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ABSTRACT
A recently developed viewpoint on the fundamentals of density-functional theory for finite interacting spin–lattice systems that centers
around the notion of degeneracy regions is presented. It allows for an entirely geometrical description of the Hohenberg–Kohn theorem
and v-representability. The phenomena receive exemplification by an Anderson impurity model and other small-lattice examples. The case
of adiabatic change and the time-dependent setting are examined as well.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0230494

I. INTRODUCTION

Within the field of density-functional theory (DFT), lattice
models are frequently considered to obtain rigorous theoretical
statements in cases where the continuum formulation proves too
difficult1–5 or to treat physical situations in an approximate way.6–14

When considering a finite lattice, this consists of M lattice sites
that serve as the positional degrees-of-freedom for N fermionic
quantum particles. Such settings arise directly from a space dis-
cretization or are introduced as a model in themselves, often
including spin and on-site interaction in the form of a Hubbard
model.15 Since they are interpreted as simplifications of the con-
tinuum case, it is commonly assumed that any statement from
continuum DFT equally holds in the lattice setting. This adop-
tion of known results applies especially to the Hohenberg–Kohn
(HK) theorem,16 which states that a ground-state (v-representable)
density is produced by a unique (up to a constant) potential. Yet,
Chayes, Chayes, and Ruskai,4 after their proof that every density
on an (even infinite) lattice with 0 < ρi < 1 can be produced by a
well-defined potential (v-representability), carefully remarked that
“the HK theorem for fermions at zero temperature remains an open
problem.”

In addition indeed, in the study of ground-state solutions on
finite lattice systems without spin (at zero temperature), it was only
recently discovered by the authors that already in very simple lattice

systems counterexamples to the HK theorem exist.17 For the spin-
resolved version of density-functional theory (SDFT), on the other
hand, such counterexamples have already been discussed before,
both for the continuum18–20 and on lattices.21 So, while there is
representability of ground-state densities on the lattice by a corre-
sponding choice of potentials, there is no unique representability.
The phenomenon can be linked to the occurrence of a critical num-
ber of zero components in the wave-function expansion with respect
to the lattice basis.17 Interestingly, this again relates to degeneracy,
since the potential can then be varied without affecting the ground
state until a level crossing with an excited state is reached. This
creates an intriguing geometrical picture that explains the HK coun-
terexamples as the intersection points of degeneracy regions (them-
selves objects from algebraic geometry) in density space with each
other or with the boundary of the density domain.22 A few examples
of degeneracy regions of simple lattice systems are given in Fig. 1.
A further surprising discovery is the existence of v-representable
densities even on the boundary of the density domain (i.e., with
ρi = 0 or 1), exactly where a density region touches the boundary.
In addition, even though degeneracy occurs only for very special
potentials, either being highly symmetric or leading to an accidental
degeneracy, the complex of all degeneracy regions can occupy a large
part of the total density domain. As Ullrich and Kohn23 expressed
it in their pioneering work on topology in the potential and den-
sity spaces: “Ground-state degeneracies in v space are ‘rare’ [while]
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FIG. 1. Three examples of degeneracy regions taken from Ref. 22 in their respective tetrahedral and octahedral density domains, together with the corresponding lattice.
The lattice (a) is occupied by just one spinless particle, so the four vertices of the density domain are (1, 0, 0, 0) plus all permutations, while in (b) and (c), it is two spinless
particles that lead to the six vertices (1, 1, 0, 0) plus all permutations. The shapes inside take up a large portion of the whole density domain and belong to degenerate ground
states.

degeneracy in ρ space is not ‘rare’.” All this highlights the special
relevance of degeneracy when discussing DFT, not only on lattices,
and it offers exciting links to various fields of mathematics, such
as topology, algebraic geometry, linear algebra, group theory, and
graph theory.

In this Perspective, we aim at summarizing previous findings,
especially those from Refs. 17 and 22, in a setting that explicitly
includes the spin degree-of-freedom. We do this by first introducing
the basic setting (Sec. II) and the density and potential spaces that
form the basis of the further geometrical inquiries (Sec. III). This
sets the stage to explain the important notions of v-representability,
non-uniqueness, and degeneracy regions and to show how they are
all related (Sec. IV). We are able to give a purely geometrical formu-
lation of the HK theorem. In order to assist the whole discussion,
the different involved sets in density and potential space are intro-
duced and explained separately (Sec. V). We continue with the very
interesting example of an Anderson impurity model, where several
of the before theoretically introduced phenomena can be found, and
we describe their relation to the Kohn–Sham method (Sec. VI). Next
to the ground-state case, we also discuss an adiabatic variation of
the potential and its connection to the geometric phase (Sec. VII), as
well as the time-dependent setting (Sec. VIII). Finally, we summarize
the remaining open questions and give an outlook toward possible
future research directions (Sec. IX).

II. SPIN–LATTICE SYSTEMS
We consider putting N spin- 1

2 particles on M > N/2 sites. The
corresponding one-particle Hilbert space is thus C2M , which gets
promoted into the N-particle Hilbert space H = (C2M)∧N by an
N-fold antisymmetric tensor product. Throughout this paper, we
will remain in a finite-dimensional Hilbert-space setting. The lat-
tice indices will always be i, j, k ∈ {1, . . . , M} and the spin indices
α, β ∈ {↑, ↓} with respect to σ̂z . We employ shorthand notation

for index tuples, iα ≡ (i, α). We use the usual fermionic creation
and annihilation operators â†

iα, âiα of the spin–lattice basis and
write ρ̂iα = â†

iαâiα for the number (density) operator. If one index
is left out, this implies summation over the other one, e.g., ρ̂i = ρ̂i↑
+ ρ̂i↓ or ρ̂↑ = ∑i ρ̂i↑. The Hamiltonian of the system will at first be
allowed to be an entirely general self-adjoint operator on H (next
to spin–lattice hopping, it may include interactions between lat-
tice sites, a Hubbard-U-type interaction between spin components,
etc.), but we already write the action of an external potential and a
magnetic field separately,

Ĥ = Ĥ0 +∑
i
(viρ̂i + Bi ⋅ m̂i). (1)

Here, Bi ∈ R3 and the magnetization operator at i is given by a three-
vector of operators,

m̂i = (â†
i↑, â†

i↓) ⋅ σ ⋅ (
âi↑
âi↓
), (2)

with σ being the three-vector of Pauli matrices. This can equiv-
alently be rewritten with a complex four-component potential at
every lattice site,

Ĥ = Ĥ0 +∑
iαβ

viαβρ̂iαβ, (3)

where viαβ = v∗iβα and we follow the standard definition for the
density-matrix operator ρ̂iαβ = â†

iβâiα. Both conventions, scalar
potential and magnetic field, or four-component potential, are
frequently employed. Yet, in the second formulation, the density-
matrix operator ρ̂iαβ is not self-adjoint and yields complex expecta-
tion values, and also, the potential viαβ is complex, although their
combined sum in Eq. (3) is again self-adjoint as it should.
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In many cases, one considers a collinear setting, where the
direction of the magnetic field is fixed at every lattice point and only
the magnetization in the direction of Bi matters. Let the magnitude
of the magnetic field be Bi and the magnetization operator in the
given direction m̂i, then the Hamiltonian of Eq. (1) is reduced to

Ĥ = Ĥ0 +∑
i
(viρ̂i + Bi ⋅ m̂i). (4)

With ρ̂i = ρ̂i↑ + ρ̂i↓, m̂i = ρ̂i↑ − ρ̂i↓, and vi↑ = vi + Bi, vi↓ = vi − Bi, we
arrive at the more usually applied formulation for the collinear set-
ting, where two potentials act individually on the spin components,

Ĥ = Ĥ0 +∑
iα

viαρ̂iα. (5)

Finally, if the magnetic field is entirely removed or taken as fixed and
integrated into Ĥ0, one arrives at the usual DFT setting, where the
spin components cannot be addressed individually by the external
potential,

Ĥ = Ĥ0 +∑
i
viρ̂i. (6)

In all those settings, we can speak of a graph instead of a lattice
since we are concerned with how spin–lattice points are connected
by Ĥ and since this can happen in an irregular way. For iα ≠ jβ,
we say that iα and jβ are connected (or adjacent), written iα ∼ jβ,
if Ĥ includes any terms with â†

iαâ jβ (self-adjointness dictates that
it then also needs to include the adjoint terms). If the term is
â†

iαâ jα, this is called “hopping,” while a Hubbard-U interaction term
connects different spin values,

ρ̂i↑ρ̂i↓ = â†
i↑âi↑â†

i↓âi↓ = (1 − âi↑â†
i↑)â

†
i↓âi↓

= ρ̂i↓ − (â†
i↓âi↑)(â†

i↑âi↓). (7)

If this graph of spin–lattice points decomposes into several con-
nected components, then the Hamiltonian has a block-diagonal
form, and we actually speak about totally separated systems that can
be dealt with individually. Such a situation automatically leads to
degeneracy and the ensuing non-uniqueness that will be discussed
in Sec. IV. Remember that in some cases a block-diagonal form
can be achieved by unitary transformation of the Hamiltonian, such
as in the example discussed in Sec. VI. This means that by sym-
metry one is able to pass to a new basis and find new creation
and annihilation operators (such as in a Bogoliubov transforma-
tion leading to a quasiparticle interpretation) such that the system
decouples into independent subsystems, which will decrease compu-
tational complexity. Systematically, this is performed by finding the
irreducible representations of the symmetry group. Yet, note that by
allowing an independent potential at every spin–lattice point, any
form of symmetry will be broken.

As a trivial example of disconnected graphs, imagine that
Ĥ0 in Eqs. (5) or (6) does not connect the up-/down-spin com-
ponents. Since the viαρ̂iα cannot provide such a connection either,
the total Hamiltonian already decomposes into separate up-spin
and down-spin systems. If this situation is still considered a single
system, then it directly leads to (trivial) HK counterexamples.19,21

III. DENSITY AND POTENTIAL SPACES
As soon as we move our attention to DFT, we need to choose

certain observables that serve as density variables and that couple
linearly to the external potentials. According to Sec. II, three choices
offer themselves.

Density Potential

Standard DFT ρi vi

Collinear SDFT ρiα viα
ρi, mi vi, Bi

Non-collinear SDFT ρiαβ viαβ

ρi, mi vi, Bi

Here, the density values themselves are always considered the
expectation values of the corresponding operators. This can either
be with respect to a pure state, ρi = ⟨ρ̂i⟩Ψ = ⟨Ψ, ρ̂iΨ⟩, or a mixed
(ensemble) state, ρi = ⟨ρ̂i⟩Γ = Tr (Γρ̂i), and accordingly for the other
density variables. Note that a totally general and more abstract for-
mulation employing a set of M self-adjoint “density” operators ôi,
i ∈ {1, . . . , M}, that are linearly coupled to “potentials” vi ∈ R,

Ĥ = Ĥ0 +∑
i
viôi, (8)

is possible as well.7,24

The usual density as site occupancy naturally allows ρi ∈ [0, 2]
due to the antisymmetry of the wave function and the possibility of
filling two different spin channels. In the spin-resolved formulation,
this changes to ρiα ∈ [0, 1]. In addition, we have the normalization to
the number of particles N,

∑
i

ρi =∑
iα

ρiα = N. (9)

We thus define the density set

DDFT = {ρ ∈ RM ∣0 ≤ ρi ≤ 2,∑i ρi = N} (10)

for standard lattice DFT with spin- 1
2 particles. This results in a dou-

bly scaled (M, N/2)-hypersimplex for ρi if N even. If N is odd,
the density space for ρi is slightly more complex, but it is always
described by a (M − 1)-dimensional convex polytope. If the parti-
cles are assumed to be spinless instead, the restricting inequality is
0 ≤ ρi ≤ 1 and the resulting shape is a (M, N)-hypersimplex.17,25 In
the case of collinear SDFT, we get

DcSDFT = {ρ ∈ R2M ∣0 ≤ ρiα ≤ 1,∑iα ρiα = N}. (11)

This results in a (2M, N)-hypersimplex for ρiα if N is even and a
more general (2M − 1)-dimensional convex polytope if N is odd.

To determine the space of possible magnetizations mi = ⟨m̂i⟩
for non-collinear SDFT, let us first consider just a single particle on
a single vertex and the expectation value with respect to a pure state
Ψ ∈ C2. We have

∣m∣2 = ∣⟨σ̂⟩Ψ∣2 = ⟨σ̂x⟩2Ψ + ⟨σ̂y⟩2Ψ + ⟨σ̂z⟩2Ψ = 1, (12)
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which means that the magnetization vector m is always on a sphere.
For mixed states, convex combinations of the magnetization vec-
tors become possible, so the value can also be inside the sphere
and ∣m∣ ≤ 1. We recognize exactly the Bloch sphere construction,
where pure states are located on the surface of the sphere and mixed
states are always in the interior. The space for magnetization is thus
the unit ball, m ∈ B. Adding another particle on the same site will
force them to align antiparallel with a total magnetization of zero,
so this does not change the space. For multiple vertices, the value
of mi = ⟨m̂i⟩Ψ depends on the partial-trace density matrix over all
vertices j ≠ i, so one already considers a mixed state and, thus, in
general, has ∣mi∣ ≤ 1. The total space for magnetization is thus BM .
In the collinear setting, this accordingly changes to [−1, 1]M. What-
ever setting we use, the complete density space for (ρi, mi), (ρi, mi),
ρiα, or just ρi will always be denoted by D. It was previously noted in
the context of standard lattice DFT that for any ρ ∈ D there is indeed
a Ψ ∈ H that gives this density17 (Prop. 5). This result can easily be
extended to both variants of SDFT.

For the following presentation, we will mostly remain in the
setting of collinear SDFT, while statements for the other DFT vari-
ants follow in a similar manner. We write Ĥv for the Hamiltonian
from Eq. (5) that includes a potential viα. This potential, according
to Eq. (5), acts in the form of an inner product on R2M when the
expectation value is formed and we write

⟨Ĥv⟩Ψ = ⟨Ĥ0⟩Ψ +∑
iα

viαρiα = ⟨Ĥ0⟩Ψ + ⟨v, ρ⟩. (13)

In this sense, it is natural to see the potentials as dual to densities.
However, D lies within an affine space of codimension 1, defined
by the normalization condition ∑iαρiα = N. Now, if two potentials
differ by just a constant, v − v′ = c, then their difference acts as
⟨v − v′, ρ⟩ = cN on any ρ ∈ D. This means that v, v′ cannot be dis-
tinguished as elements of the dual space V = D∗. In other words, the
elements [v] ∈ V are equivalence classes where for all v, v′ ∈ [v], it
always holds that v − v′ is constant. In the following, we will denote
potentials further simply as v ∈ V and understand them as modulo
a constant. This means that the usual statement in DFT that poten-
tials are defined “up to a constant,” since adding a constant does not
change the ground-state properties (it only shifts the ground-state
energy), can actually be suppressed. For each v ∈ V we now define
the ground-state energy functional,

E(v) = inf
Ψ
⟨Ĥv⟩Ψ, (14)

where the variation extends over all Ψ ∈ H normalized to 1. This
functional is concave in v because of linearity in v and the properties
of the infimum. Another immediate result is that this infimum is
realized by some (or rather many) Ψ ∈ H since the variation domain
is compact in the case of a finite lattice. One could thus equally write
“min” instead of “inf.” The respective optimizer is then a ground-
state wave function for Ĥv .

If for a given ρ ∈ D there is further a potential v ∈ V such that
the density is achieved by the corresponding (possibly ensemble)
ground state of Ĥv then one calls this density v-representable. This
is a subtle notion, but it can be proven that all densities from the
interior of D are v-representable, while only a certain few densities
on the boundary of D have this property.4,17,22 Importantly, this
notion depends on the choice of Ĥ0 that then also determines which

boundary densities can be reached. We will give a full characteriza-
tion of v-representable densities in the spin–lattice setting in Sec. IV
below. One has to keep in mind that the situation is rather different
for the infinite-dimensional continuum setting of standard DFT,
where v-representability depends on the topology of the density
space and only limited results are available by now.26–29

IV. v-REPRESENTABILITY, NON-UNIQUENESS,
AND DEGENERACY REGIONS

One of the cornerstones in the presentation of DFT is usually
the HK theorem that establishes a mapping from v-representable
densities to potentials. In its usual formulation, it states that for a
fixed Ĥ0 and every ρ ∈ D that is v-representable, a unique v ∈ V can
be found that retrieves this density from a ground state. This can
be an ensemble state (represented by a density matrix) in the case
of ground-state degeneracy. In Sec. VI, we will discuss an exam-
ple where the occurrence of degeneracy was mistakenly taken as
a failure of v-representability. However, there are counterexam-
ples (discussed at the end of this section) that rule out the full
validity of this statement and show the non-uniqueness of the rep-
resenting potential. Nevertheless, a characterization similar to that
of v-representability can also be found when such counterexamples
arise, and this will lead us to an alternative and entirely geometrical
formulation for the HK theorem.

The theoretical basis for DFT is the convex universal den-
sity functional that can be defined on D as the density-matrix
constrained-search functional,30

F(ρ) = inf
Γ↦ρ

Tr Ĥ0Γ. (15)

Here, variation is over all density matrices that yield the given
density ρ. The ground-state energy for a given v ∈ V is then

E(v) = inf
Γ

Tr ĤvΓ = inf
ρ∈D{F(ρ) + ⟨v, ρ⟩}. (16)

In other words, E(v) is the Legendre–Fenchel transform (with non-
standard sign convention) of F(ρ) and concave as such. The back-
transformation then gives F(ρ) again,

F(ρ) = sup
v∈ V
{E(v) − ⟨v, ρ⟩}. (17)

More on these functionals can be found in any mathematically ori-
ented introduction to DFT.31,32 The optimum in Eqs. (16) and (17) is
attained where the (concave or convex) functionals allow a zero tan-
gent functional. Here, a tangent functional to a convex functional
f at ρ ∈ D is any v ∈ V such that f(ρ′) ≥ f(ρ) + ⟨v, ρ′ − ρ⟩ for all
ρ′ ∈ D. For concave functionals, the inequality is reversed. Further-
more, note that if f is non-differentiable at ρ, i.e., it has a kink, the
tangent functional is non-unique. The set of all tangent functionals
to a convex functional f is called the subdifferential, written ∂ f (ρ).
With f(ρ) = F(ρ) + ⟨v, ρ⟩ we have

0 ∈ ∂ f (ρ) = ∂F(ρ) + v ⇔ −v ∈ ∂F(ρ) (18)

as a condition for v ∈ V being a maximizer in Eq. (17) and, thus,
fulfilling F(ρ) = E(v) − ⟨v, ρ⟩. However, this conversely implies
E(v) = F(ρ) + ⟨v, ρ⟩ and so this ρ ∈ D is the minimizer in Eq. (16)
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and equivalently an element in the superdifferential of the concave
E(v),

ρ ∈ ∂E(v). (19)

So, the above relation tells us that ρ is a ground-state density for v.
The ground-state density can be non-unique if degeneracy occurs
for the chosen v, and this phenomenon will lead us to the next
important definition.

We define a degeneracy region D(v) ⊆ D as the set of densi-
ties coming from all (ensemble) ground states of the Hamiltonian
Ĥv with a v ∈ V that facilitates ground-state degeneracy. By what
has been said above, it is equal to the superdifferential of the concave
ground-state energy functional E(v),

D(v) = {ρ ∈ D∣Γ↦ ρ, Tr ĤvΓ = E(v)}
= ∂E(v) = {ρ ∈ D∣∀v′ ∈ V : E(v′) ≤ E(v) + ⟨v′ − v, ρ⟩}.

(20)

A density region consists of v-representable densities (by definition),
and it is always convex and closed. The maximal dimension of a
degeneracy region when the degeneracy is g-fold is g2 − 1, reduced
to g(g + 1)/2 − 1 in the case of a real Ĥ0. When the density vari-
able does not contain any spin information, degeneracy can be such
that it only affects the internal spin degree-of-freedom and is, thus,
not expressed in the density alone. Then D(v) remains a single
point, and we call the degeneracy “internal.” This is resolved in
SDFT with the inclusion of magnetization as an additional density
variable. Then, full spin degeneracy means that D(v) extends over
all of BM .

When degeneracy is due to symmetry and a variation of v pre-
serves this symmetry, then this does not change the degeneracy of
the ground state, although the associated density region D(v) of
course changes. This way, a family of potentials v(λ), continuously
parameterized by a vector λ ∈ Rℓ, can lead to a family of degener-
acy regions D(v(λ)) that we call a degeneracy bundle. It consists of
degeneracy regions that lie arbitrarily close together but never touch.
Since the space of densities has dimension 2M − 1 (in the collinear
SDFT setting), we get a maximum of ℓ ≤ 2M − d − 1 parameters for
a family of degeneracy regions with dimension d each. This repro-
duces an earlier result by Ullrich and Kohn23 that was later adapted
to degeneracy regions.22 However, degeneracy regions, if they are
not part of the same bundle, can intersect, and it is also possible that
they touch the boundary of the density domain itself. These two situ-
ations are sketched in Fig. 2, and they have a special relevance in the
current discussion since there are always infinitely many different

FIG. 2. Degeneracy regions that (a) intersect or (b) touch the boundary of the
density domain.

FIG. 3. Two situations of degeneracy regions (a) intersecting and (b) touching the
boundary related to energy level crossings.

potentials that yield those density points as ground-state densities.
They are thus counterexamples to the HK theorem and must be
omitted in its formulation (see below). How this situation arises can
indeed be easily recognized. If a density is produced by two different
potentials v and v′, then the linearity of the Hamiltonian means that
any linear combination of those potentials leads to the same density,
unless an energy-level crossing is reached in either direction. This
then gives rise to the two possible situations, specifically related to
energy-level crossings in Fig. 3.

Finally, we need to highlight that even though we presented
these notions within a specific spin–lattice DFT setting, they hold
quite generally, even for the infinite-dimensional continuum setting.
Details about the proof and the intricate shape of density regions
can be found in our study on the geometry of degeneracy.22 We here
summarize the results:

(a) If two density regions D(v) and D(v′) intersect, then
D(v) ∩D(v′) is either a single ground-state density point or a
density region itself. In both cases, it results from all potentials
that are a convex combination of v and v′.

(b) If a density region D(v) touches the boundary of D, then this
density point results from all potentials that lie on a ray that
extends from v to infinity.

(c) All densities that are not on the boundary of D are
v-representable. Densities on the boundary of D need to be
part of a degeneracy region in order to be v-representable. All
v-representable densities that are not described by (a) or (b)
are even uniquely v-representable.

We are, thus, in the position to formulate a purely geometrical
HK theorem: All ground-state densities that are not on the bound-
ary of the density domain and that are not at the intersection of
degeneracy regions are uniquely given by a potential.

Examples for all mentioned situations (a)–(c) in the pure-lattice
case can be found in our previous works on the topic17,22 and seemed
to have been overlooked previously as counterexamples to the HK
theorem.

We want to conclude this section with a brief discussion of
the mentioned HK counterexamples that specifically connect to
spin in the collinear setting.19,21 In those examples, the up- and
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down-components of the spin–lattice remain unconnected by the
Hamiltonian (in the sense given in Sec. II), and consequently, chang-
ing the potential viα by adding a constant for all i on only one
component α ∈ {↑, ↓} does not influence the ground state, unless this
change leads to a level crossing. However, the occurrence of a level
crossing means that the density is part of a degeneracy region, and a
change in the potential in the other direction either leads to another
level crossing [(a), intersecting degeneracy regions] or it continues to
infinity without a level crossing [(b), touching the boundary of the
density domain at full magnetization mi ∈ {±1}]. The non-collinear
setting for a single lattice vertex is instructive too. Here, at B = 0, the
whole Bloch sphere is a degeneracy region since no spin-direction
is preferred. Since the density domain is just the same Bloch sphere,
the degeneracy region touches the boundary at every m with ∣m∣ = 1
(pure states), and indeed all fields B ≠ 0 lead to non-uniqueness in
the sense of (b).

V. SETS OF THE POTENTIAL-DENSITY MAPPING
We start by defining the set VD of all potentials that lead

to degeneracy in the ground state and the complementary set
V¬D where no degeneracy occurs. Obviously, the complete space
of potentials is the disjoint union of those sets, V = V¬D ∪̇ VD. The
set VD is closed since degeneracy occurs only when (continuous)
energy bands intersect, which makes V¬D open. Now define the
mapping from potentials to ground-state densities that we just call
ρ for convenience,

ρ : V¬D → D. (21)

It is well-defined on V¬D since each such potential leads to a unique
ground-state density due to the lack of degeneracy. A beautiful result
of Rellich33,34 then tells us that this mapping is analytic, so in par-
ticular, it is continuous. We also define the image of this map,
D¬D = ρ(V¬D), which is found to be open,2,17 and further DD as
the union of all degeneracy regions. In many examples, the occur-
rence of degeneracy in potential space is rare (VD has measure zero),
while the corresponding densities DD can fill a larger volume than
their complement D/DD.22,23

It is now important to note that the sets DD and D¬D are
not necessarily disjoint. Take the set D¬D ∩ DD, then this includes
densities that come from different potentials, exactly counterexam-
ples to the HK from before. If we call Dm the set of densities
that arise from multiple different potentials (also called “non-uv
densities” after “non-uniquely v-representable” in Ref. 17), then
clearly D¬D ∩ DD ⊆ Dm. The results (a)–(c) of Section IV give a
complete classification of Dm and also has Dm ⊆ DD, since all
those counterexamples are connected to degeneracy. It is known
that Dm is closed and has measure zero in D22 (Cor. 10) and
that densities in Dm can only arise from wave functions with a
certain minimal number of zero coefficients in the lattice basis17

(Sec. III B). Then there is the set D¬D ∪ DD that collects all
v-representable densities. In general, it holds D¬D ∪ DD ⫋ D, since
there can always be densities on the boundary of D that are not
v-representable.

All densities that come from multiple potentials are collected
in Dm, so we can invert the mapping Eq. (21) on D¬D/Dm

= D¬D/DD. However, what about the continuity of the inverse
map ρ−1 : D¬D/Dm → V. This is always secured only if we already
limit ourselves to a compact domain in Eq. (21), which V¬D is
not since it is open. However, using tools from convex analy-
sis we can still show that the inverse map is continuous almost
everywhere too and even extend it. First, remember from Eq. (18)
that if ρ is a ground-state density for potential v then −v is an
element of the subdifferential of the universal density functional
F at ρ, −v ∈ ∂F(ρ). Since for ρ ∈ (D¬D ∪ DD)/Dm, this subdif-
ferential contains only a single element, F is differentiable at ρ, and
we write v = −∇F(ρ)35 (Th. 25.1). Differentiability in this context
means Fréchet differentiability, which in turn means that the inverse
map,

ρ−1 : (D¬D ∪ DD)/Dm → V
ρ↦ −∇F(ρ),

(22)

defined on the uniquely v-representable densities, is continuous35

(Th. 25.5). Actually, this is more than an inverse to Eq. (21) because
it now includes degeneracy regions, but it still does not include any
boundary densities. The domain of the inverse mapping above is
exactly the one from the geometrical formulation of the HK theorem
from Sec. IV, “all ground-state densities that are not on the bound-
ary of the density domain and that are not at the intersection of
degeneracy regions,” because those densities arise from multiple
potentials. Yet we are not allowed to continue the inverse map-
ping to all v-representable densities D¬D ∪ DD (this would require
uniform continuity). This means that a perfectly smooth density
path can start to diverge if mapped back to potential space as one
gets close to Dm. Note that this is different from the discontinu-
ity of ρ−1 in the usual continuum setting,36 which depends on much
more complicated topologies and where, due to the HK theorem, no
non-uniquely v-representable densities are expected to exist.

FIG. 4. Different density sets for two spinless particles on the triangle graph. The
three vertices are the extremal fillings (1, 1, 0) plus all permutations. The area
DD, a closed circular set, are all densities from degenerate ground states that
occur when the potential is constant. The remaining three disconnected sets that
form D¬D are all open and belong to non-degenerate ground states from other
potentials. Three non-unique v-representable points belong to Dm and lie exactly
at the intersections of the incircle with the triangle.
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Densities with zero components are only found on the bound-
ary of D, but the only v-representable densities on the boundary are
in Dm as stated in Sec. IV. Conversely, all ground-state densities
in (D¬D ∪ DD)/Dm, which removes the boundary densities, are
strictly positive.

We exemplify these sets with the triangle-graph example
(M = 3, N = 2) from Ref. 17, Sec. VI C, depicted in Fig. 4.

VI. ANDERSON IMPURITY MODEL: MISTAKEN
NON-v-REPRESENTABILITY AND REAL
CONVERGENCE ISSUES

We learned in Sec. IV that every density (that is not on the
boundary) in a spin–lattice model is v-representable; still, Rössler,
Verdozzi, and Almbladh37 reported that they found a counterex-
ample in exactly such a setting. Their claim rests on a numerical
procedure that aims at reaching the density of an interacting sys-
tem by adjusting the potential in a non-interacting system, and that
failed. The statement of non-v-representability is wrong, but ana-
lyzing the situation that leads to this failure gives an interesting
insight into the relevance of degeneracy, especially with respect to
Kohn–Sham DFT.

Their example is the realization of an Anderson impurity
model,38 depicted in the top panel of Fig. 5, with M = 9, N = 8, and
the Hamiltonian

Ĥ = t∑
i∼j,α

â†
iαâjα +∑

iα
viâ†

iαâiα +Uâ†
1↑â1↑â†

1↓â1↓. (23)

FIG. 5. Anderson impurity model under consideration. The top panel shows the
original lattice, and the bottom panel shows the unitarily transformed model, where
the lattice separates into five independent blocks.

The first two terms, without the interaction, form the one-particle
Hamiltonian ĥ. One always sets vi↑ = vi↓ = vi. Furthermore, the
potential is assumed to obey v1 = va, v2 = v3 = v4 = v5 = vb, and
v6 = v7 = v8 = v9 = vc, which introduces a C4v symmetry to the sys-
tem. Note that in the case of degeneracy, a ground-state density of
this system does not have to necessarily share this symmetry, just
the full degeneracy region does. This also means that the density at
the middle point of the degeneracy region, the equidensity that arises
from an equally weighted statistical mixture of the orthonormal basis
states of the degenerate subspace (thus leading to fractional occupa-
tion numbers), shares the symmetry. The same density is achieved in
thermally assisted-occupation DFT,39 where a thermal ensemble is
chosen instead of the ground state, if the temperature approximates
zero.

The benefit of such a symmetrical setting is that a fully C4v sym-
metric (also taking spin-symmetry into account) density, such as the
external potential, has only three different components (ρa, ρb, ρc),
which allows us to plot them in 3D. With the further normalization
condition,

ρa + 4ρb + 4ρc = N/2, (24)

such a density is even restricted to a 2D subplane. Furthermore, a
unitary transform Û of the one-particle Hamiltonian ĥ in position
basis allows to reduce it into a form with five separate blocks, corre-
sponding to the irreducible representations of the point group C4v.
The model and its unitary transformation are displayed in Fig. 5,
while the unitary matrix that was used can be found in the Appendix.

Ignoring the Hubbard-U interaction for a moment, this yields a
new spin-free one-particle Hamiltonian ĥ ′ = ÛĥÛ † that equally acts
on each spin-component,

(25)

Note not only the difference in the basis ordering compared to
Rössler, Verdozzi, and Almbladh37 but also the hopping

√
2t in the

2 × 2-blocks [red blocks in Eq. (25), B clusters] that was wrongly
put 2t in the reference. We will go on with this choice, assuming
that it does not influence the effect that was diagnosed as “non-v-
representability.” (We also checked the ground state for the hopping
2t, but there occurred no qualitative difference.) The important con-
sequence of the transformation is that the Hamiltonian now blocks
into five submatrices that correspond to smaller clusters that do
not interact. On the other hand, the on-site energies in the diago-
nal stay exactly the same while the hopping inside each cluster just
gets renormalized. Finally, the interaction from U stays exactly the
same since the first lattice site, the only place where it acts between
particles of opposing spin, is not changed. Only the first cluster
(A cluster, marked in violet) is thus interacting, and one can solve
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for the ground state in each cluster separately as soon as the respec-
tive particle filling for each one is determined, which amounts to a
huge reduction in computational complexity.

Now, Rössler, Verdozzi, and Almbladh37 chose the potentials
va = −2.69, vb = −1, and vc = 0 in order to deliberately create a
degenerate ground state for the interacting system with U = 1, t = 1
(yet, this is not critical for the following example). With these values
and a total of N = 8 particles, one finds the ground states realized
with the filling

NA = 3, NB1 = 2, NB2 = 2, NC1 = 1, NC2 = 0. (26)

Here, particles remain unpaired and, thus, a spin degeneracy occurs,
but it is only “internal” and, thus, every ground state has the same
spin-unresolved density that defines our target density ρ⊙.

Next, the interaction was turned off (U = 0) and the poten-
tial parameter space was scanned in order to find a representing
potential for ρ⊙. It is found that with va = 2vb, vc = 0, degeneracy
occurs, but this time, the degeneracy regions extend in space and
form a degeneracy bundle in the shape of a deformed cylinder. At
va = vb = vc = 0, the degeneracy region is even three-dimensional
and forms a cone. Rössler, Verdozzi, and Almbladh37 reported that
they cannot reach the target density ρ⊙ with any of these poten-
tials, and indeed, it is not reached if only the equidensity of each
degeneracy region is considered, which seems to have been their
choice. The difference between ρ⊙ and the equidensities is displayed
in Fig. 6, which shows great similarity with Fig. 2 from the reference.
The further displayed energy eigenvalues demonstrate how at vb = 0,
three-fold degeneracy occurs together with a jump of the density
difference since the computed density crosses the whole degener-
acy region. However, ρ⊙ is easily reached with another density from
the appropriate degeneracy region since it lies inside the degeneracy

FIG. 6. Difference between the target density and the equidensity of each degen-
eracy region for va = 2vb, vc = 0. A minimum is attained close to vb = −1, but
zero is not reached, as shown in the zoomed-in inset. In olive, the eigenvalues
(slightly displaced for better visibility) of the spin-independent Hamiltonian are plot-
ted to demonstrate the occurrence of double (for vb < 0) and triple (at vb = 0)
ground-state degeneracy.

FIG. 7. Target density ρ
⊙

(red cross) is closely missed by the equidensities (black
dots; see the inset) of the 2D degeneracy regions (blue circles) that form a degen-
eracy bundle that attaches to the 3D degeneracy region in the shape of a cone.
The shaded plane is given by the condition Eq. (24) for symmetric densities.

bundle, so there is clearly no problem with v-representability. The
whole situation is visualized in Figs. 7 and 8. All displayed densities
are with respect to one spin channel only.

We want to study the appearance of the cone degeneracy region
in more detail. For U = 0 and maximal symmetry at va = vb = vc = 0,
a three-fold degeneracy is attained for the ground state in each spin
channel. We call the six lowest eigenstates of the (spin-independent)
one-particle Hamiltonian Eq. (25) ϕ1, . . . , ϕ6, where ϕ4, ϕ5, ϕ6 all
have the same eigenvalue. Then with N/2 = 4 particles in each

FIG. 8. Same as Fig. 7 with an in-plane view.
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spin channel, the degenerate ground-state subspace is spanned by
the Slater-determinant states Φ1 = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4, Φ2 = ϕ1 ∧ ϕ2
∧ ϕ3 ∧ ϕ5, and Φ3 = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ6 with densities ρ1, ρ2, ρ3. We
further define ρkl ,i = 2⟨Φk, ρ̂iΦl⟩ (k, l ∈ {1, 2, 3}, k ≠ l), which in this
special case is zero for all but one choice of indices (say k = 1, l = 2),
where the result is also real-valued. The degeneracy region is then
formed as the convex hull of the set22

{x2
1ρ1 + x2

2ρ2 + x2
3ρ3 + x1x2ρ12 ∣ x ∈ R

3, ∣x∣ = 1}. (27)

Putting in spherical coordinates, x1 = sin θ cos φ, x2 = sin θ sin φ,
and x3 = cos θ, we can transform the points of the set into

(sin θ)2(ρ1 + ρ2
2
+ ρ1 − ρ2

2
cos (2φ) + ρ12

2
sin (2φ)) + (cos θ)2ρ3.

(28)

The large bracket in the first line then describes an ellipse with cen-
ter (ρ1 + ρ2)/2 that gets double covered because of the appearance of
2φ. Since (sin θ)2 + (cos θ)2 = 1, we further have convex combina-
tions between all points of the ellipse and ρ3 that thus form the tip of
the cone. Equation (27) can be seen as the projection of the Veronese
variety into projective three-space (called a Steiner surface), a topic
studied by Degen40 with the cone appearing as (Ae) in his typology.
Another famous shape, the Roman surface, was already discovered
in previous examples.22

The issue faced by Rössler, Verdozzi, and Almbladh37 was thus
that ρ⊙ lies inside a degeneracy region of the non-interacting sys-
tem. The same effect can manifest itself as a convergence issue for
the Kohn–Sham method41 if the interacting and the auxiliary non-
interacting systems have different degeneracy structures. Just like in
the example above, the target density might lie within a degener-
acy region D(vs)when the correct exchange–correlation potential is
applied to the Kohn–Sham system. This then leads to redundancy
when choosing the density. However, already during the iterative
approach toward this density, when choosing a potential v ≈ vs, one
will always remain outside of D(vs) and just approach the boundary
of the degeneracy region as v → vs while never entering it. Densities
inside D(vs) are thus unattainable by an approximative algorithm
if it is not specifically adjusted such that it can enter the degeneracy
region. The simplest modification is damping,42,43 where an itera-
tion step, e.g., between densities ρi → ρi+1 (or, analogously, between
density matrices) is instead taken as the convex combination,

ρi → (1 − τ)ρi + τρi+1. (29)

The step size is chosen such that the energy surely decreases with
the finally decided iteration step. Apart from leading to improved
convergence of the algorithm (only with such a modification, it was
possible to show that the Kohn–Sham method in finite dimensions
and with additional regularization does, in principle, converge44,45),
the step in Eq. (29) allows entry inside a degeneracy region also in
cases where ρi+1 is always chosen on the outside.

How degeneracy regions would be avoided by a usual
Kohn–Sham iteration can easily be visualized by just sampling
potentials randomly and plotting their respective densities. Those
are almost always unique since the potentials VD have measure zero
in V. Figure 9 shows this situation with an example from Ref. 22 and
how the intricate shape of the degeneracy regions fits into the empty
area.

FIG. 9. Densities of randomly chosen potentials in a M = 4, N = 2 system with
tetrahedral symmetry. The lower panel also shows the degeneracy regions.

VII. ADIABATIC VARIATION OF THE POTENTIAL
AND GEOMETRIC PHASE

We will now allow for potentials v(t) and B(t) that vary in time
and, for all t ∈ [0, T], lead to a non-degenerate ground state. The adi-
abatic theorem46 then states that if the system initially is in its ground
state and if further variation is slow enough, it will also remain in
the instantaneous ground state of the Hamiltonian Ĥ(t). We deter-
mine this ground state for the example of a graph with M = 4 vertices
where vertex 1 is linked to all others but no other edges are present.
Due to its shape, this is called the “claw graph,” and it clearly has a
trigonal symmetry that can lead to twofold degeneracy.

If we put N = 2 particles on the graph, then for each spin
component this leads to the following two-particle Hamiltonian
(following Ref. 17):

Ĥ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 0 0 1 1 0
0 4 0 −1 0 1
0 0 4 0 −1 −1
1 −1 0 2 0 0
1 0 −1 0 2 0
0 1 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (30)
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FIG. 10. Degeneracy regions (collected into a single degeneracy bundle) of the
claw graph with a closed density path that winds them.

We put B(t) = 0, and the (time-dependent) external potential
v = (v1, v2, v3, v4) adds (v1 + v2, v1 + v3, v1 + v4, v2 + v3, v2 + v4, v3
+ v4) along the diagonal of the Hamiltonian to yield Ĥ(t). We can
easily test that for v = 0 the ground state is twofold degenerate and
that changing just v1 (that acts on the center vertex 1) does not
change the symmetry of the Hamiltonian, thus this degeneracy per-
sists while the ground-state density changes. The degeneracy region
for any v = (s, 0, 0, 0), s ∈ R, is a precise circle [the twofold degen-
eracy regions always give ellipses as degeneracy regions22 (Sec. III)],
and those circles are stacked above each other to form a filled cylin-
der that runs diagonally through the whole density domain in the
shape of an octahedron (see Fig. 10). Note that in this case the
degeneracy regions come arbitrarily close to each other and to the
boundary of the density domain (for ∣s∣→∞) but never touch each
other nor the boundary.

We now choose a closed path v(t), t ∈ [0, 2π], in the potential
space that avoids the degeneracy at v = (s, 0, 0, 0),

v(t) = cos t (0, 1, 0, 0) + sin t (0, 0, 1, 0). (31)

How this path looks in density space can be seen in Fig. 10, where
we note that it winds around the cylindrical degeneracy bundle such
that it cannot be contracted to a point without cutting through a
degeneracy region. Let Ψ(t) be the instantaneous ground state of
Ĥ(t) that is unique up to a complex global phase. We will choose
it real in all its components (which is always possible since the
Hamiltonian is real), and Fig. 11 shows its six components. At first
sight, these look like nice continuous functions, but if one compares
closely the values at t = 0 and t = T = 2π, we see that a sign jump
occurs. This means that even though Ĥ(t) was varied continuously
and has Ĥ(0) = Ĥ(T), the corresponding Ψ(t) is not continuous
but includes a π phase jump. By lifting our condition of a real ground
state and including a complex global phase eiφ/2, this phenomenon
can be cured, but we still include a phase change of π while going
from t = 0 to t = 2π. This phase can be calculated as

γ(T) = i∫
T

0
⟨Ψ(t),∂tΨ(t)⟩ dt (32)

FIG. 11. Six components of the instantaneous ground-state wave function to
Ĥ(t) with a potential winding the degeneracy bundle. Note the sign jump when
comparing the values at 0 and 2π.

and is exactly the geometric phase introduced by Berry.47 The reason
for the phase accumulation is that the chosen path in density space
cannot be continuously contracted to a point (it is not homotopic to
a point) without intersecting a degeneracy region.

Note that if we choose a path that does not have this property,
i.e., can be continuously contracted to a point without intersect-
ing a degeneracy region (it is homotopic to a point), then no phase
accumulation occurs and we can always choose a real and contin-
uous Ψ(t). This offers the possibility to study the occurrence of
degeneracy regions/bundles and the fundamental group of V¬D by
calculating the accumulated phase along different closed potential
curves.

VIII. TIME-DEPENDENT SETTING
After having studied in detail the ground state theory, we now

turn our attention to the time-dependent version of the theory.
A particularly interesting question in connection with the degen-
eracy structure is how a potential that is used to slowly steer the
density through a degeneracy region has to look like. We address this
question at the end of this section and after first giving a general dis-
cussion of time-dependent density-functional theory (TDDFT)48,49

but restricted to the lattice setting.50,51

Therein, we aim at solving the time-dependent Schrödinger
equation,

i∂tΨ(t) = Ĥ(t)Ψ(t), (33)

where the Hamiltonian is any one of the forms Eqs. (3)–(6)
and in general we allow for time-dependent potentials. However,
for simplicity, let us restrict to the spinless case in the follow-
ing and consider a general time-evolution with potential v(t)
= (v1(t), . . . , vM(t)) starting from a given initial state Ψ0 at time t0.
Suppose we are given a time-dependent density ρ(t) and an initial
state Ψ0 with density ρ(t0). Then we can ask whether there exists a
potential v(t) that generates ρ(t) from solving the time-dependent
Schrödinger equation with initial state Ψ0 and using v(t) as poten-
tial. This is the time-dependent v-representability problem. In the
continuum case, this problem has been widely studied,48,52–54 and
most proofs rely on temporal analyticity,55 although mathematically
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rigorous proofs are still lacking; see Ref. 56 for a review. In the lattice
case, the situation is more favorable, and some precise statements
related to v-representability can be made. We will here outline the
main results. We take a time-dependent Hamiltonian of the form

Ĥ(t) =∑
i,j

hijâ†
i âj +

1
2∑i,j

wijâ†
i â†

j âjâi +∑
i
vi(t)â†

i âi (34)

with wij = wji real and symmetric. Applying the Heisenberg equa-
tion of motion to the density operator and denoting ρk(t) = ⟨ρ̂k⟩Ψ(t),
we get the lattice-equivalent of the continuity equation,

∂tρk = −i⟨[ρ̂k, Ĥ(t)]⟩Ψ(t)
=∑

j
2Imhkjγjk(t) = −∑

j
Jkj(t), (35)

where we defined the one-particle density matrix γ jk(t) = ⟨â†
k â j⟩Ψ(t)

and the bond current Jk j(t) = 2Imh jkγk j(t). Using the Heisenberg
equation of motion a second time and working out the commutators
gives

∂2
t ρk(t) = −i∂t⟨[ρ̂k, Ĥ(t)]⟩Ψ(t)

= −⟨[[ρ̂k, Ĥ(t)], Ĥ(t)]⟩Ψ(t)
= qk(t) +∑

j
Kkj(t)vj(t), (36)

where we defined

qk(t) = −∑
j

2Rehkj⟨[â†
k âj , Ĥ0]⟩Ψ(t) (37)

and

Kkj(t) = 2Re(−hjkγkj(t) + δkj∑
i

hjiγij(t)). (38)

If we choose the gauge vM(t) = 0, we can rewrite Eq. (36) as

M−1

∑
j=1

Kkj(t)vj(t) = ∂2
t ρk(t) − qk(t). (39)

If we are given a density ρk(t) over time, we can prescribe ∂2
t ρk on

the right-hand side of this equation and try solving for v at any
t > t0 when the matrix K and the vector q are known. The latter
quantities are calculable from the wave function, which in turn is
dependent on v at all previous times. It was shown by Farzanehpour
and Tokatly51 that solving Eq. (39) together with the time-dependent
Schrödinger equation allows for a v-representability solution for a
sufficiently short time interval [t0, t0 + Δt], provided that K(t0) is
invertible. This procedure then yields a potential that produces the
prescribed density in this time interval. The natural question to ask
is how the size of Δt is determined. It is known that on lattices
the density becomes non-v-representable when it changes too fast
from one lattice site to the next.50,51 To see this, let us assume that
∂tρk in Eq. (35) becomes large. From the definition of the bond cur-
rent, we see that its maximal value is reached when the imaginary
parts of hjkγkj for different j are maximal, i.e., when Reh jkγk j = 0 for
all j. However, this happens precisely when Kkj = K jk = 0 for all j ≠ k,

in which case it follows from Eq. (38) that also Kkk = 0; thereby the
kth row and column of the matrix vanishes and K becomes non-
invertible.51 To specify a v-representability domain we, therefore,
have to restrict the density changes on neighboring sites. One way
would be to prove that under a condition of the type,

∣∂tρi

ρi
⋅ ∂tρj

ρj
∣ ≤ C∣hij ∣ (40)

for some constant C, the matrix K is invertible at all times. In
such a case, v-representability can continue up to indefinite times.
Such a condition was explicitly derived for a simple dimer system;51

however, for a general lattice, this remains an unproven conjecture.
We will next consider the linear-response regime. Let v(t) and

vs(t) be the potentials of an interacting and a non-interacting sys-
tem, respectively, that share the same density ρ(t) and that both
evolve from initial states with the appropriate density. In addi-
tion, in the time-dependent setting, the non-interacting system is
called the Kohn–Sham system,48,49 and its external potential is typi-
cally split up as vs(t) = v(t) + vHxc(t), which defines the Hartree-
exchange–correlation potential vHxc(t). Functional differentiation
of vs(t) with respect to the density (assuming that this can be
appropriately defined) yields

δvs,i(t)
δρj(t′)

= δvi(t)
δρj(t′)

+ δvHxc,i(t)
δρj(t′)

. (41)

If we define the functions,

χij(t, t′) = δρi(t)
δvj(t′)

, (42)

χs,ij(t, t′) = δρi(t)
δvs,j(t′)

, (43)

f Hxc,ij(t, t′) = δvHxc,i(t)
δρj(t′)

, (44)

where χ and χs are the density response functions of the inter-
acting and the Kohn–Sham system and fHxc is the Hartree-
exchange–correlation kernel. We can rewrite Eq. (41) in the
form

χ = χs + χs ⋅ f Hxc ⋅ χ, (45)

where the product is defined as a matrix product in the lattice indices
and with an integration over time variables. Equation (45) is com-
monly used to calculate the excitation energies of the interacting
system, which appear as poles of χ after a Fourier transformation
from time to frequency domain. Similarly, χs contains the excitation
energies of the Kohn–Sham system. When an approximation for
fHxc is given, the excitation energies of the interacting system can
then be obtained from a Kohn–Sham calculation.

We now want to make a connection between this formalism
and the discussion of degeneracy. When we perturb the ground state
of a non-degenerate system with a small time-dependent δv(t), the
response function χ is well-defined. However, if the ground state is
degenerate, poles in the response function merge and make it ill-
defined. If we assume that the changes are adiabatic, this can be
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related to Rellich’s theorem:17,33,34 when a degenerate ground state is
perturbed dependent on a small prefactor λ, then Rellich’s theorem
asserts that there exists a possible choice within the set of degenerate
states that depends analytically on λ, although most choices will not.
Physically, this means that the response is only defined for changes
in very special directions in potential space. In practice, however,
almost all applications of linear-response TDDFT are carried out
for systems with non-degenerate ground states. For the calculation
of excitation energies of systems with degenerate ground states, an
alternative approach based on choosing a non-degenerate excited
state as a reference has been suggested instead.57

Let us finally come back to the question asked at the begin-
ning of the section. Suppose we consider two densities ρ1 and ρ2,
just outside a degeneracy region, and connect them with a smooth
path ρ(t) that crosses the degeneracy region. Let us further assume
that the path is traversed in a slow manner. We can then ask for
the time-dependent potential v(t) that produces the given density
path from a solution of the time-dependent Schrödinger equation.
Since the starting and end densities are just outside a degener-
acy region, the static potentials v1 and v2 that have ρ1 and ρ2 as
their respective ground states correspond to nearly degenerate sys-
tems. The whole situation is depicted in Fig. 12. Since the adiabatic
theorem can only be applied when the change in the potential is
small compared to the energy gap ΔE between the ground and
excited states, we cannot reliably use the adiabatic theorem to derive
an approximation for v(t). Such a study of driving the density slowly
into a degeneracy region was carried out by Rössler, Verdozzi, and
Almbladh,37 and it was found that the potential will exhibit fast
oscillations to produce a nearly time-constant density. For this rea-
son, we can expect that the presence of degeneracy regions has a
noticeable effect on the behavior of the potential in TDDFT calcu-
lations. Apart from this pioneering work, we are unaware of studies
on this issue. The implications of the degeneracy structure in density

FIG. 12. A time-dependent density path through a degeneracy region on top, where
densities just outside the degeneracy region correspond to potentials with a (small)
energy gap ΔE.

space for TDDFT are still largely unexplored, and further research is
warranted.

IX. OUTLOOK
By offering a geometrical perspective on fundamental aspects

of spin–lattice DFT, we hope to set the stage for further inquiries in
this direction as well as stimulate contributions from a wider math-
ematical field. Even though there are clear links to graph theory and
algebraic geometry, those areas remain mostly untapped. We close
with a list of open and unfinished topics that continue the direction
of research started here.

● We showed how simple spin–lattice systems that are ubiq-
uitous as model systems, such as the Anderson impurity
model described in Sec. VI, can be studied with respect to
their degeneracy geometry. Yet, we did not develop tools to
efficiently and reliably find all degeneracy regions. As far
as degeneracy due to symmetry is concerned, the group-
theoretic tools mentioned in Sec. II and used in Sec. VI
should do the trick. In addition, the geometric phase from
closed integral contours in potential space provides an indi-
cator for degeneracy regions and relates to the fundamental
group of V¬D, as mentioned in Sec. VII.

● In this and the preceding works on the subject,17,22 already
several different degeneracy regions up to dim D = 3 have
been discovered and described. They range from ellipses to
cones and the convex hull of the Roman surface. In Ref. 22,
we also suggested a first classification scheme for degeneracy
regions in terms of the degree of degeneracy and the nullity
of the map from the Veronese variety to density space. This
scheme can definitely be refined, and many more examples
of intricate degeneracy regions are possibly still to be found.

● The central objects of the Kohn–Sham method in DFT are
the exchange–correlation density functional FHxc(ρ) and its
functional derivative vHxc(ρ). The relative simplicity of the
discussed spin–lattice systems allows it to study these objects
in-depth, also along the “adiabatic connection.”58 Degener-
acy regions clearly play a role here, since on them F(ρ) has
a constant derivative. A first simple yet non-trivial trial sys-
tem could be the Hubbard trimer at half filling, for which a
detailed study about the magnetization density functional is
already available.59

● Due to the availability of a rigorous HK result in the con-
tinuum,60 a v-representable density is always uniquely v-
representable there. On the other hand, and contrary to the
lattice setting, no real criterion for v-representability is avail-
able within the usual Lp-space formulation. A possible rem-
edy is to switch to the Sobolev space H1 for densities, where
indeed v-representability holds for strictly positive densities
on a one-dimensional ring if also distributional potentials
are considered.29 Yet, this formulation again opens the gen-
eral possibility of non-unique v-representability, just like in
the lattice case, but up to now, no examples are known. The
precise connection between lattices and this setting, in the
form of a continuum limit and with respect to degeneracy
regions and related concepts, would be a further interesting
object of study.
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● There have been considerable advances in the study
of quantum-transport phenomena using lattice DFT, as
reviewed by Kurth and Stefanucci.61 An important appli-
cation was the description of the Kondo effect in trans-
port through a single Anderson impurity, where it was
found that the Kohn–Sham potential becomes a discontin-
uous function of the site occupation number in the zero-
temperature limit.62 For the case of larger lattices, such as
the Anderson impurity model discussed in this Perspective,
the Kohn–Sham potential is likely to reveal structures related
to the degeneracy regions, which poses certain challenges for
the construction of future approximate DFT functionals for
quantum transport.

● For the case of time-dependent DFT, the limitations of
the currently available v-representability proofs have been
laid out in Sec. VIII, together with a possible strategy to
overcome them. The next necessary step would then be a
convergence proof for the corresponding time-dependent
Kohn–Sham method. We further conjectured a notice-
able effect due to degeneracy on the (slow) steering of
a density through degeneracy regions that has yet to be
investigated.

● A rigorous treatment of finite-temperature lattice DFT was
given by Chayes, Chayes, and Ruskai,4 in which it was
proven that any density in the interior of the density domain
is uniquely v-representable. In the low temperature limit,
the density functionals are found to be strongly dependent
on the lattice occupation number,9 which is intimately con-
nected to the filling of levels according to the magnitude
of the chemical potential. Clearly, here both the degeneracy
structure and the particle number play a crucial role. While
the dependence on particle number has received consider-
able attention,9,61,63,64 the study of degeneracy in this context
remains largely unexplored.

● The states corresponding to the corners of the hypersim-
plices that form the density domains for pure-lattice systems
are naturally encoded as multi-qubit basis states on a quan-
tum computer.65 For an arbitrary quantum state Ψ, the
probability that qubit i has value 1 is given by the density
ρi such that our geometrical representation may provide a
useful setting for quantum-computing applications. Given
this natural setting, it is also conceivable that the minimiza-
tion needed for the constrained-search functional F(ρ) on

our lattice systems can be efficiently implemented using a
quantum algorithm, as was recently done for the Hubbard
dimer.66 Since spin–lattices have a special interest in the
quantum computing community, further connections to the
field of quantum information67 seem worthwhile to explore.
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APPENDIX: UNITARY TRANSFORMATION
OF THE ANDERSON IMPURITY MODEL

Here, we give the unitary transformation that leads to a block-
diagonalization of the model discussed in Sec. VI. In addition to
what is defined in Rössler, Verdozzi, and Almbladh,37 Eq. (2), it also
includes a permutation of the basis vectors and removal of imaginary
off-diagonal contributions in the 2 × 2-blocks,

Û = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1
0 −1 −i 1 i 0 0 0 0
0 0 0 0 0 −(−1)1/4 −(−1)3/4 (−1)1/4 (−1)3/4

0 −(−1)1/4 (−1)3/4 (−1)1/4 −(−1)3/4 0 0 0 0
0 0 0 0 0 −1 i 1 −i
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (A1)
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