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Abstract

The functioning and richness of marine systems (and biological interactions such as parasitism)
are continuously influenced by a changing environment. Using hierarchical modelling of species
communities (HMSC), the presence and abundance of multiple parasite species of the black-
spotted croaker, Protonibea diacanthus (Sciaenidae), was modelled against environmental
measures reflecting seasonal change. Protonibea diacanthus were collected in three seasons
across 2019–2021 from four locations within the waters of the Northern Territory, Australia.
The length of P. diacanthus proved to have a strong positive effect on the abundance of parasite
taxa and overall parasitic assemblage of the sciaenid host. This finding introduces potential
implications for parasitism in the future as fish body size responds to fishing pressure and cli-
mate changes. Of the various environmental factors measured during the tropical seasons of
northern Australia, water temperature and salinity changes were shown as potential causal fac-
tors for the variance in parasite presence and abundance, with changes most influential on
external parasitic organisms. As environmental factors like ocean temperature and salinity dir-
ectly affect parasite–host relationships, this study suggests that parasite assemblages and the eco-
logical functions that they perform are likely to change considerably over the coming decades in
response to climate change and its proceeding effects.

Introduction

Fish distribution, behaviour and physiology are all affected by climatic and environmental
factors, as well as biological interactions including predation and parasitism. With the increas-
ing unpredictability of marine ecosystem functioning in evolving environmental conditions,
there is a growing need to develop an understanding of the environmental impacts on both
fish and their parasite communities (Lõhmus and Björklund, 2015; Poloczanska et al., 2016;
Esbaugh, 2018). Parasitic organisms that exploit marine hosts are likely to be impacted by a
changing climate, both directly through the changing ambient habitat, and indirectly via
effects on their hosts (Lõhmus and Björklund, 2015). Many parasites require intermediate
host(s) to complete their life cycle, which means that impacts may be cumulative along the
life cycle (Lafferty, 2012). Parasites with life cycles that utilize free-swimming larval stages
are reliant on both host availability and suitable environmental conditions for development
and survival (Poulin and Leung, 2011; Lehun et al., 2023).

Although the environmental implications of a changing climate on marine parasites and
their fish hosts are numerous, the reactions of parasites to habitat variability are not straight-
forward. Holmes (1990) presented a summary of the determinants of helminth community
structure in marine fishes, highlighting the interactions between various biotic (fish diet
and physiology) and abiotic (environmental) factors. Parasite infection rates may increase
in response to minor rises in ocean temperature (Macnab and Barber, 2012; Neubert et al.,
2016; Klimpel et al., 2019; Byers, 2021), whereas for other parasite taxa, infection rates decline
with increasing temperature (Byers, 2021). Although difficult to predict, parasite ecology is
likely to change considerably in response to climate change and its proceeding effects, and
if climate impacts continue to influence marine ecosystem processes, some parasites will
face suboptimal transmission conditions and/or may soon have fewer hosts available as a result
of host thermal preference and host behavioural changes (Klimpel et al., 2019; Reynolds et al.,
2019; Byers, 2021).
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In addition to the short-term seasonal changes experienced in
tropical and subtropical marine regions like northern Australia,
substantial long-term environmental changes and ocean responses
are expected as a result of climate change (Koenigstein et al., 2016).
Climate models predict further warming, with ocean surfaces sur-
rounding Australia warming at a rate less than the global average
(CSIRO and Bureau of Meteorology, 2023c). Predictions also
include increased stratification and acidification, stronger poleward
currents, sea level rise and altered storm and rainfall regimes
(Hobday et al., 2006; Poloczanska et al., 2007, 2016; Bindoff
et al., 2019; Gervais et al., 2021). Heavy rainfall events in
Australia have increased in intensity (CSIRO and Bureau of
Meteorology, 2023a), with regions surrounding the equator like
the north of Australia generally experiencing wetter years (CSIRO
and Bureau of Meteorology, 2023b). In addition to rainfall changes,
the average sea-surface temperature of Australia has also increased
by more than 1°C since 1900, including eight of the ten warmest
years since 2010 (CSIRO and Bureau of Meteorology, 2023a).

Climate change studies predict that ocean warming will trigger a
polar shift in the distribution of marine organisms, leading to
decline in fish species richness in tropical waters, along with
changes in sea-surface temperatures, salinity levels and the levels
of dissolved oxygen (Barange and Perry, 2009; Bindoff et al.,
2019; Yang et al., 2023). In addition to population movements,
the physiology of several marine fish species has been strongly
influenced by temperature-driven changes in recruitment and
somatic growth, with overall reductions in size recorded in repro-
ductively active stock (Sheridan and Bickford, 2011; Lindmark
et al., 2022). The black-spotted croaker Protonibea diacanthus
(Teleostei: Sciaenidae) is a large marine fish species of considerable
value to recreational, traditional and commercial fishing sectors of
northern Australia (Phelan et al., 2008; Saunders et al., 2021), and
is one marine species likely to be impacted by ocean warming, with
distribution shifts reported in several marine fish species (Jacups,
2010; Poloczanska et al., 2013; Zhang et al., 2019; Gervais et al.,
2021). Protonibea diacanthus is distributed in the wet–dry tropics
of northern Australia, occurring throughout the Indo-west Pacific
region, including Papua New Guinea, and reaching from the
Persian Gulf to Japan (Bray, 2022; Randall et al., 2023).
Inhabiting the wet–dry tropics, P. diacanthus is often exposed to
minor environmental changes as a result of the tropical weather
conditions and seasonal changes, including changes to water qual-
ity, composition and movement. The monsoonal wet season in
northern Australia brings significant rainfall over the months
from December to March, typically resulting in elevated freshwater
run-off from river systems into nearshore estuarine and coastal
habitats. The combination of freshwater run-off, sediment mixing
and tidal flows during the wet season often leads to significant
changes in water temperature, salinity and chemical composition
of coastal marine waters (Anderson et al., 2011). The dry season,
typically between April and August, is a period of negligible rainfall
and low run-off of freshwater into the environment. The transition
period from dry to wet, referred to as the ‘build-up’ season, occurs
between September and November, and is associated with rises in
temperature and humidity, and increasing rainfall mainly from
irregular, non-monsoonal storms (Porter et al., 2023b).

As natural components of ecological systems, parasitic organ-
isms are expected to react to environmental changes and the
subsequent behavioural changes, health impacts and movement
patterns of their hosts (Byers, 2021). With previous studies high-
lighting the richness of parasite infection in P. diacanthus (Porter
et al., 2023a, 2023b, 2023c), there is a need to understand the
potential climate-induced pressures that this major parasite–host
system may face. This study investigated the parasites occurring in
P. diacanthus populations off the northern coast of Australia and
modelled the presence and abundance of multiple parasite taxa

relative to environmental variables. The results of this study are
discussed with respect to the impacts of environmental change
on parasites, and how these changes might manifest as patterns
of parasite prevalence, abundance and diversity. In understanding
how parasites respond to seasonal variability, this study aims to
improve the capacity to predict how parasites (and their impacts
on hosts) will respond to environmental variation in a changing
climate.

Materials and methods

Fish and parasite collection

The fish and parasites included in this study are as described in
Porter et al. (2023b). In brief, 176 P. diacanthus were collected
from four coastal locations off the Northern Territory coast
(Fig. 1). The fish were sampled from two nearshore locations in
proximity to the mouths of the Daly River and the Mary River
(Peron Islands and Sampan Creek, respectively), and two offshore
locations of the Tiwi Islands (Caution Point and Mitchell Point).
The sites chosen allowed comparison between nearshore and off-
shore sites, with nearshore locations receiving freshwater outflow
in the wet season, and those offshore more reflective of oceanic
conditions with no freshwater outflow nearby. Fish were captured
at these sites during three seasonal sampling periods in
2019–2021 including: build-up (October–November 2019 and
2020), late-wet (February–March 2020 and 2021) and mid-dry
(June–July 2019 and 2020), with monsoonal wet season rainfall
occurring from December to March, and the negligible rainfall
during the dry season between April and August. Parasites were
collected from the gills and the gastrointestinal systems of each
fish and identified to as low a taxonomic level as possible.

Environmental data

At the time of capture of fish, environmental data were collected
at the water surface and at the depth of capture, which varied
between 3 and 30 m, depending on the location: Sampan Creek
3‒8 m, Caution Point 10‒15 m, Peron Islands 15‒25 m and
Mitchell Point 20‒30 m. Environmental variables measured
were: dissolved oxygen, water temperature, salinity, ammonia,
total dissolved nitrogen and total dissolved phosphorus. Given
P. diacanthus is considered a demersal species (Bray, 2022), the
measures of dissolved oxygen and water temperature from the
lower part of the water column were used in the analyses.
Ammonia, total dissolved nitrogen, and total dissolved phos-
phorus were examined as potential indicators of freshwater
outflow at the sampling sites.

Data analysis

Summary statistics for the parasite and environmental data were
compiled for each location by season of collection (Table 1).
Due to low sample sizes, data across the two years were grouped
by season of collection. For each of the parasite taxa, mean abun-
dance (the total number of individuals of a particular parasite per
sample divided by the total number of hosts examined, including
uninfected hosts), and prevalence (the number of hosts infected
with a particular parasite divided by the number of hosts exam-
ined, expressed as a percentage) were calculated (Bush et al.,
1997). The mean values of each environmental variable were
also calculated and compiled for each location by season of collec-
tion (Table 2).

For the statistical analysis, the data were analysed using a joint
species distribution model called hierarchical modelling of species
communities (HMSC; Ovaskainen et al., 2017; Ovaskainen and
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Abrego, 2020). The response data used in the model comprise the
abundance of parasite taxa from the fish host. For the analyses,
the individual fish were used as sampling units and the count
of each of the 11 parasite taxa were used as the response variable.
To account for zero-inflation for some of the parasite taxa,
a hurdle model was applied, i.e. one model for presence–absence
of the taxa, and another model for the abundance of taxa condi-
tional on presence. Probit regression was applied in the presen-
ce–absence model, and linear regression for log transformed
count data in the abundance conditional on presence model.
The count data were transformed by declaring zeros as missing
data, log-transforming, and then scaling the data to zero mean
and unit variance within each taxa. Fish collection year and loca-
tion were included as random effects, and fish collection season,
fish length, fish sex and six environmental variables: dissolved
oxygen, water temperature, salinity, ammonia, total dissolved
nitrogen and total dissolved phosphorus, were included as fixed
effects. As species traits, the categorical variable of internal or
external parasites was also applied.

Both models were fitted using the HMSC package from R
(Tikhonov et al., 2020) assuming the default prior distributions
(Ovaskainen and Abrego, 2020). The posterior distribution was
sampled using four Markov chain Monte Carlo (MCMC) chains.
Each chain consisted of 37 500 iterations, of which 12 500 itera-
tions were removed as burn-in and the remaining thinned by
100 to result in 250 posterior samples per chain, so there were
1000 posterior samples in total. The MCMC convergence
diagnostics were examined through the potential scale reduction
factors of the model parameters (Gelman and Rubin, 1992).
Both the explanatory powers and the predictive powers
were examined for each of the models, with measures of the

species-specific AUC and Tjur’s R2 (similar to R2, Tjur, 2009)
examined for the presence–absence model (Pearce and Ferrier,
2000), and R2 measured for the abundance conditional on the
presence model. To compute the explanatory power, model pre-
dictions were made based on the models being fitted to all of
the data. The predictive power was computed by performing a
five-fold cross validation, in which the sampling units were
assigned randomly to five folds, and predictions for each fold
were based on the model that was fitted to the data on the remain-
ing four folds.

To quantify the drivers of parasite taxa richness and abun-
dance, the explained variation was partitioned among the fixed
and random effects included in the model. To examine associa-
tions between parasite taxa and environmental variables, parasite
responses to the explanatory variables were measured, counting
the proportion of parasites showing positive or negative associa-
tions with at least 95% posterior probability.

Results

All 176 fish were infected with at least one parasite and a total of
11 parasite taxa were identified from the gills and the gastrointes-
tinal system for use in the analysis (Table 1). External parasites
included copepods, Lernanthropus paracruciatus Boxshall,
Bernot, Barton, Diggles, Yong, Atkinson-Coyle & Hutson, 2020
(see Boxshall et al., 2020) and Caligus sp., and two species of
monogeneans, Diplectanum timorcanthus Porter, Barton,
Francis & Shamsi, 2023 and Diplectanum diacanthi Porter,
Barton, Francis & Shamsi, 2023 (see Porter et al., 2023a), com-
bined as Diplectanum spp. due to the difficulty in distinction
between the species at time of dissection. Of the internal parasites

Figure 1. Collection sites of Protonibea diacanthus from northern Australia. Map sourced from the Office of Research Services and Graduate Studies, Spatial Data
Analysis Network (SPAN), Charles Sturt University, Wagga Wagga, Australia.
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Table 1. Prevalence and mean abundance of parasites from Protonibea diacanthus, across seasons (Mid-dry, Build-up and Late-wet), and sites (Caution Point, Mitchell Point, Peron Islands, Sampan Creek)

Mid-dry Build-up Late-wet

Caution
Point

Mitchell
Point

Peron
Islands

Sampan
Creek

Caution
Point

Mitchell
Point

Peron
Islands

Sampan
Creek

Caution
Point

Mitchell
Point

Peron
Islands

Sampan
Creek

Number of fish 19 10 17 18 7 10 10 20 16 20 20 9

Mean length (cm) 98.6 98.5 108.3 112.6 84.9 101.0 108.7 112.4 107.8 92.8 85.1 123.6

Parasite taxa P AM P AM P AM P AM P AM P AM P AM P AM P AM P AM P AM P AM

Copepoda
Caligus sp.

10.5 0.1 0.0 0.0 70.6 1.6 22.2 0.4 28.6 0.3 0.0 0.0 20.0 0.2 5.0 0.1 0.0 0.0 0.0 0.0 25.0 0.5 0.0 0.0

Lernanthropus sp. 78.9 2.1 100.0 6.7 52.9 2.9 83.3 3.9 71.4 3.1 100.0 5.7 100.0 4.2 95.0 12.9 93.8 7.9 70.0 2.6 90.0 2.6 100.0 8.4

Monogenea
Diplectanum spp.

100.0 834.1 100.0 1223.0 100.0 1204.2 100.0 1058.4 100.0 1262.7 100.0 2498.0 100.0 39.6 100.0 195.2 100.0 2658.8 100.0 829.0 100.0 544.0 100.0 3293.3

Nematoda
Cucullanidae

100.0 21.9 90.0 24.4 94.1 18.5 94.4 18.9 100.0 18.9 100.0 11.8 100.0 10.7 85.0 24.0 93.8 56.4 100.0 13.0 100.0 10.1 100.0 57.9

Ascarididae 5.3 0.1 0.0 0.0 0.0 0.0 27.8 0.4 0.0 0.0 0.0 0.0 10.0 0.2 15.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Other Nematodes 26.3 0.3 10.0 0.1 23.5 0.4 11.1 0.1 0.0 0.0 10.0 0.3 10.0 0.1 20.0 0.3 0.0 0.0 0.0 0.0 10.0 0.3 0.0 0.0

Digenea
Orientodiploproctodaeum sp.

100.0 21.5 100.0 39.1 100.0 49.8 83.3 6.9 100.0 19.4 100.0 38.3 100.0 26.4 85.0 13.1 100.0 32.3 90.0 13.8 100.0 23.8 88.9 19.3

Stephanostomum sp. 89.5 14.8 100.0 33.3 82.4 8.2 88.9 30.1 100.0 12.9 100.0 21.0 70.0 4.9 85.0 10.2 81.3 30.9 85.0 11.3 65.0 3.4 100.0 57.0

Pleorchis sp. 10.5 0.1 80.0 5.3 5.9 0.1 0.0 0.0 0.0 0.0 30.0 0.4 0.0 0.0 0.0 0.0 12.5 0.3 25.0 0.5 10.0 0.2 0.0 0.0

Hemiuridae 0.0 0.0 0.0 0.0 17.6 0.5 16.7 0.2 14.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 6.3 0.2 10.0 0.2 30.0 0.5 11.1 0.8

Opecoelidae 5.3 0.1 0.0 0.0 35.3 0.8 27.8 0.4 0.0 0.0 10.0 0.2 0.0 0.0 5.0 0.1 0.0 0.0 0.0 0.0 25.0 0.6 0.0 0.0

Prevalence, expressed as a percentage, is the number of hosts infected with a particular parasite divided by the number of hosts examined. Mean Abundance is expressed as the total number of individuals of a particular parasite per sample divided by the total
number of hosts examined, including uninfected hosts.
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included in the analysis there were adult nematodes belonging to
the families Cucullanidae and Ascarididae, and a further group of
nematodes not yet identified but classified as ‘Other Nematodes’
given their similarities in morphological characteristics and general
ecology. Adult digenean trematodes Orientodiploproctodaeum sp.,
Stephanostomum sp., Pleorchis sp., and representatives from the
families Hemiuridae and Opecoelidae were also included.

The environmental variables differed between locations based
on seasons (Table 2). The water temperature of the inshore loca-
tions of Peron Islands and Sampan Creek differed from that of the
offshore locations, being lower in the mid-dry, but higher in
the build-up and late-wet. Salinity at the inshore locations in
the build-up was markedly lower in the late-wet season, indicating
a freshwater influence at these sites. Levels of ammonia did not
exhibit a clear seasonal pattern. Between seasons only, levels of
nitrogen and phosphorus were higher in the late-wet season
than in the mid-dry and build-up seasons.

The MCMC convergence diagnostics of the HMSC models were
satisfactory, meaning that the models were adequately fitted to the
data (Ovaskainen and Abrego, 2020). Namely, the potential scale
reduction factors for the β-parameters were on average 1.002
(0.998‒1.013) for the presence–absence model and 1.002
(0.997‒1.009) for the abundance conditional on presence model.
The presence–absence models showed a good fit to the data, the
mean Tjur R2 (AUC) reported as 0.186 (0.861) for explanatory
power, and 0.108 (0.693) predictive power. The abundance conditional
on the presence model showed satisfactory model fit, with the mean
R2 value being 0.407 for explanatory power and 0.095 for predictive
power. Diplectanum spp. (prevalence 100%) and Cucullanidae (preva-
lence 96%), were present in (almost) all samples and therefore not
considered informative for the presence–absence model.

For the presence–absence model the explanatory power for
each species was low (Fig. 2A), suggesting the variables use in
the model only explain a small proportion of the variance and
therefore the distribution of parasite taxa is more by random
chance than by the environment. Variance partition over the
explanatory variables included in the presence–absence model
showed that the proportion of the fixed effects of water tempera-
ture and season explained between 20 and 40% of variance for
most parasites, with salinity explaining the next highest propor-
tion between 10 and 20% (Fig. 2B). The explanatory power of
the abundance conditional on the presence model (Fig. 2C)
showed that five parasite taxa explained greater than 40% of vari-
ance, with the Diplectanum spp. and ‘Other Nematodes’ explain-
ing the highest proportions of over 60% of variance. Out of the
explained variance for the abundance conditional on the presence
model, the fixed effects that explained most of the variance
included salinity, water temperature, length and season
(Fig. 2D). Although still not recording the highest proportion of
explained variance, the fixed effects of total dissolved nitrogen
and total dissolved phosphorus were much more correlated with
most parasite taxa in the abundance conditional on the presence
model, when compared with the presence–absence model. For the
abundance of external parasites, season explained the most vari-
ance for both Caligus sp. and Diplectanum spp. (Fig. 2D).

The beta plot of the presence–absence model showed L. para-
cruciatus and Caligus sp. to have a negative response to the late-
wet season (Fig. 3A). In the beta plot of the presence–absence
model, L. paracruciatus and the two most prevalent internal para-
sites (Orientodiploproctodaeum sp. and Stephanostomum sp.)
showed increasing occurrence probability with increasing water
temperature. Interestingly, all but Stephanostomum sp. had a
negative association with salinity (Fig. 3A).

The beta plot of the abundance conditional on the presence
model demonstrated that more than half of all parasite taxa are
significantly more abundant as fish length increases (Fig. 3B).Ta
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Diplectanum spp. abundance has a positive association with many
environmental variables including both the mid-dry and the late-
wet seasons (relative to the build-up season), dissolved oxygen
and temperature, ammonia and total dissolved nitrogen
(Fig. 3B). The abundance of both L. paracruciatus and
Diplectanum spp. had a negative association with total dissolved
phosphorus. In all, five parasite taxa were negatively associated
with total dissolved phosphorus (Fig. 3B).

The presence–absence model predicts that parasite richness is
positively correlated with fish length (Fig. 4A). Parasite species
richness was relatively consistent as temperature changes,

however, there was a drop in richness at temperatures between
27 and 28°C (Fig. 4B). This drop occurred at only the one location
and season at which this temperature was recorded (Table 2), and
when four parasite taxa were not present (Table 1). Species rich-
ness was highest when salinity levels were low, with a drop
recorded when salinity exceeded 36‰ (Fig. 4C).

Discussion

The presence and abundance of parasites were significantly influ-
enced by the body size of P. diacanthus, with the effect of body

Figure 2. (A) Plot of explanatory power for the presence–absence model highlighted through the Tjur R2 values of the parasite species, (B) plot of variance partition
over the explanatory variables in the presence–absence model, showing the proportion of variance explained by both the random effects and the fixed effects for
the parasite species, (C) plot of explanatory power of the abundance conditional on presence model highlighted through the R2 values of the parasite species,
(D) plot of variance partition over the explanatory variables in the abundance conditional on presence model, showing the proportion of variance explained
by both the random effects and the fixed effects for the parasite species. NB: Abbreviations for environmental variables have been used and include dissolved
oxygen as (LowDO), water temperature as (LowTemp), ammonia as (NH), total dissolved nitrogen as (TDN) and total dissolved phosphorus as (TDP).
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size on parasites proving the strongest factor across the seasons.
Positive associations between body size and parasite presence
and abundance have been reported in numerous previous studies
and stock analyses of marine fishes (Thoney, 1993; Jerry et al.,
2013; Welch et al., 2015; Barton et al., 2018; Taillebois et al.,
2017; Taillebois et al., 2021; Kouadio et al., 2023). Studies confirm
a general link between host size and parasite richness, however
there is an obvious need to consider that this complex association
is far from a simple linear relationship (Poulin et al., 2011). Host
size corresponds closely to the size of habitat available to parasitic
fauna and is also correlated with host life span, meaning that lar-
ger hosts offer a larger habitat patch and feature longer-lived habi-
tats, therefore harbouring richer parasite faunas (Poulin and
Morand, 2004; Poulin et al., 2011). This is justified with the
marked increase in parasite species richness shown as the host
size of P. diacanthus exceeds 100 cm. Food selection amongst

fishes is potentially influenced by both temperature and body
size (Coghlan et al., 2024), and as fish mature, changes in feeding
modes and diet composition are common, with P. diacanthus for
example known to transition from small invertebrates such as
crabs and prawns, to larger prey items like fish (Barton, 2018).
This dietary change would certainly influence the parasitic
fauna of the fish host, and given this occurs as a result of matur-
ation, can further support the association between fish host size
and parasite species richness. Studies also suggest that greater
abundances of parasites are found in offshore fish communities

Figure 3. (A) Beta plot of the species responses to the explanatory variables in the
presence–absence model with at least 95% posterior probability, (B) Beta plot of
the species responses to the explanatory variables in the abundance conditional
on presence model with at least 95% posterior probability. NB: In 3A and 3B, the
red and blue colours indicate those parasite taxa–environmental variable pairs
with at least 0.95 support for either a positive or negative association, respectively.
If there is no colour, the parasite taxa presence/absence or abundance conditional
on presence is deemed to not have an association with the environmental variable,
i.e. the taxa are neither positively nor negatively influenced by the environmental
variable. Abbreviations of environmental variables are as those described in Fig. 2.

Figure 4. Gradient plots of the relationships between: (A) Parasite species richness
and fish length from all samples (cm), (B) Parasite species richness and water tem-
perature (°C), (C) Parasite species richness and salinity. NB: Parasite species richness
is a reflection of the number of different parasite species that are known to infect a
particular host (or host population).
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when compared with their juvenile counterparts nearshore, sug-
gesting that certain parasites are in fact accumulated overtime,
or that there is a potentially greater number of infected intermedi-
ate hosts offshore (Thoney, 1993).

Changes in body size of fish in response to ocean warming are
often attributed to the temperature-size rule (TSR), with
ectotherms reared at warmer temperatures developing faster but
reaching smaller ultimate body sizes (Ohlberger, 2013;
Lindmark et al., 2022). This finding has correlated with observa-
tions for several commercially exploited marine fish species
(Olsen et al., 2004; Andersen et al., 2007; Baudron et al., 2014;
Rijn et al., 2017; Ikpewe et al., 2021; Wootton et al., 2022), with
negative size shifts impeding the maintenance and recovery of
exploited marine fish populations whose larger individuals are
typically the most fecund (Genner et al., 2010). Given that reduc-
tions in fish size have been observed as ecological responses to
increasing ocean temperatures (Sheridan and Bickford, 2011;
Audzijonyte et al., 2020), it appears likely that climate change
will have significant impacts on associations between parasites
and their hosts in the future. Considering the important role of
parasites in marine food webs and ecosystem processes (Timi
and Poulin, 2020; Porter et al., 2023b, 2023c), the results highlight
the need to improve understanding of the secondary effects of cli-
mate change on host parasite dynamics, and the potential future
implications to marine ecosystems (Byers, 2021).

To assess the potential effects of climate change on parasite
communities, it is important to consider the broad marine ecosys-
tem impacts and adaptations in host biology that also impact
parasites. The present study demonstrates that environmental
variables were strongly associated with parasite richness and
abundance in P. diacanthus. The variance in parasite presence
and abundance can be partially explained by seasonal changes
in environmental conditions, which include water temperature,
salinity levels, and nitrogen and phosphorus. The short-term sea-
sonal environmental factors varied between locations and seasons
in this study, with consistently warmer water temperatures and
associated lower levels of dissolved oxygen during the late-wet
season and at Peron Islands during the build-up season.
Oxygenation stress has been reported to increase parasite preva-
lence and infection success in vulnerable hosts with effects seen
in both fish metabolic function and physiology (Mikheev et al.,
2014; Poloczanska et al., 2016; Byers, 2021; Samaras et al.,
2023). Rising global temperatures lead to decreased oxygen solu-
bility in water (Breitburg et al., 2018), and thus it is expected that
the wet season of northern Australia will produce lower water
oxygen levels in association with warmer ocean temperatures in
the future. In addition to oxygen negatively covarying with tem-
perature, oxygen declines in estuaries and nearshore marine eco-
systems have also been caused by increased loadings of nutrients
(Breitburg et al., 2018). Nutrient levels of nitrogen and phos-
phorus were highest at the nearshore sites during the late-wet sea-
son when these areas of northern Australia are often inundated
with stormwater and run-off from river systems, floodplains
and agricultural land (Przeslawski et al., 2011). The levels of phos-
phorus in this study are related to water column turbidity during
seasonal outflows (Kämäri et al., 2020), and it is possible that cli-
mate change may bring more frequent, high levels of outflow.
These run-off events and changes in water composition (includ-
ing during tidal movements) cause critical disturbance to the eco-
system, influencing levels of energy and nutrients, and affecting
the composition of benthic organisms (Anderson et al., 2011).

It is important to recognize that different parasite species
respond differently to environmental changes, and as to whether
parasite infections increase or decrease as a result of climate
changes will often come down to the individual species at hand
(Mackenzie, 1999). External parasites, such as the copepods and

monogeneans from this study, exhibit very different morphological
characteristics such as the nature of their tegument and their size,
both of which are highly influential on the level of sensitivity that
these organisms reflect when faced with the surrounding changes
in factors like water temperature and salinity (Möller, 1978). The
two most prevalent external parasites of this study, L. paracruciatus
and Diplectanum spp., demonstrated a negative association with
salinity. Lernanthropus paracruciatus was also significantly more
likely to be present during warmer conditions, whereas Caligus
sp. was more likely to be absent during the late-wet season when
the water temperature was at its warmest. Caligus sp. did not
show a significant association with salinity, indicating that the para-
sites may not be as influenced by changes in salinity as L. paracru-
ciatus and Diplectanum spp. Previous studies have similarly
described changes in external parasite abundance in warmer, saline
conditions, with reduced presence at low salinities (Bricknell et al.,
2006; Callaway et al., 2012; Byers, 2021).

The development and diversity of some parasite species
depends on the presence of suitable intermediate hosts, in com-
bination with other abiotic and biotic factors (Klimpel et al.,
2019). Internal parasites, such as the digeneans and nematodes
in the present study, may be buffered from direct environmental
variation, but may be affected by the parasite’s reliance on an earl-
ier host (Neubert et al., 2016; Byers, 2021). Any environmental
influence on the internal parasite–host system in the present
study may not be reflective of seasonal cycles but instead of a
‘lag effect’ due to the indirect impacts on internal parasites or
their dependence on intermediate hosts. For example, the signifi-
cantly lower temperature during the preceding mid-dry season
can affect parasite infectivity, longevity, and survival to transmis-
sion of free-living stages of internal parasites (Pietrock and
Marcogliese, 2003; Lõhmus and Björklund, 2015) and may also
lower the activity of both intermediate hosts (molluscs, small
fishes and crustacea) and P. diacanthus (Lõhmus and
Björklund, 2015). This can ultimately result in lower transmission
of larval digeneans (whose capsule is often fragile and delicate)
(Pietrock and Marcogliese, 2003) between hosts, or from vegeta-
tion, and therefore lower abundance of adult stages in P. dia-
canthus during the build-up. Thus, it is important for future
research to understand whether changes in the dynamics of para-
site assemblages’ is a cumulative effect over many seasons or
whether changes are truly reflective of what occurs in each indi-
vidual season. On the temporal scale of global climate change,
overall influences on the internal parasite–host systems may accu-
mulate and present somewhat differently to the influences caused
by short-term seasonal environmental variation.

This study has shown that seasonal environmental variation has an
impact on the abundance and distribution of parasites. The effects of
short-term seasonal environmental variation and fish host size, pro-
vides a window into the potential future of parasite–host systems
when exposed to longer term climate variation.As ocean temperatures
continue to warm and the impacts of climate change play out across
broad-scale ecosystem processes, changes in trophic structure, energy
flowandnutrient dynamics are to be expected. Given the varying ecol-
ogyof parasitic organisms, individual responses to climate changes are
difficult to predict. Nonetheless, positive correlations between
P. diacanthus length andparasite assemblages– and the complex asso-
ciations with environmental variables – suggest that fundamental
shifts in parasite–host dynamics for marine fishes are likely under a
changing climate.
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be found at https://doi.org/10.1017/S0031182024001008.
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