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Abstract
We study first-order Sobolev spaces on reflexive Banach spaces via relaxation, test plans,
and divergence. We show the equivalence of the different approaches to the Sobolev spaces
and to the related tangent bundles.
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List of symbols
L1 Lebesgue measure restricted to [0, 1]; see (2.1).
(B, μ) A weighted Banach space; see Definition 2.1.
C(B) Shorthand notation for C([0, 1]; B) × [0, 1]; see (2.2).
e The evaluation map e : C(X) → X, given by e(γ, t) = et (γ ) := γt .
Der Derivative map; see (2.4).
|d f |B∗ The function B � x �→ ‖dx f ‖B

∗ ∈ R for f ∈ C1(B); see (2.6).
Comp(π) Compression constant of a q-test plan π ; see Definition 2.2.
�q(B, μ) q-test plans on the weighted Banach space (B, μ); see Definition 2.2.
π̂ Shorthand notation for π̂ := π ⊗ L1; see (2.8).
{π̂ x }x∈B Conditional probabilities of the disintegration π̂ = ∫

π̂ x d(e#π̂)(x).
W 1,p(B, μ) Metric p-Sobolev space on a weighted Banach space (B, μ); see Definition

2.5.
|Dμ f | The minimal p-weak upper gradient of f ∈ W 1,p(B, μ); see Definition

2.5.
Sπ The ‘support’ of a q-test plan π ; see (2.11).
Dq(divμ) Domain of the distributional divergence; see Definition 2.8.
divμ The distributional divergence of v ∈ Dq(divμ); see Definition 2.8.
Dμ(B) Space of μ-a.e. defined measurable B-bundles; see Definition 2.10.
�q(E) q-section space of a measurable B-bundle E ∈ Dμ(B); see (2.14).
	 The natural partial order on Dμ(B).
TμB q-tangent bundle of (B, μ); see Definition 2.11.
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�p(E∗
w∗) Space of weakly∗ measurable sections of the dual of E.

|ω|E∗ μ-a.e. equivalence class of X � x �→ ‖ω(x)‖E(x)∗ ∈ R for ω ∈ �p(E∗
w∗).

L p
w∗(X, μ; B

∗) The dual space of Lq(X, μ; B).
ω|E The restriction of ω ∈ �p(E∗

w∗) to a bundle E ∈ Dμ(B); see Definition
2.14.

d|E The restricted Fréchet differential C1(B) ∩ LIPb(B) � f �→ d f|E; see
(2.15).

[ω]E∗ The pointwise seminorm of ω ∈ L p(X, μ; B
∗) induced by E ∈ Dμ(B); see

(2.16).
πE The ‘restriction’ operator L p(X, μ; B

∗) � ω �→ ω|E ∈ �p(E∗
w∗); see

(2.17).
ϕ∗E The pullback bundle; see (2.18).
L f The functional L f ∈ Dq(divμ)∗ associated to f ∈ W 1,p(B, μ); see (3.1).
WDp

μ( f ;A ) (A , p)-weak differentials of f ∈ W 1,p(B, μ); see Theorem 3.1 c).
dμ The p-weak differential operator dμ : W 1,p(B, μ) → �q(TμB)∗; see (3.2).
vπ Vector field induced by a q-test plan π ; see Lemma 3.6.
SπB Multivalued map sending x ∈ B to the support of Der#π̂ x ; see (3.13).
VπB The bundle obtained as the closure of the span of SπB; see Lemma 3.7.
Derπ Equivalence class of Der in Lq(C(B), π̂; B); see the proof of Theorem 3.3.
π ′ Velocity field of a q-test plan π ; see Remark 4.3.

1 Introduction

During the past couple of decades, Sobolev spaces W 1,p(X, μ) have been extensively studied
for metric measure spaces (X,d, μ). In spaces satisfying a local Poincaré inequality and
measure doubling, called PI-spaces, the strong density of Lipschitz functions [8] implies quite
straightforwardly the equivalence of different approaches to Sobolev spaces. In [4], it was
noticed that the density in energy of Lipschitz functions, valid without the PI-assumption, is
enough for showing the equivalence of notions of upper gradients. In general metric measure
spaces one can also introduce an abstract first-order differentiable structure [20]. With more
assumptions on the space, the structure is given via Lipschitz charts [8] (see also [15]).

If the underlying metric structure is linear, a natural question is to ask if we can connect
the abstract differentiable structures with the linear one. In Euclidean spaces with arbitrary
reference measure this was addressed in [27] and [31] (see also [18] for the BV case) by
starting from the notions of Sobolev space given in [7] and [36].AlthoughweightedEuclidean
spaces need not be PI-spaces, smooth functions are still strongly dense in the Sobolev space
defined on them [23].

In the current work we consider the infinite-dimensional linear case of reflexive sep-
arable Banach spaces (and, in some results, the larger class of separable Banach spaces
having the Radon–Nikodým property). In this context, it is known from [34] (see also [17,
35]) that suitable algebras A of smooth functions on B are dense in energy in the Sobolev
space W 1,p(B, μ). One advantage of working with smooth functions is that they have an
everywhere-defined differential, which allows to transfer valuable information from the
ambient space to the Sobolev space with respect to arbitrary reference measures. Notice
that even though our results are stated in the infinite-dimensional case, they are new already
on Euclidean spaces since we allow the exponent p �= 2 in W 1,p . Indeed, only the case p = 2
was handled in [31] since there the arguments relied heavily on the Hilbertian structure of the
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Sobolev space W 1,2. Similarly, it would be simpler to prove versions of our results in cases
where one could use the Hilbertian structure, such as for W 1,2 on infinite-dimensional Hilbert
spaces, or for the cases where one can renorm the Sobolev space to be Hilbert (compare to
[14]).

The paper contains three main results, which are valid for weighted Banach spaces (as
in Definition 2.1) that are reflexive (or some weaker assumptions, as the Radon–Nikodým
property):

• In Theorem 3.1 we prove that the metric notion of Sobolev space via upper gradients
(see Definition 2.5) coincides with other two approaches (in terms of vector fields having
distributional divergence, and via weak differentials) that are tailored to the Banach
setting.

• In Theorem 3.2 we show that also the minimal weak upper gradients corresponding to
the three above approaches do coincide.

• Theorem 3.3 connects different approaches to identifying the directions in the Banach
space that are analytically relevant for W 1,p(B, μ). The first approach is via divergence
inspired by Bouchitté–Buttazzo–Seppecher [7] while the other two are via test plans.
This result partly generalises the Euclidean one [31, Theorem 3.16].

2 Preliminaries

Throughout the whole paper, whenever an exponent p ∈ (1,∞) is given, we tacitly denote
by

q := p

p − 1
∈ (1,∞)

its conjugate exponent, and vice versa. Moreover, letting L1 be the Lebesgue measure, we
shorten

L1 := L1|[0,1]. (2.1)

In this paper, we focus on the family of weighted Banach spaces, which we define as follows:

Definition 2.1 (Weighted Banach space) We say that a couple (B, μ) is a weighted Banach
space if B is a separable Banach space and μ ≥ 0 is a finite Borel measure on B.

We underline that in the above definition we assume that B is separable and μ is finite.

2.1 Classical notions on Banach spaces

Given a normed space V, we denote by V
∗ its dual Banach space. If B is the Banach space

obtained as the completion of V, then we have that B
∗ ∼= V

∗, meaning that B
∗ can be

canonically identified with V
∗. The duality pairing between ω ∈ V

∗ and v ∈ V will be
denoted by 〈ω, v〉 ∈ R.

Absolutely continuous curves

Let B be a separable Banach space. We denote by C([0, 1]; B) the space of all continuous
curves γ : [0, 1] → B. It is a complete and separable metric space if endowed with the
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following distance:

dC([0,1];B)(γ, σ ) := max
t∈[0,1] ‖γt − σt‖B for every γ, σ ∈ C([0, 1]; B).

We then define the complete and separable metric space (C(B),dC(B)) as

C(B) := C([0, 1]; B) × [0, 1] (2.2)

together with the distance

dC(B)((γ, t), (σ, s)) := dC([0,1];B)(γ, σ ) + |t − s| for every (γ, t), (σ, s) ∈ C(B).

The evaluation map e : C(B) → B is defined as e(γ, t) = et (γ ) := γt for every (γ, t) ∈
C(B). Notice that e : C(B) → B is continuous and et : C([0, 1]; B) → B is 1-Lipschitz for
every t ∈ [0, 1]. A curve γ ∈ C([0, 1]; B) is said to be q-absolutely continuous (for some
q ∈ [1,∞]) if there exists a function g ∈ Lq(0, 1) such that g ≥ 0 and

‖γt − γs‖B ≤
∫ t

s
g(r) dr for every 0 ≤ s < t ≤ 1. (2.3)

In the case where q = 1, we write ‘absolutely continuous’ instead of ‘1-absolutely continu-
ous’. We denote by ACq([0, 1]; B) the family of all q-absolutely continuous curves in B. It
holds that ACq([0, 1]; B) is a Borel subset of C([0, 1]; B). We write AC([0, 1]; B) instead
of AC1([0, 1]; B).

Radon–Nikodým property and Asplund spaces

A Banach space B is said to have the Radon–Nikodým property provided every absolutely
continuous curve γ : [0, 1] → B is L1-a.e. differentiable, which means that

γ̇t := lim
h→0

γt+h − γt

h
∈ B exists for L1-a.e. t ∈ [0, 1].

By an Asplund space we mean a Banach space B whose dual B
∗ has the Radon–Nikodým

property. Recall that every reflexive Banach space is Asplund and has the Radon–Nikodým
property. The converse can fail: there exist (separable) Asplund spaces having the Radon–
Nikodým property that are not reflexive, e.g. James’ space [26]. See [16] for a thorough
treatment of these topics.

Given a Banach spaceB having the Radon–Nikodým property, we define Der : C(B) → B

as

Der(γ, t) :=
{

γ̇t

0B

if γ ∈ AC([0, 1]; B) and γ̇t exists,
otherwise.

(2.4)

Then Der : C(B) → B is a Borel map. For any γ ∈ AC([0, 1]; B) the function ‖Der(γ, ·)‖B,
which is called the metric speed of γ , is the L1-a.e. minimal g ∈ L1(0, 1) with g ≥ 0
satisfying (2.3).

Fréchet differential and smooth functions

Given a Banach space B and a function f : B → R, we say that f is Fréchet differentiable
at x ∈ B if there exists an element dx f ∈ B

∗, called the Fréchet differential of f at x , such
that

lim
B�v→0

| f (x + v) − f (x) − 〈dx f , v〉|
‖v‖B

= 0. (2.5)
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Notice that (2.5) determines uniquely dx f and implies that f is continuous at x . Moreover,
we say that f is of class C1 if it is Fréchet differentiable at every point of B and B � x �→
dx f ∈ B

∗ is continuous. We denote by C1(B) the space of real-valued functions of class C1

defined on B. Given any f ∈ C1(B), we define the Borel function |d f |B∗ : B → [0,+∞)

as

|d f |B∗(x) := ‖dx f ‖B
∗ for every x ∈ B. (2.6)

One can readily check that the function f is locally Lipschitz and it holds that |d f |B∗ =
lip( f ), where the slope lip( f ) : B → [0,+∞) is defined as lip( f )(x) := 0 if x ∈ B is an
isolated point and

lip( f )(x) := lim sup
B�y→x

| f (x) − f (y)|
‖x − y‖B

if x ∈ B is an accumulation point.

Lebesgue–Bochner spaces

Given a finitemeasure space (X, 	,μ) and an exponent p ∈ [1,∞], we denote by (L p(μ), ‖·
‖L p(μ)) the Lebesgue space of exponent p. Recall that L p(μ) is a Riesz space if endowed
with the natural partial order relation: given any two functions f , g ∈ L p(μ), we declare
that f ≤ g if and only if f (x) ≤ g(x) holds for μ-a.e. x ∈ X. Recall that the Riesz space
L p(μ) is Dedekind complete, which means that every non-empty subset of L p(μ) that is
bounded above has a supremum. Namely, given a set { fi }i∈I ⊆ L p(μ) and g ∈ L p(μ) such
that fi ≤ g for every i ∈ I , then the supremum

f :=
∨

i∈I

fi ∈ L p(μ)

exists. This means that f ≥ fi for every i ∈ I , and that f ≤ f̃ whenever f̃ ∈ L p(μ) satisfies
f̃ ≥ fi for every i ∈ I . In a similar way, one can define the infimum

∧
i∈I fi ∈ L p(μ). See

e.g. [6].
Weassume the reader is familiarwith the basics ofBochner integration;we refer to [25] and

the references therein for a detailed account of this theory. Let us only recall some notation
and results. Given a finite measure space (X, 	,μ), a Banach space B, and an exponent
q ∈ (1,∞), we denote by Lq(X, μ; B) the q-Lebesgue–Bochner space from (X, 	,μ) to
B. The following hold:

• Lq(X, μ; B) is a Banach space and a module over the commutative ring L∞(μ).
• L p(X, μ; B

∗) is isomorphic to a subspace of Lq(X, μ; B)∗.
• Lq(X, μ; B)∗ ∼= L p(X, μ; B

∗) if and only if B is Asplund.
• Lq(X, μ; B) is reflexive if and only if B is reflexive.
• Lq(X, μ; B) is uniformly convex if and only if B is uniformly convex.

Given any v ∈ Lq(X, μ; B), the μ-a.e. equivalence class |v|B of the function X � x �→
‖v(x)‖B belongs to Lq(μ). If (X, 	X, μX) and (Y, 	Y, μY) are finite measure spaces, then
each measurable map ϕ : X → Y satisfying ϕ#μX ≤ CμY for some C > 0 induces a
pullback operator

ϕ∗ : Lq(Y, μY; B) → Lq(X, μX; B) (2.7)

for every Banach space B and q ∈ (1,∞). Namely, we set ϕ∗v := v ◦ ϕ for all v ∈
Lq(Y, μY; B).
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Given a weighted Banach space (B, μ) and f ∈ C1(B) ∩ LIP(B), the map B � x �→
dx f ∈ B

∗ is Bochner integrable (as it is continuous and bounded), thus we can consider its
equivalence class

d f ∈ L p(B, μ; B
∗) for every p ∈ (1,∞).

For any v ∈ Lq(B, μ; B), the μ-a.e. equivalence class d f (v) of B � x �→ 〈dx f , v(x)〉 ∈ R

is in L1(μ).

2.2 Sobolev calculus on weighted Banach spaces

Test plans

Following [5], we give the ensuing definition of a q-test plan (over a weighted Banach space):

Definition 2.2 (Test plan) Let (B, μ) be a weighted Banach space such thatB has the Radon–
Nikodým property and let q ∈ (1,∞). Then a Borel probability measure π on C([0, 1]; B)

is said to be a q-test plan on (B, μ) provided the following two requirements are met:

(i) There exists a constant C > 0 such that

(et )#π ≤ Cμ for every t ∈ [0, 1].
The minimal such C is called the compression constant of π and denoted by Comp(π).

(ii) The measure π is concentrated on ACq([0, 1]; B) and has finite kinetic q-energy, i.e.
∫∫ 1

0
‖γ̇t‖q

B
dt dπ(γ ) < +∞.

We denote by �q(B, μ) the family of all q-test plans on (B, μ).

We introduce the shorthand notation

π̂ := π ⊗ L1 for every π ∈ �q(B, μ). (2.8)

Observe that e#π̂ ≤ Comp(π)μ, so that in particular e#π̂ � μ, for every π ∈ �q(B, μ).
We will occasionally consider the disintegration π̂ = ∫

π̂ x d(e#π̂)(x) of π̂ along e, which
means that:

• {π̂ x }x∈B are Borel probability measures on C(B) such that

π̂ x (C(B) \ e−1(x)) = 0 for e#π̂-a.e. x ∈ B.

• B � x �→ π̂ x is measurable, i.e. B � x �→ π̂ x (E) is Borel for every E ⊆ C(B) Borel.
• π̂(E) = ∫

π̂ x (E) d(e#π̂)(x) for every E ⊆ C(B) Borel.

The family {π̂ x }x∈B is e#π̂-a.e. unique. For a proof of its existence, see e.g. [3, Theorem
5.3.1].

Compatible algebras

For any Banach space B, we call LIPb(B) the algebra of real-valued bounded Lipschitz func-
tions on B. Following [34, Definition 2.1.17], we give the ensuing definition of compatible
algebra:
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Definition 2.3 (Compatible algebra) Let B be a Banach space. Then we say that a set A is a
compatible subalgebra of LIPb(B) provided it is a unital subalgebra of LIPb(B) such that

‖x − y‖B = sup
{
| f (x) − f (y)|

∣
∣
∣ f ∈ LIPb(B) is 1-Lipschitz

}
for every x, y ∈ B.

Distinguished examples of compatible subalgebras are LIPb(B) itself, C1(B) ∩ LIPb(B),
and the smaller space of smooth cylindrical functions on B (defined in [34, Example
2.1.19]). A useful fact concerning compatible algebras, which is proved in [34, Lemma
2.1.27], states the following:

Lemma 2.4 Let (B, μ) be a weighted Banach space. Let A be a compatible subalgebra of
LIPb(B). Then A is strongly dense in L p(μ) for every p ∈ [1,∞), and is weakly∗ dense in
L∞(μ).

Metric Sobolev spaces

Let us recall the definition of the metric Sobolev space via test plans introduced in [5]:

Definition 2.5 (Metric Sobolev space) Let (B, μ) be a weighted Banach space such that B

has the Radon–Nikodým property and let p ∈ (1,∞). Then we say that f ∈ L p(μ) is a
p-Sobolev function provided there exists G ∈ L p(μ) with G ≥ 0 such that

∫
f (γ1) − f (γ0) dπ(γ ) ≤

∫∫ 1

0
G(γt )‖γ̇t‖B dt dπ(γ ) for every π ∈ �q(B, μ).

(2.9)

The μ-a.e. minimal G verifying (2.9) is called the minimal p-weak upper gradient of f
and is denoted by |Dμ f | ∈ L p(μ). The space of all p-Sobolev functions on (B, μ) is denoted
by W 1,p(B, μ).

The Sobolev space W 1,p(B, μ) is a Banach space if endowed with the following norm:

‖ f ‖W 1,p(B,μ) :=
(
‖ f ‖p

L p(μ) + ‖|Dμ f |‖p
L p(μ)

)1/p
for every f ∈ W 1,p(B, μ).

It holds that LIPb(B) ⊆ W 1,p(B, μ) and |Dμ f | ≤ lip( f ) for every f ∈ LIPb(B). Moreover,
the minimal p-weak upper gradient |Dμ f | of any given function f ∈ W 1,p(B, μ) can be
equivalently characterised as the μ-a.e. minimal G ∈ L p(μ) with G ≥ 0 satisfying the
following property: for every π ∈ �q(B, μ), we have that f ◦ γ ∈ W 1,1(0, 1) holds for
π -a.e. γ ∈ C([0, 1]; B) and

|( f ◦ γ )′t | ≤ G(γt )‖γ̇t‖B for π̂ -a.e. (γ, t) ∈ C(B). (2.10)

The following approximation result (which closes the gap with Cheeger’s approach to
metric Sobolev spaces [8], based on a relaxation procedure) was proved in [34, Theorem
5.2.7] after [4]:

Theorem 2.6 (Density in energy of compatible algebras) Let (B, μ) be a weighted Banach
space such that B has the Radon–Nikodým property and let p ∈ (1,∞). Let A be a compati-
ble subalgebra of LIPb(B). Let W 1,p(B, μ) be a given function. Then there exists a sequence
( fn)n ⊆ A such that

fn → f , |d fn |B∗ → |Dμ f | strongly in L p(μ).
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Another proof of the density in energy of smooth cylindrical functions (and thus of every
subalgebra of LIPb(B) containing them) has been recently obtained in [28]. Whereas the
results of [4, 34] are for arbitrary metric measure spaces and rely on metric tools, the argu-
ments in [28] are tailored for weighted Banach spaces and are based on a purely smooth
analysis.

It is unknown whether LIPb(B) is strongly dense in W 1,p(B, μ). A sufficient condition
for the strong density of all compatible algebras is the reflexivity of W 1,p(B, μ), see [2,
Proposition 42]. Examples of non-reflexive Sobolev spaces are known (see [2, Proposition
44] and [24, Section 12.5]). We also point out that if W 1,p(B, μ) is reflexive, then it is
separable (see again [2, Proposition 42]) and every compatible subalgebra of LIPb(B) is
strongly dense in it.

Remark 2.7 It is shown in [13] that minimal p-weak upper gradients depend on p, in the
sense that for f ∈ W 1,p(B, μ) ∩ W 1, p̃(B, μ) with p �= p̃ it can happen that the minimal
p-weak upper gradient of f differs from its minimal p̃-weak upper gradient. Nevertheless,
in our notation |Dμ f | we do not specify the exponent p, since the latter will be always clear
from the context. ��

Master test plans

Let (B, μ) be a weighted Banach space such that B has the Radon–Nikodým property. Fix an
exponent q ∈ (1,∞). To any q-test plan π ∈ �q(B, μ) we associate the Borel set Sπ ⊆ B

given by

Sπ :=
{

x ∈ B

∣
∣
∣
∣
d(e#π̂)

dμ
(x) > 0

}

. (2.11)

The set Sπ is uniquely determined up toμ-a.e. null sets, andμ|Sπ � e#π̂ and (e#π̂)|B\Sπ = 0.
It is proved in [32, Theorem 2.6] that one can always find a master q-test plan π on

(B, μ), i.e. a q-test plan having the following property: for any f ∈ W 1,p(B, μ), the function
|Dμ f | ∈ L p(μ) is the minimal G ∈ L p(μ) with G ≥ 0 such that (2.10) holds. See also [21,
Theorem A.2] for an alternative proof of the existence of a master q-test plan.

Moreover, it is proved in [33, Proposition 2] that a given π ∈ �q(B, μ) is a master q-test
plan if and only if for every function f ∈ W 1,p(B, μ) it holds that |Dμ f | = 0 μ-a.e. on
B\Sπ and

|Dμ f |(x) = ess sup
π̂ x -a.e. (γ,t)

1{Der �=0}(γ, t)
|( f ◦ γ )′t |

‖γ̇t‖B

for e#π̂-a.e. x ∈ B, (2.12)

where π̂ = ∫
π̂ x d(e#π̂)(x) denotes the disintegration of π̂ along e.

Distributional divergence

Testing against smooth functions, we can define the space of vector fields withμ-divergence:

Definition 2.8 (Distributional μ-divergence) Let (B, μ) be a weighted Banach space and
let q ∈ (1,∞). Then we define Dq(divμ) ⊆ Lq(B, μ; B) as the space of all vector fields
v ∈ Lq(B, μ; B) for which there exists a function divμ(v) ∈ Lq(μ), called theμ-divergence
of v, such that

∫
d f (v) dμ = −

∫
f divμ(v) dμ for every f ∈ C1(B) ∩ LIPb(B).
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The function divμ(v) ∈ Lq(μ) is uniquely determined by the density of C1(B) ∩ LIPb(B)

in L p(μ).

Some comments on the space of vector fieldswith distributionalμ-divergence are in order:

• Dq(divμ) is a vector subspace of Lq(B, μ; B) and divμ : Dq(divμ) → Lq(μ) is a linear
operator.

• The Leibniz rule holds, i.e. for every h ∈ C1(B) ∩ LIPb(B) and v ∈ Dq(divμ) we have
that

hv ∈ Dq(divμ), divμ(hv) = h divμ(v) + dh(v). (2.13)

Indeed,
∫
d f (hv) dμ = ∫

d( f h)(v) dμ−∫
f dh(v) dμ = − ∫

f (h divμ(v)+dh(v)) dμ
holds for every f ∈ C1(B) ∩ LIPb(B), whence the validity of (2.13) follows.

• In particular, the space Dq(divμ) is a C1(B) ∩ LIPb(B)-submodule (thus, a vector sub-
space) of Lq(B, μ; B). Since C1(B)∩LIPb(B) is a weakly∗ dense subalgebra of L∞(μ),
it follows that clLq (B,μ;B)(Dq(divμ)) is a L∞(μ)-submodule of Lq(B, μ; B).

2.3 Measurable Banach bundles

According to [1, Definition 18.1], a given multivalued mapping ϕ : X � Y between a
measurable space (X, 	) and a topological space (Y, τ ) is said to be weakly measurable
provided it satisfies

{x ∈ X | ϕ(x) ∩ U �= ∅} ∈ 	 for every U ∈ τ.

The following result,which follows from theKuratowski–Ryll-Nardzewski selection theorem
(see [1, Corollary 18.14]), gives a useful criterion to detect weakly measurable multivalued
mappings:

Proposition 2.9 Let (X, 	) be a measurable space, B a separable Banach space, and
C : X � B a multivalued mapping such that C(x) is a closed non-empty subset of B for
every x ∈ X. Then C is weakly measurable if and only if there exists a sequence (vn)n∈N of
measurable maps vn : X → B such that C(x) = clB({vn(x) : n ∈ N}) for every x ∈ X.

Let now us recall the notion of measurable Banach B-bundle that was introduced in [12]:

Definition 2.10 (Measurable B-bundle) Let (X, 	) be a measurable space and B a Banach
space. Then a multivalued mapping E : X � B is said to be a measurable B-bundle on X
provided it is weakly measurable and E(x) is a closed vector subspace of B for every x ∈ X.

Given a finite measure space (X, 	,μ), we denote byDμ(B) the set of measurableB-bundles
on X quotiented up to μ-a.e. equality. For any E ∈ Dμ(B) and q ∈ (1,∞), the q-section
space

�q(E) := {
v ∈ Lq(X, μ; B)

∣
∣ v(x) ∈ E(x) for μ-a.e. x ∈ X

}
(2.14)

is a closed L∞(μ)-submodule of Lq(X, μ; B), thus it is also a Banach space. Notice that
Lq(X, μ; B) is the q-section space of the measurable B-bundle on X whose fibers are iden-
tically equal to B.

The space Dμ(B) is endowed with a natural partial order 	: given any E, F ∈ Dμ(B),
we declare that E 	 F if and only if E(x) ⊆ F(x) for μ-a.e. x ∈ X. When B is separable,
it holds that E �→ �q(E) is an order isomorphism between Dμ(B) and the set of all closed
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L∞(μ)-submodules of Lq(X, μ; B) (ordered by inclusion). See the proof of [31, Proposition
2.22] after [12, 30].

In this paper, the most relevant example of measurable B-bundle is the μ-tangent bundle:

Definition 2.11 (μ-tangent bundle) Let (B, μ) be a weighted Banach space and let q ∈
(1,∞). Then we define the q-tangent bundle of (B, μ) as the unique TμB ∈ Dμ(B) such
that

�q(TμB) = clLq (B,μ;B)(Dq(divμ)).

The above definition is well posed thanks to the fact that the space clLq (B,μ;B)(Dq(divμ))

is a closed L∞(μ)-submodule of Lq(B, μ; B).

Dual of a section space

Let us now recall a characterisation of the dual of the q-section space of a measurable B-
bundle obtained in [29, Section 3.2]. Let (X, 	,μ) be a finite measure space, B a separable
Banach space, E a measurable B-bundle on X, and p ∈ (1,∞). Then we denote by �p(E∗

w∗)
the space of μ-a.e. equivalence classes of those maps ω : X → ⊔

x∈X E(x)∗ that verify the
following properties:

• ω(x) ∈ E(x)∗ for every x ∈ X.
• The function X � x �→ ω(v)(x) := 〈ω(x), v(x)〉 is measurable for every v ∈ �q(E).
• The μ-a.e. equivalence class |ω|E∗ of the function X � x �→ ‖ω(x)‖E(x)∗ belongs to

L p(μ).

The space �p(E∗
w∗) has a natural structure of module over L∞(μ) and it is a Banach space

if endowed with the norm ω �→ ‖|ω|E∗‖L p(μ). The dual of �q(E) can be identified with
�p(E∗

w∗):

Theorem 2.12 (Dual of a section space) Let (X, 	,μ) be a finite measure space and q ∈
(1,∞). Let B be a separable Banach space and E ∈ Dμ(B). Then it holds that �q(E)∗ ∼=
�p(E∗

w∗).

For the proof of the above result, see [29, Theorem 3.9]. In the case whereEB is the bundle
whose fibers are constantly equal to B, we shall write L p

w∗(X, μ; B
∗) instead of �p((EB)∗w∗).

Definition 2.13 Let (X, 	,μ) be a finite measure space and let q ∈ (1,∞). Let B be a
Banach space and E ∈ Dμ(B). Then a vector subspace V of �q(E) is said to generate �q(E)

provided

cl�q (E)

({ n∑

i=1

1Ei vi

∣
∣
∣
∣ n ∈ N, (Ei )

n
i=1 ⊆ 	 partition of X, (vi )

n
i=1 ⊆ V

})

= �q(E),

or equivalently that the L∞(μ)-linear span of V is dense in �q(E). Similarly, we say that a
vector subspace W of �p(E∗

w∗) generates �p(E∗
w∗) if the L∞(μ)-linear span of W is dense

in �p(E∗
w∗).

Definition 2.14 Let (X, 	,μ) be a finite measure space and p ∈ (1,∞). LetB be a separable
Banach space. Assume that E, F ∈ Dμ(B) satisfy E 	 F. Then for any given element
ω ∈ �p(F∗

w∗) we define ω|E ∈ �p(E∗
w∗) as ω|E(x) := ω(x)|E(x) ∈ E(x)∗ for μ-a.e. x ∈ X.
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Given aweightedBanach space (B, μ), a bundleE ∈ Dμ(B), and an exponent p ∈ (1,∞),
we can consider the restricted Fréchet differential

d|E : C1(B) ∩ LIPb(B) → �p(E∗
w∗) ∼= �q(E)∗, (2.15)

which is given by d|E f := d f|E ∈ �p(E∗
w∗) for every f ∈ C1(B) ∩ LIPb(B).

Remark 2.15 In the case where B is a separable Asplund space and E ∈ Dμ(B) is
given, the elements of �p(E∗

w∗) can be represented in a more concrete way, which we
are going to describe. Recalling that Lq(X, μ; B)∗ ∼= L p(X, μ; B

∗), we can define
[ · ]E∗ : L p(X, μ; B

∗) → Lq(μ) as

[ω]E∗ :=
∨

{ω(v) | v ∈ �q(E), |v|B ≤ 1} ≤ |ω|B∗ for every ω ∈ L p(X, μ; B
∗).
(2.16)

One can readily check that [ · ]E∗ is a ‘pointwise seminorm’ on L p(X, μ; B
∗), meaning that

[ω]E∗ ≥ 0 for every ω ∈ L p(X, μ; B
∗),

[ω + η]E∗ ≤ [ω]E∗ + [η]E∗ for every ω, η ∈ L p(X, μ; B
∗),

[ f ω]E∗ = | f |[ω]E∗ for every f ∈ L∞(μ) and ω ∈ L p(X, μ; B
∗).

Moreover, the ‘restriction’ operator πE : L p(X, μ; B
∗) → �p(E∗

w∗), which we define as

πE(ω) := ω|E ∈ �p(E∗
w∗) for every ω ∈ L p(X, μ; B

∗), (2.17)

is L∞(μ)-linear and satisfies |πE(ω)|E∗ = [ω]E∗ for every ω ∈ L p(X, μ; B
∗). Finally, by

applying the Hahn–Banach theorem, one can prove that πE is surjective and that for any
ω̃ ∈ �p(E∗

w∗) there exists a (non-unique) ω ∈ L p(X, μ; B
∗) such that πE(ω) = ω̃ and

|ω|B∗ = |ω̃|E∗ . ��

Lemma 2.16 Let (X, 	,μ) be a finite measure space and p ∈ (1,∞). Let B be a separa-
ble Banach space and E, F ∈ Dμ(B). Assume that W is a generating vector subspace of
L p

w∗(X, μ; B
∗) such that |ω|E|E∗ ≤ |ω|F|F∗ for every ω ∈ W. Then it holds that E 	 F.

Proof We argue by contradiction: assume there exists P ∈ 	 with μ(P) > 0 and
E(x)\F(x) �= ∅ for μ-a.e. x ∈ P . Applying Proposition 2.9, we can find v ∈ �q(E)

and λ > 0 for which (up to shrinking P) it holds that v(x) /∈ F(x) and ‖v(x)‖B ≥ λ

for μ-a.e. x ∈ P . By the Hahn–Banach theorem, there exists η ∈ L p
w∗(X, μ; B

∗) such
that η(v) = |v|q

B
holds μ-a.e. on P and η(u) = 0 for every u ∈ �q(F). Fix any

ε ∈ (0, λq−1/2). Since W generates L p
w∗(X, μ; B

∗), we can find ω ∈ W such that (up
to shrinking P further) we have that |η − ω|B∗ ≤ ε holds μ-a.e. on P . In particular, we have
that ω(u) ≤ η(u) + |ω − η|B∗ |u|B ≤ ε|u|B holds μ-a.e. on P for every given u ∈ �q(F),
whence it follows that |ω|F|F∗ ≤ ε holds μ-a.e. on P . Hence, we have (again, μ-a.e. on P)
that

λq−1|v|B ≤ |v|q
B

= η(v) ≤ |ω(v)| + ε|v|B ≤ (|ω|E|E∗ + ε)|v|B
≤ (|ω|F|F∗ + ε)|v|B ≤ 2ε|v|B,

so that λq−1 ≤ 2ε, which contradicts our choice of ε. Therefore, we conclude that E 	 F. ��

We now present another technical result, which will be useful in the later sections:
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Lemma 2.17 Let (B, μ) be a weighted Banach space and let p ∈ (1,∞). Let A be a
compatible subalgebra of C1(B) ∩ LIPb(B) containing B

∗. Then {d f : f ∈ A } generates
L p(B, μ; B

∗). If in addition the space B is Asplund, then {d|E f : f ∈ A } generates �p(E∗
w∗)

for every E ∈ Dμ(B).

Proof By the very definition of L p(B, μ; B
∗), for any ω ∈ L p(B, μ; B

∗) and ε > 0 we
can find a simple map η = ∑n

i=1 1Ei ωi , where (Ei )
n
i=1 is a Borel partition of B and

ω1, . . . , ωn ∈ B
∗, such that ‖ω − η‖L p(B,μ;B∗) ≤ ε. Since B

∗ ⊆ A by assumption and
the Fréchet differential of an element of B

∗ coincides with the element itself, the above
shows that {d f : f ∈ A } generates L p(B, μ; B

∗).
Let us nowassume further thatB isAsplund. Fix anyE ∈ Dμ(B). Given anyω ∈ �p(E∗

w∗),
we can find ω̄ ∈ L p(B, μ; B

∗) with ω̄|E = ω (and |ω|B∗ = |ω|E∗ ), see Remark 2.15. Now
fix ε > 0. The first part of the statement yields the existence of functions f1, . . . , fn ∈ A
and of a Borel partition E1, . . . , En of B such that η̄ := ∑n

i=1 1Ei d fi ∈ L p(B, μ; B
∗)

satisfies ‖ω̄ − η̄‖L p(B,μ;B∗) ≤ ε. Letting η := η̄|E = ∑n
i=1 1Ei d|E fi ∈ �p(E∗

w∗), we have
that ‖ω − η‖�p(E∗

w∗ ) ≤ ‖ω̄ − η̄‖L p(B,μ;B∗) ≤ ε. This shows that {d|E f : f ∈ A } generates
�p(E∗

w∗), thus completing the proof of the statement. ��
We point out that the algebra of smooth cylindrical functions on B contains B

∗. In partic-
ular, Lemma 2.17 can be applied to every (compatible) subalgebra of C1(B) ∩ LIPb(B) that
contains all smooth cylindrical functions.

Pullback bundle

Let (X,dX, μX) and (Y,dY, μY) be complete and separable metric spaces endowed with
finite Borel measures. Let ϕ : X → Y be a Borel map satisfying ϕ#μX ≤ CμY for some
constant C > 0. Let B be a separable Banach space and let E ∈ DμY(B). Following [12,
Definition C.1], we then define the pullback bundle ϕ∗E ∈ DμX (B) of E as

(ϕ∗E)(x) := E(ϕ(x)) for μX-a.e. x ∈ X. (2.18)

For any exponent q ∈ (1,∞), the pullback operator that we considered in (2.7) induces a
pullback operator ϕ∗ : �q(E) → �q(ϕ∗E). Furthermore, if V is a generating vector subspace
of �q(E), then

{ϕ∗v | v ∈ V} generates �q(ϕ∗E). (2.19)

For a proof of the above claim, see [12, Theorem C.3], taking also [12, Remark C.4] into
account.

3 Main results

First, we provide several characterisations of W 1,p(B, μ) on a weighted (reflexive) Banach
space:

Theorem 3.1 (Identification of the Sobolev space) Let (B, μ) be a weighted Banach space
such that B has the Radon–Nikodým property and let p ∈ (1,∞). Let f ∈ L p(μ) be a given
function. Then the following conditions are equivalent:

(a) It holds that f ∈ W 1,p(B, μ).
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(b) There exists a (necessarily unique) element L f ∈ Dq(divμ)∗ ∼= �q(TμB)∗ such that
∫

L f (v) dμ = −
∫

f divμ(v) dμ for every v ∈ Dq(divμ). (3.1)

If in addition the space B is reflexive, then (a) and (b) are also equivalent to the following
condition:

c) Given any compatible subalgebraA of C1(B)∩LIPb(B), it holds thatWDp
μ( f ;A ) �= ∅,

where the family WDp
μ( f ;A ) of all (A , p)-weak differentials of f is given by

WDp
μ( f ;A ) :=

{
ω∈ L p(B, μ; B

∗)
∣
∣
∣ fn⇀ f and d fn⇀ω weakly, for some ( fn)n ⊆ A

}
.

At the same time, we can also obtain various characterisations of the minimal p-weak
upper gradient |Dμ f | of any Sobolev function f ∈ W 1,p(B, μ):

Theorem 3.2 (Identification of the minimal weak upper gradient) Let (B, μ) be a weighted
Banach space such that B has the Radon–Nikodým property. Let p ∈ (1,∞) be given. Then

dμ f := L f ∈ �q(TμB)∗ for every f ∈ W 1,p(B, μ) (3.2)

defines a linear map dμ : W 1,p(B, μ) → �q(TμB)∗, which we call the p-weak differential,
with

|Dμ f | = |dμ f |(TμB)∗ for every f ∈ W 1,p(B, μ). (3.3)

Moreover, we have that dμ f = d|TμB f holds for every f ∈ C1(B) ∩ LIPb(B), thus in
particular

|Dμ f | =
∨

v∈Dq (divμ)

1{v �=0}
d f (v)

|v|B for every f ∈ C1(B) ∩ LIPb(B). (3.4)

If in addition B is reflexive, for any compatible subalgebra A of C1(B) ∩ LIPb(B) it holds
that

|Dμ f | = |ω|B∗ for every f ∈ W 1,p(B, μ) and ω ∈ WDp
μ( f ;A ). (3.5)

Theorems 3.1 and 3.2 will be proved in Sect. 3.1. Furthermore, we show that theμ-tangent
bundle TμB can be alternatively defined in terms of the velocity of curves selected by q-test
plans:

Theorem 3.3 (Identification of the tangent bundle) Let (B, μ) be a weighted Banach space
such that B is an Asplund space that has the Radon–Nikodým property. Let q ∈ (1,∞) be
given. Then the μ-tangent bundle TμB can be equivalently characterised as follows:

i) TμB is the unique minimal element of (Dμ(B),	) such that

γ̇t ∈ TμB(γt ) for every π ∈ �q(B, μ) and π̂-a.e. (γ, t) ∈ C(B). (3.6)

ii) If π is a given master q-test plan on (B, μ), then TμB(x) = {0B} for μ-a.e. x ∈ B\Sπ

and

TμB(x) = clB

(

span

{

v ∈ B

∣
∣
∣
∣ π̂ x

({
(γ, t) ∈ C(B) : ‖γ̇t − v‖B < ε

})
> 0 for all ε > 0

})

for e#π̂-a.e. x ∈ B, where π̂ = ∫
π̂ x d(e#π̂)(x) denotes the disintegration of π̂ along e.
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See Sect. 3.2 for the proof of Theorem 3.3. Combining Theorems 3.1 and 3.2 with well-
known facts in the Banach space theory, we obtain the following useful corollary:

Corollary 3.4 Let (B, μ) be a weighted Banach space and p ∈ (1,∞). Then the following
hold:

i) If B is reflexive, then W 1,p(B, μ) is reflexive.
ii) If the dual B

∗ is uniformly convex, then W 1,p(B, μ) is uniformly convex.
iii) If B is a Hilbert space and p = 2, then W 1,2(B, μ) is a Hilbert space.

In particular, if the space B is reflexive, then every compatible subalgebra A of
C1(B) ∩ LIPb(B) is strongly dense in W 1,p(B, μ), and the p-weak differential operator
dμ : W 1,p(B, μ) → �q(TμB)∗ is the unique linear and continuous extension of the map
d|TμB : A → �q(TμB)∗.

Proof Endow L p(μ)×Dq(divμ)∗ with the norm ‖( f , L)‖ := (‖ f ‖p
L p(μ)+‖L‖p

Dq (divμ)∗)
1/p .

Then

W 1,p(B, μ) � f �→ ( f , L f ) ∈ L p(μ) × Dq(divμ)∗ is a linear isometry, (3.7)

thanks to the linearity of the map f �→ L f and to (3.3). Let us now distinguish the three
cases:
i) By well-known stability properties of reflexivity, we have the following chain of implica-
tions:

B reflexive �⇒ Lq(B, μ; B) reflexive �⇒ L p(B, μ; B
∗) reflexive

�⇒ Dq(divμ)∗ reflexive �⇒ L p(μ) × Dq(divμ)∗ reflexive.

Indeed, theLebesgue–Bochner space Lq(B, μ; B) is reflexive if (andonly if)B is reflexive,we
have that Lq(B, μ; B)∗ ∼= L p(B, μ; B

∗) when B is reflexive, and Dq(divμ)∗ is isometrically
isomorphic to a quotient of L p(B, μ; B

∗). Taking also (3.7) into account, the implication in
i) is then proved.
ii)SupposeB

∗ is uniformly convex. Then L p(B, μ; B
∗) is uniformly convex. Since uniformly

convex spaces are reflexive, the previous discussion ensures that Dq(divμ)∗ is isometrically
isomorphic to a quotient of L p(B, μ; B

∗). It follows that Dq(divμ)∗ is uniformly convex,
so that L p(μ) × Dq(divμ)∗ is uniformly convex. Recalling (3.7) again, we conclude that
W 1,p(B, μ) is uniformly convex.
iii) Suppose B is Hilbert and p = 2. Since D2(divμ)∗ is a quotient of the Hilbert space
L2(B, μ; B

∗),wededuce that D2(divμ)∗ isHilbert. Thanks to (3.7), it follows thatW 1,2(B, μ)

is Hilbert.
Finally, assume that B is reflexive, so that W 1,p(B, μ) is reflexive by i) and thus every

compatible subalgebraA of C1(B)∩LIPb(B) is strongly dense in W 1,p(B, μ). In particular,
the linear continuous operator d|TμB : A → �q(TμB)∗ can be uniquely extended to a linear
continuous operator T : W 1,p(B, μ) → �q(TμB)∗. Given that dμ is a linear continuous
extension of d|TμB by Theorem 3.2, we conclude that T = dμ. This proves the last part of
the statement. ��
Remark 3.5 The statements of Corollary 3.4 were already known:
i) was proved in [34, Corollary 5.3.11].
ii) follows from the results of [35].
iii) was proved in [11] (as Hilbert spaces are CAT(0) spaces); see also [34, Corollary 5.3.11].

��
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3.1 Proof of Theorems 3.1 and 3.2

First, we show that each test plan on aweightedBanach spacewith theRadon–Nikodýmprop-
erty induces a vector field. The proof is inspired by [10, Proposition 2.4] and [9, Proposition
7.2.3].

Lemma 3.6 (Vector field induced by a test plan) Let (B, μ) be a weighted Banach space such
that B has the Radon–Nikodým property. Let q ∈ (1,∞) and π ∈ �q(B, μ) be given. Let
us define

vπ (x) := d(e#π̂)

dμ
(x)

∫
γ̇t dπ̂ x (γ, t) ∈ B for μ-a.e. x ∈ B. (3.8)

Then it holds that vπ ∈ Lq(B, μ; B) and
∫

h|vπ |B dμ ≤
∫∫ 1

0
h(γt )‖γ̇t‖B dt dπ(γ ) for every h : B → [0,+∞) Borel. (3.9)

Moreover, it holds that vπ ∈ Dq(divμ) and

divμ(vπ ) = d(e0)#π

dμ
− d(e1)#π

dμ
. (3.10)

Proof First of all, the map vπ : B → B is μ-measurable thanks to the measurability of
x �→ π̂ x . Moreover, given any Borel function h : B → [0,+∞), we have that
∫

h|vπ |B dμ ≤
∫

h(x)
d(e#π̂)

dμ
(x)

∫
‖γ̇t‖B dπ̂ x (γ, t) dμ(x) =

∫∫ 1

0
h(γt )‖γ̇t‖B dt dπ(γ ),

which gives (3.9), thus in particular vπ ∈ Lq(B, μ; B) by Hölder’s inequality. Finally, for
any given function f ∈ C1(B) ∩ LIPb(B) we can compute

∫
d f (vπ ) dμ =

∫∫
〈dγt f , γ̇t 〉 dπ̂ x (γ, t) d(e#π̂)(x) =

∫∫ 1

0
( f ◦ γ )′t dt dπ(γ )

=
∫

f (γ1) − f (γ0) dπ(γ ) =
∫

f

(
d(e1)#π

dμ
− d(e0)#π

dμ

)

dμ,

which shows that vπ ∈ Dq(divμ) and that the identity in (3.10) holds. The proof is complete.
��

Proof of Theorems 3.1 and 3.2 Step 1: proof of a) ⇒ b) and |dμ f |(TμB)∗ ≤ |Dμ f |.
Assume that f ∈ W 1,p(B, μ). Pick any sequence ( fn)n ⊆ C1(B) ∩ LIPb(B) such that
fn → f and |d fn |B∗ → |Dμ f | in L p(μ). Then we have that
∣
∣
∣
∣

∫
f divμ(v) dμ

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣

∫
fn divμ(v) dμ

∣
∣
∣
∣ ≤ lim

n→∞

∫
|d fn |B∗ |v|B dμ =

∫
|Dμ f ||v|B dμ

(3.11)

for every v ∈ Dq(divμ). Lettingμv := |Dμ f ||v|Bμ, we also define Tv : C1(B)∩LIPb(B) →
R as

Tv(h) := −
∫

f divμ(hv) dμ for every h ∈ C1(B) ∩ LIPb(B).
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By (2.13), the map Tv is linear. Also, (3.11) gives |Tv(h)| ≤ ‖h‖L1(μv) for all h ∈ C1(B) ∩
LIPb(B). SinceC1(B)∩LIPb(B) is dense in L1(μv) and the dual of L1(μv) is L∞(μv), there
exists a unique function θv ∈ L∞(μv) such that |θv| ≤ 1 and Tv(h) = ∫

h θv dμv for every
h ∈ C1(B)∩LIPb(B). Therefore, letting L f (v) := θv|Dμ f ||v|B ∈ L1(μ), we conclude that
|L f (v)| ≤ |Dμ f ||v|B and

∫
h L f (v) dμ = −

∫
f divμ(hv) dμ for every v ∈ Dq (divμ) and h ∈ C1(B) ∩ LIPb(B).

(3.12)

Choosing h := 1, we obtain that L f satisfies (3.1), while the weak∗ density of C1(B) ∩
LIPb(B) in L∞(μ) ensures that L f is uniquely determined. Since L f is linear (thanks to
(3.12) and to the linearity of divμ), we conclude that L f ∈ Dq(divμ)∗ and |dμ f |(TμB)∗ =
|L f |(TμB)∗ ≤ |Dμ f |, proving the inequality ≥ in (3.3). The linearity of dμ : W 1,p(B, μ) →
Dq(divμ)∗ follows from (2.13).

Step 2: proof of b) ⇒ a) and |Dμ f | ≤ |dμ f |(TμB)∗ .
Assume that there exists an element L f ∈ Dq(divμ)∗ satisfying (3.1). Fix any π ∈ �q(B, μ)

and consider the vector field vπ ∈ Lq(B, μ; B) induced byπ as in (3.8). Thenwe can estimate
∫

f (γ1) − f (γ0) dπ(γ ) =
∫

f d(e1)#π −
∫

f d(e0)#π
(3.10)= −

∫
f divμ(vπ ) dμ

=
∫

L f (vπ ) dμ

≤
∫

|L f |(TμB)∗ |vπ |B dμ
(3.9)≤

∫∫ 1

0
|L f |(TμB)∗(γt )‖γ̇t‖B dt dπ(γ ).

Hence, f ∈ W 1,p(B, μ) and |Dμ f | ≤ |L f |(TμB)∗ = |dμ f |(TμB)∗ , thus the proof of (3.3) is
complete.

Step 3: proof of (3.4).
Given that

∫
h L f (v) dμ = − ∫

f divμ(hv) dμ = ∫
h d f (v) dμ holds for every f , h ∈

C1(B) ∩ LIPb(B) and v ∈ Dq(divμ), we have that L f (v) = d f (v) for every f ∈ C1(B) ∩
LIPb(B) and v ∈ Dq(divμ), so that dμ f = L f = d|TμB f for every f ∈ C1(B) ∩ LIPb(B).
In particular, by taking also the identity (3.3) into account, for any f ∈ C1(B)∩LIPb(B) we
obtain that

|Dμ f | = |d|TμB f |(TμB)∗ =
∨

v∈Dq (divμ)

1{v �=0}
d f (v)

|v|B ,

thus proving the validity of (3.4).

Step 4: proof of a) ⇔ c) and (3.5).
Let us now assume in addition that B is reflexive. Let f ∈ W 1,p(B, μ) be given. Pick
a sequence ( fn)n ⊆ A such that fn → f and |d fn |B∗ → |Dμ f | in L p(μ). Since
L p(B, μ; B

∗) is reflexive, up to a non-relabelled subsequence we have that d fn⇀ω weakly
in L p(B, μ; B

∗) for some ω ∈ L p(B, μ; B
∗), so that ω ∈ WDp

μ( f ;A ). Notice also that
we have that |ω|B∗ ≤ |Dμ f |. Conversely, let f ∈ L p(μ) with WDp

μ( f ;A ) �= ∅ be given.
Take any ω ∈ WDp

μ( f ;A ) and ( fn)n ⊆ A such that fn⇀ f weakly in L p(μ) and d fn⇀ω

weakly in L p(B, μ; B
∗). Thanks to Mazur’s lemma, we can find a sequence (gn)n of con-

vex combinations of ( fn)n so that gn → f strongly in L p(μ) and dgn → ω strongly in
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L p(B, μ; B
∗). In particular, it holds that |dgn |B∗ → |ω|B∗ strongly in L p(μ), which implies

that f ∈ W 1,p(B, μ) and |Dμ f | ≤ |ω|B∗ . All in all, the property (3.5) is proved. ��
Notice that the implication WDp

μ( f ;A ) �= ∅ ⇒ f ∈ W 1,p(B, μ) holds for every B

separable.

3.2 Proof of Theorem 3.3

Before passing to the verification of Theorem 3.3, we prove an auxiliary result:

Lemma 3.7 Let (B, μ) be a weighted Banach space such that B has the Radon–Nikodým
property. Let q ∈ (1,∞) and π ∈ �q(B, μ) be given. Let us define the multivalued mapping
VπB : B � B as VπB(x) := clB(span SπB(x)) for μ-a.e. x ∈ B, where we set

SπB(x) :=
{
spt(Der#π̂ x )

{0B}
for e#π̂-a.e. x ∈ B,

for μ-a.e. x ∈ B \ Sπ .
(3.13)

Then it holds that SπB : B � B is weakly measurable and VπB ∈ Dμ(B).

Proof First, notice that VπB(x) is a closed vector subspace of B for μ-a.e. x ∈ B. Moreover,

{x ∈ B | SπB(x) ∩ U �= ∅} = {x ∈ B | π̂ x (Der
−1(U )) > 0} for every U ⊆ B open,

thus the measurability of x �→ π̂ x ensures that the multivalued mapping SπB is weakly
measurable, whence it follows that clB(SπB) is weakly measurable. Thanks to Proposition
2.9, we can find a sequence (vk)k∈N of Borel maps vk : B → B such that clB({vk(x) : k ∈
N}) = clB(SπB(x)) holds for μ-a.e. x ∈ B. Since for μ-a.e. x ∈ B we have that

VπB(x) = clB

({ n∑

i=1

qi vki (x)

∣
∣
∣
∣ n ∈ N, q1, . . . , qn ∈ Q, k1, . . . , kn ∈ N

})

,

we deduce from Proposition 2.9 that VπB is weakly measurable, thus VπB ∈ Dμ(B). ��

Proof of Theorem 3.3
Step 1: proof of Theorem 3.3 i).
Given any π ∈ �q(B, μ), we denote by Derπ ∈ Lq(C(B), π̂; B) the equivalence class of the
mapping Der : C(B) → B. We define Eπ ∈ Dπ̂ (B) as Eπ (γ, t) := RDerπ (γ, t) for π̂-a.e.
(γ, t) ∈ C(B). Since B is Asplund, we have that L p

w∗(B, μ; B
∗) ∼= L p(B, μ; B

∗). For any
f ∈ A := C1(B) ∩ LIPb(B),

|(e∗d f )|Eπ
|(Eπ )∗(γ, t) = 1{Derπ �=0}(γ, t)

|(e∗d f )(Derπ )(γ, t)|
|Derπ |B(γ, t)

= 1{Derπ �=0}(γ, t)
|( f ◦ γ )′t |

‖γ̇t‖B

≤ |Dμ f |(γt ) = (|dμ f |(TμB)∗ ◦ e)(γ, t) = |(e∗d f )|e∗TμB|(e∗TμB)∗(γ, t)

for π̂-a.e. (γ, t) ∈ C(B). Since {e∗d f : f ∈ A } generates L p(C(B), π̂; B
∗) thanks to

Lemma 2.17 and (2.19), by using Lemma 2.16 we deduce that Eπ 	 e∗TμB, whence the
property (3.6) follows.

We now prove that TμB is the minimal element of (Dμ(B),	) with this property. Let
E ∈ Dμ(B) be such that Derπ ∈ �q(e∗E) for every π ∈ �q(B, μ). Fix a master q-test plan
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π ∈ �q(B, μ). Then

|d|TμB f |(TμB)∗(x) = |Dμ f |(x)
(2.12)= 1Sπ (x) ess sup

π̂ x -a.e. (γ,t)
1{Der �=0}(γ, t)

|( f ◦ γ )′t |
‖γ̇t‖B

= 1Sπ (x) ess sup
π̂ x -a.e. (γ,t)

1{Der �=0}(γ, t)
|(e∗d f )(Derπ )|(γ, t)

|Derπ |B(γ, t)

≤ 1Sπ (x) ess sup
π̂ x -a.e. (γ,t)

|(e∗d f )|e∗E|(e∗E)∗(γ, t) ≤ |d|E f |E∗(x)

holds for μ-a.e. x ∈ B, for every given function f ∈ A . Since {d f : f ∈ A } generates
L p(B, μ; B

∗), we finally conclude that TμB 	 E thanks to Lemma 2.16. The validity of
Theorem 3.3 i) follows.

De facto, the above proof shows that for any master q-test plan π on (B, μ), the bundle
TμB is the unique minimal element of (Dμ(B),	) such that γ̇t ∈ TμB(γt ) holds for π̂-a.e.
(γ, t) ∈ C(B).

Step 2: proof of Theorem 3.3 ii).
Let VπB be as in Lemma 3.7. Then to prove Theorem 3.3 ii) amounts to showing that

VπB = TμB for every master q-test plan π on (B, μ).

First, let us prove that VπB 	 TμB. Let SπB be as in Lemma 3.7. By Proposition 2.9, we
can find (vk)k∈N ⊆ �q(VπB) such that clB({vk(x) : k ∈ N}) = clB(SπB(x)) for μ-a.e.
x ∈ B. To prove that VπB 	 TμB, it suffices to show that vk ∈ �q(TμB) for every k ∈ N.
We argue by contradiction: suppose there exist k0 ∈ N, a Borel set E ⊆ B, and δ > 0 such
that e#π̂(B) > 0 and ‖vk0(x) − TμB(x)‖B ≥ δ for e#π̂-a.e. x ∈ E . By the definition of SπB

we have

π̂ x

({
(γ, t) ∈ C(B)

∣
∣
∣ ‖γ̇t − vk0(x)‖B < δ

})
> 0 for e#π̂ -a.e. x ∈ E .

By taking the property (3.6) into account, it thus follows that

e#π̂
({

x ∈ E
∣
∣
∣ ‖vk0(x) − TμB(x)‖B < δ

})

≥ π̂
({

(γ, t) ∈ e−1(E)

∣
∣
∣ ‖γ̇t − vk0(γt )‖B < δ

})
> 0.

This leads to a contradiction with our choice of k0, E , δ. Therefore, we deduce that VπB 	
TμB.

We now pass to the verification of TμB 	 VπB. For e#π̂-a.e. x ∈ B, it holds that

γ̇t = Der(γ, t) ∈ spt(Der#π̂ x ) = SπB(γt ) ⊆ VπB(γt ) for π̂ x -a.e. (γ, t) ∈ C(B).

Therefore, we have that γ̇t ∈ VπB(γt ) for π̂-a.e. (γ, t) ∈ C(B), so that TμB 	 VπB thanks
to the last paragraph of Step 1 of this proof. ��

4 Consistency with themetric vector calculus

The aim of this conclusive section is to check the consistency of the vector calculus we
develop in this paper with the differential structure for metric measure spaces introduced by
Gigli in [20].

Let (B, μ) be a weighted Banach space, q ∈ (1,∞), and E ∈ Dμ(B). Then the q-section
space �q(E) is a (complete) Lq(μ)-normed L∞(μ)-module, in the sense of [20, Definition
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1.2.10]. Its dual �q(E)∗ ∼= �p(E∗
w∗) is an Lq(μ)-normed L∞(μ)-module, which coincides

with the dual �q(E) in the sense of [20, Definition 1.2.6 and Proposition 1.2.14]. Notice that
the notion of ‘generating vector subspace’ of �q(E) or �p(E∗

w∗) we introduced in Definition
2.13 is consistent with the one of [20, Definition 1.4.2]. We refer to [29] for a more detailed
discussion on these topics.

In [20], the language of L p(μ)-normed L∞(μ)-modules was used to develop a vector
calculus for arbitrary metric measure spaces. In this regard, an object playing a fundamental
role is the cotangent module, introduced in [20, Definition 2.2.1] (see also [19, Theo-
rem/Definition 2.8] for another axiomatisation and [22, Theorem 3.2] for the case p �= 2).
The cotangent module is canonically associated with an abstract differential operator. In
the next result, we show the consistency of our machinery with Gigli’s notions of cotangent
module and abstract differential.

Theorem 4.1 (Cotangent module) Let (B, μ) be a weighted Banach space such that
B is an Asplund space having the Radon–Nikodým property. Let p ∈ (1,∞). Then
�q(TμB)∗ is isomorphic to the cotangent module of (B, μ) and the associated differential is
dμ : W 1,p(B, μ) → �q(TμB)∗.

Proof First, {d|TμB f : f ∈ C1(B) ∩ LIPb(B)} generates �q(TμB)∗ by Lemma 2.17, thus a
fortiori {dμ f : f ∈ W 1,p(B, μ)} generates�q(TμB)∗. Also, |dμ f |(TμB)∗ = |Dμ f | for every
f ∈ W 1,p(B, μ) by (3.3). The cotangent module and the abstract differential are uniquely
determined (up to a unique isomorphism) by this property (see [22, Theorem 3.2]), thus the
statement is proved. ��

Under the assumptions of Theorem 4.1, the tangent module of (B, μ) (which was defined
in [20, Definition 2.3.1] as the dual of its cotangent module) can be different from �q(TμB).
Indeed, theq-section space�q(TμB) is thepredual of the cotangentmodule instead.However:

Corollary 4.2 Let (B, μ) be a weighted Banach space with B reflexive and p ∈ (1,∞). Then
the cotangent module of (B, μ) is reflexive and �q(TμB) is isomorphic to the tangent module
of (B, μ).

Proof Since Lq(B, μ; B) is reflexive, its subspace�q(TμB) is reflexive, so also the cotangent
module �q(TμB)∗ is reflexive. In particular, the tangent module �q(TμB)∗∗ is isomorphic to
�q(TμB). ��

We point out that – as far as we know – the reflexivity of the cotangent module might
not follow directly from that of W 1,p(B, μ). It is known that the reflexivity of the cotangent
module implies that of the Sobolev space [20, Proposition 2.2.10], but whether the converse
implication holds is still an open problem, cf. with [20, Remark 2.2.11]. Finally, another
consistency check:

Remark 4.3 (Velocity of a test plan)Let (B, μ) be a weighted Banach space with B reflexive
and let q ∈ (1,∞). Given any q-test plan π ∈ �q(B, μ), one can consider the velocity
π ′ ∈ �q(e∗TμB) of π in the sense of [32, Theorem 1.21] (see [20, Theorem 2.3.18] for the
original definition, under extra assumptions). Letting Derπ be the π̂ -a.e. equivalence class
of Der : C(B) → B, we claim that

Derπ = π ′ for every π ∈ �q(B, μ). (4.1)
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Indeed, Step 1 of the proof of Theorem 3.3 shows that Derπ ∈ �q(e∗TμB), and an application
of the dominated convergence theorem ensures that for every f ∈ W 1,p(B, μ) it holds that

lim
h→0

∥
∥
∥
∥

f ◦ et+h − f ◦ et

h
− (e∗d f )(Derπ )(·, t)

∥
∥
∥
∥

L1(π)

= 0 for L1-a.e. t ∈ [0, 1],

whence the claimed identity (4.1) follows by the uniqueness part of [32, Theorem 1.21]. ��
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31. Lučić, D., Pasqualetto, E., Rajala, T.: Characterisation of upper gradients on the weighted Euclidean space
and applications. Annali di Matematica Pura ed Applicata 200, 2473–2513 (2021)

32. Pasqualetto, E.: Testing the Sobolev property with a single test plan. Stud. Math. 264, 149–179 (2022)
33. Pasqualetto, E.: A short proof of the existence of master test plans. Archiv der Mathematik 120, 69–76

(2023)
34. Savaré, G.: Sobolev spaces in extendedmetric-measure spaces. In: Ambrosio, L., Franchi, B., Markina, I.,

Serra Cassano, F. (eds.) New Trends on Analysis and Geometry in Metric Spaces, pp. 117–276. Springer
International Publishing, Cham (2022)

35. Sodini, G.E.: The general class of Wasserstein Sobolev spaces: density of cylinder functions, reflexivity,
uniform convexity and Clarkson’s inequalities. Calc. Var. Partial Differ. Equ. 62, 1–41 (2023)

36. Zhikov, V.V.: On an extension of the method of two-scale convergence and its applications. Sb. Math.
191, 973–1014 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s00229-024-01562-2

	Vector calculus on weighted reflexive Banach spaces
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Classical notions on Banach spaces
	Absolutely continuous curves
	Radon–Nikodým property and Asplund spaces
	Fréchet differential and smooth functions
	Lebesgue–Bochner spaces

	2.2 Sobolev calculus on weighted Banach spaces
	Test plans
	Compatible algebras
	Metric Sobolev spaces
	Master test plans
	Distributional divergence

	2.3 Measurable Banach bundles
	Dual of a section space
	Pullback bundle


	3 Main results
	3.1 Proof of Theorems 3.1 and 3.2
	3.2 Proof of Theorem 3.3

	4 Consistency with the metric vector calculus
	Acknowledgements
	References


