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ABSTRACT
Infections are known to interact as previous infectionsmay have an effect on risk of suc-
cumbing to a new infection. The co-dynamics can be mediated by immunosuppression
ormodulation, shared environmental or climatic drivers, or competition for susceptible
hosts. Research and statistical methods in epidemiology often concentrate on large
pooled datasets, or high quality data from cities, leaving rural areas underrepresented in
literature. Data considering rural populations are typically sparse and scarce, especially
in the case of historical data sources, whichmay introduce considerablemethodological
challenges. In order to overcome many obstacles due to such data, we present a general
Bayesian spatio-temporal model for disease co-dynamics. Applying the proposed
model on historical (1820–1850) Finnish parish register data, we study the spread
of infectious diseases in pre-healthcare Finland. We observe that measles, pertussis,
and smallpox exhibit positively correlated dynamics, which could be attributed to
immunosuppressive effects or, for example, the general weakening of the population
due to recurring infections or poor nutritional conditions.

Subjects Ecology, Microbiology, Epidemiology, Statistics, Data Science
Keywords Spatio-temporal, Infection co-dynamics, Pertussis, Measles, Smallpox, Bayesian
analysis

INTRODUCTION
Infections exist rarely in isolation, and their effects on hosts are known to interact and
to have both positive and negative relationships between each other (Gupta, Ferguson
& Anderson, 1998; Rohani et al., 2003; Shrestha et al., 2013; Mina et al., 2015; Nickbakhsh
et al., 2019). For example, cross immunity may prevent others from infecting the host,
competition for the same resources or susceptible host can have strong effects on epidemics,
and sometimes one infection paves a way for another (Gupta, Ferguson & Anderson, 1998;
Rohani et al., 2003; Graham, 2008). Perhaps historically the best-known relationship
between infections is the immunosuppressive effect of measles on the following pertussis
epidemic by increasing the severity of the epidemic (see Coleman, 2015; Mina et al.,
2015; Noori & Rohani, 2019). Coinfections of parasites (Graham, 2008) and viruses and
respiratory bacterial infections are well known (e.g., Bakaletz, 2017; Wong et al., 2023),
whereas understanding coinfections and cotransmissions of, for example, zika, dengue,
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and chikungunya viruses presents a current serious challenge for public health (Vogels et
al., 2019).

Demographic consequences of epidemics are most dramatically seen in large cities
and in densely populated areas, which is reflected in the epidemiological research in
general (Mueller et al., 2020). However, as rural areas constitute a large part of most
countries, the spatio-temporal dynamics of epidemics in populations with low densities
deserve more attention (Mueller et al., 2020). In rural areas, populations often consist
of loosely connected metapopulations rather than large and epidemiologically more
autonomous populations in cities. This has most likely strong repercussions for the drivers
of epidemics (Ball et al., 2015) and also for the co-occurrence of infections. However,
these issues are rarely addressed in the literature, possibly due to the statistical challenges
encountered with sparse and scarce data, as well as the difficulty of modeling the dynamics
of several infections simultaneously both in space and time.

The discrepancy between studying dense and sparse populations is evident and can be
seen, for example, by comparing our case of rural Finland in 1820–1850 to the seminal
research of Rohani et al. (2003). Their study is based on five large European cities, where
the weekly number of fatalities frequently exceeds 30 and even 80. In our data, the recorded
incidents in most of the towns rarely exceed one person per month, as we study a small
and mainly agrarian population in the southern part of Finland with circa 1.2 to 1.6
million individuals (Voutilainen, Helske & Högmander, 2020). The population, without
proper healthcare (Saarivirta, Consoli & Dhondt, 2012), was spread over a vast area in
geographically separated, but socially connected, small towns and villages. Based on the
data from 1882, population sizes of towns varied between 300 and 25,000 (Statistical
Office of Finland, 1882; Ketola et al., 2021). Despite the obvious uncertainty of population
censuses during that era (Voutilainen, Helske & Högmander, 2020), the contrast between
our data and most of the published datasets is striking. Statistical modeling of such data is
problematic due to incomplete information from some locations and the rare occurrence
of events, hampering the ability of generally used models to consider several infectious
diseases at the same time and on both temporal and spatial scales.

To estimate the spatio-temporal co-dynamics of deaths due to pertussis, measles, and
smallpox, we build a model that can overcome the limitations inherent in our data. The
model jointly estimates the spread of multiple infections, enabling the exploration of
the temporal and spatial dependence structures both within and between the infections.
Our general Bayesian model consists of a multivariate latent incidence process, a seasonal
component, andmultiple predictors whose effects may vary between the towns. This allows
us to study the dynamics of the diseases simultaneously despite having only incomplete
information about the deaths. The results we get from modeling the mere presence-
absence data are compared with those of modeling the corresponding death counts, and
the simplification is deemed to be a reasonable option in our case. Given the limitations
of our data, we do not aim to make causal claims on a biological level, and rather than
focusing on the magnitude of infections and the intensity of deaths, our primary interest
lies in understanding how the prevalence of these three diseases varied both spatially
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1This text was originally published as a
preprint (https://export.arxiv.org/abs/2310.
06538).

and temporally in pre-industrial Finland, and if there were possible associations in these
dynamics across the diseases.1

MATERIALS AND METHODS
Data
During the study period, 1820–1850, the parishes in Finland kept track, among
others, of baptisms, burials and causes of deaths, according to common and long
held principles (Pitkänen, 1977). Even though the death diagnostics were based on
symptoms, some infections can be considered to be diagnosed rather accurately due to their
characteristic features. These diseases include pertussis (whooping cough), measles, and
smallpox, which we consider. These infections were the main reason for child mortality,
and, overall, they were responsible for approximately 5, 3, and 3 percent of total deaths,
respectively, according to our data. Based also on the available records in our data, the
median ages of deaths in complete years were 0 (sd = 3.6) for pertussis, 2 (sd = 3.9) for
measles, and 2 (sd= 7.5) years for smallpox. Smallpox vaccinations were started in Finland
in 1802 and were slowly progressing during the study period (Briga, Ketola & Lummaa,
2022). However, general healthcare was almost non-existent as in 1820 there were only 373
hospital sickbeds for 1.2 million inhabitants (Saarivirta, Consoli & Dhondt, 2012).

Our data consist of the daily numbers of deaths, classified by the cause of death, between
January 1820 and December 1850 from N = 387 different regions (towns) in mainland
Finland with the exclusion of northern areas. The time window is chosen such that there
were no major famines, wars, border changes, or other potentially confounding events,
which could have altered the geographical partition or the dynamics of the epidemics. The
general stability achieved is advantageous in the modeling.

Although using a daily time scale would, theoretically, be ideal for modeling disease
dynamics, the infrequency of deaths implies that our data lack sufficient information to
study temporal dependencies at such a detailed level. This issue is likely further pronounced
by the spatial heterogeneity of the data and the potentially complex lagged auto- and cross-
dependencies between the infection dynamics of the diseases. Therefore, the daily counts
of deaths are aggregated over time into a monthly level, decreasing the number of zero
observations yet maintaining a reasonable time resolution for observing the spread of the
diseases on our geographical scale. This yields a total of T = 372 time points. The counts of
the observed numbers of deaths by disease, considering the aggregated data, are visualized
in Fig. 1. In each case of the three infections, about 93–96% of the death counts are zero
or one, and less than 2% of the counts are more than three, despite the aggregation. The
reliability of the actual death counts varies considerably both temporally and spatially owing
to the heterogeneous quality of the parish records and the cause of death classifications.
Moreover, these deficiencies are not necessarily independent of the true number of deaths.
It is also noteworthy that despite the records of baptisms and burials, there are no reliable
estimates of the population sizes at the town level (Voutilainen, Helske & Högmander,
2020). Hence the intuitive idea of using local relative mortality is unfortunately beyond
reach. Because of this and the aforementioned reliability issues—and since most of the
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counts are still either zero or one even after the aggregation to a monthly level—only the
dichotomous knowledge of the death occurrence is used in the main analysis. Even so, the
count data are considered in the model comparison section.

About 24% of the data concerning death occurrences in a town and a month are
missing, and from 57 out of the overall 387 regions there are no observations at all. The
missingness pattern is common to all the diseases, as for a particular town and month, we
have observed the death counts for all the diseases or for none of them. This is because
the missing data can be attributed to the absence of parish records that document all
deaths. Such unavailability of data may be a result of incomplete digitization of the parish
records, loss of the documents for example due to a fire in the local rectory or church, or
simply because there were no deaths in a given month. Therefore, the missing data could
potentially depend on the unknown regional population size, but not on the specific cause
of death, given that the proportions of deaths attributable to the particular cause of death
are relatively small. Nevertheless, our proposed model provides estimates of the monthly
probabilities of observing at least one death also for the towns with missing observations.

Model
We construct a general model to describe the spatial and temporal dependencies both
within and between the infections under study. We also want to enable exploiting other
relevant information as explanatory variables. In epidemiological context, there typically
occur spatial or temporal trends or seasonal effects, which can be included as separate
components in the model. Due to the nature of our data, we model the probability of
observing at least one death caused by a disease in a certain town in a certain month. The
model consists of a trend, a seasonal effect, and a regression part reflecting the local effects
of the previous state of infection in the focal town and its neighboring towns.

Formally, let ydi,t denote a dichotomous variable of an event where at least one death
occurs due to a disease d in a region i= 1, ...,N at a time point t = 1, ...,T , where N is
the number of regions and T the number of time points. Let K d

x indicate the number of
explanatory variables x , based on the features of the region i. Accordingly, z denotes the
explanatory variables, and K d

z their number, related to the neighborhood of the region i.
Thus the model for observing at least one death caused by the disease d in the region i at
the time point t can be written as follows:

ydi,t ∼Bernoulli
(
logit−1

(
ηdi,t
))
, (1)

where

ηdi,t = λ
d
i τ

d
t + s

d
t +a

d
i +b

d
i

K d
x∑

k=1

βd
k x

d
i,k+ c

d
i

K d
z∑

k=1

γ d
k z

d
i,k . (2)

Here Bernoulli distributionwith a logit link is chosen due to our dichotomous consideration
of the occurrences of death, but other distributions with appropriate link functions can be
applied for different types of response variables.

The first three terms being summed in Eq. (2) form a base level, in our case, for the
probability of observing at least one death caused by the disease d at each town and month.
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Figure 1 The counts of the observed numbers of deaths over all towns andmonths plotted by disease.
The first bar indicates the number of missing observations. The numbers above the bars are the counts.
Note that the vertical axis is on a logarithmic scale.

Full-size DOI: 10.7717/peerj.18155/fig-1
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More specifically, the first term consists of the time dependent latent factor τt , describing
the nationwide incidence (on log-odds scale), or trend, of the disease d , and the regional
adjustments or loadings λi, with respect to the mean level. As in general dynamic factor
models, the products λiτt are not identifiable without constraints (Bai & Wang, 2015).
Instead of the common approach of fixing one of the loadings λi to 1, we constrain the
mean of the loadings to 1, enabling the interpretation of the factor τt as the nationwide
incidence level. Due to the nature of the other terms in Eq. (2), this incidence level gives
the national average log-odds of observing at least one death in an ‘‘average’’ town in
a given month if no deaths were observed in the previous month in the focal town or
in its neighboring towns. The second term st is a monthly seasonal effect, which is the
average deviation from the nationwide incidence level, summing up to 0 over the months.
The third term ai is a regional, zero-mean constant reflecting local deviations from the
nationwide incidence level τt due to unobserved local demographic, geographic, social or
other characteristics associated with mortality.

The last two sum terms in Eq. (2) form the regression part of the model. The first sum
includes the covariates xi,k related to the focal region i, and the second sum the covariates
zi,k related to the neighboring regions. These variables have both nationwide coefficients
β and γ , and their local adjustments bi and ci amplifying or diminishing the nationwide
level. As the regional constants ai, also the multiplicative local adjustments may account
for any unobserved heterogeneity between the regions, such as the local population sizes
or densities. The adjustment parameter bi reflects the features of the focal region i, and
ci those of the neighborhood of the region i (possibly relative to i). We assume that bi is
the same for all covariates xk , and, accordingly, ci for all zk , since the underlying regional
characteristics modifying the nationwide mortality effects β and γ do not depend on the
covariates.

In our study, there are three covariates assigned to the town i and another three to
its neighbors for all diseases d = p,m, s, where p stands for pertussis, m measles, and s
smallpox. The local explanatory variables xi,k are the presences of deaths caused by the
three different diseases in the previous month in the focal town, whereas the regional
neighborhood predictors zi,k are the averages of the same presences of deaths over the local
neighborhood. We define two regions being neighbors when they share a border. By this
definition, all the towns have at least one neighbor. Other definitions of neighborhood
could be used as well, for example based on the transportation network or distance, leading
to weighted averages of death occurrences.

As noted earlier, our data contain a large number of missing observations. We assume
that the probability of having a missing response or predictor variable is independent of
the value of the response variable. This presumption may be considered valid, given that
the lack of parish records on deaths is unlikely to depend on the causes of deaths in a
particular month. Under this assumption, we can model the observed data analogously
to a complete-case analysis in an unbiased manner, assuming our model is correctly
specified (van Buuren, 2018). This eliminates the need for multiple imputation or sampling
missing observations using MCMC algorithms which do not use gradient information (i.e.,
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algorithms capable of sampling discrete variables), both of which would be computationally
unfeasible in our Bayesian spatio-temporal context.

In practice, the complete-case analysis in our context means that to use an observation
as a response, we require that both the current response variable as well as all of the related
covariates are observed. If any of them is missing, we omit the particular combination of
town and month as a response. On the other hand, when calculating the neighborhood
covariates zi,k , which in our case are the averages over the observations within the
neighborhood, we omit the neighbors with missing observations so that they are not
included even as a denominator in the evaluation of the mean. If all neighbor observations
are missing, the corresponding covariate is defined as missing.

Wemodel the latent factor τt = (τ pt ,τmt ,τ
s
t ), the temporal process describing the baseline

of the nationwide incidence rates, as an intercorrelated randomwalk, τt+1∼N(τt ,6). Here
6 is an unconstrained 3×3 covariance matrix parametrized using the standard deviations
σ d
τ and the correlation matrix R. In our application this latent process, together with the

regional constant and the monthly effect, can be interpreted as the probability to observe
at least one new death in a particular town when no deaths caused by any of the three
diseases were observed in the previous month in the focal town or in its neighborhood.

In the Bayesian modeling framework, we need prior distributions for all the parameters
to be estimated. The incidence factors τ d follow a N(−2,22) prior at the first time point
and form a random walk at the later time points. For the correlation matrix R we use an
LKJ(1) prior with a Cholesky parametrization (Lewandowski, Kurowicka & Joe, 2009), i.e.,
a uniform prior over valid 3×3 correlation matrices. For the regional parameters we apply
Gaussian priors: λdi ∼N(1,σ 2

λd
),adi ∼N(0,σ 2

ad ),b
d
i ∼N(1,σ 2

bd ), and cdi ∼N(1,σ 2
cd ). The

prior means of the local adjustments bdi and cdi are set to 1, which enables us to interpret
βd
k and γ d

k as nationwide effects as is the case with additive multilevel models having
population-level and group-level effects. While we use a hard equality constraint for the
mean of the λdi s to ensure the identifiability and more efficient estimation of the model,
the hierarchical priors for bdi and c

d
i are sufficient for their identifiability. For the unknown

deviations στ d , σλd , σad , σbd , and σcd we assign Gamma priors with shape parameter 2 and
rate parameter 1. The nationwide coefficients βd

k and γ d
k have N(0,22) priors. The seasonal

effects sdt follow a standard normal prior with the aforementioned sum-to-zero constraint.
The priors can be seen as weakly informative, and they are chosen primarily to enhance
the computational efficiency (Banner, Irvine & Rodhouse, 2020).

Naturally, any of the components in the model could be excluded by setting the
corresponding coefficients or standard deviations to zero.Our Bayesianmodel encompasses
all such simplified alternatives, with the corresponding model and parameter uncertainty
reflected by the estimated posterior distributions, leading to more truthful uncertainty
estimates compared to merely imposing prior constraints on certain effects to be zero.

RESULTS
The model is estimated using Markov chain Monte Carlo (MCMC) with cmdstanr (Gabry
& Češnovar, 2022), which is an R interface (R Core Team, 2022) for the probabilistic
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programming language Stan for statistical inference (Stan Development Team, 2022). To
draw the posterior samples we use NUTS sampler (Hoffman & Gelman, 2014; Betancourt,
2018) with four chains, each consisting of 7,500 iterations, the first 2,500 of which discarded
as a warm-up. With parallel chains the computation takes about ten hours. The model is
estimated on a supercomputer node with four cores of Xeon Gold 6230 2.1 GHz processors
and 40 GB of RAM. According to the MCMC diagnostics of cmdstanr (Vehtari et al., 2021),
the model converges without divergences, the R̂ statistics are always below 1.005, and the
effective sample sizes are approximately between 700 and 43,000. The lowest effective
sample size is the one of the deviation parameter of the constants considering measles, σαm .
The R and Stan codes, the data used for the analysis, and Supplementary Figures and Tables
are available on GitHub (https://github.com/tihepasa/infectionDynamics). All the figures
were created using the R packages ggplot2 (Wickham, 2016) and ggpubr (Kassambara,
2023).

To visualize the temporal and spatial patterns of the death occurrences and to see how
the model estimates the corresponding probabilities to observe at least one death, the
data and the predictions based on the model are plotted as time series and as maps in
Figs. 2 and 3. The estimates are computed as

∫
p(y ′t+k |y1,...,yt ,θ)p(θ |y1,...,yT ) dθ . In

other words, they are k-step ahead in-sample predictions (often called fitted values in
the time series literature, see, e.g., Hyndman & Athanasopoulos (2021)), where k−1 is the
number of preceding missing months, and they are calculated conditional on the posterior
distribution of the model parameters, including the latent incidence process τ . For the first
time point in this computation we also assume that the missing observations are zeros in
order to have covariates for all the sites.

The temporal behavior of the data is similar to the corresponding estimates. The slight
differences may be due to the fact that the proportions are based only on the data available,
whereas themodel predictions cover all themonth-town combinations. The spatial patterns
of the modeled probabilities reflect the infection distributions visible in the data. Pertussis,
measles, and smallpox all have emphasis on the eastern half of Finland, with especially
measles extending its prevalence to the southern parts of the country as well. When it
comes to the completely missing sites, the medians of the estimated average probabilities
over time are 3.7 percentage points higher for them than for the sites with observed data in
the case of pertussis, 0.3 percentage points higher in the case of measles, and 0.2 percentage
points lower in the case of smallpox. The differences are quite small, and by the prediction
account, the model seems to work well.

In what follows, we present the results in detail. They confirm that all the components
in the model are relevant, capturing different aspects of the spatio-temporal dynamics of
the epidemiological phenomena.

The nationwide incidence time series of the diseases are depicted by the factors τ dt . The
corresponding estimates are shown in Fig. 4 on a probability scale (logit−1(τ dt )). In general,
they seem to have the same shapes as the observed nationwide monthly proportions of
towns where at least one death caused by pertussis, measles, or smallpox was recorded (see
Fig. 2). There is one major disease outbreak regarding smallpox, whereas the other diseases
have several peaks, pertussis varying the most. No clear periodicity can be seen in any of the
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Figure 2 The prevalence of the diseases is illustrated with the dark lines depicting the proportions of
the towns where at least one death was observed. The lighter turquoise lines show the posterior means of
the corresponding estimates and the shaded areas their 95% posterior intervals. Note that the data line is
calculated over the towns with observations, whereas the estimate line averages all the towns.

Full-size DOI: 10.7717/peerj.18155/fig-2

series, which was also confirmed by estimating dominant frequencies via spectral analysis
using the R package forecast (Hyndman & Khandakar, 2008).

The seasonal effects sdt , or the average monthly deviations from the nationwide incidence
level, are shown in Fig. 5. According to the estimates, the seasonal effect of pertussis peaks
at the beginning of the calendar year, while the effect decreases during the summer and
increases again towards the end of the year. In contrast, the only distinctive seasonal effects
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Full-size DOI: 10.7717/peerj.18155/fig-3
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Figure 4 Posterior means and 95% posterior intervals for the unobserved incidence factors τd
t for per-

tussis, measles, and smallpox over the time period under study. The curves are on a probability scale.
Full-size DOI: 10.7717/peerj.18155/fig-4

related to measles and smallpox are the peaks in the spring and the minor decreases at the
end of the year.

Measured by the τ factors, we found a distinctive correlation between the infections of
measles and pertussis, 0.33 with a 95% posterior interval [0.08,0.55]. Omitting the specific
seasonal term s in the model yields almost the same correlation 0.31 [0.10,0.50]. The
correlation between smallpox and measles is ambiguous, being 0.24 [−0.01,0.46], though
it increases to 0.46 [0.26,0.63] in the model without the seasonal component. This implies
that monthly effects explain partly but not exhaustively the connection between these
diseases. Smallpox and pertussis seem to be mutually independent, 0.06 [−0.19,0.30],
which is also the case with the model without the seasonal terms, 0.15 [−0.07,0.37].

Pasanen et al. (2024), PeerJ, DOI 10.7717/peerj.18155 11/24

https://peerj.com
https://doi.org/10.7717/peerj.18155/fig-4
http://dx.doi.org/10.7717/peerj.18155


ssmallpox

smeasles

spertussis

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

-0.25

0.00

0.25

0.50

-0.25

0.00

0.25

0.50

-0.25

0.00

0.25

0.50

month

se
as
on

al
eff

ec
t

Figure 5 Posterior means (black), 50% (dark turquoise) and 95% (light turquoise) posterior intervals
of monthly seasonal effects sdt for pertussis, measles, and smallpox over a year.

Full-size DOI: 10.7717/peerj.18155/fig-5

According to the regional loadings λdi , adjusting the nationwide factors τ
d
t , it was more

likely to die of any of these diseases in eastern and southeastern Finland than in other
parts of the study area. This is also in accordance with the maps of the data in Fig. 3. The
posterior means of the loadings λ are plotted in Fig. 6. Considering the loadings, there
is most local variation in pertussis, σλp = 0.35 with a 95% posterior interval [0.31,0.40].
With regard to measles and smallpox, the loadings vary less, σλm = 0.17 [0.14,0.20] and
σλs = 0.15 [0.13,0.17].

The final term affecting the base level of the probability to observe at least one death
caused by pertussis, measles, or smallpox consists of the regional constants ai, shown in Fig.
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dence factors τt . Since the factors are negative, the smaller the loading is, the greater the probability of at
least one death is. The right panels illustrate the posterior means of the regional constants ai.

Full-size DOI: 10.7717/peerj.18155/fig-6
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6. Those related to pertussis and smallpox seem to be larger in eastern and southwestern
inland areas, whereas those considering measles are the largest in southern Finland.

The estimates of the nationwide regression coefficients β and γ are represented in
Table 1. All effects differing from zero are positive, meaning they increase the probability
to detect at least one death. The probability to observe one or more deaths induced by
one of these diseases is increased most prominently if there are recorded deaths caused by
the same disease in the same town, or in its neighbors, in the previous month. However,
there is more uncertainty in the effects of neighbors than in those of the towns themselves.
The risk that there is at least one death caused by pertussis is increased by the occurrence
of measles, whereas the corresponding effect of smallpox is not distinctive. Measles is
probably affected more by smallpox than by pertussis. In turn, measles seems to affect
smallpox more than pertussis does.

When it comes to the local adjustments bi and ci, their standard deviations are clearly
above zero, varying between 0.22 (σbm) and 0.55 (σcp), which indicates that the local
adjustments differ geographically. There are no obvious interpretations of their spatial
patterns (see maps of b and c in Supplementary Figures 1 and 2 on GitHub). This is
credible since the coefficients represent the combined effects of multiple unobserved
features that are not necessarily spatially organized.

For full results of all time and town invariant parameter estimates with their prior and
posterior intervals, see Supplementary Table 1 on GitHub.

Model comparison
While our main interest was studying the past spatio-temporal dynamics of infections and
disease associations within and between the diseases, we also examined the necessity and
reasonableness of modeling the disease interdependencies and the response aggregation.
We compared our model with a corresponding one without the dependencies between
the infections by excluding the other diseases as explanatory variables and omitting the
correlation between the incidence factors τt in the simpler model. Since the original data
contained the numbers of deaths instead of the dichotomous aggregates we used as a
response, we also estimated corresponding models with the difference of using the counts
as a response and a negative binomial distribution to model them. Additionally, the briefly
aforementioned model without a seasonal component was included in the comparison
in the case of both types of responses. This resulted in six different model versions for
comparison: dependent diseases, independent diseases, and dependent diseases without a
seasonal effect, each for both Bernoulli and negative binomial distributions.

The negative binomial model can be formally written as

ydi,t ∼NB
(
exp

(
ηdi,t
)
,exp

(
αφd +φ

d
i
))
, (3)

where the mean parameter ηdi,t is defined as in Eq. (2), and the nationwide dispersion
parameters αφd and the local dispersion parameters φdi depend on the response disease.
The priors are the same as with the Bernoulli model, with the addition of αφd ∼N(0,12),
φd ∼N(0,σ 2

φd
), and σφd ∼Gamma(2,1). From the negative binomial model, we could

then compute our quantity of interest, the probability of observing at least one death in a
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Table 1 Posterior means and 95% posterior intervals of the nationwide regression parameters
grouped by the response disease. The superscript indicates the response disease and the subscript the
explanatory disease.

Within towns Between towns

Mean (2.5, 97.5%) Mean (2.5, 97.5%)

pertussis→ pertussis β
p
p 1.56 (1.47, 1.64) γ

p
p 1.23 (1.10, 1.35)

measles→measles βm
m 1.90 (1.82, 1.98) γ m

m 2.21 (2.06, 2.38)
smallpox→ smallpox β s

s 2.43 (2.34, 2.53) γ s
s 2.57 (2.40, 2.74)

measles→ pertussis β
p
m 0.11 (0.04, 0.18) γ

p
m 0.12 (0.00, 0.24)

smallpox→ pertussis β
p
s 0.04 (−0.04, 0.12) γ

p
s 0.11 (−0.02, 0.23)

pertussis→measles βm
p 0.13 (0.06, 0.20) γ m

p 0.11 (−0.01, 0.23)
smallpox→measles βm

s 0.15 (0.05, 0.24) γ m
s 0.24 (0.08, 0.39)

pertussis→ smallpox β s
p 0.05 (−0.03, 0.13) γ s

p 0.19 (0.05, 0.33)
measles→ smallpox β s

m 0.21 (0.12, 0.31) γ s
m 0.38 (0.21, 0.54)

specific town and month, which could be compared with the corresponding estimates of
the Bernoulli model.

As a scoring rule for the model comparison, we used the expected log predictive density
(ELPD), which measures the goodness of the entire predictive distribution (Vehtari,
Gelman & Gabry, 2017). The ELPD was estimated via an approximate leave-one-out
cross-validation using the R package loo (Vehtari et al., 2023). We left out one month and
town from all the diseases at a time to estimate the ELPD. Models with higher values of
ELPD correspond to greater posterior predictive accuracy for predicting new data points
compared to models with lower ELPD values.

According to the differences in the ELPDs in Table 2, the best performing model is the
one utilizing Bernoulli distribution and considering the diseases dependent. Omitting the
dependencies results in the second-best model, with the difference in ELPD over three
times the standard error. As could be expected, omitting the seasonal effect further impairs
the model. When it comes to the negative binomial models with counts as responses, the
order of the dependent, independent, and seasonless models is the same. The Bernoulli
models outperform the negative binomial ones in all cases. Overall, we see that directly
using the dichotomized data versus modeling the count data has a greater impact than
considering the infection dependencies or seasonality in our model. However, even though
in terms of predictive performance the differences between different Bernoulli models are
relatively small, we used the most complex model in our main analysis. This is in line with
the common Bayesian paradigm of incorporating the uncertainty of the model structure
in the model (Vehtari & Ojanen, 2012).

For the dependent and independent models, we performed additional prediction checks
by discarding the last two years of the data and estimating the probabilities for those
years. We also calculated the ELPDs considering the removed years, see Table 2. The
modifications without the seasonal effect were not included in this comparison due to
their already evident poor performance and the fact that they were originally fitted merely
to investigate the importance of the obvious seasonal variation. The posterior means were
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Table 2 Differences of the ELPDs and the standard errors of the ELPD differences for the leave-one-
out cross-validation. The values in the first two columns are computed over all the years for the models
estimated with the full data, and the last two columns are the values calculated over the last two years for
the models discarding those years while estimating the models.

Full data Last two years

ELPDdiff SEdiff ELPDdiff SEdiff

Bernoulli dependent 0.00 0.00 0.00 0.00
Bernoulli independent −36.71 11.75 −46.84 4.21
Bernoulli dependent, without season −80.50 13.08 – –
Negative binomial dependent −353.88 43.75 −381.38 16.70
Negative binomial independent −400.59 45.01 −490.50 18.90
Negative binomial dependent, without season −437.72 45.98 – –

quite similar in all cases, but the posterior intervals were wider for measles and smallpox
in the case of the negative binomial model, as can be seen from Fig. 7.

Overall, the results of the Bernoulli, as well as the negative binomial, models seem
to indicate similar interdependencies between the diseases. In the case of the negative
binomial model, the estimates of all the time and town invariant parameters with their
prior and posterior intervals are shown in Supplementary Table 2 on GitHub. Also, figures
corresponding to the ones representing the results of the Bernoulli model are available in
GitHub (Supplementary Figures 3-9).

Furthermore, to inspect the effect of the earlier disease history, a Bernoulli model
according to Eqs. (1) and (2) was fitted with additional lags of two months for the three
focal and three neighbor covariates. The approach resulted in having six scalar regression
coefficients (three βs and three γ s) more for each response disease than in our main
model. The results are well aligned with the one-month lag model. The amount of available
observations decreases by about three percentage points when introducing the two-month
lag since we must know not only the previous observation but also the one preceding that.
Thus this model is not completely comparable to our main model. Using the same data
for both one-month and two-month lag models, the model with two-month lag performs
better, measured with the ELPD: one-month lag model results in ELPDdiff=−989.87 and
SEdiff = 53.89, compared with the two-month lag model. Nevertheless, there are some
convergence and efficacy issues. Out of the 20,000 iterations, there are 28 diverging ones
which can potentially bias the results, thus they are not completely reliable (Betancourt,
2018). The outperformance of the two-month lag model in the sense of the ELPD might
be also related to smaller variance regardless of the possible bias, which is consistent with
the seemingly better fitting predictions gained from our main model than the two-month
lag model (see Supplementary Figure 10). The full results are in GitHub in Supplementary
Table 3 and Supplementary Figures 10-16.

Additionally, we fitted a model using our data aggregated on a weekly level, which
increases the amount of missing data from 24% in the monthly data to 48% in the weekly
data.We used lags from1 to 4weeks to cover asmuch delayed effect as with ourmainmodel.
Due to the unequal number of weeks per calendar month, incorporating the monthly effect
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Figure 7 The dark gray lines depict the proportions of the towns where at least one death was ob-
served. The turquoise lines show the posterior means of the corresponding estimates and the shaded ar-
eas their 95% posterior intervals in the case of the Bernoulli model, whereas the pink lines and areas repre-
sent the same values for the negative binomial model. The dotted vertical line indicates the time point af-
ter which the model estimates are predicted by the models estimated without the data of the last two years.

Full-size DOI: 10.7717/peerj.18155/fig-7

is not straightforward, so we omitted the seasonal effect. Unfortunately, this model did
not converge, potentially because of the increased amount of missing data, or the complex
dependency structures due to varying sub-monthly incubation and time-to-fatality times.
The weekly data and model code are available in the supplementary material.
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DISCUSSION
We developed a Bayesian model to explore the spatio-temporal dynamics and co-dynamics
of three fatal childhood infections—measles, smallpox, and pertussis—in pre-healthcare
Finland (1820–1850). The main novelties of the approach are, firstly, the consideration
of both the spatial and temporal aspects simultaneously, and, secondly, considering the
connections not only within but also between the three diseases. Furthermore, our dataset
is substantially different in comparison to the corresponding previous epidemiological
literature. Instead of data regarding large cities or being pooled over countries, we
exploited records from a sparsely populated nation, where 1.2–1.6 million inhabitants
were spread over vast areas in hundreds of small towns without modern healthcare. Our
model allows the inclusion of several explanatory elements which all capture different
features. According to our results, all the components are meaningful and statistically
distinctive, and the incorporation of the possibility of dependencies between the diseases
leads to a model describing the data better than one merely assuming independent diseases.
The data and the model framework are available on GitHub, providing a template for other
researchers.

Based on our results, the main components explaining the temporal and geographical
variation in the probabilities of observing at least one death caused by pertussis, measles, or
smallpox are the nationwide incidence factors with their local adjustments. The estimated
incidence factors follow the temporal behavior of the observed data, and the regional
adjustments resemble the spatial patterns of the data (Figs. 2 and 4, and 3 and 6).

Measured by pairwise correlations of the incidence factors, a distinctive positive co-
occurrence of measles and pertussis was discovered. Previous research has found positive,
negative, and inconsistent co-occurrences of these infections, see, e.g., Rohani et al. (2003),
Coleman (2015), and Noori & Rohani (2019). We also found a notable connection between
measles and smallpox with a model without the seasonal component, but this correlation
is not present in the full model including the seasonality. This indicates that their dynamics
follow a similar, seasonal pace. Overall, the seasonal effect is visible among all the diseases.
In addition to the nationwide incidence level, the seasonality increases the mortality during
the first half of the year, depending on the disease, see Fig. 5. The seasonalities may reflect
increased transmission during social gatherings, or they can be due to some environmental
and climatic drivers (Metcalf et al., 2009; Metcalf et al., 2017). The work of Briga et al.
(2021), based on selected data covering longer periods, indicates that of the infections of
pertussis, measles, and smallpox only pertussis was linked with new year and Easter in
Finland in the 18th and 19th centuries.

Furthermore, lagged dependencies within and between the infections were discovered
as positive temporal and spatial effects of the explanatory variables. Recorded deaths in the
focal town and in its adjacent towns in the previous month increased the risk of dying of
the same disease. Between the infections, these effects were notably smaller (Table 1). It
should be noticed that the coefficients reflecting the effect of the history of the focal town
and its neighbors are not directly comparable, as the value of the focal covariate is either 0
or 1, but the neighborhood covariate is a proportion between 0 and 1.
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According to the results, the risk of succumbing to pertussis, measles, and smallpox was
mediated by occurrences of the other infections in the area. All these three diseases tended
to increase the mortality related to the two other diseases, as all the pairwise interaction
parameter estimates are positive. This might be due to general immunosuppression or to
decreased condition following the previous infection. The strongest associations were found
between measles and pertussis, and measles and smallpox. The possibility that pertussis is
driven by the immunosuppressive effects of measles as suggested by Coleman (2015) and
Noori & Rohani (2019) implies that the risk of dying of pertussis is increased by a recent
measles infection. This is also supported by findings of Mina et al. (2015) showing that
measles vaccination, by preventing measles-associated immune memory loss, decreases
the risk of other infections. Our observations (see Table 1) are aligned with these results.
However, also a reverse connection was recovered: the recorded deaths caused by pertussis
in the same town during the previous month increased the risk of observing one or more
measles induced deaths almost equally. A stronger lagged effect was discovered between
measles and smallpox. Also these interactions were found to act in both directions.

To gain further insights into the specific effects of immunosuppression and impaired
health conditions, longer than the one-month (or two-month) lags that we used here,
should likely be employed. Unfortunately, our data do not suffice for identifying such
effects as accounting longer histories or using finer timescale is challenging due to the
missing data and the relative rarity of the deaths. Also herd immunity would be an
important aspect to consider, but until proper population size estimates are available,
it remains a topic for future work. Concerning our results, the lack of controlling for
the longer term immunity might obscure some of the findings when compared to more
contemporary datasets. Although immunosuppressive mechanisms of measles are well
known in the literature, for many other diseases those are less known, for example, the
effect of pertussis on measles (however, see, e.g.,Macina & Evans (2021)). Thus, we suggest
carefulness in interpreting our results as they might reflect the shorter term effects caused
by the overall condition of the patients rather than true immunosuppression.

The observed spatially varying local risks of at least one death due to pertussis, measles,
or smallpox may arise from the closeness of potential sources of infection, differences
in cultural, housing, or nutritional circumstances, or even genetics (Honkola et al., 2018;
Voutilainen, 2017; Kerminen et al., 2017). As can be seen from Fig. 3, the probabilities of
detecting one or more deaths caused by pertussis and smallpox were greater in the eastern
parts of Finland, whereas measles was clearly an infection emphasized in the southern
parts, being in concordance what was suggested by Pitkänen, Mielke & Jorde (1989) and
Ketola et al. (2021).

When it comes to the long term temporal behavior of the infections, it seems that
epidemics in small populations, consisting of sparse metapopulations of tiny towns, might
be dominated by reintroductions and fade-outs rather than by endemic dynamics more
typical in densely populated cities and countries (Keeling & Grenfell, 1997; Grenfell &
Harwood, 1997; Rohani et al., 2003; Ketola et al., 2021). In Briga, Ketola & Lummaa (2022)
epidemics were found to reoccur in cycles of roughly four years in the 18th and 19th
centuries in chosen Finnish towns with the highest quality data. The length and phase
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of such patterns are likely to vary due to annual and geographical differences in seasons,
making them challenging to estimate from our scarce data. Our study covering 31 years
did not reveal any long-term nationwide periodicities.

Wemodeled the deaths caused bymeasles, smallpox, and pertussis via a binary Bernoulli
distribution, where value 1 denotes that there was at least one reported death given the
disease, town, and month, and 0 for no reported deaths. This approach, while sacrificing
some detail, allowed us to capture the broad trends and patterns in the data, and to make
meaningful inferences about the spatio-temporal co-dynamics of these diseases. In contrast
to the generally held view that dichotomizing data should be avoided, in our case directly
modeling binary presence-absence data seemed to be beneficial compared to modeling
observed death counts, potentially due to accuracy issues in the actual counts. However,
both approaches led to practically identical main conclusions. The model comparisons
also exemplified how our approach is applicable to other kinds of responses than Bernoulli
variables.

We accounted for spatial dependencies using explanatory variables based on a
neighborhood structure defined by a shared border between two towns. To model
and quantify the evident epidemiological transmission dynamics, we included neighbor
effects enabling the situation in the adjacent towns in the previous month to affect the
probability to observe one or more deaths in the focal town. Our choice of neighborhood is
straightforward, omitting the actual intensity of communication between the neighboring
towns, hence possibly shrinking or magnifying the true dynamics of the infections. If there
were more detailed data or complementary information about the social connections,
other definitions for neighborhood, even with an appropriate weighing mechanism, could
be employed. We tried to consider each pair of neighbors individually, but the information
in the data was not sufficient for model identifiability, owing to the rarity of cases in
neighboring towns. Naturally, including alternative appropriate and available covariates as
explanatory variables is possible as well. The general spatio-temporal model developed for
the purpose of exploring the dynamics and co-dynamics particularly in the case of sparse
and scarce data is applicable to other corresponding datasets, for example, based on the
historical parish records from other Nordic countries, or data on modern day rural areas.
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