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1 | INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let (M, g) be an n-dimensional (n > 2) compact Riemannian manifold with smooth boundary,
and let 4 > 0 be a frequency. We consider the boundary value problem

Lou:=(-A,+q—2)u=0 in M,
1.1
u=f on JM,

© 2024 The Author(s). Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

J. London Math. Soc. (2) 2024;110:€13006. wileyonlinelibrary.com/journal/jlms 1of35
https://doi.org/10.1112/jlms.13006


mailto:mikko.j.salo@jyu.fi
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jlms
https://doi.org/10.1112/jlms.13006
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fjlms.13006&domain=pdf&date_stamp=2024-10-05

20f35 | MA ET AL.

where A is the Laplace-Beltrami operator on M. In local coordinates,
_1 o
Agu=lg| 26]('9' 2 g 5ku),

where (¢/F) = (9jx)7" and |g| = det(g;;.). Suppose A7 is not a Dirichlet eigenvalue of —A, + g in
M, and let u € C*°(M) be the unique solution of (1.1) for a Dirichlet boundary condition f €
C*®(0M). The Dirichlet to Neumann map (DN map) associated to (1.1) is given by

Ay 1 C¥@OM) —» C¥OM),  ALf 1= 0d,ulay 1= ¢/ vBiulay- (1.2)

The inverse problem we are interested in is to recover q from Ag for a large but fixed A.

Before going to the statement of our main result, we first define an admissible class of pertur-
bations for which we establish our uniqueness result. For any nonzero p € H5(M), we introduce
a frequency function Ny(p) of p by

Il Escany
N(p) := —10D
S P12

If p = 0 we define Ny(p) = 0. For any number B > 0 and any s > 0, we define a set A (B) of
admissible perturbations by

A(B) :={p € H'(M) : N(p) < B}. (1.3)

Note that p € A (B) implies p € C'(M) or p € C°(M) if s > 5 +1 or s > 3, respectively, by
Sobolev embedding [26, Proposition 4.3].

We establish two main results in this work. Our first result is for simple manifolds (see, for
example, [19]). A compact Riemannian manifold (M, ¢g) with boundary is said to be simple if (i)
(M, g) is nontrapping (every geodesic reaches the boundary in finite time), (ii) dM is strictly con-
vex (the fundamental form of M is positive definite) and (iii) (M, ¢g) has no conjugate points.
Examples include strictly convex simply connected domains in nonpositively curved manifolds.
Our first main result is as follows.

Theorem 1.1. Let (M, g) be a simple manifold of dimension n > 2. Let B > 0 and assume q €
H5(M) with ||qlgzsvy < B, IIPllpsury < B, and p € A(B), where s > g There is a positive constant
Ao = oM, g, s, B) such that inger = Ag foratleast one A > A, then p = 0in M.

Remark 1.1. The assumption that p € A(B) is similar to the assumption that the perturbation
is angularly controlled in [21, Theorem 2] or horizontally controlled in [20]. This assumption is
always satisfied for some B if p lies in a finite-dimensional space, since the norms || p[| 2(y, and
| Pl sy @re equivalent in finite-dimensional spaces. When B is large enough, the set .A((B) is
infinite-dimensional. To see this, let {e j} j>1 be an orthogonal basis of H*(M ) with ||e illzan =1
forall j.Set B := 2|le; || s, then f 1= e, € A((B). Setfj i=e teje; (= 2)f0rcertain<—:j >0
small enough such that

Wl ks cany < llexllesary + €jlle;j s _ B/2 +€jllejll mson <B

I illzan — Nellzzan = €jllesllzan 1—¢;
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ANISOTROPIC CALDERON PROBLEM | 30f35

The last inequality can be achieved €; > 0 is small enough. Then {f;};>; C A,(M) and {f ;};,, is
linearly independent. For a more precise example of such sets we refer [12, Proposition C.1]. See
also the example after [21, Theorem 2].

Moreover, the assumption p € A (B) for some s > g is not optimal. It might be possible to
modify the argument so that p € A,(B) or even p € A, (B) is sufficient. However, some bound
on the frequency of the perturbation is needed in order to have a uniform estimate for A,,. This
places arestriction on the perturbations that can be treated with this method. The same restriction
can also be found in the work [29] after the Equation (35).

‘We note that Theorem 1.1 can also be reformulated as follows.

Corollary 1.2. Let (M, g) be a simple manifold of dimension n > 2, and let q,, q, € H(M) where
5> g Then there exists a positive constant A, depending on M, g, s, 11q;l| gsv), and Ny(qy — g,) such

that ifA;l1 = Ag2 for at least one A > A, then q; = q, in M.

To state the second result, let us recall the notation for the geodesic ray transform following [19,
22]. Assume that (M, ¢) is nontrapping with strictly convex boundary. For a function f on (M, g),
its geodesic ray transform is defined by

If() := / f(s)ds,
sey

where y ranges over the maximal geodesics on (M, g). The geodesic ray transform I on (M, g) is
called stably invertible (in terms of the H' norm of the ray transform) when there exists a slightly
larger manifold M; with M embedded in M ilnt and a positive constant C; such that

I llz2nyy < CLllIfll o, smy) (1.4)

holds for all f € HS(M;) with supp(f) C M, for some s > g + 1. On simple manifolds (M, ¢g) of
dimension n > 2 the estimate (1.4) may be found, for example, in [19, Theorem 4.7.8], and related
estimates even with H'/2 norm on the right are proved in [1, 18]. In dimensions n > 3, if M, 9)
has strictly convex boundary and is globally foliated by strictly convex hypersurfaces, an estimate
similar to (1.4) is proved in [28]. Finally, for strictly convex manifolds with no conjugate points and
hyperbolic trapped set, estimates similar to (1.4) follow from [7]. We also need the following conti-
nuity result of the geodesic ray transform which holds true at least on strictly convex nontrapping
manifolds [19, 22],

WLf 2, smy) < Collf lm20m,)- (1.5)

We present more details on the geodesic ray transform in Section 2. The constraint in Theorem 1.1
that the manifolds must be simple can be relaxed under (1.4) and (1.5). As a result, a more general
theorem follows.

Theorem 1.3. Let (M, g) be a compact nontrapping Riemannian manifold of dimension n > 2 with
smooth boundary. Suppose the geodesic ray transform is stably invertible and continuous, that is, (1.4)
and (1.5) are satisfied. Assume ||ql| sy < B, |Pllgsory < B, p € A(B) withs > 1+ g Then there
exists a positive constant Ay = 1,(M, g, s, B) such that if Aé +p = Ag holds for at least one A > A,
then p = 0in M.
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4 0f 35 | MA ET AL.

‘We now provide a brief survey of the existing results of the Calderén problem. In the Euclidean
setting there is a substantial literature on such problems and we refer the readers to the survey
[27]. In this work we are interested in the anisotropic problem, which can be understood as an
inverse problem for the equation V - (yVu) = 0 where y is a positive-definite matrix function, or
as an inverse problem for the Laplace-Beltrami equation or for the Schrodinger equation (-4, +
@)u = 0 on a Riemannian manifold. If the manifold and coefficients are real-analytic, they can
recover from the DN map [14, 15, 17]. In the smooth case it is known for n = 2 that a potential
g can be determined from the DN map Ag for a fixed frequency A > 0 [8]. For n > 3 this is an
open problem, however there are partial results in the class of admissible manifolds as well as
conformally transversally anisotropic (CTA) manifolds.

We say that (M, ¢) is a CTA manifold if (M, cg) C (R X M,, e @ g,), where c is a smooth positive
scalar function, e is the Euclidean metric, and (M,,, g,) is an (n — 1)-dimensional manifold. We
say (M, ¢) is admissible if additionally the transversal manifold (M, g,) is simple. Theorem 1.1 for
any A > 0 has been proved on admissible manifolds in [3], whereas [4] proved the corresponding
uniqueness result on CTA manifolds. These methods are based on a geometric version of complex
geometrical optics solutions introduced in [25] in the Euclidean case. Related recent results are
given in [2, 6].

In our setting the manifolds do not satisfy the additional product structure mentioned above,
and thus complex geometrical optics solutions are not available. However, when the frequency
A > 0is very large there exist traditional geometrical optics type solutions, and one can construct
such solutions that concentrate along geodesics. If one could take the limit A — oo then one could
recover the geodesic ray transform of the perturbation p. In our case the frequency A1 is large but
fixed, and we will instead use the condition p € A,(B) to recover the ray transform. These ideas
were used in [29] combined with an analysis of the semiclassical resolvent in order to prove a
similar result for nonpositively curved manifolds when n = 3. We give a direct argument based
on geometrical optics and Gaussian beam constructions, and obtain results on any manifold with
stably invertible geodesic ray transform in any dimension.

In Section 6 we present a Gaussian beam construction with uniform bounds for the underlying
constants. This is a key component for proving Theorem 1.3. To achieve this, we express the Riccati
and transport ODEs for the phase and amplitude functions of the Gaussian beam in an invariant
manner. This ensures that the bounds will not depend on choices of (Fermi) coordinates. Finally,
by utilizing energy estimates we are able to obtain the desired uniform bounds. Note that our
Corollary 1.2 is strictly more general than the main result in [29], and Theorems 1.1 and 1.3 are
quantitative results which imply Corollary 1.2.

The rest of the article is structured as follows. Section 2 contains some preliminary results
related to the geodesic ray transform. In Section 3 we present the proof of a resolvent estimate on
nontrapping manifolds. Section 4 gives a construction of special solutions of (1.1) on simple man-
ifolds and proves Theorem 1.1. The proof of Theorem 1.3 is contained in Section 5. In Remarks 5.1
and 5.2 we discuss the stability of the inverse problem. Section 6 gives the invariant construction
of Gaussian beams with uniform bounds required for Theorem 1.3.

2 | PRELIMINARIES ON GEODESIC RAY TRANSFORM

In this section, we recall the geodesic ray transform and several facts related to it. We refer readers
to [19, 22] for more information on the geodesic ray transform.
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Let M be a compact manifold with smooth boundary and let T, M be the tangent space attached
to the point x € M. We write the g-inner product for tangent or cotangent vectors as (-, - ) =
(s )y Wealsowrite| - | =] -], :=(-, - ;/2.SobolevspacessuchasHk(M),Hg(M) and L2(M)
can be defined in a similar manner as in the Euclidean setting, and readers may refer to [26,
Chapter 4] for more details.

The unit sphere bundle SM of M is defined as

SM .= U S.M where S .M :={(x,v)eT M;|v|=1}
xeM

If the dimension of M is n then the dimension of SM will be 2n — 1. The boundary of SM, denoted
as d(SM), is defined as (SM) = {(x,v) € SM ; x € M}, and it is the union of the sets of inward
and outward pointing vectors,

0,SM = {(x,v) € 0(SM); =(v,v) < O}.
Here v is the outward unit normal to the boundary dM. We equip SM with the Sasaki metric
induced by g, and this yields natural volume forms d(SM) and d(dSM).

A unit speed geodesic starting at x and moving in the direction v is denoted by ¢ — y(¢, x, V).
Let 7(x, v) be the time when y exits M. We say that (M, ¢) is nontrapping if t(x, v) is finite for all
(x,v) € SM, and that (M, g) is strictly convex if the second fundamental form on M is positive
definite. We also define the geodesic flow ¢, on SM by ¢,(x,v) := (y(t, x,v), y(t, x, V).

Let (M, g) be strictly convex and nontrapping. The geodesic ray transform I : C®(M) —
C*(0,SM) is a linear map given by

7(x,0)
If(x,v) := /0 fly(t,x,v))dt.

We recall the Santald formula and the expression of the adjoint of I.

Lemma 2.1. Let F: SM — R be a continuous function. Then we have

7(x,0)
/ Fd(SM) = / / F(p,(x,0)) u(x,v)dt d(0SM), 2.1)
SM a,smJo

where u(x,v) := —(v, v(x)).
Lemma 2.2. Let f € C®(M)and h € CP((3,SM)™). Then
(Ifa h)Lﬁ(5+SM) = (f’ I*h)~ (2-2)

Here I'*h is given by I*h(x) = /s hy(x,v) dv where hy(x,0) = h(@_;(x _,)(x, V) for all (x,v) €
SM, and Lﬁ(a +SM) is the L? space with measure u d(dSM).

Lemma 2.3. For every nonnegative integer k, the ray transform I is a bounded linear operator from
H*(M) to H*(3,.SM).
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6 of 35 | MA ET AL.

The proofs of these results can be found in [19, Chapters 3 and 4]. We will also need the following
facts on the normal operator of the geodesic ray transform on simple manifolds which follow from
[23] (see also [19, Chapter 8]).

Lemma 2.4. Let (M, g) be a simple manifold. Then I*I is an elliptic pseudodifferential operator
of order —1 in M'™. Given s € R and a compact set K C M™, there is C > 0 so that one has the
inequalities

C NS Wprsony < T f sy < CUS Werscan

forany f € HS(M) with supp(f) C K.

3 | RESOLVENT ESTIMATE

The proofs of the main theorems are based on constructing approximate geometrical optics or
Gaussian beam type solutions. In order to convert these approximate solutions to exact solutions,
we will need the following solvability result at high frequencies.

Proposition 3.1. Let (M, g) be a compact nontrapping manifold with smooth boundary, and let
q € L®(M) with ||qll () < B. There are C = C(M, g) > 0 and 1, = 4o(M, g, B) > 0 so that for
any A > Ay and any f € L*(M), the equation

(-4, -2 +qQu=finM
has a solution u € H*(M) with

Mull 2y + ldull2n + A7 1Vl 2on < CUF L2

The estimate given in Proposition 3.1 resembles a resolvent estimate in scattering theory, where
it is well known that a nontrapping assumption is required for such an estimate to hold. These
estimates are typically given on noncompact manifolds with suitable assumptions at infinity. See,
for example, [30] for a discussion on such estimates (note that if one excludes a small set of fre-
quencies, this kind of estimate may hold for general geometries [13]). Our estimate on compact
manifolds with boundary is even simpler, and we give a proof based on a positive commutator
argument. For the proof it is convenient to switch to semiclassical notation and write h = 171
See [31] for the semiclassical analysis facts used below.

We may assume that M is embedded in a closed manifold (N, ¢) having the same dimension,
and for all s € R we may consider the semiclassical Sobolev norm

||u||H§d(N) = - thg)S/zu”LZ(N),

where (I — h?A g)s/ 2 is defined via the spectral theorem. Proposition 3.1 will follow by a standard
duality argument from the next a priori estimate with s = 0 (see, for example, [3, Proposition 4.4]
for this duality argument). We employ a generic constant C throughout the manuscript, the value
of which may vary from line to line.
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Lemma 3.2. Let (M, g) be a compact nontrapping manifold with smooth boundary, and let M be
embedded in a closed manifold (N, g) having the same dimension. Let s € R. ThereareC > 0, h, > 0
such that for 0 < h < hg, one has

h”ullH;;Z(N) < C||(—h2Ag _I)u”HSd(N)’ ue Cgo(Mim),

Proof. We first prove the estimate for s = 0. Write P = —h?A , and decompose u as

u =Bu+ (I — B)u,
where B is a semiclassical pseudodifferential operator obtained by quantizing the symbol
b(x,§) :=9(|€],) € C*®(T*N) where 3 € CX(R) with () = 1 near ¢ = 1 and ¢ = 0 outside a
small neighborhood of t = 1. Denote the semiclassical principal symbol of P —I by r(x, £), so

r(x, &) =|¢& |§ — 1.Since P — I is semiclassically elliptic away from {|£|, = 1}, we can find a symbol
q(x, &) of order —2 such that g = r~! in supp(1 — b). This implies

1- b(x’ g) = (1 - b(x7 g))q(x’ g)r(xa g)’ (x7 g) €TM.
By semiclassical calculus, see [31, Section 14.2], we have
I—B =0p((1—b)q)0p(r) + h¥~! = Op((1 —b)q)(P — 1) + h¥ L.

Here W~ signifies the set of pseudodifferential operator of order —1, and we did a little abuse of
notation by writing X = Y + h%~! to mean X — Y € h¥~!. From this one obtains the estimate

1T = BYull 2 vy < 1OP(CL = B)DP = Ditllygz v+ Chilullgr

< ClI(P— I)u”LZ(N) + Ch”uuHslcl(N)
valid for u € C*®(N). Writing u = (I — B)u + Bu on the right, it follows that
I — B)uIIchl(N) < CIP = Dullp2ny + ChllBully: ) (3.1

We now proceed to an estimate for Bu, which is microlocalized to a small neighborhood of
{1€] g = 1}. To do this we invoke the positive commutator method. Assume that we can find a
formally self-adjoint linear operator A : C®(N) — C*(N) such that

lAull 2y < C”“”HSId(N),

P, Al w30 > chllBullly = CHI =Bl

forany u € C*(M inty and 0 < h < h,. We can then make the following computation:

scl scl

= i(Au, (P — Du) — i((P — Du, Au).
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8 of 35 | MA ET AL.

By using Cauchy-Schwarz with ¢, and since ||Aull;2y) < Cllull 5y, we have
scl

2
chlBul?, o < Rl o+ I = Dullly g, + ChIC =B, . (32)
Therefore,
2 2 2
PR ) < 2P2NBuI, o+ 2200 =B,
2 1 2
< Ceh IluI|H1 ot (P — I)MIILZ(N)+Ch (I — B)u||H1 ™) (by (3.2))

scl

<h(Ce+ ChA)ull?, +(Ce™ + ChA)IP = Dullf, - (by B.1)

scl

Choosing the value of € so that Ce = 1/2, we obtain the estimate

R (lull? <ClI(P ~Dull}

HL (N) L2(N)’

scl
valid for all u € C*(M inty as long as one can find an operator A satisfying the conditions
given above.

We construct the conjugate operator A as a first-order semiclassical pseudodifferential opera-
tor, obtained as the Weyl quantization of a real valued symbol a € C*®(T*N). The semiclassical
principal symbol ofih~![P, A]is{p,a} = H pa where p = [§ |f] is the principal symbol of P and H ,
is the Hamilton vector field of p. The assumption that (M, g) is nontrapping means precisely that
there is a function a € C*(S*M) (escape function) with H,a > 0 in S*M, where S*M denotes
the unit cosphere bundle. See, for example, [5, Theorem 6.4.1]. We extend a smoothly to T*N as a
symbol that is homogeneous of degree one for || > 1. By continuity the function Ha satisfies

~1, 3.3)

Hya(x,£) > clf?, £eT*M,, I£],

for some compact set M; C N with M C Milm. Note that (3.3) holds only for |§], away from 0,
and we will apply only this to Bu which is supported near [£| , = 1 in the phase space. Quantiz-
ing a gives a semiclassical operator A of order 1. Using the semiclassical Garding inequality [31,
Theorem 4.30] for (ih~![P, A]Bu, Bu) and Cauchy-Schwarz with ¢ for the other terms gives that

(ih~ '[P, Alu,u) = (ih '[P, A]Bu, Bu) + (ih '[P, A]Bu, (I — B)u)
+ (ih~'[P, A]I — B)u, Bu) + (ih '[P, A](I — B)u,(I — B)u)

> cllBull?, = A~ [P, AlBul o1 0 I = BYulp o)

scl

- ”ih_l[P’A](I _B)u”HS*C%(N)(”Bu“HSlCI(N) +||d _B)u”H:CI(N)>

> cl|Bull},, —CII~Bull}, 34)

scl scl

forallu € C*(M inty Here we used thatih~![P, A]is of order 2 so it is a bounded map from HslCl (N)
to HS‘C% (N). This completes the construction of A. We have so far proved the following estimate
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ANISOTROPIC CALDERON PROBLEM 9 of 35

for all u € C(M™):
Rllullsr ) < CIP = Dl 2y
To prove the analogous estimate for general s, we may apply the above estimate in a small
extension (M, g) of (M, g) (which is still nontrapping) to the function y(I — h?A g)s/ 2u where
X ECPM ilm) satisfies y = 1 near M,andu € C®(M™"). Commuting the cutoff y to the other side
of P — I produces commutator terms that are O(h*) by pseudolocality and the support properties

of u and dy, and these can be absorbed. See, for example, [3, Lemma 4.3] for details. This argument
gives

hllullgssny < CI(=R*A, = Datllgs vy, u € COM™). (3.5

Finally, to improve the left hand side of (3.5) from s+ 1 to s+ 2, we do the following
computation:

hllull sz = hll(=h*Ay =T+ 2Dulls vy < hII=R*Ay = Dulls o) + 2kl o)
<RI, = Dulls o) + ClI=h28, = Dutll o1,
SCI(=h*A, = Dullgs o), u € CXM™),
where in the second last line we used (3.5). The proof is complete. O
Corollary 3.3. Assume the conditions in Lemma 3.2, let —2 < s <0, and let g € L*°(M) with
gl Loy < B Then thereare C = C(M, g,s) > 0and hy = hy(M, g, s, B) > 0 such that for0 < h <
h, one has

hllull sy < Cli(=h*(a, — q(x)) — Dullgs o), € co (M,

Proof. We have ||qu||H§C1(N) < llqullp2eny < ||q||Loo(N)||u||HSJEz(N) provided —2 < s £ 0. Then by
Lemma 3.2 we have

I(=h*(A, = gGx) = Dulyss () 2 =28, = Dullgs ) = K2 llqullzs (v,
= C]’l”u”H::lZ(N) - ||Q||L°°(N)h2||u||H;;2(N)-
Choosing h, = ¢/(2B) completes the proof. O
Now we are ready to prove Proposition 3.1.
Proof of Proposition 3.1. Denote E = L 1 (CPM inty), Then E is a subspace of H S_Cf(N ), and for h
small any element of E can be written uniquely as £ j,-1u for some u € C°(M int) by Corollary 3.3.

Let f € L*(M), and define the linear operator T : E — R by

T(C) ,2) = (f. Dzan, 2 € COM™M),
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where L’,Z ,-1 is the dual operator of £ 1. We have E; o1 = £ 1. Corollary 3.3 gives

|T(£Z,h_1z)| I/ 212l 2y < ||f||L2(M)Ch||£*h 1Zllg=20v)-

This implies T is a bounded linear operator on E, thus by the Hahn-Banach theorem there exists
a linear functional T on H S_Cf(N ) that extends T from E to HS_C%(N ) such that

TN < ChIlfll2q)-

Because HS_CIZ(N ) is the dual space of chl(N) and it is a Hilbert space, by the Riesz represen-
tation theorem there exists a function v € H2 (N) such that T(z) = (v, z) for all z € CX(M™).
Furthermore, ||U||H2 = =|IT| < Ch||f||Lz(M) Now set v|; = u, then for all z € C°°(M‘m) we
have

<£q,h—1u, zy={(u,L* _z)={(v,L* _z)y=T(* z2)=T(L* _z)=(f,z).
q.h q:h q.h q.h

This gives existence of a solution with the desired estimate. O

4 | THE CASE OF SIMPLE MANIFOLDS

In this section we construct special solutions of (1.1) on a simple manifold following arguments
in [3], and give the proof of Theorem 1.1.

4.1 | Special solutions on simple manifolds

Let (M, g) be a simple manifold. We wish to construct solutions of (1.1) in the form of u = e*®a +
R. A straightforward computation gives

Eq,,l(ei’wa):ei’1¢[/12(|d¢|f]—1)a—/1fg’¢ — (@, —q)a] T, 1= 2i(dp,d), +iA, 4. (41)

Here 7, , is a first-order linear differential operator depending on g and ¢. Substituting the ansatz
u= e"wa + R into (1.1), with the help of (4.1) we see that £, ;u = 0 provided that

LR = ew[ —A*(|dg12 = Da + AT, ga + (A, — q)a] in M. (4.2)

We will construct a real-valued phase function ¢ and an amplitude a by making the coefficients
of 12 and 1 in (4.2) to be zero so that (4.2) can be simplified.

First, we solve |d¢|§ = 1. This nonlinear PDE is known as the eikonal equation. Since M is
simple, we can extend M to a larger simple compact manifold M; such that M Cc M ilnt, where M ilm
signifies the interior of M;. Let y € 0M,. By the properties of simple manifolds [19, Section 3.8],
any x belonging to M; can be expressed as x = exp,,(r0) with certainr > 0and 6 € S,M :={{ €
T,M; [€] ; = 1}. Here the map exp,, parameterized by y, is the exponential map defined on M;,
and it defines the so-called polar normal coordinates on M by identifying x with the coordinates
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(r,0) e RT x SyM . In these coordinates, the metric g can be represented as
— dqr2 2
9lre) = dr® + go(r,0)do",
where g, is another positive-definite Riemannian metric, and there holds |¢g| = |g,|. The coordi-
nate r can be used to define a distance function from a point x to y by setting dist,(x, y) :=r. We
now choose

¢(x) = dist (x,y) =+r, x €M,y €M, (4.3)

thus dg¢p = 0, and so |d<¢>|f7 = (+9,r)* = 1. Hence the eikonal equation is solved, and we can
simplify (4.2) to

Ly R= ei}“i’[/lfwa + (A, —q)al. (4.4)

Second, we fix an integer J € N, set a_; = 0 and look for an amplitude a having the form a =

2;2_1 A~Ja;. After substituting this into (4.4), it follows that

T
Lo iR = ei1¢ Z /1_j+1[Tg’¢aj +(@4, - q)aj_l] + ei’wl_J(Ag —q)ay, in M. (4.5)
j=0

Because a_; = 0, the following transport equations for a; can be solved iteratively starting from
j=O0until j=17:

T,ea; = (=42, + q)aj_l. (4.6)

Recall (4.3) and 7 4 defined in (4.1). By the choice of ¢ we have (d¢, da i)y = £0,a;. This reduces
the Equation (4.6) to

1 1 1 1
+2i0,a; xilg1 20, (1912 ) a; = (=8, + @,y & &, (Iglia,) = Filgli (-4, + a1 /2,
which implies for j = 0,1, ...,J,
i r
a;(r,6) = |g(r,0)|7"/* [bj(e) F 5/ l9(s, "4 (A, +q(s,0))a;_1(s,0)ds|,  (4.7)
0
where b; are any smooth functions. Especially, due to a_; = 0 we have

ao(r,8) = |g(r,0)|"/*b(6), (4.8)

where b is a smooth function. Readers may note that a, is independent of the potential. After
solving a j» We can substitute (4.6) into (4.5) to further reduce the original equation to

L, R=e"177(A, - @)a; in M,
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where a; is determined by (4.7). By Proposition 3.1, for 4 large there is R € H?(M) solving
the above equation such that [|R|| 2 < CA7H[€*277(A, — @)a; |l 2(pr)- We summarize the
construction above as follows. For our purposes we choose J = 0.

Proposition 4.1. Let (M, g) be a simple manifold and M C M'™, where M, is also simple. Let y €

0M, and (r,6) be the polar normal coordinates in M, with center at y. Let also ||q|| e rr) < B. Then
for 2 > 2,(M, g, B) the equation L, ;u = 0 in M has a solution of the form

u=e%a+R, (4.9)
where a solves the transport equation T, .a = 0 defined in (4.1), and R satisfies
IRIlz20r) < Cl_l”(Ag = @all2a),
foraconstantC = C(M, g) independent of A. The solution a of T, .a = 0in polar normal coordinates

is given by a = |g|~'/*b(8), where b(8) is any smooth function in 6.

4.2 | Proof of Theorem 1.1

We now give the proof of Theorem 1.1. Assume Ag +p

determined later. Since Ag =A" and A, = Ag

= Ag for some 1 > A, where 4, will be

a standard integration by parts (see, for

q+p +p—212’

example, [3, Lemma 6.1]) implies that

- _ A AL —
/Mpulu2 dv, = ((Aq+p Aq> ul,u2>L2(aM) =0 (4.10)

whenever u; and u, are any H'(M) solutions of (1.1) corresponding to g + p and g, respectively.
We also note that the condition Ag tp= Ag together with a boundary determination result imply
that p|s,, = 0. This is proved for smooth potentials, for example, in [3] and for H6lder continuous
potentials in [8, Proposition A.1] (recall that q, p € HS(M) where s > %, so g, p € C*(M) for some
a > 0 by Sobolev embedding).

Due to the conditions ||q|ls < B, ||pllys < B stated in Theorem 1.1 and Sobolev embed-
ding, we have ||q|l;~ < CB, ||q + pll;~ < CB where C = C(M, g, s). By Proposition 4.1, for 4 >
Ao(M, g,s, B) we can choose solutions u,, u, having the form

u, (r,0) = e |g(r,0)|7Y*b(8) + 1y,

,(r,0) = eV g(r, )1V + 1,

where (7, 0) are polar normal coordinates in M, with center at some y € dM;, and b(8) will be
chosen later. In these coordinates, dV, = | g|'/2 dr d@. Proposition 4.1 also gives

I llz2any < C/1_1||b||H2(a+SyM1)» 721l z2ary < ca . (4.11)
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Substituting u,, u, into (4.10), we have

0= / puii, dv, = / P g7 /*b(©) + r)(e g4 + F)dV,
M M )

= /M pllgl™/?b(©) + e ¥ 1gI ™/ 4r, + | g| M/ Ab(O)F, + 111 AV, (4.12)
0
Recall dV, = | g|/2dr d6 and fOTMl 09 p(r,0)dr = Ip(y,6) where I is the geodesic ray transform

on M,. Here we assume that p is extended by zero to M;. Thus by Santald’s formula we also have

/ p(r,0)b(6)|g(r,0)|1/? dv, = / Ip(y,0)b(6)d6. (4.13)
M 9

+SyMy

From p € A (B) where s > % and from the Sobolev embedding we can conclude that || p|| 5y <
Cllpll sy < CBIIpll2(ar)- Therefore, from (4.11)-(4.13) it follows that, with implied constants
depending on B,

S pllzan it lizan + 1PNz an 1B 2o 1721l 20

/ Ip(y,0)b(6)de
3,5,M,

+ Iplleoan I L2 1721l L2 an

S pllzan i llzon + (”b“LZ(zLSyMl) + llry 22l 2o )
pS /1_1||p||L2(M)||b”H2(6+SyM1)’

where we used (4.11). This estimate further gives

< /
oM,

S A7Mpllzon /azvz Ib1ler2(0, 5,m,) 4Y-
1

/a 1p(3,8)b(6) d(@SM) dy

+SM;

/ Ip(y, 8)b(6) do
8,5,M;

Note that the function b(6) depends on y.
Choosing b(0) = (v,,6)I(I*Ip), inserting this in the above inequality, and using the Santalo
formula (Lemma 2.1) and boundedness of I and I'*I (Lemmas 2.3 and 2.4), we obtain

||I*IP||iz(M1) S /1_1||P||L2(M)||I(I*Ip)||H2(a+SM1) S /1_1”p”LZ(M)”I*Ip”HZ(Ml)

S AP oy (4.14)

Here we also used the condition p|,, = 0, which allows us to consider p as a function in H'(M,)

with support in M. Using the interpolation || f ”12ql o) <C|fll LZ(M1)|| bl H2(M;) [26, Proposition
2

3.1] between Sobolev spaces, we see |[I*Ipl|| o, €N be bounded by the product of [[I*Ip]| 2 M)
1
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and |[I*Ipllg2qa,)- The L? norm of I*I p can be estimated from (4.14), while the H? norm of I*Ip
can be estimated by using the continuity of I*I, thus

TN o,y < CUT TN 2 I TP Ni2qan,) S 221D I -

Recall that p € A(B) with s>n/2>1, so Iy S IPN2ay)- This together with the
inequality above gives

#12 —1/2(1 12
Because (M, g) is assumed to be a simple manifold, by Lemma 2.4 we know that I'*] is stably invert-
ible, namely, ||pllz2ar,) < CIT*IP|l g1 ar,)- Combining this with the last displayed equation above,
we arrive at

_ 1/2,—
1PIZ:007. < oA 21pI% gy = (= C A7 )Pl <O
By setting 1,(M, ¢g,B) := 2C§ and choosing 1 > 1,(M, g, B), we can conclude from the above that
lpllL2cmy < 0,80 p = 0in M. This completes the proof of Theorem 1.1.

5 | PROOF OF THEOREM 1.3

In this section, we present the proof of Theorem 1.3. As in the proof of Theorem 1.1, the assumption

l _ A . . .
Aq +p = Aq leads to the integral identity

/ puu,dv, =0. 5.1)
M

Here, u; and u, solve (1.1) with potentials being g + p and g, respectively. We will choose u; and u,
to be Gaussian beam quasimodes concentrated near a geodesic y based on Theorem 6.2. According
to Theorem 6.2, u 2 (j = 1,2) can be represented as u j=v+ry, where v is the leading term and
r; are the corresponding remainder terms. Here v is the leading term of both ©, and u,. Note that
u, and u, have the same leading term because the leading term depends only on the metric and
the geodesic. Since the leading term v concentrate on the geodesic y, the term /M p|v|? can be

estimated using Theorem 6.1. This implies

' / ploPav, — 1pe)| < Clipllesanh . (52)
M

where I p stands for the geodesic ray transform of p. Next substituting u; = v + r; into (5.1) for
j = 1,2, we obtain

/ plvldeg = —/ p(ury +vry +rrp)dv,, (5.3)
M M

where r; and r, are error terms that can be estimated using the following result.
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Lemma 5.1. Let r, and r, be given as above. There exists a constant C uniformly with respect to y
such that |||l ;2 < CA™! for 1> 2¢(M, g,B), j = 1,2.

Proof. We only give the proof for r;, and that of r, is similar. By Proposition 3.1 we have [|ry [[12(p) <
ca! I£4  vllL2a)- The quantity £ ;v can be expressed in terms of 4 as /12(—h2Ag — v + qu.
From Theorem 6.2 we can bound the L2-norm of both (—h2A , — Dvand v, thus
7 llz2ary < C1/1_1(||/12(—h2Ag - 1)v”L2(M) + ”qv||L2(M))
< CATHCARE + Cyllgllpeqary) < C3A70,
where K > 2. The constant C; comes from the resolvent estimate given in Proposition 3.1, so it does
not depend on the choice of the geodesic y. The uniformity of C, with respect to y is guaranteed

by Theorem 6.1, respectively. Therefore, C5 is uniform with respect to the choice of the geodesic
y. The proof is done. O

The combination of (5.2), (5.3) and Lemma 5.1 entails

Ip)| < ChY | pllcian + ] / p(@ry + U7, + 17 AV,
M
< Ch2[pllcran + [191l20n @@ + OAD] Pl

Since p € A (B)ands > 1+ g,we have || pll e < lIPllcrony S 1PN asor < BllpllL2u- By The-
orem 6.2 we also have that ||v||2s) < C. The combination of these with the above inequality

imply
IIp)| < ChY2 1Ipll 2

This further gives (writing A = h™1)
Ipllz26, s01,) < BOA™ D pllr2an)- (54)

Here we considered M to be embedded into a slightly larger manifold M; and extended p by zero
to M, as in Section 4.2. Then by using (i) the stable invertibility of I with respect to the L?(M,)

and H(8,SM;) norms (cf. (1.4)), (ii) the interpolation ||qo||iﬂ G,5M)) < llellzza, smplellaza, sm,)s

(iii) the estimate (5.4), (iv) the continuity of I: H?(M;) - H*(8,SM;) (cf. (1.5)) and (v) the
assumption p € A (B) sequentially, we can make the following derivation:

”p”iZ(Ml) < ||Ip||?{1(5+5M1) < ||Ip||L2(a+SM1)”Ip||H2(a+SM1)

< (9(/1_1/2)”13||L2(M1)||P||H2(M1) < (9(]._1/2)||p||i2(M1), VA 2 Ay g 8-
The implicit constant also depends on B. Therefore, there exists a constant C such that
(1- C/l_l/4)||P||L2(M1) <0, VA22Ay,p (5.5)

Hence, we conclude p = 0 in M. This concludes the proof of Theorem 1.3.
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Remark 5.1. When Ag +p # Aé, by (4.10) and the arguments in Section 5 we obtain

Ip(y) = (A}, , = ADur u)zamn + 1P I2anOA™)

foranya € (1/3,1/2), where we used the assumption p € A(B)fors > n/2 + 1. Wedenotee :=

||Ag+p - Ag”Hl/Z(aM)_,H—l/Z(aM), andu; = v +r; (j =1,2) asin Section 5, then

||p||L2(M1) s ||1P||H1(a+SM1) Sellv+ r1||Hl/2(aM)||U + ”2||H1/2(5M) + ||P||L2(M)/1_a

S €01 gy + 0l any 1Py + 11 0p) + 1P 2202~

In the derivation above, because both r; and r, follow the same estimate with respect to 4 and &,
we do not distinguish them but simply represent both of them as r. Absorbing the 17| p||.2(ar)
term by the left-hand side, we finally obtain

(= 2Dy < CIAL, ) = Al /2ansy—-1/26m)

X (101241 + W0l Pl cany + 171, (5.6)

The L? norm of v and r can be investigated using the estimates given in Theorem 6.2. To obtain
their H! norm, we need to analyze their gradients, which will give certain growth of order A%1 5%
for certain b,, b, € R. We defer this to future works.

Remark5.2. Our method can also be utilized to obtain stability estimates in certain Sobolev spaces.
However, in this case one can obtain Holder-type stability estimates by examining the difference
between the DN maps at large frequency. This is consistent with the phenomenon of improved
stability for high frequency Schrédinger operators on R", which has already been investigated in
the literature; see for instance [9] and the references therein.

6 | GAUSSIAN BEAMS WITH UNIFORM CONSTANTS

In this section we give an invariant construction of Gaussian beam quasimodes with uniform
bounds for the underlying constants. Let (M, ¢) be a compact manifold with smooth boundary.
For any (x,v) € 9,SM lety, , : [0,7(x,v)] = M be the maximally extended unit speed geodesic
starting at x in direction v. We allow the manifold to have trapped geodesics (that is, 7(x, v) may
be +o0 for some (x, v)), but below we will work only with (x,v) € G, where

Gr ={(x,v) €9, SM : t(x,v) < T}.

The following result states the existence of Gaussian beam quasimodes concentrating near y, ,
with uniform bounds over (x,v) € Gr. Recall that I denotes the geodesic X-ray transform on

(M, g).

Theorem 6.1. Let (M, g) be a compact oriented manifold with smooth boundary. Fix T > 0 and
k,K > 0. There is a constant C = C(M, g, T, k,K) > 0 such that for any (x,v) € Gy and h € (0, 1),
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thereisu = u,, , € C*(M) satisfying
|| Peav, - 100 < Cllglcaoh” (6
M

||(—h2Ag = Dullgr < Ch¥,

uniformly over 0 < h < 1 and ¢ € C'(M).

Theorem 6.1 is sufficient for proving Theorem 1.3. For later purposes, we also state a result that
describes the form of u,. ,, , more precisely and involves normalization in LP. Below, for a tensor A
at x and a subspace F of T, M we write A| for the multilinear form that only acts on vectors in F.

Theorem 6.2. Let (M, g) be a compact oriented manifold with smooth boundary. Fix constants
T>0, p€e[l,o), k>0, and K > 0. There is a constant C = C(M, g,T, p,k,K) > 0 such that for
any (x,v) € Grandh € (0,1), thereisu = u, ,, , € C*(M) associated withy =y, , and satisfying

lulloory < C,
”(_thg - l)u”Wk,p(M) < ChK,
supp(u) C {y € M : dist,(y,7([0,7(x,0)])) < C7'},

uniformly overall0 < h < 1.
There is also a symmetric complex (1,1)-tensor H(t) = H, ,(t) on T, M, depending smoothly on
t € [0, 7(x,v)] and satisfying

ImH)’) 20,  ImHEO ;e = C gl

such thatu = u,,, , has the following form. If x, € y([0,7(x,v)]) and ift; < -+ < ty, are the times
in [0, T(x, v)] when y(t;) = x,, then in a small neighborhood U of x, we have

uly = u® o 4 u),

where each u® satisfies

n—1

ubl, =h" 1®0/h (a(()’) n hagl) o hNa%)>p,

Here N =N(M,g,T, p,k,K), and p is a smooth cutoff function supported near y|; _c +c- The
phase ® = &Y is independent of h and satisfies for t near t,

) =1, VOO®) =71, VOG®)=H,  II®lug <C.

The amplitudes a§l) are independent of h, and for t near t; one has

1 t
al(y(1)) = exp [—5 /O trg<H(s))ds], el i) < €

If p = 2, then c,u satisfies the conditions in Theorem 6.1 with ¢, = ([, e”¥* dy)~1/2.
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Remark 6.1. We note that if (M, g) is compact and nontrapping, that is, 7(x,v) < oo for all
(x,v) € 0,SM, then Gy = 0, SM for sufficiently large T. If M is strictly convex, this follows from
the continuity of 7. In general, one can argue as follows: suppose 7(x,v;) — oo for some sequence
(xj,v j) € 0,.SM. After choosing a subsequence, we have (x j,vj) - (x,v) € m Since 7 is
upper semicontinuous,

lim r(xj, vj) < (x,v).

This is a contradiction, since 7(x, v) < +oo0 by the nontrapping condition.

We will prove Theorems 6.1 and 6.2 in two parts: first in the case of nonself-intersecting
geodesics, and then in the self-intersecting case.

6.1 | No self-intersection case
Let (M, g) be a compact oriented manifold with smooth boundary. Fix T > 0 and define
Cr :={(x,v) € G : y,, does not self-intersect}.

We will prove Theorem 6.2 for all (x, v) € G, and in Section 6.2 we reduce the general case (x, v) €
Gr to this case.
Let (x,v) € Gy and lety = y,.,. We look for u = u,, ;, in the form

n—-1
u=h" 2 e®"a,+ ha, + - + hNay)p, (6.2)

where p is a suitable cutoff function. The functions ® and a; will be constructed in an invariant
fashion, but in order to do this we need some preparations.

We assume that (M, ¢) is embedded in a closed manifold (S, ¢) of the same dimension. We will
also consider a cutoff function y € C°(R) with 0 < y <1, y(x) = 1 for [x| < 1/2, and y(x) =0
for |x| > 1. We consider (S, g) and y to be fixed once and for all. The constructions and constants
below will depend on the choice of (S, ¢) and y but we will not write out this dependence.

Define

Urxp:8) ={t,y) 1 t€(=6,7(x,0) +8), y L,,(0), Iyl <&}, (6.3)

and let §,, be the supremum of & > 0 such that the map F, , : U(y,,,5) = S, (t,y)+~
expyx,v(l)(y) is a diffeomorphism onto its image. By the inverse function theorem, since dF, | o)
corresponds to the identity map, there is a positive lower bound for §, ,, that depends on the C?
norm of F, , on U(y, ,, 1) (see, for example, [19, Lemma 11.2.6] for a similar argument). Hence,
the constant

injp(M, g) := (x%)r)lgg 5x,v
V)ECT

is positive due to the compactness of M. Below we fix § = injz(M, ¢)/2.
The phase function @ is specified in the following lemma.
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Lemma 6.3. Let N > 0 be an integer. For any y =y, ,, with (x,v) € Gy there is a unique function
@ =, , vy € C®(M;C) satisfying the following conditions for any t € [-6,7(x,v) + J]:

(@) VI((d®,d®) —1)(y(t)) =0for0< j < N +2;
(b) @(y(®) =t, dP(y(®)) = (V(t))_ﬁ,
© VZ@(Y(O))U(O)L =igly)t> VJ‘D(V(O))H(O)L =0for3<j<N;

(e) ® = 0outside U(y, d).
There are constants C,c > 0 only depending on (M, g), T and N such that

I@llevan <C, IM(V2®)[50e > cglye (6.4)
whenever t € [-6,1(x,v) + J].

Define the transport operator L by
Lo := %(z(dd), dv) + (A, D)),
The amplitudes a, are given as follows.

Lemma 6.4. Let N > 0 be an integer. For any (x,v) € Gy there are unique functions a, = a, , , y €
C®(M;C) with 0 < r < N satisfying the following conditions for any t € [-8,t(x,v) + 6]:

(@) VI(Lag)(y(t) =0for0< j<N

(®) @ (0) = 1, Viay(O)lyoye = Oforl <j<

(©) Vi(La, —Aja,_)y®)=0for0<j<N and 1 < N;

(d) a,(y(0)) = 0 Via, rODlyyr = Oforl r<N and 1<j<N;

\Y G
(©) a(exp, () = 2(y1/8) T}, T 1y, )
(f) a, = 0outside U(y, ).

There is a constant C > 0 only depending on (M, g), T and N such that
lla llenvan < C.

Moreover, if H(t) = V2®(y(t))*, one has

t
ay(y(t)) = exp [—% /0 trg(H(s)) ds]. (6.5)

Proof of Theorem 6.2. We now prove Theorem 6.2 for (x,v) € §;. By Lemmas 6.3 and 6.4, the
CN(M) norms of ® and a are uniformly bounded over (x, v) € G;. Moreover, we have the estimate
Im(®(exp,(;)(»))) > c|y|* — C|y|* where ¢,C > 0 are uniform over (x,v). We now choose &, =
8,(C,c) < 6 so that

Im (®(exp,y(»))) > clyl*/2, |yl <§&,. (6.6)
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The function p in Theorem 6.2 is chosen as p(t, y) = y(|y|/d,). Using the above facts, all constants
below will be uniform over (x,v) € G;.

We now compute the LP(M) norm of u. Due to the presence of the cutoff function p, it is enough
to calculate the LP norm u in U(y, §). This along with (6.6) entails

T+6
L elyPrahp /2 < —cplzl?/2
s T ey s34 [ e

This shows that [|ul| () < 1 uniformly over (x,v) € Gr.
Let us then denote f = (—h*A, — 1)(e'®/"a) where a = (ay + ha, + - + WNay)x(|y/8,). A
direct computation shows that

¢i®/h

_ 2 N-1 _ N
= oy | (14912 = 1) azy1/80) + hfy + -+ +R¥ oy = YA, (v/8)ay)).

where f; are smooth functions vanishing of order N ony for1 < j < N — 1, due to the properties of
a; in Lemma 6.4. Also note that each f; contains two terms: one involves the operator L acting on
a, and another term is involving derivatives of the cutoff function y(|y|/d;). The term involving
derivatives of y(|y|/8;) is O(hX) for all K, due to the Gaussian nature of ¢!®/. Thus we ignore
this term when we compute || f || (). Observe that

|e'/7] < e=<PP/21 in supp(f).
This implies

—cly|?/2h N+1 N
15 e e (yI¥*E 4 R (6.7)

It is enough to estimate || f || ,»(yr) in the neighborhood {(¢,y) : =6 <t <7+, |y| < §;} where
f is supported. Here 7 = 7(x, v). Then from (6.7) we obtain

T+6
(T+25) elvl2
p cly|*/2h N+1 Ny|p
T = /Iy I A (T T
< (7 +26) |e—c|z|2/2(|Z|N+1h(N+1)/2 +hN)|p hnT_l dz

~ h(n—l)/Z Rn-1

S (T +29) [h(NJ;DP / e=CPIzl*/2) 7| (N+Dp g7 4 th/
Rnr-1

Rn—1

+1)p

™
S@E+20)h 2 .

Since 7(x,v) < T uniformly over (x, v) € G; and since § is fixed, we conclude

N+1
Wflleory Sh 2.
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In order to estimate the LP(M) norm of higher order derivatives of f, we apply V , on f and observe
that

ive S
RODIEDY f = e ®/ (102 = 1) ax(y1/6) + X, W f; = VA, (x(v/8)ay)

L Jj=1 _

_ N-1 .

+eMV | (10912 =1) axyl/8) + 3 WFj = h¥a,(x(y/8)ay) |
Jj=1

Next, utilizing similar arguments as above, we obtain

1

—clv|? 1
me clyl*/2h [E(MNH + )+ (IyIN + hN)]-

IV IS

This further entails

(T +29)
IV A2, S
g9 'Lp(M) h(n-1)/2 ly|<6

- 1 b
P [L Gy Y + Y+ )|y

< (t+26)
~ h(n—l)/Z RrRr—1

N N P n
e~clel’/2 [% (hT“ |z|N+ + hN) +(h2|zIN + hN)H T dz

-1
NP T (2N dz + h<N-1>P] dz

< (T +28) e~eplzl’/2 [h
Rn—1

(N-1)p

) N (N-1),
<G+20)h Tt +hT +hVVPY < (r 4200k 2,

namely,
1/p 552
IV flipy S (T +28)/Ph 2.
(N+1)
Similarly, one can obtain the following bound ||V’; f ||§lJ o) S(t+28)h T h=k for the higher

order derivatives of f. After choosing N = N(K, k, p) in a suitable way, this gives the required
bound for the W*P(M) norm of (=h?A, — Du.

The condition for supp(u) follows from the presence of the cutoff function p. Writing H(¢) =
Vztb(y(t))ﬁ, the conditions for the phase function and amplitudes follow from Lemmas 6.3 and
6.4. The proof is done. 1

Proof of Theorem 6.1. We will prove the theorem under the assumption that (x, v) € ;. The case of
self-intersections will be handled below in Section 6.2. If we denote the function in Theorem 6.2
by w, we take u = c,,w where c, is the constant in Theorem 6.2. It is then enough to prove the
estimate (6.1) for u.

By Theorem 6.2 we know that u is of the form

n—-1 .
u=c,h % e®"ay + ha, + - + N ay)p.
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We will work in Fermi coordinates (¢, y) in U, where U is the set
U={ty) : te(=6,1(x,v)+9), y Ly, (), |yl <d} (6.8)

Since p is supported in U, we can represent u in the coordinates (¢, y) by
n—-1 .
u(t,y) = c,h™ + &P ag(t,y) + hay(6,y) + - + WV ay (6, y)e(t, y)-

n—-1 .
Also, u = 0 outside U. We denote v = c,h~ 2 & ®E/hg (t,y)p(t,y) and write

N
_n-1 _
u=v+hw, where w=c,h 4 el 2ty)/h Z Kk La(t,y).
k=1

n—1
Then |v]? = ¢2h™ 2 e 2m@UD/h|q(12(¢,y)p?. In the coordinates (¢,y) we have the following
expression for ®:

O(t,y) =t + SHOY -y + O(y) = Im(@) = Im(SHOy -y + Oy ).

Next, we consider

/IuI2¢dVg=// o(t,y)lul*|g|*/*dr dy
M 0 Rn-1

T
=// @(t,y) |v|*|g|/*dt dy
0 JRrr-l

T
n / / o(t,) [|hw]? + 2hRe(ui)] || dt dy
0 JRr-1

We analyze J, and J, separately. We start with J,, which may be written as

T
11:// o(t,y) v g|"/?dt dy
0 Rn—l

_n1 T -
=cGh / / (6, ) MR g, 2 022, y) 9]/ 2dt dy
0 R=
1 [T _ . 3
=Gk / / (e, y) T mHONI R O a4 2 022, y) 1| 2dt dy
0 Rn=

T 1
= Cft /) ‘/Rn_1 e—Im(H(I))y'y §0(t, \/Ey)e\/ﬁ(ﬂ(lym |a0|2(t, \/Ey) pZ(t, \/Ey) |g|§(t, \/Ey) dt dy

Next we denote @(t, Vhy) := (t, VhAy) eVHOUP) | 12z, v/hy) p2(t, v/hy) 913 (¢, Vhy). By

applying Taylor’s theorem we obtain

@(t, \/Ey) = @(t,0) + \/ﬁy -V, @(t, ozy\/ﬁ) for certain a € (0, 1).
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Note that @(t,0) = ¢(t,0)|a,|*(t, 0) using the fact that |g|(t,0) = 1, and p(¢,0) = 1. This implies

T
h=q / / eTmHOYY (o1, 0)[ag(t,0) + Vhy - V,9(t ayvh)| dy at
0 R

_ 2 i [C 2L Ola P SImHOWY [y V(¢ ﬁ)
Cn(/w1 ¢ /0 et mE0) ; /Rnl e y-V,@(t,ayVh)

Recall from Theorem 6.2 that ¢, = ([ €7 I* dy)~1/2. This entails

‘ |a0|2(t50) 5 f —Im(H())y- o
J = t,0) ———— vy \/Z -V, o(t, \/Z .
1 /O »(t,0) T +c /O /R e Y- V,@(t,ayVh)

2
Asin [4, p. 2599] we have that dl‘:&l ((tl’jzt))) is constant, and by our choices of initial data we have
et(im
2
19t __ _ 4 From the above we deduce
det(Im(H(1)))

T
J; = Ip(x,0) + Cer/ / e~ ImEHOYY \/py, . Vycﬁ(t,ay\/Z). (6.10)
0 JRrr-l

Combining (6.9) and (6.10) we obtain that

T
/ lul*pdv, — Ip(x,v) = c, / / e mHOYY \[py v (1, ayVh) + ;. (6.11)
M 0 Rn-1

By utilizing the norm estimates from Lemmas 6.3 and 6.4 we conclude that
T
[ e iy 9, apViol < cVaplen,
0 Jrn-

. _n-l .
Since ||h™ elq’([’y)/hIILz(M) < Cand |lajllenpyy < C, we have

Jy < C\/E”¢”C1(M)'

Thus, by combining the preceding estimate with (6.11), we conclude

| /M uPedv, - Ip(x,0)| < CVallglleian,

This completes the proof. O

Finally, we give the proofs of Lemmas 6.3 and 6.4. The conditions for ® and a, in these lemmas
will be equivalent with the fact that V/® and V/a, solve certain ODEs along y,. . To derive these
ODEs we will use properties of the covariant derivative Vy and total covariant derivative V (see,
for example, [16]). These include the formulas VT(X, -) = (VxT)(-) and
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(VXT)(XI’ ’Xk) = X(T(Xl, ’Xk)) - T(VXXI’XZ’ ’Xk) _ T(Xl, ’Xk—l’ Vxxk).

We will also use that Vy commutes with contractions and raising and lowering of indices with
respect to g. If S is a p-tensor and T is a g-tensor, we will use the special contraction

C(S,T) =) (S®TH,

where T* is obtained from T by raising the first index and ¢
indices. Equivalently

p,p+1 contracts the pth and (p + 1)th

N
C(S, TYX s ooy Xy Yoo, Yg1) = YL S, e, Xy, ENT(E}, Y1, e, Yoy,
j=1

where {E;} is any orthonormal basis. Below we will also write R(X,Y)T = (VxVy —VyVy —
Vixy)T and Ry (X,Y) = (R(X, V)V, Y).
The following general Riemannian geometry identities will give the invariant ODEs for V¥®.

Lemma 6.5. Let ® be a smooth complex function on M, and let G = grad(®) = (d®). Then
Vs (V2®) + C(V2®, V2®) + R; = %Vz((G, G)).

IfH = (V2®)* is the (1,1)-tensor corresponding to V2®, this identity can be rewritten as

VeH +H? +RE = %(Vz((G, G
Forany k > 3 one has

k k 1ok

Here A, is a linear map taking k-tensors to k-tensors with |A;(S)| < C;|V?®||S|. Moreover, Fy is a
k-tensor with |F, | < Dy where D, only depends on curvature quantities on (M, g) and on |VJ ®| for
1<j<k—1
Proof. Since G = (d®)* is a gradient field, we have for any X, Y that

V2®(X,Y) = (VxG,Y) = (VyG,X). (6.12)
We compute

V2((G,G)(X,Y) = Vx(V(G,GN)Y) = X(Y((G,G))) — (VxY)(G,G))
=2X((VyG,G)) — 2(Vy, yG,G)
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On the other hand, we have
Vo(V2O)X,Y) = G((VyG,Y)) — (VyG, VX)) — (V4G,V;Y)
=(VsVxG,Y) —(VyG,VsX)

where we used the definition of the curvature tensor R(G, X)G. To simplify the last expression,

we apply X to the identity (V;G,Y) = (VyG, G) obtained from (6.12) to see that
(VxV5G,Y) = (VxVyG,G) + (VyG,VyG) — (V5G, Vi Y)
12
Thus we obtain, using (6.12) and the fact that [G,X] = VoX — VG,
Vo(V2O)(X,Y)
= IV2((G.GN(X, ) +(VyG.[G.X]) + (R(G.X)G,Y) ~ (V4 G, VoX)

2

= 2V2(G,GN(X, Y) = (Vy G, VxG) = Rg(X, V).

Since C(V2®, V2®) = Y(V4G,E;){VyG,E;) = (VxG, VyG), this proves the identity for V2®.

We next apply V to the identity for V2®. We also use the identity

= Vo(VT)(X, -) + VT(VxG, ) + R(X,G)T

= V(VT)(X, -) + C(V?®,VT)(X, -) + R(X,G)T,
as well as

V(CS, THX, ) = Vx(cp 1 S®TH =, , 1 (VxS ® TH + S ® (VxT))

=C(VS,T)(X, -)+oC(S,VT)(X, -),

where o is a permutation, so that S(X1, ... ,Xp) = S(Xg(l), ,Xg(n)). Thus we obtain

Vo (V3®) + C(V2®, V3®) + C(V3®, V2®) 4+ 0C(V?®, V3®) + F, = %V3((G, G)),

where F; contains terms depending on curvature quantities and on V/® for 1 < j < 2. This is the

required equation for V3®. The cases k > 4 proceed in an analogous way.

We can now prove the main lemma for the phase function ®.

SUORIPUOD PUe SWIB 1 8} 885 *[7202/0T/L0] U0 ArigiTaunuo AB|im ‘AriqielAsensr JO AsieAiun Aq 900ET SWIl/ZTTT 0T/I0pA0d &3] 1M AReiq iUl |uo-d0SyIRWPUO|//SANY WOl papeojumod ‘v ‘Y202 ‘0SLL69T

- Ao A1 B0

o),

85UBD 17 SUOLILLOD BAIEER1D a|qea|dde sy Ag peusenoh ae sajpile YO ‘88N JO Sa|ni Joj Akiq 1 aulluO A3|IAA Lo (Suon



26 of 35 | MA ET AL.

Proof of Lemma 6.3. The first requirements for ® are the conditions ®(y(t)) = t and d®(y(t)) =
7()*. In order to prescribe higher derivatives for ® along y it is convenient to work with tensors
along y that only act in directions orthogonal to y. For any r,s > 0 we define a smooth vector

bundle E = E"* over y such that the fiber E;(St) is the space of multilinear forms on (7(t)1)®" ®

((7(£)-)*)®5. Note that any tensor A at () gives rise to an element Aljr of E, 1) and conversely
any element of E, ;) can be identified with the corresponding tensor at y(¢) that vanishes in the
y(¢) direction. Using this identification one can compute V,, of a section of E, and one can check
from the definitions that this produces another section of E (this uses V, = 0). Similarly, one can
raise and lower indices of sections of E with respect to g. Below we will assume these conventions
and work with tensors only acting in the y* directions.

Next we require that qu)l}-,(t)J_ = H(t)’, where H(t) solves on [0, 7(x, v)] the ODE

ViH+H>+R =0, H(0) = i(gly0)"- (6.13)

We will also require that G, (¢) := chply(,) 1 for 3 < k < N solves the ODE

Asdiscussed below, (6.13) and (6.14) have unique solutions. By Lemma 6.5, the function ® will then
satisfy the conditions in Lemma 6.3 except perhaps the uniformity of constants. Thus it remains
to verify that the constants are uniform. The main part of the proof will be to verify that the argu-
ments in [10, Lemma 2.56] for solving the matrix Riccati equation are also valid in our case when
the equation is written invariantly.

To this end, let Z(¢) and Y(¢) be (1,1)-tensors along y =y, , acting on 71 that satisfy the
following linear system of ODEs for ¢ € [0, 7(x, v)]:

V,Y=2, Y(0) =1,

V,Z = —RﬁY, Z(0) = i(glj o )F.

This is a linear system and |R5| < C, where C denotes a constant that is uniform over (x,v) € Gy
and t € [0,7(x, v)] and may change from line to line. By energy estimates [26, Section 1.5] and by
the fact that 7(x, v) < T, it follows that |Y| + |Z| < C uniformly.

We wish to prove the uniform bound

lY(Hw| = CHwl, w L y(t). (6.15)

To this end we first note the following Leibniz rule: if A(t) and B(t) are (1,1)-tensors and ¢ contracts
the second and third indices, then

Then the argument in [10, Lemma 2.57], together with the fact that R?/ is real and symmetric, gives
that

V,(Z'Y -Y'Z) =V (Z'Y - Y*Z) = 0.
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Here Y! and Y*, etc. are defined as (Yv,w) = (v, Y'w) and (Yv, w) = (v, Y*w), where (v, w) is
the sesquilinear g-inner product on complex tangent vectors. In particular, if v(t) is a complex
vector that is parallel along y, this implies that

21 Im(Y (Ho(0), Z(Dv(0) = (Z@)*Y (1) = Y (£)*Z(1))v(0), v(D))

= ((Z(0)"Y(0) - Y(0)* Z(0))v(0), v(0))
= —2ig(v(0), v(0)).
If u(t) = w where w L 7(t), then also v(0) L 7(0), and since |v(s)|? is constant in s we have
Im(Y (Hw, Z(Hw) = —|w|? (6.16)
whenever ¢ € [0, 7(x,v)] and w L 7(t). In particular,
lw]* < [Y(Ow |Z(Ow] < ClY (Ow] |w]

using the uniform bound |Z(t)| < C. This proves (6.15).
Now we can define H(t) by

H@v =2z@OY(@® v, v Ly,
where Y(¢)~! denotes the inverse of Y(¢) on y(t)+ which exists by (6.15). It follows that H(t) solves
(6.13) and satisfies |H(t)| < C uniformly over t € [0, 7(x, v)]. Moreover, for w L y(t) one obtains
from (6.16) and the estimate |Y(¢)| < C that

(Im(H())w, w) = ImZ)Y () w, w) = |[Y() " 'w|? = C2|w|?.

Thus V2@ satisfies the uniform estimate in (6.4). The linear ODEs (6.14) are uniquely solvable with
uniform bounds by energy estimates [26, Section 1.5]. This concludes the proof of the lemma. []

The proof of Lemma 6.4 concerning the amplitudes proceeds in a similar way. But prior to the
proof of Lemma 6.4, we present the following result first.

Lemma 6.6. For any smooth function a, one has
V(La) = L(Va) + B(Va) + Fa,

where B is a smooth linear map satisfying |B(Va)| < C|Va| and F satisfies |F| < C, with C only
depending on (M, g) and ®. For any integer k > 2, one has

Vk(La) = L(V*a) + B,(VFa) + F,

where By, is a linear map satisfying |B;,(V¥a)| < C|V¥a|. Moreover, |F;| < C where C depends on ®,
curvature quantities on (M, g) and |Via| for1 < j <k —1.
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Proof. We first extend the notion of L for any vector field or tensor field as
LZ = l(ZVGZ +A4,02).
i

We next compute V(La) — L(Va). To this end, we consider V(La)(X) = Vx(La) = —i(2VxVsa +
Vx(A,®a)) = —i[2V;Vya +2V(x g1a + (XA, P)a + (A, P)(Xa)]. Since [X,G]=VxG - VX,
this along with preceding equation entails

V(La)(X) = —i[2VVya + 2Va(VyG) — 2Va(VeX) + (XA, ®)a + A, 0(Xa).  (617)
We also have
L(Va)(X) = —i(2V;Va + A, ®Va)(X)
= —i[2V4Vya — 2Va(VX) + (A, ®)Va(X)]. (6.18)
The combination of (6.17) and (6.18) entails
V(La)(X) = L(Va)(X) + %Va(VXG) + %(VXAgd))a.

To prove the relation for higher order derivatives, we will employ induction argument and assume
that

VE(La) = L(V¥a) + B.(V¥a) + Fy, (6.19)

holds for any smooth function a, where |B|, |VBy|, |Fil|, |VF,| < C. Then for k + 1 applying V
to the Equation (6.19) we obtain

V(VKLa)(X) = VxL(V¥a) + VyB,(VKa) + Vy Fy.

Then it remains to compute formula for VyL(V¥a) and L(V¥*1a)(X,...). This can be done in a
similar fashion as above. This completes the induction argument. O

Proof of Lemma 6.4. As in the proof of Lemma 6.3, we work with tensors that only act in
the 7+ directions. By the construction of the amplitude a = a, + ha, + --- + h¥a, we have that
VJ(La,) = 0 ony for 0 < j < N. This along with Lemma 6.6 entails that V/q, satisfies the linear
ODE

L(V/agl;1) +Bj(Vagly0) + F; =0 (6.20)

along the geodesic y for 0 < j < N. By energy estimates [26, Section 1.5] and by the fact that
7(x,v) < T, we conclude that |V/ aolyL| < C uniformly. This further entails ||a,||cv ) < C uni-
formly. Moreover, we have that V/(La, — Aa,_;) =0for 1 < j < N and 1 < r < N. Utilizing this
and Lemma 6.6, one can obtain certain linear ODEs for VJ aplyL (similar to (6.20) with different
source terms). Hence by standard energy estimates we conclude that ||a,||cv () < C uniformly
for1 <r <N.
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It remains to prove (6.5). By Lemma 6.4(a) we have that Layl,() = 0. Recall that Lv :=
%(Z(dtb, dv) + (A, ®)v). This along with Lay|,,) = 0 implies

Vyao(r(0) + %qu’(}’(t)) a(y(®) =0 and a(y(0) =1.

This is a linear ODE along y with an initial condition. It has a unique solution and it is given by

ay(y(t)) = exp [—% /O[Agcb(s) ds] = exp [—% /Ot tr,(H(s)) ds].

In the last part we used V2®(y, w) = (V, V@, w) = 0since VP = y. This completes the proof. []

6.2 | Self-intersection case

We now describe an extension procedure that allows us to reduce the proofs of Theorems 6.1
and 6.2 in the general case to the case where the geodesics do not self-intersect, so that the self-
intersection case can be handled.

Recall that (M, g) is a domain with boundary in the closed manifold (S, ¢), which has positive
injectivity radius inj(S) [16, Lemma 6.16]. Below we write inj(M) = inj(S). We first give an upper
bound for the number of self-intersection points for geodesics in M with length < T.

Lemma 6.7. Let (M, g) be a compact oriented Riemannian manifold with smooth boundary and
let T > 0. There is a uniform upper bound on the number of self-intersection points for all geodesics
Vxv with (x,v) € Gr.

Proof. Lety: [0,7(x,v)] - M be a geodesic. Since 7(x, v) is the length of the geodesic y, we can
divide y into

_ 21(x,v)
U inj(M)

(6.21)

pieces such that each piece is of length inj(M)/2 except perhaps for the last piece, and we denote
each piece as yy, ...,y sequentially. Note that each y; is not self-intersecting. Also, for j # i,
7i and y; intersect only once. To see this, if y; and y ; intersect at two different points x, and y,
then there are two distinct geodesics connecting these two points. This contradicts the definition
of inj(M). Therefore, there are at most L, , — 1 self-intersections happening for each y;. Since
7(x,v) < T for (x,v) € G, we define

2T
~ inj(M)

and observe that the number of intersection points for all the geodesics with (x,v) € G is
bounded by L(L — 1). The proof is done. O

Our next lemma gives a uniform lower bound on the angles between segments of a geodesic at
a self-intersection point.
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Lemma 6.8. Given T > 0 thereexists€ > Osuch that forany (x,v) € Gpwithy, ,(t) =¥, ,(s), s # t
one has (7, ,(8), 7y, (1) <1 —e.

Proof. We argue by contradiction. Let us assume that for all j, there exists (x;,v;) € G and

j’
(sj,t;) € [0,7(x;,v;)] with s; < t; such that

. ) 1
YXj,uj(Sj) = ij,vj(tj)9 <7/xj,vj(sj)’ ij,uj(tj» 21— ; (6.22)

Since d, SM is compact, there exists a subsequence, denoted also as (x U j), that converges to
(x,v) € ,SM. Since 7 is upper semi-continuous and 7(x, v) < T, this further implies that (x,v) €
Gr. By further choosing a subsequence, we can assume s i and t j converge to s and t, respectively,
with s < ¢, and since Sj,t; € [0, r(xj, vj)], we know s,t € [0, 7(x, v)]. Using these, by taking the
limit j — oo in (6.22), we conclude that

yx,u(s) = Vx,v(t): (7./x,v(s)’ 7x,u(t)> =1= J/x,v(s) = J/x,u(t)’ )‘/x,v(s) = 7x,v(t)'

Now we have two possibilities: either s < t or s = t. If s < t, then Yxu makes a loop, but this con-
tradicts with the fact that 7(x,v) < T.If s = ¢, then s j and ¢ j get simultaneously close to s, this is
again a contradiction because inj(M) > 0. We complete the proof. O

We are going to glue many copies of subsets of M together so that the geodesic y does not
intersect itself in the new manifold. Then we can apply the results in Section 6.1 to obtain uniform
bounds for self-intersecting geodesics. We refer to [24, Section 2.1] for similar ideas.

Let N = L(L—1) and let t; = Jivr(x, v). Let {(U;, ¢j)}1j\’=t)l be an open cover of y, where U; =
¢j_1(1j X B) and I = (tj —26,tj — ¢) with j = 0,...,N. In this way, we see each {(Uj,qu)} isa
chart of y;. We write as (Uj, é ;) copies of charts (U, ¢;), and we also copy the Riemann tensor
structure from (U}, ¢) to (Uj, é ), say, we copy g as §. We want to glue different Uj together. To
that end, let us investigate the intersection parts U; N U, for different j. We denote

Then V; is the copy of U; N U, in Uj, and W is the copy of U; N U}, in Uj+1. There is a

diffeomorphism between V; and W; because they are both copies of U; N U,,. According to
(6.23), this diffeomorphism can be expressed as

W, = géjjloqs i +1o¢j—1o$ (V). (6.24)

Now we identify V; and W; though this diffeomorphism. This identification allows us to construct
the following manifold M:

N+1
M:=| |7,
=0

Note that the boundary of M is not smooth yet. This can be seen illustratively from the points A
and B in Figure 1.
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FIGURE 1 Intersection between U; and U, ,. Here the notation =;; means equal by identification through
(6.24).

Lemma 6.9. (M, §) is an n-dimensional compact Riemannian manifold with boundary.

Proof. Because there are overlaps between U; and U, for j = 0, ..., N, and because U j are copies
of U;, we see that there is a natural identification between the neighborhoods of the boundary
U;jnUj;; in U; and in U4, respectively. This guarantees that M is a compact Riemannian
manifold with dimension the same as in M. O

We will show that M can be trimmed to become a manifold with smooth boundary. To this end,
we first introduce the geodesic 7 and prove it does not intersect itself. Denote 7 to be the curve in

M with coordinates UIJ.V:O I; x {0}, that is to say,

i
=

N
I - qujfl(zjx{o}), 7itel; > §Ex{0).
0 j=0

J
We call 7 a lifting of y.

Lemma 6.10. 7 is a geodesic in M.

Proof. For a point p € 7 that belongs to the nongluing part of certain U j» we can identity a small
neighborhood of p with that of p € y in M. Therefore, we only need to investigate points p; at
7NnU;NUj,, for j =0,...,N. The point p; belongs to U, and thus its neighborhood can also be
identified to a neighborhood certain point in y. Therefore, 7 satisfies the geodesic equation in M
just as ¥ does in M, and so 7 is a geodesic in M. O

Lemma 6.11. § does not intersect itself in M.

Proof. We argue by contradiction. Assume 7(t;) = 7(t,) for t; # t,. If t;, t, belong to the same
interval I, then we can conclude gEjTl(tl x{0}) = quTl(t2 x {0}), which gives t, = t, because gbj_l is
a diffeomorphiS{n. But this cont~radicts with £, ;f t,.1ft; € Ijand ¢, € I for j # k, then 7(¢;) =
¢j_1(tj x{0}) c U; and 7(t,) = ¢, ' (t, X {0}) C Uy. From (6.21) we see it is impossible that |j —
k| = 1, because the injectivity radius covers two consecutive pieces, thus |j — k| > 2. Therefore,
Uj and U, are two distinct sets who do not share any gluing part, so it is impossible that 7(t;) =
7(t,). In both cases, we have a contradiction. The proof is done. O

Lemma 6.12. M contains a subset M such that (M, §) is a n-dimensional compact Riemannian
manifold with smooth boundary.

Proof. The first part of the proof follows from Lemma 6.9, because 7 does not intersect itself in M,
we can construct a global coordinates ) : M — R" according to 7. Let x € (0, 1) be a small enough
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FIGURE 2 Let M be the area in between lines a and b. Compared to M whose boundary may not be smooth
at points A and B, M has a smooth boundary.

constant such that M := 3 ~1(I x B(0,x)) is a subset of M. This M has a smooth boundary. See
Figure 2 as an illustration. The proof is done. [l

With a slight abuse of notation, we refer M as this M with smooth boundary. This will bring no
trouble to the following analysis, as we only consider the situation in small enough neighborhoods
of # in M, and of y in M. We call (M, §) a lifting manifold of (M, §) with respect to y. We define a

map ¥ from M to U;V:JBI U; C M by

N+1
v M- U Uj, ¥:peU; — ¢;'o4(p). (6.25)
j=0

It can be checked that W(y) = y.

Lemma 6.13. Vp € M, the set lI’_l(p) is finite with cardinality < N + 2. Moreover, ¥ is a
local diffeomorphism.

Proof. Assume that g, ¢’ € M are distinct points with p = ¥(q) = ¥(q’). According to the defini-
tion of M, we have g € U; and q’ € U for certain 0 < j,k < N + 1. This gives ¢;(p) = ¢;(g) and
¢x(p) = ¢ (q"). If j = k, then from the diffeomorphism property of ¢ ; we can conclude g = q.
This contradicts with our assumption that g # q’. This shows that elements in ¥~!(p), if there
are more than two, must come from different sets of U j (j =0,1,...,N + 1). Therefore, there are
at most N + 2 elements in the set ¥~!(p).

Locally ¥ is defined by ¥(p) := ¢]71043 i(p) if p € U;. Both ¢j‘1 and ¢ ; are locally diffeomor-
phic, thus ¥ is also a local diffeomorphism. The proof is done. I

Now, we apply the arguments in Section 6.1 to 7 and construct a quasimode i : = ¢*®q which
is more precisely given in the form (6.2). Denote

N+1
u(p) := Z ii(s), Vp € U UjCcM.
se¥-1(p) Jj=0

The geodesic 7 does not intersect itself on (M, §), thus by Proposition 6.2 and Lemmas 6.3 and 6.4
we can find uniform bounds ¢, € which depend only on the geometric structure of (M, §). Because
for each p € M we can find a neighborhood that is locally diffeomorphic to that of M, we see that
the local geometric structure of (M, §) is preserved with respect to (M, g). Because the construc-
tion for the phase function @ and the amplitude a is local, thus for the self-intersecting geodesic
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y on M, we can also find the corresponding bounds ¢ = & X #(¥~!(p)) and C = C x #(¥~!(p)).
These bounds are uniform over all (x,v) € G; due to Lemmas 6.13 and 6.7. Theorem 6.2 follows
from this also in the case of self-intersecting geodesics.

Proof of Theorem 6.1 for self-intersection cases. Let y be a geodesic in (M, g) which may intersect
itself. Let us construct a lifting manifold (M, §) with respect to y, and let 7 be the lifting of y
in (M, ). By Lemmas 6.10 and 6.11 we know 7 is a nonself-intersecting geodesic in (M, 7). Let
us also define ¥ according to (6.25). For any ¢ € C'(M), we denote @ := oW, thus ¢ € C}(M).
Therefore, according to Theorem 6.1 for nonself-intersection cases, we have

| / |al*@ v — I¢(x, v)| < ClIgllcrgnh'/,
M

where I represents the geodesic ray transform of ¢ with respect to 7 in M. By definition we can
have

7(x,0) 7(x,0)
Ig(x,v) = / @o¥(y(t,x,v))dt = / e(y(t,x,v))dt = Ip(x,v),
0 0

where we have used ®(7) = y.

From the definition @ := oW we see ||@llc1xr) < Cllellc1(ar) for certain constant C.

Furthermore, we know u(p) := Zse‘l"l(p) ii(s), thus when ¥~!(p) contains only one ele-
ment, say s, we have |u(p)|?> = |#i(s)|?; when ¥~!(p) contains multiple elements, say ¥~!(p) =
{s1,...,5,}, then |u(p)|?> = Zj=1 la(s;)|* + ijl Zi# i(s;)a(s). By Lemma 6.13 we know ¢ <
N + 2. Since all the intersections are transversal and by Lemma 6.8 there is a uniform lower
bound on the angles of intersection, one can apply a nonstationary phase argument as in [4,
Equation (3.6)] to obtain that the integrals of @(s;)i(sy) for j # k are of O(h). Combining these
arguments, we arrive at

‘/ lulPpdv, — Ip(x,v)| < Cll@llcianh'/?.
M

The proof is done. O
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