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1 Introduction

The high energy physics community has seen significant progress in increasing both the
theoretical and experimental precision in the last few years [1]. In the context of hadronic
scattering, one of the major source of uncertainties in the prediction of accurate observables
comes from the determination of parton distribution functions (PDFs). Recently, several
possible lines of improvement have been investigated, from the inclusion of photon evolu-
tion effects [2, 3], to the extension to next-to-next-to-next-to-leading order (N3LO) in the
perturbative strong coupling [4–9] and the inclusion of theoretical uncertainties [10, 11]. In
this work, we are interested in the description of heavy quark mass effects, especially in
deep inelastic scattering (DIS), which can become significant if the relevant process scale
is of the order of any heavy quark mass.

For instance, in the case of the HERA data these corrections turned out to be up to
20 % of the observed cross-section [12, 13] and this feature is also expected at the planned
Electron-Ion Collider in the US [14] and China [15], as both are designed as low scale colliders.
However, also for experiments at the LHC, these corrections can be of great relevance if the
scale of the process of interest is low, e.g., B-meson production [16, 17].

As there is no unique prescription on how to include heavy quark mass effects into
the theoretical calculations, several approaches have been suggested [18–24]. The general
idea of these schemes, known as general mass variable flavor number schemes (GM-VFNSs),
is to combine fixed order calculations, which retain all heavy quark mass effects, and
collinear resummed calculations. The usage of GM-VFNSs is necessary due to the finite
perturbative knowledge and as such all schemes attempt to mimic the exact analytic behavior.
Here, we focus on the FONLL approach which was originally suggested for heavy flavor
hadroproduction [25], later applied to DIS structure functions at NLO [23] and extended
to intrinsic charm [26].
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We propose a new prescription of the FONLL scheme which is perturbatively equivalent
to the former, but is capable of dealing with an arbitrary accuracy in either the fixed-order
calculations or the collinear resummed calculations and also allows a direct application to
the case of any number of parton distributions.

Indeed, a complication with the original prescription [23] is the way in which the final
coefficient functions are constructed: the procedure rewrites all expression using a single PDF
(as is the case for all heavy quark mass schemes so far), which results in a prescription that is
non-trivial to follow in practice. This problem becomes apparent when dealing with high
perturbative orders (i.e. N3LO) or with hadronic collision, e.g. at the LHC, with multiple
PDFs involved. The assumptions of using only a single PDF is however not required in
FONLL and our new approach primarily relies on lifting this assumption.

Furthermore, the former FONLL prescription only considers a single mass problem
without giving a clear recipe on how to deal with the multi-mass case. In practice this
is, however, a relevant question as the charm quark mass and the bottom quark mass are
of similar order of magnitude. We address this issue specifically and show how our new
approach can resolve the issue in a natural way.

By using the same initial PDF defined in different flavour number schemes, instead of
rewriting the expressions in terms of a single PDF, we achieve a clear separation between
evolution and partonic matrix elements. The EKO package [27] for solving the DGLAP
evolution equations, supports the computation of such coexisting flavor number PDFs for
a given factorization scale, while the yadism [28] library allows for the computation of DIS
structure functions. Together these codes allow for the evaluation of DIS structure functions in
this new FONLL prescription. Coexisting PDFs computed with EKO could be used to compute
observables for other processes in the FONLL scheme, but we do not provide such codes.

The rest of the paper proceeds as follows. In section 2 we establish the notation used in
this paper and recall the necessary ingredients to perform PDF evolution. In section 3.1 we
explicitly construct the FONLL scheme for DIS structure functions for the case of a single
heavy quark following the procedures of ref. [23] and the new way proposed in this paper. In
section 3.2 we examine the case of multiple heavy quarks and in section 3.3 we combine the
two cases to a prescription valid at all scales. In section 4 we discuss the generalization to
arbitrary accuracy of the perturbative calculation or of the resummed calculation, to intrinsic
heavy quark treatment [29] and to arbitrary observables. In section 5 we summarize our results
and, finally, we provide two appendices with further details. In appendix A we comment on a
generalized treatment of the two mass case and in appendix B we briefly comment on the
practical implementation of our new prescription in the pineline framework [30].

2 Constructing flavor number schemes

High energy hadronic scattering can be described using the collinear factorization theorem [31].
In doing so, the physical observable is computed as a convolution between the short-distance
(high scale) contribution, given by the partonic matrix elements, and a long-distance (low
scale) contribution, given by the universal PDFs. The former is computed at a given accuracy
using perturbative QCD, while the latter is intrinsically related to how the partons are
distributed inside the colliding hadron. The dependence of PDFs f(x, µ2) on the factorization
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Scheme name up/down/strange charm bottom top

FFNS3 light decoupled decoupled decoupled
FFNS3c light massive decoupled decoupled
FFNS3cb light massive massive decoupled
FFNS4 light light decoupled decoupled
FFNS4b light light massive decoupled
FFNS5 light light light decoupled

Table 1. Mapping of several example configuration of a FFNS to the respective quark masses. Quarks
can be either light (m = 0), massive (m finite), or decoupled (m =∞).

scale µ2, is determined by the associated renormalization group equation (RGE), commonly
referred to as DGLAP equations [32–34], whose kernels admit a perturbative QCD expansion.

When solving the DGLAP equations or computing the partonic matrix elements, we need
to consider the necessary Feynman diagrams and also make an assumption on which flavors
may, or may not, participate in each line of the diagram. The value of the active number of
flavors is typically associated to the relevant scale Q2 of the process, but there is no unique
prescription on how to treat the heavy quark flavors. A specific resolution of this ambiguity
is referred to as a flavor number scheme (FNS). In particular, to define a FNS it is sufficient
consider the masses of the quarks which can take three different states: light (m = 0), heavy
(m finite), and decoupled (m =∞). The option of using a configuration in which the number
of contributing flavors is constant, i.e. it does not depend on any scale, is called the fixed
flavor number scheme (FFNS). We denote a fixed flavor number scheme with just nf light
flavors by FFNSnf . If a FFNS also accounts for finite mass contributions of the heavy quarks
we add the corresponding symbols as suffixes (FFNSnf h). Our notation differs from that
found in previous literature where the heavy quark contributions are usually not explicitly
denoted in the symbol for the FNS, as such we give some examples of our notation in table 1.

Let us now analyze, in more detail, how the strong coupling and PDFs are evolved in
different FNSs. In the following, when using FFNSnf , we add an explicit superscript (nf )
to all ingredients, which are computed with this configuration. First, we consider the RGE
of the strong coupling as(µ2), the β function,

µ2 da
(nf )
s (µ2)
dµ2 = β(nf )

(
a

(nf )
s (µ2)

)
= −

∞∑
k=0

(
a

(nf )
s (µ2)

)2+k
β(k),(nf ) , (2.1)

where the coefficients of the beta function β(k),(nf ) are known up to 5-loop [35–38]. For any
arbitrary final scale µ2, we can solve eq. (2.1) with a given boundary condition a

(nf )
s (µ2

0),
at the initial scale µ2

0, in terms of a couplings operator T

a
(nf )
s (µ2) = T (nf )(µ2 ← µ2

0)a(nf )
s (µ2

0) . (2.2)

In an analogous way the DGLAP equations, are given by

µ2 df
(nf )
i (µ2)
dµ2 = −γ

(nf )
ij

(
a

(nf )
s (µ2)

)
f

(nf )
j (µ2) = −

∞∑
k=0

(
a

(nf )
s (µ2)

)1+k
γ

(k),(nf )
ij f

(nf )
j (µ2) ,

(2.3)
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where i, j are the flavor indices, here and in the rest of the paper, the standard convolution
in momentum space is not written explicitly. The coefficients of the anomalous dimension
γ

(k),(nf )
ij are known up to approximate 4-loop order [5, 7, 39–47]. Again, we can solve the

RGEs with a given boundary value f
(nf )
i (µ2

0) with an evolution kernel operator (EKO) E via

f
(nf )
i (µ2) = E

(nf )
ij (µ2 ← µ2

0)f (nf )
j (µ2

0) . (2.4)

eqs. (2.1) and (2.3) arise from the cancellation of ultra-violet (UV) or collinear poles
associated to the nf light quarks, respectively. This leads to the logarithmic nature of the
RGEs. Indeed, both RGEs correspond to a resummation: due to the logarithmic differential
on the l.h.s., when solving the equations, we collect logarithms of the form log(µ2/µ2

0). Other
than these logarithms there is no dependence on the scale, i.e. both the coupling operator
T and the EKO E are only functions of log(µ2/µ2

0). We stress that to obtain a FFNSnf

result, we need to use a consistent configuration throughout, i.e. the boundary conditions
are given in FFNSnf and the operators use FFNSnf ingredients.

Next, we move to the computation of observables: to simplify the discussion in the
beginning we consider an observable F which depends linearly on a PDF f . In section 4 we
explicitly remove this assumption and show how to construct the new prescription for any
observable. In an FFNS setup, the observable F can be computed as a convolution between
the respective PDF f (nf ) and a coefficient function C(nf ),

F (nf ) = f (nf )C(nf ) with C(nf )(x) =
∑

k

(
a

(nf )
s

)k
C

(nf )
k (x) , (2.5)

where we expanded the coefficient function into a power series of a
(nf )
s . Note that we

suppressed any flavor dependence on the PDF or the coefficient function for the sake of
clarity and that the lower bound of the series expansion depends on the observable F .
When computing the higher order contributions to the coefficient functions C

(nf )
k one always

encounters collinear configuration which have to be reabsorbed into the PDF definition
and using the MS scheme this can leave logarithms of ln(1− x) and ln(x) in the coefficient
functions due to over-subtractions [48].

The simplest way to include heavy quark mass effects is then to move to a FFNSnf h

scheme and to thus add an explicit mass dependency to the coefficient functions. The
coefficient functions contain again collinear configuration, which, however, do not manifest
as poles when they involve heavy quarks but instead yield collinear logarithms of the form
ln(Q2/m2

h) inside the coefficient functions C
(nf h)
k . Eventually, due to the finite perturbative

expansion in as, we only get a finite number of such logarithms which turn the calculation
unstable in the region of large-Q2. By allowing one light flavor more in the RGEs, in the
region where Q2 ≫ m2

h, these logarithms are properly resummed. A variable flavor number
scheme (VFNS) is a FNS where the number of active flavours participating in the evolution
equations is dynamic.

It is thus important to use a FNS which consistently combines several FFNSs at a
given matching scale. A common choice of matching scales are the heavy quark masses
such that logarithms of the form ln(Q2/m2

h) are included in the region where Q > λmh for
some constant λ. When transitioning from one set of active flavors to the next, we need

– 4 –
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mtmbmc

nl = 3 , nh = 1

nl = 4 , nh = 0

nl = 5 , nh = 0

nl = 6 , nh = 0

Q

Figure 1. Schematic representation of a VFNS. Each horizontal line indicates a FFNS scheme
with nl light flavor and nh massive quarks. Vertical lines can coexist for any scale Q denoted on the
abscissa axis; the solid black line corresponds to a VFNS, which changes FNS at a scale equal to the
quark threshold, see eq. (2.7): for scales below Q ≤ mc it accounts for massive charm corrections,
while otherwise treats all the quarks a massless, with 4, 5 or 6 active flavors.

to apply a matching operator which can be computed perturbatively. For matching the
strong coupling as at λαm2

h we find

a
(nf +1)
s (λαm2

h) = ζ(nf +1)
(
a

(nf +1)
s (λαm2

h), ln(λα)
)

a
(nf )
s (λαm2

h)

=
∞∑

k=0

(
a

(nf +1)
s (λαm2

h)
)k k∑

l=0
ζkl,(nf +1) lnk(λα)a(nf )

s (λαm2
h),

(2.6)

where the decoupling constants ζkl,(nf ) are known up to 4-loop [49, 50], while for matching
the PDFs at λf m2

h we find

f
(nf +1)
i (λf m2

h) = A
(nf +1)
ij

(
a

(nf +1)
s (λf m2

h), ln(λf )
)

f
(nf )
i (λf m2

h)

=
∞∑

k=0

(
a

(nf +1)
s (λf m2

h)
)k k∑

l=0
A

kl,(nf +1)
ij lnl(λf )f (nf )

j (λf m2
h)

(2.7)

where the coefficients of the matching matrix A
kl,(nf )
ij are known up to 4-loop order [51–65].

In the following we assume that the matching is performed at the mass, λα = 1 = λf , but
we comment on the general case, which can be easily recovered in our new prescription,
in section 4.

The central observation of this paper is that, at any scale Q, we can theoretically use
any FFNS and, moreover, we could even use them simultaneously. To visualize this concept,
we provide figure 1 where we indicate the different FFNSs by the horizontal lines. The RGEs,
eqs. (2.2) and (2.4), allow to navigate in the scale Q, i.e. along the horizontal axis, while the
matching equations, eqs. (2.6) and (2.7), allow to navigate in the number of flavors nf , i.e.
along the vertical axis. So far most evolution codes do not consider this coexistence of FNS

– 5 –
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and hence provide no native interface to access them, but our recently developed DGLAP
solver EKO [27] explicitly allows for this possibility.

Before moving to the explicit FONLL prescription, we list another VFNS example, the
simple but common choice of the zero mass-variable flavor number scheme (ZM-VFNS). In
the ZM-VFNS quarks are treated as decoupled below their respective matching scale and
light above. We can thus write for an arbitrary observable σ(Q2) at a given scale Q

σZM-VFNS(Q2) =



σ(3)(Q2) if Q2 < m2
c

σ(4)(Q2) if m2
c ≤ Q2 < m2

b

σ(5)(Q2) if m2
b ≤ Q2 < m2

t

σ(6)(Q2) if Q2 ≥ m2
t

(2.8)

This scheme usually generates unphysical discontinuities where the scale Q equals any of
the heavy quark masses. It does not account for mass effects of heavy quarks in coefficient
functions, which simplifies the calculation of the observable, however these effects can be
significant around Q2 ∼ m2

h.

3 FONLL with coexisting flavor number PDFs

Here we discuss the FONLL prescription applied to DIS structure functions. First, in
section 3.1 we review the prescription accounting for the massive contributions of a single
heavy quark as introduced in refs. [23, 26]. Then, in section 3.2 we discuss the case of
accounting for the massive contributions of two heavy quarks. As in the previous section, we
assume that the matching scale is equal to the quark masses, λf = 1, though the general case
is easily recovered. While the FONLL prescription may be applied to other observables, as
discussed in section 4, in this section we focus the discussion on DIS.

3.1 Single mass case

In the following we consider, without loss of generality, the case of the charm quark and
assume that the boundary conditions for the strong coupling as and the PDF f are given in
the three flavor scheme at the charm mass, i.e. a

(3)
s (mc) and f (3)(mc).

The main idea of the FONLL prescription is to enhance the fixed order calculation
by accounting for the resummation of collinear logarithms, which can become arbitrarily
large. In practice we sum the observables defined in FFNS3c and FFNS4, while taking care
of the double counting and write

F FONLL(Q2, m2
c) = F (3c)(Q2, m2

c) + F (4)(Q2)− F (3c∩4)(Q2, m2
c) , (3.1)

where we suppress the x dependence and borrow the intersection operation ∩ from set theory
language to indicate the subset of terms present in both schemes.1 Each ingredient obeys
factorization and is thus given by a convolution between a PDF f and a coefficient function C.

In FFNS3c, the observable is given by

F (3c)(Q2,m2
c) = C(3c)(Q2/m2

c)f (3c)(Q2) = C(3c)(Q2/m2
c)E(3c)(log(Q2/m2

c))f (3)(m2
c) (3.2)

1In the notation of refs. [23, 26] the term F (3c∩4) is denoted by F (3,0).
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with the coefficient function C(3c), which can depend both power-like and logarithmically
on the ratio Q2/m2

c , and the EKO E(3c), which contributes only logarithmically. Note that
both, the EKO E(3c) and the coefficient function C(3c) also depend on the strong coupling
a

(3c)
s defined in FFNS3c, but for the sake for readability we suppress this dependency.

Analogously, in FFNS4 the observable is given by

F (4)
(
Q2

)
= C(4)f (4)

(
Q2

)
= C(4)E(4)

(
log

(
Q2/m2

c

))
A(4)

(
log

(
µ2

c/m2
c

)
= 0

)
f (3)

(
m2

c

)
(3.3)

with the coefficient function C(4), which is independent of the charm mass as charm is
considered light, and the EKO E(4), which encodes the logarithmic dependency including
that on the charm mass. We abbreviate the dependency of the matching condition A(4) to
the logarithmic ratio between the matching scale µ2

c = λf m2
c and the heavy quark mass m2

c .
Remember, that here we assumed the matching scale to be at the corresponding quark mass,
thus λf = 1, and A(4)(0) indicates the non-trivial scale independent part of the matching
between FFNS4 and FFNS3c. Again, we suppress the dependency of all elements on the
strong coupling a

(4)
s for readability.

Finally, we can determine the overlap, F (3c∩4), between the two expressions, eqs. (3.2)
and (3.3), and we find

F (3c∩4)(Q2,m2
c) = C(3c∩4)(log(Q2/m2

c))f (3c)(Q2)

= C(3c∩4)(log(Q2/m2
c))E(3c)(log(Q2/m2

c))f (3)(m2
c) ,

(3.4)

where the coefficient function C(3c∩4) depends only logarithmically on the ratio Q2/m2
c , since

eq. (3.3) has only a logarithmic dependency. Moreover, we can give an explicit expression
for C(3c∩4):

C(3c∩4)(log(Q2/m2
c)) = C(4)A(4)(log(Q2/m2

c)) (3.5)

which can be obtained from eq. (3.3) by displacing the matching from µ2
c = m2

c (thus A(4)(0))
to µ2

c = Q2 (thus A(4)(log(Q2/m2
c))). Displacing the matching reshuffles collinear logarithms

from the resummation in E(4) to the matching operator A(4). eq. (3.5) gives a definition of
C(3c∩4) in terms of FFNS4 ingredients, i.e. specifically of a

(4)
s , which would naively make

eq. (3.5) use multiple schemes simultaneously (comparing l.h.s. and r.h.s.). However, we
can also give a definition based on FFNS3c by observing that C(3c∩4) may only depend
logarithmically on Q2/m2

c . Thus we can extract C(3c∩4) from C(3c) by only retaining the
collinear logarithms log(Q2/m2) and neglecting the power-like contributions, i.e. we can write:

C(3c)(Q2/m2
c) = C(3c∩4)(log(Q2/m2

c)) + C̃(3c)
(
m2

c/Q2
)

, (3.6)

where C̃(3c) (m2
c/Q2) contains only terms proportional to mass power corrections. Note that

the constant term O(1) is considered part of C(3c∩4).
The prescription of refs. [23, 26] now proceeds in rewriting eq. (3.1) in terms of a single

PDF f (4)(Q2), i.e. by transforming the coefficient function into FFNS4:

F FONLL(Q2, m2
c) = CFONLL(Q2, m2

c)f (4)(Q2) (3.7)

=
(
C(4) + B[3c](Q2, m2

c)−B[3c∩4](log(Q2/m2
c))

)
f (4)(Q2) , (3.8)

– 7 –
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Figure 2. Relative (left) and absolute (right) difference of the charm-tagged structure function F2c

evaluated with the method presented in this work and the prescription of refs. [23, 26].

where B[3c] and B[3c∩4] are related to the FFNS3c contribution, eq. (3.2), and the overlap
contribution, eq. (3.4), respectively, written as a function of FFNS4 quantities. Both can
be computed by explicitly reverting the PDF scheme change,

(
A(4)(Q2/m2

c)
)−1

, and by
transforming the strong coupling as into the required FFNS4 scheme:

B[3c](Q2, m2
c) = C(3c)(Q2, m2

c)
(
A(4)(Q2/m2

c)
)−1

. (3.9)

However, using EKO we can compute f (3c)(Q2) and f (4)(Q2) at any scale Q2, which allows
us to simply use eqs. (3.2)–(3.4) as they are without re-expressing any terms as a function of
FFNS4 quantities. This, which is the central argument of the paper, means we are dealing
with coexising flavor number PDFs, as we have explicitly decoupled the scale and the FNS
here. Differences between this prescription, and that of refs. [23, 26] are higher order with
respect to the required perturbative accuracy.

While in the prescription of refs. [23, 26] the necessary cancellations in the low or
high scale region respectively happen analytically at the level of coefficient functions, i.e.
before multiplying with the PDF f (4)(Q2) in eq. (3.8), in our new prescription this happens
numerically at the level of structure functions, i.e. on the r.h.s. of eq. (3.1).

In figure 2 we show the difference on the FONLL charm tagged structure function
F2c, as a function of x and Q2, evaluated with the new prescription described above and
the one presented in refs. [23, 26]. We indicate both, the relative difference (left panel)
and absolute difference (right panel) in the considered kinematic range of x ∈ [10−5, 1]
and Q2 ∈ [25, 100] GeV2. The calculations are performed at NNLO accuracy and use as
boundary condition NNPDF40_nnlo_as_01180 at Q2 = 1.65 GeV (and thus nf = 4). [66].
The same comparison for the total structure function F2 is displayed in figure 3. While
we observe a good overall agreement between the two prescriptions, in the small-x region
differences can be significant. This difference can be directly associated to the collinear
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Figure 3. Same as figure 2, but now for the total structure function F2.

10−5 10−4 10−3 10−2 10−1

x

30

40

50

60

70

80

90

100

Q
2
[ G

eV
2
]

F2c at O(a2
s)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
2c

Figure 4. The ratio R2c of eq. (3.10) representing the relative impact of the heavy charm contribution
to F FONLL

2c at scales above the bottom quark mass.

resummation: while the prescription of refs. [23, 26] relies on the finite order expansion of
the resummation, entering through the inverse scheme change in eq. (3.9), the prescription of
this paper retains the full resummation, by using the full EKOs in eqs. (3.2)–(3.4). These
resummation terms are precisely the higher order difference between the two prescriptions.
Performing the comparison at NLO accuracy or with input PDFs containing a fitted charm
component [29] yields similar conclusions.

3.2 Two masses case

For the case of multiple masses it is possible to apply the prescription of ref. [23] consecutively
for each quark mass. However, this only yields faithful results if the quark masses are strongly
ordered (e.g. mc ≪ mb), which is not realized in nature. In particular, the charm mass
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corrections remains quite large for scales above the bottom mass. This is shown explicitly
in figure 4 in which we plot the ratio

R2c ≡
F

(4)
2c (Q2, m2

c)
F FONLL

2c (Q2, m2
c)

, (3.10)

where F FONLL
2c is defined as in eq. (3.1) for the structure function F2c. In the calculation

we use a charm quark mass mc = 1.51 GeV and a bottom quark mass of mb = 4.92 GeV,
meaning that the plotted kinematic domain corresponds to scales Q2 > m2

b . It is clear
that even in this region, contributions due to the heavy charm mass effects are up to 30%
and thus can not be neglected.

To produce accurate predictions, we therefore need to include simultaneously the massive
effects of multiple heavy quarks. To account for both the charm and bottom masses, the
approach of [23] would require rewriting both FFNS3c and FFNS4b contributions in terms of
FFNS5 (see eq. (3.9)), while in our new method the inclusion is significantly simpler.

In practice we need to combine FFNS3c, where power-like terms for charm are present,
FFNS4b, where power-like terms for bottom are present, and FFNS5, where collinear
resummation for both quarks are fully accounted for. Using again set theory language we write

F FONLL(Q2, m2
c , m2

b) = F (3c)(Q2, m2
c) + F (4b)(Q2, m2

c , m2
b) + F (5)(Q2, m2

c , m2
b)

− F (3c∩4b)(Q2, m2
c)− F (4b∩5)(Q2, m2

c , m2
b)− F (3c∩5)(Q2, m2

c , m2
b)

+ F (3c∩4b∩5)(Q2, m2
c , m2

b) (3.11)

where the first line corresponds to the plain combination we want to combine, the second
line removes the double-counting between any two out of the three schemes, and the third
line adds back the triple-overlap between all schemes. Note that here we are considering
a consecutive approach, where we only consider one massive quark at a time, however, we
comment on the case of simultaneous heavy quark effects in appendix A.

The expression for FFNS3c is given in eq. (3.2), while for FFNS4b we have

F (4b)(Q2, m2
c , m2

b) = C(4b)(Q2/m2
b)f (4b)(Q2) (3.12)

= C(4b)(Q2/m2
b)E(4b)(log(Q2/m2

c))A(4b)(0)f (3)(m2
c) , (3.13)

where C(4b)(Q2/m2
b) contains both logarithm and powers of Q2/m2

b , but has no dependence
the charm mass. For FFNS5 we have, similarly to eq. (3.3),

F (5)(Q2,m2
c ,m2

b) = C(5)f (5)(Q2) (3.14)

= C(5)E(4)(log(Q2/m2
b))A(5)(0)E(4)(log(m2

b/m2
c))A(4)(0)f (3)(m2

c) (3.15)

where C(5) is a massless coefficient function and we suppress again all dependency on the
strong coupling as.

In analogy to the single mass case, the neighboring overlaps F (3c∩4b) and F (4b∩5) are
obtained by

F (3c∩4b)(Q2, m2
c) = C(3c∩4b)(log(Q2/m2

c))f (3c)(Q2) (3.16)

= C(3c∩4b)(log(Q2/m2
c))E(3c)(log(Q2/m2

c))f (3)(m2
c) , (3.17)
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and

F (4b∩5)(Q2, m2
b) = C(4b∩5)(log(Q2/m2

b))f (4b)(Q2) (3.18)

= C(4b∩5)(log(Q2/m2
b))E(4b)(log(Q2/m2

c))A(4b)(0)f (3)(m2
c) , (3.19)

where the corresponding coefficient functions are given by

C(3c∩4b)(log(Q2/m2
c)) = C(4)A(4)(log(Q2/m2

c)) = C(3c∩4)(log(Q2/m2
c)) , (3.20)

C(4b∩5)(log(Q2/m2
b)) = C(5)A(5)(log(Q2/m2

b)). (3.21)

Before discussing the remaining double overlap F (3c∩5) in eq. (3.11) we turn to the triple
overlap F (3c∩4b∩5) for which we observe the following identity:

F (3c∩4b∩5) = F (3c∩4b∩4b∩5) = F ((3c∩4)∩(4b∩5)) (3.22)

where for the first equality we used the fact that the intersection of a set with itself is an
identity operation in set theory and for the second equality we used the commutativity of
the intersection operation and the fact that F (3c∩4b) = F (3c∩4), as FFNS3c does not contain
any bottom mass corrections as the bottom is decoupled.

From eq. (3.22) we recover the well known fact that the matching procedure is a sequential
procedure, i.e. we first add the charm contributions and then the bottom contributions. This
immediately implies that F (3c∩5) = F (3c∩4b∩5) as the former would need to go through the
charm matching in any case. This reduces the number of contributions in eq. (3.11) in
practice to just the first five terms.

Nevertheless, using similar arguments as before we can give an explicit expression for
the remaining double overlap F (3c∩5) in eq. (3.11) and write

F (3c∩5)(Q2,m2
c ,m2

b) = C(3c∩5)(log(Q2/m2
c), log(Q2/m2

b))f (3c)(Q2) (3.23)
= C(3c∩5)(log(Q2/m2

c), log(Q2/m2
b))E(3c)(log(Q2/m2

c))f (3)(m2
c) , (3.24)

where the coefficient function

C(3c∩5)(log(Q2/m2
c), log(Q2/m2

b)) = C(5)A(5)(log(Q2/m2
b))A(4)(log(Q2/m2

c)) , (3.25)

can again be found by shifting both the charm and bottom matching scale to Q2.
Generalizing these expressions to the case of more than two masses is straightforward

but tedious. One would just follow the same procedure together with the corresponding
set theory combination. Moreover, the three mass case is less phenomenologically relevant
than the two mass case: the strange quark has a low enough mass to be always considered
massless, and the top quark mass is much larger than the bottom quark mass.

3.3 A combined prescription for all scales

We now address the issue of combining the above discussion into a combined prescription
which can be applied at all scales Q2.

While one possible choice would be to use the prescription of section 3.2 at all scales,
this turns out to be phenomenologically not well-behaved. Indeed, when Q2 is smaller than
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one of the relevant quark masses, the resummation of the corresponding collinear logarithms
is power suppressed and the fixed order calculation is reliable. In fact, also the prescription
of ref. [23] is meant to be used only with Q2 > m2

h. In our case this means that we use the
single mass case described in section 3.1 after crossing the first quark threshold and the
two mass case described in section 3.2 after crossing the second quark threshold. For scales
higher than the top mass, one can, as mentioned before, apply an extension of the FONLL
prescription for a simultaneous treatment of charm, bottom, and top mass effects; though
because mc, mb ≪ mt, the effects of mc and mb are small at such high scales and for simplicity,
one may use a prescription neglecting charm and bottom mass effects. Thus we have

F (Q2,m2
c ,m2

b) =



F (3cb)(Q2,m2
c ,m2

b) if Q2 < m2
c

F (3c)(Q2,m2
c)+F (4b)(Q2,m2

c ,m2
b)−F (3c∩4)(Q2,m2

c) if m2
c ≤Q2 < m2

b

eq. (3.11) if m2
b ≤Q2 < m2

t

F (6)(Q2) if Q2≥m2
t

,

(3.26)
where for Q2 < m2

c charm mass corrections are dealt in a FFNS setup (i.e. F (3cb)) and above
mc the FONLL prescription applies. The same holds for the bottom mass effects: below
mb bottom mass corrections are dealt in a FFNS setup by either F (3cb) or F (4b) and above
mb the FONLL prescription applies.

At low perturbative order it was found [23] that in the single mass case the cancellation
between the FFNS4 structure functions, eq. (3.3), and the overlap, eq. (3.4), is incomplete
near the heavy quark threshold. To make the definition of the structure function continuous
across the mass theresholds, ref. [23] introduces a damping function

χ(Q2, m2) =
(

1− m2

Q2

)2
. (3.27)

For example, we can then modify eq. (3.11) to be

F FONLL(Q2,m2
c ,m2

b) = F (3c)(Q2,m2
c)+χ(Q2,m2

c)
[
F (4b)(Q2,m2

c ,m2
b)−F (3c∩4b)(Q2,m2

c)

+χ(Q2,m2
b)
[
F (5)(Q2,m2

c ,m2
b)−F (4b∩5)(Q2,m2

c ,m2
b)
]]

,

(3.28)

to ensure a smooth transition at the bottom threshold in eq. (3.26).
We briefly comment on the practical implementation of our new prescription in ap-

pendix B.

4 Generalizations

In the following we discuss a series of generalizations which demonstrate the improved
applicability of our new prescription in comparison to ref. [23]. We stress that all of these
considerations are also possible in their prescription, but we would like to point out the
advantages gained on both theoretical grounds and practical grounds when implementing
the FONLL scheme using our new prescription.
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Perturbative and logarithmic accuracy. It is the limited perturbative knowledge of the
various ingredients (C, β, γ, A, d) which make a GM-VFNS prescription necessary. In fact,
at all-order accuracy eqs. (3.3) and (3.4) would be identical and we would just be left with
eq. (3.2). However, in practice we have to work at a finite order and thus a practical limitation
of the prescription of ref. [23] is the required perturbative expansion of eq. (3.9), which becomes
technically challenging with increasing perturbative and/or logarithmic accuracy.

To give an example: the recently presented extraction of PDFs at aN3LO [7] requires a
correct treatment of DIS structure functions at the quoted accuracy. While it is possible [67]
to use the prescription of ref. [23], the resulting formulas are lengthy and error prone. Instead,
in our new prescription no additional transformations are needed, as we obtained a clear
separation between evolution kernels and coefficient functions. The new prescription does not
use eq. (3.9) but only relies on the correct determination of the overlap coefficient function
eq. (3.5), which is needed in either prescription.

Mixing accuracies. As was pointed out in ref. [23] the naive first non-vanishing order
for FFNS3c and FFNS4 differ, and this is directly related to the different FONLL schemes
(FONLL-A, FONLL-B and FONLL-C) described in ref. [23], since they correspond to different
accuracies of eqs. (3.2) and (3.3) respectively. Especially the case of FONLL-B requires
additional attention as it relies on the observation that the first non-vanishing order in the
strong coupling is different for heavy quark production in massive and massless schemes
when neglecting intrinsic heavy quark contributions.

For example, in DIS, the former emerges by photon-gluon fusion which opens at O(as),
the latter is just ordinary photon-quark fusion that first contributes at O(a0

s). Extending
the computation to higher perturbative orders in our new prescription is straightforward.
Given the coefficients in FFNS3c, eq. (3.2), and FFNS4, eq. (3.3), at a certain order, one
just needs to identify the collinear logarithmically order in FFNS3c such that only those
also present in FFNS4 are retained in the overlap eq. (3.4).

Changing the matching point. In the above discussion we always assumed that the
transition scale µh between the FFNS in which the heavy quark h is considered massive and
the FFNS in which the same quark is considered massless coincides with its mass µh = mh

— this is a natural choice and indeed the most common convention. However, this is still a
choice and one may vary this scale to investigate its dependence. In our new prescription this
freedom is naturally embedded by the requirement to compute ingredients which all follow
a strict FFNS definition and thus include by definition this matching procedure. Indeed,
the full dependency is contained in the evolution operators E as they naturally define the
transition between schemes.

Treatment of intrinsic heavy quarks. While ref. [23] only considers the case of perturba-
tive generation of heavy quarks its prescription was later extended to the presence of intrinsic
heavy quark components in ref. [26]. In fact, the authors realized that this generalization
simplifies the prescription of ref. [23] because several intermediate terms now cancel amongst
each other, as the first non-vanishing order is readjusted.
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In our new prescription the inclusion of intrinsic heavy quark contributions fall naturally
into place as they simply contribute to the FFNS3c structure function, eq. (3.2), and hence
also to the overlap, eq. (3.4).

Observables beyond structure functions and with more collinear distributions.
Due to the clear separation between the partonic coefficient functions and the contributions
from collinear evolution our new prescription can be applied easily to any observable which
may also contain more than one collinear distribution (such as e.g. observables at the LHC [25]).
We can give a straight generalization of eq. (3.1) for any observable σ:

σFONLL(Q2, m2
c) = σ(3c)(Q2, m2

c) + σ(4)(Q2, m2
c)− σ(3c∩4)(Q2, m2

c) (4.1)

Just as before, σ(3c) and σ(4) have to be computed in a strict FFNS3c and FFNS4 setup
respectively, and σ(3c∩4) can be deduced from σ(3c) by identifying the collinear logarithms
which are fully resummed in the FFNS4 setup. If the observable σ is not sensitive to heavy
quark mass effects, σ(3c) and σ(3c∩4) cancel each other exactly, as the former does not develop
any collinear logarithms.

Longitudinally polarized structure functions. Finally, a straight-forward generalization
can be obtained for the case of longitudinally polarized structure functions [68] as, in fact,
all of the discussion also holds for a given spin state.

5 Conclusion

We have presented a new prescription of the FONLL scheme, which is perturbatively equivalent
to the former prescription [23] but can be implemented more efficiently. The new prescription
relies on the existence of coexisting flavor number PDFs, i.e. an explicit decoupling of the
number of active quarks and the factorization scale.

These PDFs can in practice be accessed using the EKO program in an efficient way, while
the coefficient functions can be computed using yadism [28]. We have implemented two ways
how these numerical tools can be used to calculate predictions such as the ones presented
in the figures of this paper. In particular, one can store the computed coefficients and
DGLAP kernels in PDF-independent FastKernel (FK) tables [69] such that the computation
can efficiently be performed for many different PDFs without the need to repeat the often
costly computation.

The new prescription features a clear separation between partonic matrix elements and
evolution ingredients which make it an ideal tool to investigate higher order corrections.
Moreover, our new prescription features a clear extension to the multi-mass case which is
relevant, e.g., for mid- and low-scale structure functions in DIS, such as the ones used in
all modern PDF determinations.

The new prescription has been adopted by the NNPDF collaboration where it is used to
compute predictions for DIS observables [3, 7, 11, 68, 70, 71]. Our new prescription does not
imply further restrictions on the kinematically applicable domain and, indeed, eq. (3.26) gives
a prescription which can be evaluated at all perturbative scales. The actual kinematic cuts
used in NNPDF fits are discussed in the respective references and may differ for unpolarized
and longitudinally polarized PDF extractions.
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A Simultaneous two mass case

In section 3.2 we consider the case of a consecutive decoupling for charm and bottom, i.e.
we add heavy quark effects one at a time while still accounting for the other. However, the
FONLL scheme and, specifically, the new prescription we propose in this paper can also be
applied to the case where one considers simultaneous two mass effects [72, 73]. In this case
the massive corrections for either charm or bottom are always contributed by the FFNS3cb
structure function, while the collinear resummed parts do not carry any mass dependency.

Eventually, we can give an analogue expression to eq. (3.26):

F (Q2,m2
c ,m2

b) =



F (3cb)(Q2,m2
c ,m2

b) if Q2 < m2
c

F (3cb)(Q2,m2
c ,m2

b)+F (4)(Q2)−F (3cb∩4)(Q2,m2
c ,m2

b) if m2
c ≤Q2 < m2

b

F (3cb)(Q2,m2
c ,m2

b)+F (5)(Q2)−F (3cb∩5)(Q2,m2
c ,m2

b) if m2
b ≤Q2 < m2

t

F (6)(Q2) if Q2≥m2
t

.

(A.1)
The overlap subtraction terms F (3cb∩4) and F (3cb∩5) follow from the same guiding principle
that they can only consist of collinear contributions of either just the charm quark (in the
first case) or both charm and bottom quarks (in the second case). Again, recall that the
matching is done in a consecutive manner and, thus, F (5) resums both charm and bottom
collinear logarithms.

The implementation in the yadism library discussed in appendix B follows the prescription
of section 3.2.

B Implementation

The actual implementation of our new prescription requires the possibility to compute
coexisting flavor number PDFs, which is provided by the EKO library [27], and the computation
of the partonic matrix elements using different FFNS settings. In practice we apply our new
prescription only to DIS structure functions and we use the yadism library [28] to provide
the respective coefficient functions.

An explicit example of a DIS observable calculation using a fixed input PDF is available
in the yadism documentation at

https://yadism.readthedocs.io/en/latest/overview/tutorials/fonll.html.
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Instead, if one may wish to compute the same set of observables for many different PDF
sets, renormalization or factorization scales, or values of αs, as is done in PDF determinations
or systematic parameter studies, it is recommended to create interpolation grids in the
PineAPPL format [74] that store the combination of DIS coefficients and DGLAP evolution
in PDF independent grids called fast-kernel (FK) tables [69] which can be used to compute
observables:

σ =
∑

i

∑
a

fa(xi, µ2
0)FKa(xi, µ2

0). (B.1)

In this case the implementation is a multi-step process which is driven by the pineko
code, as illustrated at

https://pineko.readthedocs.io/en/latest/theory/fonll.html.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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