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1 Introduction

Out-of-equilibrium dynamics of quantum matter in the presence of classical scalar fields is
involved in many primordial processes. Important examples include resonant phenomena [1-
5] and tachyonic instabilities [6-12] in reheating, the electroweak baryogenesis [13-19], the
leptogenesis mechanism [20-29], and also many dark matter setups with very weakly coupled
fields [30-37]. Resolving the strongly non-linear dynamics encountered in such setups often
requires non-perturbative application of field theory methods [38-43].

In this work we study non-linear dynamics in the dark matter scenario proposed in [35, 36],
where a spectator scalar singlet with a non-minimal coupling ¢ Rx? undergoes tachyonic
instability during reheating, when the classical Ricci scalar R oscillates from positive to
negative values. The singlet has no non-gravitational couplings to the visible sector and
the produced excitations constitute a dark matter component [35, 36]. In [44] the quantum
dynamics in the setup was investigated using the 2PI approach [45, 46] in the Hartree
truncation. The results of [44] indicate that the tachyonic instability is followed by a
novel transient resonant stage driven by the two-point function (x?) in the presence of the
self-coupling A\x*. The resonance can enhance the net particle production by an order of
magnitude compared to the semi-analytical estimates of [36], based on [12]. The results of [44]
indicate that the transient resonance occurs somewhat after the point when the effective
mass contribution ¢R falls below A(x?), and its strength depends sensitively on the couplings
A and &, and on the equation of state of the universe during reheating.

In the current work, we run classical lattice simulations in the setup of [35, 36] and make
a quantitative comparison with the 2PI Hartee results of [44]. There are two conceptually
different effects that can generate differences between the two approaches. First, while [44]
investigates quantum evolution starting from vacuum initial conditions, the classical lattice
simulation describes on-shell dynamics starting from an initial field configuration with classical
plane waves. Second, the Hartree truncation used in [44] does not account for momentum
exchanging processes and it is a priori unclear to what extent they could affect the resonant
growth. All on-shell effects of the mode mixing induced by tree level-lagrangian are included
in the classical lattice simulation. A third aspect is that the sources of numerical error in
the lattice simulation and in solving the 2PI equations as implemented in [44] are different
and it is not a priori obvious which approach is more efficient in this respect.



We perform the lattice simulations using the CosmoLattice code [47, 48]. CosmoLattice
and other lattice codes have already been applied to similar non-minimally coupled scalar
setups in [49-52], but for a reheating equation of state and spectator couplings different
from those used in [44], and direct comparison of the results is therefore not possible. The
results obtained in this work confirm that the transient resonance seen in [44] is present
also in the classical lattice solution and the net particle production is in a broad agreement
with [44]. Details of the resonant stage and the final momentum distribution of the two-point
function measured from the classical lattice solutions however differ from the corresponding
results in [44].

This paper is organized as follows. In section 2 we briefly specify the setup, in section 3
we discuss relevant aspects of the lattice formulation, and in section 4 we present the lattice
results and compare them against [44]. Lastly, section 5 presents our conclusions.

2 The setup

We study the setup of [36] with a non-minimally coupled spectator scalar singlet y, whose
action is given by

1 1 ¢ A
Sy = /d4$v -9 |:2(VMX)(VMX) - QmiXQ + iRXQ - ZX4 . (2.1)
Following [44], we use the (+, —, —, —) sign convention. We study the dynamics during the

reheating stage after inflation, assuming the universe is dominated by a homogeneous inflaton
field oscillating in a quadratic potential. The classical equations of motion for the setup read

1
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. 1/2

H— 2 1 242 : 2.4

o (8 +mis’) (2.4)

and the Ricci scalar is given by
_ L o 2,92
R= i (6% - 2m3¢?) . (2.5)

In [44], the inflaton decay was also accounted for by including an effective decay term Fqb
and a radiation fluid in the analysis. The resonant growth of (x?) was found to be strongest
for ' = 0. Here we will set I' = 0 in order to compare the 2PI results of [44] against classical
lattice simulations in the non-trivial limit where the resonance is expected to have a maximal
impact on the dynamics. In reality, the inflaton of course eventually needs to decay into
radiation and the I' = 0 case should therefore be physically understood as the limit where
the inflaton decay can be neglected in the time-scale of our simulation runs.

Throughout this work we focus on the parameter range, where the singlet x is an energet-
ically subdominant spectator. The energy density of y with the non-minimal coupling (2.1)
is given by

1 -2 1 2 1 2.2 A 4 < 2.2 . 2 >>
={ =+ — - - H 2HYY — —=V- 2.
Px <2x + o3| VX gma 3 HOXTH2HXN — 55 V-(XVX) ) ). (2:6)



where the brackets denote volume averages in the case of a single classical lattice simulation
and ensemble averages in the quantum computation, (for which the non-commuting terms
also need to be symmetrised). The last total derivative term is irrelevant in our case, as it
vanishes both in a spatially isotropic quantum system and in a classical setup with periodic
boundary conditions. The condition for y being a spectator is that p, < 3H?M3 throughout
the computation so that its contribution to the Friedmann equation (2.4) can be neglected.

3 The lattice implementation

We perform classical lattice simulation of the spectator field x during reheating using a
modified version of the CosmoLattice code [47, 48]. We first solve separately the homogeneous
equations (2.3) and (2.4) for the inflaton and the scale factor. The built-in function used by
CosmoLattice for a(t) in the case of a fixed background was then replaced by an interpolant
of this solution. The spectator field is evolved in this background using CosmoLattice’s
leapfrog evolver with the non-minimal coupling to the Ricci scalar in (2.2) added to the
evolution kernel. For a comparison, selected runs were also performed using a fourth-order
velocity-verlet evolver, whose output agreed with the leapfrog solutions. The spectra and most
averaged quantities of the spectator field solution were extracted using built-in CosmoLattice
routines, but as in [49] the measured field energy was modified to include the corrections from
the non-minimal coupling in equation (2.6). The evolution is performed in comoving direct
space on a cubic grid of N points per dimension. The lattice parameters were chosen so that
the comoving infrared cutoff corresponds to the initial Hubble scale, kig = H; (see the text
below for the definition of the initial time ¢;). The lattice size should be chosen so that the
linear ultraviolet cutoff k%‘{, = Nkir/2 is well above the sharp drop-offs seen in the spectra
presented in [44]. We find that this is achieved with N = 512, though larger lattices were
used to test the solutions for resolution dependence. The maximum momentum the lattice
can contain is kyy = ﬁk%r{, The system is evolved in conformal time with the timestep
dr = 10*4Hi_1 and the calculation is performed in units of the initial Hubble scale Hi_l.

Initial conditions. Following [44], we initialize the homogeneous inflaton sector with slow
roll initial conditions at ¢ = 15Mp. Inflation ends at ey = —H /H? = 1, corresponding to a
conformal time 7. We start the lattice computation at the initial time 7; defined slightly
before the end of inflation as the moment when N; = In(ap/a;) = 2.485.

In [44] the quantum field x was initialized in the Bunch Davies vacuum with a van-
ishing one-point function (x(7,k)) = 0 and with the spectrum of the two point function,
(e K)x(r, K)) = (2m)%3(K + K)Ri(K), given by

T _rIm(v 1 2
B(k) = ?@?6 W) (—7)| HM (—km) . (3.1)
Here 77 = —(a;H;)~! and Hy) is the Hankel function of the first kind with the index

V2 = % —12(¢— %) Here we study the limit £ > 1 and H; > m, where the effective potential
for x is initially dominated by the non-minimal coupling. Therefore the field is initially
effectively massive and the index v is imaginary. For £ = 50 used in this work and in [44],
the modulus squared of the Hankel function is approximated to three digit precision by



|H, ,Sl)(x)P ~ em™¥)(2/7) /\/x2 + |[v]? for all argument values. Therefore, the initial spectrum
can simply be approximated by the Minkowski result

1 1
2 )
2Lk H)? + a2

P(k) = (3.2)

which is supported in CosmoLattice by default.

When the corresponding classical system is simulated on a lattice, the initial field
configuration x(7;,x) is drawn from a distribution which generates the same one- and two-
point functions with ensemble averages replaced by volume averages over the lattice. We
neglect all higher order connected correlators at the initial time as the non-minimal coupling
£Rx? initially dominates the effective potential. The initial field x(7i,x) therefore has a
Gaussian distribution with zero mean and a spectrum determined by the discretised version
of (3.2). We note that CosmoLattice discretises a continuum initial spectrum of the form (3.2)
by substituting k? with the square of k/ = n/kir, where n’ labels the lattice sites and kg
is the smallest comoving momentum on the lattice [47]. This does not fully coincide with
the actual vacuum spectrum on lattice, (see equation (3.4) below), obtained by using the
lattice dispersion relation that follows from discretising the derivative operator. However,
we have checked that in our setup the spectrum rapidly evolves to (3.4) well before the
onset of tachyonic instability.

Subtracting the vacuum. The results for the two-point function in [44] were given in
terms of 0Ar = Ap — Apg, where Ay is the finite part of the full two-point function and Apg
the finite part of the vacuum two-point function, computed for the effective mass solved from
the 2PI gap equation and excluding the tachyonic modes. To compare with these results,
we need to perform a similar subtraction of the vacuum contribution from the two-point
function measured on the lattice.

The lattice vacuum power spectrum can be obtained from equation (3.2) by substi-
tuting k2 with

k’l
K= —5 Zsm (W ) (3.3)

which is the Fourier space representation of —V? for the symmetric definition of the lattice
derivative operator [47]. Here k' are the Cartesian components of the comoving momentum
and L = Nkr/2 is half the comoving length of the cubic lattice box side. In addition,
we must restrict (3.2) to only include modes which fit on the lattice and exclude eventual
tachyonic modes as was done in [44]. The resulting angle-averaged vacuum power spectrum is

a1 1 O(kE, +
P, @ a d 4
ac(k) = A H 2a2 \/k JH? —|—M2 /H2 H@ = [#) (34)

where © denotes a step function. The first step function cuts out tachyonic modes when
MGQH < 0 and the latter product of three step functions ensures that only modes that fit
on the cubic lattice are included.



We define the effective mass MQQH as the solution of

MZ = a®m? (g - ) R+ 3Xa*(x)? + 3Ad? (<><2> - <X2>Vac) (3.5)
3 M
6.2 [Mgﬂcln <a2m§<> Mff—i— a mi] ,

where (x?) is the contact limit of the full two-point function measured from the lattice and
(xX%e) = [ A3K/(27)3 Pyac(k), with P, given by equation (3.4). Equation (3.5), which can
be solved iteratively alongside equation (3.4), is just the 2PI gap equation of [44] written in
terms of lattice quantities and tree-level couplings. The gap equation is introduced here only
for the purpose of comparing our results with [44], as to this end we need to define Mezﬁ and
subtract the vacuum part from the lattice two-point function in same manner as was done
in [44]. In particular, the gap equation does not enter the classical lattice equations of motion
in any way. However, as we will discuss below, the vacuum spectrum (3.4) with MZ2; solved
from (3.5) matches well with the lattice two-point function before the tachyonic or resonant
particle production starts. Finally, following [44] we split M2 into different components as

M3 = —a? (5 — é) R, (3.6)
M3 = 33a? (03 = (P)vac) (3.7)
M7 = Mg — My — MR. (3.8)

We stress that while the effective mass defined by (3.5) allows a sensible definition of the
vacuum in the lattice calculation, it differs essentially from its 2PI-counterpart, which, in
the 2PI-method, controls the dynamical evolution of the 2-point correlation function and
hence of the variance, including the back-reaction from one to another.

4 Lattice results and comparison with the 2PI Hatree approach

We ran the lattice simulation for three setups matching those studied in [44]. The inflaton
mass and the initial inflaton field value were chosen to be mg = 1.5 X 10~ GeV and
¢ = 15Mp, and the slow roll initial conditions were used for ¢. The lattice simulations were
initialized at N; = 2.485 e-folds before the end of inflation (corresponding to the inflaton
value ¢ = /2Mp) and we set a; = 1. In the following we denote by ag ~ 12.00 the scale
factor at the end of inflation defined by ey = —H JH? = 1. We set & = 50 in all of our
simulations and vary the self-coupling A. Unless noted otherwise, the runs were performed
with V = 512 and a comoving computation box size of Hfl.

Variances, effective masses and energies. The left panel of figure 1 shows the lattice
results for the variances (x?) — (x?)vac, where the subtracted vacuum part is determined by
equation (3.4). The right panel shows the corresponding squared effective masses solved using
the gap equation (3.5). For comparison, we have also plotted the corresponding 2P Hartee
results of [44] with transparent lines. The lattice results for the effective mass components,
defined in equation (3.6), are shown in figure 2.
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Figure 1. (Left panel.) The measured lattice variances (solid lines) and the corresponding 2PI
solutions reproduced from [44] (transparent lines) for runs with A = 1071, A = 10~% and A = 10~ ".
The vacuum has been subtracted off from all lattice variances, and the 2PI-solution for A = 107
overlaps with the lattice results. (Right panel.) The lattice results for the effective mass calculated
using equation (3.5) (solid lines) compared with their 2PI equivalents (transparent lines).

The initial growth of the variance is driven by tachyonic periods where the effective mass
becomes imaginary. The end of the tachyonic growth depends on the self-coupling: larger
values of A correspond to earlier onset of non-linear dynamics which shuts off the tachyonic
growth. For A = 10~7 the non-linear region is never reached. Instead, the growth ends as the
effective mass decreases and the tachyonic windows become increasingly narrow, as discussed
in [44]. For A = 107 and A = 107!, the tachyonic stage ends when the effective mass
contribution from the two-point function, Mi becomes comparable to MI%. After this the
solutions experience a transient resonance during which the lattice results for (x2) — (x*)vac
grow by factors of 5 and 10, respectively. For A = 10~! there is a short period of non-linear
oscillations between the end of the tachyonic stage and the onset of the resonance. After
the end of the resonance, the variances redshift close to a law a~2. Beyond a/ag ~ 30,
our lattice results start to develop numerical resolution related spurious effects which we
discuss at the end of this section.

The lattice results for the variances and the effective masses closely agree with [44] in
the region where the dynamics is essentially linear: for A = 10~7 this is the case throughout
the simulation, and for A = 10™* and A = 10~! until the end of the tachyonic growth. The
subsequent non-linear evolution for A = 107* and A = 10~! also share qualitatively similar
features between the classical lattice and the quantum 2PI Hartree solutions. In particular,
the lattice results confirm the existence of the non-linear transient resonance which was first
observed in [44] and which, within the 2PI formalism, is clearly seen to be driven by the
two-point function (x2). There are however diffences in the details of the non-linear dynamics.
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Figure 2. The components of the effective mass for runs with A = 1071, A =10"* and A = 1077 as
defined in equations (3.6)—(3.8).

In the lattice results for A = 10™* the resonant-like growth starts almost immediately after
the tachyonic stage when the effective mass contribution Mi quickly overtakes MJQ{. This is
contrary to [44], where one sees a plateau of coexistence between M3 and M3 at a/ag ~ 5.
However, such a plateau is present in the lattice solution for A = 10~!, which is qualitatively
very similar to the 2PI runs until the onset of the resonance. In both cases the non-linear
growth is more efficient on the lattice and the two-point function saturates to slightly larger
final values than in [44]. It can also be noted that oscillations of the two-point function decay
faster on lattice at the end of the resonance than in the solutions of [44].

We expect the differences arise mostly from the lowest order Hartree truncation used in
the 2PI study of [44]. In particular, the Hartree truncation neglects momentum exchanging
scatterings while the lattice simulation contains the full non-linear dynamics at the classical
level. Hartree results therefore do not properly capture processes that smear out coherent
oscillations through the self coupling. On this basis, one could have expected that the lattice
results would show less prominent resonant growth than the Hartree results. However, as
discussed above, and seen in figure 1, the situation is actually the opposite at least for the
parameter choices studied in this work. Another fundamental difference is that while the
classical lattice simulation of course describes only on-shell physics, the 2PT results of [44]
capture, within the Hartree truncation, the full quantum evolution of the system. Also, the
dynamical coupling between the effective gap-mass and the 2-point function and hence the
variance in the 2PI-approach may play an important role in explaining the difference.! We
will return to this in more detail in a future work where we plan to extend the 2PI analysis

Indeed, we have checked that replacing the effective mass in 2PI-equations with the interpolated effective
mass from a corresponding lattice run leads to an inconsistent 2PI-evolution.
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Figure 3. The spectator field energy density and its components for runs with A = 10~7, A = 10~* and
A = 107! compared with the total inflaton energy density. The interaction energy of the non-minimal
coupling is defined as pyr = (3¢(H?*x? + 2HxX — 5=V - (xVX)))-

3a?

beyond the Hartree level and quantify the magnitude of off-shell corrections by comparing
the results against classical dynamics.

Finally, figure 3 shows the spectator energy densities (2.6) measured from the lattice
solutions. It can be seen that in all cases the spectator energy density remains clearly
subdominant compared to the total energy density, as we have assumed from the outset of
the analysis. Note that this is different from the lattice simulation performed in [49] for a
similar non-minimally coupled scalar but with a different reheating equation of state which
caused the initial spectator to grow to a dominant energy component.

Spectra. The vacuum subtracted power spectra P(k) — Pyac(k) measured from the lattice
solutions are shown in figure 4. Here P (k) denotes the power spectrum of the full two point
function, (x(k)x (k")) = (27)38(k + k') P(k), and the subtracted vaccum part P,(k) is given
by equation (3.4). The subtraction procedure is illustrated in figure 5 which shows P(k),
Puac(k) and P(k) — Puac(k) for A = 1074

The initial tachyonic growth of the power spectra is similar in all three cases but their
subsequent evolution differs considerably from each other. For A = 107 the dynamics remains
essentially linear after the tachyonic stage, and the horizontal bands seen in the left panel of
figure 4 arise from the time dependent effective mass term ¢Rx? [9]. For A = 10~* and 107},
the dynamics becomes strongly non-linear after the tachyonic stage and the self-interactions
spread the power rapidly towards higher momenta. This effect is weaker in the A = 107!
-case, as there is less particle production overall. In the A = 10~* -case, however, the entire
momentum range of the lattice is populated. The drive towards larger momenta occurs most
prominently for a/ag ~ 10, which coincides with the resonant growth of the two-point function.
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Figure 5. The measured lattice power spectrum a?P(k)/ m(;l (left panel), the vacuum power spectrum
calculated using the effective mass a?Pyac(k)/ m;l(middle panel) and the vacuum-subtracted power
spectrum a?(P(k) — P\,ac(k))/md:1 (right panel) for a run with A\ = 10~%. The unstable modes are
denoted with white in the middle panel. Note that they overlap neatly with the initial tachyonic
growth in the middle panel of figure 4.
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Afterwards, a general flow of power back towards lower momenta can be seen in both runs.
An exception to this trend is the appearance of a secondary peak in the A = 10~* -spectrum
at k/mgy =~ 200, better visible in figure 5. We will discuss this feature in more detail later.

For the nearly free-field case A = 10~7 the lattice spectrum is essentially identical with
the 2PI Hartree result of [44]. This is expected and provides a consistency check for the
lattice implementation. For the non-trivial cases A = 10~ and A = 107!, the lattice spectra
differ from the results of [44] considerably more than the variances. The spectra start to
deviate from the 2PI Hartree results once the non-linear evolution begins. On the lattice,
the transfer of power towards larger k begins slightly earlier, takes a longer time and the
spectra never develop the clean UV cutoffs seen in [44]. In addition, the band structures
seen in [44] and associated to non-linear resonance driven by the two-point function are not
visible in the lattice results but this is likely due to limitations of the numerical resolution.
Note that the bands seen for A = 10~7 both in the lattice and 2PI solutions are due to
oscillations of the background field R(¢) and therefore not directly linked to the resolution
with which the non-linear evolution is probed.

Finally, figure 6 depicts the time evolution of the full lattice spectrum P(k) and the
vacuum spectrum P, (k) given by equation (3.4). For each k-value in the figure, P(k) initially
closely tracks Pyac(k), whose time evolution is determined by the effective mass solved from
the gap equation (3.5). This confirms that the gap equation, which a priori has no dynamical
relevance whatsoever in the lattice computation, properly determines the effective mass of
the system and justifies our definition of the vacuum spectrum (3.4). Note that this is a
non-trivial check, as especially the right panel with A = 10~! shows modes for which P(k)
tracks Pyac(k) deep into the non-linear region, where the effective mass is dominated by the
two-point function, see the left panel of figure 2. The full spectrum P(k) starts to deviate
from Py,c(k) once the mode k undergoes a tachyonic instability, (k/mg = 50 curves in the
figure), or particle production due to the non-linear resonance, (other curves in the figure).
For the largest-k -modes the lattice resolution starts to become insufficient, and the lattice
spectrum shows a small constant shift away from Pc(k).

Discussion on the numerical resolution. As mentioned above, after the non-linear
resonance, the variances measured from the lattice for A = 10~% and A\ = 107! scale nearly

proportional to a2

, in agreement with the 2PI Hatree results of [44] and as expected in the
absence of particle production. This continues until a/ag ~ 30 after which the variances start
to decrease slightly faster. At least part of this deviation from the asymptotic a~2-scaling
appears to be a numerical artefact related to the lattice resolution.? This is elaborated
in figure 7 where the left panel shows the variances for A = 10~ obtained using different
resolutions. For the lowest resolution shown in the figure, N = 256, the asymptotic scaling of
the variance is closest to a~2. Increasing the resolution to N = 400 generates a clear deviation
from the a=2 scaling and also slightly changes the solution at the end of the resonance.
When the resolution is further increased, the scaling again gradually approaches the a2

behaviour. For N > 400, the results neatly overlap with each other until a/ag ~ 30. The

2For A = 10~7 the variance instead decreases slightly slower than a2

, see figure 1. This is a true physical
effect due to slow particle production sourced by the time dependent mass term £Ryx?, and in agreement

with [44].

,10,
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Figure 7. (Left panel.) Late evolution of the spectator field variance calculated with various lattice
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with different N.
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higher resolution results therefore appear to be reliable up to this point. We also note that
increasing the physical lattice box size in the same proportion with NV, so as to not change
the lattice UV cutoff, leaves the solutions unchanged. Also, the solutions for A = 10~7 agree
with each other for all resolutions tested.

There is a similar resolution-dependent effect in the spectra. The right panel of figure
7 shows the spectra for A = 10~% obtained using different resolutions. As the resolution is
increased, the spectra begin to develop a secondary peak about k/mg ~ 200. The location
of the peak is nearly fixed between different resolutions but we have checked that changing
A moves the peak somewhat. As N is increased, the peak first becomes more pronounced,
but for large N it begins to disappear. At the same time the power near the UV cutoff
decreases with the increasing resolution.

The deviation of the variance from the asymptotic a~2 scaling is driven by a decrease in
power for k-modes between the primary IR peak and the secondary peak in figure 7. The
secondary resolution-dependent peak appears to enhance the transfer of power from the
primary peak to higher momenta, where the power can leak beyond the UV cutoff of the
lattice simulation. It then appears, that the deviation of the variances from the scaling a2
for a/ag 2 30 is at least partially a resolution dependent spurious effect.

5 Conclusions and discussion

We have performed classical lattice simulations to study the out-of-equilibrium dynamics
during reheating for a non-minimally coupled self-interacting spectator scalar y which
contributes to dark matter [35, 36]. The quantum evolution in the same scenario was
previously investigated in [44] using the non-perturbative 2PI approach in the Hartree
truncation. The dark matter production in the setup [35, 36] is initially driven by the
non-minimal coupling £ Rx? which leads to a tachyonic instability when the Ricci scalar is
oscillating from positive to negative values during reheating. In [44] it was found that the
tachyonic stage is followed by a novel non-linear resonance driven by the two-point function
(x?) in the presence of the self-interaction Ax*, and the resonance can dominate the net
particle yield. However, the results of [44] are obtained in the Hartree approximation, which
neglects momentum exchanging interactions.

In this work we have made a detailed comparison between the 2PI Hartee results of [44]
and a classical lattice implementation of the setup using the CosmoLattice code [47, 48]. For
a small self-coupling A = 10~7 we find that the lattice results coincide with the 2PI Hartee
results through the entire simulation run. This is expected as in this case the self-interactions
remain negligible and the dynamics is essentially linear. The Hartree approximation used
in [44] then becomes exact, and in the linear case there should also be no differences between
the quantum and classical evolution of the two point function. The lattice solution for the
initial near-linear tachyonic phase is in agreement with the 2PI Hartree results for A = 1074
and A = 107! as well. Importantly, the lattice simulations in these cases show a transient
stage of non-linear resonance at the end of the tachyonic period in agreement with the findings
of [44]. The final amplitudes of (x?) measured from the lattice agree up to a factor of O(1)
with those of [44]. However, the transient resonance is stronger on the lattice than in the 2PI
Hartree calculation, leading to larger final amplitudes, contrary to what one might expect.
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The most significant differences between the two approaches are seen in the spectrum of
the two-point function. On the lattice, the power spectrum extends to considerably larger
momenta during the non-linear part of the evolution than in the Hartree-solutions, which
shows a clear UV cutoff instead. We expect the differences are mostly due to momentum
exchanging processes mediated by the scalar self-interactions, which the Hartree truncation
does not account for.

Overall, our results show that detailed resolution of non-linear out-of-equilibrium processes
can be necessary to determine the dark matter abundance and momentum distribution in
setups with primordial particle production. In [35, 36], the O(1) changes in the scalar
two-point function induce comparable changes in the final dark matter abundance, see [36]
for details. The dark matter momentum distribution, which affects the structure formation,
depends on the spectrum of the two-point function, which we find to be very sensitive to
details of the non-linear evolution. While quantum corrections are generally suppressed in the
limit of large occupation numbers, it is not clear what their quantitative is effect in scenarios
like [35, 36]. Such setups involve coherent fields and strongly non-linear evolution, which
cannot be perturbatively modelled in terms of interacting asymptotic particle states. It is
therefore important to develop computationally feasible methods to study the primordial
out-of-equilibrium evolution at quantum level, including all dynamically relevant interactions.

We will return to this in a future work where we plan to extend the 2PI analysis of [44]
beyond the Hartree level by including collision terms in the coupled equations of quantum
one- and two-points functions similar to [43]. Using this approach, we expect to be able to
quantify the importance quantum off-shell corrections compared to the on-shell dynamics
captured by the classical lattice simulations performed in this work. In addition, it can
be noted that while the computation time of the lattice simulation, (at least for a plain
implementation in direct space), scales proportional to N3, the 2PI Hartree computation
of [44] instead scales linearly proportional to the number of k-modes. It will be interesting
to see whether the collision integrals required beyond the Hartree approximation can be
implemented such that part of this advantage can be retained.
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