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ABSTRACT

We address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill
demand targets and the outer stage considers selecting the accuracy of pre-harvest inventories that are used to estimate the timber volumes of the
forest tracts. The higher accuracy of the inventory enables better scheduling decisions but also implies higher costs. We focus on the outer stage,
which we formulate as a maximization of the posterior value of the inventory decision under a budget constraint. The posterior value depends on
the solution to the inner stage problem and its computation is analytically intractable, featuring an NP-hard binary optimization problem within
a high-dimensional integral. In particular, the binary optimization problem is a special case of a generalized quadratic assignment problem. We
present a practical method that solves the outer stage problem with an approximation which combines Monte Carlo sampling with a greedy,
randomized method for the binary optimization problem. We derive inventory decisions for a dataset of 100 Swedish forest tracts across a range

of inventory budgets and estimate the value of the information to be obtained.

KEYWORDS: Bayesian modeling; decision making; forestry; quadratic assignment problem; scheduling; value of information.

1 INTRODUCTION

Decisions on harvesting are central in forestry. The scope of deci-
sion making varies from the strategiclevel, where the time scale is
decades, to the optimal cutting of a single stem (Kivinen, 2004;
Ulvdal et al., 2023). In operational short-term forest planning,
the starting point is a set of forest tracts, that is, a set of forest ar-
eas that a forestry company has already contracted to be cut in
the near future, for instance, in the next 6 months. In this setting,
forest growth is irrelevant because the planning horizon is short.
Ultimately, the decision of interest is to choose a schedule for the
harvesting of the tracts such that the monthly demand for timber
can be met as precisely as possible. Both exceeding and subceed-
ing the demand targets cause losses to the industry.

The timber volume available in the tracts is uncertain, which
brings the decision problem into the realm of statistics. Before
making the harvest scheduling decision, the uncertainty can be
reduced by carrying out a forest inventory where the timber
volume is estimated with a chosen accuracy (the inventory de-
cision) using field surveys (Nieuwenhuis et al., 1999) and re-
motely sensed data (Vauhkonen et al., 2014; Siipilehto et al.,
2016). A more accurate inventory leads to better scheduling de-
cisions but also costs more because a larger sample size is needed
(Gregoire et al., 2016). Although the problem of choosing an in-
ventory method in industrial wood procurement is conceptually
described already by Stihl (1994, p. 27-28), we are not aware of
any previous works with practical solutions.

In this work, we develop a Bayesian approach for cost-effective
operational (short-term) forest inventory planning. We formu-

late the inventory decision problem as an optimization prob-
lem that involves the maximization of the posterior value of the
inventory decision under a budget constraint. The concept of
posterior value, that is, the expected value of the new data to be
collected, has a crucial role in the inventory decision problem.
The difference of the posterior value and the prior value, that
is, the expected value before collecting new data, is called value
of information (cf. Eidsvik et al.,, 2015). In forestry, value of in-
formation and related concepts have been applied to long-term
planning from the perspective of a forest owner (Stahl, 1994;
Duvemo et al., 2014; Kangas et al., 2014; 2015).

Computing the posterior value leads to solving a general-
ized quadratic assignment problem (GQAP) (Lee and Ma,
2004) which is known to be NP-hard (Cook, 1971). We pro-
pose algorithms that employ greedy heuristics and Monte Carlo
sampling to find sufliciently good solutions for operational
use.

Our approach for inventory decision planning allows for tak-
ing into account the prior uncertainties in the timber volume,
as well as the uncertainties in the measurements carried out in
a forest inventory. The primary output of our method is a plan
on how to cost-effectively select tract inventory accuracies un-
der uncertainty. Our practical example illustrates this for 100
Swedish forest tracts.

‘We begin in the next section by explaining the inventory deci-
sion problem of interest in more detail and providing guidance
for the rest of the paper. Web Appendix 1 contains a table of all
notation used in this paper.
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2 OVERVIEW OF THE DECISION PROBLEM

‘We consider a forestry company that has the right to cut ng for-
est tracts that each have n, timber assortments. The company
has some prior (pre-inventory) information on the timber vol-
umes V of the tracts in the form of an (ng X 1, )-dimensional
prior probability distribution py. Furthermore, the company has
the opportunity to improve the knowledge on V by making a de-
cision xI) on a forest inventory. The result of xD is an inven-
tory dataset Y | xD following an (ng X n, )-dimensional prob-
ability distribution Py, which integrates over the prior py and
a measurement probability distribution pyy ,o. The decision

vectorx!) encodes the selection of an inventory method for each
tract among n; predefined inventory methods of varying accu-
racy. The cost of applying inventory method i to tract s is C ;, a
known constant.

Under this setting, we consider the cost-effective maximiza-
tion of the posterior value of the inventory decision x") which
leads us to model a two-stage decision-making problem where
an “inner” problem is nested inside an “outer” problem. The in-
ner problem considers scheduling the harvests of the forest tracts
in order to meet a known demand D, ; for each assortment a at
(future) timest = 1, 2, ..., nr, and the outer problem consid-
ers the cost-effective selection of x) under a budget constraint,
B. The outer and inner problems are linked, since the solution of
the inner problem depends on the probabilistic knowledge avail-
able on the volumes V, which the company has the opportunity
toimprove usingY | xD obtained from the outer decision prob-
lem.

Even though we model the full two-stage problem, we focus
on solving the outer problem. This is because the solution of the
inner problem is dependent on which Y | x() is realized. In the
planning of x(V, Y will necessarily be unknown and random, and
therefore a sensible, data-informed solution for the inner prob-
lem can only be obtained once (the chosen) x hasbeen carried
out in practice, and a real-world realization y of the random vari-
able Y | x) collected. In the computational method that selects
the inventory decision, however, the inner problem is solved for
multiple realizations Y | x() for each candidate decisionx"). In
effect, this evaluates the fitness of a given xD on average, but
does not provide a single, concrete solution to the inner prob-
lem. We return to this in the discussion.

The rest of the paper is organized as follows. Section 3 intro-
duces the Swedish tract dataset used in our practical illustration.
The models for the prior volume distribution py and the mea-
surement distribution pyy ;) are described in Section 4. The
inventory decision problem is formally presented as an optimiza-
tion problem in Section S. In Section 6, we present a practical
method for solving the inventory decision problem, and study
its performance in simulations. Finally, we apply the method to
the Swedish tract dataset in Section 7 and conclude with a dis-
cussion in Section 8.

3 DATA

The dataset for the practical illustration is a random sam-
ple of a larger dataset and encompasses ng = 100 forest tracts
in Southern Sweden. These tracts have been in fact clear-

cut but here we consider the pre-harvest situation with three
inventory methods (n; = 3), three assortments (pine, spruce,
or deciduous trees, n4, = 3) and a 6 months’ harvest scheduling
horizon (ny = 6). Lettings = 1,2,...,n5,a=1,2,...,ny,
i=1,2,...,n, and t =1,2,...,n7 index tracts, assort-
ments, inventory methods and time points, respectively, the data
consist of

1. the prior means (1  and variances (o, )* of timber vol-
umes for each assortment and tract,

2. the measurement variances O’{i ;i for the inventory meth-
odsi = 1, 2, 3 for each assortment and tract,

3. the costs C; ; of applying inventory method i in tract s,

4. the inventory budget B that the inventory costs cannot ex-
ceed, and

S. the demand targets D, ; for each assortment and month.

The prior means and variances are obtained from a previously
developed imputation model, which was fitted using data on
clear-cut tracts where both the true timber volumes and the char-
acteristics of the tracts are known. A more detailed description
of the data and the process is given in Web Appendix 2.

The measurement variances 012 ,.; Of the three inventory meth-
ods (i = 1, 2, 3) are also obtained using a previously developed
model. The inventory methods are characterized by the number
of fixed-area field plots that are used in the estimation of timber
volume (S, 10, and 20 plots per forest tract, respectively). The
model is based on data on clear-cut tracts where the location
and the volume of each tree have been recorded by the harvester.
These data were used to simulate inventories in-silico where the
timber volume of the trees inside a plot is estimated without cut-
ting the trees. More details are given in Web Appendix 3.

The costs C, ; were assumed to be constant over the set of forest
tracts so that C;; = C;. We assume costs C; = 100, C, = 150,
and C; = 250 that consist of a fixed cost of S0 monetary units
and the cost of measuring S, 10, and 20 plots, respectively, at a
cost of 10 monetary units per plot. The inventory budget B will
be varied from 10 000 to 25 000 in increments of 1000.

The demand targets are set by the industry in the real world but
in the practical illustration they are obtained by setting D, ; =
(Z?il ,ug’s) /nr foreach assortment a and time . This yields for
all 6 months considered the demand targets 1520.11, 7495.42,
and 481.26 for pine, spruce, and deciduous trees, respectively.

4 STATISTICAL MODELS FOR ASSORTMENT
VOLUMES AND INVENTORY
MEASUREMENTS

Next, we detail the prior distribution of the timber volumes, py,
and the measurement model pyy . in the description of Sec-
tion 2 and discuss their estimation.

In general, we use V, ; to refer to the volume of timber assort-
ment (eg, pine, spruce, or deciduous trees) a € {1, 2, ..., n4},
intracts € {1, 2, ..., ng}, and denote the corresponding (ran-
dom) measurement by Y, ;. Furthermore, we will use V and Y,
respectively, to denote the volumes and measurements of all as-
sortments in all tracts (stacked to a random vector in some order
that plays no particular role).
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We model the prior (pre-inventory) knowledge on the (uni-
variate) volume V, ; by the log-normal distribution

 ~ log-N(v{®), 28)), (1)

a,s ’

where v(p ) and )»(P ) are the parameters of the log-normal distri-
bution.

The distribution of the measurement Y, ;, given true volume
v,,s and inventory method i, is likewise modeled by a log-normal
distribution:

Voo | (Vas = v ) =) ~ log N(wT, 40), (2)
with parameters VSE S), and )»( ars.ip and with D e{1,2,...,n)

standing for the inventory decision applied to tract s. We estimate
the parameters v{g S), X(p), v‘S’:’),, and )»‘(1";)1 in (1) and (2) using
the method of moments, by matching the mean of (1) and the
variances of (1) and (2) to the data values u0 , (¢)* and 07 ;
that were discussed in Section 3. The details are given in Web A
ppendix 4.

A priori, we assume that each volume V, s isindependent of the
volumes of other assortments in the same or other tracts. Simi-
larly, the observations Y, ; are conditionally independent given
Va.s = v, and the inventory decision. We discuss extensions of
this model in Section 8.

Finally, Web Appendix 5 also presents a computationally sim-
pler model where the prior (1) and measurement model (2)
are replaced with normal distributions instead. While this model
can be unrealistic in the sense that it places probability mass on
negative observations, it may still be useful with moderate prior
and measurement variances.

S THE FOREST INVENTORY PLANNING
PROBLEM

The planning problem considered in this paper can be formu-
lated mathematically as a constrained optimization problem:

maximize PoV (X(I ) )
(posterior value of inventory decision)

suchthat C. ) <B

X

(the inventory cost is less than the budget)
D e x®

where
(the inventory methods are chosen from ‘feasible’
solutions), (3)

with the notation explained below.

The “inventory decision vector” x is an integer vector with
ng elements. The sth element of x0), xS(I) e{l,2,...,ng},
indicates the decision of the inventory method for tract s.
We assume that the inventory methods are “cost-accuracy
consistent”:

Definition 1 LetI = {1, 2, ..., nr} be a set of inventory methods
and let C; ; denote the cost of applying inventory method i to tract s.
The set I is cost-accuracy consistent if:
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(1) C;>C,j, i,jelis#j, implies that for all
se{l,2,...,ns} and for all ae€{1,2,...,n4} it
holds o}, < o‘is!j,

(2) (without loss of generality) the inventory method indices are
ordered so thati > j, i, j € {1,2, ..., nr} impliesC;; >
Cjforalls = (1,2, ..., ng}.

In other words, more costly inventories are more accurate
and the inventory methods have been ordered such that inven-
tory methods with higher index have higher accuracy. The fea-
sible set X1 is formed by all inventory decision vectors in the

set {1,2, ..., n;}" that satisfy the “prior variance order” con-
straint:

Definition 2 An inventory decision vectorx) = (xil), . (I))
follows prior variance order if for any two tracts 51, 5 €
{1,2,...,ng},s1 #~ sy, it holds xs(ll) > xs(zl) when 0 > O'SZ,
where o) == /3 """ (00))2.

This constraint is an assumption of “rationality” of the cost-
effective forest inventories: for two inventory methods and any
two tracts, the inventory that is more accurate can only be car-
ried out for the tract with higher total prior uncertainty. By the
independence of the tracts and assortments for (1), the total pre-
inventory standard deviation 6 of the timber volume can be
computed as in Definition 2.

We will discuss the posterior value PoV (x(")) in Section 5.1.
To incorporate the cost-efficiency of the inventoryx") to our for-
mulation, we maximize PoV with respect to the fixed (monetary)
inventory budget B, which cannot be exceeded by the forest in-

ventory cost:
ns
Cun = Zc&xgr). (4)
s=1

5.1 The posterior value of the inventory decision

The posterior value PoV(x(I)) measures on an average sense
the value of the decision x7), knowing that the inventory data
Y | x\ influences the future harvest scheduling decision. Thus,
to define PoV (x()), we need to first define the future harvest
scheduling problem.

The decision variable for the future harvest scheduling de-
) e {0, 1},
ns, denoting whether tract s is

cision is an ny X ng matrix X(T), with elements xt
t=1,2,...,n7,s=1,2,...,
clear-cut at time ¢. The matrix X(T) is subject to the constraint
Zt lxt(sT) e€{0,1}foralls=1,2,...,
fully harvested exactly once or not at all. We denote by X'(™)
the set of all binary matrices that satisfy this constraint. Further-
more, we use a dot (-) to denote “over all tracts”; the notation

ng, since each tract is

xt(,T) , for example, refers to the row t of X(7).
We model the efficiency of the future harvest scheduling deci-
sion in terms of a quadratic utility function:

nr na 2

U vy ==y ths)vas— we] - (5)

t=1 a=1 \s=1
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which compares the total harvest of assortment a at time ¢ to
itsindustry demand, D, ¢, and penalizes deviations quadratically.
The quadratic form not only facilitates the algorithms presented
in Section 6 but also aligns with the notion that the industry can
adapt to small deviations from the demand targets but large de-
viations may cause major difficulties. Note that (5) is a random
variable since it depends on the assortment volumes V which are
not known exactly before harvesting.

Consider then, how the inventory decision x!) influences the
future harvest scheduling decision x(™ through the data ob-
tained from the inventory decision:

(1) When the inventory decision x is made, a random in-
ventory dataset Y ~ py|, ) will be obtained. The data Y
are noisy measurements of the uncertain volumes V.

(2) Using the data Y, the knowledge regarding V can be im-
proved. This amounts to computing the posterior distri-
bution of V using Bayes’ rule:

Pviy x® (vly, X(I))

_ leV,x(” (Y | v, X(I) )PV (V)
fv Pyv x® (y v, x(D )pv (V)dV'

(3) Using the improved knowledge of V, a better future har-
vest scheduling decision X(T) can be made. According to
Bayesian decision theory (cf. Raiffa and Schlaiffer, 1967;
Hirshleifer and Riley, 1979), X(T) should be chosen to
maximize expected utility:

XDea Eviy=y.xt U™, v)]

= max

/ UX® ) pyy o (v [y, x)dv.
XMexm Jy, '

The quantity capturing the logic of the above steps (1)-(3) is
the posterior value of the inventory decision:
Pov(x\)) = max

U™,
Yy XMex® [/]; ( V)pV\Y,X(I)

x (v 1y, x0)av] pyen (v | x0)dy. (6)

which contains the outer integral over Py|x0, since the data Y
obtained in step (1) are random and unknown in the planning
of the inventory decision x(.

PoV (x() is related to the value of (imperfect) information
(VoI) (cf. Eidsvik et al., 2015) associated with x(D:

VoI(x'") = Pov(x) — PV. (7)
Here, the constant
PV = max / U(X(T), v)py(v)dv (8)
xX(T) e x(T) Vv

is the prior value, which corresponds to the maximal expected
value gained from making the optimal future harvest scheduling
decision based on py (without considering any inventory data
collection). The theoretical upper limit for (7) is the value of

perfect information obtained by replacing PoV (xD) by the per-
fect posterior value PoV* (see (2) in Web Appendix 7), that is,
the value of knowing volume V exactly before the utility is max-
imized.

5.2 A computationally attractive representation for the
posterior value of inventory decision
Next we will focus on an alternative representation for (6) that
allows us to design an algorithm to solve the planning problem
(3) and to estimate Vol. To begin, note that the inner integral in
(6) can be simplified as follows:

/ U(X(T)a V)PV|Y,x(1> (vly, X(I))d"
%

= U™, V) | Y =y,x)

nr fa 2
Z_ZZEH(th(T)VaS_ at) Ya<=Ya.,x(I)}
t=1 a=1

=Y ED (W rE D) L )

t=1 a=1

where (X)' stands for the matrix/vector transpose of X, and
we have used the formulas E[X?] = Var(X) + E[X]?, and
Var(a'Z) = a' Cov(Z)a for a random vector Z. Furthermore,
we use ) :=E[V, | Y, = o, x07 and X := Cov(V,. |
Y. =vy., xD ), to denote the posterior mean and covariance of
V.., respectively.

Under the assumptions of prior independence and condi-
tionally independent observations in the models of Section 4,
.l is a vector with elements E[V, | Yo = yas xs(l)], s =
1,2,...,ng and Z: is a diagonal matrix with diagonal ele-
ments Var(V,; | Y, = yas xS(I)), s=1,2,...,ns. To evalu-
ate u” and X, it is therefore sufficient to compute only these
scalar quantities, which can be done, for example, by numerical
integration.

In Web Appendix 6, it is shown that the maximization in (6)
can be expressed as:

Z@f”) O 13 (e)x +r,
t=1

nr
st.0 < th(sT) <Iforalls=1,2,...,ns,

) e {0, 1} forallt,s, and Q :

where xts

=22<E++ua (/La))
a=1

C = _ziDa,tﬂ'Iv andr := Z ZDit.
a=1

t=1 a=1
(10)

This formulation allows us to write the posterior value (6) in
the following form, which can be approximated by Monte Carlo
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sampling from the distribution py,n:
1 o :
Pov (x) = /y (—5 >y a™”
t=1

= () x" - ) Py (y | xD)dy.

(11)

Here, (f{t(_T) )1<t<n, denotes the solution of (10), which depends
on Q, the ¢;’s and r (defined in (10)). Note that Q and the ¢;’s
in turn depend ony through % and X

6 ALGORITHMS FOR APPROXIMATING THE
POSTERIOR VALUE AND SOLVING THE
PLANNING PROBLEM

The direct solution of the planning problem (3) is difficult,
since the evaluation of the posterior value of inventory decision
(11) requires the solution of a binary optimization problem (the
future harvest scheduling problem) within a multivariate inte-
gral. To ease this computational problem, we (1) approximate
the solution of the binary optimization problem using a heuris-
tic method and (2) approximate the integral (11) by Monte
Carlo sampling where M realizations are simulated from distri-
bution py,». Next, we will present this kind of approximation

for PoV (x")) in Section 6.1 and then use it to construct an algo-
rithm to solve the planning problem (3) in Section 6.2.

6.1 Approximating the posterior value

The optimization problem (10) within (11) can be seen as a spe-
cial case of the GQAD, first proposed by Lee and Ma (2004). Fol-
lowing the formulation of the GQAP by Hahn et al. (2008), the
problem considers the placement of K facilities to L locations
with known quadratic and linear coefficients C;jx, and B;j, re-
spectively, and with constraints on the “space limitations” S; for
each location j. In our problem setting, the forest tracts are anal-
ogous to the facilities, and the locations to the times at which the
tracts should be harvested. However, in our setting, the GQAP is
simplified such that there are no space limitations, that is, S; =
00, and a large number of the coefficients B;; and Cjjy,, in the ob-
jective function are zero.

The GQAP is NP-hard, as it is a generalization of the gener-
alized assignment problem (Koopmans and Beckmann, 1957)
shown to be NP-hard by Fisher et al. (1986). Most of the re-
search on the solution of the GQAP has focused on exact so-
lution using branch and bound methods (cf. Hahn et al., 2008;
Pessoa et al., 2010). In our context, these kinds of methods are
too slow, since the dimension of the problem is relatively high,
and we need to be able to solve the problem M times in order to
evaluate one inventory decision, using the Monte Carlo approx-
imation for (11).

Thus, we rely instead on a fast and greedy heuristic method,
which we call the “random sweep method”. The method consid-
ers multiple random initializations (starting values) for the de-
cision variable X(T). For each random initialization, the method
applies a sequence of “local moves” where each move improves

Biometrics, 2024, Vol. 80,No.3 e §

the objective function value. Once the solution cannot be im-
proved further, the final objective function value is recorded and
the process repeats for the next random initialization. Finally,
the method returns the smallest objective function value found
among all random initializations considered. In our context, this
strategy is computationally attractive for two reasons. First, the
change in the objective function value for each local move is
cheap to evaluate in comparison to the full objective function
value of (10). Second, the local moves can explore the full fea-
sible region and always preserve the feasibility of the improving
candidate solutions.

The local moves correspond to changes in the harvest schedul-
ing of a single tract while the harvest scheduling of the other
tracts remains fixed. Invoking each local move changes the ob-
jective function value of (10) by an “adjustment”. For each tract
s, there are ny + 1 possible adjustments: the adjustment cor-
responding to the local move that does not change the timing
(0) and the adjustments for moves that alter the harvest timing
(given current timing):

From time u to ‘no harvest’:

— Cys — (QS),X,ET) + %st
(12)

. e (1), L
From ‘no harvest to time u:  ¢,; + (Q.;) x, '+ EQ_”,

(13)

From time u to time v: — ¢ + ¢y + (Q;S)/XE,T)

—(Q)x" +Q,, (14

where ¢, stands for the sth element of the vector ¢,, Q; is the
sth diagonal element of Q, and Q; is the sth column of Q. The
adjustments in (12)-(14) have been derived by inspecting the
changing terms in the objective function when the local moves
are applied.

Using adjustments (12)-(14), Algorithm 1 gives pseudo-code
for the random sweep method that can be used to approxi-
mately solve the optimization problem (10) given the specifi-
cation (Q, (¢t)1<t<n» ) and n,; random initializations. The
name RANDOMSWEEP for the algorithm comes from line 7,
where a random processing order (a “sweep” over the tracts) is
drawn. Lines 6-1S carry out the core computation, where local
moves and adjustments are chosen for the tracts, and the solu-
tion and the current objective function value are updated, until
the current solution cannot be improved further.

On line 10, there may be multiple local moves with negative
adjustments, and the choice of the local move in such a situation
affects how greedy the resulting algorithm will be. The greedi-
est choice is to always select the local move that improves (de-
creases) the objective function value the most. In this paper, we
refer to this strategy as the “greedy descent” strategy. Instead, it is
also possible to choose a less greedy descent strategy that we call
“conservative descent”, which always chooses the local move that
improves the objective function value the least (but improves
nonetheless). The conservative descent strategy increases the
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Algorithm 1 RANDOMSWEEP(Q,, (¢ )i=1.2...nys 15 ri)

1: Initialise the return value m = 00.

2: foriel,2,...,n,;do

3: Sample a random feasible decision matrix X,,.

4: Set m,, to the full objective function value associated with X,

S Ifme, < mysetm = Mey, Xpeg = Xy

6 while true do

7 Sample a random processing order p (a permutation of tract indices

1,2,...,n5).
8: for tractindexs € p do
9: With X, and (Q., ¢; ), compute all adjustments for tract s using (12)-(14).
10: Choose a local move with adjustment ¢ < 0. Denote by I the chosen local
move.
11: Apply local move I to the sth column of X,
12: Set Meyy = My + . M my, < m,set m = mey, Xpet = Xeur-
13: end for
14: If X, did not change in the above loop, break out of the while loop.
1S: end while
16: end for

17: Return m, X .

convergence time of the method. However, even with this strat-
egy, we have observed that the while loop in Algorithm 1 very
often still terminates in at most a few dozen iterations. We will
investigate the effects of the choice of the descent strategy in Sec-
tion 6.3.

‘We remark that Algorithm 1 is similar to the Hero method of
Pukkala and Kangas (1993), which has been found to strike an
efficient tradeoff in terms of computational complexity vs. qual-
ity of solution (Pukkala and Kurttila, 2005) in forest planning
problems. Algorithm 1 extends Hero by introducing the ran-
dom processing order of the tracts on each iteration; the Hero
method would instead process the tracts without varying the or-
der. This randomization ensures that no particular tract has “pri-
ority” over the other tracts and introduces variation to the solu-
tions explored by the method. Furthermore, in contrast to Hero,
Algorithm 1 provides “greedyness control” with the two descent
strategies and has been tailored to solve general optimization
problems of the form (10) by taking advantage of the adjustment
formulas (12)-(14). Note that it is not strictly necessary to use
Algorithm 1 to solve the harvest scheduling problems arising in
this work; we discuss refinements and altenatives in Section 8.

Algorithm 2 IT(-)\\/(X(I) s M, ny)

1: fork=1,2,...,Mdo

2 Simulate y®) from Py -

3: Given y(k), compute [L; and ZI foreacha=1,2,..., ng.

4 Using (1", Zz)lgagm and (Da.t ) 1<a<ng.1<t<np, construct Q, (¢4)1<¢<up and r
in (10).

5: m®) X;fi < RANDOMSWEEP(Q., (€ )1<t=uy+ 73 1)

6: end for

) LMk
7: return —g; > i, m®

With the help of Algorithm 1, we present Algorithm 2 which
is a Monte Carlo approximation of (11) given the (candidate)
inventory decision x"), M Monte Carlo samples and n,; random
initializations for Algorithm 1. For each iteration k, Algorithm
2 proceeds by simulating a measurement vector y*) from the
marginal distribution py| ) (line 2). This can be carried out us-
ing the models of Section 4 by first simulating v from the prior
distribution py, and then simulating y® ~ Pyvan (- | V=
v, x\D). The measurement y(*) is subsequently used to compute
the posterior means and covariances (g, ZI)ISKIS”A (line 3).

Finally, these quantities (together with the demands D, ;) are
used to construct the minimization problem (10), which is then
approximately solved using Algorithm 1 and the minimum m(®)
recorded (line ). The use of Algorithm 1 on line S can be re-
placed with another optimization method targeting the prob-
lem (10). The output of Algorithm 2 is the mean of the negative
m®)’s, where the change of sign is applied since we are interested
in maximizing rather than minimizing.

Finally, we remark that with minor modifications to the mini-
mization problem (10) and Algorithms 1 and 2, the methods in
this section may also be leveraged to approximate PV and PoV*.
The details are given in Web Appendix 7.

6.2 The practical solution method

Algorithm 3 presents pseudo-code for our practical method that
approximately solves the planning problem (3) for an inventory
budget B, using M Monte Carlo samples and #,; random initial-
izations.

Algorithm 3 SOLVEPLANNINGPROBLEM(B; M, n,;)

1: Initialise an empty container O for results.
2: Construct the set XY@,
3: forxe XY do
4 Evaluate p = I;()T/(x; M, n,;) (Algorithm 2).
S: Evaluate ¢ = C, using (4).
6: Save (i, p, c) to the container O.
7: end for
8: SetOp = {(x, p) : (x, p,c) € Oandc < B}
9: Find (x*, p*) from Op such that p* > p for all elements (x, p) € Op.
10: returnx™, p*

The algorithm first constructs the feasible set X’ (D and then,
for eachx € XD, computes the inventory cost using (4) and
the approximate posterior value using Algorithm 2. The output
of Algorithm 3 is the highest approximate posterior value and
the associated inventory decision with cost less than B (lines 8-
9). The inventory budget B is only required by Algorithm 3 af-
ter processing the set X’ (D, Therefore, Algorithm 3 can solve (3)
approximately for multiple budgets with a single run of the pro-
cessing loop (lines 3-7).

Under the assumption of “cost-accuracy consistency” (Defini-
tion 1) and distinct total prior volume variances, each inventory
decision vectorx € XD canbe constructed as follows. First, de-
fine

k(np,ng) :={(z1,22, ..., zng) 1z € {1,2, ..., 101},

zi < z]-Vi < jh

that is, k (11, ng) is the set of ordered vectors of length ng with
elementsin {1, 2, ..., n;}. For each z € « (n;, ng), we can con-
struct a corresponding x € X’ D by setting x, = z; for j €
1,2, ..., ng, where ois the vector of tract indices sorted in the
order of increasing total prior standard deviation 00 (see Defini-
tion 2). It is well known that |« (1], ng)| = ("S+n";_l), implying
|xX@| = ("), as well,

6.3 Investigating the performance of Algorithm 1
Our approximation of the posterior value uses Algorithm 1 to
solve the minimization problem (10). The performance of the
algorithm is therefore important for the overall performance of
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FIGURE 1 The variability in the final objective function values of Algorithm 1 with respect to the number of random initializations and the
descent strategy discussed in Section 6.1. For both descent strategies, the depicted lines correspond to the 1% and 99% quantiles of final
objective function values obtained, when Algorithm 1 was run 10 000 times with the number of initializations shown in the horizontal axis.
Note that the horizontal axis does not increase linearly. The panes indicate the inventory decision for all 100 tracts that was used to construct

the three minimization problems of the form (10) studied here.

the approximation and thus the solution of the full planning
problem (3).

As Algorithm 1 features randomness, we studied the varia-
tion in the found optima. We constructed three test minimiza-
tion problems of the form (10), as follows. First, using the tract
data of Section 3, we simulated three inventory datasets with
S, 10, or 20 plots for every tract from the normal model of
Web Appendix S. For each test problem, we ran Algorithm 1
10000 times using both descent strategies from Section 6.1)
and varied the number of random initializations #,; from S up to
20 000. After each run, we recorded the final objective function
value.

Figure 1 summarizes the results of this experiment by display-
ing the empirical 1% and 99% quantiles of the final 10 000 objec-
tive function values given the descent strategy and the number of
random initializations n,; of Algorithm 1. As expected, the vari-
ability of the final objective function values quickly diminishes
as n,; increases.

As the optimization problem is NP-hard, it is possible that
the true global minimum is even lower than the achieved solu-
tions. To study whether there exist better solutions, we further
ran the Gurobi optimiser (Gurobi Optimization, LLC, 2023)
for 14 h in the case of the minimization problem constructed

when the inventory decision was 20 plots for each tract. Our
implementation in Gurobi used Algorithm 1 as a heuristic for
the mixed-integer solver. The results for this experiment are
shown in Web Figure 4 in Web Appendix 8 and indicate that
the minima found by Algorithm 1 are typically within 5%-
15% of the best minimum found using Gurobi when a suffi-
cient number of random initializations are used. Note that com-
pared to the 14 h runtime of Gurobi, Algorithm 1 finishes in sec-
onds.

Interestingly, in Figure 1, the conservative descent strategy
exhibits less variability for all n,; studied, and also appears to
find solutions with slightly better objective function values. Our
intuition is that this occurs since the conservative descent ex-
plores the solution space more efficiently by avoiding moves
that improve the objective function value too eagerly, when
the randomly sampled solution candidates will still be of poor
quality.

Finally, the panes from left to right in Figure 1 show decreasing
objective function values as the inventory decision is made more
accurate and expensive. This makes sense, since more accurate
inventory data will provide better information on the unknown
volumes V, improving the found objective function value in the
harvest scheduling problem (10).
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FIGURE 2 The inventory decisions returned by Algorithm 3 for the Swedish tract dataset with budget constraints from 10 000 to 25 000 by
increments of 1000. The shade of a cell shows the preferred inventory decision for a tract (vertical axis) under the given budget (horizontal

axis).

7 APPLICATION TO THE SWEDISH TRACT
DATASET

Next, we apply the methods of Section 6 to the Swedish tract
dataset discussed in Section 3. For each budget, we apply Al-
gorithm 3 with the model discussed in Section 4. This yields
the preferred inventory method (sampling S, 10, or 20 plots) for
each tractin the dataset. Motivated by our findings in Section 6.3,
we use 2500 Monte Carlo samples, 2500 random initializations
and the conservative descent strategy for Algorithm 1 within Al-
gorithm 3.

Figure 2 summarizes the results. The inventory decisions fol-
low an organized structure due to the ordering of the tracts by
the prior volume variance (on the vertical axis). For the extreme
budgets 10 000 and 25 000, the cheapest (S plots inventory for
every tract) and the most expensive inventory (20 plots inven-
tory for every tract) are chosen, as the costs of these invento-
ries coincide exactly with the extreme budgets. In contrast, all
three inventory methods are used for some tracts when the bud-
getis between 11 000 and 23 000. For these budgets, the propor-
tions of the inventory methods selected for each tract vary, which

occurs because of the difference between the assortment compo-
sition in the tracts and the different costs of the inventories. For
budgets 16 000-19 000, it appears that the proportions of tracts
with 10 or 20 plots inventory are roughly the same, whereas for
budgets 20 000-25 000, the 20 plots’ inventories begin to “dom-
inate”, as there is enough money to spend in the budget. For bud-
getsless than 15 000, especially, the proportions of tracts to mea-
sure with 10 and 20 plots vary without a clear pattern.

Figure 3 displays the maximal posterior value associated with
the decisions computed by Algorithm 3 that costed less than
each inventory budget considered. In addition, the prior value
PV and the perfect posterior value PoV* discussed in Section 5.1
are shown with horizontal lines. The increasing posterior values
depict the increasing information gain from larger budgets. In
comparison to PV, the figure shows that a significant informa-
tion gain is obtained even by carrying out the cheapest possible
forest inventory costing 10 000. The discrepancy between PoV*
and the maximal posterior value obtained for budget 25 000 de-
picts the information gain that could still be obtained by even
more expensive and accurate inventory methods.
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FIGURE 3 The largest posterior value obtained for each budget constraint (points) considered with the Swedish tract dataset. The horizontal
dashed and solid lines correspond to approximations of the prior value PV (8) and the perfect posterior value, respectively. These quantities
were approximated as discussed in Web Appendix 7. The difference between the solid and the dashed line and the difference between the
points and the dashed line correspond to approximate values of perfect and imperfect information, respectively.

Inspecting the rate of increase of the posterior values in
Figure 3 can be used to help decision-making: spending more
than 16 000-18 000 in the forest inventory appears to bring di-
minishing returns from a Bayesian decision-theoretic perspec-
tive.

8 DISCUSSION

We developed a computational method for selecting a cost-
effective operational forest inventory under uncertainty. Our ap-
proach is based on maximizing the posterior value of the data
collection associated with an inventory decision. This leads us
to model a Bayesian two-stage decision problem where the inner
stage considers scheduling the harvesting to fulfill the demand
targets and the outer stage considers the problem of interest, se-
lecting the accuracy of pre-harvest inventories. As the output of
our method, we obtain a plan that indicates how the inventory
budget should be divided between the forest tracts in order to
provide maximally beneficial information for scheduling the har-
vests of the tracts.

The steps to use the method for also solving the harvest deci-
sion problem require collecting inventory data in practice, and
proceed as follows. First, the inventory budget is fixed and the
solution to the inventory decision problem is obtained from one
of the columns of Figure 2 (or equivalent). Then, the selected in-
ventory is carried out (in practice), which yields a realization y.
The data y are then used to construct a final harvest scheduling

problem of the form (10); solving it yields the solution to the
harvest scheduling problem. Here, the problem is solved only
once, and thus it is feasible to use computationally intensive
branch and bound mixed-integer solvers (similar to the Gurobi
solver in Section 6.3) to obtain as efficient a solution as possible.

The developed approach scales well with respect to the num-
ber of assortments 14 and the number of tracts ng (assuming
that n; is small compared to ng) but increasing the number of
inventory methods n; may multiply the computational cost by
ns + n; — 1. In practical settings, the scalability with respect to
ng is, however, arguably more important. The approach could
also be applied in a dynamic setting, where new tracts are added
every month and the decision-making is done repeatedly.

Since the optimization problems arising in this paper are NP-
hard, the proposed algorithms rely on heuristics and the ob-
tained solutions may not be globally optimal. When we studied
the performance of the random sweep method of Section 6.3,
we found that in problems constructed from the Swedish tract
data, it could reach minimums that were within $%-15% of min-
imums computed by a vastly more computationally intensive
mixed-integer solver. Even though this does not constitute per-
fect performance, we believe that the overall developed method
could already be a useful tool in operational forestry. Note that
when considering the full two-stage problem, the noted 5%-
15% deviation only applies in the harvest scheduling problems
solved as a part of the Monte Carlo approximation when se-
lecting the inventory decision. This is because when the found
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inventory decision is operationalized, the final harvest schedul-
ing problem can be solved with more computationally intensive
methods as discussed above.

Within the presented method, it would be possible to use
other methods than Algorithm 1 for solving the harvest schedul-
ing problems (10). Potential improvements include simulated
annealing (SA) (Kirkpatrick et al, 1983) and multimoves
that move the harvest timing for many tracts simultaneously.
Heinonen and Pukkala (2004) studied these methods and found
that they may improve harvest optimization results over the
Hero method, which is similar to Algorithm 1. However, these
results do not necessarily mean that using more intensive harvest
optimization methods will lead to better estimates of the pos-
terior value PoV (6). This is because the choice of the harvest
scheduling optimizer acts as a tradeoff in the bias-variance de-
composition of the PoV Monte Carlo approximation (Algorithm
2). In particular, for a fixed computational budget, faster heuris-
tic methods allow for more Monte Carlo samples (less variance
at the cost of bias) whereas computationally intensive methods
decrease bias—at the cost of more variance.

There are many ways to broaden and refine the problem stud-
ied in this paper. Instead of log-normal models, alternative sta-
tistical models (such as the Gamma distribution) under which
the posterior means and variances for assortment volumes can
be computed, (to a sufficient numerical approximation) could be
used for the assortment volumes and volume measurements. It
might also be possible to extend the developed model with a spa-
tial correlation structure between the tracts and/or with a corre-
lation structure for the assortments within the tracts. Modeling
these correlations would likely make the inventory returned by
our method cheaper as each inventory observation would yield
more information at the same cost. The spatial correlation struc-
ture could be formulated, for example, using the distance be-
tween tracts, which could also be useful for formulating further
constraints to the inventory decision or harvest scheduling prob-
lems, similar to the ideas of Eyvindson et al. (2018).

“The prior variance order’ constraint (Definition 2) can be
seen as a simplification that reduces the large solution space of
the unconstrained forest inventory problem to a smaller solution
space that omits many “redundant” solutions with cost greatly
larger or smaller than the budget B. In scenarios where some of
the assortments are more important or valuable than others, the
prior variance ordering is not justified, and it may be beneficial
to order the tracts based on some other quantity. An example is
an ordering based on (monetary) value uncertainty computed
using crude estimates of value per unit of timber volume. In gen-
eral, the ordering should reflect the amount of uncertainty (of
some quantity) , because it only makes sense to pay for measur-
ing what is unknown.

To further take into account differences between the assort-
ments, the utility function (S) could be modified to include
(constant) assortment and time-specific weights. This would
only lead to minor changes to the parameters of (10), and thus
could be carried out with the presented method. Furthermore,
formulating (5) in monetary terms would allow for direct Vol-
based optimization without budget constraints.

Finally, the full problem setup could be developed into the
direction of multi-objective decision-making, for example, by

considering also the quality of the harvested material in the in-
ner stage. Such extensions might better account for complexities
in operational forestry but might also create new computational
challenges for Bayesian decision-making.
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