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Abstract
We consider the inverse problem of recovering a
potential from the Dirichlet to Neumann map at a
large fixed frequency on certain Riemannian mani-
folds. We extend the earlier result of Uhlmann and
Wang [arXiv:2104.03477] to the case of simple man-
ifolds, and more generally to manifolds where the
geodesic ray transform is stably invertible. The argu-
ment involves an invariantly formulated construction of
Gaussian beamquasimodeswith uniformbounds for the
underlying constants.
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1 INTRODUCTION AND STATEMENT OFMAIN RESULTS

Let (𝑀, g) be an 𝑛-dimensional (𝑛 ⩾ 2) compact Riemannian manifold with smooth boundary,
and let 𝜆 ⩾ 0 be a frequency. We consider the boundary value problem

⎧⎪⎨⎪⎩
𝑞,𝜆𝑢 ∶= (−Δg + 𝑞 − 𝜆2)𝑢 = 0 in 𝑀,

𝑢 = 𝑓 on 𝜕𝑀,
(1.1)
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article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
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where Δg is the Laplace–Beltrami operator on𝑀. In local coordinates,

Δg𝑢 = |g|−1
2 𝜕𝑗

(|g| 1
2 g𝑗𝑘𝜕𝑘𝑢

)
,

where (g𝑗𝑘) = (g𝑗𝑘)
−1 and |g| = det(g𝑗𝑘). Suppose 𝜆2 is not a Dirichlet eigenvalue of −Δg + 𝑞 in

𝑀, and let 𝑢 ∈ 𝐶∞(𝑀) be the unique solution of (1.1) for a Dirichlet boundary condition 𝑓 ∈

𝐶∞(𝜕𝑀). The Dirichlet to Neumann map (DN map) associated to (1.1) is given by

Λ𝜆
𝑞 ∶ 𝐶∞(𝜕𝑀) → 𝐶∞(𝜕𝑀), Λ𝜆

𝑞𝑓 ∶= 𝜕𝜈𝑢|𝜕𝑀 ∶= g𝑗𝑘𝜈𝑗𝜕𝑘𝑢|𝜕𝑀. (1.2)

The inverse problem we are interested in is to recover 𝑞 from Λ𝜆
𝑞 for a large but fixed 𝜆.

Before going to the statement of our main result, we first define an admissible class of pertur-
bations for which we establish our uniqueness result. For any nonzero 𝑝 ∈ 𝐻𝑠(𝑀), we introduce
a frequency function 𝑁𝑠(𝑝) of 𝑝 by

𝑁𝑠(𝑝) ∶=
‖𝑝‖𝐻𝑠(𝑀)‖𝑝‖𝐿2(𝑀)

.

If 𝑝 = 0 we define 𝑁𝑠(𝑝) = 0. For any number 𝐵 > 0 and any 𝑠 > 0, we define a set 𝑠(𝐵) of
admissible perturbations by

𝑠(𝐵) ∶= {𝑝 ∈ 𝐻𝑠(𝑀) ∶ 𝑁𝑠(𝑝) ⩽ 𝐵}. (1.3)

Note that 𝑝 ∈ 𝑠(𝐵) implies 𝑝 ∈ 𝐶1(𝑀) or 𝑝 ∈ 𝐶0(𝑀) if 𝑠 > 𝑛

2
+ 1 or 𝑠 > 𝑛

2
, respectively, by

Sobolev embedding [26, Proposition 4.3].
We establish two main results in this work. Our first result is for simple manifolds (see, for

example, [19]). A compact Riemannian manifold (𝑀, g) with boundary is said to be simple if (i)
(𝑀, g) is nontrapping (every geodesic reaches the boundary in finite time), (ii) 𝜕𝑀 is strictly con-
vex (the fundamental form of 𝜕𝑀 is positive definite) and (iii) (𝑀, g) has no conjugate points.
Examples include strictly convex simply connected domains in nonpositively curved manifolds.
Our first main result is as follows.

Theorem 1.1. Let (𝑀, g) be a simple manifold of dimension 𝑛 ⩾ 2. Let 𝐵 > 0 and assume 𝑞 ∈

𝐻𝑠(𝑀) with ‖𝑞‖𝐻𝑠(𝑀) ⩽ 𝐵, ‖𝑝‖𝐻𝑠(𝑀) ⩽ 𝐵, and 𝑝 ∈ 𝑠(𝐵), where 𝑠 > 𝑛

2
. There is a positive constant

𝜆0 = 𝜆0(𝑀, g , 𝑠, 𝐵) such that if Λ𝜆
𝑞+𝑝 = Λ𝜆

𝑞 for at least one 𝜆 ⩾ 𝜆0, then 𝑝 = 0 in𝑀.

Remark 1.1. The assumption that 𝑝 ∈ 𝑠(𝐵) is similar to the assumption that the perturbation
is angularly controlled in [21, Theorem 2] or horizontally controlled in [20]. This assumption is
always satisfied for some 𝐵 if 𝑝 lies in a finite-dimensional space, since the norms ‖𝑝‖𝐿2(𝑀) and‖𝑝‖𝐻𝑠(𝑀) are equivalent in finite-dimensional spaces. When 𝐵 is large enough, the set 𝑠(𝐵) is
infinite-dimensional. To see this, let {𝑒𝑗}𝑗⩾1 be an orthogonal basis of 𝐻𝑠(𝑀) with ‖𝑒𝑗‖𝐿2(𝑀) = 1

for all 𝑗. Set𝐵 ∶= 2‖𝑒1‖𝐻𝑠(𝑀), then𝑓1 ∶= 𝑒1 ∈ 𝑠(𝐵). Set𝑓𝑗 ∶= 𝑒1 + 𝜖𝑗𝑒𝑗 (𝑗 ⩾ 2) for certain 𝜖𝑗 > 0

small enough such that

‖𝑓𝑗‖𝐻𝑠(𝑀)‖𝑓𝑗‖𝐿2(𝑀)
⩽

‖𝑒1‖𝐻𝑠(𝑀) + 𝜖𝑗‖𝑒𝑗‖𝐻𝑠(𝑀)‖𝑒1‖𝐿2(𝑀) − 𝜖𝑗‖𝑒𝑗‖𝐿2(𝑀)
=

𝐵∕2 + 𝜖𝑗‖𝑒𝑗‖𝐻𝑠(𝑀)

1 − 𝜖𝑗
⩽ 𝐵.
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ANISOTROPIC CALDERÓN PROBLEM 3 of 35

The last inequality can be achieved 𝜖𝑗 > 0 is small enough. Then {𝑓𝑗}𝑗⩾1 ⊂ 𝑠(𝑀) and {𝑓𝑗}𝑗⩾1 is
linearly independent. For a more precise example of such sets we refer [12, Proposition C.1]. See
also the example after [21, Theorem 2].
Moreover, the assumption 𝑝 ∈ 𝑠(𝐵) for some 𝑠 > 𝑛

2
is not optimal. It might be possible to

modify the argument so that 𝑝 ∈ 2(𝐵) or even 𝑝 ∈ 1+𝜀(𝐵) is sufficient. However, some bound
on the frequency of the perturbation is needed in order to have a uniform estimate for 𝜆0. This
places a restriction on the perturbations that can be treatedwith thismethod. The same restriction
can also be found in the work [29] after the Equation (35).

We note that Theorem 1.1 can also be reformulated as follows.

Corollary 1.2. Let (𝑀, g) be a simple manifold of dimension 𝑛 ⩾ 2, and let 𝑞1, 𝑞2 ∈ 𝐻𝑠(𝑀) where
𝑠 > 𝑛

2
. Then there exists a positive constant 𝜆0 depending on𝑀, g , 𝑠, ‖𝑞𝑗‖𝐻𝑠(𝑀), and𝑁𝑠(𝑞1 − 𝑞2) such

that if Λ𝜆
𝑞1

= Λ𝜆
𝑞2
for at least one 𝜆 ⩾ 𝜆0, then 𝑞1 = 𝑞2 in𝑀.

To state the second result, let us recall the notation for the geodesic ray transform following [19,
22]. Assume that (𝑀, g) is nontrapping with strictly convex boundary. For a function 𝑓 on (𝑀, g),
its geodesic ray transform is defined by

𝐼𝑓(𝛾) ∶= ∫𝑠∈𝛾
𝑓(𝑠) d𝑠,

where 𝛾 ranges over the maximal geodesics on (𝑀, g). The geodesic ray transform 𝐼 on (𝑀, g) is
called stably invertible (in terms of the𝐻1 norm of the ray transform) when there exists a slightly
larger manifold𝑀1 with𝑀 embedded in𝑀int

1
and a positive constant 𝐶1 such that

‖𝑓‖𝐿2(𝑀1)
⩽ 𝐶1‖𝐼𝑓‖𝐻1(𝜕+𝑆𝑀1)

(1.4)

holds for all 𝑓 ∈ 𝐻𝑠(𝑀1) with supp(𝑓) ⊂ 𝑀, for some 𝑠 > 𝑛

2
+ 1. On simple manifolds (𝑀1, g) of

dimension 𝑛 ⩾ 2 the estimate (1.4) may be found, for example, in [19, Theorem 4.7.8], and related
estimates even with 𝐻1∕2 norm on the right are proved in [1, 18]. In dimensions 𝑛 ⩾ 3, if (𝑀1, g)

has strictly convex boundary and is globally foliated by strictly convex hypersurfaces, an estimate
similar to (1.4) is proved in [28]. Finally, for strictly convexmanifolds with no conjugate points and
hyperbolic trapped set, estimates similar to (1.4) follow from [7]. We also need the following conti-
nuity result of the geodesic ray transformwhich holds true at least on strictly convex nontrapping
manifolds [19, 22],

‖𝐼𝑓‖𝐻2(𝜕+𝑆𝑀1)
⩽ 𝐶2‖𝑓‖𝐻2(𝑀1)

. (1.5)

We present more details on the geodesic ray transform in Section 2. The constraint in Theorem 1.1
that the manifolds must be simple can be relaxed under (1.4) and (1.5). As a result, a more general
theorem follows.

Theorem 1.3. Let (𝑀, g) be a compact nontrapping Riemannianmanifold of dimension 𝑛 ⩾ 2with
smooth boundary. Suppose the geodesic ray transform is stably invertible and continuous, that is, (1.4)
and (1.5) are satisfied. Assume ‖𝑞‖𝐻𝑠(𝑀) ⩽ 𝐵, ‖𝑝‖𝐻𝑠(𝑀) ⩽ 𝐵, 𝑝 ∈ 𝑠(𝐵) with 𝑠 > 1 + 𝑛

2
. Then there

exists a positive constant 𝜆0 = 𝜆0(𝑀, g , 𝑠, 𝐵) such that if Λ𝜆
𝑞+𝑝 = Λ𝜆

𝑞 holds for at least one 𝜆 ⩾ 𝜆0,
then 𝑝 = 0 in𝑀.
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4 of 35 MA et al.

We now provide a brief survey of the existing results of the Calderón problem. In the Euclidean
setting there is a substantial literature on such problems and we refer the readers to the survey
[27]. In this work we are interested in the anisotropic problem, which can be understood as an
inverse problem for the equation ∇ ⋅ (𝛾∇𝑢) = 0 where 𝛾 is a positive-definite matrix function, or
as an inverse problem for the Laplace–Beltrami equation or for the Schrödinger equation (−Δg +

𝑞)𝑢 = 0 on a Riemannian manifold. If the manifold and coefficients are real-analytic, they can
recover from the DN map [14, 15, 17]. In the smooth case it is known for 𝑛 = 2 that a potential
𝑞 can be determined from the DN map Λ𝜆

𝑞 for a fixed frequency 𝜆 ⩾ 0 [8]. For 𝑛 ⩾ 3 this is an
open problem, however there are partial results in the class of admissible manifolds as well as
conformally transversally anisotropic (CTA) manifolds.
We say that (𝑀, g) is a CTAmanifold if (𝑀, 𝑐g) ⊂ (ℝ × 𝑀0, 𝑒 ⊕ g0), where 𝑐 is a smooth positive

scalar function, 𝑒 is the Euclidean metric, and (𝑀0, g0) is an (𝑛 − 1)-dimensional manifold. We
say (𝑀, g) is admissible if additionally the transversal manifold (𝑀0, g0) is simple. Theorem 1.1 for
any 𝜆 ⩾ 0 has been proved on admissible manifolds in [3], whereas [4] proved the corresponding
uniqueness result on CTAmanifolds. Thesemethods are based on a geometric version of complex
geometrical optics solutions introduced in [25] in the Euclidean case. Related recent results are
given in [2, 6].
In our setting the manifolds do not satisfy the additional product structure mentioned above,

and thus complex geometrical optics solutions are not available. However, when the frequency
𝜆 > 0 is very large there exist traditional geometrical optics type solutions, and one can construct
such solutions that concentrate along geodesics. If one could take the limit 𝜆 → ∞ then one could
recover the geodesic ray transform of the perturbation 𝑝. In our case the frequency 𝜆 is large but
fixed, and we will instead use the condition 𝑝 ∈ 𝑠(𝐵) to recover the ray transform. These ideas
were used in [29] combined with an analysis of the semiclassical resolvent in order to prove a
similar result for nonpositively curved manifolds when 𝑛 = 3. We give a direct argument based
on geometrical optics and Gaussian beam constructions, and obtain results on any manifold with
stably invertible geodesic ray transform in any dimension.
In Section 6 we present a Gaussian beam construction with uniform bounds for the underlying

constants. This is a key component for proving Theorem 1.3. To achieve this, we express theRiccati
and transport ODEs for the phase and amplitude functions of the Gaussian beam in an invariant
manner. This ensures that the bounds will not depend on choices of (Fermi) coordinates. Finally,
by utilizing energy estimates we are able to obtain the desired uniform bounds. Note that our
Corollary 1.2 is strictly more general than the main result in [29], and Theorems 1.1 and 1.3 are
quantitative results which imply Corollary 1.2.
The rest of the article is structured as follows. Section 2 contains some preliminary results

related to the geodesic ray transform. In Section 3 we present the proof of a resolvent estimate on
nontrapping manifolds. Section 4 gives a construction of special solutions of (1.1) on simple man-
ifolds and proves Theorem 1.1. The proof of Theorem 1.3 is contained in Section 5. In Remarks 5.1
and 5.2 we discuss the stability of the inverse problem. Section 6 gives the invariant construction
of Gaussian beams with uniform bounds required for Theorem 1.3.

2 PRELIMINARIES ON GEODESIC RAY TRANSFORM

In this section, we recall the geodesic ray transform and several facts related to it. We refer readers
to [19, 22] for more information on the geodesic ray transform.
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ANISOTROPIC CALDERÓN PROBLEM 5 of 35

Let𝑀 be a compactmanifold with smooth boundary and let𝑇𝑥𝑀 be the tangent space attached
to the point 𝑥 ∈ 𝑀. We write the g-inner product for tangent or cotangent vectors as ⟨ ⋅ , ⋅ ⟩ =⟨ ⋅ , ⋅ ⟩g .We alsowrite | ⋅ | = | ⋅ |g ∶= ⟨ ⋅ , ⋅ ⟩1∕2g . Sobolev spaces such as𝐻𝑘(𝑀),𝐻𝑘

0
(𝑀) and𝐿2(𝑀)

can be defined in a similar manner as in the Euclidean setting, and readers may refer to [26,
Chapter 4] for more details.
The unit sphere bundle 𝑆𝑀 of𝑀 is defined as

𝑆𝑀 ∶=
⋃
𝑥∈𝑀

𝑆𝑥𝑀 where 𝑆𝑥𝑀 ∶= {(𝑥, 𝑣) ∈ 𝑇𝑥𝑀 ; |𝑣| = 1}.

If the dimension of𝑀 is 𝑛 then the dimension of 𝑆𝑀 will be 2𝑛 − 1. The boundary of 𝑆𝑀, denoted
as 𝜕(𝑆𝑀), is defined as 𝜕(𝑆𝑀) = {(𝑥, 𝑣) ∈ 𝑆𝑀 ; 𝑥 ∈ 𝜕𝑀}, and it is the union of the sets of inward
and outward pointing vectors,

𝜕±𝑆𝑀 = {(𝑥, 𝑣) ∈ 𝜕(𝑆𝑀) ; ±⟨𝑣, 𝜈⟩ ⩽ 0}.

Here 𝜈 is the outward unit normal to the boundary 𝜕𝑀. We equip 𝑆𝑀 with the Sasaki metric
induced by g , and this yields natural volume forms d(𝑆𝑀) and d(𝜕𝑆𝑀).
A unit speed geodesic starting at 𝑥 and moving in the direction 𝑣 is denoted by 𝑡 ↦ 𝛾(𝑡, 𝑥, 𝑣).

Let 𝜏(𝑥, 𝑣) be the time when 𝛾 exits𝑀. We say that (𝑀, g) is nontrapping if 𝜏(𝑥, 𝑣) is finite for all
(𝑥, 𝑣) ∈ 𝑆𝑀, and that (𝑀, g) is strictly convex if the second fundamental form on 𝜕𝑀 is positive
definite. We also define the geodesic flow 𝜑𝑡 on 𝑆𝑀 by 𝜑𝑡(𝑥, 𝑣) ∶= (𝛾(𝑡, 𝑥, 𝑣), �̇�(𝑡, 𝑥, 𝑣)).
Let (𝑀, g) be strictly convex and nontrapping. The geodesic ray transform 𝐼 ∶ 𝐶∞(𝑀) →

𝐶∞(𝜕+𝑆𝑀) is a linear map given by

𝐼𝑓(𝑥, 𝑣) ∶= ∫
𝜏(𝑥,𝑣)

0
𝑓(𝛾(𝑡, 𝑥, 𝑣)) d𝑡.

We recall the Santaló formula and the expression of the adjoint of 𝐼.

Lemma 2.1. Let 𝐹∶ 𝑆𝑀 → ℝ be a continuous function. Then we have

∫𝑆𝑀
𝐹 d(𝑆𝑀) = ∫𝜕+𝑆𝑀 ∫

𝜏(𝑥,𝑣)

0
𝐹(𝜑𝑡(𝑥, 𝑣)) 𝜇(𝑥, 𝑣) d𝑡 d(𝜕𝑆𝑀), (2.1)

where 𝜇(𝑥, 𝑣) ∶= −⟨𝑣, 𝜈(𝑥)⟩.
Lemma 2.2. Let 𝑓 ∈ 𝐶∞(𝑀) and ℎ ∈ 𝐶∞

0
((𝜕+𝑆𝑀)𝑖𝑛𝑡). Then

(𝐼𝑓, ℎ)𝐿2
𝜇(𝜕+𝑆𝑀) = (𝑓, 𝐼∗ℎ). (2.2)

Here 𝐼∗ℎ is given by 𝐼∗ℎ(𝑥) = ∫𝑆𝑥
ℎ𝜓(𝑥, 𝑣) d𝑣 where ℎ𝜓(𝑥, 𝑣) = ℎ(𝜑−𝜏(𝑥,−𝑣)(𝑥, 𝑣)) for all (𝑥, 𝑣) ∈

𝑆𝑀, and 𝐿2
𝜇(𝜕+𝑆𝑀) is the 𝐿2 space with measure 𝜇 d(𝜕𝑆𝑀).

Lemma 2.3. For every nonnegative integer 𝑘, the ray transform 𝐼 is a bounded linear operator from
𝐻𝑘(𝑀) to𝐻𝑘(𝜕+𝑆𝑀).
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6 of 35 MA et al.

The proofs of these results can be found in [19, Chapters 3 and 4].Wewill also need the following
facts on the normal operator of the geodesic ray transform on simplemanifolds which follow from
[23] (see also [19, Chapter 8]).

Lemma 2.4. Let (𝑀, g) be a simple manifold. Then 𝐼∗𝐼 is an elliptic pseudodifferential operator
of order −1 in 𝑀int. Given 𝑠 ∈ ℝ and a compact set 𝐾 ⊂ 𝑀int, there is 𝐶 > 0 so that one has the
inequalities

𝐶−1‖𝑓‖𝐻𝑠(𝑀) ⩽ ‖𝐼∗𝐼𝑓‖𝐻𝑠+1(𝑀) ⩽ 𝐶‖𝑓‖𝐻𝑠(𝑀)

for any 𝑓 ∈ 𝐻𝑠(𝑀) with supp(𝑓) ⊂ 𝐾.

3 RESOLVENT ESTIMATE

The proofs of the main theorems are based on constructing approximate geometrical optics or
Gaussian beam type solutions. In order to convert these approximate solutions to exact solutions,
we will need the following solvability result at high frequencies.

Proposition 3.1. Let (𝑀, g) be a compact nontrapping manifold with smooth boundary, and let
𝑞 ∈ 𝐿∞(𝑀) with ‖𝑞‖𝐿∞(𝑀) ⩽ 𝐵. There are 𝐶 = 𝐶(𝑀, g) > 0 and 𝜆0 = 𝜆0(𝑀, g , 𝐵) > 0 so that for
any 𝜆 ⩾ 𝜆0 and any 𝑓 ∈ 𝐿2(𝑀), the equation

(−Δg − 𝜆2 + 𝑞)𝑢 = 𝑓 in𝑀

has a solution 𝑢 ∈ 𝐻2(𝑀) with

𝜆‖𝑢‖𝐿2(𝑀) + ‖d𝑢‖𝐿2(𝑀) + 𝜆−1‖∇2𝑢‖𝐿2(𝑀) ⩽ 𝐶‖𝑓‖𝐿2(𝑀).

The estimate given in Proposition 3.1 resembles a resolvent estimate in scattering theory, where
it is well known that a nontrapping assumption is required for such an estimate to hold. These
estimates are typically given on noncompact manifolds with suitable assumptions at infinity. See,
for example, [30] for a discussion on such estimates (note that if one excludes a small set of fre-
quencies, this kind of estimate may hold for general geometries [13]). Our estimate on compact
manifolds with boundary is even simpler, and we give a proof based on a positive commutator
argument. For the proof it is convenient to switch to semiclassical notation and write ℎ = 𝜆−1.
See [31] for the semiclassical analysis facts used below.
We may assume that 𝑀 is embedded in a closed manifold (𝑁, g) having the same dimension,

and for all 𝑠 ∈ ℝ we may consider the semiclassical Sobolev norm

‖𝑢‖𝐻𝑠
scl

(𝑁) = ‖(𝐼 − ℎ2Δg )
𝑠∕2𝑢‖𝐿2(𝑁),

where (𝐼 − ℎ2Δg )
𝑠∕2 is defined via the spectral theorem. Proposition 3.1 will follow by a standard

duality argument from the next a priori estimate with 𝑠 = 0 (see, for example, [3, Proposition 4.4]
for this duality argument). We employ a generic constant 𝐶 throughout the manuscript, the value
of which may vary from line to line.
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ANISOTROPIC CALDERÓN PROBLEM 7 of 35

Lemma 3.2. Let (𝑀, g) be a compact nontrapping manifold with smooth boundary, and let 𝑀 be
embedded in a closedmanifold (𝑁, g)having the same dimension. Let 𝑠 ∈ ℝ. There are𝐶 > 0,ℎ0 > 0

such that for 0 < ℎ ⩽ ℎ0, one has

ℎ‖𝑢‖𝐻𝑠+2
scl

(𝑁) ⩽ 𝐶‖(−ℎ2Δg − 𝐼)𝑢‖𝐻𝑠
scl

(𝑁), 𝑢 ∈ 𝐶∞
𝑐 (𝑀int).

Proof. We first prove the estimate for 𝑠 = 0. Write 𝑃 = −ℎ2Δg and decompose 𝑢 as

𝑢 = 𝐵𝑢 + (𝐼 − 𝐵)𝑢,

where 𝐵 is a semiclassical pseudodifferential operator obtained by quantizing the symbol
𝑏(𝑥, 𝜉) ∶= 𝜓(|𝜉|g ) ∈ 𝐶∞(𝑇∗𝑁) where 𝜓 ∈ 𝐶∞

𝑐 (ℝ) with 𝜓(𝑡) = 1 near 𝑡 = 1 and 𝜓 = 0 outside a
small neighborhood of 𝑡 = 1. Denote the semiclassical principal symbol of 𝑃 − 𝐼 by 𝑟(𝑥, 𝜉), so
𝑟(𝑥, 𝜉) = |𝜉|2g − 1. Since𝑃 − 𝐼 is semiclassically elliptic away from {|𝜉|g = 1}, we can find a symbol
𝑞(𝑥, 𝜉) of order −2 such that 𝑞 = 𝑟−1 in supp(1 − 𝑏). This implies

1 − 𝑏(𝑥, 𝜉) = (1 − 𝑏(𝑥, 𝜉))𝑞(𝑥, 𝜉)𝑟(𝑥, 𝜉), (𝑥, 𝜉) ∈ 𝑇𝑀.

By semiclassical calculus, see [31, Section 14.2], we have

𝐼 − 𝐵 = Op((1 − 𝑏)𝑞)Op(𝑟) + ℎΨ−1 = Op((1 − 𝑏)𝑞)(𝑃 − 𝐼) + ℎΨ−1.

Here Ψ−1 signifies the set of pseudodifferential operator of order −1, and we did a little abuse of
notation by writing 𝑋 = 𝑌 + ℎΨ−1 to mean 𝑋 − 𝑌 ∈ ℎΨ−1. From this one obtains the estimate

‖(𝐼 − 𝐵)𝑢‖𝐻2
scl

(𝑁) ⩽ ‖Op((1 − 𝑏)𝑞)(𝑃 − 𝐼)𝑢‖𝐻2
scl

(𝑁) + 𝐶ℎ‖𝑢‖𝐻1
scl

(𝑁)

⩽ 𝐶‖(𝑃 − 𝐼)𝑢‖𝐿2(𝑁) + 𝐶ℎ‖𝑢‖𝐻1
scl

(𝑁)

valid for 𝑢 ∈ 𝐶∞(𝑁). Writing 𝑢 = (𝐼 − 𝐵)𝑢 + 𝐵𝑢 on the right, it follows that

‖(𝐼 − 𝐵)𝑢‖𝐻2
scl

(𝑁) ⩽ 𝐶‖(𝑃 − 𝐼)𝑢‖𝐿2(𝑁) + 𝐶ℎ‖𝐵𝑢‖𝐻1
scl

(𝑁). (3.1)

We now proceed to an estimate for 𝐵𝑢, which is microlocalized to a small neighborhood of
{|𝜉|g = 1}. To do this we invoke the positive commutator method. Assume that we can find a
formally self-adjoint linear operator 𝐴 ∶ 𝐶∞(𝑁) → 𝐶∞(𝑁) such that

‖𝐴𝑢‖𝐿2(𝑁) ⩽ 𝐶‖𝑢‖𝐻1
scl

(𝑁),

(i[𝑃, 𝐴]𝑢, 𝑢)𝐿2(𝑁) ⩾ 𝑐ℎ‖𝐵𝑢‖2
𝐻1

scl
(𝑁)

− 𝐶ℎ‖(𝐼 − 𝐵)𝑢‖2
𝐻1

scl
(𝑁)

,

for any 𝑢 ∈ 𝐶∞
𝑐 (𝑀int) and 0 < ℎ ⩽ ℎ0. We can then make the following computation:

𝑐ℎ‖𝐵𝑢‖2
𝐻1

scl
(𝑁)

− 𝐶ℎ‖(𝐼 − 𝐵)𝑢‖2
𝐻1

scl
(𝑁)

⩽ (i[𝑃, 𝐴]𝑢, 𝑢) = (i[𝑃 − 𝐼, 𝐴]𝑢, 𝑢)

= i(𝐴𝑢, (𝑃 − 𝐼)𝑢) − i((𝑃 − 𝐼)𝑢, 𝐴𝑢).
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8 of 35 MA et al.

By using Cauchy–Schwarz with 𝜖, and since ‖𝐴𝑢‖𝐿2(𝑁) ⩽ 𝐶‖𝑢‖𝐻1
scl

(𝑁), we have

𝑐ℎ‖𝐵𝑢‖2
𝐻1

scl
(𝑁)

⩽ 𝜖ℎ‖𝑢‖2
𝐻1

scl
(𝑁)

+
1

𝜖ℎ
‖(𝑃 − 𝐼)𝑢‖2

𝐿2(𝑁)
+ 𝐶ℎ‖(𝐼 − 𝐵)𝑢‖2

𝐻1
scl

(𝑁)
. (3.2)

Therefore,

ℎ2‖𝑢‖2
𝐻1

scl
(𝑁)

⩽ 2ℎ2‖𝐵𝑢‖2
𝐻1

scl
(𝑁)

+ 2ℎ2‖(𝐼 − 𝐵)𝑢‖2
𝐻1

scl
(𝑁)

⩽ 𝐶𝜖ℎ2‖𝑢‖2
𝐻1

scl
(𝑁)

+ 𝐶𝜖−1‖(𝑃 − 𝐼)𝑢‖2
𝐿2(𝑁)

+ 𝐶ℎ2‖(𝐼 − 𝐵)𝑢‖2
𝐻1

scl
(𝑁)

(by (3.2))

⩽ ℎ2(𝐶𝜖 + 𝐶ℎ2)‖𝑢‖2
𝐻1

scl

+ (𝐶𝜖−1 + 𝐶ℎ2)‖(𝑃 − 𝐼)𝑢‖2
𝐿2(𝑁)

. (by (3.1))

Choosing the value of 𝜖 so that 𝐶𝜖 = 1∕2, we obtain the estimate

ℎ2‖𝑢‖2
𝐻1

scl
(𝑁)

⩽ 𝐶‖(𝑃 − 𝐼)𝑢‖2
𝐿2(𝑁)

.

valid for all 𝑢 ∈ 𝐶∞
𝑐 (𝑀int) as long as one can find an operator 𝐴 satisfying the conditions

given above.
We construct the conjugate operator 𝐴 as a first-order semiclassical pseudodifferential opera-

tor, obtained as the Weyl quantization of a real valued symbol 𝑎 ∈ 𝐶∞(𝑇∗𝑁). The semiclassical
principal symbol of iℎ−1[𝑃, 𝐴] is {𝑝, 𝑎} = 𝐻𝑝𝑎, where 𝑝 = |𝜉|2

g
is the principal symbol of 𝑃 and𝐻𝑝

is the Hamilton vector field of 𝑝. The assumption that (𝑀, g) is nontrapping means precisely that
there is a function 𝑎 ∈ 𝐶∞(𝑆∗𝑀) (escape function) with 𝐻𝑝𝑎 > 0 in 𝑆∗𝑀, where 𝑆∗𝑀 denotes
the unit cosphere bundle. See, for example, [5, Theorem 6.4.1]. We extend 𝑎 smoothly to 𝑇∗𝑁 as a
symbol that is homogeneous of degree one for |𝜉| ⩾ 1. By continuity the function𝐻𝑝𝑎 satisfies

𝐻𝑝𝑎(𝑥, 𝜉) ⩾ 𝑐|𝜉|2g , 𝜉 ∈ 𝑇∗𝑀1, |𝜉|g ∼ 1, (3.3)

for some compact set 𝑀1 ⊂ 𝑁 with 𝑀 ⊂ 𝑀int
1
. Note that (3.3) holds only for |𝜉|g away from 0,

and we will apply only this to 𝐵𝑢 which is supported near |𝜉|g = 1 in the phase space. Quantiz-
ing 𝑎 gives a semiclassical operator 𝐴 of order 1. Using the semiclassical Gårding inequality [31,
Theorem 4.30] for (iℎ−1[𝑃, 𝐴]𝐵𝑢, 𝐵𝑢) and Cauchy–Schwarz with 𝜖 for the other terms gives that

(iℎ−1[𝑃, 𝐴]𝑢, 𝑢) = (iℎ−1[𝑃, 𝐴]𝐵𝑢, 𝐵𝑢) + (iℎ−1[𝑃, 𝐴]𝐵𝑢, (𝐼 − 𝐵)𝑢)

+ (iℎ−1[𝑃, 𝐴](𝐼 − 𝐵)𝑢, 𝐵𝑢) + (iℎ−1[𝑃, 𝐴](𝐼 − 𝐵)𝑢, (𝐼 − 𝐵)𝑢)

⩾ 𝑐‖𝐵𝑢‖2
𝐻1

scl

− ‖iℎ−1[𝑃, 𝐴]𝐵𝑢‖𝐻−1
scl

(𝑁)‖(𝐼 − 𝐵)𝑢‖𝐻1
scl

(𝑁)

− ‖iℎ−1[𝑃, 𝐴](𝐼 − 𝐵)𝑢‖𝐻−1
scl

(𝑁)

(‖𝐵𝑢‖𝐻1
scl

(𝑁) + ‖(𝐼 − 𝐵)𝑢‖𝐻1
scl

(𝑁)

)
⩾ 𝑐‖𝐵𝑢‖2

𝐻1
scl

− 𝐶‖(𝐼 − 𝐵)𝑢‖2
𝐻1

scl

, (3.4)

for all𝑢 ∈ 𝐶∞
𝑐 (𝑀int). Herewe used that iℎ−1[𝑃, 𝐴] is of order 2 so it is a boundedmap from𝐻1

scl
(𝑁)

to 𝐻−1
scl

(𝑁). This completes the construction of 𝐴. We have so far proved the following estimate
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ANISOTROPIC CALDERÓN PROBLEM 9 of 35

for all 𝑢 ∈ 𝐶∞
𝑐 (𝑀int):

ℎ‖𝑢‖𝐻1
scl

(𝑁) ⩽ 𝐶‖(𝑃 − 𝐼)𝑢‖𝐿2(𝑁).

To prove the analogous estimate for general 𝑠, we may apply the above estimate in a small
extension (𝑀1, g) of (𝑀, g) (which is still nontrapping) to the function 𝜒(𝐼 − ℎ2Δg )

𝑠∕2𝑢 where
𝜒 ∈ 𝐶∞

𝑐 (𝑀int
1

) satisfies𝜒 = 1near𝑀, and𝑢 ∈ 𝐶∞
𝑐 (𝑀int). Commuting the cutoff𝜒 to the other side

of 𝑃 − 𝐼 produces commutator terms that are𝑂(ℎ∞) by pseudolocality and the support properties
of𝑢 and d𝜒, and these can be absorbed. See, for example, [3, Lemma4.3] for details. This argument
gives

ℎ‖𝑢‖𝐻𝑠+1
scl

(𝑁) ⩽ 𝐶‖(−ℎ2Δg − 𝐼)𝑢‖𝐻𝑠
scl

(𝑁), 𝑢 ∈ 𝐶∞
𝑐 (𝑀int). (3.5)

Finally, to improve the left hand side of (3.5) from 𝑠 + 1 to 𝑠 + 2, we do the following
computation:

ℎ‖𝑢‖𝐻𝑠+2
scl

(𝑁) = ℎ‖(−ℎ2Δg − 𝐼 + 2𝐼)𝑢‖𝐻𝑠
scl

(𝑁) ⩽ ℎ‖(−ℎ2Δg − 𝐼)𝑢‖𝐻𝑠
scl

(𝑁) + 2ℎ‖𝑢‖𝐻𝑠
scl

(𝑁)

⩽ ℎ‖(−ℎ2Δg − 𝐼)𝑢‖𝐻𝑠
scl

(𝑁) + 𝐶‖(−ℎ2Δg − 𝐼)𝑢‖𝐻𝑠−1
scl

(𝑁)

⩽ 𝐶‖(−ℎ2Δg − 𝐼)𝑢‖𝐻𝑠
scl

(𝑁), 𝑢 ∈ 𝐶∞
𝑐 (𝑀int),

where in the second last line we used (3.5). The proof is complete. □

Corollary 3.3. Assume the conditions in Lemma 3.2, let −2 ⩽ 𝑠 ⩽ 0, and let 𝑞 ∈ 𝐿∞(𝑀) with‖𝑞‖𝐿∞(𝑀) ⩽ 𝐵. Then there are 𝐶 = 𝐶(𝑀, g , 𝑠) > 0 and ℎ0 = ℎ0(𝑀, g , 𝑠, 𝐵) > 0 such that for 0 < ℎ ⩽

ℎ0 one has

ℎ‖𝑢‖𝐻𝑠+2
scl

(𝑁) ⩽ 𝐶‖(−ℎ2(Δg − 𝑞(𝑥)) − 𝐼)𝑢‖𝐻𝑠
scl

(𝑁), 𝑢 ∈ 𝐶∞
𝑐 (𝑀int).

Proof. We have ‖𝑞𝑢‖𝐻𝑠
scl

(𝑁) ⩽ ‖𝑞𝑢‖𝐿2(𝑁) ⩽ ‖𝑞‖𝐿∞(𝑁)‖𝑢‖𝐻𝑠+2
scl

(𝑁) provided −2 ⩽ 𝑠 ⩽ 0. Then by
Lemma 3.2 we have

‖(−ℎ2(Δg − 𝑞(𝑥)) − 𝐼)𝑢‖𝐻𝑠
scl

(𝑁) ⩾ ‖(−ℎ2Δg − 𝐼)𝑢‖𝐻𝑠
scl

(𝑁) − ℎ2‖𝑞𝑢‖𝐻𝑠
scl

(𝑁)

⩾ 𝑐ℎ‖𝑢‖𝐻𝑠+2
scl

(𝑁) − ‖𝑞‖𝐿∞(𝑁)ℎ
2‖𝑢‖𝐻𝑠+2

scl
(𝑁).

Choosing ℎ0 = 𝑐∕(2𝐵) completes the proof. □

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Denote 𝐄 = 𝑞,ℎ−1(𝐶∞
𝑐 (𝑀int)). Then 𝐄 is a subspace of𝐻−2

scl
(𝑁), and for ℎ

small any element of𝐄 can bewritten uniquely as𝑞,ℎ−1𝑢 for some 𝑢 ∈ 𝐶∞
𝑐 (𝑀int) byCorollary 3.3.

Let 𝑓 ∈ 𝐿2(𝑀), and define the linear operator 𝑇∶ 𝐄 → ℝ by

𝑇(∗
𝑞,ℎ−1𝑧) = ⟨𝑓, 𝑧⟩𝐿2(𝑀), 𝑧 ∈ 𝐶∞

𝑐 (𝑀int),
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10 of 35 MA et al.

where ∗
𝑞,ℎ−1 is the dual operator of 𝑞,ℎ−1 . We have ∗

𝑞,ℎ−1 = 𝑞,ℎ−1 . Corollary 3.3 gives

|𝑇(∗
𝑞,ℎ−1𝑧)| ⩽ ‖𝑓‖𝐿2(𝑀)‖𝑧‖𝐿2(𝑀) ⩽ ‖𝑓‖𝐿2(𝑀)𝐶ℎ‖∗

𝑞,ℎ−1𝑧‖𝐻−2
scl

(𝑁).

This implies 𝑇 is a bounded linear operator on 𝐄, thus by the Hahn-Banach theorem there exists
a linear functional �̂� on𝐻−2

scl
(𝑁) that extends 𝑇 from 𝐄 to𝐻−2

scl
(𝑁) such that

‖�̂�‖ ⩽ 𝐶ℎ‖𝑓‖𝐿2(𝑀).

Because 𝐻−2
scl

(𝑁) is the dual space of 𝐻2
scl

(𝑁) and it is a Hilbert space, by the Riesz represen-
tation theorem there exists a function 𝑣 ∈ 𝐻2

scl
(𝑁) such that �̂�(𝑧) = ⟨𝑣, 𝑧⟩ for all 𝑧 ∈ 𝐶∞

𝑐 (𝑀int).
Furthermore, ‖𝑣‖𝐻2

scl
(𝑁) = ‖�̂�‖ ⩽ 𝐶ℎ‖𝑓‖𝐿2(𝑀). Now set 𝑣|𝑀 = 𝑢, then for all 𝑧 ∈ 𝐶∞

𝑐 (𝑀int) we
have

⟨𝑞,ℎ−1𝑢, 𝑧⟩ = ⟨𝑢,∗
𝑞,ℎ−1𝑧⟩ = ⟨𝑣,∗

𝑞,ℎ−1𝑧⟩ = �̂�(∗
𝑞,ℎ−1𝑧) = 𝑇(∗

𝑞,ℎ−1𝑧) = ⟨𝑓, 𝑧⟩.
This gives existence of a solution with the desired estimate. □

4 THE CASE OF SIMPLEMANIFOLDS

In this section we construct special solutions of (1.1) on a simple manifold following arguments
in [3], and give the proof of Theorem 1.1.

4.1 Special solutions on simple manifolds

Let (𝑀, g) be a simple manifold. We wish to construct solutions of (1.1) in the form of 𝑢 = 𝑒i𝜆𝜙𝑎 +

𝑅. A straightforward computation gives

𝑞,𝜆(𝑒
i𝜆𝜙𝑎) = 𝑒i𝜆𝜙

[
𝜆2(|d𝜙|2g − 1)𝑎 − 𝜆g ,𝜙𝑎 − (Δg − 𝑞)𝑎

]
, g ,𝜙 ∶= 2i⟨d𝜙, d⋅⟩g + iΔg𝜙. (4.1)

Here g ,𝜙 is a first-order linear differential operator depending on g and 𝜙. Substituting the ansatz
𝑢 = 𝑒i𝜆𝜙𝑎 + 𝑅 into (1.1), with the help of (4.1) we see that 𝑞,𝜆𝑢 = 0 provided that

𝑞,𝜆𝑅 = 𝑒i𝜆𝜙
[
−𝜆2(|d𝜙|2g − 1)𝑎 + 𝜆g ,𝜙𝑎 + (Δg − 𝑞)𝑎

]
in 𝑀. (4.2)

We will construct a real-valued phase function 𝜙 and an amplitude 𝑎 by making the coefficients
of 𝜆2 and 𝜆 in (4.2) to be zero so that (4.2) can be simplified.
First, we solve |d𝜙|2

g
= 1. This nonlinear PDE is known as the eikonal equation. Since 𝑀 is

simple, we can extend𝑀 to a larger simple compact manifold𝑀1 such that𝑀 ⊂ 𝑀int
1
, where𝑀int

1
signifies the interior of 𝑀1. Let 𝑦 ∈ 𝜕𝑀1. By the properties of simple manifolds [19, Section 3.8],
any 𝑥 belonging to𝑀1 can be expressed as 𝑥 = exp𝑦(𝑟𝜃)with certain 𝑟 > 0 and 𝜃 ∈ 𝑆𝑦𝑀 ∶= {𝜉 ∈

𝑇𝑦𝑀 ; |𝜉|g = 1}. Here the map exp𝑦 , parameterized by 𝑦, is the exponential map defined on 𝑀1,
and it defines the so-called polar normal coordinates on𝑀 by identifying 𝑥 with the coordinates
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ANISOTROPIC CALDERÓN PROBLEM 11 of 35

(𝑟, 𝜃) ∈ ℝ+ × 𝑆𝑦𝑀. In these coordinates, the metric g can be represented as

g|(𝑟,𝜃) = d𝑟2 + g0(𝑟, 𝜃)d𝜃
2,

where g0 is another positive-definite Riemannian metric, and there holds |g| = |g0|. The coordi-
nate 𝑟 can be used to define a distance function from a point 𝑥 to 𝑦 by setting distg (𝑥, 𝑦) ∶= 𝑟. We
now choose

𝜙(𝑥) = ±distg (𝑥, 𝑦) = ±𝑟, 𝑥 ∈ 𝑀, 𝑦 ∈ 𝜕𝑀1, (4.3)

thus 𝜕𝜃𝜙 = 0, and so |d𝜙|2g = (±𝜕𝑟𝑟)
2 = 1. Hence the eikonal equation is solved, and we can

simplify (4.2) to

𝑞,𝜆𝑅 = 𝑒i𝜆𝜙[𝜆g ,𝜙𝑎 + (Δg − 𝑞)𝑎]. (4.4)

Second, we fix an integer 𝐽 ∈ ℕ, set 𝑎−1 ≡ 0 and look for an amplitude 𝑎 having the form 𝑎 =∑𝐽
𝑗=−1 𝜆−𝑗𝑎𝑗 . After substituting this into (4.4), it follows that

𝑞,𝜆𝑅 = 𝑒i𝜆𝜙
𝐽∑

𝑗=0

𝜆−𝑗+1[g ,𝜙𝑎𝑗 + (Δg − 𝑞)𝑎𝑗−1] + 𝑒i𝜆𝜙𝜆−𝐽(Δg − 𝑞)𝑎𝐽, in 𝑀. (4.5)

Because 𝑎−1 ≡ 0, the following transport equations for 𝑎𝑗 can be solved iteratively starting from
𝑗 = 0 until 𝑗 = 𝐽:

g ,𝜙𝑎𝑗 = (−Δg + 𝑞)𝑎𝑗−1. (4.6)

Recall (4.3) and g ,𝜙 defined in (4.1). By the choice of 𝜙 we have ⟨d𝜙, d𝑎𝑗⟩g = ±𝜕𝑟𝑎𝑗 . This reduces
the Equation (4.6) to

±2i𝜕𝑟𝑎𝑗 ± i|g|−1
2 𝜕𝑟

(|g| 1
2

)
𝑎𝑗 = (−Δg + 𝑞)𝑎𝑗−1 ⇔ 𝜕𝑟

(|g| 1
4 𝑎𝑗

)
= ∓i|g| 1

4 (−Δg + 𝑞)𝑎𝑗−1∕2,

which implies for 𝑗 = 0, 1, … , 𝐽,

𝑎𝑗(𝑟, 𝜃) = |g(𝑟, 𝜃)|−1∕4

[
𝑏𝑗(𝜃) ∓

i

2 ∫
𝑟

0
|g(𝑠, 𝜃)|1∕4(−Δg + 𝑞(𝑠, 𝜃))𝑎𝑗−1(𝑠, 𝜃) d𝑠

]
, (4.7)

where 𝑏𝑗 are any smooth functions. Especially, due to 𝑎−1 ≡ 0 we have

𝑎0(𝑟, 𝜃) = |g(𝑟, 𝜃)|−1∕4𝑏(𝜃), (4.8)

where 𝑏 is a smooth function. Readers may note that 𝑎0 is independent of the potential. After
solving 𝑎𝑗 , we can substitute (4.6) into (4.5) to further reduce the original equation to

𝑞,𝜆𝑅 = 𝑒i𝜆𝜙𝜆−𝐽(Δg − 𝑞)𝑎𝐽 in 𝑀,
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12 of 35 MA et al.

where 𝑎𝐽 is determined by (4.7). By Proposition 3.1, for 𝜆 large there is 𝑅 ∈ 𝐻2(𝑀) solving
the above equation such that ‖𝑅‖𝐿2(𝑀) ⩽ 𝐶𝜆−1‖𝑒i𝜆𝜙𝜆−𝐽(Δg − 𝑞)𝑎𝐽‖𝐿2(𝑀). We summarize the
construction above as follows. For our purposes we choose 𝐽 = 0.

Proposition 4.1. Let (𝑀, g) be a simple manifold and𝑀 ⊂ 𝑀int
1
, where𝑀1 is also simple. Let 𝑦 ∈

𝜕𝑀1 and (𝑟, 𝜃) be the polar normal coordinates in𝑀1 with center at 𝑦. Let also ‖𝑞‖𝐿∞(𝑀) ⩽ 𝐵. Then
for 𝜆 ⩾ 𝜆0(𝑀, g , 𝐵) the equation 𝑞,𝜆𝑢 = 0 in𝑀 has a solution of the form

𝑢 = 𝑒i𝜆𝑟𝑎 + 𝑅, (4.9)

where 𝑎 solves the transport equation g ,𝑟𝑎 = 0 defined in (4.1), and 𝑅 satisfies

‖𝑅‖𝐿2(𝑀) ⩽ 𝐶𝜆−1‖(Δg − 𝑞)𝑎‖𝐿2(𝑀),

for a constant𝐶 = 𝐶(𝑀, g) independent of 𝜆. The solution𝑎 of g ,𝑟𝑎 = 0 in polar normal coordinates
is given by 𝑎 = |g|−1∕4𝑏(𝜃), where 𝑏(𝜃) is any smooth function in 𝜃.

4.2 Proof of Theorem 1.1

We now give the proof of Theorem 1.1. Assume Λ𝜆
𝑞+𝑝 = Λ𝜆

𝑞 for some 𝜆 ⩾ 𝜆0, where 𝜆0 will be
determined later. SinceΛ𝜆

𝑞 = Λ0
𝑞−𝜆2 andΛ𝜆

𝑞+𝑝 = Λ0
𝑞+𝑝−𝜆2 , a standard integration by parts (see, for

example, [3, Lemma 6.1]) implies that

∫𝑀
𝑝�̄�1𝑢2 d𝑉g =

((
Λ𝜆

𝑞+𝑝 − Λ𝜆
𝑞

)
𝑢1, 𝑢2

)
𝐿2(𝜕𝑀)

= 0 (4.10)

whenever 𝑢1 and 𝑢2 are any 𝐻1(𝑀) solutions of (1.1) corresponding to 𝑞 + 𝑝 and 𝑞, respectively.
We also note that the condition Λ𝜆

𝑞+𝑝 = Λ𝜆
𝑞 together with a boundary determination result imply

that 𝑝|𝜕𝑀 = 0. This is proved for smooth potentials, for example, in [3] and for Hölder continuous
potentials in [8, Proposition A.1] (recall that 𝑞, 𝑝 ∈ 𝐻𝑠(𝑀)where 𝑠 > 𝑛

2
, so 𝑞, 𝑝 ∈ 𝐶𝛼(𝑀) for some

𝛼 > 0 by Sobolev embedding).
Due to the conditions ‖𝑞‖𝐻𝑠 ⩽ 𝐵, ‖𝑝‖𝐻𝑠 ⩽ 𝐵 stated in Theorem 1.1 and Sobolev embed-

ding, we have ‖𝑞‖𝐿∞ ⩽ 𝐶𝐵, ‖𝑞 + 𝑝‖𝐿∞ ⩽ 𝐶𝐵 where 𝐶 = 𝐶(𝑀, g , 𝑠). By Proposition 4.1, for 𝜆 ⩾

𝜆0(𝑀, g , 𝑠, 𝐵) we can choose solutions 𝑢1, 𝑢2 having the form

⎧⎪⎨⎪⎩
𝑢1(𝑟, 𝜃) = 𝑒i𝜆𝑟|g(𝑟, 𝜃)|−1∕4𝑏(𝜃) + 𝑟1,

𝑢2(𝑟, 𝜃) = 𝑒i𝜆𝑟|g(𝑟, 𝜃)|−1∕4 + 𝑟2,

where (𝑟, 𝜃) are polar normal coordinates in 𝑀1 with center at some 𝑦 ∈ 𝜕𝑀1, and 𝑏(𝜃) will be
chosen later. In these coordinates, d𝑉g = |g|1∕2 d𝑟 d𝜃. Proposition 4.1 also gives

‖𝑟1‖𝐿2(𝑀) ⩽ 𝐶𝜆−1‖𝑏‖𝐻2(𝜕+𝑆𝑦𝑀1)
, ‖𝑟2‖𝐿2(𝑀) ⩽ 𝐶𝜆−1. (4.11)
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ANISOTROPIC CALDERÓN PROBLEM 13 of 35

Substituting 𝑢1, 𝑢2 into (4.10), we have

0 = ∫𝑀
𝑝𝑢1�̄�2 d𝑉g = ∫𝑀

𝑝(𝑒i𝜆𝑟|g|−1∕4𝑏(𝜃) + 𝑟1)(𝑒
−i𝜆𝑟|g|−1∕4 + 𝑟2) d𝑉g

= ∫𝑀
𝑝[|g|−1∕2𝑏(𝜃) + 𝑒−i𝜆𝑟|g|−1∕4𝑟1 + 𝑒i𝜆𝑟|g|−1∕4𝑏(𝜃)𝑟2 + 𝑟1𝑟2] d𝑉g . (4.12)

Recall d𝑉g = |g|1∕2 d𝑟 d𝜃 and ∫ 𝜏𝑀1
(𝑦,𝜃)

0
𝑝(𝑟, 𝜃) d𝑟 = 𝐼𝑝(𝑦, 𝜃)where 𝐼 is the geodesic ray transform

on𝑀1. Here we assume that 𝑝 is extended by zero to𝑀1. Thus by Santaló’s formula we also have

∫𝑀
𝑝(𝑟, 𝜃)𝑏(𝜃)|g(𝑟, 𝜃)|−1∕2 d𝑉g = ∫𝜕+𝑆𝑦𝑀1

𝐼𝑝(𝑦, 𝜃)𝑏(𝜃) d𝜃. (4.13)

From 𝑝 ∈ 𝑠(𝐵)where 𝑠 > 𝑛

2
and from the Sobolev embedding we can conclude that ‖𝑝‖𝐿∞(𝑀) ⩽

𝐶‖𝑝‖𝐻𝑠(𝑀) ⩽ 𝐶𝐵‖𝑝‖𝐿2(𝑀). Therefore, from (4.11)–(4.13) it follows that, with implied constants
depending on 𝐵,

|||||∫𝜕+𝑆𝑦𝑀1

𝐼𝑝(𝑦, 𝜃)𝑏(𝜃) d𝜃
||||| ≲ ‖𝑝‖𝐿2(𝑀)‖𝑟1‖𝐿2(𝑀) + ‖𝑝‖𝐿∞(𝑀)‖𝑏‖𝐿2(𝑀)‖𝑟2‖𝐿2(𝑀)

+ ‖𝑝‖𝐿∞(𝑀)‖𝑟1‖𝐿2(𝑀)‖𝑟2‖𝐿2(𝑀)

≲ ‖𝑝‖𝐿2(𝑀)[‖𝑟1‖𝐿2(𝑀) + (‖𝑏‖𝐿2(𝜕+𝑆𝑦𝑀1)
+ ‖𝑟1‖𝐿2(𝑀))‖𝑟2‖𝐿2(𝑀)]

≲ 𝜆−1‖𝑝‖𝐿2(𝑀)‖𝑏‖𝐻2(𝜕+𝑆𝑦𝑀1)
,

where we used (4.11). This estimate further gives

|||||∫𝜕+𝑆𝑀1

𝐼𝑝(𝑦, 𝜃)𝑏(𝜃) d(𝜕𝑆𝑀)
||||| ⩽ ∫𝜕𝑀1

|||||∫𝜕+𝑆𝑦𝑀1

𝐼𝑝(𝑦, 𝜃)𝑏(𝜃) d𝜃
||||| d𝑦

≲ 𝜆−1‖𝑝‖𝐿2(𝑀) ∫𝜕𝑀1

‖𝑏‖𝐻2(𝜕+𝑆𝑦𝑀1)
d𝑦.

Note that the function 𝑏(𝜃) depends on 𝑦.
Choosing 𝑏(𝜃) = ⟨𝜈𝑦, 𝜃⟩𝐼(𝐼∗𝐼𝑝), inserting this in the above inequality, and using the Santaló

formula (Lemma 2.1) and boundedness of 𝐼 and 𝐼∗𝐼 (Lemmas 2.3 and 2.4), we obtain

‖𝐼∗𝐼𝑝‖2
𝐿2(𝑀1)

≲ 𝜆−1‖𝑝‖𝐿2(𝑀)‖𝐼(𝐼∗𝐼𝑝)‖𝐻2(𝜕+𝑆𝑀1)
≲ 𝜆−1‖𝑝‖𝐿2(𝑀)‖𝐼∗𝐼𝑝‖𝐻2(𝑀1)

≲ 𝜆−1‖𝑝‖2
𝐻1(𝑀)

. (4.14)

Here we also used the condition 𝑝|𝜕𝑀 = 0, which allows us to consider 𝑝 as a function in𝐻1(𝑀1)

with support in 𝑀. Using the interpolation ‖𝑓‖2
𝐻1(𝑀1)

⩽ 𝐶‖𝑓‖𝐿2(𝑀1)
‖𝑓‖𝐻2(𝑀1)

[26, Proposition
3.1] between Sobolev spaces, we see ‖𝐼∗𝐼𝑝‖2

𝐻1(𝑀1)
can be bounded by the product of ‖𝐼∗𝐼𝑝‖𝐿2(𝑀1)
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14 of 35 MA et al.

and ‖𝐼∗𝐼𝑝‖𝐻2(𝑀1)
. The 𝐿2 norm of 𝐼∗𝐼𝑝 can be estimated from (4.14), while the 𝐻2 norm of 𝐼∗𝐼𝑝

can be estimated by using the continuity of 𝐼∗𝐼, thus

‖𝐼∗𝐼𝑝‖2
𝐻1(𝑀1)

⩽ 𝐶‖𝐼∗𝐼𝑝‖𝐿2(𝑀1)
‖𝐼∗𝐼𝑝‖𝐻2(𝑀1)

≲ 𝜆−1∕2‖𝑝‖2
𝐻1(𝑀1)

.

Recall that 𝑝 ∈ 𝑠(𝐵) with 𝑠 > 𝑛∕2 ⩾ 1, so ‖𝑝‖𝐻1(𝑀1)
≲ ‖𝑝‖𝐿2(𝑀1)

. This together with the
inequality above gives

‖𝐼∗𝐼𝑝‖2
𝐻1(𝑀1)

≲ 𝜆−1∕2‖𝑝‖2
𝐿2(𝑀1)

.

Because (𝑀, g) is assumed to be a simplemanifold, by Lemma2.4we know that 𝐼∗𝐼 is stably invert-
ible, namely, ‖𝑝‖𝐿2(𝑀1)

⩽ 𝐶‖𝐼∗𝐼𝑝‖𝐻1(𝑀1)
. Combining this with the last displayed equation above,

we arrive at

‖𝑝‖2
𝐿2(𝑀1)

⩽ 𝐶𝐵𝜆
−1∕2‖𝑝‖2

𝐿2(𝑀1)
⇒ (1 − 𝐶

1∕2
𝐵

𝜆−1∕4)‖𝑝‖𝐿2(𝑀1)
⩽ 0.

By setting 𝜆0(𝑀, g , 𝐵) ∶= 2𝐶2
𝐵
and choosing 𝜆 ⩾ 𝜆0(𝑀, g , 𝐵), we can conclude from the above that‖𝑝‖𝐿2(𝑀) ⩽ 0, so 𝑝 = 0 in𝑀. This completes the proof of Theorem 1.1.

5 PROOF OF THEOREM 1.3

In this section, we present the proof of Theorem 1.3. As in the proof of Theorem 1.1, the assumption
Λ𝜆

𝑞+𝑝 = Λ𝜆
𝑞 leads to the integral identity

∫𝑀
𝑝𝑢1𝑢2 d𝑉g = 0. (5.1)

Here,𝑢1 and 𝑢2 solve (1.1) with potentials being 𝑞 + 𝑝 and 𝑞, respectively.Wewill choose 𝑢1 and 𝑢2

to beGaussian beamquasimodes concentrated near a geodesic 𝛾 based onTheorem6.2. According
to Theorem 6.2, 𝑢𝑗 (𝑗 = 1, 2) can be represented as 𝑢𝑗 = 𝑣 + 𝑟𝑗 , where 𝑣 is the leading term and
𝑟𝑗 are the corresponding remainder terms. Here 𝑣 is the leading term of both 𝑢1 and 𝑢2. Note that
𝑢1 and 𝑢2 have the same leading term because the leading term depends only on the metric and
the geodesic. Since the leading term 𝑣 concentrate on the geodesic 𝛾, the term ∫𝑀 𝑝 |𝑣|2 can be
estimated using Theorem 6.1. This implies

||||∫𝑀
𝑝 |𝑣|2 d𝑉g − 𝐼𝑝(𝛾)

|||| ⩽ 𝐶‖𝑝‖𝐶1(𝑀)ℎ
1∕2, (5.2)

where 𝐼𝑝 stands for the geodesic ray transform of 𝑝. Next substituting 𝑢𝑗 = 𝑣 + 𝑟𝑗 into (5.1) for
𝑗 = 1, 2, we obtain

∫𝑀
𝑝|𝑣|2 d𝑉g = −∫𝑀

𝑝(𝑣𝑟1 + 𝑣𝑟2 + 𝑟1𝑟2) d𝑉g , (5.3)

where 𝑟1 and 𝑟2 are error terms that can be estimated using the following result.
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ANISOTROPIC CALDERÓN PROBLEM 15 of 35

Lemma 5.1. Let 𝑟1 and 𝑟2 be given as above. There exists a constant 𝐶 uniformly with respect to 𝛾

such that ‖𝑟𝑗‖𝐿2(𝑀) ⩽ 𝐶𝜆−1 for 𝜆 ⩾ 𝜆0(𝑀, g , 𝐵), 𝑗 = 1, 2.

Proof. Weonly give the proof for 𝑟1, and that of 𝑟2 is similar. By Proposition 3.1 we have ‖𝑟1‖𝐿2(𝑀) ⩽

𝐶𝜆−1‖𝑞,𝜆𝑣‖𝐿2(𝑀). The quantity 𝑞,𝜆𝑣 can be expressed in terms of ℎ as 𝜆2(−ℎ2Δg − 1)𝑣 + 𝑞𝑣.
From Theorem 6.2 we can bound the 𝐿2-norm of both (−ℎ2Δg − 1)𝑣 and 𝑣, thus

‖𝑟1‖𝐿2(𝑀) ⩽ 𝐶1𝜆
−1(‖𝜆2(−ℎ2Δg − 1)𝑣‖𝐿2(𝑀) + ‖𝑞𝑣‖𝐿2(𝑀))

⩽ 𝐶1𝜆
−1(𝐶2𝜆

2ℎ𝐾 + 𝐶2‖𝑞‖𝐿∞(𝑀)) ⩽ 𝐶3𝜆
−1,

where𝐾 ⩾ 2. The constant𝐶1 comes from the resolvent estimate given in Proposition 3.1, so it does
not depend on the choice of the geodesic 𝛾. The uniformity of 𝐶2 with respect to 𝛾 is guaranteed
by Theorem 6.1, respectively. Therefore, 𝐶3 is uniform with respect to the choice of the geodesic
𝛾. The proof is done. □

The combination of (5.2), (5.3) and Lemma 5.1 entails

|𝐼𝑝(𝛾)| ⩽ 𝐶ℎ1∕2‖𝑝‖𝐶1(𝑀) +
||||∫𝑀

𝑝(𝑣𝑟1 + 𝑣𝑟2 + 𝑟1𝑟2) d𝑉g

||||
⩽ 𝐶ℎ1∕2‖𝑝‖𝐶1(𝑀) +

[‖𝑣‖𝐿2(𝑀)(𝜆−1) + (𝜆−1)
]‖𝑝‖𝐿∞(𝑀).

Since 𝑝 ∈ 𝑠(𝐵) and 𝑠 > 1 + 𝑛

2
, we have ‖𝑝‖𝐿∞(𝑀) ⩽ ‖𝑝‖𝐶1(𝑀) ≲ ‖𝑝‖𝐻𝑠(𝑀) ⩽ 𝐵‖𝑝‖𝐿2(𝑀). By The-

orem 6.2 we also have that ‖𝑣‖𝐿2(𝑀) ⩽ 𝐶. The combination of these with the above inequality
imply

|𝐼𝑝(𝛾)| ⩽ 𝐶ℎ1∕2 ‖𝑝‖𝐿2(𝑀).

This further gives (writing 𝜆 = ℎ−1)

‖𝐼𝑝‖𝐿2(𝜕+𝑆𝑀1)
⩽ 𝐵(𝜆−1∕2)‖𝑝‖𝐿2(𝑀). (5.4)

Here we considered𝑀 to be embedded into a slightly larger manifold𝑀1 and extended 𝑝 by zero
to 𝑀1 as in Section 4.2. Then by using (i) the stable invertibility of 𝐼 with respect to the 𝐿2(𝑀1)

and𝐻1(𝜕+𝑆𝑀1) norms (cf. (1.4)), (ii) the interpolation ‖𝜑‖2
𝐻1(𝜕+𝑆𝑀1)

⩽ ‖𝜑‖𝐿2(𝜕+𝑆𝑀1)
‖𝜑‖𝐻2(𝜕+𝑆𝑀1)

,
(iii) the estimate (5.4), (iv) the continuity of 𝐼 ∶ 𝐻2(𝑀1) → 𝐻2(𝜕+𝑆𝑀1) (cf. (1.5)) and (v) the
assumption 𝑝 ∈ 𝑠(𝐵) sequentially, we can make the following derivation:

‖𝑝‖2
𝐿2(𝑀1)

⩽ ‖𝐼𝑝‖2
𝐻1(𝜕+𝑆𝑀1)

⩽ ‖𝐼𝑝‖𝐿2(𝜕+𝑆𝑀1)
‖𝐼𝑝‖𝐻2(𝜕+𝑆𝑀1)

⩽ (𝜆−1∕2)‖𝑝‖𝐿2(𝑀1)
‖𝑝‖𝐻2(𝑀1)

⩽ (𝜆−1∕2)‖𝑝‖2
𝐿2(𝑀1)

, ∀𝜆 ⩾ 𝜆𝑀,g ,𝐵.

The implicit constant also depends on 𝐵. Therefore, there exists a constant 𝐶 such that

(1 − 𝐶𝜆−1∕4)‖𝑝‖𝐿2(𝑀1)
⩽ 0, ∀𝜆 ⩾ 𝜆𝑀,g ,𝐵. (5.5)

Hence, we conclude 𝑝 = 0 in𝑀. This concludes the proof of Theorem 1.3.
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16 of 35 MA et al.

Remark 5.1. When Λ𝜆
𝑞+𝑝 ≠ Λ𝜆

𝑞, by (4.10) and the arguments in Section 5 we obtain

𝐼𝑝(𝛾) = ((Λ𝜆
𝑞+𝑝 − Λ𝜆

𝑞)𝑢1, 𝑢2)𝐿2(𝜕𝑀) + ‖𝑝‖𝐿2(𝑀)(𝜆−𝑎)

for any 𝑎 ∈ (1∕3, 1∕2), where we used the assumption 𝑝 ∈ 𝑠(𝐵) for 𝑠 > 𝑛∕2 + 1. We denote 𝜖 ∶=‖Λ𝜆
𝑞+𝑝 − Λ𝜆

𝑞‖𝐻1∕2(𝜕𝑀)→𝐻−1∕2(𝜕𝑀), and 𝑢𝑗 = 𝑣 + 𝑟𝑗 (𝑗 = 1, 2) as in Section 5, then

‖𝑝‖𝐿2(𝑀1)
≲ ‖𝐼𝑝‖𝐻1(𝜕+𝑆𝑀1)

≲ 𝜖‖𝑣 + 𝑟1‖𝐻1∕2(𝜕𝑀)‖𝑣 + 𝑟2‖𝐻1∕2(𝜕𝑀) + ‖𝑝‖𝐿2(𝑀)𝜆
−𝑎

≲ 𝜖(‖𝑣‖2
𝐻1(𝑀)

+ ‖𝑣‖𝐻1(𝑀)‖𝑟‖𝐻1(𝑀) + ‖𝑟‖2
𝐻1(𝑀)

) + ‖𝑝‖𝐿2(𝑀)𝜆
−𝑎.

In the derivation above, because both 𝑟1 and 𝑟2 follow the same estimate with respect to 𝜆 and 𝛿,
we do not distinguish them but simply represent both of them as 𝑟. Absorbing the 𝜆−𝑎‖𝑝‖𝐿2(𝑀)

term by the left-hand side, we finally obtain

(1 − 𝜆−𝑎)‖𝑝‖𝐿2(𝑀1)
⩽ 𝐶‖Λ𝜆

𝑞+𝑝 − Λ𝜆
𝑞‖𝐻1∕2(𝜕𝑀)→𝐻−1∕2(𝜕𝑀)

× (‖𝑣‖2
𝐻1(𝑀)

+ ‖𝑣‖𝐻1(𝑀)‖𝑟‖𝐻1(𝑀) + ‖𝑟‖2
𝐻1(𝑀)

). (5.6)

The 𝐿2 norm of 𝑣 and 𝑟 can be investigated using the estimates given in Theorem 6.2. To obtain
their𝐻1 norm, we need to analyze their gradients, which will give certain growth of order 𝜆𝑏1𝛿𝑏2

for certain 𝑏1, 𝑏2 ∈ ℝ. We defer this to future works.

Remark 5.2. Ourmethod can also be utilized to obtain stability estimates in certain Sobolev spaces.
However, in this case one can obtain Hölder-type stability estimates by examining the difference
between the DN maps at large frequency. This is consistent with the phenomenon of improved
stability for high frequency Schrödinger operators on ℝ𝑛, which has already been investigated in
the literature; see for instance [9] and the references therein.

6 GAUSSIAN BEAMSWITH UNIFORM CONSTANTS

In this section we give an invariant construction of Gaussian beam quasimodes with uniform
bounds for the underlying constants. Let (𝑀, g) be a compact manifold with smooth boundary.
For any (𝑥, 𝑣) ∈ 𝜕+𝑆𝑀 let 𝛾𝑥,𝑣 ∶ [0, 𝜏(𝑥, 𝑣)] → 𝑀 be the maximally extended unit speed geodesic
starting at 𝑥 in direction 𝑣. We allow the manifold to have trapped geodesics (that is, 𝜏(𝑥, 𝑣)may
be +∞ for some (𝑥, 𝑣)), but below we will work only with (𝑥, 𝑣) ∈ 𝑇 where

𝑇 = {(𝑥, 𝑣) ∈ 𝜕+𝑆𝑀 ∶ 𝜏(𝑥, 𝑣) ⩽ 𝑇}.

The following result states the existence of Gaussian beam quasimodes concentrating near 𝛾𝑥,𝑣

with uniform bounds over (𝑥, 𝑣) ∈ 𝑇 . Recall that 𝐼 denotes the geodesic X-ray transform on
(𝑀, g).

Theorem 6.1. Let (𝑀, g) be a compact oriented manifold with smooth boundary. Fix 𝑇 > 0 and
𝑘, 𝐾 ⩾ 0. There is a constant 𝐶 = 𝐶(𝑀, g , 𝑇, 𝑘, 𝐾) > 0 such that for any (𝑥, 𝑣) ∈ 𝑇 and ℎ ∈ (0, 1),
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ANISOTROPIC CALDERÓN PROBLEM 17 of 35

there is 𝑢 = 𝑢𝑥,𝑣,ℎ ∈ 𝐶∞(𝑀) satisfying||||∫𝑀
|𝑢|2𝜑 d𝑉g − 𝐼𝜑(𝑥, 𝑣)

|||| ⩽ 𝐶‖𝜑‖𝐶1(𝑀)ℎ
1∕2, (6.1)

‖(−ℎ2Δg − 1)𝑢‖𝐻𝑘(𝑀) ⩽ 𝐶ℎ𝐾,

uniformly over 0 < ℎ < 1 and 𝜑 ∈ 𝐶1(𝑀).

Theorem 6.1 is sufficient for proving Theorem 1.3. For later purposes, we also state a result that
describes the form of 𝑢𝑥,𝑣,ℎ more precisely and involves normalization in 𝐿𝑝. Below, for a tensor𝐴
at 𝑥 and a subspace 𝐹 of 𝑇𝑥𝑀 we write𝐴|𝐹 for the multilinear form that only acts on vectors in 𝐹.

Theorem 6.2. Let (𝑀, g) be a compact oriented manifold with smooth boundary. Fix constants
𝑇 > 0, 𝑝 ∈ [1,∞), 𝑘 ⩾ 0, and 𝐾 ⩾ 0. There is a constant 𝐶 = 𝐶(𝑀, g , 𝑇, 𝑝, 𝑘, 𝐾) > 0 such that for
any (𝑥, 𝑣) ∈ 𝑇 and ℎ ∈ (0, 1), there is 𝑢 = 𝑢𝑥,𝑣,ℎ ∈ 𝐶∞(𝑀) associated with 𝛾 = 𝛾𝑥,𝑣 and satisfying‖𝑢‖𝐿𝑝(𝑀) ⩽ 𝐶,

‖(−ℎ2Δg − 1)𝑢‖𝑊𝑘,𝑝(𝑀) ⩽ 𝐶ℎ𝐾,

supp(𝑢) ⊂ {𝑦 ∈ 𝑀 ∶ distg (𝑦, 𝛾([0, 𝜏(𝑥, 𝑣)])) ⩽ 𝐶−1},

uniformly over all 0 < ℎ < 1.
There is also a symmetric complex (1,1)-tensor 𝐻(𝑡) = 𝐻𝑥,𝑣(𝑡) on 𝑇𝛾(𝑡)𝑀, depending smoothly on

𝑡 ∈ [0, 𝜏(𝑥, 𝑣)] and satisfying

Im(𝐻(𝑡)♭) ⩾ 0, Im(𝐻(𝑡)♭)|�̇�(𝑡)⟂ ⩾ 𝐶−1g|�̇�(𝑡)⟂ ,
such that 𝑢 = 𝑢𝑥,𝑣,ℎ has the following form. If 𝑥0 ∈ 𝛾([0, 𝜏(𝑥, 𝑣)]) and if 𝑡1 < ⋯ < 𝑡𝑁𝑝

are the times
in [0, 𝜏(𝑥, 𝑣)] when 𝛾(𝑡𝑙) = 𝑥0, then in a small neighborhood𝑈 of 𝑥0 we have

𝑢|𝑈 = 𝑢(1) + ⋯ + 𝑢(𝑁𝑝),

where each 𝑢(𝑙) satisfies

𝑢(𝑙)|𝑈 = ℎ
−𝑛−1

2𝑝 𝑒iΦ
(𝑙)∕ℎ

(
𝑎(𝑙)
0

+ ℎ𝑎(𝑙)
1

+ ⋯ + ℎ𝑁𝑎(𝑙)
𝑁

)
𝜌.

Here 𝑁 = 𝑁(𝑀, g , 𝑇, 𝑝, 𝑘, 𝐾), and 𝜌 is a smooth cutoff function supported near 𝛾|[𝑡𝑙−𝜀,𝑡𝑙+𝜀]. The
phase Φ = Φ(𝑙) is independent of ℎ and satisfies for 𝑡 near 𝑡𝑙

Φ(𝛾(𝑡)) = 𝑡, ∇Φ(𝛾(𝑡)) = �̇�(𝑡), ∇2Φ(𝛾(𝑡)) = 𝐻(𝑡)♭, ‖Φ‖𝐶𝑘(𝑈) ⩽ 𝐶.

The amplitudes 𝑎(𝑙)
𝑗
are independent of ℎ, and for 𝑡 near 𝑡𝑙 one has

𝑎(𝑙)
0

(𝛾(𝑡)) = exp

[
−

1

2 ∫
𝑡

0
trg (𝐻(𝑠)) d𝑠

]
, ‖𝑎(𝑙)

𝑗
‖𝐶𝑘(𝑈) ⩽ 𝐶.

If 𝑝 = 2, then 𝑐𝑛𝑢 satisfies the conditions in Theorem 6.1 with 𝑐𝑛 = (∫
ℝ𝑛−1 𝑒−|𝑦|2 d𝑦)−1∕2.
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18 of 35 MA et al.

Remark 6.1. We note that if (𝑀, g) is compact and nontrapping, that is, 𝜏(𝑥, 𝑣) < ∞ for all
(𝑥, 𝑣) ∈ 𝜕+𝑆𝑀, then 𝑇 = 𝜕+𝑆𝑀 for sufficiently large 𝑇. If 𝜕𝑀 is strictly convex, this follows from
the continuity of 𝜏. In general, one can argue as follows: suppose 𝜏(𝑥𝑗, 𝑣𝑗) → ∞ for some sequence
(𝑥𝑗, 𝑣𝑗) ∈ 𝜕+𝑆𝑀. After choosing a subsequence, we have (𝑥𝑗, 𝑣𝑗) → (𝑥, 𝑣) ∈ 𝜕+𝑆𝑀. Since 𝜏 is
upper semicontinuous,

lim 𝜏(𝑥𝑗, 𝑣𝑗) ⩽ 𝜏(𝑥, 𝑣).

This is a contradiction, since 𝜏(𝑥, 𝑣) < +∞ by the nontrapping condition.

We will prove Theorems 6.1 and 6.2 in two parts: first in the case of nonself-intersecting
geodesics, and then in the self-intersecting case.

6.1 No self-intersection case

Let (𝑀, g) be a compact oriented manifold with smooth boundary. Fix 𝑇 > 0 and define

̃𝑇 ∶= {(𝑥, 𝑣) ∈ 𝑇 ∶ 𝛾𝑥,𝑣 does not self-intersect}.

Wewill prove Theorem6.2 for all (𝑥, 𝑣) ∈ ̃𝑇 , and in Section 6.2we reduce the general case (𝑥, 𝑣) ∈

𝑇 to this case.
Let (𝑥, 𝑣) ∈ ̃𝑇 and let 𝛾 = 𝛾𝑥,𝑣. We look for 𝑢 = 𝑢𝑥,𝑣,ℎ in the form

𝑢 = ℎ
−𝑛−1

2𝑝 𝑒𝑖Φ∕ℎ(𝑎0 + ℎ𝑎1 + ⋯ + ℎ𝑁𝑎𝑁)𝜌, (6.2)

where 𝜌 is a suitable cutoff function. The functions Φ and 𝑎𝑗 will be constructed in an invariant
fashion, but in order to do this we need some preparations.
We assume that (𝑀, g) is embedded in a closed manifold (𝑆, g) of the same dimension. We will

also consider a cutoff function 𝜒 ∈ 𝐶∞
𝑐 (ℝ) with 0 ⩽ 𝜒 ⩽ 1, 𝜒(𝑥) = 1 for |𝑥| ⩽ 1∕2, and 𝜒(𝑥) = 0

for |𝑥| ⩾ 1. We consider (𝑆, g) and 𝜒 to be fixed once and for all. The constructions and constants
below will depend on the choice of (𝑆, g) and 𝜒 but we will not write out this dependence.
Define

𝑈(𝛾𝑥,𝑣, 𝛿) = {(𝑡, 𝑦) ∶ 𝑡 ∈ (−𝛿, 𝜏(𝑥, 𝑣) + 𝛿), 𝑦 ⟂ �̇�𝑥,𝑣(𝑡), |𝑦| < 𝛿}, (6.3)

and let 𝛿𝑥,𝑣 be the supremum of 𝛿 ⩾ 0 such that the map 𝐹𝑥,𝑣 ∶ 𝑈(𝛾𝑥,𝑣, 𝛿) → 𝑆, (𝑡, 𝑦) ↦

exp𝛾𝑥,𝑣(𝑡)
(𝑦) is a diffeomorphism onto its image. By the inverse function theorem, since 𝑑𝐹𝑥,𝑣|(𝑡,0)

corresponds to the identity map, there is a positive lower bound for 𝛿𝑥,𝑣 that depends on the 𝐶2

norm of 𝐹𝑥,𝑣 on 𝑈(𝛾𝑥,𝑣, 1) (see, for example, [19, Lemma 11.2.6] for a similar argument). Hence,
the constant

inj𝐹(𝑀, g) ∶= inf
(𝑥,𝑣)∈𝑇

𝛿𝑥,𝑣

is positive due to the compactness of𝑀. Below we fix 𝛿 = inj𝐹(𝑀, g)∕2.
The phase function Φ is specified in the following lemma.
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ANISOTROPIC CALDERÓN PROBLEM 19 of 35

Lemma 6.3. Let 𝑁 ⩾ 0 be an integer. For any 𝛾 = 𝛾𝑥,𝑣 with (𝑥, 𝑣) ∈ 𝑇 there is a unique function
Φ = Φ𝑥,𝑣,𝑁 ∈ 𝐶∞(𝑀;ℂ) satisfying the following conditions for any 𝑡 ∈ [−𝛿, 𝜏(𝑥, 𝑣) + 𝛿]:

(a) ∇𝑗(⟨dΦ, dΦ⟩ − 1)(𝛾(𝑡)) = 0 for 0 ⩽ 𝑗 ⩽ 𝑁 + 2;
(b) Φ(𝛾(𝑡)) = 𝑡, dΦ(𝛾(𝑡)) = (�̇�(𝑡))♯;
(c) ∇2Φ(𝛾(0))|�̇�(0)⟂ = ig|�̇�(0)⟂ , ∇𝑗Φ(𝛾(0))|�̇�(0)⟂ = 0 for 3 ⩽ 𝑗 ⩽ 𝑁;

(d) Φ(exp𝛾(𝑡)(𝑦)) = 𝜒(|𝑦|∕𝛿)∑𝑁
𝑗=0

∇𝑗Φ|𝛾(𝑡)(𝑦,…,𝑦)

𝑗!
in𝑈(𝛾, 𝛿);

(e) Φ = 0 outside𝑈(𝛾, 𝛿).

There are constants 𝐶, 𝑐 > 0 only depending on (𝑀, g), 𝑇 and𝑁 such that

‖Φ‖𝐶𝑁(𝑀) ⩽ 𝐶, Im(∇2Φ)|�̇�(𝑡)⟂ ⩾ 𝑐g|�̇�(𝑡)⟂ (6.4)

whenever 𝑡 ∈ [−𝛿, 𝜏(𝑥, 𝑣) + 𝛿].

Define the transport operator 𝐿 by

𝐿𝑣 ∶=
1

i
(2⟨dΦ, d𝑣⟩ + (ΔgΦ)𝑣).

The amplitudes 𝑎𝑟 are given as follows.

Lemma 6.4. Let𝑁 ⩾ 0 be an integer. For any (𝑥, 𝑣) ∈ 𝑇 there are unique functions 𝑎𝑟 = 𝑎𝑟,𝑥,𝑣,𝑁 ∈

𝐶∞(𝑀;ℂ) with 0 ⩽ 𝑟 ⩽ 𝑁 satisfying the following conditions for any 𝑡 ∈ [−𝛿, 𝜏(𝑥, 𝑣) + 𝛿]:

(a) ∇𝑗(𝐿𝑎0)(𝛾(𝑡)) = 0 for 0 ⩽ 𝑗 ⩽ 𝑁;
(b) 𝑎0(𝛾(0)) = 1, ∇𝑗𝑎0(𝛾(0))|�̇�(0)⟂ = 0 for 1 ⩽ 𝑗 ⩽ 𝑁;
(c) ∇𝑗(𝐿𝑎𝑟 − Δg𝑎𝑟−1)(𝛾(𝑡)) = 0 for 0 ⩽ 𝑗 ⩽ 𝑁 and 1 ⩽ 𝑟 ⩽ 𝑁;
(d) 𝑎𝑟(𝛾(0)) = 0, ∇𝑗𝑎𝑟(𝛾(0))|�̇�(0)⟂ = 0 for 1 ⩽ 𝑟 ⩽ 𝑁 and 1 ⩽ 𝑗 ⩽ 𝑁;

(e) 𝑎𝑟(exp𝛾(𝑡)(𝑦)) = 𝜒(|𝑦|∕𝛿)∑𝑁
𝑗=0

∇𝑗𝑎𝑟|𝛾(𝑡)(𝑦,…,𝑦)

𝑗!
in𝑈(𝛾, 𝛿);

(f) 𝑎𝑟 = 0 outside𝑈(𝛾, 𝛿).

There is a constant 𝐶 > 0 only depending on (𝑀, g), 𝑇 and𝑁 such that

‖𝑎𝑟‖𝐶𝑁(𝑀) ⩽ 𝐶.

Moreover, if𝐻(𝑡) = ∇2Φ(𝛾(𝑡))♯, one has

𝑎0(𝛾(𝑡)) = exp

[
−

1

2 ∫
𝑡

0
trg (𝐻(𝑠)) d𝑠

]
. (6.5)

Proof of Theorem 6.2. We now prove Theorem 6.2 for (𝑥, 𝑣) ∈ ̃𝑇 . By Lemmas 6.3 and 6.4, the
𝐶𝑁(𝑀) norms ofΦ and 𝑎 are uniformly bounded over (𝑥, 𝑣) ∈ ̃𝑇 . Moreover, we have the estimate
Im

(
Φ(exp𝛾(𝑡)(𝑦))

)
⩾ 𝑐|𝑦|2 − 𝐶|𝑦|3 where 𝑐, 𝐶 > 0 are uniform over (𝑥, 𝑣). We now choose 𝛿1 =

𝛿1(𝐶, 𝑐) < 𝛿 so that

Im
(
Φ(exp𝛾(𝑡)(𝑦))

)
⩾ 𝑐|𝑦|2∕2, |𝑦| < 𝛿1. (6.6)
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20 of 35 MA et al.

The function 𝜌 in Theorem 6.2 is chosen as 𝜌(𝑡, 𝑦) = 𝜒(|𝑦|∕𝛿1). Using the above facts, all constants
below will be uniform over (𝑥, 𝑣) ∈ ̃𝑇 .
We now compute the 𝐿𝑝(𝑀) normof 𝑢. Due to the presence of the cutoff function 𝜌, it is enough

to calculate the 𝐿𝑝 norm 𝑢 in 𝑈(𝛾, 𝛿). This along with (6.6) entails

‖𝑢‖𝑝

𝐿𝑝(𝑀)
≲ ∫

𝜏+𝛿

−𝛿 ∫|𝑦|<𝛿1

1

ℎ(𝑛−1)∕2
|𝑒−𝑐|𝑦|2∕2ℎ|𝑝 |g|1∕2 d𝑡 d𝑦 ≲ (2𝛿 + 𝜏)∫ℝ𝑛−1

𝑒−𝑐𝑝|𝑧|2∕2 d𝑧.

This shows that ‖𝑢‖𝐿𝑝(𝑀) ≲ 1 uniformly over (𝑥, 𝑣) ∈ ̃𝑇 .
Let us then denote 𝑓 = (−ℎ2Δg − 1)(𝑒iΦ∕ℎ𝑎) where 𝑎 = (𝑎0 + ℎ𝑎1 + ⋯ + ℎ𝑁𝑎𝑁)𝜒(|𝑦|∕𝛿1). A

direct computation shows that

𝑓 =
𝑒iΦ∕ℎ

ℎ(𝑛−1)∕(2𝑝)

[(|dΦ|2g − 1
)

𝑎𝜒(|𝑦|∕𝛿1) + ℎ𝑓1 + ⋯ + ℎ𝑁−1𝑓𝑁−1 − ℎ𝑁Δg (𝜒(𝑦∕𝛿1)𝑎𝑁)
]
,

where𝑓𝑗 are smooth functions vanishing of order𝑁 on 𝛾 for 1 ⩽ 𝑗 ⩽ 𝑁 − 1, due to the properties of
𝑎𝑘 in Lemma 6.4. Also note that each 𝑓𝑗 contains two terms: one involves the operator 𝐿 acting on
𝑎𝑘, and another term is involving derivatives of the cutoff function 𝜒(|𝑦|∕𝛿1). The term involving
derivatives of 𝜒(|𝑦|∕𝛿1) is (ℎ𝐾) for all 𝐾, due to the Gaussian nature of 𝑒iΦ∕ℎ. Thus we ignore
this term when we compute ‖𝑓‖𝐿𝑝(𝑀). Observe that

|𝑒iΦ∕ℎ| ⩽ 𝑒−𝑐|𝑦|2∕2ℎ in supp(𝑓).

This implies

|𝑓| ≲ 1

ℎ(𝑛−1)∕(2𝑝)
𝑒−𝑐|𝑦|2∕2ℎ(|𝑦|𝑁+1 + ℎ𝑁). (6.7)

It is enough to estimate ‖𝑓‖𝐿𝑝(𝑀) in the neighborhood {(𝑡, 𝑦) ∶ −𝛿 < 𝑡 < 𝜏 + 𝛿, |𝑦| < 𝛿1}where
𝑓 is supported. Here 𝜏 = 𝜏(𝑥, 𝑣). Then from (6.7) we obtain

‖𝑓‖𝑝

𝐿𝑝(𝑀)
≲

1

ℎ(𝑛−1)∕2 ∫
𝜏+𝛿

−𝛿 ∫|𝑦|<𝛿1

|𝑓|𝑝 d𝑦 d𝑡 ≲
(𝜏 + 2𝛿)

ℎ(𝑛−1)∕2 ∫|𝑦|<𝛿
|𝑒−𝑐|𝑦|2∕2ℎ(|𝑦|𝑁+1 + ℎ𝑁)|𝑝 d𝑦

≲
(𝜏 + 2𝛿)

ℎ(𝑛−1)∕2 ∫ℝ𝑛−1
|𝑒−𝑐|𝑧|2∕2 (|𝑧|𝑁+1ℎ(𝑁+1)∕2 + ℎ𝑁)|𝑝 ℎ

𝑛−1
2 d𝑧

≲ (𝜏 + 2𝛿)

[
ℎ

(𝑁+1)𝑝
2 ∫ℝ𝑛−1

𝑒−𝑐𝑝|𝑧|2∕2|𝑧|(𝑁+1)𝑝 d𝑧 + ℎ𝑁𝑝 ∫ℝ𝑛−1
𝑒−𝑐𝑝|𝑧|2∕2 d𝑧

]
≲ (𝜏 + 2𝛿)ℎ

(𝑁+1)𝑝
2 .

Since 𝜏(𝑥, 𝑣) ⩽ 𝑇 uniformly over (𝑥, 𝑣) ∈ ̃𝑇 and since 𝛿 is fixed, we conclude

‖𝑓‖𝐿𝑝(𝑀) ≲ ℎ
𝑁+1
2 .
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ANISOTROPIC CALDERÓN PROBLEM 21 of 35

In order to estimate the𝐿𝑝(𝑀)normof higher order derivatives of𝑓, we apply∇g on𝑓 and observe
that

ℎ(𝑛−1)∕(2𝑝)∇g𝑓 =
i∇gΦ

ℎ
𝑒iΦ∕ℎ

[(|dΦ|2g − 1
)

𝑎𝜒(|𝑦|∕𝛿1) +

𝑁−1∑
𝑗=1

ℎ𝑗𝑓𝑗 − ℎ𝑁Δg (𝜒(𝑦∕𝛿1)𝑎𝑁)

]

+ 𝑒iΦ∕ℎ∇g

[(|dΦ|2
g
− 1

)
𝑎𝜒(|𝑦|∕𝛿1) +

𝑁−1∑
𝑗=1

ℎ𝑗𝑓𝑗 − ℎ𝑁Δg (𝜒(𝑦∕𝛿1)𝑎𝑁)

]
.

Next, utilizing similar arguments as above, we obtain

|∇g𝑓| ≲ 1

ℎ(𝑛−1)∕(2𝑝)
𝑒−𝑐|𝑦|2∕2ℎ[ 1

ℎ
(|𝑦|𝑁+1 + ℎ𝑁) + (|𝑦|𝑁 + ℎ𝑁)

]
.

This further entails

‖∇g𝑓‖𝑝

𝐿𝑝(𝑀)
≲

(𝜏 + 2𝛿)

ℎ(𝑛−1)∕2 ∫|𝑦|<𝛿

||||𝑒−𝑐|𝑦|2∕2ℎ[ 1

ℎ
(|𝑦|𝑁+1 + ℎ𝑁) + (|𝑦|𝑁 + ℎ𝑁)

]||||𝑝 d𝑦

≲
(𝜏 + 2𝛿)

ℎ(𝑛−1)∕2 ∫ℝ𝑛−1

||||𝑒−𝑐|𝑧|2∕2 [ 1

ℎ

(
ℎ

𝑁+1
2 |𝑧|𝑁+1 + ℎ𝑁

)
+ (ℎ

𝑁
2 |𝑧|𝑁 + ℎ𝑁)

]||||𝑝 ℎ
𝑛−1
2 d𝑧

≲ (𝜏 + 2𝛿)∫ℝ𝑛−1
𝑒−𝑐𝑝|𝑧|2∕2[ℎ (𝑁−1)𝑝

2 |𝑧|(𝑁+1)𝑝 + ℎ
𝑁𝑝
2 |𝑧|𝑁𝑝 d𝑧 + ℎ(𝑁−1)𝑝

]
d𝑧

≲ (𝜏 + 2𝛿)(ℎ
(𝑁−1)𝑝

2 + ℎ
𝑁𝑝
2 + ℎ(𝑁−1)𝑝) ≲ (𝜏 + 2𝛿)ℎ

(𝑁−1)𝑝
2 ,

namely,

‖∇g𝑓‖𝐿𝑝(𝑀) ≲ (𝜏 + 2𝛿)1∕𝑝 ℎ
(𝑁−1)

2 .

Similarly, one can obtain the following bound ‖∇𝑘
g𝑓‖𝑝

𝐿𝑝(𝑀)
≲ (𝜏 + 2𝛿)ℎ

(𝑁+1)𝑝
2 ℎ−𝑘 for the higher

order derivatives of 𝑓. After choosing 𝑁 = 𝑁(𝐾, 𝑘, 𝑝) in a suitable way, this gives the required
bound for the𝑊𝑘,𝑝(𝑀) norm of (−ℎ2Δg − 1)𝑢.
The condition for supp(𝑢) follows from the presence of the cutoff function 𝜌. Writing 𝐻(𝑡) =

∇2Φ(𝛾(𝑡))♯, the conditions for the phase function and amplitudes follow from Lemmas 6.3 and
6.4. The proof is done. □

Proof of Theorem 6.1. Wewill prove the theoremunder the assumption that (𝑥, 𝑣) ∈ ̃𝑇 . The case of
self-intersections will be handled below in Section 6.2. If we denote the function in Theorem 6.2
by 𝑤, we take 𝑢 = 𝑐𝑛𝑤 where 𝑐𝑛 is the constant in Theorem 6.2. It is then enough to prove the
estimate (6.1) for 𝑢.
By Theorem 6.2 we know that 𝑢 is of the form

𝑢 = 𝑐𝑛ℎ
−𝑛−1

4 𝑒iΦ∕ℎ(𝑎0 + ℎ𝑎1 + ⋯ + ℎ𝑁𝑎𝑁)𝜌.
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22 of 35 MA et al.

We will work in Fermi coordinates (𝑡, 𝑦) in 𝑈, where 𝑈 is the set

𝑈 = {(𝑡, 𝑦) ∶ 𝑡 ∈ (−𝛿, 𝜏(𝑥, 𝑣) + 𝛿), 𝑦 ⟂ �̇�𝑥,𝑣(𝑡), |𝑦| < 𝛿}. (6.8)

Since 𝜌 is supported in 𝑈, we can represent 𝑢 in the coordinates (𝑡, 𝑦) by

𝑢(𝑡, 𝑦) = 𝑐𝑛ℎ
−𝑛−1

4 𝑒iΦ(𝑡,𝑦)∕ℎ(𝑎0(𝑡, 𝑦) + ℎ𝑎1(𝑡, 𝑦) + ⋯ + ℎ𝑁𝑎𝑁(𝑡, 𝑦))𝜌(𝑡, 𝑦).

Also, 𝑢 ≡ 0 outside 𝑈. We denote 𝑣 = 𝑐𝑛ℎ
−𝑛−1

4 𝑒iΦ(𝑡,𝑦)∕ℎ𝑎0(𝑡, 𝑦)𝜌(𝑡, 𝑦) and write

𝑢 = 𝑣 + ℎ𝑤, where 𝑤 = 𝑐𝑛ℎ
−𝑛−1

4 𝑒iΦ(𝑡,𝑦)∕ℎ
𝑁∑

𝑘=1

ℎ𝑘−1𝑎𝑘(𝑡, 𝑦).

Then |𝑣|2 = 𝑐2𝑛ℎ
−𝑛−1

2 𝑒−2Im(Φ(𝑡,𝑦))∕ℎ|𝑎0|2(𝑡, 𝑦)𝜌2. In the coordinates (𝑡, 𝑦) we have the following
expression for Φ:

Φ(𝑡, 𝑦) = 𝑡 +
1

2
𝐻(𝑡)𝑦 ⋅ 𝑦 + (|𝑦|3) ⇒ Im(Φ) = Im

(
1

2
𝐻(𝑡)𝑦 ⋅ 𝑦 + (|𝑦|3)).

Next, we consider

∫𝑀
|𝑢|2𝜑 d𝑉g = ∫

𝜏

0 ∫ℝ𝑛−1
𝜑(𝑡, 𝑦)|𝑢|2|g|1∕2d𝑡 d𝑦

= ∫
𝜏

0 ∫ℝ𝑛−1
𝜑(𝑡, 𝑦) |𝑣|2|g|1∕2 d𝑡 d𝑦

+ ∫
𝜏

0 ∫ℝ𝑛−1
𝜑(𝑡, 𝑦) [|ℎ𝑤|2 + 2ℎRe(𝑣�̄�)]|g|1∕2 d𝑡 d𝑦

= 𝐽1 + 𝐽2. (6.9)

We analyze 𝐽1 and 𝐽2 separately. We start with 𝐽1, which may be written as

𝐽1 = ∫
𝜏

0 ∫ℝ𝑛−1
𝜑(𝑡, 𝑦) |𝑣|2|g|1∕2d𝑡 d𝑦

= 𝑐2𝑛ℎ
−𝑛−1

2 ∫
𝜏

0 ∫ℝ𝑛−1
𝜑(𝑡, 𝑦) 𝑒−2Im(Φ(𝑡,𝑦))∕ℎ |𝑎0|2 𝜌2(𝑡, 𝑦) |g|1∕2d𝑡 d𝑦

= 𝑐2𝑛ℎ
−𝑛−1

2 ∫
𝜏

0 ∫ℝ𝑛−1
𝜑(𝑡, 𝑦) 𝑒−Im(𝐻(𝑡))𝑦⋅𝑦∕ℎ 𝑒(|𝑦|3)∕ℎ |𝑎0|2 𝜌2(𝑡, 𝑦) |g|1∕2d𝑡 d𝑦

= 𝑐2𝑛 ∫
𝜏

0 ∫ℝ𝑛−1
𝑒−Im(𝐻(𝑡))𝑦⋅𝑦 𝜑(𝑡,

√
ℎ𝑦) 𝑒

√
ℎ(|𝑦|3) |𝑎0|2(𝑡,√ℎ𝑦) 𝜌2(𝑡,

√
ℎ𝑦) |g| 1

2 (𝑡,
√

ℎ𝑦) d𝑡 d𝑦.

Next we denote �̃�(𝑡,
√

ℎ𝑦) ∶= 𝜑(𝑡,
√

ℎ𝑦) 𝑒
√

ℎ(|𝑦|3) |𝑎0|2(𝑡,√ℎ𝑦) 𝜌2(𝑡,
√

ℎ𝑦) |g| 1
2 (𝑡,

√
ℎ𝑦). By

applying Taylor’s theorem we obtain

�̃�(𝑡,
√

ℎ𝑦) = �̃�(𝑡, 0) +
√

ℎ𝑦 ⋅ ∇𝑦�̃�(𝑡, 𝛼𝑦
√

ℎ) for certain 𝛼 ∈ (0, 1).
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ANISOTROPIC CALDERÓN PROBLEM 23 of 35

Note that �̃�(𝑡, 0) = 𝜑(𝑡, 0)|𝑎0|2(𝑡, 0) using the fact that |g|(𝑡, 0) = 1, and 𝜌(𝑡, 0) = 1. This implies

𝐽1 = 𝑐2𝑛 ∫
𝜏

0 ∫ℝ𝑛−1
𝑒−Im(𝐻(𝑡))𝑦⋅𝑦

[
𝜑(𝑡, 0)|𝑎0|2(𝑡, 0) +

√
ℎ𝑦 ⋅ ∇𝑦�̃�(𝑡, 𝛼𝑦

√
ℎ)
]
d𝑦 d𝑡

= 𝑐2𝑛

(
∫ℝ𝑛−1

𝑒−|𝑦|2 ∫
𝜏

0

𝜑(𝑡, 0)|𝑎0|2(𝑡, 0)√
det(Im(𝐻(𝑡)))

+ ∫
𝜏

0 ∫ℝ𝑛−1
𝑒−Im(𝐻(𝑡))𝑦⋅𝑦

√
ℎ𝑦 ⋅ ∇𝑦�̃�(𝑡, 𝛼𝑦

√
ℎ)

)
.

Recall from Theorem 6.2 that 𝑐𝑛 = (∫
ℝ𝑛−1 𝑒−|𝑦|2 d𝑦)−1∕2. This entails

𝐽1 = ∫
𝜏

0
𝜑(𝑡, 0)

|𝑎0|2(𝑡, 0)√
det(Im(𝐻(𝑡)))

+ 𝑐2𝑛 ∫
𝜏

0 ∫ℝ𝑛−1
𝑒−Im(𝐻(𝑡))𝑦⋅𝑦

√
ℎ𝑦 ⋅ ∇𝑦�̃�(𝑡, 𝛼𝑦

√
ℎ).

As in [4, p. 2599] we have that |𝑎0|2(𝑡,0)√
det(Im(𝐻(𝑡)))

is constant, and by our choices of initial data we have
|𝑎0|2(𝑡,0)√

det(Im(𝐻(𝑡)))
= 1. From the above we deduce

𝐽1 = 𝐼𝜑(𝑥, 𝑣) + 𝑐2𝑛 ∫
𝜏

0 ∫ℝ𝑛−1
𝑒−Im(𝐻(𝑡))𝑦⋅𝑦

√
ℎ𝑦 ⋅ ∇𝑦�̃�(𝑡, 𝛼𝑦

√
ℎ). (6.10)

Combining (6.9) and (6.10) we obtain that

∫𝑀
|𝑢|2𝜑 d𝑉g − 𝐼𝜑(𝑥, 𝑣) = 𝑐2𝑛 ∫

𝜏

0 ∫ℝ𝑛−1
𝑒−Im(𝐻(𝑡))𝑦⋅𝑦

√
ℎ𝑦 ⋅ ∇𝑦�̃�(𝑡, 𝛼𝑦

√
ℎ) + 𝐽2. (6.11)

By utilizing the norm estimates from Lemmas 6.3 and 6.4 we conclude that

∫
𝜏

0 ∫ℝ𝑛−1
|𝑒−Im(𝐻(𝑡))𝑦⋅𝑦

√
ℎ𝑦 ⋅ ∇𝑦�̃�(𝑡, 𝛼𝑦

√
ℎ)| ⩽ 𝐶

√
ℎ‖𝜑‖𝐶1(𝑀).

Since ‖ℎ−𝑛−1
4 𝑒iΦ(𝑡,𝑦)∕ℎ‖𝐿2(𝑀) ⩽ 𝐶 and ‖𝑎𝑗‖𝐶𝑁(𝑀) ⩽ 𝐶, we have

𝐽2 ⩽ 𝐶
√

ℎ‖𝜑‖𝐶1(𝑀).

Thus, by combining the preceding estimate with (6.11), we conclude

||||∫𝑀
|𝑢|2𝜑 d𝑉g − 𝐼𝜑(𝑥, 𝑣)

|||| ⩽ 𝐶
√

ℎ‖𝜑‖𝐶1(𝑀).

This completes the proof. □

Finally, we give the proofs of Lemmas 6.3 and 6.4. The conditions forΦ and 𝑎𝑟 in these lemmas
will be equivalent with the fact that ∇𝑗Φ and ∇𝑗𝑎𝑟 solve certain ODEs along 𝛾𝑥,𝑣. To derive these
ODEs we will use properties of the covariant derivative ∇𝑋 and total covariant derivative ∇ (see,
for example, [16]). These include the formulas ∇𝑇(𝑋, ⋅ ) = (∇𝑋𝑇)( ⋅ ) and
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24 of 35 MA et al.

(∇𝑋𝑇)(𝑋1, … , 𝑋𝑘) = 𝑋(𝑇(𝑋1, … , 𝑋𝑘)) − 𝑇(∇𝑋𝑋1, 𝑋2, … , 𝑋𝑘) − ⋯ − 𝑇(𝑋1, … , 𝑋𝑘−1, ∇𝑋𝑋𝑘).

We will also use that ∇𝑋 commutes with contractions and raising and lowering of indices with
respect to g . If 𝑆 is a 𝑝-tensor and 𝑇 is a 𝑞-tensor, we will use the special contraction

𝐶(𝑆, 𝑇) = 𝑐𝑝,𝑝+1(𝑆 ⊗ 𝑇♯),

where 𝑇♯ is obtained from 𝑇 by raising the first index and 𝑐𝑝,𝑝+1 contracts the 𝑝th and (𝑝 + 1)th
indices. Equivalently

𝐶(𝑆, 𝑇)(𝑋1, … , 𝑋𝑝−1, 𝑌1, … , 𝑌𝑞−1) =

𝑁∑
𝑗=1

𝑆(𝑋1, … , 𝑋𝑝−1, 𝐸𝑗)𝑇(𝐸𝑗, 𝑌1, … , 𝑌𝑞−1),

where {𝐸𝑗} is any orthonormal basis. Below we will also write 𝑅(𝑋, 𝑌)𝑇 = (∇𝑋∇𝑌 − ∇𝑌∇𝑋 −

∇[𝑋,𝑌])𝑇 and 𝑅𝑉(𝑋, 𝑌) = ⟨𝑅(𝑋,𝑉)𝑉, 𝑌⟩.
The following general Riemannian geometry identities will give the invariant ODEs for ∇𝑘Φ.

Lemma 6.5. Let Φ be a smooth complex function on𝑀, and let 𝐺 = grad(Φ) = (dΦ)♯. Then

∇𝐺(∇2Φ) + 𝐶(∇2Φ,∇2Φ) + 𝑅𝐺 =
1

2
∇2(⟨𝐺,𝐺⟩).

If𝐻 = (∇2Φ)♯ is the (1,1)-tensor corresponding to ∇2Φ, this identity can be rewritten as

∇𝐺𝐻 + 𝐻2 + 𝑅♯
𝐺

=
1

2
(∇2(⟨𝐺,𝐺⟩))♯.

For any 𝑘 ⩾ 3 one has

∇𝐺(∇𝑘Φ) + 𝐴𝑘(∇
𝑘Φ) + 𝐹𝑘 =

1

2
∇𝑘(⟨𝐺,𝐺⟩).

Here 𝐴𝑘 is a linear map taking 𝑘-tensors to 𝑘-tensors with |𝐴𝑘(𝑆)| ⩽ 𝐶𝑘|∇2Φ||𝑆|. Moreover, 𝐹𝑘 is a
𝑘-tensor with |𝐹𝑘| ⩽ 𝐷𝑘 where 𝐷𝑘 only depends on curvature quantities on (𝑀, g) and on |∇𝑗Φ| for
1 ⩽ 𝑗 ⩽ 𝑘 − 1.

Proof. Since 𝐺 = (dΦ)♯ is a gradient field, we have for any 𝑋, 𝑌 that

∇2Φ(𝑋, 𝑌) = ⟨∇𝑋𝐺,𝑌⟩ = ⟨∇𝑌𝐺,𝑋⟩. (6.12)

We compute

∇2(⟨𝐺,𝐺⟩)(𝑋, 𝑌) = ∇𝑋(∇(⟨𝐺,𝐺⟩))(𝑌) = 𝑋(𝑌(⟨𝐺,𝐺⟩)) − (∇𝑋𝑌)(⟨𝐺,𝐺⟩)
= 2𝑋(⟨∇𝑌𝐺,𝐺⟩) − 2⟨∇∇𝑋𝑌𝐺, 𝐺⟩
= 2⟨∇𝑋∇𝑌𝐺,𝐺⟩ + 2⟨∇𝑌𝐺,∇𝑋𝐺⟩ − 2⟨∇𝐺𝐺,∇𝑋𝑌⟩.
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ANISOTROPIC CALDERÓN PROBLEM 25 of 35

On the other hand, we have

∇𝐺(∇2Φ)(𝑋, 𝑌) = 𝐺(⟨∇𝑋𝐺,𝑌⟩) − ⟨∇𝑌𝐺,∇𝐺𝑋⟩ − ⟨∇𝑋𝐺,∇𝐺𝑌⟩
= ⟨∇𝐺∇𝑋𝐺,𝑌⟩ − ⟨∇𝑌𝐺,∇𝐺𝑋⟩
= ⟨∇𝑋∇𝐺𝐺,𝑌⟩ + ⟨∇[𝐺,𝑋]𝐺, 𝑌⟩ + ⟨𝑅(𝐺,𝑋)𝐺, 𝑌⟩ − ⟨∇𝑌𝐺,∇𝐺𝑋⟩,

where we used the definition of the curvature tensor 𝑅(𝐺,𝑋)𝐺. To simplify the last expression,
we apply 𝑋 to the identity ⟨∇𝐺𝐺,𝑌⟩ = ⟨∇𝑌𝐺,𝐺⟩ obtained from (6.12) to see that

⟨∇𝑋∇𝐺𝐺,𝑌⟩ = ⟨∇𝑋∇𝑌𝐺,𝐺⟩ + ⟨∇𝑌𝐺,∇𝑋𝐺⟩ − ⟨∇𝐺𝐺,∇𝑋𝑌⟩
=

1

2
∇2(⟨𝐺,𝐺⟩)(𝑋, 𝑌).

Thus we obtain, using (6.12) and the fact that [𝐺, 𝑋] = ∇𝐺𝑋 − ∇𝑋𝐺,

∇𝐺(∇2Φ)(𝑋, 𝑌)

=
1

2
∇2(⟨𝐺,𝐺⟩)(𝑋, 𝑌) + ⟨∇𝑌𝐺, [𝐺, 𝑋]⟩ + ⟨𝑅(𝐺,𝑋)𝐺, 𝑌⟩ − ⟨∇𝑌𝐺,∇𝐺𝑋⟩

=
1

2
∇2(⟨𝐺,𝐺⟩)(𝑋, 𝑌) − ⟨∇𝑌𝐺,∇𝑋𝐺⟩ − 𝑅𝐺(𝑋, 𝑌).

Since 𝐶(∇2Φ,∇2Φ) =
∑⟨∇𝑋𝐺, 𝐸𝑗⟩⟨∇𝑌𝐺, 𝐸𝑗⟩ = ⟨∇𝑋𝐺,∇𝑌𝐺⟩, this proves the identity for ∇2Φ.

We next apply ∇ to the identity for ∇2Φ. We also use the identity

∇(∇𝐺𝑇)(𝑋, ⋅ ) = ∇𝑋∇𝐺𝑇( ⋅ ) = ∇𝐺∇𝑋𝑇 + ∇[𝑋,𝐺]𝑇 + 𝑅(𝑋, 𝐺)𝑇

= ∇𝐺(∇𝑇)(𝑋, ⋅ ) + ∇𝑇(∇𝐺𝑋, ⋅ ) + ∇[𝑋,𝐺]𝑇 + 𝑅(𝑋, 𝐺)𝑇

= ∇𝐺(∇𝑇)(𝑋, ⋅ ) + ∇𝑇(∇𝑋𝐺, ⋅ ) + 𝑅(𝑋, 𝐺)𝑇

= ∇𝐺(∇𝑇)(𝑋, ⋅ ) + 𝐶(∇2Φ,∇𝑇)(𝑋, ⋅ ) + 𝑅(𝑋, 𝐺)𝑇,

as well as

∇(𝐶(𝑆, 𝑇))(𝑋, ⋅ ) = ∇𝑋(𝑐𝑝,𝑝+1(𝑆 ⊗ 𝑇♯) = 𝑐𝑝,𝑝+1(∇𝑋𝑆 ⊗ 𝑇♯ + 𝑆 ⊗ (∇𝑋𝑇)♯)

= 𝐶(∇𝑆, 𝑇)(𝑋, ⋅ ) + 𝜎𝐶(𝑆,∇𝑇)(𝑋, ⋅ ),

where 𝜎 is a permutation, so that 𝜎𝑆(𝑋1, … , 𝑋𝑝) = 𝑆(𝑋𝜎(1), … , 𝑋𝜎(𝑛)). Thus we obtain

∇𝐺(∇3Φ) + 𝐶(∇2Φ,∇3Φ) + 𝐶(∇3Φ,∇2Φ) + 𝜎𝐶(∇2Φ,∇3Φ) + 𝐹3 =
1

2
∇3(⟨𝐺,𝐺⟩),

where 𝐹3 contains terms depending on curvature quantities and on∇𝑗Φ for 1 ⩽ 𝑗 ⩽ 2. This is the
required equation for ∇3Φ. The cases 𝑘 ⩾ 4 proceed in an analogous way. □

We can now prove the main lemma for the phase function Φ.
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26 of 35 MA et al.

Proof of Lemma 6.3. The first requirements for Φ are the conditions Φ(𝛾(𝑡)) = 𝑡 and dΦ(𝛾(𝑡)) =

�̇�(𝑡)♯. In order to prescribe higher derivatives for Φ along 𝛾 it is convenient to work with tensors
along 𝛾 that only act in directions orthogonal to �̇�. For any 𝑟, 𝑠 ⩾ 0 we define a smooth vector
bundle 𝐸 = 𝐸𝑟,𝑠 over 𝛾 such that the fiber 𝐸𝑟,𝑠

𝛾(𝑡)
is the space of multilinear forms on (�̇�(𝑡)⟂)⊗𝑟 ⊗

((�̇�(𝑡)⟂)∗)⊗𝑠. Note that any tensor 𝐴 at 𝛾(𝑡) gives rise to an element 𝐴|�̇�⟂ of 𝐸𝛾(𝑡), and conversely
any element of 𝐸𝛾(𝑡) can be identified with the corresponding tensor at 𝛾(𝑡) that vanishes in the
�̇�(𝑡) direction. Using this identification one can compute ∇�̇� of a section of 𝐸, and one can check
from the definitions that this produces another section of 𝐸 (this uses∇�̇��̇� = 0). Similarly, one can
raise and lower indices of sections of 𝐸 with respect to g . Belowwe will assume these conventions
and work with tensors only acting in the �̇�⟂ directions.
Next we require that ∇2Φ|�̇�(𝑡)⟂ = 𝐻(𝑡)♭, where𝐻(𝑡) solves on [0, 𝜏(𝑥, 𝑣)] the ODE

∇�̇�𝐻 + 𝐻2 + 𝑅♯
�̇�
= 0, 𝐻(0) = i(g|�̇�(0)⟂)♯. (6.13)

We will also require that 𝐺𝑘(𝑡) ∶= ∇𝑘Φ|�̇�(𝑡)⟂ for 3 ⩽ 𝑘 ⩽ 𝑁 solves the ODE

∇�̇�𝐺𝑘 + 𝐴𝑘(𝐺𝑘) + 𝐹𝑘 = 0, 𝐺𝑘(0) = 0. (6.14)

As discussed below, (6.13) and (6.14) have unique solutions. ByLemma6.5, the functionΦwill then
satisfy the conditions in Lemma 6.3 except perhaps the uniformity of constants. Thus it remains
to verify that the constants are uniform. The main part of the proof will be to verify that the argu-
ments in [10, Lemma 2.56] for solving the matrix Riccati equation are also valid in our case when
the equation is written invariantly.
To this end, let 𝑍(𝑡) and 𝑌(𝑡) be (1,1)-tensors along 𝛾 = 𝛾𝑥,𝑣 acting on �̇�⟂ that satisfy the

following linear system of ODEs for 𝑡 ∈ [0, 𝜏(𝑥, 𝑣)]:

∇�̇�𝑌 = 𝑍, 𝑌(0) = 𝐼,

∇�̇�𝑍 = −𝑅♯
�̇�
𝑌, 𝑍(0) = i(g|�̇�(0)⟂)♯.

This is a linear system and |𝑅♯
�̇�
| ⩽ 𝐶, where 𝐶 denotes a constant that is uniform over (𝑥, 𝑣) ∈ 𝑇

and 𝑡 ∈ [0, 𝜏(𝑥, 𝑣)] and may change from line to line. By energy estimates [26, Section 1.5] and by
the fact that 𝜏(𝑥, 𝑣) ⩽ 𝑇, it follows that |𝑌| + |𝑍| ⩽ 𝐶 uniformly.
We wish to prove the uniform bound

|𝑌(𝑡)𝑤| ⩾ 𝐶−1|𝑤|, 𝑤 ⟂ �̇�(𝑡). (6.15)

To this endwe first note the following Leibniz rule: if𝐴(𝑡) and𝐵(𝑡) are (1,1)-tensors and 𝑐 contracts
the second and third indices, then

∇�̇�(𝐴𝐵) = ∇�̇�(𝑐(𝐴 ⊗ 𝐵)) = 𝑐(∇�̇�𝐴 ⊗ 𝐵) + 𝑐(𝐴 ⊗ ∇�̇�𝐵) = (∇�̇�𝐴)𝐵 + 𝐴(∇�̇�𝐵).

Then the argument in [10, Lemma 2.57], together with the fact that 𝑅♯
�̇�
is real and symmetric, gives

that

∇�̇�(𝑍
𝑡𝑌 − 𝑌𝑡𝑍) = ∇�̇�(𝑍

∗𝑌 − 𝑌∗𝑍) = 0.
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ANISOTROPIC CALDERÓN PROBLEM 27 of 35

Here 𝑌𝑡 and 𝑌∗, etc. are defined as ⟨𝑌𝑣,𝑤⟩ = ⟨𝑣, 𝑌𝑡𝑤⟩ and (𝑌𝑣, 𝑤) = (𝑣, 𝑌∗𝑤), where (𝑣, 𝑤) is
the sesquilinear g-inner product on complex tangent vectors. In particular, if 𝑣(𝑡) is a complex
vector that is parallel along 𝛾, this implies that

2i Im(𝑌(𝑡)𝑣(𝑡), 𝑍(𝑡)𝑣(𝑡)) = ((𝑍(𝑡)∗𝑌(𝑡) − 𝑌(𝑡)∗𝑍(𝑡))𝑣(𝑡), 𝑣(𝑡))

= ((𝑍(0)∗𝑌(0) − 𝑌(0)∗𝑍(0))𝑣(0), 𝑣(0))

= −2ig(𝑣(0), 𝑣(0)).

If 𝑣(𝑡) = 𝑤 where 𝑤 ⟂ �̇�(𝑡), then also 𝑣(0) ⟂ �̇�(0), and since |𝑣(𝑠)|2 is constant in 𝑠 we have

Im(𝑌(𝑡)𝑤, 𝑍(𝑡)𝑤) = −|𝑤|2 (6.16)

whenever 𝑡 ∈ [0, 𝜏(𝑥, 𝑣)] and 𝑤 ⟂ �̇�(𝑡). In particular,

|𝑤|2 ⩽ |𝑌(𝑡)𝑤| |𝑍(𝑡)𝑤| ⩽ 𝐶|𝑌(𝑡)𝑤| |𝑤|
using the uniform bound |𝑍(𝑡)| ⩽ 𝐶. This proves (6.15).
Now we can define 𝐻(𝑡) by

𝐻(𝑡)𝑣 = 𝑍(𝑡)𝑌(𝑡)−1𝑣, 𝑣 ⟂ �̇�(𝑡),

where𝑌(𝑡)−1 denotes the inverse of𝑌(𝑡) on �̇�(𝑡)⟂ which exists by (6.15). It follows that𝐻(𝑡) solves
(6.13) and satisfies |𝐻(𝑡)| ⩽ 𝐶 uniformly over 𝑡 ∈ [0, 𝜏(𝑥, 𝑣)]. Moreover, for 𝑤 ⟂ �̇�(𝑡) one obtains
from (6.16) and the estimate |𝑌(𝑡)| ⩽ 𝐶 that

(Im(𝐻(𝑡))𝑤,𝑤) = Im(𝑍(𝑡)𝑌(𝑡)−1𝑤,𝑤) = |𝑌(𝑡)−1𝑤|2 ⩾ 𝐶−2|𝑤|2.
Thus∇2Φ satisfies the uniformestimate in (6.4). The linearODEs (6.14) are uniquely solvablewith
uniform bounds by energy estimates [26, Section 1.5]. This concludes the proof of the lemma. □

The proof of Lemma 6.4 concerning the amplitudes proceeds in a similar way. But prior to the
proof of Lemma 6.4, we present the following result first.

Lemma 6.6. For any smooth function 𝑎, one has

∇(𝐿𝑎) = 𝐿(∇𝑎) + 𝐵(∇𝑎) + 𝐹𝑎,

where 𝐵 is a smooth linear map satisfying |𝐵(∇𝑎)| ⩽ 𝐶|∇𝑎| and 𝐹 satisfies |𝐹| ⩽ 𝐶, with 𝐶 only
depending on (𝑀, g) and Φ. For any integer 𝑘 ⩾ 2, one has

∇𝑘(𝐿𝑎) = 𝐿(∇𝑘𝑎) + 𝐵𝑘(∇
𝑘𝑎) + 𝐹𝑘,

where 𝐵𝑘 is a linear map satisfying |𝐵𝑘(∇
𝑘𝑎)| ⩽ 𝐶|∇𝑘𝑎|. Moreover, |𝐹𝑘| ⩽ 𝐶 where𝐶 depends onΦ,

curvature quantities on (𝑀, g) and |∇𝑗𝑎| for 1 ⩽ 𝑗 ⩽ 𝑘 − 1.
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28 of 35 MA et al.

Proof. We first extend the notion of 𝐿 for any vector field or tensor field as

𝐿𝑍 =
1

i
(2∇𝐺𝑍 + ΔgΦ𝑍).

We next compute∇(𝐿𝑎) − 𝐿(∇𝑎). To this end, we consider∇(𝐿𝑎)(𝑋) = ∇𝑋(𝐿𝑎) = −i(2∇𝑋∇𝐺𝑎 +

∇𝑋(ΔgΦ𝑎)) = −i[2∇𝐺∇𝑋𝑎 + 2∇[𝑋,𝐺]𝑎 + (𝑋ΔgΦ)𝑎 + (ΔgΦ)(𝑋𝑎)]. Since [𝑋, 𝐺] = ∇𝑋𝐺 − ∇𝐺𝑋,
this along with preceding equation entails

∇(𝐿𝑎)(𝑋) = −i[2∇𝐺∇𝑋𝑎 + 2∇𝑎(∇𝑋𝐺) − 2∇𝑎(∇𝐺𝑋) + (𝑋ΔgΦ)𝑎 + ΔgΦ(𝑋𝑎)]. (6.17)

We also have

𝐿(∇𝑎)(𝑋) = −i(2∇𝐺∇𝑎 + ΔgΦ∇𝑎)(𝑋)

= −i[2∇𝐺∇𝑋𝑎 − 2∇𝑎(∇𝐺𝑋) + (ΔgΦ)∇𝑎(𝑋)]. (6.18)

The combination of (6.17) and (6.18) entails

∇(𝐿𝑎)(𝑋) = 𝐿(∇𝑎)(𝑋) +
2

i
∇𝑎(∇𝑋𝐺) +

1

i
(∇𝑋ΔgΦ)𝑎.

To prove the relation for higher order derivatives, wewill employ induction argument and assume
that

∇𝑘(𝐿𝑎) = 𝐿(∇𝑘𝑎) + 𝐵𝑘(∇
𝑘𝑎) + 𝐹𝑘, (6.19)

holds for any smooth function 𝑎, where |𝐵𝑘|, |∇𝐵𝑘|, |𝐹𝑘|, |∇𝐹𝑘| ⩽ 𝐶. Then for 𝑘 + 1 applying ∇

to the Equation (6.19) we obtain

∇(∇𝑘𝐿𝑎)(𝑋) = ∇𝑋𝐿(∇𝑘𝑎) + ∇𝑋𝐵𝑘(∇
𝑘𝑎) + ∇𝑋𝐹𝑘.

Then it remains to compute formula for ∇𝑋𝐿(∇𝑘𝑎) and 𝐿(∇𝑘+1𝑎)(𝑋,… ). This can be done in a
similar fashion as above. This completes the induction argument. □

Proof of Lemma 6.4. As in the proof of Lemma 6.3, we work with tensors that only act in
the �̇�⟂ directions. By the construction of the amplitude 𝑎 = 𝑎0 + ℎ𝑎1 + ⋯ + ℎ𝑘𝑎𝑘 we have that
∇𝑗(𝐿𝑎0) = 0 on 𝛾 for 0 ⩽ 𝑗 ⩽ 𝑁. This along with Lemma 6.6 entails that ∇𝑗𝑎0 satisfies the linear
ODE

𝐿(∇𝑗𝑎0|�̇�⟂ ) + 𝐵𝑗(∇
𝑗𝑎0|�̇�⟂ ) + 𝐹𝑗 = 0 (6.20)

along the geodesic 𝛾 for 0 ⩽ 𝑗 ⩽ 𝑁. By energy estimates [26, Section 1.5] and by the fact that
𝜏(𝑥, 𝑣) ⩽ 𝑇, we conclude that |∇𝑗𝑎0|�̇�⟂ | ⩽ 𝐶 uniformly. This further entails ‖𝑎0‖𝐶𝑁(𝑀) ⩽ 𝐶 uni-
formly. Moreover, we have that ∇𝑗(𝐿𝑎𝑟 − Δ𝑎𝑟−1) = 0 for 1 ⩽ 𝑗 ⩽ 𝑁 and 1 ⩽ 𝑟 ⩽ 𝑁. Utilizing this
and Lemma 6.6, one can obtain certain linear ODEs for ∇𝑗𝑎𝑟|�̇�⟂ (similar to (6.20) with different
source terms). Hence by standard energy estimates we conclude that ‖𝑎𝑟‖𝐶𝑁(𝑀) ⩽ 𝐶 uniformly
for 1 ⩽ 𝑟 ⩽ 𝑁.
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ANISOTROPIC CALDERÓN PROBLEM 29 of 35

It remains to prove (6.5). By Lemma 6.4(a) we have that 𝐿𝑎0|𝛾(𝑡) = 0. Recall that 𝐿𝑣 ∶=
1

i
(2⟨dΦ, d𝑣⟩ + (ΔgΦ)𝑣). This along with 𝐿𝑎0|𝛾(𝑡) = 0 implies

∇�̇�𝑎0(𝛾(𝑡)) +
1

2
ΔgΦ(𝛾(𝑡)) 𝑎0(𝛾(𝑡)) = 0 and 𝑎(𝛾(0)) = 1.

This is a linear ODE along 𝛾 with an initial condition. It has a unique solution and it is given by

𝑎0(𝛾(𝑡)) = exp

[
−

1

2 ∫
𝑡

0
ΔgΦ(𝑠) d𝑠

]
= exp

[
−

1

2 ∫
𝑡

0
trg (𝐻(𝑠)) d𝑠

]
.

In the last part we used∇2Φ(�̇�, 𝑤) = ⟨∇�̇�∇Φ,𝑤⟩ = 0 since∇Φ = �̇�. This completes the proof. □

6.2 Self-intersection case

We now describe an extension procedure that allows us to reduce the proofs of Theorems 6.1
and 6.2 in the general case to the case where the geodesics do not self-intersect, so that the self-
intersection case can be handled.
Recall that (𝑀, g) is a domain with boundary in the closed manifold (𝑆, g), which has positive

injectivity radius inj(𝑆) [16, Lemma 6.16]. Below we write inj(𝑀) = inj(𝑆). We first give an upper
bound for the number of self-intersection points for geodesics in𝑀 with length ⩽ 𝑇.

Lemma 6.7. Let (𝑀, g) be a compact oriented Riemannian manifold with smooth boundary and
let 𝑇 > 0. There is a uniform upper bound on the number of self-intersection points for all geodesics
𝛾𝑥,𝑣 with (𝑥, 𝑣) ∈ 𝑇 .

Proof. Let 𝛾∶ [0, 𝜏(𝑥, 𝑣)] → 𝑀 be a geodesic. Since 𝜏(𝑥, 𝑣) is the length of the geodesic 𝛾, we can
divide 𝛾 into

𝐿𝑥,𝑣 =
2𝜏(𝑥, 𝑣)

inj(𝑀)
(6.21)

pieces such that each piece is of length inj(𝑀)∕2 except perhaps for the last piece, and we denote
each piece as 𝛾1, … , 𝛾𝐿𝑥,𝑣

sequentially. Note that each 𝛾𝑖 is not self-intersecting. Also, for 𝑗 ≠ 𝑖,
𝛾𝑖 and 𝛾𝑗 intersect only once. To see this, if 𝛾𝑖 and 𝛾𝑗 intersect at two different points 𝑥0 and 𝑦0,
then there are two distinct geodesics connecting these two points. This contradicts the definition
of inj(𝑀). Therefore, there are at most 𝐿𝑥,𝑣 − 1 self-intersections happening for each 𝛾𝑖 . Since
𝜏(𝑥, 𝑣) ⩽ 𝑇 for (𝑥, 𝑣) ∈ 𝑇 , we define

𝐿 =
2𝑇

inj(𝑀)

and observe that the number of intersection points for all the geodesics with (𝑥, 𝑣) ∈ 𝑇 is
bounded by 𝐿(𝐿 − 1). The proof is done. □

Our next lemma gives a uniform lower bound on the angles between segments of a geodesic at
a self-intersection point.
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30 of 35 MA et al.

Lemma6.8. Given𝑇 > 0 there exists 𝜖 > 0 such that for any (𝑥, 𝑣) ∈ 𝑇 with 𝛾𝑥,𝑣(𝑡) = 𝛾𝑥,𝑣(𝑠), 𝑠 ≠ 𝑡

one has ⟨�̇�𝑥,𝑣(𝑠), �̇�𝑥,𝑣(𝑡)⟩ ⩽ 1 − 𝜖.

Proof. We argue by contradiction. Let us assume that for all 𝑗, there exists (𝑥𝑗, 𝑣𝑗) ∈ 𝑇 and
(𝑠𝑗, 𝑡𝑗) ∈ [0, 𝜏(𝑥𝑗, 𝑣𝑗)] with 𝑠𝑗 < 𝑡𝑗 such that

𝛾𝑥𝑗,𝑣𝑗
(𝑠𝑗) = 𝛾𝑥𝑗,𝑣𝑗

(𝑡𝑗), ⟨�̇�𝑥𝑗,𝑣𝑗
(𝑠𝑗), �̇�𝑥𝑗,𝑣𝑗

(𝑡𝑗)⟩ ⩾ 1 −
1

𝑗
. (6.22)

Since 𝜕+𝑆𝑀 is compact, there exists a subsequence, denoted also as (𝑥𝑗, 𝑣𝑗), that converges to
(𝑥, 𝑣) ∈ 𝜕+𝑆𝑀. Since 𝜏 is upper semi-continuous and 𝜏(𝑥, 𝑣) ⩽ 𝑇, this further implies that (𝑥, 𝑣) ∈

𝑇 . By further choosing a subsequence, we can assume 𝑠𝑗 and 𝑡𝑗 converge to 𝑠 and 𝑡, respectively,
with 𝑠 ⩽ 𝑡, and since 𝑠𝑗, 𝑡𝑗 ∈ [0, 𝜏(𝑥𝑗, 𝑣𝑗)], we know 𝑠, 𝑡 ∈ [0, 𝜏(𝑥, 𝑣)]. Using these, by taking the
limit 𝑗 → ∞ in (6.22), we conclude that

𝛾𝑥,𝑣(𝑠) = 𝛾𝑥,𝑣(𝑡), ⟨�̇�𝑥,𝑣(𝑠), �̇�𝑥,𝑣(𝑡)⟩ = 1 ⇒ 𝛾𝑥,𝑣(𝑠) = 𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑠) = �̇�𝑥,𝑣(𝑡).

Now we have two possibilities: either 𝑠 < 𝑡 or 𝑠 = 𝑡. If 𝑠 < 𝑡, then 𝛾𝑥,𝑣 makes a loop, but this con-
tradicts with the fact that 𝜏(𝑥, 𝑣) ⩽ 𝑇. If 𝑠 = 𝑡, then 𝑠𝑗 and 𝑡𝑗 get simultaneously close to 𝑠, this is
again a contradiction because inj(𝑀) > 0. We complete the proof. □

We are going to glue many copies of subsets of 𝑀 together so that the geodesic 𝛾 does not
intersect itself in the newmanifold. Thenwe can apply the results in Section 6.1 to obtain uniform
bounds for self-intersecting geodesics. We refer to [24, Section 2.1] for similar ideas.
Let 𝑁 = 𝐿(𝐿 − 1) and let 𝑡𝑗 =

𝑗

𝑁
𝜏(𝑥, 𝑣). Let {(𝑈𝑗, 𝜙𝑗)}

𝑁+1
𝑗=0

be an open cover of 𝛾, where 𝑈𝑗 =

𝜙−1
𝑗

(𝐼𝑗 × 𝐵) and 𝐼𝑗 = (𝑡𝑗 − 2𝜖, 𝑡𝑗+1 − 𝜖) with 𝑗 = 0,… ,𝑁. In this way, we see each {(𝑈𝑗, 𝜙𝑗)} is a
chart of 𝛾𝑗 . We write as (�̃�𝑗, �̃�𝑗) copies of charts (𝑈𝑗, 𝜙𝑗), and we also copy the Riemann tensor
structure from (𝑈𝑗, 𝜙𝑗) to (�̃�𝑗, �̃�𝑗), say, we copy g as g̃ . We want to glue different �̃�𝑗 together. To
that end, let us investigate the intersection parts 𝑈𝑗 ∩ 𝑈𝑗+1 for different 𝑗. We denote

𝑉𝑗 ∶= �̃�−1
𝑗 ◦𝜙𝑗(𝑈𝑗 ∩ 𝑈𝑗+1) ⊂ �̃�𝑗 and 𝑊𝑗 ∶= �̃�−1

𝑗+1◦𝜙𝑗+1(𝑈𝑗 ∩ 𝑈𝑗+1) ⊂ �̃�𝑗+1. (6.23)

Then 𝑉𝑗 is the copy of 𝑈𝑗 ∩ 𝑈𝑗+1 in �̃�𝑗 , and 𝑊𝑗 is the copy of 𝑈𝑗 ∩ 𝑈𝑗+1 in �̃�𝑗+1. There is a
diffeomorphism between 𝑉𝑗 and 𝑊𝑗 because they are both copies of 𝑈𝑗 ∩ 𝑈𝑗+1. According to
(6.23), this diffeomorphism can be expressed as

𝑊𝑗 = �̃�−1
𝑗+1◦𝜙𝑗+1◦𝜙

−1
𝑗 ◦�̃�𝑗(𝑉𝑗). (6.24)

Nowwe identify𝑉𝑗 and𝑊𝑗 though this diffeomorphism. This identification allows us to construct
the following manifold �̃�:

�̃� ∶=

𝑁+1⨆
𝑗=0

�̃�𝑗

Note that the boundary of �̃� is not smooth yet. This can be seen illustratively from the points 𝐴

and 𝐵 in Figure 1.
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ANISOTROPIC CALDERÓN PROBLEM 31 of 35

Ũj Ũj+1Vj =idWj

A

B

F IGURE 1 Intersection between �̃�𝑗 and �̃�𝑗+1. Here the notation =id means equal by identification through
(6.24).

Lemma 6.9. (�̃�, g̃) is an 𝑛-dimensional compact Riemannian manifold with boundary.

Proof. Because there are overlaps between𝑈𝑗 and𝑈𝑗+1 for 𝑗 = 0,… ,𝑁, and because �̃�𝑗 are copies
of 𝑈𝑗 , we see that there is a natural identification between the neighborhoods of the boundary
�̃�𝑗 ∩ �̃�𝑗+1 in �̃�𝑗 and in �̃�𝑗+1, respectively. This guarantees that �̃� is a compact Riemannian
manifold with dimension the same as in �̃�. □

Wewill show that �̃� can be trimmed to become amanifold with smooth boundary. To this end,
we first introduce the geodesic �̃� and prove it does not intersect itself. Denote �̃� to be the curve in
�̃� with coordinates

⋃𝑁
𝑗=0 𝐼𝑗 × {0}, that is to say,

�̃� ∶

𝑁⋃
𝑗=0

𝐼𝑗 →

𝑁⋃
𝑗=0

�̃�−1
𝑗 (𝐼𝑗 × {0}), �̃� ∶ 𝑡 ∈ 𝐼𝑗 ↦ �̃�−1

𝑗 (𝑡 × {0}).

We call �̃� a lifting of 𝛾.

Lemma 6.10. �̃� is a geodesic in �̃�.

Proof. For a point �̃� ∈ �̃� that belongs to the nongluing part of certain �̃�𝑗 , we can identity a small
neighborhood of �̃� with that of 𝑝 ∈ 𝛾 in 𝑀. Therefore, we only need to investigate points �̃�𝑗 at
�̃� ∩ �̃�𝑗 ∩ �̃�𝑗+1 for 𝑗 = 0,… ,𝑁. The point �̃�𝑗 belongs to �̃�𝑗 , and thus its neighborhood can also be
identified to a neighborhood certain point in 𝛾. Therefore, �̃� satisfies the geodesic equation in �̃�

just as 𝛾 does in𝑀, and so �̃� is a geodesic in �̃�. □

Lemma 6.11. �̃� does not intersect itself in �̃�.

Proof. We argue by contradiction. Assume �̃�(𝑡1) = �̃�(𝑡2) for 𝑡1 ≠ 𝑡2. If 𝑡1, 𝑡2 belong to the same
interval 𝐼𝑗 , then we can conclude �̃�−1

𝑗
(𝑡1 × {0}) = �̃�−1

𝑗
(𝑡2 × {0}), which gives 𝑡1 = 𝑡2 because 𝜙−1

𝑗
is

a diffeomorphism. But this contradicts with 𝑡1 ≠ 𝑡2. If 𝑡1 ∈ 𝐼𝑗 and 𝑡2 ∈ 𝐼𝑘 for 𝑗 ≠ 𝑘, then �̃�(𝑡1) =

�̃�−1
𝑗

(𝑡𝑗 × {0}) ⊂ �̃�𝑗 and �̃�(𝑡2) = �̃�−1
𝑘

(𝑡𝑘 × {0}) ⊂ �̃�𝑘. From (6.21) we see it is impossible that |𝑗 −

𝑘| = 1, because the injectivity radius covers two consecutive pieces, thus |𝑗 − 𝑘| ⩾ 2. Therefore,
�̃�𝑗 and �̃�𝑘 are two distinct sets who do not share any gluing part, so it is impossible that �̃�(𝑡1) =

�̃�(𝑡2). In both cases, we have a contradiction. The proof is done. □

Lemma 6.12. �̃� contains a subset �̄� such that (�̄�, g̃) is a 𝑛-dimensional compact Riemannian
manifold with smooth boundary.

Proof. The first part of the proof follows from Lemma 6.9, because �̃� does not intersect itself in �̃�,
we can construct a global coordinates �̃� ∶ 𝑀 → ℝ𝑛 according to �̃�. Let 𝜅 ∈ (0, 1) be a small enough
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γx,v
a

b

Ũj Ũj+1A

B

F IGURE 2 Let �̄� be the area in between lines 𝑎 and 𝑏. Compared to �̃� whose boundary may not be smooth
at points 𝐴 and 𝐵, �̄� has a smooth boundary.

constant such that �̄� ∶= 𝜓−1(𝐼 × 𝐵(0, 𝜅)) is a subset of �̃�. This �̄� has a smooth boundary. See
Figure 2 as an illustration. The proof is done. □

With a slight abuse of notation, we refer �̃� as this �̄� with smooth boundary. This will bring no
trouble to the following analysis, aswe only consider the situation in small enough neighborhoods
of �̃� in �̃�, and of 𝛾 in 𝑀. We call (�̃�, g̃) a lifting manifold of (�̃�, g̃) with respect to 𝛾. We define a
map Ψ from �̃� to

⋃𝑁+1
𝑗=0 𝑈𝑗 ⊂ 𝑀 by

Ψ∶ �̃� →

𝑁+1⋃
𝑗=0

𝑈𝑗, Ψ∶ 𝑝 ∈ �̃�𝑗 ↦ 𝜙−1
𝑗 ◦�̃�𝑗(𝑝). (6.25)

It can be checked that Ψ(�̃�) = 𝛾.

Lemma 6.13. ∀𝑝 ∈ �̃�, the set Ψ−1(𝑝) is finite with cardinality ⩽ 𝑁 + 2. Moreover, Ψ is a
local diffeomorphism.

Proof. Assume that 𝑞, 𝑞′ ∈ �̃� are distinct points with 𝑝 = Ψ(𝑞) = Ψ(𝑞′). According to the defini-
tion of �̃�, we have 𝑞 ∈ �̃�𝑗 and 𝑞′ ∈ �̃�𝑘 for certain 0 ⩽ 𝑗, 𝑘 ⩽ 𝑁 + 1. This gives 𝜙𝑗(𝑝) = �̃�𝑗(𝑞) and
𝜙𝑘(𝑝) = �̃�𝑘(𝑞

′). If 𝑗 = 𝑘, then from the diffeomorphism property of �̃�𝑗 we can conclude 𝑞 = 𝑞′.
This contradicts with our assumption that 𝑞 ≠ 𝑞′. This shows that elements in Ψ−1(𝑝), if there
are more than two, must come from different sets of �̃�𝑗 (𝑗 = 0, 1, … ,𝑁 + 1). Therefore, there are
at most 𝑁 + 2 elements in the set Ψ−1(𝑝).
Locally Ψ is defined by Ψ(𝑝) ∶= 𝜙−1

𝑗
◦�̃�𝑗(𝑝) if 𝑝 ∈ �̃�𝑗 . Both 𝜙−1

𝑗
and �̃�𝑗 are locally diffeomor-

phic, thus Ψ is also a local diffeomorphism. The proof is done. □

Now, we apply the arguments in Section 6.1 to �̃� and construct a quasimode �̃� ∶= 𝑒i𝜆Φ𝑎 which
is more precisely given in the form (6.2). Denote

𝑢(𝑝) ∶=
∑

𝑠∈Ψ−1(𝑝)

�̃�(𝑠), ∀𝑝 ∈

𝑁+1⋃
𝑗=0

𝑈𝑗 ⊂ 𝑀.

The geodesic �̃� does not intersect itself on (�̃�, g̃), thus by Proposition 6.2 and Lemmas 6.3 and 6.4
we can find uniform bounds 𝑐, �̃� which depend only on the geometric structure of (�̃�, g̃). Because
for each �̃� ∈ �̃� we can find a neighborhood that is locally diffeomorphic to that of𝑀, we see that
the local geometric structure of (�̃�, g̃) is preserved with respect to (𝑀, g). Because the construc-
tion for the phase function Φ and the amplitude 𝑎 is local, thus for the self-intersecting geodesic
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𝛾 on 𝑀, we can also find the corresponding bounds 𝑐 = 𝑐 × #(Ψ−1(𝑝)) and 𝐶 = �̃� × #(Ψ−1(𝑝)).
These bounds are uniform over all (𝑥, 𝑣) ∈ 𝑇 due to Lemmas 6.13 and 6.7. Theorem 6.2 follows
from this also in the case of self-intersecting geodesics.

Proof of Theorem 6.1 for self-intersection cases. Let 𝛾 be a geodesic in (𝑀, g) which may intersect
itself. Let us construct a lifting manifold (�̃�, g̃) with respect to 𝛾, and let �̃� be the lifting of 𝛾

in (�̃�, g̃). By Lemmas 6.10 and 6.11 we know �̃� is a nonself-intersecting geodesic in (�̃�, g̃). Let
us also define Ψ according to (6.25). For any 𝜑 ∈ 𝐶1(𝑀), we denote �̃� ∶= 𝜑◦Ψ, thus �̃� ∈ 𝐶1(�̃�).
Therefore, according to Theorem 6.1 for nonself-intersection cases, we have

|||∫�̃�
|�̃�|2�̃� d𝑉g̃ − 𝐼�̃�(𝑥, 𝑣)

||| ⩽ 𝐶‖�̃�‖𝐶1(�̃�)ℎ
1∕2,

where 𝐼�̃� represents the geodesic ray transform of �̃� with respect to �̃� in �̃�. By definition we can
have

𝐼�̃�(𝑥, 𝑣) = ∫
𝜏(𝑥,𝑣)

0
𝜑◦Ψ(�̃�(𝑡, 𝑥, 𝑣)) d𝑡 = ∫

𝜏(𝑥,𝑣)

0
𝜑(𝛾(𝑡, 𝑥, 𝑣)) d𝑡 = 𝐼𝜑(𝑥, 𝑣),

where we have used Φ(�̃�) = 𝛾.
From the definition �̃� ∶= 𝜑◦Ψ we see ‖�̃�‖𝐶1(�̃�) ⩽ 𝐶‖𝜑‖𝐶1(𝑀) for certain constant 𝐶.
Furthermore, we know 𝑢(𝑝) ∶=

∑
𝑠∈Ψ−1(𝑝) �̃�(𝑠), thus when Ψ−1(𝑝) contains only one ele-

ment, say 𝑠, we have |𝑢(𝑝)|2 = |�̃�(𝑠)|2; when Ψ−1(𝑝) contains multiple elements, say Ψ−1(𝑝) =

{𝑠1, … , 𝑠𝓁}, then |𝑢(𝑝)|2 =
∑𝓁

𝑗=1 |�̃�(𝑠𝑗)|2 +
∑𝓁

𝑗=1

∑𝓁
𝑘≠𝑗 �̃�(𝑠𝑗)�̃�(𝑠𝑘). By Lemma 6.13 we know 𝓁 ⩽

𝑁 + 2. Since all the intersections are transversal and by Lemma 6.8 there is a uniform lower
bound on the angles of intersection, one can apply a nonstationary phase argument as in [4,
Equation (3.6)] to obtain that the integrals of �̃�(𝑠𝑗)�̃�(𝑠𝑘) for 𝑗 ≠ 𝑘 are of (ℎ). Combining these
arguments, we arrive at

||||∫𝑀
|𝑢|2𝜑 d𝑉g − 𝐼𝜑(𝑥, 𝑣)

|||| ⩽ 𝐶‖𝜑‖𝐶1(𝑀)ℎ
1∕2.

The proof is done. □

ACKNOWLEDGMENTS
The authors would like to express their deep gratitude to Katya Krupchyk and Simon St-Amant
for several helpful discussions, in particular related to uniform bounds for Gaussian beams. The
last two authors would also like to thank the Isaac Newton Institute for support and hospitality
during the program Rich and nonlinear tomography (EPSRC grant EP/R014604/1) when part of
this workwas undertaken. All the authorswere partly supported by theAcademy of Finland (Cen-
tre of Excellence in Inverse Modelling and Imaging, grant 284715) and by the European Research
Council under Horizon 2020 (ERC CoG 770924). The research of S. Ma is partially supported by
the NSF of China under the grant no. 12301540.

JOURNAL INFORMATION
The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.13006 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [07/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



34 of 35 MA et al.

All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. Y. M. Assylbekov and P. Stefanov, Sharp stability estimate for the geodesic ray transform, Inverse Problems 36

(2020), no. 2, 025013, 14. MR4063206.
2. C. Cârstea, A. Feizmohammadi, and L. Oksanen, Remarks on the anisotropic Calderón problem, Proc. Amer.

Math. Soc., 151 (2023), no. 10, 4461–4473.
3. D. Dos Santos Ferreira, C. E. Kenig, M. Salo, and G. Uhlmann, Limiting Carleman weights and anisotropic

inverse problems, Invent. Math. 178 (2009), no. 1, 119–171. MR2534094.
4. D. Dos Santos Ferreira, Y. Kurylev, M. Lassas, and M. Salo, The Calderón problem in transversally anisotropic

geometries, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2579–2626. MR3562352.
5. J. J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), no. 3–4, 183–269.

MR388464.
6. A. Feizmohammadi, Y. Kian, and L. Oksanen, Rigidity of inverse problems for nonlinear elliptic equations on

manifolds, Bulletin of the London Mathematical Society, 2024, DOI 10.1112/blms.13102
7. C. Guillarmou, Lens rigidity for manifolds with hyperbolic trapped sets, J. Amer. Math. Soc. 30 (2017), no. 2,

561–599. MR3600043.
8. C. Guillarmou and L. Tzou, Identification of a connection from Cauchy data on a Riemann surface with

boundary, Geom. Funct. Anal. 21 (2011), no. 2, 393–418. MR2795512.
9. V. Isakov, S. Nagayasu, G. Uhlmann, and J.-N. Wang, Increasing stability of the inverse boundary value problem

for the Schrödinger equation, Inverse Probl. Appl., 2014, pp. 131–141, DOI 10.1090/conm/615/12268. MR3221602.
10. A. Katchalov, Y. Kurylev, and M. Lassas, Inverse boundary spectral problems, CRC Monographs and Surveys

in Pure and Applied Mathematics, vol. 123, CRC Press, Boca Raton, FL, 2001. MR1889089.
11. C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Anal. PDE 6

(2013), no. 8, 2003–2048. MR3198591.
12. K. Krupchyk, S. Ma, S. Kumar Sahoo, M. Salo, and S. St-Amant, Inverse problems for semilinear Schrödinger

equations at large frequency via polynomial resolvent estimates on manifolds, arxiv:2402.12903, 2024.
13. D. Lafontaine, E. A. Spence, and J.Wunsch, Formost frequencies, strong trapping has a weak effect in frequency-

domain scattering, Comm. Pure Appl. Math. 74 (2021), no. 10, 2025–2063. MR4303013.
14. M. Lassas, M. Taylor, and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds

with boundary, Comm. Anal. Geom. 11 (2003), no. 2, 207–221. MR2014876.
15. M. Lassas andG. Uhlmann,On determining a Riemannianmanifold from the Dirichlet-to-Neumannmap, Ann.

Sci. Éc. Norm. Sup. (4) 34 (2001), no. 5, 771–787. MR1862026.
16. J. M. Lee, Introduction to Riemannianmanifolds, 2nd ed. of [MR1468735], Graduate Texts in Mathematics, vol.

176, Springer, Cham, 2018. MR3887684.
17. J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements,

Comm. Pure Appl. Math. 42 (1989), no. 8, 1097–1112. MR1029119.
18. G. P. Paternain and M. Salo, A sharp stability estimate for tensor tomography in non-positive curvature, Math.

Z. 298 (2021), no. 3–4, 1323–1344. MR4282131.
19. G. Paternain, M. Salo, and G. Uhlmann, Geometric inverse problems — with emphasis on two dimensions,

Cambridge Studies in Advanced Mathematics, vol. 204, Cambridge University Press, Cambridge, 2023.
MR4520155.

20. Rakesh and M. Salo, Fixed angle inverse scattering for almost symmetric or controlled perturbations, SIAM J.
Math. Anal. 52 (2020), no. 6, 5467–5499. MR4170189.

21. Rakesh and G. Uhlmann, Uniqueness for the inverse backscattering problem for angularly controlled potentials,
Inverse Problems 30 (2014), no. 6, 065005, 24. MR3224125.

22. V. A. Sharafutdinov, Integral geometry of tensor fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht,
1994. MR1374572.

23. P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity,
Duke Math. J. 123 (2004), no. 3, 445–467. MR2068966.

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.13006 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [07/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1112/blms.13102
https://doi.org/10.1090/conm/615/12268


ANISOTROPIC CALDERÓN PROBLEM 35 of 35

24. P. Stefanov and G. Uhlmann, Integral geometry on tensor fields on a class of non-simple Riemannian manifolds,
Amer. J. Math. 130 (2008), no. 1, 239–268. MR2382148.

25. J. Sylvester andG. Uhlmann,Aglobal uniqueness theorem for an inverse boundary value problem, Ann. ofMath.
(2) 125 (1987), no. 1, 153–169. MR873380.

26. M. E. Taylor, Partial differential equations I. Basic theory, 2nd ed., Applied Mathematical Sciences, vol. 115,
Springer, New York, 2011, MR2744150.

27. G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Problems 25 (2009), no. 12,
123011, 39. MR3460047.

28. G. Uhlmann and A. Vasy, The inverse problem for the local geodesic ray transform, Invent. Math. 205 (2016),
no. 1, 83–120. MR3514959.

29. G. Uhlmann and Y. Wang, The anisotropic Calderón problem for high fixed frequency, SIAM J. Math. Anal., 56
(2024), no. 3, 4084–4103.

30. J. Wunsch, Resolvent estimates with mild trapping, Journées Équations aux dérivées partielles (2012), 1–15,
https://sites.math.northwestern.edu/jwunsch/mildtrapping.pdf.

31. M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138, American Mathematical
Society, Providence, RI, 2012. MR2952218.

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.13006 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [07/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://sites.math.northwestern.edu/jwunsch/mildtrapping.pdf

	The anisotropic Calderón problem at large fixed frequency on manifolds with invertible ray transform
	Abstract
	1 | INTRODUCTION AND STATEMENT OF MAIN RESULTS
	2 | PRELIMINARIES ON GEODESIC RAY TRANSFORM
	3 | RESOLVENT ESTIMATE
	4 | THE CASE OF SIMPLE MANIFOLDS
	4.1 | Special solutions on simple manifolds
	4.2 | Proof of Theorem 1.1

	5 | PROOF OF THEOREM 1.3
	6 | GAUSSIAN BEAMS WITH UNIFORM CONSTANTS
	6.1 | No self-intersection case
	6.2 | Self-intersection case

	ACKNOWLEDGMENTS
	JOURNAL INFORMATION
	REFERENCES


