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Circulating miRNA Signature Predicts Cancer
Incidence in Lynch Syndrome—A Pilot Study
Tero Siev€anen1, Tiina Jokela1, Matti Hyv€arinen1, Tia-Marje Korhonen1, Kirsi Pylv€an€ainen2,
Jukka-Pekka Mecklin2,3, Juha Karvanen4, Elina Sillanp€a€a1,2, Toni T. Sepp€al€a5,6,7,8, and
Eija K. Laakkonen1

ABSTRACT
◥

Lynch syndrome (LS) is the most common autosomal
dominant cancer syndrome and is characterized by high
genetic cancer risk modified by lifestyle factors. This study
explored whether a circulating miRNA (c-miR) signature
predicts LS cancer incidence within a 4-year prospective
surveillance period. To gain insight how lifestyle behavior
could affect LS cancer risk, we investigated whether the
cancer-predicting c-miR signature correlates with known
risk-reducing factors such as physical activity, body mass
index (BMI), dietary fiber, or NSAID usage. The study
included 110 c-miR samples from LS carriers, 18 of whom
were diagnosed with cancer during a 4-year prospective
surveillance period. Lasso regression was utilized to find
c-miRs associated with cancer risk. Individual risk sum
derived from the chosen c-miRs was used to develop amodel
to predict LS cancer incidence. This model was validated
using 5-fold cross-validation. Correlation and pathway anal-
yses were applied to inspect biological functions of c-miRs.
Pearson correlation was used to examine the associations of

c-miR risk sum and lifestyle factors. hsa-miR-10b-5p, hsa-
miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and
hsa-miR-3615 were identified as cancer predictors by Lasso,
and their risk sum score associated with higher likelihood of
cancer incidence (HR 2.72, 95% confidence interval: 1.64–
4.52, C-index ¼ 0.72). In cross-validation, the model indi-
cated good concordance with the average C-index of 0.75
(0.6–1.0). Coregulated hsa-miR-10b-5p, hsa-miR-125b-5p,
and hsa-miR-200a-3p targeted genes involved in cancer-
associated biological pathways. The c-miR risk sum score
correlated with BMI (r¼ 0.23, P < 0.01). In summary, BMI-
associated c-miRs predict LS cancer incidence within 4 years,
although further validation is required.

Prevention Relevance: The development of cancer risk
prediction models is key to improving the survival of patients
with LS. This pilot study describes a serummiRNA signature–
based risk prediction model that predicts LS cancer incidence
within 4 years, although further validation is required.

Introduction
Lynch syndrome (LS) is the most common inherited cancer

predisposition syndrome, with an estimated prevalence of

1:300 (1, 2). Distinct LS phenotypes are caused by germline
mutations in DNA mismatch repair (MMR) genes MLH1,
MSH2, MSH6, and PMS2 (2). The impaired MMR manifests
as an increased risk of multiple cancers, and depending on the
cancer type, the risk is modified by lifestyle factors such as
physical activity, body weight, consumption of dietary resistant
starch, and NSAID usage (2–8). LS cancer spectrum includes
various cancer types, colorectal cancer and endometrial cancers
being most common (6). As the cancer risk varies greatly
among pathogenic MMR variant carriers (6), it is pivotal to
innovate risk stratification biomarkers that could be used to
identify LS carriers who may develop cancer in the near future.
Circulating miRNAs (c-miR) are short, noncoding RNA

molecules that function as intercellular messengers by migrat-
ing throughout the body (9). They play a crucial role in cancer
biology by regulating core cellular processes, such as prolifer-
ation and apoptosis, through the suppression of target gene
translation (10). Multiple studies have reported c-miRs as
potential biomarkers for various sporadic cancers (11–15) by
demonstrating differential expression (DE) between the c-miR
signatures of patients with cancer and healthy controls. Inmost
of these prior studies, the analysis of c-miR signatures has been
limited to patients who have already received a colorectal
cancer diagnosis, making it challenging to ascertain their
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potential utility in risk stratification. Interestingly, a recent
study by Raut and colleagues showed that altered c-miR
expression could predict sporadic colorectal cancer incidence
several years prior the diagnosis (16). However, it has remained
unclear whether this observation extends to LS.
In LS, the risk of various cancers is significantly elevated by

sedentary behavior and excess body weight, while physical
activity, maintaining a healthy body weight, and the consump-
tion of dietary resistant starch andNSAIDs have been shown to
mitigate these risks (3, 7, 8). Although it is well acknowledged
that adopting an optimal lifestyle can reduce cancer incidence,
the underlying molecular mechanisms remain less elucidated.
c-miRs, due to their capacity to modulate pathophysiologic
responses to changing lifestyle behaviors (9) and their ability to
exhibit DE profiles between sedentary and physically active
individuals (17), offer potential insights into how lifestyle
behaviors influence LS-associated cancer risk.
We were first to report that the c-miR signature of cancer-

free LS carriers is associated with carcinogenesis by displaying
aberrant expression compared with healthy population but
similar expression when compared with patients with sporadic
rectal cancer (18). To build on that, the primary aim of this
study was to investigate whether c-miRs can be used in LS
cancer risk prediction during a 4-year prospective surveillance
period. Considering the modulatory role of c-miRs in lifestyle
habits, our secondary aim was to explore whether any of the LS
cancer predictive c-miRs are associated with physical activity,
body weight, dietary fiber, or NSAID usage.

Materials and Methods
The study flow chart and general outline is detailed in Fig. 1.

Patients and sample collection
The clinical data of our study were derived from the nation-

wide Finnish Lynch SyndromeResearchRegistry (LSRFi, www.
lynchsyndrooma.fi, accessed November 2022). Age, sex, MMR
mutation status, family cancer history, and all cancer diagnoses
with the cancer type and date of each diagnosis were confirmed
from hospital medical records and national cancer registries
upon recording in the LSRFi. To date, LSRFi includes 1,800 LS
carriers from 400 families and contains clinicopathologic
information on all cancers of the registered individuals. In the
current study, we reviewed baseline medical records of Finnish
cancer-free LS carriers whose c-miR expression profile was
characterized (n ¼ 110). Ethnicity throughout the study pop-
ulation was White Caucasian.
LS carriers were enrolled in the study, and whole blood was

collected at their regular colonoscopy surveillance appoint-
ments at Helsinki University Central Hospital in Helsinki and
Central FinlandCentralHospital in Jyv€askyl€a, Finland.Non-LS
control samples were acquired from Biobank of Eastern Fin-
land, Kuopio, and a previously studied Estrogenic Regulation of
Muscle Apoptosis cohort consisting of healthy 47–55 years
old women. To separate serum, the whole blood samples were

allowed to clot for 30minutes at room temperature, centrifuged
at 1,800 � g for 10 minutes and aliquoted. Methods of sample
collection, preanalytic preparation, c-miR extraction, library
preparation, and sequencing have been described previously in
detail (18).

Data collection and ethical issues
High-throughput c-miR expression data of cancer-free LS

carriers (n ¼ 86) as well as of healthy non-carrier control
samples (n ¼ 37) were generated as described earlier (18).
Briefly, c-miRs were extracted using affinity column-based
approach (miRNeasy Serum/Plasma advanced kit, Qiagen),
ligated to sequencing adapters from both 50 and 30 end, reverse
transcribed into cDNA using unique molecular identifier
(UMI)-assigning primers, and purified with magnetic beads
(Qiaseq miRNA Library preparation kit, Qiagen). Sequencing
of the c-miR libraries were done with NextSeq 500 (Illumina)
using NextSeq 500/550 High Output Kit v. 2.5 with 75 cycles
aiming for depth of 5M reads per sample. Quality controls
throughout the RNA isolation, library preparation, and
sequencing protocols were conducted with qRT-PCR (Bio-
Rad), TapeStation 4200 (Agilent) and Qubit fluorometer (Invi-
trogen), respectively. To increase the cohort size, we performed
small RNA sequencing (RNA-seq) experiment on additional 24
LS carriers using the same analysis pipeline as described (18).
Thus, the current study composed of 110 cancer-free LS
carriers who are registered in the LSRFi and 37 healthy non-
carrier control samples. Healthy non-carrier control samples
were included only in the DE analysis to confirm previously
reported LS-associated c-miR signature.
The corresponding lifestyle data of the cancer-free LS carriers

in the current study were collected as described previously in
detail (3). Briefly, questionnaires for anthropometric, socioeco-
nomic, and lifestyle data collection were sent to adult Finnish
LS carriers whose contact information was available in LSRFi
in 2017 and 2020. Alongside with the lifestyle data collection,
dietary habits data of the same persons were collected by a
validated semiquantitative food frequency questionnaire (19).
The average time period between the questionnaires’ data
collection andblood samplingwas 2.0 (0.3�3.9) years.Awritten
informed consent was obtained from all participants, and the
Helsinki and Uusimaa Health Care District (HUS/155/2021)
and Central Finland Health Care District Ethics Committee
(KSSHP D# 1U/2018 and 1/2019 and KSSHP 3/2016) approved
the study protocol. The study was conducted according to the
guidelines of the Declaration of Helsinki.

Missing data
There were no missing c-miR data. Missing lifestyle and

dietary data [physical activity: 30.9%; body mass index (BMI):
4.5%; dietary fiber intake: 29.0% and NSAID usage: 29.0%;
Supplementary Table S1] occurred due to incomplete ques-
tionnaire responses. Missing data were assumed to occur at
random and multiple imputation with 50 iterations was used
to create and analyze 50 multiply imputed datasets using mice”
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R-package (20) with default settings. All lifestyle variables as
well as sex, age, pathogenic MMR-variant, cancer status, and
c-miR expression were used for imputation of each lifestyle
variable, and results were pooled using “pool” function in
“mice”.

DE analysis
DE analysis between cancer-free LS carriers and healthy

non-carrier controls was performed with “DESeq2” R-package
(ref. 21; RRID:SCR_000154) using raw c-miR counts (Supple-
mentaryMaterials andMethods S1). Sex and sequencing batch
were added to the DE analysis design formula to account for
their potential confounding effect. Normalization and variance
stabilization transformationswere donewithDESeq2 by apply-
ing median of ratios method (21) and “rlog” function, respec-

tively. Low count c-miRs were filtered prior to DE analysis.
Filtering was done with “filterByExpr” function in “edgeR”
R-package (22) that excluded c-miRs with <1 count permillion
in 70% of samples. Benjamini–Hochberg procedure with FDR
0.05 was used to correct for multiple testing. Hierarchical
clustering based on Euclidean distances and the “complete”
method was applied to verify DE findings. “hclust” function in
“stats” base R-package was used for the hierarchical clustering
analysis.

Covariates
c-miRs
c-miR expression data were derived from small RNA-seq

experiments and measured as counts relative to sample library
size where counts represent molecules in blood serum. DESeq2

Figure 1.

The study flow chart and general outline.A, Serum samples of 110 cancer-free LS carriers and 37 non-carrier controlswere sequenced to confirm previously identified
LS specific c-miR signature. B, LS clinical datawere derived from LSRFi to assess the cancer status of cancer-free LS carriers after 4 years of prospective surveillance.
Of the 110 cancer-free LS carriers, 18 had developed cancer during the surveillance period. Then, c-miR expression datawerematchedwith the corresponding clinical
and lifestyle data to investigate whether the c-miR signature can predict LS cancer risk during the surveillance. Lifestyle data were collected 2017 or 2020 with a
questionnaire. Blood sample was taken at regular colonoscopy visit between 2018 and 2020. The average time period between lifestyle data collection and blood
samplewas 2.0 (0.3–3.9) years.C,Lasso-regularizedCox regressionwas used to select themost importantpredictor c-miRs from theentire cohort. Lasso-obtainedc-
miRs were used to compute c-miR risk sum score. Arrows indicate upregulation (") and downregulation (#) of the c-miR in LS carriers when compared with healthy
non-carriers. D, c-miR risk sum score was used in LS cancer risk prediction with 5-fold cross-validation and to inspect associations with lifestyle data. c-miR ¼
circulating miRNA; Lasso¼ Least absolute shrinkage and selection method; LS¼ Lynch syndrome; LSRFi¼ Finnish Lynch Syndrome Research Registry. This figure
was created with BioRender.com.
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normalized and variance stabilized c-miR counts were used for
all analyses.

Physical activity
Physical activity was assessed by a self-reported question-

naire. The questionnaire included four questions about the
frequency, intensity, and duration of leisure time physical
activity and commuting activity. On the basis of the responses,
the metabolic equivalent task hours per day for leisure time
physical activity was calculated.

BMI
Body weight and height were measured by the clinician

during the study subjects’ regular colonoscopy appointment.
If body weight and height information were missing, we used
the last known self-measured weight and height measurement.
BMI was calculated as weight in kilograms divided by the
height squared in meters (kg/m2) according to World Health
Organization guidelines.

Dietary fiber
Dietary fiber including resistant starch amount was derived

from self-reported food frequency questionnaire and assessed
as grams per day.

NSAID usage
Study subjects self-reported whether (yes/no) they used

NSAIDs, such as acetylsalicylic acid, ibuprofen or ketoprofen
products frequently.

Construction and validation of the LS cancer risk
prediction model
Least absolute shrinkage and selection method (Lasso;

ref. 23) regularized Cox regression was used to find predictor
c-miRs from the pool of identified LS-associated DE c-miRs
using the entire study sample. Optimal value for the Lasso
regularization parameter lambda was chosen with 10-fold
cross-validation. The expression levels of the Lasso-obtained
c-miRs were used to compute an individual risk sum score
(linear predictor) for all the participants by using formula:

Risk sum score ¼ Expr(miRA) � b(miRA) þ Expr(miRB) �
b(miRB) . . .,

where Expr(miR) represents the normalized and variance
stabilized c-miR expression and b(miR) indicates the regres-
sion coefficient in Lasso-Cox regression model (16). By using
univariate and multivariate Cox regression models, the c-miR
risk sum score was then applied to predict the risk of cancer
incidence.We used the entire study sample (n¼ 110) for fitting
the risk prediction model. The predictive performance of the
risk prediction model was validated with 5-fold cross-
validation and the model concordance evaluated with Harrel
C-index (scale 0.5–1.0) where 0.5 indicates poor performance
and 1.0 indicates excellent performance (ref. 24; Supplemen-
tary Materials and Methods S1).

The surveillance time used for risk prediction was deter-
mined from the timepoint of initial serum sampling (2018–
2020) until the latest update of LSRFi (November 2022). The
response variable in the risk predictionmodel was the age at the
time of cancer diagnosis (event) or the age at the final update
date of LSRFi (censoring). HR and 95% confidence intervals
(CI) of the c-miR risk sum score were estimated for unadjusted
model as well as for sex and MMR-variant adjusted model.
Proportional hazards assumption was tested using Schoenfeld
residuals (Supplementary Fig. S1). Regarding the risk predic-
tion model development and validation, we followed Trans-
parent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPOD) reporting check-
list (25). We used “glmnet” R-package (26) for the cross-
validation procedure as well as for Lasso-regularized Cox
regression. “survival” R-package was used for Cox regression
modeling (27).

Pathway analysis
We identified potential targets genes of the Lasso-obtained c-

miRs from miRTarBase (28) by using miRWalk online
tool (29). We considered only the genes with experimental
validation in MiRTarBase (28) to exclude low evidence targets.
The obtained target gene list was applied to overpresentation
analysis with hypergeometric tests using Search Tool for
Retrieval of Interacting Genes/Proteins (STRING; ref. 30) and
Reactome (31) databases.

Statistical analysis
All statistical analyses were performed in R-programming

environment (v.4.2.2) using RStudio and in-house R-scripts.
Levene test was used to inspect homoscedasticity. Study subject
characteristics are presented as means and SDs for continuous
variables and as number of study subjects and percentages for
categorical variables. Regarding Table 1, Welch two-sample t
test was used for continuous variables whereas x2 test was
applied for categorical variables. Because of skewed nature of
RNA-seq data, Spearman method was applied to inspect
correlations between the Lasso-obtained c-miRs. Pearson
method was applied to examine correlations between the
multiple imputed lifestyle data and c-miR risk sum score.

Data availability
The sequence data generated in this study are publicly

available in Sequence Read Archive (SRA) at PRJNA1088397.

Results
Study subject characteristics
The study subjects’ clinical characteristics are described

in Table 1. Most had a pathogenic MLH1 germline variant
(67.3%) followed by MSH2 (17.3%), MSH6 (13.6), and PMS2
(1.8), respectively. Of the 110 study subjects, 18 (13males and 5
females) developed cancer during the prospective surveillance.
The mean surveillance time for those who developed cancer
was 1.3 years whereas for those who remained cancer-free it
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was 3.5 years. Half of the diagnosed cancers were colorectal
cancers and the other half consisted of several other cancer
types (Supplementary Table S2). No loss to follow-up occurred.

Confirmation of LS-associated c-miR signature
We have previously identified a c-miR signature that dis-

tinguished LS carriers from healthy non-carrier population.
However, as the LS cohort used in the present study included 24
new cases, we reprocessed the data to seek for more LS-
associated c-miRs and to verify our previous finding. DE
analysis resulted in 37 DE c-miRs between cancer-free LS
carriers and healthy non-carrier controls (Fig. 2A; Supple-
mentaryTable S3).We found 14upregulatedDE c-miRs and 23
downregulated DE c-miRs (Fig. 2B). These 37 DE c-miRs were
confirmed as LS-associated and thus chosen for the down-
stream analyses.

The expression levels of hsa-miR-10b-5p,
hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p,
and hsa-miR-3615 are associated with increased risk
of cancer incidence
Several multi c-miR panels have been reported to have

predictive or prognostic value in sporadic cancer risk assess-
ment. Thus, we wanted to investigate whether the expression of

any of the LS-associated DE c-miRs showed potential in LS
cancer risk prediction during the prospective surveillance. Out
of the 37 DE c-miRs, Lasso selected hsa-miR-10b-5p, hsa-miR-
125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and hsa-miR-
3615 as the best predictors that separated those LS carriers who
developed cancer from those who remained cancer-free during
the surveillance (Fig. 3A). The expression of all these c-miRs
was higher in those LS carriers who developed cancer during
the surveillance comparedwith those LS carriers who remained
cancer-free, although only hsa-miR-3613-5p displayed statis-
tical significance (Fig. 3B). Of them, only hsa-miR-10b-5p was
independently associated with an increased cancer risk (HR
6.58, 95% CI: 1.43–30.21, b ¼ 1.88; Supplementary Table S4).
The full model showed good concordance (C-index ¼ 0.72;
Supplementary Table S4).
Because efficient miR-based biological regulation relies on

additive effects of multiple miRs (32), we wanted to investigate
the pooled performance of the selected c-miRs on predicting LS
cancer risk. We observed that c-miR risk sum score was
significantly associated with increased risk of cancer incidence
(HR 2.72, 95% CI: 1.64–4.52, b ¼ 1.00, C-index ¼ 0.72) also
after adjusting for sex and MMR-variant (HR 2.71, 95% CI:
1.62–4.52, b ¼ 1.00, C-index¼ 0.77; Fig. 3C). A 5-fold cross-
validation of this risk prediction model resulted in average

Table 1. Study subject characteristics.

Parameter Total cohort
Cancer during
surveillance

Cancer-free after
surveillance P-value

N (%) 110 18 (16.4) 92 (83.6)
Sex, N (%) 0.071

Male 57 (51.8) 13 (72.2) 44 (47.8)
Female 53 (48.2) 5 (27.8) 48 (52.2)

MMR status, N (%) 0.777
MLH1 74 (67.3) 14 (77.8) 60 (65.2)
MSH2 19 (17.3) 2 (11.1) 17 (18.5)
MSH6 15 (13.6) 2 (11.1) 13 (14.1)
PMS2 2 (1.8) — 2 (2.2)

Physical activity, MET/hours/day (SD)a 4.4 (� 4.5) 7.6 (� 7.2) 3.7 (� 3.6) 0.094
BMI, kg/m2 (SD)a 27.8 (� 5.8) 27.9 (� 4.4) 27.7 (� 6.1) 0.875
Dietary fiber intake, g/daya (SD) 23.4 (� 10.0) 21.1 (� 9.8) 23.9 (� 10.0) 0.379
NSAID usage, N (%)a 0.736

Yes 26 (33.3) 3 (25.0) 23 (34.8)
No 52 (66.7) 9 (75.0) 43 (65.2)

Age at the start of surveillance, yearsa (SD) 57.5 (� 11.8) 57.6 (� 14.3) 57.7 (� 11.4) 0.967
Age at the end of surveillance, yearsa (SD) 60.7 (� 12.0) 58.9 (� 14.4) 61.0 (� 11.5) 0.575
Surveillance time, yearsa (SD) 3.1 (� 1.1) 1.3 (� 1.1) 3.5 (0.6) <0.001
Cancer history, N (%) 0.636

Yes 54 (49.1) 10 (55.6) 44 (47.8)
No 56 (50.9) 8 (44.4) 48 (52.2)

Cancer, N (%) 18 (16.4) 18 (16.4) —

CRC 9 (50.0) 9 (50.0) —

Otherb 9 (50.0) 9 (50.0) —

Abbreviations: BMI: body mass index; CRC: colorectal cancer; MET: metabolic equivalent task; MMR: mismatch-repair gene; NSAID: non-steroidal anti-inflammatory
drug; SD: standard deviation.
aMissing values, total cohort: Physical activity, n ¼ 34; BMI, n ¼ 5; dietary fiber intake, n ¼ 32; NSAID usage, n ¼ 32. Missing values, cancer: Physical activity, n ¼ 6;
dietary fiber intake, n ¼ 6; NSAID usage, n ¼ 6. Missing values, cancer-free: Physical activity, n ¼ 28; BMI, n ¼ 5; dietary fiber intake, n ¼ 26; NSAID usage, n ¼ 26.
bOther cancers included bladder cancer (n ¼ 1), breast cancer (n¼ 1), esophageal cancer (n ¼ 1), glioma (n ¼ 1) gastric cancer (n ¼ 1), prostate cancer (n ¼ 3), and
spinocellular cancer (n ¼ 1).
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C-index of 0.75 (0.60–1.00; Fig. 3D) thus presenting good
concordance (Supplementary Table S5). The mean c-miR risk
sum scorewas higher in those LS carriers whodeveloped cancer
(mean¼ 44.0) comparedwith those who did not (mean¼ 43.1;
P < 0.01).
We also conducted two sensitivity analyses that included

eitherMLH1 carriers (N¼ 74 of whom14 developed cancer) or
colorectal cancer cases (N ¼ 101 of whom 9 developed colo-
rectal cancer; Supplementary Tables S6–S11). Lasso selected
hsa-let-7e-5p, hsa-miR-10b-5p, and hsa-miR-3613-5p as the
best predictors to separate those who developed cancer from
those who did not in the MLH1 subgroup. Regarding the
colorectal cancer cases, hsa-miR-10b-5p, hsa-miR-19b-3p,
hsa-miR-200a-3p, hsa-miR-27b-3p, and hsa-miR-3615 were
selected as the best predictors. Although a risk sum score in
both sensitivity analyses was independently associated with
increased cancer incidence after adjusting, an enhanced risk
prediction performance was seen only in colorectal cancer–
stratified model (C-index ¼ 0.84) but not inMLH1model (C-
index ¼ 0.56) when compared with the unstratified model.
Taken together, risk prediction models composed of hsa-

miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-
3613-5p, and hsa-miR-3615 could classify between those LS
carriers who developed cancer during the surveillance period
and those who did not, also when stratified for MLH1 or
colorectal cancer. Higher prediagnostic expression levels of
these c-miRs are associated with increased risk of cancer
incidence.

Pathway analysis links coregulated hsa-miR-10b-5p,
hsa-miR-125b-5p, and hsa-miR-200a-3p to cell cycle
regulation, programmed cell death, cellular senescence,
and transcriptional regulation
The targeting of multiple genes within a specific pathway, as

well as the additive effects of coregulated c-miR clusters, are key
elements of effective c-miR regulation (32). First, we conducted
a correlation analysis to inspect whether the Lasso-obtained c-
miRs present possible coregulation. Hsa-miR-10b-5p correlat-
ed with hsa-miR-200a-3p (rho¼ 0.28, P < 0.01) and with hsa-
miR-125b-5p (rho ¼ 0.29, P < 0.01), hsa-miR-200a-3p corre-
lated with hsa-miR-125b (rho ¼ 0.41, P < 0.001) whereas hsa-
miR-3613-5p correlated only with hsa-miR-3615 (rho ¼ 0.31,
P < 0.01) thus displaying correlation and expression concor-
dance (Fig. 4A). hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-
miR-200a-3p were upregulated in LS whereas hsa-miR-3613-
5p and hsa-miR-3615 were downregulated when compared
with the healthy non-carrier controls, respectively (Fig. 2B).
To gain insight on relevant biological processes of hsa-miR-

10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-
5p, and hsa-miR-3615, we first predicted their putative target
genes usingmiRWalk.We found 128 unique target genes for all
the c-miRs expect for hsa-miR-3613-5p (Supplementary
Table S12). The most important gene nodes are presented
in Fig. 4B. These nodes had significant interactions among
each other (P < 0.001) which provided support for biological
connection. Of them, BCL2, EGFR, CDKN1A, CDKNA2A,
STAT3, SMAD2, CREB1, ETS1, and CD44 had the most

Figure 2.

Confirmation of LS-associated c-miR signature.A,Heatmapwith hierarchical clustering of DE c-miRs (n¼ 37) that separated cancer-free LS carriers and non-carrier
controls. Orange color indicates c-miR upregulation in LS groupwhereas blue color indicates c-miR downregulation in LS group. The scale represents normalized and
variance stabilized c-miR counts. LS samples are annotated with pink color and non-carrier controls with gray. B, Volcano plot of DE c-miRs that separated cancer-
free LS carriers and non-carrier controls. Only the upregulated (orange) and downregulated (blue) c-miRs in LS group are annotated. Gray dots represent non-DE
c-miRs. Y-axis indicates �log10 FDR whereas X-axis indicate log2 fold change of c-miR expression.

Siev€anen et al.

Cancer Prev Res; 17(6) June 2024 CANCER PREVENTION RESEARCHOF6

D
ow

nloaded from
 http://aacrjournals.org/cancerpreventionresearch/article-pdf/doi/10.1158/1940-6207.C

APR
-23-0368/3454081/capr-23-0368.pdf by guest on 14 June 2024



Figure 3.

hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and hsa-miR-3615 are associated with increased risk of cancer incidence. A, Left panel
presents a Lasso feature selection graph where every colored line indicate one of the 37 DE c-miRs found between cancer-free LS carriers and non-carrier
controls. Regression coefficient is presented as a function of the tuning parameter lambda. Right panel shows the partial likelihood deviance as a function of
lambda. The area between the dashed lines presents the optimal lambda value (l ¼ �2.5) after 10-fold cross-validation. B, Boxplots present expression
differences of the Lasso-obtained c-miRs between LS carriers who got cancer (pink) and cancer-free LS carriers (green). All of the Lasso-obtained c-miRs were
upregulated in those who developed cancer during the surveillance. The expression values on the Y-axis are presented as normalized and variance stabilized c-
miR counts. C, Unadjusted and sex and MMR-variant-adjusted LS cancer risk prediction models. HRs, 95% CIs, and model C-indices are shown. D, A total of
5-fold cross-validated LS cancer risk prediction model. Number of samples and events are shown for the training folds (80% of data) whereas C-indices are
shown for the validation fold (20% of data). Orange color indicates the mean C-index (0.75) across all folds.
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Figure 4.

Pathway analysis linked coregulated hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-200a-3p to cell cycle regulation, programmed cell death, cellular
senescence, and transcriptional regulation. A, Heat map of correlations among the Lasso-obtained c-miRs hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-
3p, hsa-miR-3613-5p, and hsa-miR-3615. hsa-miR-10b-5p correlated with hsa-miR-125b-5p (P < 0.01) and hsa-miR-200a-3p (P < 0.01), hsa-miR-125b-5p
correlated with hsa-miR-200a-3p (P < 0.01) whereas hsa-miR-3613-5p correlated with hsa-miR-3615 (P < 0.01). P < 0.05 was considered significant. The scale
represents the magnitude of correlation. Blue indicates low correlation and orange indicate high correlation. B, The most important gene nodes included
EGFR, CDKN1A, CDKNA2A, STAT3, SMAD2, CREB1, ETS1, and CD44 and were observed to have significant interactions (P < 0.001) with each other.
Edge thickness indicates the strength of data support between the nodes. C, Pathway analysis of 86 experimentally verified target genes of hsa-miR-10b-5p,
hsa-miR-125b-5p, and hsa-miR-200a-3p were significantly enriched (FDR < 0.05) in several pathways linked to cell cycle regulation, programmed cell death,
cellular senescence, and transcriptional regulation.
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interactions. hsa-miR-10b-5p targeted tumor suppressor genes
CDKN1A, CDKNA2A, and CREB1, hsa-miR-125b-5p targeted
oncogenes BCL2 and STAT3, proto-oncogene ETS1 as well as
CD44, hsa-miR-200a-3p targeted oncogene EGFR and tumor
suppressor gene SMAD2, that further supported possible cor-
egulation of these c-miRs. The complete gene node map is
presented in Supplementary Fig. S2.
Next, we conducted a pathway analysis on the experimen-

tally confirmed c-miR target genes reported in MiRTar-
Base (28). A total of 86 out of 128 of the found target genes
were significantly enriched in several pathways related to cell
cycle regulation, programmed cell death, cellular senescence as
well as transcriptional regulation (Fig. 4C). The observed
pathways, such as those linked to DNA damage response and
programmed cell death, are also in line with the acknowledged
biology of cancers. These pathways along with cellular senes-
cence pathways were targeted by coregulative and upregulated
hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-200a-3p
(Supplementary Table S13). In summary, hsa-miR-10b-5p,
hsa-miR-125b-5p, and hsa-miR-200a-3p showed potential
coregulation by displaying reciprocal correlation and by tar-
geting genes involved in several biological pathways relevant to
cancers.

c-miR risk sum score correlates with BMI
c-miRs modulate multisystemic adaptations in the human

body in response to lifestyle behavior. Therefore, we inves-
tigated whether the five c-miR risk sum score was associated
with lifestyle factors that are reported to reduce LS cancer
risk, or age which is a significant cancer risk factor in LS. Of
the chosen lifestyle factors, only BMI showed significant
correlation with the c-miR risk sum score (Table 2). Using
the multiple imputed datasets did not show significant
differences to a complete-case analysis (Supplementary
Table S14). These findings indicate that the expression levels
of hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a, hsa-
miR-3613-5p, and hsa-miR-3615 might be affected by BMI
thus suggesting potential link between lifestyle, c-miRs and
LS cancer risk.

Discussion
Our pilot study was the first to assess whether a c-miR

expression signature could be used in LS cancer risk predic-
tion during a 4-year prospective surveillance period. We also
investigated whether this signature associates with lifestyle
factors and age. Using Lasso regression and bioinformatics
approaches, we showed that a risk sum score composed of
hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-
miR-3613-5p, and hsa-miR-3615 associates with an increased
risk of LS cancer incidence. We also observed that this c-miR
risk sum score correlates positively with BMI.
Identifying reliable biomarkers has the potential to aid in risk

stratification of high-risk patients (33). Integrating these bio-
markers with clinicopathologic factors could enhance the
accuracy of patient selection criteria for risk-based screening
programs. In the current study, Lasso-Cox model successfully
separated LS carriers whodeveloped cancer from thosewho did
not by using a c-miR signature. Our finding suggests that c-miR
expression can classify high-risk cases in LS population, also
when stratified for MLH1-variant or colorectal cancer, but
further validation is required. This observation is valuable
because the variation of cancer risk is high among LS car-
riers (34), and the implementation of intense screening pro-
grams is not uniformly effective (35). Therefore, a more
nuanced approach is needed to identify those patients who
are most likely to benefit from the screenings.
Cross-validations of the risk prediction models showed that

c-miR risk sum scores have risk prediction potential also in
randomly generated subsets with varying surveillance time
and number of events. This finding is supported by previous
research. For example, hsa-miR-10b-5p, hsa-miR-125b-5p,
and hsa-miR-200a-3p, that were upregulated in those who
developed cancer within the LS cohort, are well-recognized
sporadic colorectal cancer miRs with multiple roles and
reported biomarker potential (13, 14, 36–38). hsa-miR-3613-
5p has been established as a colorectal cancermiR (39) whereas
hsa-miR-3615 has been previously reported to display down-
regulation in microsatellite unstable colorectal tumors, which
are hallmark tumors of LS, when compared with their micro-
satellite stable counterparts (40).
Furthermore, these five c-miRs displayed correlation as

well as higher expression in those LS carriers who developed
cancer compared those who did not, thus suggesting poten-
tial coregulation and biological connection. In support,
we found that four out of the five c-miRs (hsa-miR-10b-
5p, hsa-miR-125b-5p, hsa-miR-200a-3p, and hsa-miR-3615)
have been experimentally shown to target several well-
established oncogenes and tumor suppressor genes, includ-
ing BCL2, EGFR, CDKN1A, CDKN2A, CREB1, STAT3, and
SMAD2 (41). Also, these genes formed interconnected
nodes, which indicates similar role and biological connection
among them and provide more support for the suggested
coregulation of these c-miRs. All of these genes are part of
cancer-relevant biological pathways, such as those in apo-
ptosis, DNA damage, and cellular senescence (42).

Table 2. Pearson correlations of c-miR risk sumscore andphysical
activity, BMI, dietary fiber consumption, NSAID usage, and age.

r 95% CI P-value

Physical activity 0.03 [�0.19, 0.26] 0.76
BMI 0.23 [0.04–0.43] 0.01
Dietary fiber intake 0.04 [�0.18, 0.26] 0.71
NSAID usage �0.03 [�0.25, 0.18] 0.75
Age �0.14 [�0.33, �0.05] 0.14

Note: Lifestyle data were collected 2017 or 2020 with a questionnaire. Blood
sample was taken at regular colonoscopy visit. The average time-period
between lifestyle data collection and blood sample was 2.0 (0.3–3.9) years.
P-value significant at 0.05 level.
Abbreviations: r ¼ Pearson correlation coefficient; 95% CI ¼ 95% confidence
interval; BMI¼ bodymass index; NSAID¼ non-steroidal anti-inflammatory drug
usage.
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Wikberg and colleagues observed that major changes of miR
patterns occur mainly 3 years prior to sporadic colorectal
cancer diagnosis by showing a temporal pattern of increase
in miR-21-5p expression by using prediagnostic and postdiag-
nostic plasma samples (43). Raut and colleagues reported that a
risk sum score of seven c-miRs was highly predictive for
sporadic colorectal cancer risk in a prospective cohort with
a follow-up time up to 14 years and median follow-up of
6.8 years (16). However, the c-miR signature we identified did
not include any of themiRs observed by Raut and colleagues In
contrast to sporadic colorectal cancer that develops commonly
in 10–15 years, the development of LS colorectal cancer is
significantly accelerated, often taking only 1 to 3 years to
progress to carcinoma with or without pre-existing adeno-
ma (44), which may explain the discrepancies between our
study and the study by Raut and colleagues. As LS carriers in
our study were diagnosed with cancer in 1.3 years on average
from the serum sampling, it is possible that the observed c-miR
signature originates from tumors. However, it is also possible
that the observed c-miR levels may reflect risk rather than
tumor presence because our sample was not limited to colo-
rectal cancers. Nonetheless, these studies as well as our bioin-
formatics analyses show promising results for using c-miRs in
LS cancer risk prediction.
Interestingly, we found a positive correlation between the c-

miR risk sum and BMI suggesting a potential link between
excess body weight, c-miRs, and cancer risk. In support to our
findings, hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-
200a-3p have been previously linked with increased levels of
plasma total cholesterol, dysregulated lipid metabolism, and
overweight/obesity in general (45–47). Mens and colleagues,
reported that upregulation of hsa-miR-10b-5p and hsa-miR-
125b-5p associate with increased total cholesterol (45). Con-
versely, Ortega and colleagues reported a positive correlation
between decreased levels of hsa-miR-125b and BMI after
surgery-induced weight loss in obese patients (46). Ruiz-
Roso and colleagues showed upregulated miR-200a to regulate
lipid metabolism–related genes in a mouse model (47),
although we did not find hsa-miR-200a-3p to target those
genes. Moreover, Dogan and colleagues reported 1,558 miR-
target gene interactions in obesity, including miR-125b, that
were also detected in multiple cancer types. They also showed
that metabolism and growth signaling pathways are shared by
obesity and obesity-related cancer (48). Of the pathways
reported by Dogan and colleagues, p53-signaling pathway was
also identified in our study as a key pathway targeted by the c-
miRs of the risk sum score. In addition, cellular senescence and
FOXOpathways emerged in our analysis. These pathways have
been reported to associate with cancer metabolism and obesity
via alteration of energy metabolism and adipose tissue (49, 50).
However, it is important to note that c-miRs have multifaceted
roles in metabolism, and their profiles change with disease
progression. Without mechanistic studies, it is challenging to
exclude the potential confounding effects of disease and genet-
ics in our findings. Asmetabolomic abnormality is an acknowl-

edged cancer hallmark (42), these c-miRs could be promising
targets to study when assessing the interactions of metabolic
dysregulation and cancer.
Amajor strength of our study is that we were able to conduct

an analysis using prediagnostic samples from a high-risk
cohort under frequent surveillance. We also used robust meth-
odology to interrogate c-miR signatures and their associations
with LS cancer risk. All of the analyses were conducted carefully
with state-of-the-art methods and tools. By utilizing Lasso
regression, we were able to choose the most promising c-
miRs and integrate them along with the surveillance time into
well-established tool used for risk prediction, thus allowing
comprehensive biomarker signature investigation. Missing
values were handled with multiple imputation that is reported
to have negligible bias whenmissingness occurs randomly (51).
Finally, we followed TRIPOD checklist to enhance transpar-
ency in our risk prediction model development and validation
as well as to improve reproducibility of these results.
As in many pilot experiments, the potential pitfall of our

study is the small sample and effect size. Despite our best efforts
to look for an external validation dataset, we unfortunately did
not find a suitable candidate dataset nor had the opportunity to
increase our sample size. For these reasons, we could not
validate our predictor selection model. Because the majority
of LS carriers are not most likely identified (44), and due to lack
of resources, it is difficult to gather enough samples as well as it
is costly to obtain enough small RNA-seq data for a more
comprehensive investigation. An international collaboration
study would be beneficial for such purposes. We also acknowl-
edge that because the study population was comprised mainly
of MLH1 carriers, our results might have limited generaliz-
ability to other pathogenic MMR variant carriers. Finally, the
average time period of 2.0 years between the lifestyle question-
naire data collection and blood sampling is also a potential
limitation of this study.
To conclude, we report that a risk sum score composed of

hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-
miR-3613-5p, and hsa-miR-3615 has potential in LS cancer
risk prediction, and thusmay serve as a stratification biomarker
signature for finding LS carriers at increased cancer risk in the
future. However, more experiments with larger sample size are
needed to confirm our findings. The molecular mechanisms
underlying the associations of body weight, LS cancer risk and
c-miRs remain to be elucidated in future studies.

Authors’ Disclosures
T. Jokela reports grants from European Comission Union Marie

Skłodowska-Curie Individual Fellowships during the conduct of the study.
T.T. Sepp€al€a reports grants from Finnish Medical Foundation, Emil
Aaltonen Foundation, Jane and Aatos Erkko Foundation, Relander Foun-
dation, and Cancer Foundation Finland during the conduct of the study;
personal fees from Amgen Finland, personal fees and other support from
LS CancerDiag, grants from Academy of Finland, and other support from
Healthfund Finland outside the submitted work. E.K. Laakkonen reports
grants fromP€aivikki and Sakari Sohlberg Foundation during the conduct of
the study. No disclosures were reported by the other authors.

Siev€anen et al.

Cancer Prev Res; 17(6) June 2024 CANCER PREVENTION RESEARCHOF10

D
ow

nloaded from
 http://aacrjournals.org/cancerpreventionresearch/article-pdf/doi/10.1158/1940-6207.C

APR
-23-0368/3454081/capr-23-0368.pdf by guest on 14 June 2024



Authors’ Contributions
T. Siev€anen:Conceptualization, software, formal analysis, investigation,

visualization, methodology, writing–original draft, writing–review and
editing. T. Jokela: Software, investigation, writing–review and editing.
M. Hyv€arinen: Software, formal analysis, methodology, writing–
review and editing. T.-M. Korhonen: Software, writing–review and
editing. K. Pylv€an€ainen: Data curation, writing–review and editing.
J.-P. Mecklin: Resources, data curation, funding acquisition, project
administration, writing–review and editing. J. Karvanen: Conceptualiza-
tion, software, methodology, writing–review and editing. E. Sillanp€a€a:
Conceptualization, supervision, writing–review and editing.
T.T. Sepp€al€a: Conceptualization, resources, data curation, supervision,
funding acquisition, project administration, writing–review and editing.
E.K. Laakkonen: Conceptualization, resources, data curation, supervision,
funding acquisition, project administration, writing–review and editing.

Acknowledgments
We would like to extend our gratitude to prof. Sarianna Sipil€a

(Gerontology Research Center and Faculty of Sport and Health Sciences,

University of Jyv€askyl€a, Finland) for the lifestyle data acquisition.
E.K. Laakkonenwas supported by grants fromP€aivikki and Sakari Sohlberg
Foundation. T. Jokela was supported by European Commission Union
Marie Skłodowska-Curie Individual Fellowships (grant number: H2020-
MSCA-IF-2020 #101026706). T.T. Sepp€al€a was supported by funding from
the Academy of Finland and iCAN Precision Medicine Flagship of Acad-
emy of Finland, and research grants by Jane and Aatos Erkko Foundation,
Finnish Medical Foundation, Sigrid Juselius Foundation, Emil Aaltonen
Foundation, Cancer Foundation Finland, Relander Foundation, and state
research funding from the Finnish Goverment, which is allocated as
competed grants through employing institutions to researchers
within their university hospital co-operation area (Tampere University
Hospital/Helsinki University Hospital).

Note
Supplementary data for this article are available at Cancer Prevention
Research Online (http://cancerprevres.aacrjournals.org/).

Received September 6, 2023; revised January 3, 2024; acceptedMarch 27,
2024; published first March 28, 2024.

References
1. Win AK, JenkinsMA, Dowty JG, Antoniou AC, Lee A, Giles GG, et al.

Prevalence and penetrance ofmajor genes and polygenes for colorectal
cancer. Cancer Epidemiol Biomarkers Prev 2017;26:404–12.

2. Peltom€aki P, Nystr€om M, Mecklin J-P, Sepp€al€a TT. Lynch syndrome
genetics and clinical implications. Gastroenterology 2023;5:783–99.

3. Siev€anen T, T€orm€akangas T, Laakkonen EK, Mecklin JP, Pylv€an€ainen
K, Sepp€al€a TT, et al. Body weight, physical activity, and risk of cancer
in lynch syndrome. Cancers 2021;13:1849.

4. Jamizadeh N, Walton Bernstedt S, Haxhijaj A, Andreasson A, Bj€ork J,
Forsberg A, et al. Endoscopic surveillance of Lynch syndrome at a
highly specialized center in Sweden: an observational study of interval
colorectal cancer and individual risk factors. Front Oncol 2023;13:
1127707.

5. Dashti SG, Win AK, Hardikar SS, Glombicki SE, Mallenahalli S,
Thirumurthi S, et al. Physical activity and the risk of colorectal cancer
in Lynch syndrome. Int J Cancer 2018;143:2250–60.

6. Dominguez-Valentin M, Sampson JR, Sepp€al€a TT, ten Broeke SW,
Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in
6350 carriers of pathogenic mismatch repair variants: findings
from the prospective lynch syndrome database. Genet Med 2020;
22:15–25.

7. Burn J, Sheth H, Elliott F, Reed L, Macrae F, Mecklin J-P, et al. Cancer
prevention with aspirin in hereditary colorectal cancer (Lynch syn-
drome), 10-year follow-up and registry-based 20-year data in the
CAPP2 study: a double-blind, randomised, placebo-controlled trial.
Lancet 2020;395:1855–63.

8. Mathers JC, Elliott F,Macrae F,Mecklin J-P,M€osleinG,McRonald FE,
et al. Cancer prevention with resistant starch in lynch syndrome
patients in the CAPP2-randomized placebo controlled trial: planned
10-year follow-up. Cancer Prev Res 2022;15:623–34.

9. Mori MA, Ludwig RG, Garcia-Martin R, Brand~ao BB, Kahn CR.
Extracellular miRNAs: from biomarkers to mediators of physiology
and disease. Cell Metab 2019;30:656–73.

10. Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer
2021;21:22–36.

11. Jung G, Hern�andez-Ill�an E,Moreira L, Balaguer F, Goel A. Epigenetics
of colorectal cancer: biomarker and therapeutic potential. Nat Rev
Gastroenterol Hepatol 2020;17:111–30.

12. Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in
human disease. N Engl J Med 2018;379:958–66.

13. Yang G, Zhang Y, Yang J. A five-microRNA signature as prognostic
biomarker in colorectal cancer by bioinformatics analysis. FrontOncol
2019;9:1207.

14. Zhang J, Song W, Chen Z, Wei J, Liao Y, Lei J, et al. Prognostic and
predictive value of a microRNA signature in stage II colon cancer: a
microRNA expression analysis. Lancet Oncol 2013;14:1295–306.

15. Adam RS, Poel D, Ferreira Moreno L, Spronck JMA, de Back TR,
Torang A, et al. Development of a miRNA-based classifier for detec-
tion of colorectal cancer molecular subtypes. Mol Oncol 2022;16:
2693–709.

16. Raut JR, Sch€ottker B, Holleczek B, Guo F, BhardwajM,MiahK, et al. A
microRNApanel compared to environmental and polygenic scores for
colorectal cancer risk prediction. Nat Commun 2021;12:4811.

17. Bye A, Røsjø H, Aspenes ST, Condorelli G, Omland T, Wisløff U.
Circulating MicroRNAs and aerobic fitness - the HUNT-study.
PLoS One 2013;8:e57496.

18. Siev€anen T, Korhonen T-M, Jokela T, Ahtiainen M, Lahtinen L,
Kuopio T, et al. Systemic circulating microRNA landscape in Lynch
syndrome. Int J Cancer 2023;152:932–44.

19. Kaartinen NE, Tapanainen H, Valsta LM, Simil€a ME, Reinivuo H,
Korhonen T, et al. Relative validity of a FFQ in measuring
carbohydrate fractions, dietary glycaemic index and load: explor-
ing the effects of subject characteristics. Br J Nutr 2012;107:
1367–75.

20. van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputa-
tion by chained equations in R. J Stat Softw 2011;45:1–67.

21. Love MI, Huber W, Anders S. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;
15:550.

22. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression
data. Bioinformatics 2009;26:139–40.

23. Tibshirani R. The Lasso method for variable selection in the Cox
model. Stat Med 1997;16:385–95.

24. Harrell FEJ, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the
yield of medical tests. JAMA 1982;247:2543–6.

25. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent
reporting of a multivariable predictionmodel for individual prognosis
or diagnosis (TRIPOD): the TRIPOD statement. BMC Med 2015;13:
1–10.

miRNAs Predict Lynch Syndrome Cancer Incidence

AACRJournals.org Cancer Prev Res; 17(6) June 2024 OF11

D
ow

nloaded from
 http://aacrjournals.org/cancerpreventionresearch/article-pdf/doi/10.1158/1940-6207.C

APR
-23-0368/3454081/capr-23-0368.pdf by guest on 14 June 2024



26. Friedman JH, Hastie T, Tibshirani R. Regularization paths for gen-
eralized linear models via coordinate descent. J Stat Softw 2010;33:
1–22.

27. Therneau TM, Grambsch PM. The Coxmodel BT - modeling survival
data: extending the Cox model. In: Therneau TM, Grambsch PM,
editors. New York (NY): Springer New York; 2000. p. 39–77.

28. Huang HY, Lin YCD, Li J, Huang KY, Shrestha S, Hong HC, et al.
MiRTarBase 2020: updates to the experimentally validated micro-
RNA-target interaction database.NucleicAcids Res 2020;48:D148–54.

29. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online
resource for prediction ofmicroRNAbinding sites. PLoSOne 2018;13:
e0206239.

30. Snel B, Lehmann G, Bork P, Huynen MA. String: a web-server to
retrieve and display the repeatedly occurring neighbourhood of a gene.
Nucleic Acids Res 2000;28:3442–4.

31. Wu G, Haw R. Functional interaction network construction and
analysis for disease discovery. Methods Mol Biol 2017;1558:235–53.

32. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of
microRNA function and dysfunction in cancer. Nat Rev Genet 2016;
17:719–32.

33. Sur D, Advani S, Braithwaite D. MicroRNA panels as diagnostic
biomarkers for colorectal cancer: a systematic review and meta-
analysis. Front Med 2022;9:915226.

34. International Mismatch Repair Consortium. Variation in the risk of
colorectal cancer in families with Lynch syndrome: a retrospective
cohort study. Lancet Oncol 2021;22:1014–22.

35. Møller P, Sepp€al€a T, Bernstein I, Holinski-Feder E, Sala P, Evans DG,
et al. Cancer incidence and survival in Lynch syndrome patients
receiving colonoscopic and gynaecological surveillance: first report
from the prospective Lynch syndrome database. Gut 2017;66:464–72.

36. Sheedy P,Medarova Z. The fundamental role ofmiR-10b inmetastatic
cancer. Am J Cancer Res 2018;8:1674–88.

37. Pichler M, Ress AL, Winter E, Stiegelbauer V, Karbiener M, Schwar-
zenbacher D, et al. MiR-200a regulates epithelial to mesenchymal
transition-related gene expression and determines prognosis in colo-
rectal cancer patients. Br J Cancer 2014;110:1614–21.

38. YamadaA,HorimatsuT,OkugawaY,NishidaN,HonjoH, IdaH, et al.
Serum MIR-21, MIR-29a, and MIR-125b are promising biomarkers

for the early detection of colorectal neoplasia. ClinCancer Res 2015;21:
4234–42.

39. Xiang F, Xu X. CirRNA F-circEA-2a suppresses the role of miR-3613–
3p in colorectal cancer by direct sponging and predicts poor survival.
Cancer Manag Res 2022;14:1825–33.

40. SlatteryML, Lee FY, Pellatt AJ, Mullany LE, Stevens JR, SamowitzWS,
et al. Infrequently expressed miRNAs in colorectal cancer tissue and
tumor molecular phenotype. Mod Pathol 2017;30:1152–69.

41. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al.
COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids
Res 2019;47:D941–7.

42. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov
2022;12:31–46.

43. Wikberg ML, Myte R, Palmqvist R, van Guelpen B, Ljuslinder I.
Plasma miRNA can detect colorectal cancer, but how early?
Cancer Med 2018;7:1697–705.

44. Sepp€al€a TT, Burkhart RA, Katona BW. Hereditary colorectal,
gastric, and pancreatic cancer: comprehensive review. BJS Open
2023;7:zrad023.

45. MensMMJ,Maas SCE,Klap J,WeverlingGJ, Klatser P, Brakenhoff JPJ,
et al. Multi-omics analysis reveals MicroRNAs associated with cardi-
ometabolic traits. Front Genet 2020;11:110.

46. Ortega FJ, Mercader JM, Catal�an V, Moreno-Navarrete JM, Pueyo N,
Sabater M, et al. Targeting the circulating microRNA signature of
obesity. Clin Chem 2013;59:781–92.

47. Ruiz-Roso MB, Gil-Zamorano J, L�opez de las Hazas MC, Tom�e-
Carneiro J, Crespo MC, Latasa MJ, et al. Intestinal lipid metabolism
genes regulated by miRNAs. Front Genet 2020;11:707.

48. Dogan H, Shu J, Hakguder Z, Xu Z, Cui J. Elucidation of molecular
links between obesity and cancer through microRNA regulation.
BMC Med Genet 2020;13:161.

49. Smith U, Li Q, Ryd�enM, Spalding KL. Cellular senescence and its role
in white adipose tissue. Int J Obes 2021;45:934–43.

50. Yadav RK, Chauhan AS, Zhuang L, Gan B. FoxO transcription factors
in cancer metabolism. Semin Cancer Biol 2018;50:65–76.

51. White IR, Carlin JB. Bias and efficiency of multiple imputation
compared with complete-case analysis for missing covariate values.
Stat Med 2010;29:2920–31.

Cancer Prev Res; 17(6) June 2024 CANCER PREVENTION RESEARCHOF12

Siev€anen et al.

D
ow

nloaded from
 http://aacrjournals.org/cancerpreventionresearch/article-pdf/doi/10.1158/1940-6207.C

APR
-23-0368/3454081/capr-23-0368.pdf by guest on 14 June 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice


