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1 Introduction

Strongly-interacting matter at extreme temperature and density forms quark-gluon plasma
(QGP), a state in which the dominant degrees of freedom are sub-hadronic [1, 2]. The QGP
filled the early universe, and it is generated today in the collision of heavy atomic nuclei at the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and at the Large
Hadron Collider (LHC) at CERN. Measurements at these facilities, and their comparison
with theoretical calculations based on viscous relativistic hydrodynamics, show that the QGP
exhibits complex collective behavior, flowing with very low specific shear viscosity [3].

A key question in the experimental study of the QGP is the limit of its formation in
terms of the size of the colliding nuclei. To explore this question, measurements have been
carried out for “small collision systems”, in which one of the projectiles is a proton or light
nucleus and the other a heavy nucleus, additionally with selection of high event activity
(EA) such as produced particle multiplicity or forward neutron production (see e.g. ref. [4]).
Final-state hadronic distributions in small systems exhibit experimental signatures which
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are associated with production of the QGP in heavy-ion collisions [5], including collective
flow [6–9] and enhancement in the production of strange hadrons [10].

Jets are the hadronic remnants of hard (high momentum transfer Q2) interactions of
quarks and gluons from the hadronic projectiles. Measurements of jet production and jet
structure in elementary collisions are well described by theoretical calculations based on
perturbative QCD (pQCD) [11–13]. In heavy-ion collisions, jets interact with the QGP,
resulting in modifications of jet production rates, structure, and angular distributions, which
provide incisive probes of the QGP (“jet quenching”) [14, 15].

Jet quenching is a necessary consequence of QGP formation in small systems, though
its effects are expected to be small [16–22]. A common signature of jet quenching is the
suppression of inclusive hadron or jet yield measured in heavy-ion collisions compared to that
expected by scaling the corresponding yield measured in minimum-bias (MB) pp collisions,
using a Glauber modeling of the collision geometry [14, 15, 23]. Inclusive jet yield suppression
has been reported using this approach in EA-selected d-Au collisions at RHIC (EA based
on forward multiplicity) [24] and in p-Pb collisions at the LHC (EA based on forward
transverse energy ET) [25]. However, Glauber modeling using these EA metrics in small
systems is subject to significant non-geometric bias [4, 22, 26–32]. An alternative choice
for the EA metric, based on zero-degree neutron measurements (nZDC), is found to be less
biased, though the scaling still has model-dependent assumptions and uncertainties [4]. Such
biases and uncertainties limit the sensitivity of the measurement of jet quenching effects
in small systems using Glauber-scaled inclusive yield observables. At present there is no
significant evidence, beyond experimental uncertainties, of jet quenching in small systems
using this approach [33–35].

The PHENIX Collaboration has recently searched for jet quenching in d-Au collisions at
a center-of-mass energy per nucleon-nucleon collision √

sNN = 200 GeV by the measurement
of both π0 and direct photon (γdir) inclusive yields in collisions selected by EA [32]. Jet
quenching is studied using the γdir inclusive yield to estimate empirically the rate of hard
processes, which does not depend upon Glauber scaling. Strong suppression in the ratio of
π0 and γdir inclusive yields is observed for high-EA relative to MB collisions, though with
absolute value that is consistent with unity within the normalization uncertainty.

An alternative approach has been proposed to search for medium-induced inclusive yield
suppression in small systems utilizing MB collisions of light nuclei [19, 20], which likewise
does not require Glauber modeling for the yield scaling. However, this approach cannot
be applied to EA-selected event populations in small collision systems, where the strongest
signals characteristic of collective flow have been observed [6–10].

The comprehensive search for jet quenching effects in small collision systems therefore
also requires approaches based on coincidence observables, which are self-normalized and
likewise do not require a Glauber model calculation of nuclear geometry for an EA-selected
population. The measurement of jets recoiling from a high-pT hadron trigger in p-Pb collisions
at √sNN = 5.02 TeV has set a limit of 0.4 GeV/c (90% confidence) for medium-induced energy
transport to angles greater than 0.4 radians relative to the jet axis, for high-EA collisions
selected with criteria based both on forward multiplicity and on nZDC [36]. Measurement
of the distribution of hadrons recoiling from a high-pT jet trigger in EA-selected (nZDC)
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p-Pb collisions at √
sNN = 5.02 TeV likewise finds no significant jet quenching signal within

uncertainties [37]. The measurement of azimuthal anisotropy of high-pT hadrons finds small
but non-zero second Fourier coefficient v2 for events selected by EA based on forward ET [38],
though such effects cannot be attributed solely to jet quenching.

It therefore remains an open question whether the collective effects observed in small
systems are indeed due to QGP formation, or whether they arise from other phenomena [22, 39–
41]. New searches for jet quenching effects in small systems are required to resolve this issue.

In this article we present a novel search for jet quenching effects in EA-selected high-
multiplicity (HM) pp collisions at

√
s = 13 TeV. Since “collision geometry” is ill-defined

for EA-selected pp collisions, inclusive observables are not appropriate for such a search.
Rather, we utilize the semi-inclusive hadron+jet acoplanarity observable [36, 42–45], i.e. the
distribution of the azimuthal angle ∆φ between a high-pT hadron trigger and correlated recoil
jets, comparing ∆φ measurements in HM-selected and MB populations. Jets are reconstructed
from charged particles using the anti-kT algorithm [46] with resolution parameter R = 0.4. Jet
quenching in the QGP is expected to broaden the ∆φ distribution relative to that in vacuum,
due to in-medium multiple scattering [47–52]. Indeed, significant in-medium acoplanarity
broadening has been observed in central Pb-Pb collisions for large-R recoil jets at low pT,
though the physical mechanisms underlying this broaden remain an open question [44, 45].
However, at present there is no theoretical guidance for the magnitude of the jet transport
parameter q̂ [14] or alternative characterizations of jet quenching in EA-selected pp collisions,
and this is therefore entirely an experiment-driven search.

The analysis is based on the ∆recoil observable developed for semi-inclusive coincidence
measurements of jets recoiling from a high-pT hadron trigger [42]. Precise suppression of
jet yield uncorrelated with the trigger particle (uncorrelated background yield) is crucial in
this analysis, since the uncorrelated yield of jets generated by multiple partonic interactions
(MPI) from independent high-Q2 processes can mimic azimuthal broadening arising from
jet quenching. The ∆recoil observable provides data-driven suppression of uncorrelated
background yield through the difference of trigger hadron-normalised recoil jet distributions
in two exclusive trigger pT intervals (section 5). Selection of the HM population utilizes
a large data sample recorded by ALICE with an online HM trigger during the 2016–2018
LHC pp runs at

√
s = 13 TeV. The ∆φ distributions from the HM-selected and MB event

populations are compared, revealing a striking acoplanarity broadening in HM-selected events.
However, similar broadening is also observed in PYTHIA-based simulations. The physical
origin of the broadening is elucidated through a detailed study of the rapidity dependence of
jet production and the number of recoil jets in HM-selected and MB-selected events.

The paper is organized as follows: section 2 presents the data set and offline analysis;
section 3 presents characterization of event activity using forward multiplicity; section 4
presents jet reconstruction; section 5 presents the coincidence observable ∆recoil; section 6
presents data corrections; section 7 presents systematic uncertainties; and section 8 presents
the physics results and their interpretation.
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2 Data set and offline analysis

The ALICE detector and its performance are described in refs. [53, 54]. Data for this analysis
were recorded during the 2016, 2017, and 2018 LHC runs with pp collisions at

√
s = 13 TeV.

Events were selected online using signals in the V0 detectors [55], which are plastic scintillator
arrays covering the pseudorapidity ranges 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C).
The V0 signal is proportional to the total number of charged particles (multiplicity) in the
detector acceptance. Two different V0 trigger configurations were employed, called minimum
bias (labelled “MB”) and high multiplicity (“HM”). The MB trigger required the in-time
coincidence of V0A and V0C signals, while the HM trigger required the sum of V0A and
V0C signal amplitudes (denoted as V0M) to be at least five times larger than the mean
signal amplitude in MB events (denoted as ⟨V0M⟩). The HM trigger selected 0.1% of MB
events with the largest value of V0M.

The EA is characterized offline by the scaled V0 signal, V0M/⟨V0M⟩ =
(V0A + V0C)/ ⟨V0A + V0C⟩, which is insensitive to changes in V0 gain in the different
data-taking periods due to scintillator aging. It also provides ordering of events in terms of
EA without the need for precise calculation of the absolute V0 signal in model calculations,
for a well-defined comparison of such models with data. The value of ⟨V0M⟩ is calculated
separately for each data-taking run lasting a few hours, as a function of the collision vertex
position along the beam axis. The HM selection is further constrained in the offline analysis
to the range 5 < V0M/⟨V0M⟩ < 9. The lower bound of 5 is determined by the online HM
trigger threshold, while the upper bound of 9 is determined by the range over which the
V0M/⟨V0M⟩ distributions for the three different measurement periods are consistent; higher
values may be affected by residual, uncorrected pileup effects.

In the offline analysis, jets are measured at midrapidity using charged particles recon-
structed with the ALICE central barrel detectors, covering the range |η| < 0.9. Track
reconstruction is based on space points measured by the Inner Tracking System (ITS) and
Time Projection Chamber (TPC) [54]. Primary event vertices are reconstructed offline based
on global tracks, which are required to have space points in the Silicon Pixel Detector (SPD)
forming the two innermost layers of the ITS. Accepted events are required to have the primary
vertex within |zvtx| < 10 cm, where zvtx is the location of the vertex along the beam axis
relative to the nominal center of the ALICE detector.

For MB-triggered events, the pileup rate due to multiple hadronic pp collisions in the
same LHC bunch crossing is less than 3.5%. The pile-up contribution is suppressed offline by
rejecting events with multiple reconstructed event vertices. Monte Carlo studies estimate
that the residual pileup contribution following this cut is negligible for the MB populations
and about 1% for the HM population. As discussed in section 5, the observable ∆recoil used
in the analysis provides data-driven suppression of uncorrelated background yield, which
also includes residual pileup events that are not rejected by the multiple-vertex algorithm.
After event selection, the data sets have an integrated luminosity of 32 nb−1 for the MB
trigger and 10 pb−1 for the HM trigger.

During the data taking, the ITS had non-uniform efficiency, and the analysis therefore
utilizes hybrid tracks [13, 56] to achieve azimuthally uniform tracking response. Hybrid tracks
consist of good quality global tracks with at least one hit in the SPD, and complementary
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Figure 1. Probability distribution of V0M/⟨V0M⟩ in MB pp collisions measured at
√

s = 13 TeV,
and in simulated MB pp events generated by PYTHIA 8 at the particle and detector level. The
vertical dashed lines indicate the lower bound for HM selection for data and particle-level simulations.

tracks without SPD signals. To ensure good momentum resolution, the momentum of these
complementary tracks is determined using the primary vertex as a constraint. Reconstructed
tracks with |η| < 0.9 and pT > 0.15 GeV/c are accepted for the analysis. Hybrid track
reconstruction efficiency is 0.85 at pT = 1 GeV/c, 0.82 at pT = 10 GeV/c, and 0.74 at
pT = 50 GeV/c. Tracking efficiencies for MB and HM events are similar. Primary-track
momentum resolution is 0.7% at pT = 1 GeV/c, 1.3% at pT = 10 GeV/c, and 3.7% at
pT = 50 GeV/c.

Simulations are utilized for data corrections and for comparison to theoretical calculations.
The simulations are based on the PYTHIA 8 event generator [57] with Monash tune [58], and
a detailed GEANT3 model [59] of the ALICE detector response, which includes production
of secondary particles and realistic hit digitization. Events generated by PYTHIA 8 without
detector effects are denoted “particle-level,” and such events passed through GEANT3 are
denoted “detector-level.”

For particle-level events, the V0A and V0C responses are determined by counting the
number of charged particles in their acceptance. The coincidence requirement of the online
trigger is modeled by requiring particle-level events to have particles in both V0A and V0C,
while detector-level events are required to have GEANT-generated hits in both V0A and V0C.
The MB events are used to calculate the V0M distributions at both detector and particle level.

3 V0M/⟨V0M⟩ distributions

Figure 1 shows the V0M/⟨V0M⟩ probability distribution for MB pp collisions at
√

s = 13 TeV.
The lower limit for HM event selection, V0M/⟨V0M⟩ = 5, is indicated by the red dashed-
dotted line. The figure also shows the V0M/⟨V0M⟩ probability distribution at the particle
and detector level for PYTHIA 8-generated events for MB pp collisions at

√
s = 13 TeV. These
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distributions differ because of a large contribution at forward angles of secondary particles
generated in detector material [60]. The particle-level distribution falls more rapidly than
that observed in data in the range V0M/⟨V0M⟩ > 4. However, the detector-level distribution
qualitatively reproduces that observed in data, with probability densities which lie within a
factor ∼ 2 of each other over a range of nine orders of magnitude in V0M/⟨V0M⟩.

In order to compare PYTHIA 8 particle-level HM-selected distributions to data, we
assume that the secondary particle yield due to interactions in detector material is on average
proportional to the primary multiplicity in the V0 acceptance. The HM selection for the
particle-level distribution is therefore chosen to select the same fraction of the MB cross section
(0.1%) as the HM selection V0M/⟨V0M⟩ > 5.0 used for data. This selection corresponds to
particle-level V0M/⟨V0M⟩ > 4.4, as indicated by the dark dashed line in figure 1.

We note, however, that such selections of the same cross section fraction at the particle
and detector level only select the same fraction of the distributions. They cannot select the
same population event-by-event, due to significant fluctuations in the correlation between
particle- and detector-level events. For the detector model used in this study, about 35% of
events passing the HM selection at the detector level also do so at the particle level. This
is a generic issue, with similar features expected for any event selection in small systems
based on forward EA.

4 Jet reconstruction

Jet measurements in this coincidence analysis are corrected for two distinct background effects:
uncorrelated jet yield, which is corrected using the ∆recoil observable discussed in section 5;
and pT-smearing of correlated jets due to overlap with uncorrelated background components,
as detailed in this section. These corrections are carried out in distinct analysis steps.

Several types of reconstructed jets are consequently used in the analysis, which are
distinguished using the notation defined in refs. [36, 42]. For data, praw,ch

T,jet refers to the raw
output of the jet reconstruction algorithm; preco,ch

T,jet refers to praw,ch
T,jet after subtraction of the

event-wise estimate of the background contribution to pT,jet, ρ × Ajet, which is the product
of median jet pT density in the event and the jet area (eq. (4.1)); and pch

T,jet refers to the
fully corrected jet transverse momentum. For simulations, ppart

T,jet refers to charged-particle
jets at the particle level, and pdet

T,jet charged-particle jets at the detector level; both quantities
are corrected by ρ × Ajet using the following procedure.

Jets are reconstructed from accepted charged-particle tracks. Particles are assumed to
be massless and their four-momenta are combined with the boost-invariant pT recombination
scheme [61]. Jet reconstruction is carried out twice for each event. The first reconstruction
pass uses the kT algorithm [61] with R = 0.4 and accepts jets with |ηjet| < 0.9 − R. The
first-pass jet population is used to determine ρ, the event-wise estimate of the background
energy density [62],

ρ = median

praw,ch,i
T,jet
Ai

jet

 , (4.1)
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where praw,ch,i
T,jet and Ai

jet are the raw jet pT and the area [63] of the ith jet in the event. Jet
area is calculated using the ghost area method of FastJet, with a ghost area of 0.005 [63].
The two hardest jets in the event are excluded from the median calculation. The most
probable value of ρ is zero in both the MB and HM populations, while the mean value of
ρ is 0.09 GeV/c for MB and 1.24 GeV/c for HM-selected events. For events containing a
charged track in |η| < 0.9 with 20 < pT < 30 GeV/c, the mean value of ρ is 0.39 GeV/c

for MB and 1.62 GeV/c for HM events.
The second reconstruction pass uses the anti-kT algorithm [61] with R = 0.4. The

acceptance for the second pass is likewise |ηjet| < 0.9 − R over the full azimuth.
The jet pT obtained from the second pass is then adjusted for the median background

pT density ρ according to [62]

preco,ch
T,jet = praw,ch

T,jet − ρ × Ajet. (4.2)

The jet pT scale and jet pT resolution are the same as in ref. [64].

5 Observables and raw data

The analysis utilizes a differential observable based on the semi-inclusive distribution of
charged-particle jets recoiling from a high-pT trigger (“h+jet”) [42] (see also [36, 43]). The
key components of this approach are summarized in this section.

The goal of the analysis is the search for broadening of the ∆φ distribution in HM-
selected events due to medium-induced jet scattering, by comparison to the MB population.
A significant source of uncorrelated background yield to this process arises from MPIs, in
which multiple uncorrelated high-Q2 partonic interactions occur in the same pp collision,
with one such interaction generating a trigger hadron and another generating a recoil jet in
the acceptance. The ∆φ distribution of such MPI pairs is by definition uniform on average,
thereby limiting the measurement sensitivity to broadening of the ∆φ distribution from
medium-induced scattering of correlated recoil jets.

Precise background yield correction must be carried out in a fully data-driven way, without
model dependence. We therefore employ the ∆recoil observable [42], which is the difference
between semi-inclusive recoil jet distributions for two ranges of pT,trig, both normalized to
the number of trigger hadrons,

∆recoil(pT, ∆φ) = 1
Ntrig

d2Njet
dpch

T,jetd∆φ

∣∣∣∣∣
pT,trig∈TTSig

− cRef ×
1

Ntrig

d2Njet
dpch

T,jetd∆φ

∣∣∣∣∣
pT,trig∈TTRef

, (5.1)

where TT denotes “trigger track.” In this analysis, TTSig = TT{20, 30} specifies the range
20 < pT,trig < 30 GeV/c for the Signal trigger distribution, and TTRef = TT{6, 7} specifies
the range 6 < pT,trig < 7 GeV/c for the Reference trigger distribution. These intervals were
chosen to optimize the opposing requirements of obtaining high statistical precision and
limiting the kinematic range for more precise comparison of the same observables with different
EA selections. The number of trigger hadrons measured in each TT class is denoted Ntrig. The
azimuthal difference ∆φ between TT and recoil jet is defined to have the range [0, π] radians.
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The ∆recoil distribution is a two-dimensional function of pT,jet and ∆φ [36, 42]. We define
its one-dimensional projections, ∆recoil(pT,jet) and ∆recoil(∆φ), onto the preco,ch

T,jet and ∆φ axes
respectively, for restricted ranges in the other kinematic variable. These projections are
shown in figures 2 and 3 both prior to and after corrections, as indicated by the functional
argument (e.g. ∆recoil(preco,ch

T,jet ) or ∆recoil(pch
T,jet)).

The scaling factor cRef , which is applied to the Reference distribution (second term
in eq. (5.1)), accounts for the different phase space available to observe uncorrelated yield
in the Signal and Reference distributions [42, 43]. In this analysis, the value of cRef is
determined from the ratio of trigger-normalized Signal and Reference recoil jet yields in the
bin 0 < preco,ch

T,jet < 1 GeV/c, which is expected to be dominated by uncorrelated background
yield. This gives values cRef = 0.95 ± 0.03 (syst.) in MB events and cRef = 0.94 ± 0.03 (syst.)
in HM events.

Since the uncorrelated yield is by definition independent of TT, it therefore contributes
with equal magnitude to the two terms in eq. (5.1) and is therefore removed by the subtraction.
While ∆recoil is a differential observable and not an absolutely normalized yield, its two terms
are nevertheless calculable perturbatively [65]. Measurements of ∆recoil in minimum-bias
pp collisions are well described by PYTHIA 8 [36, 42].

In the analysis of both MB and HM-selected events, the dataset is divided into two
statistically independent subsets, with the Signal distribution determined using 95% of all
events, and the Reference distribution determined using the remaining 5%. These fractions
were chosen to provide an equal number of trigger hadrons in the two TT classes, in
order to optimize the statistical precision of ∆recoil. The statistical error due to the Ntrig
normalization is negligible.

If two hadrons in an event satisfy the TT condition, one is chosen at random. This
selection ensures that the pT-differential TT distribution has the same shape as the inclusive
charged-hadron yield, which is an essential requirement for a semi-inclusive measurement [42].

Figure 2 shows selected ∆recoil(preco,ch
T,jet ) and ∆recoil(∆φ) distributions, together with their

corresponding Signal and Reference distributions. The Signal and Reference distributions
have similar magnitude only in the region preco,ch

T,jet < 20 GeV/c, while at larger values of
preco,ch

T,jet the Reference distribution falls below the Signal distribution and ∆recoil is similar
in magnitude to the Signal distribution.

6 Corrections

Particle-level jets are clustered from all final-state charged particles generated with PYTHIA
8 as described in section 2, except for weak decay daughters [66, 67]. The measured (detector-
level) ∆recoil distribution is corrected to the particle level.

Subtraction of the scaled Reference distribution in eq. (5.1) accurately removes the
uncorrelated jet yield [42]. However, the resulting ∆recoil distribution is still subject to
instrumental effects which smear pT,jet and ∆φ, whose correction is discussed in this section.
These smearing effects are encoded in the four-dimensional response matrix Rinstr, which
maps the true (particle-level) distribution of ∆recoil onto the measured distribution,

∆Meas
recoil

(
∆φdet, pdet

T,jet

)
= Rinstr

(
∆φdet, pdet

T,jet; ∆φpart, ppart
T,jet

)
⊗ ∆True

recoil

(
∆φpart, ppart

T,jet

)
. (6.1)
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Figure 2. The Signal (TT{20, 30}) and Reference (TT{6, 7}) trigger-normalized recoil jet
distributions and the corresponding ∆recoil distribution for MB and HM pp collisions at

√
s = 13 TeV.

Left panels: projection onto preco,ch
T,jet for |∆φ − π| < 0.6. Middle and right panels: projection onto

∆φ in two preco,ch
T,jet intervals.

The pT,jet and angular smearing due to instrumental effects is very similar in the
inclusive and recoil jet populations in these simulations. In addition, the inclusive population
has a substantially larger sample in the simulated dataset. The matrix Rinstr is therefore
constructed using the inclusive jet population, by matching particle-level and detector-level
jets in phase space within ∆R =

√
(∆η)2 + (∆φ)2 < 0.3. The response matrix has pT bins

of width 1 GeV/c, so that the difference in the spectrum shape of the inclusive and recoil
jet populations has negligible effect on this procedure.

Track reconstruction efficiency, which is the dominant instrumental effect, is found to
be the same for MB and HM events. The MB and HM analyses therefore use the same
response matrix, obtained using MB events. Unmatched particle-level jets are tabulated and
their rate is applied as an efficiency correction, following the unfolding correction discussed
below. Jet matching efficiency for both MB and HM events is 0.98 at pch

T,jet = 10 GeV/c

and consistent with unity at higher pch
T,jet.

The corrected ∆recoil distribution is calculated by regularized inversion of eq. (6.1),
using two-dimensional iterative Bayesian unfolding [68] implemented in the RooUnfold
package [69]. The input distribution ∆Meas

recoil is specified in the range 10 < pdet
T,jet < 100 GeV/c

and π/2 < ∆φdet < π rad. The prior distribution for initiating the unfolding is the ∆recoil
particle-level spectrum calculated using PYTHIA 8 simulations. For unfolding the MB
dataset, the prior is calculated using MB PYTHIA 8 events, whereas for unfolding the HM
dataset the detector-level HM selection is applied to the simulated data, as shown in figure 1.

Regularization is optimized by requiring that the unfolded distributions from successive
iterations exhibit a mean change of less than 2%, averaged over all pT bins. The optimum
number of iterations using this criterion is found to be 5, for both the MB and HM analyses.
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While correction of the ∆recoil distribution for instrumental effects is carried out by
regularized unfolding using the full instrumental response matrix Rinstr, insight into the
unfolding procedure can also be gained by parametric characterization of the main detector-
level effects. Detector-level effects in pT,jet are characterized by the jet energy scale shift
(JES) between particle-level and detector-level, ⟨(pdet

T,jet − ppart
T,jet)/ppart

T,jet⟩, while jet energy
resolution (JER) is its width, σ(pdet

T,jet)/ppart
T,jet, where σ(pdet

T,jet) is RMS of the pdet
T,jet distribu-

tion. For ppart
T,jet = 10, 40, and 70 GeV/c, JES is −10%,−14%, and − 18%, and JER is

25%, 22%, and 23%, respectively. Other systematic effects which are not encoded in the
response matrix, such as the precision of the ALICE central barrel B-field scale (∼ 10−3),
make negligible contribution to JES and JER.

Azimuthal angular smearing is likewise found to have the same magnitude in MB and HM
events. Azimuthal smearing of tracks contributing to TT{20, 30} has RMS ≈ 2 × 10−3 rad,
while azimuthal smearing of the jet axis has RMS ≈ 26× 10−3 rad for 10 < pch

T,jet < 15 GeV/c

and 11 × 10−3 rad for 60 < pch
T,jet < 80 GeV/c. The corresponding distributions of ∆φ have

RMS of 34×10−3 rad for 10 < pch
T,jet < 15 GeV/c and 13×10−3 rad for 60 < pch

T,jet < 80 GeV/c.
Subtraction of the reference distribution in the ∆recoil observable corrects the uncorrelated

background yield. However, the resulting two-dimensional distribution as a function of pch
T,jet

and ∆φ is still smeared by residual fluctuations of the uncorrelated background component,
which causes the underlying event density to deviate locally from ρ. Correction for such
fluctuations requires model assumptions (see e.g. refs. [35, 64]) and is therefore not included
in the unfolding; rather, its magnitude is assessed for two common model choices and the
variation in unfolded distributions is included in the systematic uncertainty, as discussed
in section 7.4.

The unfolding procedure is validated by a closure test in which the input is PYTHIA
8 detector-level events, the full analysis chain, including unfolding, is carried out, and the
output is compared to the particle-level PYTHIA 8 spectrum. Good agreement between
both distributions is found within statistical uncertainties, thereby confirming the robustness
of the applied corrections.

7 Systematic uncertainties

The main sources of systematic uncertainty in the measurement of ∆recoil are related to track
reconstruction efficiency; track pT resolution; the unfolding procedure; the determination of
the scaling factor cRef ; and residual background pT-density fluctuations relative to ρ. The
systematic uncertainty due to each source is estimated by varying the appropriate parameters
and rerunning the full analysis chain.

However, the finite statistical precision of the data imposes a limit on the precision with
which the spectrum can be unfolded. This limit is taken into account in the determination of
the systematic uncertainties by using the following procedure, which is described in detail in
ref. [36]. For each parameter variation the spectrum is unfolded 10 times, with the central
values of the spectrum varied randomly and independently using a Poisson distribution
corresponding to the statistical error of each data point [36]. The ratio of the unfolded
spectrum from each iteration to that of the primary analysis is calculated, and at each point
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Relative systematic uncertainty (%)

Projection
∆recoil(pch

T,jet) ∆recoil(∆φ) ∆recoil(∆φ)

|∆φ − π| < 0.6 pch
T,jet ∈ (20, 40) GeV/c pch

T,jet ∈ (40, 60) GeV/c

Bin 10–20 GeV/c 60–80 GeV/c 2π/3 π 2π/3 π

Tracking efficiency 0.2 7.1 3.7 1.9 8.4 5.6

Track pT resolution 0.3 0.3 0.2 0.2 ∼ 0 0.3

Unfolding procedure 0.6 0.7 3.9 0.3 3.4 0.9

cRef variation (−1.7, 1.9) (−0.2, 0.2) (−0.6, 0.7) (−0.4, 0.4) (−0.5, 0.5) (−0.1, 0.2)

Bkgd fluctuations (−1.6, 0) (−2.4, 0) (−4.7, 0) (−1.6, 0) (−5.0, 0) (−2.7, 0)

Total uncertainty (−2.5, 2.0) (−7.6, 7.2) (−7.2, 5.4) (−2.5, 2.0) (−10.4, 9.0) (−6.3, 5.7)

Table 1. Main sources of systematic uncertainty and total uncertainty in ∆recoil(pch
T,jet) and ∆recoil(∆φ)

in representative bins, for MB events.

Relative systematic uncertainty (%)

Projection
∆recoil(pch

T,jet) ∆recoil(∆φ) ∆recoil(∆φ)

|∆φ − π| < 0.6 pch
T,jet ∈ (20, 40) GeV/c pch

T,jet ∈ (40, 60) GeV/c

Bin 10–20 GeV/c 60–80 GeV/c 2π/3 π 2π/3 π

Tracking efficiency 0.6 7.6 4.2 1.9 7.1 5.2

Track pT resolution 0.3 0.1 0.4 0.2 0.1 0.3

Unfolding procedure 0.9 0.7 5.7 1.6 2.6 1.2

cRef variation (−4.5, 3.2) (−0.3, 0.2) (−1.5, 1.1) (−0.6, 0.5) (−1.3, 0.9) (−0.3, 0.2)

Bkgd fluctuations (−1.5, 0) (−3.0, 0) (−7.4, 0) (−2.1, 0) (−4.5, 0) (−3.2, 0)

Total uncertainty (−4.6, 3.7) (−8.2, 7.6) (−10.3, 7.2) (−3.3, 2.5) (−8.9, 7.6) (−6.3, 5.4)

Table 2. Same as table 1, for HM-selected events.

the median of this set of ratios is assigned as the systematic uncertainty from this source.
Tables 1 and 2 show representative values of the systematic uncertainty in ∆recoil(pch

T,jet) and
∆recoil(∆φ) measurements for MB and HM-selected event populations, respectively.

7.1 Tracking efficiency and track pT resolution

The tracking efficiency uncertainty is 3% [56]. To assess the corresponding uncertainty in the
∆recoil distribution, a variation of Rinstr is constructed in which 3% of all tracks are randomly
discarded. While it is in practice not possible to generate Rinstr with 3% higher tracking
efficiency, this uncertainty is expected to be symmetric. The resulting uncertainty ranges
from < 1% at low pch

T,jet to 7% at high pch
T,jet, with only minor dependence on EA.

To assess the systematic uncertainty due to track pT resolution, two different instances
of Rinstr are generated, with pT-resolution corresponding to that of either real data or
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detector-level MC data hybrid tracks. This source makes negligible contribution to the
total systematic uncertainty.

7.2 Unfolding

The unfolding procedure has several parameters whose values influence the corrected ∆recoil
distribution: number of iterations; choice of prior spectrum; and range and binning of the
raw input distribution. Each source was varied independently:

• The regularization condition was varied by ±1 iterations with respect to the optimized
value of 5. The corresponding uncertainty is found to be small, since unfolding converges
rapidly to a stable result.

• Variations in the prior spectrum were obtained using the particle-level ∆recoil spectra
generated by the POWHEG MC event generator [70, 71] matched to PYTHIA 8 for
parton shower and hadronization, and with different choices of regularization and
factorization scale.

• The pT,jet binning was varied by shifting the bin boundaries by 1–2 GeV/c, and by
changing the lower bound of the input spectrum from 10 GeV/c to 6 GeV/c. The
binning in ∆φ was not varied, since ∆φ smearing effects are small.

The systematic uncertainty attributed to unfolding is the maximum deviation in the ∆recoil
spectrum from varying these parameters, relative to the ∆recoil spectrum using the primary
analysis parameters. For ∆recoil(pch

T,jet), the resulting relative systematic uncertainty is about
0.6% for MB and 0.9% for HM events, with a weak dependence on pch

T,jet. For ∆recoil(∆φ), the
relative systematic uncertainty is smallest at ∆φ = π and increases monotonically towards
∆φ = π/2, for both MB and HM events.

7.3 Scaling factor cRef

The value of the cRef scaling factor in eq. (5.1) was varied in the range [0.9, 1]. This range
brackets the cRef values obtained by changing the preco,ch

T,jet bin in which it is evaluated from
(0, 1) GeV/c to (−1, 0) GeV/c, and by its variation with ∆φ. Different choices of cRef modify
the ∆recoil spectrum relative to that of the primary analysis result, with uncertainty decreasing
as a function of pch

T,jet. Representative values are provided in tables 1 and 2.

7.4 Background fluctuations

As discussed in section 6, no correction is applied directly for the effect of residual background
fluctuations; rather, a model-dependent estimate of its magnitude contributes to the systematic
uncertainty. For this estimate, a response matrix which encodes the effect of residual
background fluctuations, Rbkgd, is convoluted with the instrumental response matrix Rinstr
in eq. (6.1). The matrix Rbkgd is determined for events selected with TT{20, 30}, using
two methods:

• Calculate the sum of track pT in a cone R = 0.4 placed randomly in the acceptance,
excluding overlap with the leading and sub-leading jets, and the TT. This sum is
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corrected for the median background density,

δpRC
T =

∑
tracks ∈ RC

pT, track − ρ × πR2, (7.1)

where πR2 is the cone area and ρ is defined in eq. (4.1). The matrix Rbkgd is the
distribution of δpRC

T .

• Embed a high-pT track perpendicular in azimuth to the TT and at the same value
of η, with pT distributed uniformly in the range 0–20 GeV/c. Jet reconstruction is
then carried out, the jet candidate containing the embedded track is identified, and the
quantity δpET

T is calculated as

δpET
T = pch, emb

T, jet − ρ × Aemb
jet − pemb

T , (7.2)

where pemb
T is transverse momentum of the embedded track. The matrix Rbkgd is the

distribution of δpET
T .

Unfolding is then carried out for both choices, and the assigned systematic uncertainty is the
maximum difference of the two unfolded ∆recoil distributions from that of the primary analysis.

7.5 Total systematic uncertainty

The total systematic uncertainty of the unfolded ∆recoil distribution is the quadrature sum
of the contribution from each source. The systematic uncertainties from all sources except
unfolding are correlated between the HM and MB analyses. This correlation is accounted for
in the systematic uncertainty of ratios of ∆recoil distributions by estimating the systematic
uncertainty directly from the spread of the ratios calculated for each variation of the analysis
configuration.

8 Results

8.1 Fully corrected distributions

Figure 3 shows fully-corrected distributions of ∆recoil(pch
T,jet) and ∆recoil(∆φ) measured in MB

and HM-selected pp collisions at
√

s = 13 TeV, together with calculations based on PYTHIA 8,
Monash tune, and a pQCD calculation at LO with Sudakov broadening [51, 72, 73] (the
latter only for ∆recoil(∆φ) in MB collisions). Since the pQCD calculation is LO, there are
large uncertainties in its normalization; the ∆recoil(∆φ) distributions from the calculation are
therefore scaled to the integrated yield of the data in the same pch

T,jet bin in order to compare
their shapes. Both PYTHIA 8 and the pQCD calculation (∆recoil(∆φ) shape only) are
consistent with the distributions measured in MB events, within experimental uncertainties.

Comparison of the MB and HM ∆recoil(pch
T,jet) distributions reveals a yield suppression in

HM collisions that is largely independent of pT,jet, though there is a hint of a harder recoil
jet spectrum for HM events. The mean value of the yield ratio HM/MB in the left panel
of figure 3 is 0.78. The ∆recoil(∆φ) distributions show that the jet-yield suppression in HM
events occurs predominantly in the back-to-back configuration, with the yield ratio HM/MB
in the bin ∆φ ∼ π measured to be 0.69 for 20 < pch

T,jet < 40 GeV/c (figure 3, middle panel)

– 13 –



J
H
E
P
0
5
(
2
0
2
4
)
2
2
9

Figure 3. Fully-corrected ∆recoil distributions measured in MB and HM-selected events in pp collisions
at

√
s = 13 TeV. Left panel: ∆recoil(pch

T,jet) in |∆φ − π| < 0.6; middle and right panels: ∆recoil(∆φ)
for 20 < pch

T,jet < 40 GeV/c and 40 < pch
T,jet < 60 GeV/c. Also shown are particle-level simulated

distributions calculated with PYTHIA 8 Monash tune, and a pQCD calculation at LO with Sudakov
broadening [51, 72, 73] (MB ∆recoil(∆φ) only). The width of the PYTHIA 8 HM band represents
the statistical uncertainty. Top row: ∆recoil distributions; middle row: ratio of ∆recoil distributions
for HM/MB from data; bottom row: Data/PYTHIA 8 separately for MB and HM event selections.

and 0.78 for 40 < pch
T,jet < 60 GeV/c (figure 3, left panel). The total yield is suppressed, while

the azimuthal distribution is broadened; such broadening could arise from jet quenching, i.e.
medium-induced jet scattering occurs preferentially in HM events. Notably, however, PYTHIA
8 particle-level distributions likewise exhibit jet yield suppression and azimuthal broadening
for HM-selected events, accurately reproducing the measured distributions. Since PYTHIA 8
does not incorporate jet quenching, this disfavors jet quenching as the predominant effect
generating the broadening seen in data.

8.2 Origin of HM induced TT–jet acoplanarity in PYTHIA 8

To clarify the origin of the broadening, a more detailed investigation is carried out using
both data and particle-level distributions from PYTHIA 8 simulations.

Figure 4 shows the calculated pseudorapidity (ηjet) distribution of charged-particle jets
recoiling from a high-pT trigger hadron with TT{20, 30} in MB and HM-selected event
populations, for various lower thresholds in pch

T,jet. Since the per-trigger yield varies with
pch

T,jet, these distributions are normalized to unit integral to enable a direct comparison of their
shapes. The acceptances of V0A and V0C are also shown; note that V0C covers smaller values
of |η| than V0A. While the ηjet distribution for MB events is symmetric, the ηjet distribution
for HM events is highly asymmetric, with significant enhancement in the relative rate of
recoil jets in the V0C acceptance. The enhancement is largest for the highest value of pch

T,jet.
Figure 5 shows similar distributions for recoil jets with pch

T,jet > 25 GeV/c, in various
intervals of V0M/ ⟨V0M⟩. A striking enhancement is observed in the per-trigger jet yield
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Figure 4. PYTHIA 8 particle-level simulation of the probability distribution of the yield of charged-
particle jets (R = 0.4) recoiling from a high-pT hadron (TT{20, 30}) as a function of ηjet for various
pch

T,jet intervals, in pp collisions at
√

s = 13 TeV. Left: MB events; right: HM events. V0A and V0C
acceptances are also shown.

Figure 5. Same as figure 4, but for recoil jets with pch
T,jet > 25 GeV/c for various intervals in

V0M/ ⟨V0M⟩. Distributions are normalized per trigger.
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Figure 6. Distribution of probability per trigger hadron of number of jets with R = 0.4 and
pch

T,jet > 15 GeV/c recoiling from a high-pT hadron (TT{20, 30}) at midrapidity (|ηjet| < 0.5), for MB
and HM pp collisions at

√
s = 13 TeV. Left panels: ALICE data; right panels: simulations at the

particle level with PYTHIA 8 Monash tune. Lower panels show the ratio HM/MB. The insert in the
lower panels has magnified vertical scale to show the ratio of probabilities to observe a single jet.

within the V0C acceptance for the largest values of V0M/ ⟨V0M⟩. Since HM events are
selected based on the value of V0M/ ⟨V0M⟩, it is evident that the HM selection induces a
bias which enhances the rate of hard recoil jets in the V0C acceptance.

Figure 6 provides additional insight into the bias induced by the HM event selection.
The figure shows the probability to observe a specific number of jets with R = 0.4 and
pch

T,jet > 15 GeV/c recoiling against a high-pT hadron trigger (TT{20, 30}) in the ALICE
central barrel acceptance (|ηjet| < 0.5), for MB and HM pp collisions at

√
s = 13 TeV.

Distributions are shown for both data and PYTHIA 8 calculations. In both data and
simulations, the probability to observe a single jet is suppressed in HM relative to MB events
by 2–3%, while the probability to observe multiple jets is significantly enhanced.

The effect of the HM selection bias shown in figures 4, 5 and 6 on the acoplanarity
distributions in figure 3 can be understood as follows. The HM requirement preferentially
selects events with a recoil jet in the V0C acceptance. For the leading-order (LO) di-jet
channel, in which the TT and recoil jet are azimuthally back-to-back, this depletes both the
per-trigger rate for recoil jets observed in the central barrel (|ηjet| < 0.9 − R) at ∆φ ∼ π and
the relative rate of single recoil jets in the acceptance. The recoil jets observed in the ALICE
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central barrel in HM events therefore arise at enhanced rate from higher-order production
processes, with multiple recoil jets in the final state. These jets from higher-order processes
have broader distribution in ∆φ than jets from LO production. This picture is confirmed
by carrying out the PYTHIA 8 analysis for much larger recoil jet acceptance, |ηjet| < 5.6.
In that case, no back-to-back yield depletion is observed.

The yield suppression and azimuthal broadening seen in figure 3 may therefore arise
from the effect of different phase space being used for EA characterization (V0A and V0C)
and recoil jet measurement (central barrel), combined with the HM selection bias towards
events with a jet in the V0C acceptance. It therefore cannot be attributed uniquely to jet
quenching in HM-selected events.

This conclusion about interpretability in terms of jet quenching of the effects seen in
figure 3 is more general than this specific analysis, however. The bias of the HM event
selection identified here is generic, and must also be taken into account for the interpretation
in terms of QGP formation of other phenomena observed in small systems.

9 Summary

This article reports a search for jet quenching effects in high multiplicity pp collisions at√
s = 13 TeV, based on the semi-inclusive azimuthal distribution of charged-particle jets

recoiling from a high-pT hadron trigger in the ALICE central barrel acceptance. Significant
azimuthal broadening is observed in events selected to have high multiplicity in forward
detectors, which may arise from jet quenching. However, similar broadening is also observed
in simulations with the PYTHIA 8 event generator, which does not incoporate jet quenching.

Detailed analysis of the data and simulations reveals that the high-multiplicity event
selection, which is based on the V0 detectors at forward and backward rapidities, preferen-
tially selects events with an energetic jet in the forward detector, consequently biasing the
acoplanarity distribution measured in the central region. We conclude that this observable
is therefore not uniquely sensitive to jet quenching effects in small collision systems. This
bias is generic, however, and it should likewise be taken into account in the interpretation of
other measurements which probe the formation of a quasi-equilibrated quark-gluon plasma
in small collision systems.
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