sim <- rbind(

t(X) %*% inverse_R %*% Z_1,
t(Z_1) %*% inverse_R %*% Z_1 + G_1_inv, t(Z_2) %*%

inverse_R %*% Z_1, t(Z_3) %*% inverse_R %*% Z_1
)
col_lhs_3_sim <- rbind(

t(X) %*% inverse_R %*% Z_2,
t(Z_1) %*% inverse_R %*% Z_2, t(Z_2) %*% inverse_R %*% Z_2

+ G_2_inv, t(Z_3) %*% inverse_R %*% Z_2
)
col_lhs_4_sim <- rbind(

t(X) %*% inverse_R %*% Z_3,
t(Z_1) %*% inverse_R %*% Z_3, t(Z_2) %*% inverse_R %*% Z_3,
t(Z_3) %*% inverse_R %*% Z_3 + G_3_inv

)
left_lhs_sim <- cbind(

col_lhs_1_sim, col_lhs_2_sim,
col_lhs_3_sim, col_lhs_4_sim

)
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inv_left_lhs_sim <- solve(left_lhs_sim)

for (i in 1:s) {
# RHS
y_sim <- simulated_y_df[, i]
row1_rhs_sim <- t(X) %*% inverse_R %*% y_sim
row2_rhs_sim <- t(Z_1) %*% inverse_R %*% y_sim
row3_rhs_sim <- t(Z_2) %*% inverse_R %*% y_sim
row4_rhs_sim <- t(Z_3) %*% inverse_R %*% y_sim
rhs_sim <- rbind(

row1_rhs_sim, row2_rhs_sim, row3_rhs_sim,
row4_rhs_sim

)
results_sim[, i] <-

as.vector(inv_left_lhs_sim %*% right_lhs_sim)
}
results_sim

}

# Functions can be called as follows:
n_mc <- 100
simulated_data <- generate_simulated_u_and_y(n_mc)
simulated_results <- solve_mme_s_times(

n_mc,
simulated_data$simulated_y

)
# Before using the simulated data to approximate PEVs, we must
# only have one breeding value per individual.
row.names(simulated_data$ordered_samples_female) <-

MWY3000$female_id
row.names(simulated_data$ordered_samples_male) <-

MWY3000$male_id
row.names(simulated_data$ordered_samples_cross) <-

MWY3000$cross_id
unique_samples_female <- simulated_data$ordered_samples_female[

!duplicated(rownames(simulated_data$ordered_samples_female)),
]
unique_samples_male <- simulated_data$ordered_samples_male[

!duplicated(rownames(simulated_data$ordered_samples_male)),
]
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unique_samples_cross <- simulated_data$ordered_samples_cross[
!duplicated(rownames(simulated_data$ordered_samples_cross)),

]

# Method 1 Garcia-Gortes (PEV1):
G_female_diagonals <- diag(G_female.blend)
PEV1_female <- G_female_diagonals * var_female -

rowMeans(simulated_results[female_indices, ]^2)
G_male_diagonals <- diag(G_male.blend)
PEV1_male <- G_male_diagonals * var_male -

rowMeans(simulated_results[male_indices, ]^2)
PEV1_cross <- diag(diag(length(unique(MWY3000$cross_id)))) *

var_sca - rowMeans(simulated_results[cross_indices, ]^2)
# Method 2 Garcia-Gortes (PEV2):
squared_diff_between_sim_true_female <- matrix(

nrow = nrow(unique_samples_female),
ncol = ncol(simulated_data$ordered_samples_female)

)
s <- ncol(simulated_results)
for (i in 1:s) {

squared_diff_between_sim_true_female[, i] <-
(unique_samples_female[, i] -

simulated_results[female_indices, i])^2
}
PEV2_female <- rowMeans(squared_diff_between_sim_true_female)
squared_diff_between_sim_true_male <- matrix(

nrow = nrow(unique_samples_male),
ncol = ncol(simulated_data$ordered_samples_male)

)
for (i in 1:s) {

squared_diff_between_sim_true_male[, i] <-
(unique_samples_male[, i] -

simulated_results[male_indices, i])^2
}
PEV2_male <- rowMeans(squared_diff_between_sim_true_male)
squared_diff_between_sim_true_cross <- matrix(

nrow = nrow(unique_samples_cross),
ncol = ncol(simulated_data$ordered_samples_cross)

)
for (i in 1:s) {
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squared_diff_between_sim_true_cross[, i] <-
(unique_samples_cross[, i] -

simulated_results[cross_indices, i])^2
}
PEV2_cross <- rowMeans(squared_diff_between_sim_true_cross)
# Method 3 Garcia-Gortes (PEV3):
var_PEV2_female <- apply(

squared_diff_between_sim_true_female,
1, var

)
var_PEV1_female <- apply(

simulated_results[female_indices, ]^2,
1, var

)
w1_female <- 1 / var_PEV1_female
w2_female <- 1 / var_PEV2_female
PEV3_female <- (w1_female * PEV1_female + w2_female *

PEV2_female) /
(w1_female + w2_female)

var_PEV2_male <- apply(
squared_diff_between_sim_true_male,
1, var

)
var_PEV1_male <- apply(

simulated_results[male_indices, ]^2,
1, var

)
w1_male <- 1 / var_PEV1_male
w2_male <- 1 / var_PEV2_male
PEV3_male <- (w1_male * PEV1_male + w2_male * PEV2_male) /

(w1_male + w2_male)
var_PEV2_cross <- apply(

squared_diff_between_sim_true_cross,
1, var

)
var_PEV1_cross <- apply(

simulated_results[cross_indices, ]^2,
1, var

)
w1_cross <- 1 / var_PEV1_cross
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w2_cross <- 1 / var_PEV2_cross
PEV3_cross <- (w1_cross * PEV1_cross + w2_cross * PEV2_cross) /

(w1_cross + w2_cross)
summary(PEV3_cross)
# Method NF2 (NF2):
PEV_NF2_female <- (PEV2_female / (PEV2_female +

rowMeans(simulated_results[female_indices, ]^2))) *
G_female_diagonals * var_female

PEV_NF2_male <- (PEV2_male / (PEV2_male
+ rowMeans(simulated_results[male_indices, ]^2))) *

G_male_diagonals * var_male
PEV_NF2_cross <- (PEV2_cross / (PEV2_cross
+ rowMeans(simulated_results[cross_indices, ]^2))) *

diag(diag(length(unique(MWY3000$cross_id)))) * var_sca

# Examples of how these estimates can be compared to the exact
# value of PEV:
cor(pev_cross, PEV_NF2_cross)
plot(pev_cross, PEV_NF2_cross,

xlab = "Exact PEV",
main = "Method NF2 estimates for cross"

)
model1 <- lm(pev_cross ~ PEV_NF2_cross)
summary(model1)
rmse_PEV_NF2_cross <- sqrt(mean((pev_cross - PEV_NF2_cross)^2))
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Appendix F

Specifications of the computer used in this thesis:

Processor: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz 2.90 GHz

Installed RAM: 64,0 GB (63,7 GB usable)

System type: 64-bit operating system, x64-based processor
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