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1. Introduction

Pocket calculators, computers, traffic lights and modern cars are good examples 
where we can come across products of modern electronics industry in the present­
day life. Basic products such as integrated circuits are often so well concealed into 
the hearts of devices that we do not realize them or we treat them as a matter 
of course. However, there is a good reason to say that integrated circuits are the 
brain and the heart of today's electronics and they have a tremendous influence 
on our daily customs. 

Worldwide the electronics industry is the largest and fastest growing manufactur­
ing industry. In 1993 the worldwide investments of the electronics industry were 
estimated to be in the range of $ 900 billion. The basis of the electronics industry 
is semiconductor processing whose investments alone were in the range of $ 60-70 
billion, [M iiller93]. 

The semiconductor industry can roughly be divided into two sections: a refining 
section which uses basic material, semiconductor wafers, to produce integrated 
circuits and a manufacturing section which produces semiconductor wafers, Figure 
1.1. 

Figure 1.1 Semiconductor wafers 

In the manufacturing section semiconductor wafers are produced from single crys­
tals. Single crystals are grown from molten purified semiconductor materials and 
the result of crystal growth process has the form of a cylindrical crystal rod with 
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8 Numerical Simulation of Czochralski Crystal Growth 

the diameter of a few inches. Solid crystals are afterwards cut to form thin semicon­
ductor wafers. Nowadays the Czochralski method, the float-zone pulling method 
and the Bridgman method are the most frequently used techniques to grow sin­
gle crystals. The materials of crystals are mainly silicon, gallium-arsenide and 
germanium. 

The diameters of single silicon crystals produced industrially by the Czochralski 
method are typically in the range of 4-8 inches, Figure 1.2. The trend towards 
larger diameters is evident in the future, and some experiments have already been 
carried out with crystals whose diameters are even 12 inches. The growth of larger 
diameter crystals requires the up-scaling of existing equipment which together 
with products of new technology, e.g., the continuous Czochralski crystal growth 
(CCz) and the magnetic Czochralski crystal growth (MCz), set new challenges for 
scientists and engineers in the crystal growth field. 

Figure 1.2 Silicon crystals 

So far the development of the semiconductor technology has been mainly empir­
ical. With rising industrial and economical importance and with new challenges 
in product development scientists are now providing knowledge required in this 
field. Several research projects, for instance in the field of applied mathematics, 
physics and chemistry, have already been carried out and the amount of research 
is undoubtedly going to grow in the future. 

Our research is connected to mathematical modeling and numerical simulation of 
the Czochralski crystal growth, i.e., we restrict our research to concern the man­
ufacturing section. Our special interests lie in the development of mathematical 
models and numerical simulation tools for the Czochralski silicon crystal growth. 
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The Czochralski crystal growth technique requires high temperature environment 
and fairly complicated growing furnaces (Chapter 2.1, Czochralski Crystal Growth 
Technique). Experimental measurements, such as the measurements of the tem­
perature and velocity field of the melt, offer invaluable information from physical 
mechanisms. They are, however, very laborious to make and require possibly 
construction of complicated experimental systems ([Kinney93], [Watanabe93]) ne­
cessitating considerable economical investments. 

At the same time modern supercomputers have evolved to the point where very 
large and complex numerical simulations can be carried out in a sufficiently short 
time frame. In this situation the development of mathematical models and numeri­
cal simulation tools can effectively support the Czochralski crystal growth process. 
The numerically solved mathematical models have the advantage of providing new 
insight into physical phenomena. They allow an easy way to study, for instance, 
new geometries of the Czochralski furnace or growth parameters. 

In Chapter 2.2 we make a short survey of the field of mathematical modeling and 
numerical simulation of the Czochralski crystal growth and summarize the recent 
works made by some leading laboratories (Fundamental Research Laboratories by 
NEC/Universite Catholique de Louvain, Massachusetts Institute of Technology 
and University of Erlangen-Niirnberg) in this field. The research made in these 
laboratories has been carried out in the conventional Czochralski system with small 
geometrical modifications. The main stress has been on the modeling of the entire 
Czochralski process in the axisymmetric geometry, [Kakimoto91], [Kinney93a], 
[Kinney93b] and [Miiller93], even if steps towards three-dimensional melt flow 
simulations have been taken (see Chapter 2.2). Although in the references listed 
above the conventional Czochralski system is treated, there is, however, a difference 
between these works and ours arising from the different computational geometries. 
In these works the diameters of crystals and crucibles are in the range of 2.32-8.25 
cm and 7.2-25.4 cm, respectively, while in this work we try to simulate crystal 
growth with the diameters 12.7 cm for crystals and 40.0 cm for crucibles. The 
diameters of industrially produced single silicon crystals are typically more than 
10.2 cm ( 4 inches) grown from crucibles with diameters exceeding 35.6 cm (14 
inches). 

It is also noteworthy that the works discussed in [Kakimoto91], [Kinney93a], [Kin­
ney93b] and [Miiller93] are based on either steady-state or quasi steady-state as­
sumptions for the equations of melt flow and temperature in the whole Czochralski 
geometry. The steady-state or the quasi steady-state assumptions for melt flow 
are however not valid, since in reality melt flow is strongly time dependent. We 
stress that the key for the successful numerical simulation of the whole Czochralski 
crystal growth is the correct description of melt flow which should be done with 
a time dependent analysis. We demonstrate the time dependent character of melt 
flow in numerous numerical examples in the course of this work. 

The melt flow, the temperature distribution in the whole Czochralski process, and 
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the free boundary position between the cryst_al and the melt are the quantities 
which we are most interested in. These quantities are governed by the time de­
pendent and coupled heat and Navier-Stokes equations with appropriate boundary 
conditions. 

Due to complexity of the Czochralski crystal growth it is reasonable to divide the 
problem into subproblems from the point of view of mathematical modeling and 
numerical simulation. First, the modeling of the pure melt flow demands the cou­
pling of the heat and Navier-Stokes equations. On the other hand, if we consider 
the crystal-melt system, we have to handle the coupled heat and Navier-Stokes 
equations in the varying geometry so that the free boundaries are considered as a 
part of the solution. The modeling of the whole Czochralski crystal growth itself 
requires in addition the presence of all other geometrical objects and the descrip­
tion of global heat transfer. A significant part of heat is transferred by radiation 
between various surfaces in the Czochralski configuration. This mechanism can be 
described by the diffuse-gray radiation, if we assume a diffuse and gray behavior 
from all surfaces, i.e., there are for instance no transparent or mirror surfaces. We 
analyze the mathematical modeling of the subproblems and the whole Czochralski 
crystal growth individually in Chapter 3. Numerical simulations of the mathemat­
ical models are carried out by the finite element method (FEM) in Chapters 4, 5 
and 6. 

The formulation of the diffuse-gray radiation presented in this work differs from 
previously published crystal growth articles on which radiative heat transfer is 
considered. lnstead of treating a radiative surface as a finite union of simple surface 
elements ([Atherton87], [Rama85]) we introduce a non-local boundary condition 
on the radiating part of the surface (Chapter 3.3). 

If we then take a closer look at the free boundary problem in the crystal-melt 
system, there are in fact three different kinds of free boundaries. Namely, the free 
boundaries between crystal and melt, crystal and gas and melt and gas. In this 
work only the crystal-melt interface is considered as a free boundary. The radius 
of the crystal is assumed to be constant and the shape of the melt-gas interface is 
based on the analytical representation of the shape of the meniscus presented by 
Hurle, [Hurle83]. 

In the mathematical modeling of the free boundary problem we shall consider 
enthalpy as a primary unknown instead of temperature. This leads to a use of the 
enthalpy method which offers a way to treat the free boundary problem in a two 
phase system ([Dalhuijsen86], [Elliot82], [White82]). It is, however, non-trivial to 
apply the method in such systems where more than two different materials appear. 
A standard definition of enthalpy leads to a case where enthalpy is discontinuous at 
the melt-silica crucible interface. In order to guarantee the continuity of enthalpy 
at this interface some modifications in the definition of enthalpy are required (see 
Chapter 3.3). 

The enthalpy method is a typical fixed grid method. The use of this method offers 
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a significant benefit especially in the entire Czochralski geometry. The application 
of the diffuse-gray radiation demands the calculation of view factors which are 
dependent on the geometry. Since our finite element mesh remains unchanged, 
the view factors have to be calculated only once, at the beginning of simulations. 
Since we assume the axisymmetry of the geometry, the view factors have not to 
be computed in three dimensions as presented in [Kinney93a] and [Kinney93b] 
(see the references therein). The expressions of the view factors contain two area 
integrals which can be simplified into line integrals by using the axisymmetry 
assumption (Chapter 6.3). 

As mentioned above, the finite element method is used to solve the described 
mathematical models since it has proved its capability to handle complex ge­
ometries and problems in many circumstances (for problems in fluid dynam­
ics and structural mechanics see [Cecchi95], [Gunzburger93] and [Zienkiewicz89] 
and in crystal growth [Atherton87], [Cuvelier87], [Derby87], [Hilpert91], [Kaki­
moto91], [Kinney93] and [Sackinger89]). Since the melt flow in the connection 
with the Czochralski crystal growth is highly convection dominated, the stream­
line upwinding/Petrov-Galerkin finite element method is applied. 

Basic tools of the finite element method (variational formulations and finite ele­
ment discretizations) are presented in Chapter 4 for thermally coupled liquid flows. 
Furthermore, the linearization techniques for nonlinear and coupled problems are 
discussed. From the finite element methodology point of view this chapter acts as 
a preliminary one to the chapters later on. The other function of Chapter 4 is to 
compare the results from the numerical simulations to the examples found in the 
literature and to examine the silicon melt flow with various system parameters. 
The numerical simulations for the crystal-melt system and the entire Czochralski 
crystal growth are presented in Chapter 5 and Chapter 6. 

The numerical results presented in this work have been carried out on Convex 
C3840 at the Center for Scientific Computing ( CSC) in Finland. All numerical 
results have been visualized by a visualizing program called Funes developed at 
CSC by Juha Ruokolainen. 



2. Czochralski Crystal Growth

2.1 Czochralski Crystal Growth Technique 

The Czochralski method, the float-zone pulling method and the Bridgman method 
are the most important techniques to grow single crystals. More than 90% of 
all semiconductor crystals are produced by the Czochralski method and the rest 
mainly by the float-zone pulling method. The Bridgman method is used only for 
the production of crystals with a small diameter. 
The principle of the Czochralski method dates back to the work of J. Czochral­
ski, who established it in 1917 to determine the crystallization velocity of metals. 
During the fifties, the first semiconductor crystals, first germanium and then sil­
icon crystals, were grown by the Czochralski method, (Miiller93]. Since then the 
method has attained new innovative variations, for instance the liquid encapsu­
lated technique (LEC), the continuous Czochralski crystal growth (CCz) and the 
magnetic Czochralski crystal growth (MCz). 
The principle of the pulling of the single silicon crystal from the silicon melt by 
the conventional Czochralski method is depicted in Figures 2.1-2.4, (Sackinger89], 
(Zulehner82]. The Czochralski configuration is shown semantically in a three di­
mensional case in Figure 2.1 while in Figures 2.2-2.4 the cross sections of the 
Czochralski configuration are presented. In Figure 2.2 the initial state of the 
pulling process is presented. In Figures 2.3 and 2.4 the process is in the advanced 
and final state, respectively. 

-- Pull Rod 
45 

Seed_".,•��--- Crystal 
...,..-if .. r n.df� •:: 

• .::::;:::; ·- Crucible
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Heater 
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Figure 2.1 Three dimensional Czochralski crystal growth 
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The main components of the furnace are shown in Figure 2.2. A seed holder 
supports the crystal which consists of a seed, a crystal neck, a crystal shoulder and 
a single crystal silicon rod. The single crystal silicon rod is withdrawn vertically 
from the silicon melt which is inside of the silica (SiO2) crucible. The surrounding 
parts of the silica crucible are a graphite susceptor, a crucible pedestal, a graphite 
resistance heater and thermal shields. The silica crucible is kept in the stabilizing 
susceptor rotating axially ( counter to the crystal rotation) to provide axisymmetric 
heating conditions. 

In the beginning of the process the seed crystal is dipped into the melt until it 
begins to melt itself. The melt should not, however, be so hot that the seed melts 
too much loosing its contact to the melt. The seed is then withdrawn from the 
silicon melt so that it begins to grow but there is no increase in its diameter. 

It is very important for present-day applications that single silicon crystals are 
dislocation-free [Zulehner82]. For this reason the so called Dash technique is ap­
plied for the crystal pulling: The crystal diameter is gradually reduced to about 
3-4 mm and the growth velocity is raised. With a suitable combination of these two
factors the silicon crystal becomes dislocation-free after a few centimeters. After
receiving the dislocation-free state the diameter of the crystal can be enlarged by 
reducing the pulling velocity and controlling the heating conditions ( down cooling)
until the diameter of the crystal reaches the desired value.

Shortly before the desired value of the diameter is reached the pulling velocity is 
raised to the specific value at which the silicon crystal grows with the required 
diameter. In general the pulling velocity is not kept constant but is reduced 
towards the bottom of the silicon crystal. This is mainly caused by increasing 
heat radiation from the crucible walls as the melt level sinks. 

To avoid dislocations at the bottom of the silicon crystal the crystal diameter has 
to be reduced gradually to a small size. While the pulling velocity is increased the 
diameter of the silicon crystal decreases and an end-cone begins to develop, Figure 
2.4. If the diameter is small enough and the main body of the grown crystal is 
long enough, the dislocation-free silicon crystal can be separated from the rest of 
the silicon melt. 

During the Czochralski process the silica crucible is eroded by the hot silicon melt 
and oxygen dissolves to the melt. Oxygen is transported in the silicon melt by the 
convection processes. Most of oxygen evaporates through the melt-gas interface 
and therefore the inert gas (argon) has to flow continuously downwards through 
the pulling chamber to remove these byproducts. However, a certain amount of 
oxygen drifts in the silicon melt to the crystal growth interface and incorporates to 
the silicon crystal. Oxygen has both beneficial and harmful effects on the quality 
of the silicon crystal. A certain amount of oxygen is required in the crystal since 
oxygen hardens the silicon lattice giving silicon wafers the desired mechanical 
strength. On the other hand, if too much oxygen incorporates to the crystal, 
oxygen precipitates during the cooling and produces crystallographic defects, such 
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as dislocations and stacking faults, [Zulehner82]. 

2.2 Modeling and Numerical Simulating Aspects 

The complexity of the Czochralski crystal growth process, as can be perceived 
from the previous chapter, poses a demanding task for the modeling. The gov­
erning physical mechanisms can, in principle, be described mathematically. A 
global model including both macroscopic and microscopic aspects is proposed in 
[Miiller93]: 

Macroscopic model: 

• Heat transport by conduction and radiation within the Czochralski furnace
and by conduction and convection within the crystal and the melt. Con­
vection in the melt can be composed of the Grashof, Marangoni and forced
convections. The Grashof (or natural) convection originates in tempera­
ture dependence of the density and Marangoni convection in temperature
dependence of the surface tension. The forced convection is caused by the
rotations of the crystal and crucible.

• Turbulence.

• Mass transport ( oxygen, impurities) in the melt and gas.

• Free boundaries between crystal and melt, crystal and gas and melt and
gas, respectively.

• Thermal stresses in the crystal.

Microscopic model: 

• Dislocations.

• Precipitates.

Some of the research published in the literature concentrate on a certain part of the 
global model, for instance on heat transport by conduction and radiation within the 
whole Czochralski furnace [Atherton87] and [Rama85] or on three dimensional melt 
flow by neglecting the surrounding parts [Mihelcic84], [Yi94] and [Yi95]. There are, 
however, some works in which steps towards the global model have already been 
taken, [Miiller93], [Kakimoto91], [Kinney93a] and [Kinney93b]. In the following 
we collect the basic results of these works and introduce shortly the methods used. 
Furthermore, we outline the basic differences between the present work and the 
works listed above. 

Millier states two questions: whether convection in the melt is important for the 
growth and whether there are cases of interest in which the computation has to 
be carried out in three dimensions. He makes steady state numerical simulations 
in the whole Czochralski (LEC) configuration and compares the numerical results 
to the experimental data. 
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In order to solve the first question he constructs two models: a global conduction­
radiation model with and without melt convection. In both models he uses the 
axisymmetry and quasi-steadiness assumptions. He solves the first model by using 
a commercial finite element program ABAQUS. Convection in the second model 
is taken into account by computing heat transfer in the melt separately with an 
other commercial code STAR-CD. He concludes that the conduction-radiation 
model can not predict the temperature distribution in the melt realistically. The 
model without convection is well suited for predicting the temperature field in the 
other parts of the Czochralski furnace. The model with convection predicts the 
temperature distribution in the melt fairly well when compared to the measured 
results. 

The second question, i.e., whether there are cases of interest in which the compu­
tation has to be carried out in three dimensions, he approaches in the following 
way: He constructs a three dimensional, finite volume method based Navier-Stokes 
solver and combines it with the global conduction-radiation model by matching 
the temperatures on the boundaries of the melt. The numerical results indicate 
that the temperature distribution in the melt is in qualitative agreement with the 
experimental results. As long as the crucible rotation rate is low, two dimensional 
temperature distribution is very similar as in three dimensional case. With the 
high crucible rotation rates the flow pattern turns to three dimensional. 

In [Kakimoto91] the authors have constructed an X-ray radiography system for 
visualizing the silicon melt flow in the Czochralski process. The diameters of 
crystals vary in the range of 2.32-4.4 cm. They use a relatively small crucible 
which diameter is 7.5 cm in minimizing the effects of flow instabilities. They make 
comparisons between measurements and numerical results in this geometry. 

Their numerical study is based on the computation of the melt flow, heat conduc­
tion and heat transfer by radiation. The Czochralski furnace consists of macro­
elements (such as melt, crystal, heater etc.) whose boundaries interact through 
radiation. The shape of the melt-gas interface is determined by the Laplace-Young 
equation in which the surface tension is included. The crystal-melt interface in­
cludes heat generation by solidification. The authors neglect gas convection and 
they assume that the pulling velocity of the crystal as well as the position of the 
triple point, i.e., the point where the free boundaries between melt and gas, melt 
and crystal and crystal and gas run across, are fixed. 

Their numerical simulations are performed under assumption of the axisymmetric 
geometry and steady flow. They reach convergence without the crystal and crucible 
rotations with the real or nearly real Rayleigh and Reynolds numbers. However, 
it is not possible for them to obtain convergence for more than several percent of 
the real Rayleigh and Reynolds numbers for the case of the crystal and crucible 
rotations. In order to reach the numerical solution of the real flow, the authors 
use a technique based on the extrapolation of stream functions obtained from 
computations with reduced Reynolds numbers. According to Kakimoto et al they 
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have obtained almost identical flow fields compared to experimental results with 
this technique. 

Kinney et al ([Kinney93a], [Kinney93b)) have developed an integrated hydrody­
namic thermal-capillary model. They compare numerical results of the model to 
experimental measurements of the thermal field from growth of 83 mm diame­
ter crystals and the melt-crystal interface shape of the 100 mm diameter crystals 
obtained in the conventional Czochralski silicon crystal growth. Their axisym­
metric model includes steady state flow (laminar in [Kinney93a] and turbulent in 
[Kinney93b)) driven by the crystal and crucible rotations, natural convection and 
thermocapillarity. The temperature field is computed throughout all components 
of the Czochralski furnace and the components are assumed to exchange heat by 
the diffuse-gray radiation. The calculation of the diffuse-gray radiation is based 
on the Gebhart method. The shape of the melt-gas interface is determined from 
the balance of normal stresses at this boundary and the crystal-melt interface as 
the melting point isotherm. The thermal stresses in the crystal are computed after 
the temperature distribution in the crystal is known. Their numerical simulation 
tools are based on the finite element approximation to the field variables and the 
positions of the interfaces. 

If the melt flow is assumed to be laminar, they find the solution for the combined 
driving forces only when the viscosity of the melt is set artificially high. The 
temperature distribution outside of the melt coincides with the experimental data. 
The shape of the crystal-melt interface is, however, quite far from the measured 
shape of the interface. If the melt flow is instead assumed to be turbulent, also the 
shape of the crystal-melt interface corresponds to the measured one. The viscosity 
of the melt differs only slightly from the viscosity of silicon. Although their results 
are very satisfactory, they emphasize that in large diameter Czochralski systems 
the melt flow is transient and three dimensional. 

In this work we divide the entire Czochralski crystal growth process into subprob­
lems from the mathematical modeling and numerical simulation point of view. We 
describe mathematically thermally coupled liquid flows first in simple two dimen­
sional geometries and then extend our consideration to the silicon melt flow in 
the axisymmetric geometry. The models consist of the coupled heat and Navier­
Stokes equations with Dirichlet boundary conditions on the liquid boundaries and 
Robin boundary condition for temperature at the liquid-gas interface (if present). 
The flow is either steady or transient and driven by the Grashof, Marangoni or 
forced convections. The models are solved numerically and computational results 
obtained in two dimensional geometries are compared to those found in the liter­
ature. We emphasize that in the study of the silicon melt flow we examine the 
physical phenomena only in the melt, i.e., the surrounding parts of the melt, such 
as the silica crucible, the graphite susceptor, the heater and the crystal are not 
taken into account. 

After thermally coupled liquid flows we consider the axisymmetric crystal-melt 

2 24434 



18 Numerical Simulation of Czochralski Crystal Growth 

system in which the mathematical equations are now written for enthalpy and 
velocity. The enthalpy and Navier-Stokes equations are coupled and temperature 
is expressed as a function of enthalpy. The melt flow is driven by the Grashof, 
Marangoni and forced convections. The definition of the free boundary between 
the crystal and the melt is included to the definition of enthalpy. 

We stress, however, that our final aim in this work is to present a mathematical 
model and numerical simulation tools for the entire Czochralski system in the 
axisymmetric geometry. The model consists of the time dependent Navier-Stokes 
and enthalpy equations for the melt flow and heat transfer in the whole Czochralski 
furnace. The flow is driven by the Grashof, Marangoni and forced convections. 
Inside of each domain heat is transferred by conduction and in the crystal and 
melt also by convection. Heat between various surfaces is transferred by radiation 
which is assumed to be diffuse and gray. The shape of the melt-gas interface is 
based on the analytical representation of the shape of the meniscus presented by 
Hur le, [Hurle83]. The diameter of the crystal and the pulling velocity of the crystal 
are assumed to be constant. The mathematical model of the entire Czochralski 
process is solved numerically by the finite element method. 

In comparison of our research to the works of Muller, Kakimoto et al and Kinney 
et al it is noteworthy that the other works have been carried out by using either 
the steady-state or the quasi steady-state assumption. These are, in principle, 
acceptable assumptions since time scales in the Czochralski crystal growth are so 
different. Typical growing rates of crystals are 0.5-2 mm/minute while maximum 
velocities in the melt are of the order of centimeters/second and therefore there is 
no need to model crystal growth from the melt dynamically. All authors, however, 
stress that the key for the successful numerical simulation is the correct description 
of the melt flow which should be made with time dependent analysis. 

The basic difference between the work of Muller and ours is that Muller uses 
mainly commercial program packages and we develop simulation tools ourselves. 
This is certainly a more time-consuming way to proceed than the use of program 
packages which contain tools for many applications. However, they do not always 
offer desired modeling capabilities which can be observed in the case of ABAQUS, 
[Muller93]. 

In the paper of Kakimoto et al the Czochralski furnace is constructed by several 
macro-elements. The macro-element boundaries interact through radiation. The 
concept of macro-elements usually refers to a case where a macro-element surface 
in a discrete case is a collection of adjacent element sides. Each element side has 
various physical quantities and on the macro-element surface effective physical 
parameters such as effective temperature and emissivity are applied. In our work 
heat is transferred in a discrete case by radiation between finite element surfaces, 
not between thr. macro-elements. 

Kinney et al determine the shape of the melt-gas interface from the balance of 
·normal stresses on this boundary and the crystal-melt interface as the melting
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point isotherm. As the field variables, also positions of the free boundaries are 
treated as unknowns. The computation of the diffuse-gray radiation is based on 
the Gebhart method. In our work the shape of the melt-gas interface is based 
on the analytical representation of the shape of the meniscus presented by Hurle, 
[Hurle83]. This representation has been shown to compare quite well with the full 
iterative numerical solution of the Laplace-Young equation with the appropriate 
parameters of germanium. The free boundary between the crystal and the melt 
is solved by the enthalpy method. This method is a typical fixed grid method, 
i.e., our finite element mesh stays unchanged during simulations. View factors
required in the modeling of radiation are computed by taking advantage of the
axisymmetry of the Czochralski geometry. The discretization in the azimuthal
direction is not necessary as made in [Kinney93a] and (Kinney93b] (see references
therein).



3. Mathematical Models

In this chapter we shall first deal with the subproblems of the Czochralski crystal 
growth process, such as the thermally coupled melt flow and the phase change 
between the crystal and the melt, before the whole problem will be discussed. For 
each problem a mathematical model will be introduced. Later on in Chapters 4, 
5 and 6 the mathematical models are solved numerically. 

There are several reasons for dividing the whole problem into separate parts. First, 
the crystal growth process has several individual physical phenomena, e.g., ther­
mally coupled melt flow, phase change and radiation, which require closer study. 
Secondly, the division of the whole problem into subproblems offers a natural way 
to put the whole mathematical model together logically piece by piece, and to 
apply numerical simulation tools for each sub-model separately. Finally, with the 
help of the sub-models it is more convenient to test the reliability of numerical 
methods by comparing results to those found in the literature. 

In Chapter 3.1 we shall introduce mathematical models first to thermally coupled 
liquid flows in simple two dimensional geometries and then to axisymmetric melt 
flow in the Czochralski crystal growth context. The mathematical models for the 
crystal-melt system and the entire Czochralski crystal growth are presented in 
Chapters 3.2 and 3.3. 

3.1 Thermally Coupled Liquid Flows 

In Chapter 3.1.1 we shall present first a mathematical model for a two dimen­
sional vessel filled with a liquid where steady state flow is driven by the Grashof 
and Marangoni convections. The second mathematical model in Chapter 3.1.2 
concerns the time dependent Rayleigh-Benard convection in a rectangular box. 
These models are presented in detail in [Argyris92] and [Cuvelier86b]. We solve 
the models numerically in Chapters 4.4.1 and 4.4.2 and compare the numerical 
results to those presented in these references. In this sense these models operate 
as verification tools for this work. The mathematical model in Chapter 3.1.3 de­
scribes the melt flow in axisymmetric geometry. The melt flow is caused by the 
Grashof and Marangoni convections and the rotation of the melt. 

We begin with the derivation of the coupled three dimensional Navier-Stokes and 
heat equations and then pay attention to the mathematical models. 

The Navier-Stokes and heat equations can be derived from the basic principles of 
the conservation of mass, momentum and energy, (Landau91]. We introduce first 
the Navier-Stokes equations and then the heat equation. 

20 
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The mass conservation in the liquid is described by the equation 

(3.1) °;: + 'v • (pu) = o,

where t is time and p and u are the density and velocity of the liquid. If the liquid 
is assumed to be incompressible, the density is constant and the equation (3.1) 
reduces to 

(3.2) 'v. 'U = 0. 

The conservation of momentum is 

(3.3) 
OU ( - n) - n - f-p8t + p U • V U - V • 0" = p 

where a is the stress tensor, 'v ·a= ('v · if1, 'v · if2, 'v • ifs) and f the body force 
which is assumed to consist of the gravitational force, i.e., f = §. If we assume 
that the liquid is Newtonian we come to an equation for the stress tensor 

(3.4) - -
2 

( -)I a- = -pl + 2µt -
3 

µ 'v · u 

where p is the static pressure, I the unit tensor, µ the dynamic viscosity of the 
liquid and l the strain rate tensor. The components of the linear strain rate tensor 
have the form 

(3.5) 

i,j = 1, ... ,3. If we combine the equations (3.3)-(3.4) and use the continuity 
equation (3.2) and condition f = §, we arrive at the stress formulation of the 
Navier-Stokes equations 

(3.6) 

In the following we assume that the Boussinesq approximation is valid in the liquid. 
This means that the density of the liquid is constant except in the body force term 
where the density depends linearly on temperature through the equation 

(3.7) p = Po(l - {J(T - To)), 

where T is the temperature, {3 the volume expansion coefficient and the subscript 0 
refers to a reference state. The equation (3. 7) causes a force Po§(l -{3(T-T0)) due 
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to temperature variations in the liquid. This phenomenon is called the Grashof 
convection or the natural convection. The Navier-Stokes equations in (3.6) can 
now be rewritten in the form 

{ Po �
u

t - 'v · (2µl) + po(u • 'v)u + 'vp = po§(l - {J(T - To)) 
(3.8) u 

'v . a= o.

The energy equation has the form 

(3.9) 
De 'M - _ 'M-

h p Dt 
+ V • q - O" : Vu = p ) 

where e is the energy per unit mass, if the heat flux through the material surface, 
and h the heat source. We assume that the motion generates no heat, i.e., a : 
'vu = -p'v . a.

If we use the conservation of mass (3.1), assume the dependence of the energy and 
the density on temperature and pressure and apply the Fourier's law we arrive 
finally at the heat equation 

(3.10) 

where Cp is the heat capacity at constant pressure and k the heat conductivity of 
the material. 
Combining the equations (3.8) and (3.10) the coupled Navier-Stokes and heat 
equations read 

(3.11) 

1 Po�� - 'v • (2µl) + Po(u • 'v)u + 'vp = Po§(l - {J(T - To)) 

'v· u =O 

PoCp ( a;; + u • 'vT) - 'v • (k'vT) = Poh. 

3.1.1 Grashof and Marangoni Convections in 2D 

In (Cuvelier86b] the authors study a two-dimensional steady non-isothermal flow 
problem in a vessel n = {O < X1 < L, 0 < X2 < L}, where the boundary an is 
assumed to compose of mutually disjoint and open sets ro, r1, r2 and r3 in an
such that an= ro U r1 U r2 U r3 , F igure 3.1. The boundaries r1, r2 and r3 are 
considered as fixed walls whereas ro is a fixed interface between the liquid and 
the surrounding gas through which there is no flow. The motion of the fluid is 
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I'o 

Figure 3.1 Problem presented in [Cuvelier86b} 

caused by the Grashof and Marangoni convections. Temperature on f1, f2 and 
r3 is fixed and heat flux on r0 is assumed to be zero. 
A mathematical model consisting of the steady-state and coupled Navier-Stokes 
and heat equations for the problem is: Find the velocity vector i/, = ( u1, u2) and 
the pressure and temperature fields p and T such that 

(Ml) 

-'v · (2µl) + po(u · 'v)u + 'vp = -po§{J(T - To) in D 
'v · u = 0 in D 

pocp (u · 'vT) - 'v · (k'vT) = 0 in D 
81 8T 

(TT 
= OT, i1 • n = 0, -k on = 0 on ro

i/, = 0, 

u= o,

u= o,

1 
T = To + 

2 
on r 1

1 X1 
T =To+ - - - on f2 2 L

1 
T = To - - on f3 

2 

It is assumed that there is no heat source in D and the material parameters are 
constant. Above I is the surface tension coefficient, f the unit tangent vector and 
ii, the unit normal vector. The pressure gradient is in fact 'vp = 'v(p - pogkXk),
k = 1, 2, where the term pogkxk is hydrostatic pressure and p-pogkXk the deviation 
from hydrostatic pressure. 
The coefficient I is a thermophysical property which depends on temperature. 
Temperature differences at the interface have an influence on the transport of 
momentum and heat near the interface. This phenomenon is called the Marangoni 
convection or the thermocapillary convection. The temperature dependence of the 
surface tension coefficient can be assumed to be linear, JCuvelier86]: 

(3.12) 'Y = ,o(l - 'IJ(T-To)), 
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where ,,J is the temperature coefficient of the surface tension and the subscript 0 
refers to a reference state. The boundary condition for the tangential stress then 
becomes 

(3.13) 
8T 

Cl-,- = --iJ,o- on ro. 
OT 

3.1.2 Rayleigh-Benard Convection 

In [Argyris92] the authors examine the transient Rayleigh-Benard convection in a 
two dimensional rectangular box 

and consider the half of the box D, = {O < X1 < L1, 0 < x2 < L2}- The boundary 
8D. is composed of mutually disjoint and open sets ro, r1, r2 and r3 in 8D. such 
that 8D. 

= ro U r1 U r2 U r3, Figure 3.2. 

ro 

Figure 3.2 Geometry of Rayleigh-Benard convection 

It is assumed that the lower and the upper plate of the box are held at a constant 
temperature. Temperature of the lower plate is set to be 0.5 degrees higher than 
temperature of the upper plate. Heat fluxes on the vertical side walls are assumed 
to be zero. The fluid is initially set at same temperature as the upper plate and 
it is assumed to be in a motionless state. 

A mathematical model containing the transient and coupled Navier-Stokes and 
heat equations for the problem is formulated as follows: Find the velocity vector 
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u = (u1, u2) and the pressure and temperature fields p and T such that

(M2) 

po�� - v' • (2µl) + po(u • v')u + v'p = -pog/J(T - To) in D, x (0, to)
v' • u = 0 in D, x (0, to)

PoC
p 

( �� + u • VT) - v' • (kv'T) = 0 in D, x (0, to)
u(x, 0) = 0, T(x, 0) = To in D,

u = 0, T = To on ro x (0, to)
8T

U1 = 0, -k on = 0 on r1 x (0, to)
u = 0, T = To + 0.5 on r2 x (0, to)

u = 0, -k !: = 0 on rs x (0, to),
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where to is a fixed number. As in the previous chapter it is assumed that the heat
source h is zero and the material parameters are constant. 

3.1.3 Axisymmetric Melt Flow 

During the Czochralski silicon crystal growth process convection plays an impor­
tant role in heat and mass transfer in the melt. The temperature distribution
is strongly dependent on convection. On the other hand, the hot silicon melt
erodes the silica crucible and oxygen dissolves to the melt. In the melt oxygen is
transported by convection. 
The trend towards large diameter single crystals is obvious in the future. In
the conventional Czochralski crystal growth 12 inch single silicon crystals have
already been grown. The lengths of such crystals are, however, quite modest and
the portion of the crystal shoulder and the end-cone can be significant. In the
continuous Czochralski crystal growth [Anselmo93) the polysilicon pellets (� 1 
mm diameter) are fed continuously into the melt. The total volume of the melt
and consequently the lengths of grown crystals are therefore larger. The problem
in this method is, however, the drifting of the pellets along the melt flow towards
the crystal and the possible sticking of the pellets on the crystal. 
For these reasons it is quite justified to build a mathematical model and numer­
ical simulation tools for a pure melt flow and a crystal-melt system in order to
understand and study the predominant physical phenomena. In the following,
mathematical models for a melt flow and crystal-melt system (Chapter 3.2) are
constructed. 
Due to the symmetry of the Czochralski configuration the temperature distribution
and the flow pattern in the melt can be modeled fairly well with the axisymmetric
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heat equation and cylindrically symmetric Navier-Stokes equations, [Miiller93]. 
With the high crucible rotation rates the velocity pattern in the melt is obviously 
three dimensional, [Miiller93], and in some cases perhaps turbulent, [Kinney93a]. 
In this research we neglect three dimensional and turbulent effects. 

r mg 

Figure 3.3 Melt flow geometry 

The melt flow geometry is depicted in Figure 3.3. Our mathematical model consists 
of the time dependent and coupled Navier-Stokes and heat equations in the melt 
Drn. The melt flow is driven by the Grashof and Marangoni convections and the 
centrifugal force caused by the rotation of the melt. On the melt boundary r rn , 
the Dirichlet boundary conditions for temperature and the velocity components 
are applied. At the melt-gas interface we set the Robin boundary condition for 
temperature. The boundary conditions for normal and tangential stresses and 
normal velocities on r mg are stated. Also on the symmetry axis r s a special 
attention to the boundary conditions is required. 
Our mathematical model in this case is the following: Find the velocity vector 
u = ( Ur, Uz , uo), the pressure p and the temperature T such that
(M3)

8ur 80' zr 1 o 
( ) 

1 
( 

8ur OUr u�
) Pm - - -- - -- rO'rr + -0'99 + Pm Ur -+ Uz - - - = 0 

at 8 z r 8r r or 8 z r 

auz 80'zz 1 8 
( ) ( 

auz auz
) Prn 7ft-Tz-;:ar 

rO'zr +Pm Ur 
8r 

+uz oz 
= 

= PrngfJ(T -To) 
OU9 1 0 

( 
') 

) 
00'0z 

( 
OU9 OU0 UrU0

) Pm 8t 
- r2 or 

r-O'r0 -8z + Pm Ur or 
+ Uz oz 

+ -r- = 0 

1 8 OUz --(rur) +- = 0 
ror oz 

PrnC (
8T +ur 

8T +uz 
8T

) - !� (kr
8T

)- � (k8T
) = 0

p,,. at or oz r or 8r oz oz 
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in Dm x (0, to) with 

u-n=0,

u(r, z, 0) = u°(r, z), T (r, z, 0) = T 0(r, z) in Dm 

auz aT 
( ) Ur = 0, or 

= 0, U0 = 0, or 
= 0 on I' 8 X 0, to 

Ur = 0, Uz = 0, U0 = Wmr, T = To on r m X (0, to)
'Yo aT aT 

O"n = R - Pa, (J"T = -{ho 
OT> -k an = a(T - Text)

on I' mg X (0, to). 

The components of the stress tensor are 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

(3.14e) 

(3.14f) 
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For further details on the cylindrically symmetric Navier-Stokes equations and 
axisymmetric heat equation we refer to [Landau91]. In the mathematical model 
the heat source in the melt is assumed to be zero and the gravity ff acts in the 
direction of the negative z-axis. The parameter Wm is the rotation rate of the 
melt, R the radius curvature of r mg, Pa the outside pressure, a the heat transfer 
coefficient and Text the external temperature to the melt. The mean curvature for 
a function I'mg: r f----+ I'mg(r), r E [0,ro] is given by [Cuvelier87] 

3.2 Crystal Growth from Melt 

A crucial task in this section is to treat a two phase problem between the crystal 
and the melt, separated by a free boundary, Figure 3.4. In this work we assume 
that the radius of the crystal is constant. We do not analyze the mechanisms 
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r. 't"' r £. mg 

L---'-------, 

Figure 3.4 Problem statement: crystal and melt separated by free boundary 

connected with the three-phase point. From these parts we refer to (Sackinger89] 
and (Seifert96]. 

We assume that the crystal-melt system can be modeled in the axisymmetric 
geometry. Let us recall the axisymmetric heat equation (no heat source) and 
write it in the crystal and melt as follows: 

(3.15) 

in .\1i x (0, to), i = c, m, where c corresponds the crystal and m the melt. Pi, C
p
, 

and ki , i = c, m, are the density, heat capacity and heat conductivity in the crystal 
and melt, respectively, and they are assumed to be constant in both phases. 

Beside the initial and boundary conditions imposed on the boundaries of Di, i =
c, m, the following conditions have to be fulfilled on the free boundary I:: 

(3.16a) 

(3.16b) 
Tm

= Tc
= Ti on I: X (0, to), 

where Ti is the melting temperature, L the latent heat, Ve and VE the velocities of 
the crystal and interface, respectively, and nE the unit normal vector on I: directed 
to the crystal. 
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The numerical solution of the phase change problem (3.15) & (3.16a-b) is consid­
ered in more detail in Chapter 5. In this work the phase change problem is solved 
by the enthalpy method. Instead of formulating the problem with the help of the 
heat equation (3.15) and boundary conditions (3.16a-b), we introduce an equation 
for enthalpy and treat enthalpy as a primary unknown. Enthalpy is defined so 
that the phase change is included into the equation of enthalpy. 

Let us assume for a moment that the melting temperature Ti in (3.16a) is equal 
to zero. If we define the enthalpy as ((White82]) 

(3.17) 

and use the Kirchhoff transformation 

(3.18) 1T
{ 

k T T < 0
K(T) = k(O d� = 

k C ' 

o mT, T > 0

the heat equation (3.15) can be rewritten in the form 

(3.19) 
[) _ la([) ) 8(8 ) -H(T) +u· \JH(T)- -- r-K(T) - - -K(T) = 0at r or or [)z [)z 

in n x (0, to), where n = nm U il
c 

is now the whole domain. The functions H(T) 
and K(T) are presented in Figure 3.5.

H(T) K(T) 

71 
T T 

Figure 3.5 Functions H and K as a function of temperature 

The equation (3.19) is, however, not meaningful since the enthalpy defined in (3.17) 
has a jump discontinuity as can be seen in Figure 3.5. This is not a real problem 
since the definition of enthalpy can be changed as proposed in (Dalhuijsen86], 
Figure 3.6. That is, temperature as a function of enthalpy is defined so that it is 
continuous also in the interval [-!, !] around the melting temperature. 
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H(T) 

T 

Figure 3.6 Continuous enthalpy as a function of temperature 

Instead of defining enthalpy as a function of temperature we write temperature as
a function of enthalpy (Figure 3. 7) 

(3.20) T(H) = 0, H E [O, PcL]
H-pL
___ c_, H > PcL.

PrnCp,,,. 

T(H) 

---:...---------L./ 

/1 
H

Figure 3. 7 Temperature as a function of enthalpy 

By using now the Kirchhoff transformation (3.18) and by introducing a function

(3.21)

�H, H<0
PcCpc 

'P(H) = 0, H E [O, PcL]
krn(H -PcL) H L---'-------'-, >Pc 

PrnCp,,,. 

we arrive at the equation

(3.22) -H + u• 'vH - -- r-'P(H) - - -if>(H) = 0 
8 _ 1 8 

( 
8 ) 

8 
(

8 
)

8t r or or f)z oz 

inn X (0, to).
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If the melting temperature is not equal to zero, then the functions H (T), K (T),
T(H) and <f>(H) have the forms 

(3.23) 

(3.24) 

(3.25) 

and 
(3.26) 

{ 

PcCpcT, T < T
1 

H(T) = [PcCpcTf, PcCpcT
! + PcLl, T = T1 

T(H) = 

PmCpm 
(T - T1

) + PcCpc T1 + PcL, T > T1 , 

Tt, 

H - PcL - PcCpcTf 
T -----��+ /, PmCpm 

HE [PcCpc T
J ,PcCpcT

! + PcL] 

H > PcCpcT
J + PcL 

�H H ' < PcCpcTf PcCpc

kcTj, HE [PcCpc T
J , 

<f>(H) = PcCpcT
! + PcL] 

km(H - PcL - PcCpcT
J ) 

+ kmT
J 

+(kc_ km)T
1 , H >PmCpm 

The definition of the function <f>(H) (or H(T) or T(H)) indicates that there are in 
fact three different phases. Besides the solid and liquid phases there is a so called 
mushy region where the enthalpy belongs to the interval [PcCpcT

f , PcCpcT
! + PcL] 

and the latent heat is released. 
We are still lacking the equations of the melt flow and the appropriate boundary 
conditions for enthalpy and velocity. The melt flow is governed by the cylindrically 
symmetric Navier-Stokes equations in Dm as in Chapter 3.1.3. On the symmetry
axis we define the Dirichlet and homogeneous Neumann type boundary conditions 
for the function <f>(H) and velocity. On r m the Dirichlet boundary conditions for 
the enthalpy and the velocity components are applied. At the melt-gas interface, 
which is also a free boundary, the conditions for normal and tangential stresses and 
normal velocities are stated. At the phase change interface we assume that mass 
balance is fulfilled and the Dirichlet boundary conditions containing the rotation 
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rate of the crystal are applied. On r rng U reg the Robin type boundary condition
for <P(H) is applied. 
The mathematical model for the crystal-melt system now reads: Find the velocity
vector il = (ur, Uz, u0), the pressure p and the enthalpy H such that 
(M4) 

OUr OCTzr 1 8 ( ) 
1 

( 
OUr OUr U�

) Prn - --- --- rCTrr + -CT00 + Prn Ur-+ Uz -- - = 0at oz r or r or oz r 

OUz OCTzz 1 0 ( ) ( 
OUz OUz )Prn 7ft -8z - r or 

rCTzr + Prn Ur or 
+ Uz oz 

= 

= Prn9f3(T - To)
8 u0 1 8 

( 2 ) 
OCT0z ( 

8 u0 8 u0 UrU0
) Prn 7ft- r2 or 

r CTr0 -8z + Prn Ur or 
+uz oz 

+ -r- = 0

1 0 OUz 

r or 
( rur) + 

8 z 
= O

in Drn x (0, to), Drn = { 4>(H) > keTJ },

3._H +il· '\TH -!� (r�4>(H))- � (�4>(H)) = 0
at r or or oz oz 

D = Drn u De, with the initial and boundary conditions
il(r,z,0) = u°(r,z) inn

H(r, z, 0) = H0(r, z) inn

in fi X (0, to),

Ur = 0, 
8

8
� = 0, u0 = 0, on (rs n Drn) x (0, to)

o4>(H)
= 0 on r s x (0, to)

or 

Ur = 0, Uz = 0, U0 = Wrnr, H = Ho on rm, X (0, to)
'Yo 8 T(H) 

il • n = 0, CTn = R -Pa, (TT = -rho � on r rng x (0, to)

8 4>(H) 
-� = a(T(H) -Text) on r rng x (0, to)

Ur = 0, Uz = 0, U0 = Wer on E X (0, to)
Pm.Urn · nE - Pe 'Ue • nE = (Prn -Pe)UE • fiE on E X (0, to)

8 4>(H)
- on

= a(T(H) -Text) on reg x (0, to),

where the components of the stress tensor are as in the equations (3.14a-f). We is
the rotation rate of the crystal and 'UE the velocity of the interface E. 
The equations in the mathematical model are highly nonlinear. The Navier-Stokes
equations have nonlinear convection terms and are coupled with temperature. The
enthalpy equation contains the function 4>(H) and the coupling with velocity.
Furthermore, the domains depend on the positions of the free boundaries. 
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3.3 Czochralski Crystal Growth 

In this chapter a mathematical model for the entire Czochralski crystal growth 
is constructed in the axisymmetric geometry, Figure 3.8. The model includes 
equations for global heat transfer and melt flow in the crucible. Global heat 
transfer includes transient equations for enthalpy (including the definition of the 
phase change interface) and heat exchange between various surfaces inside of the 
Czochralski configuration by radiation. The external temperature of the Czochral­
ski furnace and the temperature of the low temperature enclosure are assumed to 
be known. The melt flow is governed by the transient Navier-Stokes equations and 
the boundary conditions for the melt flow are of the same type as in Chapter 3.2. 

In the previous chapter we introduced an equation for enthalpy in the crystal-melt 
system in order to treat the phase change problem. In the surrounding parts of 
the crystal and melt the heat equation is adequate to describe heat transfer. We 
discuss later on in this chapter, how global heat transfer induced by conduction 
and convection is modeled by using these equations together. An other important 
task in this chapter is to treat radiation which plays a crucial role in heat transfer 
mechanism. 

We characterize the axisymmetric domains by using the following notations: Crys­
tal - De , melt - Dm, silica crucible - Ds , graphite susceptor - D

g
, graphite resistance 

heater - nh, crucible pedestal Da and thermal shields - Dt. Every domain is charac­
terized by different thermophysical properties. In reality these properties, such as 
the densities, heat capacities and heat conductivities, are temperature dependent. 
In this work, however, we assume that they are constant in each material. 

The following notations for the boundaries in the system are applied: The crystal­
gas interface is denoted by r cg, the melt-gas interface by r mg and the other in­
terfaces connected to the gas by ri. The melt-silica crucible interface is denoted 
by r m and the low temperature enclosure by re · Finally the outer interface is de­
noted by r 0• The cylindrical co-ordinate system (r, z, 0) is centered at the bottom 
of the crucible shaft. We emphasize that re is only a one dimensional object in 
which temperature is known. 

Let us begin with the modeling of radiation. The following discussion is based on 
the references [Incropera85], [Sparrow78], [Tiihonen94] and [Tiihonen96]. We make 
the following assumptions: The argon gas within the enclosure is non-participating 
and an opaque, diffuse and gray behavior from the surfaces is expected. 

Consider a set r = r cg U r mg U r i U re . On r heat balance reads as 

(3.27) q+ J -R = 0, 

where q is heat flux caused by conduction to the surface, J irradiation and R 
the radiosity on the surface. The radiosity can be expressed as a sum of surface 
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34 Numerical Simulation of Czochralski Crystal Growth 

r, 

-

r;·

r cg 

it -

.... 

De 

f mg 

Dm 
r. fm 

Dg 

Da [/,h 

Di 

Figure 3.8 Axisymmetric Czochralski crystal growth geometry 

emissive power and reflected irradiation, i.e., 

(3.28) R = E+pJ, 
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where p is the reflectivity. If the surface emissive power E is proportional to 
the corresponding value of a black body, and the Stefan-Boltzmann law and the 
assumption of the opaque, diffuse and gray surface are used, then 

(3.29) R = cnT4 
+ (1 - E)J. 

Here er is the Stefan-Boltzmann constant and E the emissivity of the surface. 
Irradiation on r is proportional to radiation emitted by the different parts of r 
itself due to the equation 

(3.30) J(s) = i w(s, z)B(s, z)R(z) dz 

for any s E r. w(s, z) is called a view factor and it has a form 

(3.31) 
nz · (s - z)ns · (z - s)

w(s, z) =
I 14 ' 7r s-z 

where ns and nz are the surface normals directed to the vacuum. In (3.30) B(s, z)
is a visibility factor and it has a value 1, if the points s and z see each others 
otherwise it has a value 0. 
If we define an operator 

K>-.(s) = l w(s, z)B(s, z)>-.(z) dz Vs Er,

we can write J = K R and from (3.29) we get 

R = cnT4 
+ (1 - E)K R 

or 

(3.32) 

By substituting the definition of R in (3.32) into the equation of the heat balance 
(3.27) we arrive at 

(3.33) 

where 

(3.34) 

G can be also written in the form 

(3.35) 
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which is an infinite dimensional equivalent of so called Gebhart factors. 
Let us then consider global heat transfer induced by conduction and convection 
containing the phase change between the crystal and melt. Outside of the crystal 
and melt, heat transfer is described by the heat equation 

(3.36) 

where the subscript i is associated with separate domains characterized by the 
material parameters Pi , Cp, and ki. The heat source hi is nonzero only in the 
heater. 
On the other hand, we have the enthalpy equation 

(3.37) 
8 _ 18( 8 ) 8(8 ) 
-H +u· 'vH- -- r-kT(H) - - -kT(H) = 0
ot r or or oz oz 

in the crystal-melt system, where the functions H and T(H) are as in (3.23) and 
(3.25). Thus in the whole system we have two separate equations (3.36) and (3.37) 
describing heat transfer with appropriate boundary conditions. 
Remark 3.2 The enthalpy equation (3.37) offers a way to treat the phase change 
problem in the crystal-melt system. If we now make a standard definition H =
PiCp,Ti in the heat equation (3.36) we get an equation of the type (3.37) for en­
thalpy in the whole domain. The equation is, however, not meaningful since 
enthalpy is discontinuous at the melt-silica crucible interface. 
We proceed by modifying the definition of the enthalpy ( equation (3.23)) so that 
it equals to temperature in the melt region. The definition can be rewritten in the 
form 

(3.38) { 
PcCpc T - PcL + Tt (PmCp,,, - PcCpJ ) T < Tt 

H(T) = [PmCp,,,
Tf - PcL, PmCp,,,

TJ ], T = Tt 

PmCp,,,
T, T > Tj , 

If we now define a function iI : = H / PmCp,,, we come to an expression ( the density 
and heat capacity of the melt are constant) 

(3.39) H(T) =

T, T > TJ . 
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Temperature as a function of fI is correspondingly 

PmCpm H + PcL - TI (PmCpm - PcCpJ - PcL -�-----�-�--�-,H<�---
PcCpc PmCpm 

(3.40) T(iI) = - PcL 
T1, HE [T1- --,T1] 

PmCpm 

if, fI > T1-

If we now divide the equation (3.36) by PiC
Pi 

and define iI = T we come to 

(3.41) 
&- - 18(8A ~)&(&A-) A
-H +it- 'vH - -- r-kT(H) - - -kT(H) = f. at r or or oz oz 
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This equation has exactly the same form as in (3.37) and thus the enthalpy equa­
tion of the type (3.41) governs heat transfer in the whole system. The enthalpy 
fI in the crystal and melt is defined as in (3.39) and in the other parts as fI = T.

In the crystal and melt J = 0 and k = k/ PmC
pm , where k depends on enthalpy. In 

the other parts k = ki/ PiCpi and J = hi/ cPi . 

A mathematical model for the Czochralski crystal growth now reads: Find the 
velocity vector it= (ur , Uz , u0) and the pressure pin nm x (0, to) and the enthalpy 
fI in n x (0, to), where n = nm U nc U ns U n9 U nh Una U nt, such that (M5)

in nm X (0, to), 

-H +it- 'vH- -- r-kT(H) - - -kT(H) = f 
&- - 18(8A ~)&(&A~) A
at r or or oz oz 
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in D x (0, t0) with the initial and boundary conditions 

il(r, z, 0) = il°(r, z) in Dm U De 
- -o H(r,z,0) = H (r,z) inn

Ur= 0, 
0

0
� = 0, U0 = 0 on (rs n Dm) x (0, to) 

oT(iI) 
= 0 on (rs n D) x (0, to) 

or 
Ur= 0, Uz = 0, U& = WmT on rm X (0,to) 

� � 0 ,o 
u • n = , O'n = 

R - Pa, 
oT(H) 

O'r = -rJ,o OT 
on r mg x (0, to)

Ur = 0, Uz = 0, U9 = Wer on� X (0, to), 
Pm Um • ifr:, -PeUe • n'E = (Pm - Pe)u'E • n'E on � X (0, to) 

• oT(H) - 4 -k 
on = G(&(T(H)) ) on (r mg U reg Uri) x (0, to)

• oT(iI) . --k 
on = a(T(H) -Text) on r0 x (0, to) 

iI = He on re x (0, to), 

Remark 3.3 A division of the heat equation (3.36) by PiCp; leads to a scaling of the 
boundary conditions for T(H). We denote the scaled heat transfer coefficient and 
the Stefan-Boltzmann coefficient by & = a/ PiCp; and f, = O' / PiCp;, respectively, 
where Pi and Cp; are characterized by each material. 



4. Simulation of Thermally Coupled
Liquid Flows 

In this chapter we shall solve numerically the mathematical models (Ml)-(M3) 
presented in the previous chapter by the finite element method. Variational for­
mulations and Petrov-Galerkin finite element discretizations of the models are 
derived in Chapters 4.1 and 4.2. In Chapter 4.3 the treatment of nonlinearities in 
the mathematical models is discussed. Numerical simulations of the models (Ml) 
and (M2) are carried out in simple two dimensional geometries while the model 
(M3) is simulated numerically in axisymmetric geometry. Numerical results based 
on the two dimensional computations are compared in Chapters 4.4.1 and 4.4.2 
to the results presented in [Argyris92] and [Cuvelier86]. In Chapter 4.4.3 we show 
numerical results of the silicon melt flow in the axisymmetric crucible. 

4.1 Variational Formulations 

We shall consider in Chapter 4.1.1 a time dependent variant of the model (Ml) 
and derive variational formulations for the Navier-Stokes and heat equations. The 
reason for this is that the time dependent variant covers with some exceptions 
both of the mathematical models (Ml) and (M2). In Chapter 4.1.2 we focus on 
the model (M3) and derive variational formulations for the cylindrically symmetric 
Navier-Stokes equations and the axisymmetric heat equation. 
The variational formulations of the Navier-Stokes and heat equations are based on 
the references [Cuvelier86b], [Girault86], [Krizek9O], [Long-An86] and [Temam84]. 
In these references a number of results concerned with functional spaces associated 
with variational formulations of the Navier-Stokes and heat equations as well as 
results on existence and uniqueness are derived. For the choice of test function 
spaces we refer to the spaces introduced in the references above. 

4.1.1 Time Dependent Variant of Model {Ml) 

Let us assume that the solution Uk of the transient momentum equation in the 
modified (Ml) is smooth enough ( at least two times continuously differentiable) 
in n x (0, t0) and the boundary tm is Lipschitzian ([Krizek9O]). We define the 
Sobolev space Hm (n) by 

Hm (n) = {VE L2 (D)IDiv E. £2 (!1) for all i such that Iii :Sm}, 

where £2 (!1) is a space of square integrable functions, i a multi-index and Div the 
ith generalized partial derivative of the function v. 

39 
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The variational formulation for the momentum equation is obtained by multiplying 
the momentum equation by a test function Vk E H1 (D), integrating over the 
domain DC IR2 and applying Green's theorem. Then we arrive at 

(4.9) 

for all Vk E H 1 (D), k = 1,2, where 4, = (ck1,ck2) and n is the outward unit 
normal vector. 

The boundary 8D consisted of mutually disjoint and open parts such that 8D =
r0 u r1 u r2 u r3. By assuming that the test function iJ = (v1, v2) satisfies the 
conditions iJ • n = 0 on r o and iJ = 0 on r 1 u r 2 u r 3 and by applying the boundary 
conditions listed in (Ml) we come to 

(4.10) 

where f is the unit tangent vector. 

Besides the velocity components Uk, k = 1, 2, the pressure is also unknown in the 
variational formulation ( 4.10). In order to consider the pressure we can apply for 
instance integrated method, [Cuvelier86). In this method the variational formu­
lation is formed also for the continuity equation v' · i1 = 0. Another approach, 
which we use here, is a penalty function rriethod, [Cuvelier86), [Temam84). In 
this method the continuity equation is perturbed with a small parameter c ( called 
penalty parameter) times the pressure: 

(4.11) €p + '7 . i1 = 0. 

This means that we allow a slight numerical compressibility. Substituting now the 
pressure from the equation (4.11) into the variational formulation (4.10) we get 
finally the variational formulation for Uk, k = 1, 2, 

(4.12) 
dS. 

If we neglect the integral containing the time derivative, we get a variational 
formulation which is exactly the same one derives for the momentum equations in 
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(Ml). By assuming v = 0 on ro the boundary integral disappears and we come to 
an appropriate variational formulation for (M2).

The pressure can solved after the velocity field is computed. From ( 4.11) it follows 
that 

The final form of the variational formulation for the time dependent and two 
dimensional heat equation, by taking into account the boundary conditions for the 
temperature in (Ml) and by assuming for the test function v = 0 on r1 U r2 U r3, 
is simply 

( 4.13) k PoC
p 

�� v dn + k pocp(u • 'vT)v dn + k k'v'T • 'vv dn = 0. 

Again, if we neglect the first integral containing the time derivative, we obtain an 
appropriate variational formulation for (Ml). The variational formulation (4.13), 
as it stands, is valid for (M2).

4.1.2 Model (M3) 

Next we shall derive variational formulations for the equations of the velocity 
components Ur , Uz and uo in (M3). Since the derivations are congruent with the 
variational formulation derived in the two dimensional case, we outline only the 
main points. We assume that the melt-gas interface is a straight line, i.e., it is 
not considered as a free boundary. Therefore we neglect the boundary condition 
Cln = J-Pa on rmg· 

Let the test functions Vr , Vz and Vo E H;(Hm) = {v E L;(nm)li�, i� E L;(nm)}, 
where L;(nm) is the space of square integrable functions weighted by r in nm . 
In the following we assume v · n = 0 on r mg· The multiplication of the momen­
tum equation of Ur by the test function Vr , the observation of the weigh_t r, the 
integration over the melt region nm and Green's theorem produce 
(4.14) 

r OUr r OVr r OVr 
lnTn 

Pm at 
Vrr dnm + 

lnTn 
Clzr oz 

r dnm + lnTn 
Clrr or 

r dnm+

+ { !cr00Vrr dnm + { Pm (U·'vur)Vrr dnm - { Pm
! uivrr dnm-

lnTn r Jn"' Jn"' r 

- { (crzrnz) Vrr dS - { (crrrnr) Vrr dS = 0. 
lr=g lr=g

Here we have assumed that the test function Vr satisfies the condition Vr = 0 on 
the wall r m· If we use the penalty method for the pressure, i.e., we perturbe the 
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continuity equation as 

(4.15) 

The variational formulation for the time dependent heat equation in (M3), if we 
take into account the Robin boundary condition on r mg and assume that for the 
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test function holds v = 0 in r m,, is 
(4.19) 

k pm,Cpm, 
�� vr dD. + k pm,cpm, (u • 'vT)vr dD, + k km, ('vT. 'vv) r dD+

+ { aI'vr dS = { aTextVr dB. 
lr=g lr=g 
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4.2 Petrov-Galerkin Finite Element Approxima­
tion 

In connection with the variational formulations one considers infinite dimensional 
test function spaces. The spaces have countable bases, i.e., any function can be 
expressed as an infinite linear combination of the test functions. In the finite 
element approximation one considers a finite dimensional subspace spanned by n 
basis functions c,?1, c,?2, ... , c,?n, where n is the dimension of the subspace. Now the
test functions are chosen from the subspace and the velocity and the temperature 
are approximated as linear combinations of the basis functions: 

(4.20a) 

( 4.20b) 

n 

Uk = LUkjc,?j, 
j=l 

n 

T = LTjc,?j, 
j=l 

where k = 1, 2, r, z, 0 and Ukj and Tj E R are the values of the velocity and the
temperature depending on time t. 
If we substitute the linear combinations of the velocity and temperature to the 
variational formulations (4.12) and (4.13) (or (4.16)-(4.19)) and replace the test 
functions with the basis functions c,?i we come to the standard Galerkin method. It 
is well known, however, that for highly convective transport problems difficulties 
in numerical solutions are encountered with this method, [Argyris92], [Brooks82], 
[Johnson84]. In order to prevent spurious node-to-node oscillations severe mesh 
refinement is required. Another alternative is to apply stabilized methods, see 
[Franca92a], [Franca92b] and [Franca93]. 

Stabilized methods for the advective model were first introduced by Hughes and 
Brooks and referred to as the streamline upwinding/Petrov-Galerkin methods. Af­
ter that Johnson and Niivert made a convergence analysis for this method. This 
analysis was an important first step to establish various extensions to other com­
putational fluid dynamics applications. These methods are referred by Johnson 
and his co-workers as streamline diffusion methods. Since then stabilized methods 
have been developed for instance by Franca and Frey. 

In this work we apply the streamline upwinding/Petrov-Galerkin technique pro­
posed in [Brooks82]. The standard Galerkin basis functions are modified by adding 
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a streamline upwind perturbation acting only in the direction of flow. The modi­
fied basis functions have the form 

A k- l � TT
'Pi = 'Pi + llull2 U ' V 'Pi, 

where the coefficient k is specified as a function of velocity, physical parameters 
and element dimensions. Compared to the standard Galerkin method the stream­
line upwinding/Petrov-Galerkin technique yields a considerable improvement of 
stability, [Brooks82], [Argyris92]. Although the idea of Brooks and Hughes is 
rather old and modifications to the definition of the parameter k have been made 
([Franca92a]), this technique has shown its ability to handle convection dominated 
problems. 
All test functions appeared in the variational formulations presented in the pre­
vious chapter should in principle be replaced with the modified basis functions. 
However, according to [Brooks82] the Galerkin basis functions can be used in those 
terms, which originate from the diffusion, pressure and stress divergence parts, if 
the following holds: i) heat conductivity is isotropic, ii) temperature and velocity 
are interpolated by bilinear basis functions, iii) pressure is interpolated by piece­
wise constant functions, iv) elements are rectangular and v) flow is incompressible. 
In this work we assume that the material parameters are constant (in this case 
the heat conductivity is naturally isotropic). We use bilinear basis functions for 
the velocity and the temperature. The pressure is piecewise constant in each el­
ement. (Actually we approximate the pressure with bilinear basis functions but 
use a reduced integration, i.e., the pressure terms are integrated by using 1-point 
Gaussian integration rule). Our finite element meshes are composed of quadri­
lateral elements. Thus the conditions i)-iv) are satisfied. The penalty function 
method satisfies the condition v) only approximately. 
In two dimensional case the application of the streamline-upwinding/Petrov-Galerkin 
method produces an algebraic system for u1, u2 and T: 

(4.21) 

where 

( 4.22) 

Mu 8u1 A A pu cu nu 
ot + 11 U1 + 12U2 = - 1 - 1 + 1 ,

Mu 8u2 A A DU cu nu 8t + 21U1 + 22U2 = -r2 - 2 + 2 ,

Au= 2K11 +K22 +Cu +Pu, 
A12 = K12 + P12, 
A21 = K21 + P21, 
A22 = 2K22 + K11 + Cu + P22, 

A=CT +KT. 
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The sub-matrices and vectors for the velocity in ( 4.22) are 

(4.23) 

i, j = 1, ... , n. For the temperature we have 

(4.24) 

MT ( i, j) = 1n PoCp'{)i'PjW dn, 

cT ( i, j) = 1n PoCp/{!i ( i1. "v 'Pi) w dn, 

KT(i,j) = k k("vcpi. "vcpj)w dn, 
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i,j = 1, ... , n. The sub-matrices for the temperature include the weight w which is 
equal to one in two dimensional case. The vectors D'f., D'2 and DT consist of the 
Dirichlet data. 

Substitution of the linear combination of the velocity ( 4.20a) to the variational 
formulations (4.16)-(4.18) and the linear combination of the temperature (4.20b) 
to the variational formulation ( 4.19) produce the following algebraic system for 
Ur, Uz , uo and Tin axisymmetric geometry: 

( 4.25) 

Mu8
;r 

+ ArrUr + ArzUz + AroUo = -G� + D�,

MU OUz A A pu au vu 8t + zrUr + zzUz = - z + z , 

Mu0

;
0 

+ AorUr + Aoz Uz + Aoouo = Do, 

MT
&T +AT = pT +DT 

at 
' 
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where 

(4.26) 
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Arr= 2K;!'r + K:z + 2L +Cu+ Prr + Qrr,

Arz = K;!'z + Prz + Qrz, 

Aro= -No,

Azr = K:r + Pzr + Qzr, 

Azz = 2K:z + K;!'r +Cu+ Pzz,

Aor = Nr, 

Aoz = 0, 

Aoo = K;!'r + K:z - ( E + ET) + L + cu,

A= cT +KT +BT . 

By taking into account the above discussion concerning the appearance of the 
modified and Galerkin basis functions the sub-matrices and vectors are 

( 4.27) 
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i,j = 1, ... , n. 

The matrices MT, er and KT are as in (4.24) where the weight w is now equal 
tor. In ( 4.25) the vectors D�, D�, D0 and DT contain the Dirichlet data. 

Remark 4.1 The matrix ET is not connected with the temperature, but it is a 
transpose of the matrix E.

Remark 4.2 The integrals appearing in (4.23), (4.24) and (4.27) are approximated 
by using a 2 x 2 Gaussian integration rule in a local isoparametric [-1, 1] x [-1, 1] 
element. As we mentioned above, the penalty terms are approximated by using a 
reduced integration, i.e., only one point Gaussian integration rule is applied. 

Remark 4.3 In the discretization of the Navier-Stokes equations we use the bi­
linear velocity-constant pressure approximation. It is well known that this combi­
nation does not satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition, and 
spurious oscillations in the pressure field can occur ( checkerboard pressure pat­
terns). One can still obtain good velocity fields. In the connection with the 
numerical simulations of silicon melt flow and crystal growth from silicon melt we 
study, if the checkerboard pressure patterns really appear. 

4.3 Linearization of Coupled N avier-Stokes and 
Heat Equations 

The Navier-Stokes and heat equations which govern thermally coupled liquid flows 
are nonlinear on two levels. First, the velocity field depends on the temperature 
distribution and vice versa. Secondly, the Navier-Stokes equations are nonlinear 
throughout the convection term ( U· '\l)u and some additional terms in the equations 
of the velocity components Ur and uo in the cylindrically symmetric case. 

The nonlinearity can be handled in two ways. Discretization of the nonlinear equa-
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tions leads to a nonlinear algebraic system for the velocity and the temperature 

(4.28) { A(u)u = F(T)

B(u)T = G, 

which can be solved by using iterative methods. Another approach is to linearize 
the coupled and nonlinear equations. In this work we apply the uncoupling of the 
Navier-Stokes equations and the heat equation, i.e., we solve two separate discrete 
algebraic systems 

( 4.29) { 
A(u)u = F(T*) 

B(u*)T = G, 

where the variables il,* and T* are known. 
The discretized and nonlinear algebraic system for the Navier-Stokes equations in 
( 4.29) can be solved iteratively. The nonlinear terms can also be handled, for in­
stance, by the method of characteristics, [Pironneau82], [Hilpert91] or by lineariz­
ing the nonlinear terms, [Cuvelier86b]. In this work the linearization technique is 
applied. 
The linearization of the Navier-Stokes equations generates a sequence of linear 
matrix equations for the velocity 

(4.30) A(il,"-1)il," = F(T*), n = 1, 2, 3, ...

The matrix equation ( 4.30) is then iterated until convergence is attained. 
The nonlinear term ( u • "v)u can be linearized by using for instance a Picard itera­
tion (also called successive substitution) or a Newton linearization, [Cuvelier86b]. 
The Picard iteration produces a first order linearization with respect to the rate 
of convergence, while with the Newton linearization we obtain a convergence rate 
of second order. 
Let us assume that the solution of the equation (4.30) at a new iteration level 
can be described as a sum of the solution from the previous iteration level and a 
correction 

(4.31) 

where the correction b decreases when the number of the iteration level n increases. 
Three different variants of the Picard type linearization are obtained when we 
rewrite the convection term (ii,· "v)u with the help of the equation ( 4.31). Namely 

( 4.32a) 
( 4.32b) 
( 4.32c) 

(il,". "v)il," = (iJ,"-1. "v)il,"-1 
+ 0(8),

(il," · "v)il," = (iJ," · "v)il,"-l + 0(8), 

( iJ," • "v)il," = ( il,"-l · "v)il," + 0( 8). 
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Numerical tests have shown that the convergence region of the schemes ( 4.32a) 
and ( 4.32b) are quite modest. The scheme ( 4.32c) is superior to the previous ones 
in the sense of the convergence region and the convergence rate. 

Although the convergence region of the scheme ( 4.32c) is relatively large, the 
convergence rate is only linear. The Newton linearization, however, 

(4.33) 

yields a quadratic convergence rate, but requires a good initial guess. An adequate 
initial guess is usually obtained from the Picard iteration. 

Above we have considered the linearization techniques for the nonlinear convection 
term (u • 'v)u. The linearization of the other nonlinear terms with the Picard 
iteration or the Newton linearization is analogous. 

4.4 Numerical Examples 

4.4.1 Grashof and Marangoni Convections in 2D 

We solve numerically the mathematical model (Ml) introduced in Chapter 3.1.1 
and compare the numerical results to those presented in [Cuvelier86]. We use 
the results of the two dimensional finite element analysis derived in the previous 
chapters. In the steady state case we have a discrete problem for the velocity and 
the temperature 

(4.34) 

A11u1 + A12u2 = -F1 - G1 + D1, 

A21u1 + A22u2 = -F2 - G2 + D2, 

AT=D
T 

'

where the sub-matrices and vectors are introduced in (4.22)-(4.24). 

In [Cuvelier86] the problem is solved by using the finite element method. Ei­
ther coupled or uncoupled method for the velocity, pressure and temperature is 
applied. The nonlinearities are solved by the Newton-Raphson iteration. The do­
main (L = 1) is divided into regular triangles and triangulation corresponds to a 
space discretization of 6.x1 = 6.x2 = 0.05. The number of triangular elements is 
equal to 200. For velocity continuous piecewise extended quadratic basis functions 
together with piecewise linear non-continuous basis functions for the pressure has 
been chosen. Quadratic polynomial approximation is applied for the temperature. 

We solve the problem by uncoupling the discretized Navier-Stokes and heat equa­
tions. The nonlinearity in the Navier-Stokes equations is solved by the Newton 
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linearization technique. We divide the domain into 20 x 20 quadrilateral elements, 
i.e., 6x1 = 6x2 = 0.05. We apply bilinear basis functions for the velocity and the 
temperature. Pressure is eliminated by the penalty method. The penalty method 
produces the sub-matrices Pa:fJ in the matrix equations (4.21)- (4.23). These sub­
matrices are integrated numerically by using the reduced integration. The linear 
matrix equations for the velocity and the temperature in ( 4.34) are solved by the 
Gaussian elimination. The Navier-Stokes iteration is terminated when the relative 
error jjuk -uk-ljj/Jluk ll is less than 10-5, Here the superscripts k and k-1 refer to
consecutive Navier-Stokes iterations. The iteration between the uncoupled Navier­
Stokes and heat equations is terminated when the relative error jjuk - uk-1 jj/jjuk jj
is also less than 10-5_ Now the superscripts k and k - 1 refer to consecutive
uncoupling iteration steps. 
In all numerical examples we use dimensionless parameters as in [Cuvelier86] and 
[Cuvelier86b]. The Reynolds, Grashof, Prandtl and Marangoni numbers are the 
following: 

Re= LU po
µ, ) 

fJgp5L36T
Gr= 2 , 

µ, 

p - Cp/J,r 
- k ' 

M _ 'IJ"foCppoL.0.T
a -

µ,k 
' 

where L and U are the characteristic length and velocity, respectively, and .0.T' 
describes the temperature difference between the boundaries r1 and r3. The 
Prandtl number is fixed to 0. 73. The Reynolds number is assumed to be equal to 
unity and gravity is assumed to act in the direction of the negative X2-axis. 
Let us consider the Grashof convection first. In Figures 4.2a-4.4b the temperature 
isotherms and the velocity vectors for Pr = 0. 73, Ma = 0 and the various Grashof 
numbers are presented. 
The Grashof number represents the relative importance between buoyancy and 
viscous forces. Since gravity acts in the direction of the negative x2-axis the 
buoyancy force appears in the equation of u2, where we have ... = pogf3(T - To). 
Temperature in the neighborhood of the left-hand vertical boundary is greater 
than T0. For this reason the buoyancy force is positive and the flow direction 
in the near of this boundary is upwards. Correspondingly, the buoyancy force 
in the neighborhood of the right-hand vertical boundary is negative and the flow 
direction is downwards. 
With the low Grashof number ( Gr = 2.0) the temperature isotherms behave almost 
linearly between the Lemperatures To+·! and To - ½- The maximum velocity is 
relatively slow. With higher Grashof numbers the temperature isotherms begin to 
curve due to a stronger flow field. 
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Figure 4.2 (a) Temperature isotherms and (b) velocity vectors for 
Pr= 0.73, Ma= 0 and Gr= 2.0 

Figure 4.3 (a) Temperature isotherms and (b) velocity vectors for 
Pr= 0.73, Ma= 0 and Gr= 2.0 x 102 
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The buoyancy force is a typical body force, i.e., it has an influence on liquid as 

a whole. On the other hand, the tangential stress boundary condition induces a 
surface flow. In this boundary condition the temperature coefficient of the sur-
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Figure 4.4 (a) Temperature isotherms and (b) velocity vectors for 
Pr= 0.73, Ma= 0 and Gr= 2.0 x 104 

face tension rJ has the form rJ = -(lho)(d-y/dT)IT
o
, [Cuvelier86]. Tangential 

stress generates a flow from a region of the low surface tension to a region of the 
high surface tension, which normally means from hot to cold, [Cuvelier86]. This 
phenomenon with the different Marangoni numbers can be seen in Figures 4.5b 
and 4.6b, where the flow direction is from the left-hand vertical boundary to the 
right-hand vertical boundary. 

For a low Marangoni number the thermal convection effects slightly to the tem­
perature isotherms (Figure 4.5a). The high Marangoni number creates a strong 
temperature gradient near the right-hand vertical boundary. 

In Table 4.1 the maximum velocity lul for the various Grashof and Marangoni 
numbers is given. The numerical results are in a good agreement compared to 
[Cuvelier86b] except in the case where the Marangoni number is equal to 400. In 
the reference [Cuvelier86b] the authors mention, however, that for high Marangoni 
numbers the magnitude of the velocity ii can be estimated as lul ::,j Maj. In this 
sense our value of the maximum velocity for the case Ma = 400 seems to be closer 
to the evaluated value 54.288. 
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Figure 4.5 (a) Temperature isotherms and (b) velocity vectors for 
for Pr= 0.73, Ma= 50 and Gr= 0.0 
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Figure 4.6 (a) Temperature isotherms and (b) velocity vectors for 
for Pr= 0.73, Ma= 400 and Gr= 0.0 
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Pr Ma Gr [u[ [Cuvelier86bl [u[author 
0.73 0.0 2.0 0.0125 0.01247 
0.73 0.0 200.0 1.24 1.24233 
0.73 0.0 20000.0 40.0 40.48588 
0.73 50.0 0.0 9.12 9.07357 
0.73 400.0 0.0 40.3 56.27472 

Table 4.1 Numerical comparison between [Cuvelier86bj and the author 

4.4.2 Rayleigh-Benard Convection 

In this section a Rayleigh-Benard convection (mathematical model (M2) in Chap­
ter 3.1.2) is studied numerically. The finite element discretization produces a 
nonlinear matrix equations for the velocity and the temperature: 

( 4.35) 

Mu 8u1 A A Du 8t + 11U1 + 12U2 = 1,

Mu 8u2 A A DU Du 
8t+ 21u1+ 22U2 = -r2 + 2,

MT 8T AT = DT
at

+ 

where the sub-matrices and the sub-vectors are presented in detail in Chapter 4.2. 
Only the buoyancy effect is taken into account. Gravity is assumed to act in the 
direction of Lhe negative X2-axis. 
We simulate the water flow as in the reference [Argyris92]. The material parame­
ters of water are shown in Table 4.2. 

Quantity Symbol Value 
Viscosity µ 9.93 • 10-4 Pas
Density p 998.2 kg/m3 

Heat capacity Cp 4182.5 J /kgK 
Heat conductivity k 0.597 W/mK 
Heat expansion coeff. /3 2.1·10-41/K
Gravity g 9.82 m/s2 

Table 4.2 Material data of water 

In [Argyris92] the authors solve the problem by the Petrov-Galerkin finite ele­
ment method. The penalty method is applied for the incompressible Navier-Stokes 
equations. The nonlinear matrix equation originated from the discretization of the 
Navier-Stokes equations is solved by the Newton method. The computation of the 
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velocity and the temperature is uncoupled. The implicit time discretization is 
used. 

As before, we solve the coupled problem by uncoupling the Navier-Stokes and heat 
equations. The spatial discretization is made by the streamline upwinding/Petrov­
Galerkin method as presented in Chapter 4.2 and the time derivative is discretized 
by the backward Euler method. The upwinding parameter is determined elemen­
twise contrary to [Argyris92], where the authors fix the value of the upwinding 
parameter over the whole domain. The Newton linearization technique is applied 
for the nonlinear terms in the N avier-Stokes equations. 

We divide the domain into 600 quadrilateral elements ( 40 elements in the X1-
direction and 15 elements in the X2-direction). The space discretization differs 
from the one presented in [Argyris92], where they have less elements and their 
mesh is denser near the right vertical boundary. As in [Argyris92] we choose a 
constant time step to be equal to 2 seconds. Our calculation extends over 600 
seconds and involves thus 300 time steps. The convection rolls begin to develop 
at t = 210 seconds and a steady state solution is reached at t = 450 seconds. 
The temperature isotherms and the velocity fields in the course of the process are 
presented at different time steps in Figures 4.8a-4.13b. 

Figure 4.Ba Te"}perature isotherms at t = 200 

Figure 4.Bb Velocity vectors at t = 200 

The steady state solution is very similar as in the reference [Argyris92]. However, 
in our case the convection rolls begin to develop and the steady state solution is 
reached later than in [Argyris92]. In this reference the convection rolls began to 
develop at t = 130 and steady state was attained at t = 190. We solved the model 
problem also with a commercial fluid dynamics package called FIDAP. We used 
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Figure 4.9a Temperature isotherms at t = 250

Figure 4.9b Velocity vectors at t = 250

Figure 4.10a Temperature isotherms at t = 300

Figure 4.10b Velocity vectors at t = 300

Figure 4.lla Temperature isotherms at t = 350



Simulation of Thermally Coupled Liquid Flows 57 

Figure 4.llb Velocity vectors at t = 350

Figure 4.12a Temperature isotherms at t = 400

Figure 4.12b Velocity vectors at t = 400

■ •· a� ■ 
Figure 4.13a Temperature isotherms at t = 450

Figure 4.13b Velocity vectors at t = 450



58 Numerical Simulation of Czochralski Crystal Growth 

the same parameters ( material parameters, space and time discretizations) as in 
our own analysis. The steady state solution was again similar compared to the 
previous ones. The convection rolls began to develop approximately at the same 
time as in our analysis, namely at t = 200 seconds. The steady state was attained 
at t = 450 seconds. 

4.4.3 Silicon Melt Flow 

In this chapter we examine the effects of the Grashof, Marangoni and forced con­
vections in the silicon melt. The mathematical model and the finite element dis­
cretization for the problem are introduced in Chapters 3.1.3 and 4.2. As was 
explained in Chapter 3.1.3, we restrict our consideration only to the melt, i.e., we 
neglect the effects of the surrounding parts. Furthermore, we assume axisymme­
try of the melt. The dimensions of the melt correspond approximately to a 40 kg 
charge in the crucible, the diameter of which is 40 cm (16 inches). The height of 
the melt is then 12 cm. 

The importance of numerical simulations of the melt flow is emphasized for in­
stance in the cases where we have to clarify trajectories of pellets or a amount of 
oxygen which is transferred to the melt-crystal interface. Numerical simulations of 
the melt flow have proved, however, to be very difficult ([Kakimoto91], [Kinney93], 
[Miiller93]) as a consequence of complicated nature of the flow field. The Grashof 
and Marangoni convections are induced by the temperature gradient in the melt 
and at the melt-gas interface. Furthermore, the centrifugal force caused by the 
rotating crucible increases complexity of the melt flow. 

Using the penalty method, the streamline-upwinding/Petrov-Galerkin finite ele­
ment discretization of the transient and coupled Navier-Stokes and heat equations 
produces the matrix equations ( 4.25) for the velocity components Ur, Uz and u0 
and the temperature T. As before, we uncouple the discretized equations. Bilinear 
basis functions for the velocity components and the temperature are used. The 
penalty terms are approximated by the reduced integration. The time derivatives 
in the Navier-Stokes and heat equations are discretized by the backward Euler 
method. 

At each time step we have to solve both velocity and temperature fields in the whole 
domain. The Newton linearization technique applied for the nonlinear convection 
terms in the Navier-Stokes equations produces a linear matrix equation for veloc­
ity which is solved by the Gaussian elimination. The Navier-Stokes iteration is 
terminated when the relative error lluk -uk-1 11/lluk ll between consecutive Navier­
Stokes iteration steps is less than 10-3. As a distinction to the previous chapter,
we apply the iterative solver also for the temperature. The temperature field is 
solved by the SOR method (successive over relaxation method) and the ending cri­
teria of the SOR iteration is satisfied when the relative error IITk -rk-111/IITk ll is
less than 10-3_ Inside of each time step we solve the velocity and the temperature
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only one�, i.e., we do not iterate the uncoupled problem. 

We divide the domain into 60 x 36 quadrilateral elements. Throughout this chapter 
( except in the numerical computation of the initial guess for the Grashof convec­
tion, Figures 4.16a and 4.16b) we simulate the silicon melt flow and the material 
parameters of silicon are presented in Table 4.3. 

Quantity Symbol Value 
Density p 2490.0 kg /m� 
Heat capacity Cp 1000.0 J /kgK 
Heat conductivity k 64.0 W/mK 
Viscosity µ 7.5 • 10-4 kg /ms
Surface tension coeff. "(O 0.72N/m 
Temperature coeff. of surface tension ,,J 1.4 · 10-4 1/ K
Heat expansion coeff. (3 1.4 · 10-4 1/ K
Reference temperature To 1685.0 K 
Gravity g 9.82 m/s2 

Table 4.3 Material data of silicon melt flow 

In the following we study numerically the character of the Grashof and Marangoni 
convections and the effect of these convections together with the forced convection 
on the temperature field in the silicon melt. 

As a reference we present (Figure 4.15) a steady temperature distribution in the 
melt when all convections are neglected, i.e., heat in the melt is transferred by 
conduction only. As a consequence of the description of the mathematical model 
(M3) the minimum temperature value in this case can be found at the melt-gas 
interface exactly on the symmetry axis where Tmin = 1685.73 K. Let us mark this 
point with p. 

We consider first the Grashof and Marangoni convections separately. Then we take 
into account the above convections simultaneously and finally we add the forced 
convection to the system. 

It is well known that the numerical methods face problems in attaining convergence 
with high Reynolds numbers. These problems can partly be overcome by taking 
advantage of a good initial guess, using the method of reduced Reynolds number or 
relaxation. The method of reduced Reynolds number starts numerical computation 
with a reduced Reynolds number and then gradually, by taking advantage of results 
of preceding computation, increases the value of the Reynolds number towards the 
real one. The relaxation method sets a new value for the variable x as 

where 8 E [0, l] is the relaxation parameter, xn-l the value of the variable x in 
the previous iteration step and x* the solution of the present iteration step. It is 
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Figure 4.15 Temperature field induced by conduction 

also well known that the Newton linearization technique, which is a second order 
method, requires a good initial guess to attain convergence. In order to achieve 
a proper initial guess we simulate the Grashof convection for a while (5 seconds 
with a 0.5 second time step) with a reduced Reynolds number, i.e., we multiply 
the real viscosity by 100. The velocity and temperature fields at t = 5 s are shown 
in Figures 4.16a and 4.16b, respectively. 

The results presented in Figures 4.16a and 4.16b work as an initial guess when 
we simulate the silicon melt flow induced by the Grashof convection. The velocity 
and temperature fields at t = 60 s (time step 0.2 s) are shown in Figures 4.17a 
and 4.17b, respectively. These figures represent the steady-state solutions of the 
Grashof convection in the silicon melt. The Grashof convection forms a large main 
convection roll to the melt. Near the silica crucible wall the direction of the flow 
is up while on the symmetry axis the direction in down. The maximum velocity is 
lul = 8.55 cm/s and the temperature at the point p i::; T(p) = 1702.40. Thus Lhe 
Grashof convection brings hot material from the silica crucible wall with it. On 
the other hand, colder material reaches the melt bottom in the neighborhood of 
the symmetry axis than in the case where only conduction was present. 

We start the numerical simulation of the Marangoni convection with the results 
presented in Figure 4.15 as an initial guess, i.e., the temperature distribution is 
dominated by conduction and the velocity field is equal to zero. The steady state 
is reached after 60 seconds (time step 0.2 s) and the numerical results can be seen 
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Figure 4.17a Temperature field induced by Grashof convection at t = 60 

Figure 4.17b Velocity field induced by Grashof convection at t = 60 
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Figure 4.18a Temperature field induced by Marangoni convection at t = 60

Figure 4.18b Velocity field induced by Marangoni convection at t = 60
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in Figures 4.18a and 4.18b. 

In Figure 4.18b one can easily see the surface flow due to the Marangoni convection 
at the melt-gas interface. The direction of the flow is from the silica crucible 
wall towards the symmetry axis, i.e., from hot to cold. The velocity field is also 
quite strong near the symmetry axis which explains the decrease of temperature 
there compared to the results presented in Figure 4.15. The maximum velocity 
is lul = 3.53 cm/s which is hardly half of the corresponding value of the Grashof 
convection. The temperature at the point p is T(p) = 1690.61. In the light 
of these numerical studies it seems that the effect of the Grashof convection on 
heat transfer mechanism is stronger than the effect of the Marangoni convection. 
Also we can conclude that the influence of the Grashof convection on the velocity 
field (maximum velocity) is more dramatic. Our own experience shows that with 
high Reynolds numbers it is more difficult to achieve convergence for the Grashof 
convection. 

In the following we take into account all convection mechanisms. In order to study 
the behavior of the pressure in the silicon melt we present also the pressure fields 
in addition to the velocity and temperature fields. 

We start with the numerical simulation of the Grashof and Marangoni convections. 
The initial guess for the velocity and temperature fields are as in Figures 4.17a and 
4.17b, i.e., the steady state solution of the Grashof convection. From the initial 
state, the steady state solution is reached after ten seconds (t = 70 s, time step 
0.2 s), Figures 4.19a, 4.19b and 4.19c. The maximum velocity lul in this case is 
9.2 cm/s and the temperature at point p is T(p) = 1703.97. The velocity field· 
differs only slightly from the one presented in Figure 4.17b. Only at the melt-gas 
interface where the Marangoni convection has an influence on the flow field one 
can notice the difference. The most remarkable difference between the temperature 
distributions in Figures 4.17a and 4.19a is the drifting of cold material from the 
melt-gas interface to the bottom of the melt near the symmetry axis. 

To conclude this chapter we study numerically the effect of the centrifugal force, 
caused by the rotation of the melt, on the velocity field and temperature distri­
bution induced by the Grashof and Marangoni convections. The initial guess of 
the numerical simulation is presented in Figures 4.19a and 4.19b. The rotation 
rate of the melt is assumed to be 5 and 15 rpm. The direction of the rotation 
is clockwise. The numerical results with the rotation rate 5 rpm are shown in 
Figures 4.20a-4.22e and with the rotation rate 15 rpm in Figures 1.23a-1.21c. The 
numerical results have been carried out with a time step of 0.2 s. 

The rotation of the melt influences dramatically the velocity field and the temper­
ature distribution in the melt. They are no longer steady as was the case in the 
numerical simulation of the Grashof and Marangoni convections. The main con­
vection roll has disappeared, and there are several convection rolls whose number 
and positions vary in time. 

If we simulate only the rotation of the melt, the velocity field reaches a state where 
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Ur Rj 0, Uz Rj O and uo Rj Wrnr. When the Grashof and Marangoni convections 
are also taken into account the structure of the angular velocity field is not any 
more so unambiguous. In the presence of the rotation the angular velocity field 
starts to develop from the crucible walls and during the simulations the effect of 
the rotation extends to the whole melt. 

The over relaxation parameter by the SOR method was typically 1.0-1.4. The re­
laxation parameter in the Navier-Stokes iterations was 1.0, i.e., no under relaxation 
was needed. With the real Reynolds number the time step was 0.2 seconds and the 
Navier-Stokes and SOR iterations converged satisfactorily. The value 0.2 seconds 
was, however, quite critical. If the time step was lengthened, convergence during 
the Navier-Stokes iteration was lost. The use of under relaxation ( 8 E [0.5 - 0.8]) 
or increase of the coupled iterations inside of each time step did not improve the 
situation. The SOR iteration converged properly with longer time steps. Thus we 
conclude that the length of the time step is limited by the computation of the flow 
field. 

In the finite element analysis we approximated the pressure by piecewise constant 
functions. From the pressure fields one can clearly see the elementwise behavior of 
the pressure. In these simulations the pressure fields seem to be quite satisfactory 
and the checkerboard pressure patterns do not appear. In the numerical simula­
tions of the Grashof convection we proceeded so that we increased the Reynolds 
number step by step. The rotations of the crucible instead were taken into account 
very violently. We applied the rotation rates (5 and 15 rpm) instantly at t = 70 
seconds and some problems in the pressure field were encountered (see for instance 
Figure 4.20c). 

5 24434 
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Figure 4.19a Temperature field induced by Grashof and Marangoni 

convections at t = 70

Figure 4.19b Velocity field induced by Grashof and Marangoni 

convections at t = 70
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Figure 4.19c Pressure field induced by Grashof and Marangoni 
convections at t = 70

Figure 4.20a Temperature field induced by Grashof and Marangoni 
convections and rotation of melt 5 rpm at t = 80
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Figure 4.20b Velocity field induced by Grashof and Marangoni 
convections and rotation of melt 5 rpm at t = 80

Figure 4.20c Pressure field induced by Grashof and Marangoni 
convections and rotation of melt 5 rpm at t = 80 
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Figure 4.21a Temperature field induced by Grashof and Marangoni 
convections and rotation of melt 5 rpm at t = 90

Figure 4.21b Velocity field induced by Grasha{ and Marangoni 

convections and rotation of melt 5 rpm at t = 90
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Figure 4.21c Pressure field induced by Grashof and Marangoni 

convections and rotation of melt 5 rpm at t = 90

Figure 4.22a Temperature field induced by Grashof and Marangoni 
convections and rotation of melt 5 rpm at t = 130
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Figure 4.22b Velocity field induced by Grashof and Marangoni 
convections and rotation of melt 5 rpm at t = 130

Figure 4.22c Pressure field induced by Grashof and Marangoni 
convections and rotation of melt 5 rpm at t = 130
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Figure 4.23a Temperature field induced by Grashof and Marangoni 

convections and rotation of melt 15 rpm at t = 100

Figure 4.23b Velocity field induced by Grashof and Marangoni 

convections and rotation of melt 15 rpm at t = 100
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Figure 4.23c Pressure field induced by Grashof and Marangoni 
convections and rotation of melt 15 rpm at t = 100

Figure 4.24a Temperature field induced by Grashof and Marangoni 

convections and rotation of melt 15 rpm at t = 130
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Figure 4.24b Velocity field induced by Grashof and Marangoni 
convections and rotation of melt 15 rpm at t = 130

Figure 4.24c Pressure field induced by Grashof and Marangoni 
convections and rotation of melt 15 rpm at t = 130



5. Simulation of Crystal Growth
from Melt 

In Chapter 4.4.3 we confined ourselves to the numerical simulation of the silicon 
melt flow. Geometrically we considered only the melt, i.e., we neglected the sur­
rounding parts. In this chapter we pay attention to the numerical simulation of 
the crystal-melt system. The numerical study of the melt flow plays an impor­
tant role also in this chapter, since the presence of the crystal causes new physical 
phenomena in the melt. 

Another crucial task in this chapter is the numerical treatment of a problem con­
sisting of two phases, crystal and melt, separated by a free boundary. There are 
many ways to solve this free boundary problem. It can be formulated as a control 
problem [Mannikki:i94]. The finite element discretization of the equation T-T1 = 0 
on the free boundary E leads to a case where positions of finite element nodes on the 
free boundary are considered as independent variables, [Derby87], [Sackinger89]. 
The shape of the free boundary can be fixed and temperature within that shape is 
calculated after disregarding one of the boundary conditions ((3.16a) or (3.16b)) 
on the free boundary. Next, a new free boundary shape is calculated, which sat­
isfies as closely as possible the relaxed boundary condition, [Jarvinen92]. As we 
presented it in Chapter 3.2, one can also determine an equation for enthalpy, which 
contains the definition of the free boundary, [Dalhuijsen86], [Voller87], (White82]. 

The methods used in [Derby87], [Sackinger89] and [Jarvinen92] are typical front 
tracking methods in which discrete phase change front is tracked continuously. The 
enthalpy method is a fixed grid method, where the position of the free boundary 
is not tracked continuously but derived afterwards. The enthalpy method and the 
method used in [Derby87] and [Sackinger89] lead to a nonlinear matrix equation 
which has to be solved iteratively. The method used in [Jarvinen92] generates a 
sequence of linear matrix equations. 

As we have already mentioned, we use the enthalpy method in this work. Typ­
ically this method has been used in numerical simulations of casting problems 
([Laitinen89]) since it offers a way to consider mushy regions. As a fixed grid 
method it has many advantages: It is easily adapted for existing computer pro­
grams and finite element mesh has to be built only once. Furthermore, it has a 
simple representation of the latent heat release at the free interface. 

It is quite straightforward to apply the enthalpy method in order to determine 
the values of enthalpy in the crystal-melt system. It is not trivial, however, to 
solve the Navier-Stokes equations in the changing geometry. The discretization 
of the enthalpy equation leads to a nonlinear matrix equation which is coupled 
with the computation of velocity through a convection term. The discretization 
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of the Navier-Stokes equations (made within the melt in Chapter 4.1) consists
of the buoyancy and thermocapillary terms depending on temperature. If we
uncouple the computation of enthalpy and velocity, temperature can be used in
the discretized Navier-Stokes equations after enthalpy is known. The enthalpy 
values determine the position of the crystal-melt interface. Or to be more precise,
they determine the positions of two interfaces between crystal and mushy region 
and mushy region and melt. The interfaces do not coincide with finite element
boundaries but go through finite elements. From point of view of the melt flow
computation this gives rise to problems, since we have to handle elements in finite
element analysis which are partly in the melt and partly in other phase. 
In order to overcome the difficulty discussed above, we modify the mathematical
model (M4) constructed in Chapter 3.2 from the parts describing the melt flow and 
conclude a modified mathematical model: Find the velocity vector i1 = (ur, Uz, u0),
the pressure p and the enthalpy H such that
(M4') 
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OUz OClzz 1 0 ) ( 
OUz OUz

) Pm Tt - 8z - -;. or 

(razr + Pm Ur or 
+ Uz oz 

= 

= Pmgf3(T - To) 
8u0 1 8 

( 2 ) 
8a0z 

( 
8u0 8u0 UrU0

) Pm 8t 
- r2 or 

r Clr0 - 8z + Pm Ur or 
+ Uz oz 

+ -r- = 0

1 0 OUz 

-;. or 

( rur) + 8 z 

= 0

�H +u· "vH _ !� (r�if!(H))- � (�if!(H)) = 0
at r or ar oz oz 

in D x (0, to), D = Dm U De, with the initial and boundary conditions

u(r, z, 0) = u°(r, z) in D
H(r, z, 0) = H0(r, z) inn

OUz aif!(H) 
Ur = 0, or 

= 0, U9 = 0, � = 0 on rs X (0, to)

Ur = 0, Uz = 0, u0 = Wmr, H = Ho on r m X (0, to)

U · fi = 0, Cln = � - Pa, ClT = -?J'"'(o {)��H), {)��
) = a(T(H) - Text)

on rmg X (0, to)

-
aif!(H) - (T(H) - T )Ur = 0, Uz = 0, U9 = Wcr, on - a ext 

on reg 
X (0,to),
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where the components of the stress tensor are as in the equations (3.14a-f). The 
definitions of the functions H, T and if>(H) are as in (3.23), (3.25) and (3.26), 
respectively. 

The only difference between the mathematical models (M4) and (M4') is that in 
(M4') the Navier-Stokes equations are introduced, not only in the melt, but in both 
crystal and melt. Nevertheless, it is still required that the velocity components Ur 

and Uz are zero in the crystal. There are a number of techniques by which this 
kind of behavior of velocities in the vicinity of the phase change can be modeled. 
In this work we use a variable viscosity method (see Chapter 5.3), in which the 
viscosity is set to be high in the crystal and therefore the velocity components are 
forced to be equal to zero. The other methods, such as 'Switch-off techniques' and 
'Darcy source technique' are discussed in (Voller87]. 

We do not present here the variational formulations of the N avier-Stokes equations 
in (M4'), since they differ only slightly from the ones made in Chapter 4.1.2 (the 
variational formulations (4.16)-(4.18)). Some remarks are still required. 

Remark 5.2 In this work the melt-gas interface is assumed to be fixed. Thus one 
boundary condition at this interface can be eliminated. We neglect the boundary 
condition O"n = f - Pa on r mg as we did in the case of the pure melt flow. The
shape of the melt-gas interface is based on the analytical representation of the 
shape of the meniscus presented by Hurle. This representation has been shown 
to compare well with the full iterative numerical solution of the Laplace-Young 
equation with appropriate parameters of germanium, [Hurle83). In the derivation 
of the analytical representation it has been assumed that the melt-gas interface 
extends to infinity and there is no rotation or melt flow. 

Remark 5.3 Since we add the Dirichlet boundary conditions to the crystal-gas 
interface, we can assume for the test functions that Vr = Vz = v0 = 0 on r cg • 
Therefore the only difference in the variational formulations is the integration 
over the domain n = Dm U De instead of Dm. The finite element discretization of 
the Navier-Stokes equations leads to the same matrix equations for the velocity 
components as in (4.25). 

In the following the variational formulation and the finite element discretization 
for the enthalpy equation in (M4') are derived (Chapters 5.1 and 5.2). The solu­
tion algorithms for the phase change problem and the coupled velocity-enthalpy 
formulation in the crystal-melt system are presented in Chapter 5.3. Numerical 
examples for the silicon crystal-silicon melt system complete the Chapter 5. 

5.1 Variational Formulation of Enthalpy Equation 

The variational formulation and the results of existence and uniqueness of the 
enthalpy equation (and Stefan problem generally) are considered in detail in [El­
liot82] and [Verdi94). Let the solution H of the enthalpy equation in (M4') be 
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smooth enough inn x (0, to) and the test function space H;(D) be as H;(D) =
{v E L;(D)li�, i� E L;(D)}, where L;(D) is the space of square integrable func­
tions weighted by r in n. Then by multiplying the enthalpy equation by a test
function v, observing the weight r, integrating over the domain n and applying
Green's theorem we have

{ � Hvr dD+ { (u· "v)Hvr dD+ { ("v<P(H) · "vv)r dD- { a�(H) vr dS = 0.
Jn ut Jn Jn Jen un 
Application of the boundary condition for the enthalpy results

lo :
t 

Hvr dD + lo (u • "v)Hvr dD + lo ("v<P(H) • "vv) r dD+ 
(5.1) 

+ { aT(H)vr dS = { aTextVr dS. 
JrmgUrcg JrmgUrcg 

5.2 Petrov-Galerkin Finite Element Approxima­
tion 

The Petrov-Galerkin finite element approximation for the enthalpy follows the
approximations made in Chapter 4.2 for the velocity and the temperature. The
enthalpy is approximated as a linear combination of basis functions 

(5.2)
n 

H= LH1t.p1, 
j=l 

where H1 E lR is the value of the enthalpy depending on time t. The substitu­
tion of the linear combination (5.2) into the variational formulation (5.1) and the
replacement of the test function v with the basis functions produce an algebraic
system for H: 

(5.3) 
8HM 8t +C H+ K <P(H) + BT(H) = F, 

where the sub-matrices and the sub-vector are

(5.4) 

M(i,j) = lo </iit.p1r dD,

C(i,j) = lo <pi(u· "vt.pj)r dD, 

K(i,j) = lo ("vt.pi • "vt.pj)r dD,

B(i,j) = { CY'Pi'Pjr dS, 
Jr,ng Urcg 

F(i) = { aText'Pir dS, 
Jrmg

Urcg 
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i, j = 1, ... , n. As in Chapter 4.2 the mass matrix and the convection matrix C con­
tain modified basis function (pi originated from the streamline upwinding/Petrov­
Galerkin technique. 

The time discretization in equation (5.3) is made by the backward Euler method. 
We lump the mass matrix in order to avoid the oscillations which may otherwise 
occur in the enthalpy computation, [Dalhuijsen86]. 

5.3 Solution Algorithms 

In this chapter we present two algorithms. In Algorithm 5.1 we concentrate on 
the solution of the enthalpy (and thus the solution of the free boundary) from 
the nonlinear matrix equation (5.3) by the SOR method whereas in Algorithm 5.2 
we are interested in the solution of the whole system including the temperature 
distribution and the velocity field in the crystal and melt. 

Let us make some preparations for the first algorithm. The backward Euler method 
produces a matrix equation 

(5.5) 

where b.t is the length of the time step and i and i + 1 represent consecutive time 
steps; At each time step we have to solve a problem 

(5.6) MH +CH+ K<P(H) + BT(H) = F, 

where M = lt M and F = pi+l 
+ lt M Hi . In order to simplify notations we have

disregarded the superscripts in the equation (5.6). 

In Algorithm 5.1 we use the following notations: the superscripts indicate the SOR 
iteration level whereas the subscripts indicate the current position in a vector or 
in a matrix. 

Algorithm 5.1 

O. Initialization

Set iter := 1 and k = O; Assumptions: the matrices M, C, K, and B and the
vector F are known, the enthalpy vector Hk has an initial value.

1. SOR-iteration for all i=l, ... ,n

1. 1 Gauss-Seidel step

Calculate the right hand side of the equation 
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where
i-1 

zf := Fi - L [ MijHj+1 + CijHj+1 + Ki/I?(Hj+1 ) + BijT(HJ+1 )]
j=l

n
- L [MijHj + CijHj + Ki/I>(Hj) + BijT(Hj)].

j=i+l

The definitions of the functions T(H) and <P(H) ( equations (3.25) and
(3.26)) are used in order to calculate the nodal values of T(HY) and
<P(HJ)).

1.2 Phase change points 

Calculate the phase change points between crystal and mushy region and
mushy region and melt. From the definitions (3.25) and (3.26) it follows
that

Then

from which

Since Hf+1 belongs to the mushy region it holds for zf that
k 

' zi E [PcCvcTJ(Mii + Cii) + KiikcTJ + BiiTJ ,
(PcCp0

TJ + PcL)(Mii + Cii) + KiikcTJ + BiiTJ]-
Define

valcrystal/rnushy : = PcCpcT1(Mii + cii) + KiikcTj + BiiTj,
valm.n.shy/rnelt: = (PcCpcTJ + PcL)(Mii + cii) + KiikcTf + BiiTf.

1.3 SOR step 

Point in crystal: 

If zf is less than valcrystal/rnushy then set
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Then 

from which 

If H!;' is less than valcrystal/mushy then take the SOR step 

Point in mushy region: 

If zf is greater or equal to valcrystal/mushy and less or equal to valmushy/melt 
then set 

Then 

from which 

Point in melt: 

Hk+l = zf - K�ikcT
J - BiiT

J 

' Mii + Cii

If zf is greater than valmushy/melt then set 

T(H;+i) =
H;+i - PcL - PcC

pcT
J + T

J and
PmCpm 

<P(H;
+l

) = km(H;+l - PcL - PcCpcT
J) 

+ kmT
J 

+ (kc - km)T
1 .

PmCpm 

Then 
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from which 

If Hf is greater than valmushy/melt then take the SOR step 

2. Iteration control

If iter :::; itermax and IIHk+l - Hk ll > £ then goto l; else stop.

3. End of Algorithm 5.1

In Algorithm 5.1 w E [1, 2] represents the over relaxation parameter. The relax­
ation is applied only if the enthalpy values Ht+l and Hf indicate that the point i 
remains in the same phase. This condition prevents the point i to skip the phase 
change interval and thus the latent heat. 

The enthalpy is a primary unknown in Algorithm 5.1. The temperature can be 
calculated afterwards by using the equation (3.25). The free boundaries between 
the solid and mushy region, and mushy region and melt can be determined as 
isotherms of the enthalpy values PcCpcTJ and PcCpcTf + PcL. In reality the mushy 
region does not appear in the Czochralski crystal growth process but the crystal­
melt interface is sharp. For this reason we use the average of the values PcCpcTJ 
and PcCpcTJ + PcL in order to determine the sharp crystal-melt interface. 

In the following we present Algorithm 5.2. We concentrate on the numerical 
solution of the crystal-melt system governed by the transient Navier-Stokes and 
enthalpy equations. Special attention is paid to the solution of the Navier-Stokes 
equations in the whole domain by the variable viscosity method. The algorithm 
is similar at all time steps so we present it only for ith time step. 

Algorithm 5.2 

O. Initialization

Assumption: the enthalpy vector H and the velocity vector u have initial values
from the previous time step.

1. Calculation of enthalpy and temperature

1.1 Enthalpy
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Assemble the matrices and the vector presented in (5.4) for the enthalpy. 
Calculate the enthalpy from the equation (5.5) by using the velocity vector 
u and Algorithm 5.1.

1.2 Temperature 

When enthalpy is known, calculate temperature according to the equation 
(3.25). 

2. Calculation of velocity

2.1 Variable viscosity method

Consider the element e, e E [1, ... , number of elements], in the crystal-melt 
system. Define the characteristic element enthalpy Hchar such that 

H i 
_ 

{ 
1, if H(i) > PcCpcTJ + PcL 

char( ) - Q th . , 
, o erw1se

i = 1, ... , number of nodes in element e. Let 6.H be defined as an average 
value of the characteristic enthalpies of the element e. Then the element 
viscosity is 

/J,e(H) = µ,* + B(l - 6.H), 

where µ,* is the true viscosity and B some large value. 
2.2 Velocity calculation 

Applying the element viscosity /J,e, assemble the matrices and the vec­
tors presented in ( 4.27) for velocity. Calculate velocity from the equation 
( 4.25) by using temperature calculated above. 

3. Crystal-melt interface

Calculate the melting point isotherm.
4. End of Algorithm 5.2

Remark 5.4 In Algorithm 5.2 the Navier-Stokes equations are calculated in the 
whole crystal. It would be sufficient, however, to limit consideration to some first 
layers of elements above the crystal-melt interface. 
Remark 5.5 The basic idea of the variable viscosity method is shown in 2.1 in 
Algorithm 5.2. If all nodes in the element belong to the melt, then the character­
istic viscosity of the element equals to the real viscosity. Otherwise the value of 
the characteristic viscosity is set high. 

5.4 Numerical Examples 

In the previous chapter we simulated numerically the silicon melt flow in the 
crucible. The surrounding parts of the melt, especially crystal, were not taken into 
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account. In this chapter we extend our numerical consideration to the crystal­
melt system. The presence of the crystal influences considerably the physical 
phenomena in the melt. The crystal has an effect on heat transfer in the melt via 
the crystal-melt interface at which the latent heat is released. Furthermore, the 
crystal as a fixed or rotating object gives rise to variations in the melt flow. 

The problem statement is presented mathematically in the beginning of this chap­
ter (model (M4')) and semantically in Figure 3.4. The velocity field and the 
temperature distribution in the crystal-melt system are solved by using Algorithm 
/'i.2. Physical parameters and dimensions of the crystal and the melt are shown in 
Table 5.1. 

Quantity Symbol Value 
Density of crystal Pc 2490.0 kg/m0 

Density of melt Prn 2490.0 kg/m3 

Heat capacity of crystal Cpc 
900.0 J/kgK 

Heat capacity of melt Cpm 
1000.0 J /kgK 

Heat conductivity of crystal kc 22.0 W/mK 
Heat conductivity of melt krn 64.0 W/mK 
Viscosity of melt µ, 7.5 · 10-4 kg/ms
Surface tension coeff. 'Yo 0.72 N/m 
Temperature coeff. of surface tension 1) 1.388 · 10-4 1/ K
Heat expansion coefficient /3 1.4- 10-4 l/K
Reference temperature To 1685.0 K
Gravity g 9.82 m/s2 

Rotation rate of crystal We -4.0 - 8.0 rpm
Rotation rate of melt Wrn 0.0- 8.0 rpm
Melting temperature T1 1685.0 K 
Latent heat L 1.8- 106 J/kg 
Pulling velocity of crystal a 0.0 m/s 
Heat transfer coeff. a 40.0 W/m2 K 
External temperature Text 1185.0 K 

Crystal radius 6.35 cm 
Crystal height 20.0 cm 
Melt radius 20.0 cm 
Melt height 12.0 cm 

Table 5.1 Physical parameters and dimensions of crystal and melt 

We use quadrilateral finite elements (60 x 48 in the melt and 19 x 20 in the crystal) 
and the finite element mesh used in the simulations is shown in Figure 5.1. 

In all simulations the SOR. iteration is terminated when the relative error IIHk -
Hk-l 11/IIHk ll is less than 10-3_ The same limit causes termination of the Navier­
Stokes iteration. The penalty parameter in the Navier-Stokes equation is chosen 
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Figure 5.1 Finite element mesh in crystal-melt system 

to be 10-7. The time step is constant, 6.t = 0.1 s. For the choice of the time step
we refer to the discussion made in Chapter 4.4.3. 

We begin the numerical examples with the simulation of the Grashof and Marangoni 
convections. The forced convections are neglected for a moment. The initial tem­
perature is assumed to vary linearly in the z-direction between T1 + 30 and T1 

in the melt and between T1 and T1 -160 in the crystal. As in Chapter 4.4.3 we 
initialize the velocity field by computing the problem with the reduced Reynolds 
numbers(µ= 7.5 · 10-2 for 0-5 seconds and µ= 7.5110-3 for 5-25 seconds). With
the true Reynolds number the velocity field seems to find within 60 seconds a state 
where changes in the velocity field are very small (the difference between maxi­
mum velocities in consecutive time steps is 1.1 · 10-5). In Figures 5.3a and 5.3b
the temperature distributions and the velocity field of this state are shown. In the 
figures presenting the temperature fields (Figure 5.3a and the other corresponding 
figures below) we show the temperature distributions in the melt (grayscale) and 
in the crystal ( contours between the temperatures T1 and T1 -160) separately. In 
the figures depicting the velocity fields the free boundary between the crystal and 
melt is in addition shown. 

The largest velocity values can be found near the melt-silica crucible wall. The 
maximum velocity is lul = 7.88 cm/s. The Grashof and Marangoni convections 
together generate a main convection roll to the melt as was the case in the simu-
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Figure 5.2a Temperature field induced by Grashof and Marangoni 
convections at t = 8.S s 
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Figure 5.2b Velocity field induced by Grashof and Marangoni
convections at t = 85 s 
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lation of the Grashof and Marangoni convections without the crystal. 

Let us then take into account the rotation of the crystal. We begin the simulation 
with the initial guess achieved by the numerical simulation of the Grashof and 
Marangoni convections (at t = 85 s, Figures 5.2a and 5.2b). We simulate the 
crystal rotation in three parts each of which takes 15 seconds. During the first 15 
seconds the rotation rate is 2 rpm, then we increase the rotation rate to 4 rpm and 
finally to 8 rpm. The numerical results are presented in Figures 5.3a-5.6b. We 
emphasize that the figures showing the melt flow are presented in the rz-plane. 

The simulations indicate that the crystal rotation has a local effect on the melt 
flow field just under the crystal. Of course the time frame is very short and 
the situation can change after some time. Nevertheless, the main convection roll 
induced by the Grashof and Marangoni convections at least partially remains. 

Figure 5.3a Temperature field induced by Grashof and Marangoni 
convections and rotation of crystal (2 rpm) at t = 100 s 

Correspondingly, we simulate the rotation of the melt. The initial guess is again 
presented in Figures 5.2a and 5.2b (numerical simulation of the Grashof and 
Marangoni convections only). We proceed similarly as before: The rotation rate of 
the melt is increased gradually (first IS.seconds with 2 rpm, next 15 seconds with 
4 rpm and finally 15 seconds with 8 rpm). The numerical results of the simulations 
are presented in Figures 5.7a-5.10b. 
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Figure 5.3b Velocity field induced by Grashof and Marangoni 
convections and rotation of crystal (2 rpm) at t = 100 s 

Figure 5.4a Temperature field induced by Grashof and Marangoni 
convections and rotation of crystal (4 rpm) at t = 115 s 
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Figure 5.4b Velocity field induced by Grashof and Marangoni 
convections and rotation of crystal (4 rpm) at t = 115 s 

Figure 5.5a Temperature field induced by Grashof and Marangoni 
convections and rotation of crystal (8 rpm) at t = 122.5 s 
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Figure 5.5b Velocity field induced by Grashof and Marangoni 
convections and rotation of crystal {8 rpm) at t = 122.5 s 

Figure 5.6a Temperature field induced by Grashof and Marangoni 
convections and rotation of crystal {8 rpm) at t = 130 s 
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Figure 5.6b Velocity field induced by Grashof and Marangoni 
convections and rotation of crystal (8 rpm) at t = 130 s 

91 

We see that the main convection roll in the melt disappears. The number and 
position of smaller convection rolls vary in time. Although we did not start the 
flow simulation by taking advantage of the steady state temperature distribution in 
the crystal-melt system, it seems, that the transient effects are due to the rotation 
of the melt. 

Next, we take into account all the convection mechanisms (Grashof and Marangoni 
convections, rotation of crystal and rotation of melt) We begin the simulation with 
the initial guess presented in Figures 5.10a and 5.10b (temperature and velocity 
fields induced by the Grashof and Marangoni convections and rotation of melt). 
We add the rotation of the crystal gradually into the system. We simulate the 
first 15 seconds with the crystal rotation rate of -2 rpm. After this we simulate 
another 15 seconds with the rotation rate of -4 rpm. The numerical results from 
these simulations are shown in Figures 5.lla-5.13c. The pressure fields are shown 
after each phase of the crystal rotation is completed. The pressure fields are again 
quite satisfactory, i.e., the checkerboard patterns do not appear. 

Remark 5.6 As we mentioned in Chapter 5.3, we define the position of the crystal­
melt interface as an average of the values PcCpcT! and PcCpcTf + PcL. In the mushy 
region the viscosity of the liquid grows rapidly from the value of silicon to a large 
value due to the use of the variable viscosity method, and the velocity field is 
forced to zero. Typically the width of the mushy region is from 2 to 4 elements 
depending on the element mesh. 

Remark 5. 7 In the numerical analysis presented in this chapter we assumed that 
the crystal radius is constant. We did not either control the position of the three-
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phase point, i.e., it could move freely along the fixed crystal-gas and melt-gas 
interfaces. The position of the three-phase point can be controlled, such that 
it joins exactly to the intersection of the crystal-gas and melt-gas interfaces, by 
setting the appropriate values to the boundary conditions of the function if?(H). 

Remark 5.8 When using the penalty method together with bilinear velocity­
constant pressure approximation, we have to evaluate an integral containing a 
term Ur /r (in the variational formulation of Ur, equation ( 4.16)) with one point 
Gaussian integration rule. This causes numerical approximation error and may 
lead to problems near the symmetry axis, see Figures 5.5b and 5.6b. We have 
compared our numerical results to those achieved by a commercial fluid dynamics 
package FIDAP. When modeling the coupled heat and Navier-Stokes equations 
in the axisymmetric geometry the same results were obtained with both numer­
ical simulation tools, and problems near the symmetry axis occured. The same 
behavior with the integrated method was not encountered. 

Figure 5. la Temperature field induced by Grashof and Marangoni 
convections and rotation of melt (2 rpm) at t = 100 s 
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Figure 5. lb Velocity field induced by Grashof and Marangoni 
convections and rotation of melt (2 rpm} at t = 100 s 

Figure 5.Ba Temperature field induced by Grashof and 
Marangoni convections and rotation of melt (4 rp} at t = 115 s 
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Figure 5.Bb Velocity field induced by Grashof and Marangoni 
convections and rotation of melt (4 rpm) at t = 115 s 

Figure 5.9a Temperature field induced by Grashof and Marangoni 
convections and rotation of melt (8 rpm) at t = 122.5 s 
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Figure 5.9b Velocity field induced by Grashof and Marangoni 
convections and rotation of melt (8 rpm) at t = 122.5 s 

Figure 5.10a Temperature field induced by Grashof and Marangoni 
convections and rotation of melt (8 rpm) at t = 130 s 
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Figure 5.10b Velocity field induced by Grashof and Marangoni 
convections and rotation of melt (8 rpm) at t = 130 s 

Figure 5. lla Temperature field induced by Grashof and Marangoni 
convections and rotation of crystal and melt (-2 and 8 rpm) at t = 145 s 
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Figure 5.llb Velocity field induced by Grashof and Marangoni 
convections and rotation of crystal and melt (-2 and 8 rpm) at t = 145 s 

Figure 5.llc Pressure field induced by Grashof and Marangoni 
convections and rotation of crystal and melt (-2 and 8 rpm) at t = 145 s 
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Figure 5.12a Temperature field induced by Grashof and Marangoni 
convections and rotation of crystal and melt (-4 and 8 rpm) at t = 152.5 s 

Figure 5.12b Velocity field induced by Grashof and Marangoni 
convections and rotation of crystal and melt (-4 and 8 rpm) at t = 152.5 s 
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Figure 5.13a Temperature field induced by Grashof and Marangoni 
convections and rotation of crystal and melt (-4 and 8 rpm) at t = 160 s 

Figure 5.13b Velocity field induced by Grashof and Marangoni 
convections and rotation of crystal and melt (-4 and 8 rpm) at t = 160 s 
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Figure 5.13c Pressure field induced by Grashof and Marangoni 
convections and rotation of crystal and melt (-4 and 8 rpm) at t = 160 s 



6. Simulation of Czochralski Crystal
Growth with Diffuse-Gray Radiation 

The numerical simulations in the previous chapters were carried out either in 
the melt or in the crystal-melt geometry. Although the simulations characterized 
important physical phenomena existing in the melt and crystal they did not include 
thermal information from exterior. In this chapter we simulate numerically the 
Czochralski silicon crystal growth in the real geometry where radiation is taken 
into account. In the numerical simulations we take, however, advantage of the 
numerical tools derived for the crystal-melt system. 

We begin with the mathematical model (M5) presented in Chapter 3.3. In the 
course of the numerical simulations we are going to use the variable viscosity 
method in the crystal and melt as in the previous chapter. For this reason the 
modified mathematical model of (M5) is introduced: Find the velocity vector 
i1 = (ur, Uz, u0) and the pressure pin (Drn U De) x (0, to), and the enthalpy fI in 
f2 = (Drn U De U Ds U f2

9 
U Dh U Da U Dt) x (0, to) such that (M5') 

-H +u-VH- -- r-kT(H) - - -kT(H) = f 
8- - 18

(
8, -

) 
8

(
8, -

) 
, 

at r or or oz oz 

in n x (0, to) with the initial and boundary conditions 

{ �(r, z, 0) = �t, z) in Drn U De 

H(r,z,0) = H (r,z) inn 
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OUz Ur = o, /Jr 
= 0, uo = 0, on (r. n (Dm U De)) x (0, to)

/JT(H) 
= 0 on fs X (0, to)/Jr 

Ur= 0, Uz = 0, U9 = WmT on f m X (0, to)

- - 0 "(Ou • n = ' CTn = 
R - Pa, /JT(H)

CT-r = -{ho� on r mg x (0, to)

Ur = 0, Uz = 0, U9 = WcT on fcg X (0, to)
, /JT(H) , - 4 -k a:;;- = G(CT(T(H)) ) on (r mg U fcg Uri) x (0, to) 

A /JT(iI) A -

-k a:;;- = a(T(H) - Text) on f o x (0, to)

fI = He 
on re x (0, to) 

• . d"t" k' 8Ti(H) k
A 8T;(H) • ../.. • h b d . 

+ transm1ss1on con 1 ions i an = 1 an , i r J, on t e common oun anes
of two different materials. 
The only differences between the mathematical model (M5') and the model (M4') 
introduced for the crystal-melt system are the presence of the radiation boundary 
condition imposed on r mg U fcg Uri and the enthalpy equation determined in
the whole domain n. The Navier-Stokes equations and velocity /stress boundary 
conditions stand as they are in the model (M4'). 
The variational formulation and the finite element discretization of the Navier­
Stokes equations were derived in Chapters 4.1.2 and 4.2 and we refer from these 
parts therein (see also Remark 5.3). We emphasize that the shape of the melt­
gas interface is based on the analytical representation of the shape of the meniscus 
presented by Hurle. Therefore we can neglect the boundary condition CTn = f-Pa 

on fmg· 
The variational formulation and the finite element discretization for the enthalpy 
equation are derived in Chapters 6.1 and 6.2. On the internal boundary the 
boundary condition for enthalpy contains an infinite dimensional Gebhart factor 
G (see Chapter 3.3). In the finite element analysis a finite dimensional equivalent 
of the Gebhart factor is achieved by introducing a view factor 

(6.1) 

and replacing the integral operator K in the equation (3.35) with this factor. In 
(6.1) Ai and A1 represent the element surface areas, Xi E Ai , x1 E A1 and iii

and ii1 are the corresponding outward unit normals. 3(xi, x1) is the visibility 
factor. The numerical computation of the view factors in axisymmetric geometry 
is discussed briefly in Chapter 6.3. In Chapter 6.4 the numerical examples for the 
entire Czochralski system are presented. 
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6.1 Variational formulation 

In the following the variational formulation for the enthalpy equation in (M5') is 
derived. 

Let a test function VE {w E L;(D)I t':.' ) t: E L;(n)} n L�(r mg u fcg u ri), where
n = nm u De u Ds u Dg u nh u Da u Dt and Lf(D) = {wl fv lw(r, z)IPr drdz <
oo }. If we multiply the enthalpy equation by the test function v, observe the 
weight r, integrate over the region n, use Green's theorem and apply the boundary 
conditions stated in (M5') we get 

(6.2) 

in :t iivr dD + In (u • v7 H)vr dD +ink ( v7T(H). v7v) r dD+
+ f G(8-(T(H))4)vr dS + { &T(H)vr dB=

lr,,,,g urcg Uri lro 

= { fvr dD + { &TextVr dS.
ln lro 

6.2 Petrov-Galerkin Finite Element Approxima­
tion 

We approximate the enthalpy as a linear combination of the basis functions such 
that 

n 
(6.3) iI = L Hj{j)j, 

j=l 

where Hj E lR is the value of the enthalpy depending on time t. The substitu­
tion of the linear combination (6.3) into the variational formulation (6.2) and the 
replacement of the test function v with the basis functions produce an algebraic
system for fI:
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where the submatrices and vectors are 

(6.5) 

MH (i,j) = r C/Ji'PjT dn, 
ln"'unc 

CH (i,j) = { cpi (u · "vcpj) r dD., 
ln"'unc 

KH(i,j) = r k("vcpi . "vcpj)r dD, 
ln"'unc 

BH (i,j) = { &cpicpjr dB, 
lro 

H 
r A F1 (i) = Jn fcpir dD,

Ff! (i) = 
1 &Text'Pir dB

ro 

i, j = 1, ... , n. As in Chapters 4.2 and 5.2 the mass matrix and the convec­
tion matrix contain modified basis function C/Ji originating from the streamline 
upwinding/Petrov-Galerkin technique. The matrix GH is considered in more de­
tails in the following chapter. 

6.3 View Factors 

Computation of radiation inside of the Czochralski furnace requires a determina­
tion of the view factors between various surfaces in the system. The view factor 
Fij represented in (6.1) is equal to the fraction of energy leaving a surface i which 
reaches a surface j. In axisymmetric geometry surfaces are cutted cones (in certain 
cases also cylinders or planes) which are generated by rotating two dimensional ele­
ment boundaries around the symmetry axis. By taking into account the rotational 
symmetry we get 
(6.6) 

D,1. =-1-j j ni • (xj - xi)nj • (xi - xj)r.. 
IA I 1- - 14

S(xi, Xj) dAidAj 
i Ai Aj 1f' Xi - Xj 

___ 2_ 1 . j ni(0i) • (xj - xi)i'ij • (xi - xj) r -'----'--'-----'--'----'---"-'- '2.(xi, xi) dAidri 
IAil ri i Aj lxi - xj l4 

__ 2_ 1 · 1 · 12.,,. i'ii(0i). (Xj - Xi)nj(0j). (xi - Xj)
- IAI 

r, rJ 1- -14 
S(xi, Xj) d0jdrjdri , 

i ri r; o Xi - Xj 

Here ri is the cross section of Ai on the rz-plane. For simplicity we can assume 
that 0i = 0. 
The computer program which computes the view factors was developed at the 
Center for Scientific Computing by Mr. J. Katajamiiki. The implementation 
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includes the determination of the visibility factor in the axisymmetric Czochralski
geometry and the numerical integration of the view factors. The integration is
based on the Stokes theorem and the integrals are evaluated numerically by using
the Gaussian integration points. For further details we refer to (Katajamaki93]. 
Let us assume that the surfacer m

g 
ur c

g 
uri is decomposed into N disjoint subsets

Ei such that r m
g 

Ur cg 
Uri = U�1 Ei , and the view factors between these subsets

are known. 
By replacing the integral operator K with the view factor F in the definition of
the Gebhart factor (equation (3.35)) , we get a finite dimensional equivalent of the
radiation operator. Thus in the discrete case

(6.7) Gd = (I - F)(I - (I - E)F)-1 E,
where E is a diagonal matrix containing the surface emissivities. 
Let us then take a closer look at the surface integral containing the factor G in
the variational formulation (6.2). It can be replaced with 

(6.8)

N 

[,,..urc.uri 
G(8-(T(H))4)vr dS = � £,i G(8-(T(H))4)vr dS =

N N 

,:,,/'"£ l vr L l ct&(T(H))4 dS dS
i=l Ei k=l E1c 

k = 1, ... , N. We emphasize that the function T(H) represents the value of the
temperature of the surface k. 
We construct in the following the matrix GH. The numerical integration produces

N

cH (i,j) = L Lwgv(Ni)r(Ni)Gfi8-(T(H)(N1))4,
k=lgEI 

where I is the set of indices for the finite element nodes Nk, k = 1, ... ,Mand T(H)
is the mean value of the nodal temperatures on Ek. That is, we apply trapezoidal
rule and one point Gaussian integration rule for integrals taken over Ei and Ek,
respectively.

6.4 Numerical Examples 

In the following we put together the discretized equations governing heat transfer 
in the entire Czochralski furnace and melt flow, after which the solution methods
of the discretized equations are discussed.
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The finite element discretization of the Navier-Stokes and enthalpy equations in 
(M5') produces the matrix equations (see Chapters 4.2 and 6.3) 

Mu OUr A A A au u 8t + rrUr + rzUz + r0U0 = - r + Dr 

MUOUz A A Fu au u 
at 

+ zrUr + zzUz = - z +DZ'
MUOU0 A A A u 8t + 0rUr + 0zUz + 00u0 = Do, 

MH 0

8
� + cHft + KHT(iI) + aHr4(iI) + BT(iI) =Ff+ Ff.

Here the matrices D�, D� and D0 contain the Dirichlet data. 

The matrix equations for the velocity components are applied in the crystal and 
melt whereas the matrix equation for the enthalpy is applied in the entire geometry. 
We emphasize that the velocity field is computed by using the variable viscosity 
method (Algorithm 5.2 in Chapter 5.3). The discretized Navier-Stokes equations 
are nonlinear and the nonlinearity caused by convection is treated by the Newton's 
method (Chapter 4.3). The pressure is eliminated from the Navier-Stokes equa­
tions by the penalty method. The velocity field depends on temperature. At each 
time step we uncouple the computation of velocity and enthalpy, and the temper­
ature field is computed afterwards from the values of enthalpy. The enthalpy is 
solved by the SOR-method, and in the crystal and melt Algorithm 5.1 (presented 
in Chapter 5.3) is applied. 

We discretize the Navier-Stokes equations by the backward Euler method in time. 
The time discretization of the enthalpy equation is handled semi-implicitly so that 
the radiation part is taken from the previous time step. 

In the submatrices containing the convection terms the modified basis functions 
proposed by Brooks and Hughes are used. The linearization of the discretized 
Navier-Stokes equations and the decoupling from the temperature produce a linear 
matrix equation for the velocity which is solved by the Gaussian elimination. For 
the enthalpy the SOR iteration at each time step is terminated when the relative 
error is less than 10-3

. The limit 10-2 for the relative error of velocity causes the 
termination of the Navier-Stokes iteration. The penalty parameter in the Navier­
Stokes equation is chosen to be 10-7

. At each time step the uncoupled problem is 
solved only once. 

In the Czochralski silicon crystal growth every material is characterized by the 
different thermophysical properties which are listed in Table 6.1. In Table 6.2 the 
details of the Czochralski construction used in this chapter are explained. 
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Quantity Value 
Density of crystal 2490.0 kg/m",j 

Density of melt 2490.0 kg/m3 

Density of silica crucible 2200.0 kg/m3 

Density of graphite 1600.0 kg/m3 

Density of felt 100.0 kg/m3 

Heat capacity of crystal 900.0 J/kgK 
Heat capacity of melt 1000.0 J /kgK 
Heat capacity of silica crucible 1300.0 J /kgK 
Heat capacity of graphite 2100.0 J /kgK 
Heat capacity of felt 1010.0 J /kgK 
Heat conductivity of crystal 22.0 W/mK 
Heat conductivity of melt 64.0 W/mK 
Heat conductivity of silica crucible 6.0 W/mK 
Heat conductivity of graphite 60.0 W/mK 
Heat conductivity of felt 0.4 W/mK 
Emissivity of crystal 0.7 
Emissivity of melt 0.3 
Emissivity of silica crucible 0.35 
Emissivity of graphite 0.8 
Emissivity of felt 1.0 
Emissivity of low temperature enclosure 1.0 

Heating power 70 kW/kg 
External temperature of the Cz-furnace 500.0 K 
Heat transfer coefficient 40.0 W/m2K 
Temperature of low temperature enclosure 900.0 K 

Melting temperature 1685.0 K 
Latent heat 1800.0 kJ /kg 
Stefan-Boltzmann constant 5.67-10-8 W/m2 

K
4 

Viscosity of melt 0.00075 kg/ms 
Surface tension coefficient 0.72 N/m 
Temperature coefficient of surface tension 0.00013881/ K 
Heat expansion coefficient 0.00014 1/K 
Reference temperature 1685.0 K 
Gravity 9.82 m/s2 

Table 6.1 Material parameters in Czochralski silicon crystal growth 
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Component Material Height Radius/Thickn. 
Crystal Silicon 20.0 cm 6.35 cm 
Melt Silicon 12.0 cm 20.0 cm 
Crucible bottom Silica 1.0 cm 21.0 cm 
Crucible side Silica 27.5 cm 1.0 cm 
Susceptor bottom Graphite 6.6 cm 2.3.0 cm 
Susceptor side Graphite 30.4 cm 2.0 cm 
Heater Graphite 54.8 cm 1.5 cm 
Crucible shaft Graphite 23.5 cm 3.6 cm 
Thermal shields bottom Graphite, felt 9.0 cm 27.5 cm 
Thermal shields side Graphite, felt 79.9 cm 2.0 cm 

Table 6.2 Czochralski construction 

The finite element mesh which is used throughout in this chapter is depicted in 
Figure 6.1. The mesh consists of 3632 quadrilateral elements and 3849 nodes. The 
number of surface elements required in the view factor computation is 315. 

The temperature and velocity fields and the position of the crystal-melt interface 
are the quantities which we are most interested in. We visualize the numerical 
results of the computations in the following manner: The temperature distribution 
in the whole geometry is presented with 50 temperature contours between the 
minimum and maximum temperature values. In the melt region the temperature 
and velocity fields and the position of the crystal-melt interface are additionally, 
shown. The temperature field consists of 10 contours between the melting point 
temperature Ti and Ti + 30. We show in addition the pressure fields in some 
cases. 

Initially we assume that the temperature distribution in the crystal varies linearly 
in the z-direction from the melting temperature 1685 K at the crystal-melt interface 
to the temperature of the low temperature enclosure 900 K on the crystal top. In 
the melt and in the surroundig parts the initial temperature is set to 1715 K. The 
melt is initially at the motionless state. 

We begin the computations with the simulation of heat transfer in the whole 
geometry and the melt flow induced by the Grashof convection. As in the previ­
ous chapters we compute an initial guess for the flow field by using the reduced 
Reynolds numbers. We proceed so that in the beginning of the simulation the 
Reynolds number is three orders of magnitude lower than the true one, then two 
orders of magnitude lower and so forth. The initial guess at t = 30 s for tem­
perature and velocity fields are shown in Figures 6.2 (left) and 6.3a-b with the 
reduced Reynolds number which is one order of magnitude lower than the real 
one. By using the initial guess the simulation of the Grashof convection with the 
true Reynolds number is carried out for 25 seconds with a time step of 0.1 seconds. 
The numerical results are shown in Figure 6.2 (right) and Figures 6.4a and6.4b. 
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Figure 6.1 Finite element mesh in Czochralski crystal growth 
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The time frame (55 seconds) is naturally quite short from the crystal growth point 
of view. However, the effect of radiation in heat transfer can be seen in Figure 6.2. 
The heater, the silica crucible and the graphite susceptor see the low temperature 
enclosure and therefore the temperature variations increase in these regions. On 
the other hand the heater has a warming influence on the graphite susceptor, the 
crucible pedestal and the thermal shields. Since the finite element mesh is quite 
coarse in the lower part of the thermal shields, some oscillations appear in the 
temperature distribution. The oscillations, however, disappear when the finite 
element mesh is denser. 

Typically 2-4 Navier-Stokes iterations were required in order to achieve the ter­
mination criterion. The SOR iteration converged to a solution typically by one 
iteration step. The computations were carried out at the Center for Scientific 
Computing on Convex C3840 and some computation time statistics are listed in 
Table 6.3. 

Operation Computation time 
View factor calculation 107.40 CPUs 
Assembling of matrices in the Navier-Stokes equations 4.32 CPUs 
Assembling of of matrices in the enthalpy equation 1.01 CPUs 
One SOR iteration 0.57 CPUs 
One Navier-Stokes iteration 39.09 CPUs 

Table 6.3 Computational time statistics in Czochralski crystal growth 

Although we have so far simulated numerically the melt flow driven by the Grashof 
convection the discretized Navier-Stokes equations contain all three velocity com­
ponents (later on we simulate rotations of the crystal and crucible). In the crystal 
and melt the number of finite element nodes is 2812 and thus we have 8436 degrees 
of freedom in the discretized Navier-Stokes equations. Correspondingly, the num­
ber of degrees of freedom in SOR iteration is 3849 (the number of nodes) which 
partly explains the difference in the computational times. In the computation of 
the velocity and enthalpy fields a band structure of the matrices is used. The 
CPU time used in the view factor computation is relatively low with regard to the 
number of surfaces which was 315. 

In order to achieve convergence in the Navier-Stokes iteration a relatively short 
time step was required. In this simulation we used 0.1 s time step. With a 
time step of 0.2-0.5 seconds the Navier-Stokes iteration oscillated. Although the 
semi-implicit time discretization in the computation of the enthalpy was used, a 
convergent solution for the enthalpy with these time steps was found. We conclude 
that the solving of the flow field prevents the use of the larger time steps. 

In the following we assume that the melt flow is driven by the Marangoni con­
vection only. The initial guess for the temperature distribution and melt flow is 
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l ' 

I 

Figure 6.2 Temperature fields at t = 30 s (left, initial guess), t = 55 s (right), 
Grashof convection 
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Figure 6.3a Temperature field in melt induced by Grasha{ convection at t 

reduced Reynolds number 

30 s, 

Figure 6.3b Velocity field in melt induced by Grashof convection at t = 30 s, 
reduced Reynolds number 
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Figure 6.4a Temperature field in melt induced by Grashof convection at t 
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55 s 

Figure 6.4b Velocity field in melt induced by Grashof convection at t = 55 s 

8 24434 
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the same as before: The temperature distribution in the crystal is linear in the 
z-direction between the melting temperature 1685 K at the crystal-melt interface
and the temperature of the low temperature enclosure 900 K on the crystal top.
In the melt and in the surroundig parts the initial temperature is set to 1715 K.
The velocity field in the melt is initially zero.

We begin the simulation with the reduced Reynolds number (µ =0.075 kg/ms). 
The temperature distribution in the entire geometry and the melt flow field after 
10 seconds are presented in Figure 6.5 (left) and Figures 6.6a-b. These numerical 
results represent an initial guess for the numerical simulation of the Marangoni 
convection with the true Reynolds number. The simulation is carried out in the 
time frame 10-130 s. 

In Figure 6.5 (right) and Figures 6.7a-6.10b the temperature and velocity fields 
with an interval of 40 seconds are depicted. At the beginning of the simulation 
there is a cold spot between the crystal and silica crucible at the melt-gas interface. 
This causes two surface flows moving to the opposite directions towards each others 
(Figures 6.6a-b). The collision of the flows creates a flow front moving towards the 
melt bottom. This flow carries cold material from the melt-gas interface with it 
(Figures 6.7a-b). The maximum velocity Jui is around 2 cm/s while the same value 
in the simulation of the Grashof convection was around 8 cm/s. This observation 
strengthens our impression of the dominating role of the Grashof convection in 
both heat and mass transfer mechanisms respect to the Marangoni convection. 

The numerical results presented in Figures 6.8 (right) and 6.lOa-b (global temper-, 
ature distribution and melt flow induced by Marangoni convection) operate as an 
initial guess when simulating the system where the melt flow is governed by the 
Grashof and Marangoni convection and the rotations of the crucible and crystal. 
Figures 6.ll-6.13c present the situation where the rotation rate of the crucible is 
5 rpm (crystal rotation neglected) and Figures 6.14-6.16c the situation where the 
rotation rate of the crystal is -5 rpm ( crucible rotation neglected). The time frame 
in both simulations is 130-140 seconds. 

The colder spot which previously caused two surface flows at the melt-gas interface 
has now enlarged and forms a thin solid region at this interface, Figure 6.13b. This 
indicates that the surrounding parts viewed by the melt-gas interface do not have 
a correct thermal distribution in the sense that normally the melt does not contain 
solid parts. 

At the beginning of the simulations the melt flow behaves relatively well. However, 
when the simulations have proceeded for a while, oscillations in the velocity fields 
begin to occur. In the case of the crucible rotation the pressure field in Figure 
6.13c is still tolerable. When rotating the crystal the pressure field corrupts after 
10 seconds simulation, Figure 6.16c, and a clear checkerboard pattern for pressure 
can be seen. We continued the simulations after 10 seconds for both rotations. We 
had great difficulties in maintaining convergence in the Navier-Stokes iterations 
and finally convergence was lost. 



Simulation of Czochralski Crystal Growth with . . .

Figure 6.5 Temperature fields at t = 10 s (left, initial guess), t = 50 s (right), 
Marangoni convection 
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Figure 6.6a Temperature field in melt induced by Marangoni convection at t 

reduced Reynolds number 

. . .

. . . . . 

Figure 6. 6b Velocity field in melt induced by Marangoni convection at t 
reduced Reynolds number 

10 s, 

10 s, 
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Figure 6. la Temperature field in melt induced by Marangoni convection at t = 50 s 
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Figure 6. lb Velocity field in melt induced by Marangoni convection at t = 50 s 
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/ 

Figure 6.8 Temperature fields at t = 90 s (/eh), t - 130 s (right),
Marangoni convection 
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Figure 6.9a Temperature field in melt induced by Marangoni convection at t = 90 s, 

Figure 6.9b Velocity field in melt induced by Marangoni convection at t 90 s, 
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Figure 6.10a Temperature field in melt induced by Marangoni convection at t = 130 s
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Figure 6.10b Velocity field in melt induced by Marangoni convection at t = 130 s
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/ 

Figure 6.11 Temperature fields at t = 135 s (left), t = 140 s (right), Grashof and 
Marangoni convections, rotation of crucible (5 rpm) 
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Figure 6.12a Temperature field in melt induced by Grashof and Marangoni 
convection and rotation of crucible (5 rpm) at t = 135 s 

Figure 6.12b Velocity field in melt induced by Grashof and Marangoni 
convection and rotation of crucible (5 rpm) at t = 135 s 
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Figure 6.13a Temperature field in melt induced by Grashof and Marangoni 
convection and rotation of crucible (5 rpm) at t = 140 s 

Figure 6.13b Velocity field in melt induced by Grashof and Marangoni 
convection and rotation of crucible (5 rpm) at t = 140 s 
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Figure 6.13c Pressure field in melt induced by Grashof and Marangoni 
convection and rotation of crucible (5 rpm) at t = 140 s 

'l'he reason for loss of convergence is not well understood. In general a proper 
velocity field can in principle be achieved even if the pressure field contains a 
checkerboard pattern. However, is is quite obvious, that in a long run a corrupted 
pressure field may lead to problems in velocity fields and loss of convergence of 
the Navier-Stokes iteration. On the other hand, the procedure of the numerical 
simulation of the melt flow, at least from our own experience point of view, is very 
sensitive. The finite element mesh generated to the melt region was coarser in 
this chapter than for instance in the previous chapter. The Navier-Stokes solvers 
in both chapters were in practice the same. Temperature environments to the 
melt were not so dramatically different, so too coarse mesh might have generated 
instabilities in velocity fields. We could have also applied a more considerate 
approach in taking into account the convection mechanisms. Now we started a 
full simulation with a solution of Marangoni convection as an initial guess. We 
could have started with the Grashof convection, first by adding the Marangoni 
convection to the system and then gradually the rotations as we did in the previous 
chapter. Increasing the Reynolds number by one order of magnitude at a time in 
the simulations of the Grashof convection was also perhaps too violent. 

We have carried out some numerical simulations with material parameters de­
viating from the corresponding parameters of silicon. Then from the numerical 
simulation point of view the :problem can be much simpler and convergent solu­
tions without oscillations can be obtained. A denser finite element mesh could 
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Figure 6.14 Temperature fields at t = 135 s (left), t = 140 s (right), Grashof and 
Marangoni convections, rotation of crystal (-5 rpm) 
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Figure 6.15a Temperature field in melt induced by Grashof and Marangoni 
convection and rotation of crystal (-5 rpm) at t = 135 s 

Figure 6.15b Velocity field in melt induced by Grashof and Marangoni 
convection and rotation of crystal (-5 rpm) at t = 135 s 
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Figure 6.16a Temperature field in melt induced by Grashof and Marangoni 
convection and rotation of crystal (-5 rpm) at t = 140 s 

Figure 6.16b Velocity field in melt induced by Grashof and Marangoni 
convection and rotation of crystal (-5 rpm) at t = 140 s 
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Figure 6.16c Pressure field in melt induced by Grashof and Marangoni 
convection and rotation of crystal (-5 rpm) at t = 140 s 

improve the situation, but a thorough investigation in this subject is still lacking. 

In addition, a use of more robust finite element tools is desirable. 



7. Conclusions

In this work we considered mathematical modeling and numerical simulation of 
the Czochralski crystal growth. Due to the complexity of the process .we divided 
it into subproblems from the mathematical modeling and numerical simulation 
point of view. We studied separately the pure melt flow and the phase change 
problem between the crystal and melt. Taking advantage of the knowledge from 
these subproblems we constructed a mathematical model and numerical simulation 
tools for the entire Czochralski process so that radiation in heat transfer was also 
taken into account. The numerical simulation tools were based on the SUPG finite 
element method. 

A study of the melt flow played an important role in this work. We illustrated 
the transient character of the melt flow with numerical examples. In the rota­
tionally symmetric geometry we studied the melt flow caused by the Grashof and 
Marangoni convections and the rotation of the crucible. Later on, related to the 
phase change problem, the effect of the crystal rotation was taken into account. 

In the pure melt flow and in the phase change problem convergent solutions of 
the melt flow were found. However, in the case of the entire Czochralski crystal 
growth we were able to simulate the melt flow only for some seconds for the ro­
tations of the crystal or the crucible together with the Grashof and Marangoni 
convections, since convergence in the Navier-Stokes iteration was lost. The rea­
son for loss of convergence might be a corrupted pressure pattern ( checker board 
pattern), a poor initial guess for velocity field or too coarse finite element mesh. 
The simulations were. carried out in the large-scale Czochralski geometry with the 
material parameters of silicon. 

Compared to articles found in the literature we applied a new method for the 
phase change problem in the Czochralski crystal growth context. We introduced 
the enthalpy, the definition of which contained the phase front conditions. The 
use of the enthalpy method allows one to operate in fixed finite element meshes 
which are generated only once, at the beginning of simulations. Since our meshes 
remain unchanged we have to compute the view factors required in the radiation 
modeling only once. 

In the crystal-melt system we had to compute the Navier-Stokes equations in the 
varying geometry due to the presence of the phase change interface. We applied 
the variable viscosity method in the crystal-melt system so that the viscosity in 
the crystal was set to a large value. 

In the crystal-melt system we applied the standard definition of enthalpy which 
offered a way to treat the free boundary problem between the crystal and melt. 
This definition, however, was not suitable for the entire Czochralski crystal growth 
geometry due to the enthalpy discontinuity at the interfaces between two different 
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materials. Therefore we modified the definition of enthalpy such that we guaran­

teed the continuity at these interfaces. 

The formulation of the diffuse-gray radiation differed from previously published 

crystal growth articles and standard textbooks on which radiative heat transfer is 

considered. We introduced a non-local boundary condition on the radiating part 

of the surface in the Czochralski system instead of treating a radiative surface as 

a finite union of simple surface elements. 

The main objective in this work was to build a mathematical model in the entire 

Czochralski crystal growth geometry describing the melt flow and heat transfer 
by radiation, conduction and convection and solve the model numerically. The 

numerical simulations were carried out in large scale crystal growth environment 

and we proved that we have capable numerical simulation tools up to a certain 

limit. 

A bottle neck in this research was the simulation of the silicon melt flow. In 

the finite element analysis we applied the penalty method together with bilinear 

velocity-constant pressure approach in order to solve the Navier-Stokes equations. 

With this approach we did not succeed to find a convergent solution with the real 
Reynolds number. We shall endeavor towards this aim and our future work will 

include a study of more sophisticated tools of finite elements. 

We have also to deliberate how important it is to hunt the true Reynolds number. 

Would it be sufficient to restrict to reduced Reynolds numbers and qualitative 

temperature and velocity fields? How well would qualitative temperature and ve­

locity fields correspond the real situation? To answer these questions, and to verify 

the reliability of the developed numerical simulation tools, comparisons between 

numerical results and experiments are undoubtedly required. 
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