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Ergonomic and reliable Bayesian inference with
adaptive Markov chain Monte Carlo

Matti Vihola
University of Jyväskylä, Finland

Abstract
Adaptive Markov chain Monte Carlo (MCMC) methods provide an ergonomic way to perform
Bayesian inference, imposing mild modeling constraints and requiring little user specifica-
tion. The aim of this section is to provide a practical introduction to selected set of adaptive
MCMC methods, and to suggest guidelines for choosing appropriate methods for certain
classes of models. We consider simple unimodal targets with random-walk based methods,
multimodal target distributions with parallel tempering, and Bayesian hidden Markov models
using particle MCMC. The section is complemented by an easy-to-use open-source imple-
mentation of the presented methods in Julia, with examples.

1. Introduction

The Markov chain Monte Carlo (MCMC) revolution in the 1990s and the following widespread
popularity of the Bayesian methods was largely fuelled by the introduction of the BUGS
software [27]. With BUGS, the user could focus on the statistically important part, and let
the software take care of the MCMC inference automatically. Unfortunately, the Gibbs sam-
pling approach used by (variants of) BUGS has certain limitations, such as imposing some
modeling constraints due to conjugacy and suffering poor mixing with high correlations.

This section provides a self-contained review of selected simple, robust and general-
purpose adaptive Markov chain Monte Carlo methods, which can deliver (nearly) auto-
matic inference like BUGS, but can overcome some of its limitations. We focus on methods
based on random-walk Metropolis (RWM) [28] and parallel tempering (PT; also known as
replica exchange) [41]. We also discuss guidelines how the methods can be used with particle
MCMC [1], in order to do inference for a wide class of Bayesian hidden Markov models.

Instead of rigorous theory, the aim is to give an intuitive understanding why the
methods work, what methods are suitable for certain problem classes, and how they can be
combined with some other methods. The methods are explained algorithmically, and guide-
lines are given for parameter values. For more in-depth insight to the theory and methods of
adaptive MCMC, the reader is advised to consult the review [4] and references therein, and
the articles about rigorous theoretical foundations [19,6,2,34]. The section is complemented
by open-source Julia [9] packages12 which implement the methods and illustrate them on
examples.

1. https://github.com/mvihola/AdaptiveMCMC.jl
2. https://github.com/mvihola/AdaptiveParticleMCMC.jl
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2. Random-walk Metropolis algorithm

Suppose for now that π is a probability density of interest on Rd. Let ` stand for the
unnormalized log-target, that is, `(x) = log π(x) + c, where c ∈ R is a constant whose value
need not be known. In the case of Bayesian inference, ` will typically be the sum of the
log-likelihood an the log-prior density. Algorithm 1 presents pseudo-code for a random-walk
Metropolis algorithm [28] targetting π, with initial state x0 ∈ Rd, number of iterations n, a
symmetric proposal distribution q on Rd, which we shall take as the standard normal, and
a (non-singular) proposal shape S ∈ Rd×d.

Algorithm 1 X1:n ← RWM(`, x0, n, S)

Set X0 ← x0 and P0 ← `(x0).
for k = 1, . . . , n do:

(Xk, Pk;αk, Zk)← RWMStep(Xk−1, Pk−1, `, S)

function RWMStep(X, P , `, S):
Draw Z ∼ q and set X ′ ← X + SZ.
Calculate P ′ ← `(X ′), let α← min{1, exp(P ′ − P )} and draw U ∼ U(0, 1).
if U ≤ A then return (X ′, P ′;α,Z); else return (X,P ;α,Z).

The samples Xb:n = (Xb, . . . , Xn) produced by Algorithm 1, for some sufficiently large
‘burn-in’ length 1 ≤ b ≤ n, say b = 0.1n, are approximately distributed as π. The samples
are not independent, but if the chain is well-behaved and n sufficiently large, they provide
a reliable empirical approximation of π.

It is sufficient to choose any initial state x0 such that `(x0) > −∞, but it is generally
advisable to choose x0 near the maximum of `. In order to make the method efficient, the
proposal increment shape S needs to be tuned based on the properties of the target π.
There are two general ‘rules of thumb’ for choosing S, originating from several theoretical
results, starting from the seminal work [33]:
(R1) The proposal covariance SST ≈ 2.382d−1Σπ, where Σπ = cov(π).
(R2) Choose S such that avg(α1, . . . , αn) ≈ 0.234 (or perhaps 0.44 if d = 1).
The random-walk adaptations discussed below implement automatic adjustment of S based
on these rules.

3. Adaptation of random walk Metropolis

All of the adaptive RWMs that we discuss may be written in a common form as summa-
rized in Algorithm 2, where we use the RWMStep of Algorithm 1. Table 1 summarizes the
ingredients of the four commonly used instances of Algorithm 2, which are discussed below.

Algorithm 2 X1:n ← ARWM(`, x0, n)

Initialize ξ0, set X0 ← x0 and P0 ← `(x0).
for k = 1, . . . , n do:

(Xk, Pk;αk, Zk)← RWMStep
(
Xk−1, Pk−1, `, Shape(ξk)

)
ξk ← Adapt(k, ξk−1, Xk, Zk, αk).

2



3.1. Adaptive Metropolis (AM)

The seminal Adaptive Metropolis algorithm [19] is a direct implementation of the rule (R1).
The adaptation defines Shape(ξk) = Chol(2.382d−1Σk), where Chol(S) stands for the lower-
triangular Cholesky factor L such that LLT = S, and where where Σk is an estimator of
cov(π). In the original work [19], the regularized empirical covariance Σk = Cov(X1, . . . , Xk)+
εId was used, where ε > 0 was a user-defined parameter.

The follow-up work [2] suggested a slightly modified AM adaptation rule, where Σk is
a recursively defined covariance estimator defined as follows:

µk = µk−1 + γk(Xk − µk−1)
Σk = Σk−1 + γk

[
(Xk − µk−1)(Xk − µk−1)T − Σk−1

]
,

(1)

where γk is a step size sequence decaying to zero, typically γk = (k+1)−β, where β ∈ (1/2, 1],
and initial values may be set as µ0 = x0 and Σ0 = Id, the identity matrix on Rd.

We suggest to use (1) with the common choice γk = (k+1)−1, which behaves asymptot-
ically similar to the original rule [19], with ε = 0. The update (1) is appealing because it avoids
the need to choose the regularization factor ε, and allows for calculation of Ck = Chol(Σk)
using rank-1 Cholesky updates Ck−1 → Ck

[11], which cost O(d2) in contrast with O(d3) cost
of direct calculation of the Cholesky factor. We define the state of adaptation ξk = (µk, Ck).

In higher dimensions, the AM adaptation may sometimes suffer from poor initial
behavior [46], which may be resolved by adding a fixed (non-adaptive) component in the
proposal distribution [46,7], or using a regularization factor ε > 0 as in the original work. Sta-
bility may also be improved by adding a delayed rejection stage to the algorithm [18], or using
a modified update with Xk−1 and Yk weighted by rejection and acceptance probabilities,
respectively, which corresponds to one-step Rao-Blackwellization [4].

3.2. Adaptive Scaling Metropolis (ASM)
Automatic selection of the parameter S of the RWM based on rule (R2) has been suggested
at regeneration times [15] and attempting to directly optimize a loss function [3]. We consider
the following simpler adaptation rule [5,2], which is called here adaptive scaling Metropolis:
set Shape(ξk) = eηk , where ξk = ηk is adapted with

ηk = ηk−1 + γk(αk − α∗), (2)

where α∗ = 0.234 (or 0.44 if d = 1), and with (recommended) step size γk = k−2/3. This
adaptation is simpler than the AM adaptation, and even more robust, in the sense that no
specific initialization strategies or stabilizing mechanisms are necessary [47]. But because

Table 1: Summary of ingredients of Algorithm 2 for the four adaptive MCMC methods. Id
stands for the identity matrix in Rd, and Ld ⊂ Rd×d is the set of lower-triangular matrices.

Method Initialization ξ0 State ξk Domain of ξk Adapt( · ) Shape(ξk)

AM (x0, Id) (µk, Ck) Rd × Ld (1) 2.38d−1/2Ck
ASM 1 ηk R (2) eηk

ASM+AM (x0, Id, log(2.38d
−1/2)) (µk, Ck, ηk) Rd × Ld × R (1) & (2) eηkCk

RAM Id Sk Ld (3) Sk
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ASM is essentially univariate, it cannot (automatically) capture correlation structures,
which may lead to inefficient sampling.

It is quite natural to also use covariance information in the ASM. If no prior in-
formation about covπ is available, we may directly use the AM adaptation together with
ASM [6,5,4], by setting Shape(ξk) = eηkCk, where ξk = (µk, Ck, ηk) and (µk, Ck) is adapted
with AM (1). In this approach, hereafter ASM+AM, it is recommended that a common
step size, for instance γk = (k + 1)−2/3, is used for both the AM and ASM adaptations.

3.3. Robust Adaptive Metropolis (RAM)
There is an alternative to the combination of AM and ASM, which implements the rule (R2)
using directional information. The robust adaptive Metropolis (RAM) [48] uses the following
direct update on Shape(ξk) = Sk:

SkS
T
k = Sk−1S

T
k−1 + γk(αk − α∗)VkV T

k , where Vk = Sk−1Zk/‖Zk‖, (3)

which may also be implemented as O(d2) cost rank-1 Cholesky update/downdate [11].
In the univariate case, the RAM update shares similar behavior with the ASM (2), in

the sense that then S2
k ≈ eηk . This is because

2 logSk = 2 logSk−1 + log
(
1 + γk(αk − α∗)

)
≈ 2 logSk−1 + γk(αk − α∗),

for small γk. This suggests that RAM can be seen as a multivariate extension of the ASM
adaptation. The recommended step size of RAM is min{1, d · k−2/3}, where the dimension
d inflates the step size because of the directional adaptation [48].

Similar to the ASM, the RAM adaptation has been found stable empirically, typically
not requiring specific initialization strategies. However, the ASM+AM adaptation has been
suggested to be used initially, before starting the RAM adaptation [39].

3.4. Rationale behind the adaptations
When looking at the adaptation formulae (1)–(3), it is evident that they all are similar: the
previous value of the state is updated by an increment weighted by a decreasing positive
step size γk. The fact that the changes in the adaptation get smaller and smaller is key point
for the validity of the methods, and is called ‘diminishing’ or ‘vanishing’ adaptation [34,2].
Roughly speaking this combined with suitable uniform-in-S mixing assumption of the RWM
ensure the validity of the algorithms.

The specific forms of adaptation considered here can all be viewed as stochastic gra-
dient type methods [32,8] as pointed out in [3,2]. Their limiting behavior is intuitively char-
acterized by replacing the increments with their stationary expectations, regarding ξk−1 as
constant. For instance, such an ‘averaged’ version of the AM update (1) would be

µk = µk−1 + γk(µπ − µk−1)

Σk = Σk−1 + γk
[
Σπ − Σk−1 −

(
µπ − µk−1

)(
µπ − µk−1

)T ]
,

(4)

where µπ is the mean of π. If the averaged update has a limit, then the adaptation tends
to the same limit, under technical assumptions [2]; see also [4] for further intuitive discussion
about the behavior of this type of adaptation.

It is not hard to see that (4) has a unique fixed point (µπ,Σπ), so AM adaptation
Ck → Chol(Σπ) under general conditions. Empirically, the convergence appears to happen
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always (as long as Σπ is finite). Similarly, in case of the ASM, it is relatively easy to
see [45] that the mean acceptance rate E[αk] → 0 as the proposal increments get smaller
ηk−1 → −∞, and vice versa, E[αk]→ 1 as ηk−1 →∞, suggesting that a limit always exists,
but the limit might not be unique [21]. In case π is elliptically symmetric, the limit point of
RAM coincides with the shape of π, up to a constant [48], as does the ASM+AM.

3.5. Summary and discussion on the methods
The adaptive RWM algorithms are simple and generally well-behaved when the correspond-
ing RWM algorithms, with fixed (non-singular) proposal shape S, are. This requires essen-
tially the following:

• Moderate dimension d.
• Essentially unimodal target π, that is, π does not have well-separated nodes.
• Target π has bounded support, or sufficiently regular tails that are fast decaying

(super-exponentially, such as Gaussian [22]).
The tail decay rate may be enforced by a suitably chosen prior, for instance a Gaussian.
There are some theoretical results about the stability of the algorithms under further tech-
nical conditions [37,47,46]. If the algorithms are modified to include auxiliary stabilizing mech-
anisms, typically enforcing the values of ξk to a compact set, they may be guaranteed to be
valid even more generally [34,2,5].

The recommended step sizes γk differ between the algorithms, due to their different
characteristics. The step sizes must ensure that the adaptations remain ‘effective’, in the
sense that

∑
k γk = ∞. If this condition was not met, the algorithms could converge pre-

maturely to a spurious limit. The limiting behavior of the methods may be guaranteed to
satisfy a central limit theorem if

∑
k γ

2
k <∞ [2]. If we focus on sequences with polynomially

decaying tails O(n−β), then the above are satisfied with β ∈ (1/2, 1]. As commented earlier,
the given step size for the AM makes the algorithm behave similarly in the limit to the
original algorithm, where Σk were sample covariances. However, with bounded increments,
such as with the ASM, the choice γk = O(k−1) would lead to ηk that can deviate from
η0 at most of order log k, rendering the adaptation ineffective. With ASM+AM, there is
potential interaction between the covariance and scale adaptations, and using different step
sizes might amplify this. Because RAM is similar to ASM, the suggested step size decay rate
is similar, but because of directional adaptation, the step size is inflated with dimension.

In a univariate case, ASM is the recommended method because of its simplicity. In
a general multivariate case, using AM, ASM+AM or RAM is recommended, because these
methods can adapt to different scaling of variables and correlations. In simple scenarios,
they work equally well, but in some cases, differences may arise [48]. All of the adaptive
RWM methods have good theoretical backing, but the results are not complete. If the user
is in doubt, adaptation may also be stopped (typically after burn-in), to ensure theoretical
validity with minimal conditions (irreducibility).

4. Multimodal targets with parallel tempering

RWM is based on small increments of Xk, which are accepted or rejected individually. This
makes RWM behave poorly with multimodal distributions, where reaching one mode from
another would require several steps that are each accepted with small probability. The
higher the dimension, the more easily this problem arises, because the steps made by the
RWM need to be smaller in higher dimension; of order O(d−1/2) [33].
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If further information about the π, such as location of modes, is available, tailored
transitions may be designed. We focus on the case where little is known about π a priori.
Then, a general ‘tempering’ procedure may be applied, where the target density π(x) is
modified to one proportional to πβ(x), where β ∈ (0, 1) is an ‘inverse temperature’ parame-
ter; equivalently, the unnormalized log-density of the modified target is β`(x). The lower the
value of β, the more π is ‘flattened’ by making the modes less pronounced and the unlikely
states more likely.

The parallel tempering (PT), or replica exchange algorithm [41] uses a number L ≥ 2
of levels, with inverse temperatures 1 = β(1) > β(2) > · · · > β(L) > 0, and corresponding
unnormalized log-targets ˜̀

β(i)(x) := β(i)`(x). The algorithm updates a joint state X(1:L)
k−1 →

X
(1:L)
k in two stages. The first step consists of independent updates X(1)

k−1 → X
(1)
k , . . . ,

X
(L)
k−1 → X

(L)
k with MCMCs targetting ˜̀

β(1) , . . . , ˜̀
β(L) , respectively. The second step involves

an attempt to swap the states of two random adjacent levels, X(I)
k ↔ X

(I−1)
k , where I ∼

U{2, . . . , L}, which is accepted with probability

min

{
1,
πβ

(I)
(X(I−1))πβ

(I−1)
(X(I))

πβ(I−1)(X(I−1))πβ(I)(X(I))

}
,

which ensures that X(1)
b , . . . , X

(1)
n approximates the target distribution of interest π.

An adaptive version of this algorithm, the adaptive parallel tempering (APT) [29]

which uses adaptive RWM together with inverse temperature adaptation, is summarized
in Algorithm 3. The temperature adaptation in Algorithm 3 implements the ASM adapta-

Algorithm 3 X(1)
1:n ← APT(`, x0, n, L)

Initialize ξ(i)
0 , set ρ(1:L−1)

0 ← 0, β(i)
0 = i−1 for i ∈ {1:L}, X(i)

0 ← x0, and P
(i)
0 ← `

β
(i)
0

(x0).
for k = 1, . . . , n do:

for i = 1, . . . , L do:
(X̃

(i)
k , P̃

(i)
k ; Ã

(i)
k , Z̃

(i)
k )← RWMStep

(
X

(i)
k−1, β

(i)
k−1P

(i)
k−1,

˜̀
β
(i)
k−1
, Shape(ξ

(i)
k )
)

ξ
(i)
k ← Adapt(k, ξ

(i)
k−1, X̃

(i)
k , Z̃

(i)
k , Ã

(i)
k )

L̃
(i)
k ← P̃

(i)
k /β

(i)
k−1 for i = 1, . . . , L.

(X
(1:L)
k , L

(1:L)
k , Ak, Ik)← SwapStep(X̃

(1:L)
k , L̃

(1:L)
k , β

(1:L)
k−1 )

(ρ
(1:L−1)
k , β

(1:L)
k )← AdaptTemp(k, ρ

(1:L−1)
k−1 , Ak, Ik)

P
(i)
k ← β

(i)
k L

(i)
k for i = 1, . . . , L.

function SwapStep(X(1:L), L(1:L), β(1:L)):
I ∼ U{1, . . . , L−1}, A← min

{
1, exp

(
(β(I)−β(I+1))(L(I+1)−L(I))

)}
and U ∼ U(0, 1)

if U ≤ A then swap (X(I+1), X(I))← (X(I), X(I+1)) and (L(I+1), L(I))← (L(I), L(I+1))
return (X(1:L), L(1:L), A, I)

function AdaptTemp(k, ρ(1:L), A, I):
ρ̃(I) ← ρ(I) + γk(A− α∗), and ρ̃(i) ← ρ(i) for i 6= I.
T (1) ← 1 and T (i+1) = T (i) + exp(ρ̃(i)) for i = 2, . . . , L.
return (ρ̃(1:L−1), β̃(1:L)) where β̃(i) = 1/T (i).

tion (2) to ρ(i), which parameterize the log-differences of the consecutive temperatures, via
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1/β(i+1) = 1/β(i) +eρ
(i) . The mean acceptance rate of the swaps between levels {i−1, i} was

shown in [29] to be monotonically decreasing with respect to ρ(i), and therefore the algorithm
converges to β(1:L)

∗ which ensures constant α∗ = 0.234 acceptance rate of the swaps. This
rule of thumb, which is equivalent with RWM rule (R2), is loosely justified in the APT
context [36], and appears to work well.

In a multimodal case, the lower level RWM moves act ‘locally’, exploring one mode at
a time. The AM often works well under unimodality, but in the multimodal case, the AM
proposal may become too wide leading to poor acceptance rate. Therefore, we suggest to use
either ASM+AM or RAM within APT. We use the step size γk = (L− 1)(k+ 1)−2/3 for the
temperature adaptation, which is similar to the one suggested with ASM, with an additional
factor accouting for random update to one of L− 1 temperature difference adptations.

In Bayesian statistics, the target distribution π(x) ∝ pr(x)lik(x), product of the prior
density and the likelihood, respectively. Equivalently, the log-target factorizes to `(x) =
`pr(x)+`lik(x). Often, the prior distribution is regular and unimodal, and the multimodality
is caused by the likelihood term only. In this case, it is advisable to ‘temper’ only the log-
likelihood part, so that ˜̀

β(i)(x) := `pr(x) + β(i)`lik(x) [17]. This leads to slight modification of
Algorithm 3, so that L̃(i)

k ←
(
P̃

(i)
k − `pr(X̃

(i)
k )
)
/β

(i)
k−1 and P (i)

k ← `pr(X
(i)
k ) + β

(i)
k L

(i)
k .

It is possible to further refine the APT algorithm by using different swap strategies,
for instance by alternating between odd and even swaps with large L [42], or to reduce
the number of levels L adaptively [24]. Multimodal distributions are considered also in the
framework presented in [31], which consists of an ‘exploratory’ phase aiming to find the
modes, and a consequent sampling phase. The APT could be used in the former phase.
It is possible to extend the PT by adding a transformation to the swap step, based on
information of the modes [43].

5. Dynamic models with particle filters

Hidden Markov models (HMMs, also known as state-space models) are a flexible class of
models often used in modern time-series analysis [13,10]. The data y(1:T ) = (y(1), . . . , y(T ))
are modeled conditionally independent given the latent Markov process x(1:T ), with initial
distribution f

(1)
θ (x(1)) and transitions f (k)

θ (x(k) | x(k−1)), and with observation densities
g

(k)
θ (y(k) | x(k)), all parameterized by (hyper)parameters θ with prior pr(θ). The full joint
posterior of the parameters and the latent state satisfies π(θ, x(1:T )) ∝ pr(θ)pθ(x

(1:T ), y(1:T ))
where

pθ(x
(1:T ), y(1:T )) = f

(1)
θ (x(1))g

(1)
θ (y(1) | x(1))

T∏
k=2

f
(k)
θ (x(k) | x(k−1))g

(k)
θ (y(k) | x(k)).

In the context of HMMs, the parameters θ ∈ Rd are often of moderate dimension, but the
dimension of the latent process x(1:T ) is proportional to the data record length T , making
direct MCMC for (θ, x(1:T )) inefficient. The pioneering work [1] introduced several ‘particle
MCMC’ methods, which uses particle filters, a generic class of Monte Carlo algorithms
tailored for HMMs, with MCMC methods such that the resulting algorithm will be valid
MCMC for the full posterior π. Adaptive MCMC has been suggested to automatically
design proposals for the hyperparameters θ within particle MCMC [1,40,30], and we discuss
some guidelines how this may be done in practice.
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Algorithms 4 and 5 summarize the two distinct particle MCMC methods, the particle
marginal Metropolis-Hastings (PMMH) and the particle Gibbs (PG) [1], with adaptation.
The algorithms are written with generic particle filter parameters: the ‘proposals’ M (k)

θ and
the ‘potentials’ G(k)

θ . The simplest valid choice is M (k)
θ ≡ f

(k)
θ and G

(k)
θ (x(k)) = g

(k)
θ (y(k) |

x(k)), which is known as the bootstrap filter [16], but any other choice is valid as long as

M
(1)
θ (x(1))G

(1)
θ (x(1))

T∏
k=2

M
(k)
θ (x(k) | x(k−1))G

(k)
θ (x(k)) ≡ pθ(x

(1:T ), y(1:T )),

as a function of (θ, x(1:T )). (Note that both M
(k)
θ and G

(k)
θ may depend on y(1:T ), but this

dependence is suppressed from the notation.)
The functions PF( · ) and CPF( · ) are abstractions of the ‘particle filter’ and the

‘conditional particle filter,’ respectively [1]. More specifically, PF( · , N) refers to the particle
filter run withN particles and the given parameters, and the output consists of the logarithm
of the marginal likelihood estimate, and one trajectory picked from the generated particle
system. PF only requires thatM (k)

θ ( · | x) can be sampled from, and that (logarithm of) G(k)
θ

can be calculated. The call of CPF( · ) is similar, with the third argument being the previous
(reference) trajectory. We refer the reader to consult the original paper [1] for details, but
remark that the backward sampling variant of the CPF [49,26] may be used if the (logarithmic)
density values of M (k)

θ (x′ | x) can be calculated. It is recommended if applicable, because it
can improve the performance dramatically, and is provably stable with large T [25].

Algorithm 4 (Θ1:n, X
(1:T )
1:n )← AdaptivePMMH(`pr, θ0, n,N,M

(1:T )
θ , G

(1:T )
θ )

Initialize ξ0, Θ0 ← θ0, P0 ← `pr(Θ0) and (V0, X
(1:T )
0 )← PF(M

(1:T )
Θ0

, G
(1:T )
Θ0

, N)
for k = 1, . . . , n do:

Θ̃k ← Θk−1 + Shape(ξk−1)Zk where Zk ∼ q

P̃k ← `pr(Θ̃k), (Ṽk, X̃
(1:T )
k )← PF(M

(1:T )

Θ̃k
, G

(1:T )

Θ̃0
, N) and Uk ∼ U(0, 1)

if Uk ≤ αk := min{1, exp(P̃k + Ṽk − Pk−1 − Vk−1)} then:
(Θk, Pk, Vk, X

(1:T )
k )← (Θ̃k, P̃k, Ṽk, X̃

(1:T )
k )

else:
(Θk, Pk, Vk, X

(1:T )
k )← (Θk−1, Pk−1, Vk−1, X

(1:T )
k−1 )

ξk ← Adapt(k, ξk−1,Θk, Zk, αk).

Algorithm 5 (Θ1:n, X
(1:T )
1:n )← AdaptivePG(`pr, θ0, n,N,M

(1:T )
θ , G

(1:T )
θ )

Initialize ξ0, Θ0 ← θ0, P0 ← `pr(Θ0) and (−, X(1:T )
0 )← PF(M

(1:T )
Θ0

, G
(1:T )
Θ0

, N)
for k = 1, . . . , n do:

Θ̃k ← Θk−1 + Shape(ξk−1)Zk where Zk ∼ q, and P̃k ← `pr(Θ̃k)

Vk−1 ← log pΘk−1
(X

(1:T )
k−1 , y

(1:T )), Ṽk ← log pΘ̃k
(X

(1:T )
k−1 , y

(1:T )) and Uk ∼ U(0, 1)

if Uk ≤ αk := min{1, exp(P̃k + Ṽk − Pk−1 − Vk−1)} then:
(Θk, Pk)← (Θ̃k, P̃k)

else:
(Θk, Pk)← (Θk−1, Pk−1)

ξk ← Adapt(k, ξk−1,Θk, Zk, αk).
X

(1:T )
k ← CPF(M

(1:T )
Θk

, G
(1:T )
Θk

, X
(1:T )
k−1 , N)
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Table 2: Summary of recommended algorithms for specific problems and their step sizes.

Method P
M
M
H

P
G

M
w
G
-1

M
w
G
-d

P
T

γk

AM X × × × × (k + 1)−1

ASM × × X × × k−2/3

ASM+AM × X × X X (k + 1)−2/3

RAM × X × X X min{1, d · (k + 1)−2/3}

In principle, it is possible to apply any simple RWM adaptation of Section 3 within
both Algorithms 4 and 5. However, in case of PMMH (Algorithm 4), the mean acceptance
rate depends both on Shape(ξk), and on the number of particles N , making it difficult
to know what desired acceptance rate value α∗ should be used. Therefore, it is simpler to
employ the AM adaptation, which does not rely on acceptance rate, but only on the posterior
covariance, which is independent of N . The number of particles N needs to be chosen per
application; some guidelines are given with related theoretical developments [12,38]. When
using adaptation within PMMH, the number of particles may be best chosen slightly higher
than the guidelines suggest (yielding at least 10% acceptance rate, say), in order to avoid
potential instability of the adaptation.

In the case of particle Gibbs, the update of θ is a Metropolis-within-Gibbs update
targetting the posterior conditional θ | x(1:T ). This step is independent of N , and the
acceptance rate remains an effective proxy for adaptation. Therefore, we suggest to use
either AM+ASM or the RAM adaptation with PG. The ‘global’ nature of AM adaptation,
as discussed in Section 4, makes it inappropriate for sampling the conditional distributions,
which are typically more concentrated than the posterior marginal.

It may be possible to design more efficient independent proposals for the PMMH, by
fitting a mixture distribution to the posterior marginal of θ [40,23]. This may be achieved by
first running Algorithm 4 or 5, and then using the simulated samples for mixture fitting.

6. Discussion

We reviewed a set of adaptive MCMC methods applicable for some general model classes.
Our focus was on relatively simple methods, which require minimal user specification. More
refined methods may improve the efficiency of the methods, but often come with a cost of
further user specification, in the form of more careful choice of algorithm or their parameters.

Adaptation may be applied in a straightforward manner with hierarchical models, by
using multiple independent adaptations for individual Metropolis-within-Gibbs updates of
either single parameters or blocks of parameters [20,35,44]. This avoids conjugacy constraints,
and using block updates for tightly correlated variables may lead to improved mixing. Some
variables could also be updated by pure Gibbs moves (if perfect sampling of the conditional
is possible). However, to the knowledge of the author, there is no general-purpose software
that would allow for this, even though such an extension of a BUGS-type implementation
would be technically straightforward.

Table 2 summarizes the recommendations which RWM adaptations are appropri-
ate in different contexts: dynamic models (PMMH and PG methods), hierarchical models
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(Metropolis-within-Gibbs, univariate and multivariate update), and with multimodal tar-
gets (PT). The recommended step size sequence is also shown.

Unfortunately, all MCMC methods come with their strengths and weaknesses, and
therefore the ‘end user’ may need to make certain choices. Hamiltonian Monte Carlo (HMC)
type methods, such as those implemented in STAN software [14], have recently become very
popular. They have shown great promise for challenging inference problems, but also come
with limitations. For instance, HMC cannot be used to sample discrete variables, and the
model may need to be re-scaled and/or reparameterized before inference. The more domain-
specific methods, such as particle MCMC in the time-series context, tend also to outperform
general-purpose methods, such as HMC. Inference software that would allow for flexibly us-
ing all successful samplers to date, including the HMC type methods, Gibbs sampling, par-
ticle MCMC and adaptive methods, could provide a way forward and push the boundaries
of ergonomic practical Bayesian inference.

7. Acknowledgments

The author was supported by Academy of Finland grants 274740, 312605 and 315619.

8. Bibliography

[1] Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo
methods. J. R. Stat. Soc. Ser. B Stat. Methodol., 72(3), 269–342.

[2] Andrieu, C. & Moulines, É. (2006). On the ergodicity properties of some adaptive
MCMC algorithms. Ann. Appl. Probab., 16(3), 1462–1505.

[3] Andrieu, C. & Robert, C. P. (2001). Controlled MCMC for optimal sampling. Technical
Report Ceremade 0125, Université Paris Dauphine.

[4] Andrieu, C. & Thoms, J. (2008). A tutorial on adaptive MCMC. Statist. Comput.,
18(4), 343–373.

[5] Atchadé, Y. & Fort, G. (2010). Limit theorems for some adaptive MCMC algorithms
with subgeometric kernels. Bernoulli, 16(1), 116–154.

[6] Atchadé, Y. F. & Rosenthal, J. S. (2005). On adaptive Markov chain Monte Carlo
algorithms. Bernoulli, 11(5), 815–828.

[7] Bai, Y., Roberts, G. O., & Rosenthal, J. S. (2011). On the containment condition for
adaptive Markov chain Monte Carlo algorithms. Advances and Applications in Statistics,
21(1), 1–54.

[8] Benveniste, A., Métivier, M., & Priouret, P. (1990). Adaptive Algorithms and Stochastic
Approximations. Number 22 in Applications of Mathematics. Springer-Verlag.

[9] Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach
to numerical computing. SIAM review, 59(1), 65–98.

[10] Cappé, O., Moulines, E., & Rydén, T. (2005). Inference in Hidden Markov Models.
Springer.

[11] Dongarra, J. J., Bunch, J. R., Moler, C. B., & Stewart, G. W. (1979). LINPACK Users’
Guide. Society for Industrial and Applied Mathematics.

[12] Doucet, A., Pitt, M. K., Deligiannidis, G., & Kohn, R. (2015). Efficient implementation
of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika,
102(2), 295–313.

10



[13] Durbin, J. & Koopman, S. J. (2012). Time Series Analysis by State Space Methods
(2nd ed.). New York: Oxford University Press.

[14] Gelman, A., Lee, D., & Guo, J. (2015). Stan: A probabilistic programming language for
Bayesian inference and optimization. Journal of Educational and Behavioral Statistics,
40(5), 530–543.

[15] Gilks, W. R., Roberts, G. O., & Sahu, S. K. (1998). Adaptive Markov chain Monte
Carlo through regeneration. J. Amer. Statist. Assoc., 93(443), 1045–1054.

[16] Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F, 140(2), 107–113.

[17] Gwiazda, P., Miasojedow, B., & Rosińska, M. (2016). Bayesian inference for age-
structured population model of infectious disease with application to varicella in Poland.
J. Theoret. Biol., 407, 38–50.

[18] Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). DRAM: Efficient adaptive
MCMC. Statist. Comput., 16(4), 339–354.

[19] Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm.
Bernoulli, 7(2), 223–242.

[20] Haario, H., Saksman, E., & Tamminen, J. (2005). Componentwise adaptation for high
dimensional MCMC. Comput. Statist., 20(2), 265–274.

[21] Hastie, D. (2005). Toward Automatic Reversible Jump Markov Chain Monte Carlo.
PhD thesis, University of Bristol.

[22] Jarner, S. F. & Hansen, E. (2000). Geometric ergodicity of Metropolis algorithms.
Stochastic Process. Appl., 85(2), 341–361.

[23] Knape, J. & De Valpine, P. (2012). Fitting complex population models by combining
particle filters with Markov chain Monte Carlo. Ecology, 93(2), 256–263.

[24] Łącki, M. K. & Miasojedow, B. (2016). State-dependent swap strategies and automatic
reduction of number of temperatures in adaptive parallel tempering algorithm. Statist.
Comput., 26(5), 951–964.

[25] Lee, A., Singh, S. S., & Vihola, M. (to appear). Coupled conditional backward sampling
particle filter. Ann. Statist., to appear.

[26] Lindsten, F., Jordan, M. I., & Schön, T. B. (2014). Particle Gibbs with ancestor
sampling. J. Mach. Learn. Res., 15(1), 2145–2184.

[27] Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS—a Bayesian
modelling framework: concepts, structure, and extensibility. Statist. Comput., 10(4),
325–337.

[28] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E.
(1953). Equations of state calculations by fast computing machines. J. Chem. Phys.,
21(6), 1087–1092.

[29] Miasojedow, B., Moulines, E., & Vihola, M. (2013). An adaptive parallel tempering
algorithm. J. Comput. Graph. Statist., 22(3), 643–664.

[30] Peters, G. W., Hosack, G. R., & Hayes, K. R. (2010). Ecological non-linear state space
model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC). Preprint
arXiv:1005.2238.

[31] Pompe, E., Holmes, C., & Łatuszyński, K. (2018). A framework for adaptive MCMC
targeting multimodal distributions. Preprint arXiv:1812.02609.

[32] Robbins, H. & Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics, 22, 400–407.

11



[33] Roberts, G. O., Gelman, A., & Gilks, W. R. (1997). Weak convergence and optimal
scaling of random walk Metropolis algorithms. Ann. Appl. Probab., 7(1), 110–120.

[34] Roberts, G. O. & Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov
chain Monte Carlo algorithms. J. Appl. Probab., 44(2), 458–475.

[35] Roberts, G. O. & Rosenthal, J. S. (2009). Examples of adaptive MCMC. J. Comput.
Graph. Statist., 18(2), 349–367.

[36] Roberts, G. O. & Rosenthal, J. S. (2014). Minimising MCMC variance via diffusion
limits, with an application to simulated tempering. Ann. Appl. Probab., 24(1), 131–149.

[37] Saksman, E. & Vihola, M. (2010). On the ergodicity of the adaptive Metropolis algo-
rithm on unbounded domains. Ann. Appl. Probab., 20(6), 2178–2203.

[38] Sherlock, C., Thiery, A. H., Roberts, G. O., & Rosenthal, J. S. (2015). On the efficiency
of pseudo-marginal random walk Metropolis algorithms. Ann. Statist., 43(1), 238–275.

[39] Siltala, L. & Granvik, M. (2020). Asteroid mass estimation with the robust adaptive
Metropolis algorithm. Astronomy & Astrophysics, 633(A46).

[40] Silva, R., Giordani, P., Kohn, R., & Pitt, M. (2009). Particle filtering within adaptive
Metropolis Hastings sampling. Preprint arXiv:0911.0230.

[41] Swendsen, R. H. & Wang, J.-S. (1986). Replica Monte Carlo simulation of spin-glasses.
Phys. Rev. Lett., 57(21), 2607–2609.

[42] Syed, S., Bouchard-Côté, A., Deligiannidis, G., & Doucet, A. (2019). Non-reversible
parallel tempering: an embarassingly parallel MCMC scheme. Preprint arXiv:1905.02939.

[43] Tawn, N. G. & Roberts, G. O. (2019). Accelerating parallel tempering: Quantile tem-
pering algorithm (QuanTA). Adv. in Appl. Probab., 51(3), 802–834.

[44] Vihola, M. (2010a). Grapham: Graphical models with adaptive random walk Metropolis
algorithms. Comput. Statist. Data Anal., 54(1), 49–54.

[45] Vihola, M. (2010b). On the convergence of unconstrained adaptive Markov chain Monte
Carlo algorithms. PhD thesis, University of Jyväskylä.

[46] Vihola, M. (2011a). Can the adaptive Metropolis algorithm collapse without the co-
variance lower bound? Electron. J. Probab., 16, 45–75.

[47] Vihola, M. (2011b). On the stability and ergodicity of adaptive scaling Metropolis
algorithms. Stochastic Process. Appl., 121(12), 2839–2860.

[48] Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced acceptance
rate. Statist. Comput., 22(5), 997–1008.

[49] Whiteley, N. (2010). Discussion on Particle Markov chain Monte Carlo methods. J. R.
Stat. Soc. Ser. B Stat. Methodol., 72(3), 306–307.

12


	Introduction
	Random-walk Metropolis algorithm
	Adaptation of random walk Metropolis
	Adaptive Metropolis (AM)
	Adaptive Scaling Metropolis (ASM)
	Robust Adaptive Metropolis (RAM)
	Rationale behind the adaptations
	Summary and discussion on the methods

	Multimodal targets with parallel tempering
	Dynamic models with particle filters
	Discussion
	Acknowledgments
	Bibliography

