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A B S T R A C T  

We address a Bayesia n two-s tage decision pro b lem in operational fores try whe re the inner stage considers scheduling the h arv esting to fulfil l 
de ma nd ta rgets a nd the oute r s tage conside rs selectin g the a ccura cy of pre-h arv est inv entories th a t ar e use d to estim ate the timber v olumes of the 
forest tracts. The higher a ccura cy of the inve n tory e nab les be tter s che duling de ci sions but al s o imp lies hi ghe r cos ts. We focus on the outer stage, 
which we formulate as a maximization of the pos te rior value of the inve n tory decision under a budget cons train t. The pos te rior value depe nds on 

the s o lution to the inne r s tage pro b le m a nd its computation is a nalytically in tra ctable, featurin g a n NP-ha rd bina ry opt imizat ion pro b lem within 

a hi gh-dime nsional in tegral. In pa rticula r, the bina ry optimiza tion pr o b lem is a speci al cas e of a ge ne r aliz ed quadr atic assi gnme n t proble m. We 
prese n t a practical method th at solv es the oute r s tage pro b le m with a n a ppr oxima tion which combines Monte Carlo s amp ling with a gre e dy, 
r andomiz ed method for the binary opt imizat ion pro b lem . We deriv e inv entory de cision s for a d atas e t of 100 Sw e dish forest tra cts a cross a ran ge 
of inve n tory bud gets a nd es tim ate the value of the inform ation to be obtaine d. 

KEY W OR DS : Bayesian modeling; decision making; forestry; quadratic assi gnme n t pro b lem; s cheduling; v alue of information. 
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1 I N T R O D U C T I O N 

 e cisions on h arv esting are central in forestry. The scope of deci-
ion making varies from the strategic level, where the time scale is
ecades, to the optimal cutting of a single s te m (Kivine n, 2004 ;
lvd al e t al., 2023 ). In ope rational short-te rm fores t p l anning,

he s ta rting poin t is a s e t of forest tracts, that is, a s e t of forest ar-
as that a forestry company has already contracted to be cut in
he near future, for instance, in the next 6 months. In this setting,
or est gr owth is irr eleva n t becaus e the p l anning horizon is short.

ltim ately, the de cision of in te res t is to choos e a s chedule for the
 arv esting of the tracts such that the monthly demand for timber
an be met as precisely as possible. Both exc e e ding and s ubc e e d-
ng the de ma nd ta rge ts caus e los s es to the industry. 

The timber volume available in the tracts is uncertain, which
rings the decision pro b le m in to the realm of s tatis tics. Before
aking the ha rves t scheduling decision, the unce rtain ty ca n be

e duc e d by carrying out a forest inventory where the timber
 olume is estim ate d with a chosen a ccura cy (the inve n tory de-
ision) using field s urv eys (Nieuw e nh uis et al., 1999 ) and re-
otely s en s ed d ata (Vauhkonen e t al., 2014 ; Siipilehto e t al.,

016 ). A mor e accura te inve n tory leads to better scheduling de-
isions but also costs more because a la rge r sa mple size is ne e de d
Gr egoir e et al., 2016 ). Although the pro b lem of choosing an in-
e n tory method in industrial wood pr ocur e me n t is conceptually
escribed already by Ståhl ( 1994 , p. 27–28), we are not aware of
ny previous works with practical s o lution s. 
In this w ork, w e dev e lop a Baye sia n a pproach for cos t-effective

pe rational (short-te rm) fores t inve n tory p l a nning. We form u-
e c eiv e d: Nov e mbe r 20, 2023; Revise d: July 6, 2024; Ac c epte d: Septe mbe r 5, 2024 
The Author(s) 2024. Published by Oxford University Press on behalf of The In te rn ation a
 re ative Common s A ttribution Licen s e ( https://creativ ec ommons .org/lic ense s/by/4.0/ ), wh

he original work is properly cited. 
ate the inve n tory decision pro b lem as an opt imizat ion prob-
em th at inv olv es the m aximization of the pos te rior value of the
nve n tory decision under a budget cons train t. The c onc ept of
os te rior value, that is, the expected value of the new data to be
 olle cte d, h as a crucial role in the inve n tory decision pro b lem .
he diffe re nce of the pos te rior value a nd the prior value, that

s, the expe cte d value before c olle cting ne w dat a, is called value
f information (cf. Eidsvik et al., 2015 ). In forestry, value of in-

ormation and relate d c onc epts h av e be e n a pplie d to long -term
 l anning from the perspe ctiv e of a forest owner (Ståhl, 1994 ;
uvemo et al., 2014 ; Kangas et al., 2014 ; 2015 ). 
Computing the pos te rior value leads to s o lving a ge ne ral -

z ed quadr atic assi gnme n t proble m (G QA P) (Lee and Ma,
004 ) which is known to be NP-hard (Cook, 1971 ). We pro-
os e algorithm s that emp loy gre e dy heuristics and Monte Carlo
 amp ling to find su ffic iently good s o lution s for operational
se. 
Our approach for inv entory de cision p l anning allows for tak-

ng into ac c ount the prior uncert aintie s in the timber volume,
s well as the unce rtain ties in the measure me n ts ca rried out in
 fores t inve n tory. The prima ry output of our method is a p l an
n how to c ost-effe ctiv e ly se le ct tract inv e n tory a ccura cies un-
e r unce rtain ty. Our practical exa mple i l lustrates this for 100
w e dish forest tracts. 
We begin in the next section by exp l aining the inve n tory deci -

ion pro b le m of in te res t in more detail and pro vidin g guidance
or the rest of the pa pe r. Web Appe ndix 1 con tains a table of all
otation used in this pa pe r. 
l Biome tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the 
ich permits unre stricted re use, dis tribution, a nd reproduction in any me dium, provide d 
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2 OV E RV I E W O F  T H E  D E C I S I O N P R O B L E M  

We consider a forestry company th at h as the right to cut n S for-
est tracts that each h av e n A timber as s ortments . The c ompany
has some prior (pre-inve n tory) information on the timber vol-
umes V of the tracts in the form of an (n S × n A ) -dimensional
prior probability dis tribution p V 

. Furthe rmore, the compa ny has
the opportunity to improve the kno wledg e on V by making a de-
cision x (I) on a forest inventory. The result of x (I) is an inven-
tory d atas e t Y | x (I) fo llowing a n (n S × n A ) -dime n sional pro b-
abil ity d istribut ion p Y| x ( I) , which int egrat es ove r the prior p V 

a nd
a measure me n t probabil ity d istribut ion p Y| V, x ( I) . The decision
v e ctor x (I) encodes the selection of an inve n tory method for each
tra ct amon g n I pre define d inv e n tory me thods of v aryin g a ccu-
racy. The cost of applying inventory method i to tract s is C s,i , a
known cons ta n t. 

Under this s e tting, w e c onsider the c ost-effe ctiv e m aximiza-
tion of the pos te rior value of the inve n tory decision x (I) which
leads us to model a two-stage deci sion-mak ing pro b le m whe re
a n “inne r” pro b le m is nes ted inside a n “oute r” pro b lem . The in-
ner pro b lem con siders s che duling the h arv ests of the forest tracts
in order to meet a known demand D a,t for each as s ortment a at
(future) times t = 1 , 2 , . . . , n T , a nd the oute r pro b lem con sid-
ers the c ost-effe ctiv e sele ction of x (I) under a budget cons train t,
B . The outer and inner pro b lem s are linke d, sinc e the s o lution of
the inner pro b lem depends on the probabilistic kno wledg e avail-
able on the volumes V, which the c ompany h as the opportunity
to impro ve usin g Y | x (I) obtained from the outer decision prob-
lem. 

Ev en though w e model the full tw o-stage pro b lem, we focus
on s o lving the outer pro b lem . Thi s i s becaus e the s o lution of the
inner pro b lem is dependent on which Y | x (I) is realized. In the
p l anning of x (I) , Y wi l l ne c es s a rily be unknown a nd ra ndom, a nd
ther efor e a s en sib le, d at a -informed s o lution for the inner prob-
le m ca n only be obtaine d onc e (the chosen) x (I) h as be e n ca rried
out in practice, and a r eal-world r ealiza tion y of the ra ndom va ri -
able Y | x (I) c olle cte d. In the c omputation al method that selects
the inve n tory de cision, how ev e r, the inne r pro b lem is s o lv e d for
multiple r ealiza tions Y | x (I) for each candidate decision x (I) . In
effect, this evaluates the fitness of a given x (I) on average, but
does not provide a single, concrete solution to the inner prob-
lem. We return to this in the d isc ussion. 

The rest of the paper is organized as follows. Section 3 intro-
duc es the Sw e dish tract d atas e t us ed in our practical i l lustration.
The models for the prior volume distribution p V 

and the mea-
sure me n t dis tribut ion p Y| V, x ( I) are describe d in Se ction 4 . The
inve n tory decision pro b lem is formally prese n ted as a n optimiza-
tion pro b lem in Section 5 . In Se ction 6 , w e prese n t a practical
method for solving the inve n tory decision pro b le m, a nd s tudy
its pe rforma nce in sim ul ation s. Finally, we app ly the me thod to
the Sw e dish tract d atas e t in Se ction 7 and c onclude with a dis-
cussion in Section 8 . 

3 DATA  

The d atas e t for the practical i l lustr ation is a r a ndom sa m-
ple of a la rge r dataset a nd e ncompasses n S = 100 forest tracts

in Southern Sw e den . Thes e tracts h av e be en in fact clear- 
cut but here we consider the pre-ha rves t situation with three 
inve n tory methods ( n I = 3 ), three as s ortme n ts (pine , spruce ,
or deciduous trees, n A = 3 ) and a 6 months’ h arv est sche duling 
horizon ( n T = 6 ). Letting s = 1 , 2 , . . . , n S , a = 1 , 2 , . . . , n A ,
i = 1 , 2 , . . . , n I , and t = 1 , 2 , . . . , n T index tracts, as s ort-
me n ts, inve n tory methods a nd time poin ts, respe ctiv ely, the data 
consist of 

1. the prior means μ0 
a,s and v ari ances (σ 0 

a,s ) 
2 of timber vol- 

umes for each as s ortme n t a nd tract, 
2. the measure me n t va ria nces σ 2 

a,s,i for the inve n tory meth- 
ods i = 1 , 2 , 3 for each as s ortme n t a nd tract, 

3. the costs C s,i of applying inventory method i in tract s , 
4. the inve n tory bud get B that the inve n tory cos ts ca nnot ex- 

c e e d, and 

5. the de ma nd ta rg ets D a,t for e ach as s ortme n t a nd mon th. 

The prior means and v ari ances are o btained fr om a pr eviously 
dev elope d imputation model, which was fitted using data on 

clea r-cut tracts whe re both the true timbe r volumes a nd the cha r- 
acte ris tics of the tracts are known. A more detailed description 

of the data and the process is given in Web Appendix 2 . 
The measure me n t va ria nces σ 2 

a,s,i of the three inve n tory meth- 
ods ( i = 1 , 2 , 3 ) are als o o btained using a pre viously de v elope d
model. The inve n tory methods a re cha racte rized b y the n umbe r 
of fixed -a r ea field plots tha t ar e use d in the estim ation of timber
volume (5, 10, and 20 plots per forest tract, respe ctiv ely). The 
model is based on data on clear-cut tracts where the location 

and the volume of each tre e h av e be en re c orde d by the h arv ester. 
Thes e d a ta wer e us ed to simul ate inve n tories in-silico where the 
timber volume of the trees inside a plot is estim ate d without cut- 
ting the tre es . More details are given in Web Appendix 3 . 

The costs C s,i were assumed to be cons ta n t ove r the s e t of forest 
tracts so that C s,i = C i . We assume costs C 1 = 100 , C 2 = 150 , 
and C 3 = 250 that consist of a fixed cost of 50 monetary units 
a nd the cos t of measuring 5, 10, and 20 plots, respe ctiv ely, at a 
cost of 10 monetary units per plot. The inventory budget B wi l l 
be varied from 10 000 to 25 000 in incre me n ts of 1000. 

The de ma nd ta rgets a re s e t b y the indus try in the real world but
in the practical i l lustration they are obtained by setting D a,t = (∑ n S 

s =1 μ
0 
a,s 

)
/n T for each as s ortme n t a and time t . This yields for 

all 6 months c onsidere d the demand targets 1520.11, 7495.42, 
and 481.26 for pine, spruce, and deciduous trees, respe ctiv ely. 

4 S  TAT I S  T I C A L  M O D E L  S  F  O R A S S  O RT M E N T  

V O LU M E  S  A  N D  I N V E N TO RY  

M E A S U R E M E N TS  

Next, we detail the prior distribution of the timber volumes, p V 

, 
a nd the measure me n t model p Y| V, x (I) in the description of Sec- 
tion 2 and d isc uss their est imat ion. 

In ge ne ral, we use V a,s to refer to the volume of timber as s ort- 
me n t (eg, pine, spruce, or deciduous trees) a ∈ { 1 , 2 , . . . , n A } ,
in tract s ∈ { 1 , 2 , . . . , n S } , a nd de note the corresponding (ran-
dom) measure me n t b y Y a,s . Furthe rmore, we wi l l use V and Y, 
respe ctiv ely, t o denot e the v olumes and meas urements of all as- 
sortme n ts in all tracts (stacked to a random v e ctor in some order 
that p l ays no particul ar ro le). 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data
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We model the prior (pre-inve n tory) knowled ge on the (uni-
 ari ate) vo lume V a,s by the lo g -norm al distribution 

V a,s ∼ log - N(ν(p) 
a,s , λ

(p) 
a,s ) , (1) 

he re ν(p) 
a,s a nd λ

(p) 
a,s a re the pa ra mete rs of the log -norm al dis tri -

ution. 
The distribution of the measurement Y a,s , given true volume

 a,s and inventory method i , i s likewi se modeled by a log -norm al
istribution: 

Y a,s | (V a,s = v a,s , x (I) 
s = i ) ∼ log - N(ν(m ) 

a,s,i , λ
(m ) 
a,s,i ) , (2) 

ith pa ra mete rs ν(m ) 
a,s,i a nd λ

(m ) 
a,s,i , a nd with x (I) 

s ∈ { 1 , 2 , . . . , n I }
 ta nding for the inve n tory decision a pplied to tract s . We estimate
he pa ra mete rs ν(p) 

a,s , λ(p) 
a,s , ν

(m ) 
a,s,i , a nd λ

(m ) 
a,s,i in ( 1 ) a nd ( 2 ) using

he method of mome n ts, b y matching the mean of ( 1 ) and the
 ari ances of ( 1 ) and ( 2 ) to the data values μ0 

a,s , (σ
0 
a,s ) 

2 , and σ 2 
a,s,i 

h at w ere d isc ussed in Section 3 . The details are given in Web A
pendix 4 . 
A pr ior i, w e ass ume th at each v olume V a,s is indepe nde n t of the

olumes of other assortme n ts in the same or other tra cts. S imi-
 arly, the o bs erv ation s Y a,s are c ondition ally independent given
 a,s = v a,s and the inventory decision. We d isc uss extensions of

his model in Section 8 . 
Finally, Web Appendix 5 also prese n ts a c omputation ally sim-

le r model whe re the prior ( 1 ) a nd measure me n t model ( 2 )
r e r ep l ac e d with norm al distribution s in stead. While this model
a n be unrealis tic in the se nse that it places probability mass on
e gativ e o bs erv ation s, it may sti l l be useful with moderate prior
 nd measure me n t va ria nc es . 

5 T H E  F O R E ST  I N V E N TO RY  P L A N N I N G  

P R O B L E M  

he p l anning pro b lem con sidered in this pa pe r ca n be form u-
ate d m athem atically as a c onstraine d optimization pro b lem: 

maximize PoV (x (I) ) 

(pos te rior value of inve n tory decision) 

s uch th at C x (I) ≤ B 

(the inve n tory cos t is less tha n the bud get) 

where x (I) ∈ X 

(I) 

(the inve n tory methods a re chose n from ‘feasible’ 

s o lution s) , (3) 

ith the notation exp l ained below. 
The “inve n tory de cision v e ctor” x (I) is a n in tege r v e ctor with
 S ele me n ts. The s th ele me n t of x (I) , x (I) 

s ∈ { 1 , 2 , . . . , n I } ,
ndicates the decision of the inve n tory method for tract s .

e ass ume th at the inv e n tory methods a re “cos t-a ccura cy
onsis te n t”: 

efinition 1 Let I = { 1 , 2 , . . . , n I } be a set of i nv ent o ry m eth ods
nd let C s,i denote the cost of app l yi ng i nv ent o ry m eth od i to tract s .
he set I is cost-a cc ura cy co nsis t ent if: 
(1) C s,i > C s, j , i, j ∈ I, i � = j, imp l ies tha t fo r all
s ∈ { 1 , 2 , . . . , n S } and for all a ∈ { 1 , 2 , . . . , n A } it
holds σ 2 

a,s,i < σ 2 
a,s, j , 

(2) (witho ut lo ss of genera lity) the i nv ent o ry m eth o d in d ices a re
ordered so that i > j, i, j ∈ { 1 , 2 , . . . , n I } imp l ies C s,i >

C s, j for all s = { 1 , 2 , . . . , n S } . 

In other wor ds, mor e costly inve n tories a r e mor e accura te
 nd the inve n tory methods h av e be e n orde re d s uch th at inv en-
ory methods with hi ghe r index h av e hi ghe r a ccura cy. The fea-
ib le s e t X 

(I) is formed by all inve n t ory decision vect ors in the
 e t { 1 , 2 , . . . , n I } n S tha t sa tisfy the “pr ior var ia nce orde r” con-
 train t: 

efinition 2 An i nv ent o ry de cisio n ve ct o r x (I) = (x (I) 
1 , . . . , x (I) 

n S )
ollows prior va ri a nce order if for any two tracts s 1 , s 2 ∈
 1 , 2 , . . . , n S } , s 1 � = s 2 , it holds x (I) 

s 1 ≥ x (I) 
s 2 when σ 0 

s 1 ≥ σ 0 
s 2 ,

here σ 0 
s := 

√ ∑ n A 
a =1 (σ 0 

a,s ) 2 . 

This cons train t is a n assumpt ion of “rat ion ality” of the c ost-
effe ctiv e forest inv entories: for tw o inv e n tory methods a nd a ny
w o tracts, the inv e n tory tha t is mor e accura te can only be car-
ied out for the tract with hi ghe r total prior unce rtain ty. By the
ndepe nde nce of the tracts and as s ortments for ( 1 ), the total pre-
nve n tory s ta nda r d devia tion σ 0 

s of the timber volume can be
 ompute d as in Definition 2. 
We wi l l d isc uss the pos te rior value PoV (x (I) ) in Section 5.1 .

o incorporate the cos t-efficie ncy of the inve n t ory x (I) t o our for-
ulation, w e m aximize PoV with respect to the fixed (monetary)

nve n tory bud get B , which ca nnot be exc e e de d b y the fores t in-
e n tory cos t: 

C x (I) = 

n S ∑ 

s =1 

C s,x (I) 
s 

. (4)

5.1 The poste rio r value of the inve nto ry decisio n 

he pos te rior value PoV (x (I) ) measures on a n ave rage se nse
he value of the decision x (I) , knowing that the inve n tory data
 | x (I) influences the future ha rves t scheduling decision. Thus,

o define PoV (x (I) ) , we need to first define the future h arv est
 cheduling pro b lem . 

The decision v ari ab le for the future h arv est sche duling de-
i sion i s an n T × n S matrix X 

(T ) , with ele me n ts x (T ) 
ts ∈ { 0 , 1 } ,

 = 1 , 2 , . . . , n T , s = 1 , 2 , . . . , n S , de noting whethe r tract s is
lear-cut at time t . The matrix X 

(T ) is s ubje ct to the cons train t
 n T 
t=1 x 

(T ) 
ts ∈ { 0 , 1 } for all s = 1 , 2 , . . . , n S , since each tract is

ully h arv este d exactly onc e or not at all. We de note b y X 

(T )

he s e t of all bin ary m atric es th a t sa ti sfy thi s cons train t. Furthe r-
ore, we use a dot ( ·) to denote “over all tracts”; the notation
 

(T ) 
t · , for example, refers to the row t of X 

(T ) . 
We model the efficiency of the future h arv est sche duling de ci-

ion in terms of a quadratic utility function: 

U(X 

(T ) , V) = −
n T ∑ 

t=1 

n A ∑ 

a =1 

( n S ∑ 

s =1 

x (T ) 
ts V a,s − D a,t 

) 2 

, (5)

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data
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which compares the total h arv est of as s ortment a at time t to
its industry demand, D a,t , and penalizes devi ation s quadratically.
The quadratic form not only facilit ate s the algorithms prese n ted
in Section 6 but also aligns with the notion that the industry can
adapt to small deviations from the de ma nd ta rgets but la rge de-
vi ation s may caus e m a jor d iffic ulties . Note th at ( 5 ) is a random
v ari ab le since it depends on the as s ortment vo lumes V which are
not known exactly before h arv esting. 

Conside r the n, how the inve n tory decision x (I) influe nces the
future h arv est sche duling de cision X 

(T ) through the d ata o b-
tained from the inve n tory decision: 

(1) When the inventory decision x (I) is made, a random in-
ve n tory d atas e t Y ∼ p Y| x (I) wi l l be o btained. The d ata Y
are no is y measure me n ts of the unce rt ain volume s V. 

(2) Using the data Y, the kno wledg e reg arding V can be im-
prov e d. This a moun ts to computing the pos te rior dis tri -
bution of V using Bayes’ rule: 

p V| Y, x (I) (v | y, x (I) ) 

= 

p Y| V, x (I) ( y | v, x (I) ) p V 

( v) ∫ 
V 

p Y| V, x (I) ( y | v, x (I) ) p V 

( v)d v 

. 

(3) Using the improv e d knowle dge of V, a better future har-
v est sche duling de cision X 

(T ) can be m ade. Ac c ording to
Bayesian decision theory (cf. Raiffa and Schlaiffer, 1967 ;
Hirshleife r a nd Riley, 1979 ), X 

(T ) should be chose n to
ma ximize ex pected utility: 

max 
X (T ) ∈X 

(T ) 
E V| Y= y, x (I) [U(X 

(T ) , V)] 

= max 
X (T ) ∈X 

(T ) 

∫ 

V 
U( X 

(T ) , v) p V| Y, x (I) ( v | y, x (I) )d v. 

The qua n tity ca pturin g the logic of the abo ve steps (1)–(3) is
the pos te rior value of the inve n tory decision: 

PoV (x (I) ) = 

∫ 

Y 
max 

X (T ) ∈X 

(T ) 

[∫ 

V 
U (X 

(T ) , v) p V| Y, x (I) 

× (v | y, x (I) )d v 

] 
p Y| x (I) (y | x (I) )d y, (6)

which contains the outer integral over p Y| x (I) , since the data Y
obt ained in ste p (1) a re ra ndom a nd unknown in the p l anning
of the inve n tory decision x (I) . 

PoV (x (I) ) is r ela t ed t o the value of (imperfe ct) inform ation
(VoI) (cf. Eidsvik et al., 2015 ) associated with x (I) : 

VoI (x (I) ) = PoV (x (I) ) − PV . (7)

Here, the constant 

PV = max 
X (T ) ∈X 

(T ) 

∫ 

V 
U( X 

(T ) , v) p V 

( v)d v (8)

is the prior value, which corresponds to the m axim al expe cte d
value gained from making the optimal future ha rves t scheduling
de cision base d on p V 

(without c onside ring a ny inve n tory data
c olle ction). The the oretical upper limit for ( 7 ) is the value of
perfe ct inform ation obtaine d by rep l a cin g PoV (x (I) ) b y the pe r-
fect pos te rior v alue PoV 

∗ (s e e (2) in Web Appendix 7 ), th at is, 
the value of knowing volume V exactly before the utility is max- 
imized. 

5.2 A co mputatio nall y att ractive rep res e ntatio n fo r the 
poste rio r value of inve nto ry decisio n 

Next we wi l l focus on a n alte rn ativ e re pre se n tation for ( 6 ) that
allows us to desi gn a n al gorithm to s o lve the p l anning pro b lem
( 3 ) and to estimate VoI. To begin, note that the inne r in tegral in 

( 6 ) can be simplified as follows: ∫ 

V 
U( X 

(T ) , v) p V| Y, x (I) ( v | y, x (I) )d v 

= E { U(X 

(T ) , V) | Y = y, x (I) } 

= −
n T ∑ 

t=1 

n A ∑ 

a =1 

E 

{ ( n S ∑ 

s =1 

x (T ) 
ts V a,s − D a,t 

) 2 ∣∣∣∣∣ Y a · = y a ·, x (I) 

}

= −
n T ∑ 

t=1 

n A ∑ 

a =1 

( x (T ) 
t · ) 

′ 
�+ 

a ·x 
(T ) 
t · + 

(
( x (T ) 

t · ) 
′ 
μ+ 

a · − D a,t 

)2 
, (9

where (X ) ′ stands for the m atrix/v e ctor tran spos e of X , and 

w e h av e use d the formulas E [ X 

2 ] = Var (X ) + E [ X ] 2 , and
Var (a ′ Z ) = a ′ Cov (Z ) a for a random v e ctor Z . Furthermore, 
we use μ+ 

a · := E [ V a · | Y a · = y a ·, x (I) ] and �+ 

a · := Cov (V a · | 
Y a · = y a ·, x (I) ) , t o denot e the post erior mean and cov ari ance of
V a ·, respe ctiv ely. 

Under the as sumption s of prior independence and condi- 
tionally indepe nde n t o bs erv ation s in the models of Section 4 , 
μ+ 

a · is a v e ctor with ele me n ts E [ V a,s | Y a,s = y a,s , x (I) 
s ] , s =

1 , 2 , . . . , n S , and �+ 

a · is a diagonal matrix with diagonal ele- 
me n ts Va r (V a,s | Y a,s = y a,s , x (I) 

s ) , s = 1 , 2 , . . . , n S . To evalu-
ate μ+ 

a · and �+ 

a · , it is ther efor e su ffic ient to compute only these 
s cal a r qua n t it ies, which can be done, for example, b y n ume rical
integration. 

In Web Appendix 6 , it is shown that the maximization in ( 6 ) 
can be expres s ed as: 

min 

1 

2 

n T ∑ 

t=1 

( x (T ) 
t · ) 

′ 
Qx (T ) 

t · + 

n T ∑ 

t=1 

( c t ) 
′ 
x (T ) 

t · + r, 

s.t. 0 ≤
n T ∑ 

t=1 

x (T ) 
ts ≤ 1 for all s = 1 , 2 , . . . , n S , 

where x (T ) 
ts ∈ { 0 , 1 } for all t, s, and Q : 

= 2 

n A ∑ 

a =1 

(
�+ 

a · + μ+ 

a · ( μ+ 

a · ) 
′ )

, 

c t := −2 

n A ∑ 

a =1 

D a,t μ
+ 

a ·, and r := 

n T ∑ 

t=1 

n A ∑ 

a =1 

D 

2 
a,t . 

(10) 

Thi s formulation allow s us t o writ e the post erior value ( 6 ) in 

the following form, which can be appr oxima ted b y Mon te Ca rlo 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data


Biometrics , 2024, Vol. 80, No. 3 � 5 

s

H  

o  

i

T  

s  

(  

f  

g  

t  

t  

C  

b  

f  

r

T  

c  

l  

p  

w  

s  

e  

o  

t  

s  

∞  

j
 

a  

s  

s  

l  

P  

t  

a  

e  

i
 

w  

e  

c  

a  

t  

p  

t  

t  

a  

s  

c  

c  

v  

s  

c
 

i  

t  

j  

s  

r  

(  

(

 

 

 

w  

s  

a  

c  

a
 

f  

m  

c  

n  

w  

d  

m  

t  

t
 

a  

a  

e  

c  

r  

a  

“  

i  

n  

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/3/ujae104/7774592 by Jyvaskyla U
niversity user on 27 Septem

ber 2024
 amp ling from the distribution p Y| x (I) : 

PoV (x (I) ) = 

∫ 

Y 

( 

−1 

2 

n T ∑ 

t=1 

( ̂  x (T ) 
t · ) 

′ 
Q ̂

 x (T ) 
t ·

−
n T ∑ 

t=1 

(c t ) 
′ 
ˆ x (T ) 

t · − r 

) 

p Y| x (I) (y | x (I) )d y. 

(11) 

e re, ( ̂  x (T ) 
t · ) 1 ≤t≤n T de notes the s o lution of ( 10 ), which depends

n Q , the c t ’s and r (defined in ( 10 )). Note that Q and the c t ’s
n turn depend on y through μ+ 

a · and �+ 

a · . 

6 A L G  O R I T H  M S  F O R A P P R OX I M AT I N G  T H E  

P O ST E R I O R VA LU E  A N D  S O LV I N G T H E  

P L A N N I N G  P R O B L E M  

he direct s o lution of the p l anning pro b lem ( 3 ) is d iffic ult,
ince the evaluation of the pos te rior value of inve n tory decision
 11 ) r equir es the s o lut ion of a binary opt imizat ion pro b lem (the
uture h arv est sche duling problem) within a m ultiva riate in te-
ral. To ease this c omputation al pro b le m, we (1) a ppr oxima te
he s o lut ion of the binary opt imizat ion pro b lem using a heuris-
ic method and (2) appr oxima t e the int egral ( 11 ) by Monte
a rlo sa mpling whe r e M r ealiza tions ar e simula ted fr om dis tri -
ut ion p Y| x ( I) . Next, we wi l l prese n t thi s k ind of appr oxima tion

or PoV (x (I) ) in Section 6.1 and then use it to construct an algo-
ithm to s o lve the p l anning pro b lem ( 3 ) in Section 6.2 . 

6.1 Appr oxim at ing th e poste rio r value 
he opt imizat ion pro b le m ( 10 ) within ( 11 ) ca n be see n as a spe-

i al cas e of the G QA P, firs t proposed b y Lee a nd Ma ( 2004 ). Fol -
owing the formulation of the GQAP by Hahn et al. ( 2008 ), the
ro b lem con siders the p l acement of K facilities to L locations
ith known quadratic a nd linea r coefficie n ts C i jkn a nd B i j , re-

pe ctiv ely, and with constraints on the “space limit ations ” S j for
ach location j. In our pro b lem s e tting, the forest tracts are anal-
gous to the facilities, and the locations to the times at which the

racts should be h arv este d. How ev er, in our s e tting, the G QA P is
implifie d s uch th a t ther e ar e no space limita tions, tha t is, S j =

 , and a large number of the coefficients B i j and C i jkn in the ob-
e ctiv e function are zero. 

The G QA P i s NP-hard, as it i s a ge ne ralization of the ge ne r-
lized assi gnme n t pro b le m (Koopma ns a nd Be ckm ann, 1957 )
hown to be NP-hard by Fisher et al. ( 1986 ). Most of the re-
earch on the solution of the G QA P h as focuse d on exact so-
ution using branch and bound methods (cf. Hahn et al., 2008 ;
es s oa e t al., 2010 ). In our context, thes e k ind s of method s are

oo slow, since the dimension of the problem is r ela tively high,
nd w e ne e d to be able to s o lve the pro b lem M times in order to
valuate one inve n tory decision, using the Monte Carlo approx-
mation for ( 11 ). 

Th us, we rely ins tead on a fas t a nd gre e dy heurist ic method ,
hich we call the “random sw e ep me thod”. The me thod con sid-
 rs m ultiple ra ndom init ializat ions (s ta rting values) for the de-
ision v ari ab le X 

(T ) . For each random init ializat ion, the method
pplies a se quenc e of “local moves” where each move improves
he o bj e ctiv e function value. Onc e the s o lution cannot be im-
rov e d further, the final o bj ect ive funct ion value is re c orde d and

he pr ocess r epea ts for the next random init ializat ion. Finally,
he me thod re turn s the s malle st o bj e ctiv e function value found
mong all random init ializat ions c onsidere d. In our context, this
trategy is computationally a t tractive for two reas on s. First, the
hange in the o bj ect ive funct ion value for each local move is
heap to evaluate in comparison to the full o bj e ctiv e function
alue of ( 10 ). Se c ond, the local mov es can explore the full fea-
ible region and always preserve the feasibility of the impro vin g
andid ate s o lution s. 
The local moves correspond to changes in the ha rves t schedul -

ng of a single tract while the h arv est sche duling of the other
racts remains fixed. Invokin g ea ch local move changes the ob-
e ctiv e function value of ( 10 ) by an “adjustment”. For each tract
 , the re a re n T + 1 pos sib le adjus tme n ts: the adjus tme n t cor-
esponding to the local move that does not change the timing
0) and the adjustments for mov es th at alter the h arv est timing
give n curre n t timing): 

From time u to ‘no h arv est’: − c us − (Q ·s ) 
′ 
x (T ) 

u · + 

1 

2 

Q ss , 

(12)

From ‘no h arv est’ to time u : c us + (Q ·s ) 
′ 
x (T ) 

u · + 

1 

2 

Q ss , 

(13)

From time u to time v : − c us + c vs + (Q ·s ) 
′ 
x (T ) 

v ·

−(Q ·s ) 
′ 
x (T ) 

u · + Q ss , (14)

he re c us s ta nds for the s th ele me n t of the v e ctor c u , Q ss is the
 th diagonal ele me n t of Q , a nd Q ·s is the s th column of Q . The
djus tme n ts in ( 12 )–( 14 ) h av e be e n de riv e d by inspe cting the
han gin g terms in the obje ctiv e function when the local moves
 re a pplied. 
Usin g a djus tme n ts ( 12 )–( 14 ), Al gorithm 1 give s pse udo-code

or the random sw e ep method th at can be use d to a pproxi -
ately s o lve the opt imizat ion pro b lem ( 10 ) given the spec i fi-

ation ( Q , ( c t ) 1 ≤t≤n T , r) and n ri random init ializat ions. The
ame RandomSweep for the algorithm comes from line 7,
here a random processing order (a “sw e ep” ov er the tracts) is
rawn. Lines 6–15 carry out the core computa tion, wher e local
o ves and a djustments are chosen for the tracts, and the s o lu-

ion and the current o bj e ctiv e function value are updated , unt il
he curre n t s o lution cannot be improv e d further. 

On line 10, there may be multiple local moves with ne gativ e
djus tme n ts, a nd the choice of the local move in such a situation
ffects how greedy the resulting algorithm wi l l be. The greedi-
st choice is to always select the local move that improves (de-
reases) the obje ctiv e function value the most. In this pa pe r, we
efer to this strategy as the “gre e dy desc e n t” s trategy. Ins tead, it is
ls o pos sib le to choos e a les s gre e dy desc e n t s trate gy th at w e call
con s erv ative des ce n t ”, w hich always chooses the local move that
mproves the o bj ect ive funct ion value the least (but improves
onethe le ss). The c onservativ e desc e n t s tra tegy incr eases the
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Al go r ithm 1 RandomSweep ( Q , ( c t ) t=1 , 2 , ... ,n T , r; n ri ) 
1: Initi alis e the return value m = ∞ . 
2: for i ∈ 1 , 2 , . . . , n ri do 
3: Sample a random feasible decision matrix X cur . 
4: Set m cur to the full obje ctiv e function value associated with X cur . 
5: If m cur < m , s e t m = m cur , X best = X cur . 
6: while true do 
7: Sa mple a ra ndom pr ocessing or de r p (a pe rm ut ation of tract indice s 

1 , 2 , . . . , n S ). 
8: for tract index s ∈ p do 
9: With X cur and (Q , c t ) , compute all adjustments for tract s using (12)-(14). 

10: Choose a local move with adjus tme n t c ≤ 0 . De note b y l the chose n local 
move. 

11: Apply local move l to the s th column of X cur . 
12: Set m cur = m cur + c . If m cur < m , s e t m = m cur , X best = X cur . 
13: en d fo r 
14: If X cur did not change in the above loop, break out of the while loop. 
15: end while 
16: en d fo r 
17: Return m , X best . 
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c onv e rge nce time of the method. How ev er, ev en with this strat-
e gy, w e h av e o bs erv e d th at the while loop in Algorithm 1 very
ofte n s ti l l terminates in at most a few dozen iterations. We wi l l
inves ti gate the effects of the choice of the desce n t s trategy in Sec-
tion 6.3 . 

We re ma rk that Al gorithm 1 is similar to the Hero method of
P ukkala a nd Ka ngas ( 1993 ), which h as be e n found to s trike a n
efficie n t tradeoff in terms of c omputation al c omplexity vs . qual-
ity of s o lut ion (Puk kala and Kurtt il a, 2005 ) in forest p l anning
pro b lem s. Algorithm 1 extends Hero by introducing the ran-
dom pr ocessing or der of the tracts on each iteration; the Hero
me thod would in stead proces s the tracts without v arying the or-
de r. This ra ndomization e ns ures th at no pa rticula r tract has “pri-
ority” over the other tracts and introduces v ari ation to the s o lu-
tion s exp lored by the me thod. Furthe rmore, in con tras t to He ro,
Algorithm 1 provides “gre e dyness c ontrol” with the tw o desc e n t
s trategies a nd has bee n tailored to s o lve ge ne ral opt imizat ion
pro b lem s of the form ( 10 ) by taking adva n tage of the adjus tme n t
formulas ( 12 )–( 14 ). Note that it is not strictly ne c es s ary to use
Algorithm 1 to s o lv e the h arv est sche duling proble ms a rising in
this work; we d isc uss refine me n ts a nd alte n ativ es in Se ction 8 . 

Al go r ithm 2 ̂

 PoV ( x (I) ; M, n ri ) 
1: for k = 1 , 2 , . . . , M do 
2: Simula te y (k) fr om p Y| x (I) . 

3: Given y (k) , compute μ+ 
a · and �+ 

a · for each a = 1 , 2 , . . . , n A . 
4: Using ( μ+ 

a · , �
+ 
a · ) 1 ≤a ≤n A a nd (D a,t ) 1 ≤a ≤n a , 1 ≤t≤n T , cons truct Q , (c t ) 1 ≤t≤n T a nd r

in (10). 
5: m 

(k) , X (k) 
best ← RandomSweep (Q , (c t ) 1 ≤t≤n T , r; n ri ) 

6: en d fo r 
7: return − 1 

M 
∑ M 

k=1 m 

(k) 

With the help of Algorithm 1, we prese n t Al gorithm 2 which
is a Mon te Ca rlo a ppr oxima tion of ( 11 ) give n the (ca ndidate)
inve n tory decision x (I) , M Monte Carlo s amp les and n ri random
init ializat ions for Algorithm 1. For each ite ration k, Al gorithm
2 proc e e ds b y sim ula ting a measur e me n t v e ctor y (k) from the
m argin al distribution p Y| x (I) (line 2). This can be carried out us-
ing the models of Section 4 by first simulating v from the prior
dis tribution p V 

, a nd the n sim ulat ing y 

(k) ∼ p Y| V, x ( I) (· | V =
v, x (I) ) . The measure me n t y 

(k) is s ubse que n tly use d to c ompute
the pos te rior mea ns a nd cova ria nces ( μ+ 

a ·, �
+ 

a · ) 1 ≤a ≤n A (line 3).
Finally, these qua n t it ies (to ge ther with the de ma nds D a,t ) a re
use d to c onstruct the minimiza tion pr oblem ( 10 ), which is then 

appr oxima tely s o lved using Algorithm 1 and the minimum m 

(k) 

re c orde d (line 5). The use of Algorithm 1 on line 5 can be re- 
p l ac e d with a nothe r opt imizat ion me thod targe ting the pro b-
lem ( 10 ). The output of Algorithm 2 is the mean of the ne gativ e 
m 

(k) ’s, where the change of sign is applied since we are int erest ed 

in maximizing rather than minimizing. 
Fin ally, w e rem ark th at with minor modifications to the mini- 

miza tion pr o b le m ( 10 ) a nd Al gorithms 1 a nd 2, the methods in
this se ction m ay also be lev erage d to approxim ate PV and PoV 

∗. 
The details are given in Web Appendix 7 . 

6.2 Th e pract ic a l s olutio n m eth od 

Algorithm 3 pres ents ps eudo-code for our practical method that 
appr oxima tely s o lves the p l anning pro b le m ( 3 ) for a n inve n tory
budget B , using M Monte Carlo s amp les and n ri random initial- 
izations. 

Al go rithm 3 So lv ePlannin gPro blem (B ; M, n ri ) 
1: Initi alis e an empty container O for res ults . 
2: Construct the set X (I) . 
3: for x ∈ X (I) do 
4: Evaluate p = ̂

 PoV (x ; M, n ri ) (Algorithm 2). 
5: Evaluate c = C x using (4). 
6: Save (x, p, c ) to the con taine r O . 
7: en d fo r 
8: Set O B = { (x, p) : (x, p, c ) ∈ O and c ≤ B } 
9: Find (x ∗, p ∗ ) from O B such that p ∗ ≥ p for all ele me n ts (x, p) ∈ O B . 

10: return x ∗, p ∗

The al gorithm firs t cons tructs the feasib le s e t X 

(I) , a nd the n,
for each x ∈ X 

(I) , computes the inve n tory cos t using ( 4 ) and 

the appr oxima t e post erior value using Algorithm 2. The output 
of Algorithm 3 is the highest appr oxima t e post erior value and 

the as s oci ate d inv e n tory decision with cost less than B (lines 8–
9). The inve n tory bud get B is only r equir ed by Algorithm 3 af- 
ter processing the set X 

(I) . Ther efor e, Algorithm 3 can s o lve ( 3 ) 
appr oxima tely for multip le budge ts with a single run of the pro- 
cessing loop (lines 3–7). 

Under the assumption of “cost-a ccura cy consis te ncy” (Defini - 
tion 1) and distinct total prior volume va ria nc es, each inv e n tory 
de cision v e ctor x ∈ X 

(I) can be c onstructe d as follows . First, de- 
fine 

κ(n I , n S ) := { (z 1 , z 2 , . . . , z n S ) : z i ∈ { 1 , 2 , . . . , n I } , 
z i ≤ z j ∀ i < j} , 

that is, κ(n I , n S ) is the s e t of or der e d v e ctors of length n S with
ele me n ts in { 1 , 2 , . . . , n I } . For each z ∈ κ(n I , n S ) , we can con-
struct a corresponding x ∈ X 

(I) by s e tting x o j = z j for j ∈ 

1 , 2 , . . . , n S , where o is the v e ctor of tract indic es sorte d in the
order of increasing total prior s ta nda r d devia tion σ 0 

s (see Defini- 
tion 2). It is well known that | κ(n I , n S ) | = 

(n S + n I −1 
n S 

)
, implying 

|X 

(I) | = 

(n S + n I −1 
n S 

)
, as well. 

6.3 Inv estig ating the pe rfo rma nce of Alg o rithm 1 

Our appr oxima tion of the pos te rior v alue us es Algorithm 1 to 

s o lve the minimization pro b le m ( 10 ). The pe rforma nce of the 
al gorithm is the r efor e importa n t for the ove rall pe rforma nce of 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data
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FIGURE 1 The variability in the final obje ctiv e function values of Algorithm 1 with respect to the n umbe r of random init ializat ions and the 
desce n t s trategy d isc ussed in Section 6.1 . For both desce n t s trategies, the depicted lines correspond to the 1% and 99% quantiles of final 
o bj e ctiv e function values obtained, when Algorithm 1 was run 10 000 times with the number of init ializat ions shown in the horizontal axis. 
Note that the horizontal axis does not increase linearly. The panes indicate the inventory decision for all 100 tracts that was used to construct 
the three minimization pro b lem s of the form ( 10 ) studied here. 
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he appr oxima tion a nd th us the s o lution of the full p l anning
ro b lem ( 3 ). 
As Algorithm 1 fea tur e s randomne ss, w e studie d the v ari a-

ion in the found optim a. We c onstructe d thre e te st minimiza -
ion pro b lem s of the form ( 10 ), as fo llows. First, usin g the tra ct
ata of Section 3 , we simulated three inve n tory d atas e ts with
, 10, or 20 plots for every tract from the normal model of
eb Appendix 5 . For each test pro b lem, we ran Algorithm 1

0 000 times using both desce n t s tra tegies fr om Section 6.1 )
 nd va ried the n umbe r of ra ndom init ializat ions n ri from 5 up to
0 000. After each run, we r ecor ded the final o bj ect ive funct ion
alue. 
Figure 1 s umm arize s the re sults of this expe rime n t b y disp l ay-

ng the empirical 1% and 99% qua n tiles of the final 10 000 o bj ec-
 ive funct ion values given the desce n t s trategy a nd the n umbe r of
andom init ializat ions n ri of Algorithm 1. As expe cte d, the va ri -
bility of the final o bj e ctiv e function values quickly diminishes
s n ri increases. 
As the opt imizat ion pro b le m is NP-ha rd, it is pos sib le that

he true global minimum is even lower than the achieved s o lu-
ion s. To study whe ther there exist better s o lution s, we further
an the Gurobi optimiser (Gurobi Opt imizat ion, LLC, 2023 )
or 14 h in the case of the minimiza tion pr o b lem con structed
hen the inventory decision was 20 plots for each tract. Our
mple me n tation in Gurobi used Algorithm 1 as a heuristic for
he mixed -in tege r s o lver. The results for this expe rime n t a re
hown in Web Figure 4 in Web Appendix 8 and indicate that
he minima found by Algorithm 1 are typically within 5%–
5% of the best minimum found using Gurobi when a suffi-
ie n t n umbe r of ra ndom init ializat ions are used . Note that com-
ared to the 14 h runtime of Gurobi, Algorithm 1 finishes in sec-
nds. 
In te res tingly, in Fi gure 1 , the con s erv ative des ce n t s trategy

xhibits les s v ari ability for all n ri s tudied, a nd also a ppea rs to
nd s o lution s with sli gh tly bette r o bj e ctiv e function values . Our

ntuition is that this occ ur s since the con s erv ative des ce n t ex-
 lores the s o lution space more efficie n tly b y avoidin g mo ves

ha t impr ove the o bj ect ive funct ion value too e ag e rly, whe n
he ra ndomly sa mpled solution candidates wi l l sti l l be of poor
uality. 
Finally, the panes f rom lef t to right in Figure 1 show decreasing
 bj e ctiv e function values as the inve n tory deci sion i s made more
ccurate and expensive. This makes s en s e, since more accurate
nve n tory data wi l l provide better information on the unknown
olumes V, impro vin g the found o bj e ctiv e function value in the
 arv est sche duling pro b lem ( 10 ). 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data
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FIGURE 2 The inve n tory decisions returned by Algorithm 3 for the Sw e dish tract d atas e t with budget cons train ts from 10 000 to 25 000 by 
incre me n ts of 1000. The shade of a cell shows the pr eferr ed inve n tory decision for a tract (vertical axis) under the given budget (horizontal 
axis). 
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7 A P P L I C AT I O N TO  T H E  S W E D I S H  T R A C T  

DATA S ET  

Next, we apply the methods of Section 6 to the Sw e dish tract
d atas e t dis cus s e d in Se ction 3 . For e ach budg e t, we app ly Al-
gorithm 3 with the model d isc usse d in Se ction 4 . Thi s yield s
the pr eferr e d inv e n tory me thod (s amp ling 5, 10, or 20 p lots) for
ea ch tra ct in the d atas e t. Motiv ated by our findings in Section 6.3 ,
we use 2500 Mon te Ca rlo sa mples, 2500 ra ndom init ializat ions
and the con s erv ative des ce n t s trategy for Al gorithm 1 within Al -
gorithm 3. 

Figure 2 s umm arizes the res ults . The inv e n tory decision s fo l-
low an organized structure due to the ordering of the tracts by
the prior volume va ria nce (on the vertical axis ). F or the extreme
bud gets 10 000 a nd 25 000, the chea pes t (5 plots inve n tory for
every tract) and the most expensive inve n tory (20 plots inven-
tory for every tract) are chosen, as the costs of these invento-
ries coincide exactly with the extreme budgets . In c ontrast, all
thre e inv e n tory methods a re us ed for s ome tracts when the bud-
ge t is be tw e e n 11 000 a nd 23 000. For these budgets, the propor-
tions of the inve n tory methods sele cte d for each tract vary, which
occ ur s because of the diffe re nce betwee n the as s ortme n t compo- 
sition in the tracts and the diffe re n t cos ts of the inve n tories. For 
budgets 16 000–19 000, it a ppea rs tha t the pr oportions of tracts 
with 10 or 20 plots inve n tory a r e r oughly the sa me, whe reas for
budgets 20 000–25 000, the 20 plots’ inve n t ories begin t o “dom- 
ina te”, as ther e is enough money to spend in the bud get. For bud - 
ge ts les s th an 15 000, espe ci ally, the proportion s of tracts to mea- 
sure with 10 and 20 plots vary without a clear pa t tern. 

Figure 3 disp l ays the m axim al pos te rior v alue as s oci ated with
the decisions computed by Algorithm 3 th at c oste d less than 

each inve n tory bud ge t con sidered . In addit ion, the prior value 
PV and the perfect posterior value PoV 

∗ d isc ussed in Section 5.1 

are shown with horizontal lines. The increasing pos te rior values 
depict the increasing information gain from la rge r bud gets. In 

comparison to PV , the figure shows that a si gnifica n t informa- 
tion gain is obtaine d ev e n b y ca rrying out the chea pes t pos sib le
fores t inve n tory cos ting 10 000. The dis crepancy be tween PoV 

∗
and the m axim al pos te rior v alue o btained for budge t 25 000 de- 
picts the information gain that could sti l l be obtained by even 

more expensive and accurate inve n tory methods. 
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FIGURE 3 The la rges t pos te rior v alue o btained for e ach budg e t con s train t (poin ts) conside red with the Swedish tract d atas e t. The horizontal 
dashed and solid lines correspond to appr oxima tions of the prior value PV ( 8 ) and the perfect posterior value, respe ctiv ely. These qua n t it ies 
we re a pproxim ate d as d isc ussed in Web Appendix 7. The diffe re nc e betw e en the s o lid and the d ashed l ine and the d iffe re nc e betw e en the 
poin ts a nd the dashe d line c orr espond to appr oxima te values of pe rfect a nd impe rfe ct inform a tion, r espe ctiv ely. 
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Inspecting the rate of increase of the pos te rior values in
i gure 3 ca n be used to help de cision-m akin g: spendin g more

han 16 000–18 000 in the fores t inve n tory a ppea r s to bring d i-
inishing re turn s from a Bayesian de cision-the oretic perspe c-

ive. 

8 D I S  C U S S  I O N 

e dev elope d a c omputation al me thod for s ele cting a c ost-
ffe ctiv e operation al forest inventory under uncertainty. Our ap-
ro ach is b ase d on m aximizing the pos te rior v alue of the d ata
 olle ction associate d with an inv entory de ci sion. Thi s lead s us
o model a Bayesian tw o-stage de cision pro b lem where the inner
 tage conside r s schedul ing the h arv esting to fulfil l the demand
a rgets a nd the oute r s tage conside rs the pro b le m of in te res t, se-
ectin g the a ccura cy of pre-ha rves t inve n tories. As the output of
ur method, we obtain a plan that indicates how the inve n tory
udget should be divide d betw e en the forest tracts in order to
rovide m axim ally benefic ial infor m ation for sche duling the h ar-
ests of the tracts. 
The steps to use the method for also solving the h arv est de ci-

ion pro b lem r equir e c olle cting inv e n tory data in practice, a nd
roc e e d as follows. First, the inve n tory bud get is fixed a nd the
 o lution to the inve n tory decision pro b lem is o btained from one
f the co lumn s of Figure 2 (or equivale n t). The n, the sele cte d in-
e n tory is carried out (in practice), which yields a r ealiza tion y.
he data y are then used to construct a final ha rves t scheduling
ro b lem of the form ( 10 ); s o lving it yields the s o lution to the
 arv est sche duling pro b lem . Her e, the pr o b lem is s o lv e d only
nce, a nd th us it is feasib le to us e c omputation ally in te nsive
ra nch a nd bound mixed -in tege r s o lvers (simil ar to the Gurobi
 o lv er in Se ction 6.3 ) to obtain as efficie n t a s o lution as pos sib le.

T he de v elope d approach scales w e ll with re spect to the num-
er of as s ortments n A and the number of tracts n S (assuming

hat n I is small compared to n S ) but increasing the n umbe r of
nve n tory methods n I may multiply the computational cost by
 S + n I − 1 . In practical s e ttings, the s cal ability with respect to
 S is, how ev e r, a r gua bly more importa n t. The a pproach could
lso be applied in a dynamic s e t ting, wher e new tracts are added
ve ry mon th a nd the de cision-m aking is done r epea tedly. 
Since the opt imizat ion pro b lem s arising in this pa pe r a re NP-

ar d, the pr opos ed algorithm s re ly on he uris tics a nd the ob-
ained s o lution s may not be globally opt imal . Whe n we s tudied
he pe rforma nce of the random sw e ep method of Section 6.3 ,
e found that in pro b lem s con structed from the Swedish tract
ata, it could reach minimums that were within 5%–15% of min-

mums c ompute d b y a vas tly mor e computa tionally in te nsive
ixed -in tege r s o lve r. Eve n though this does not cons titute pe r-

e ct perform anc e, w e believ e th at the ov erall dev elope d method
ould already be a useful tool in operational forestry. Note that
he n conside ring the full two-s tage pro b lem, the noted 5%–
5% deviation only applies in the h arv est sche duling problems
 o lv e d as a part of the Monte Carlo appr oxima tion when se-
ecting the inve n tory deci sion. Thi s i s because when the found
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inve n tory deci sion i s oper ationaliz ed, the final ha rves t schedul -
ing pro b le m ca n be s o lv e d with more c omputation ally in te nsive
methods as d isc usse d abov e. 

W ithin the pres e n te d method, it w ould be pos sib le to us e
other methods than Algorithm 1 for s o lving the h arv est sche dul-
ing pro b lem s ( 10 ). Potenti al improvements include simulated
anneal ing (SA) (Kirk patrick et al., 1983 ) a nd m ultimoves
th at mov e the h arv est timing for many tracts simultaneously.
Heinone n a nd P ukkala ( 2004 ) s tudied thes e me thods and found
that they may improve ha rves t opt imizat ion res ults ov er the
Hero method, which is similar to Algorithm 1. How ev er, these
results do not neces s a rily mea n tha t using mor e in te nsiv e h arv est
opt imizat ion methods wi l l lead t o bett e r es timates of the pos-
terior value PoV ( 6 ). This is because the choice of the ha rves t
schedulin g optimizer a cts as a tra deoff in the bi as-v ari ance de-
composition of the PoV Monte Carlo appr oxima tion (Algorithm
2). In pa rticula r, for a fixed computational bud get, fas te r heuris-
tic methods allow for more Mon te Ca rlo sa mple s (le ss va ria nce
at the cost of bias) wher eas computa tionally in te n sive me thods
decreas e bi as–at the cost of more v ari ance. 

The re a re ma ny ways to broade n a nd refine the pro b le m s tud -
ied in this pa pe r. Ins tead of log -norm al models, altern ativ e st a -
t ist ical models (such as the Gamma distribution) under which
the pos te rior mea ns a nd va ria nces for assortme n t volumes can
be c ompute d, (to a su ffic ie n t n ume rical a ppr oxima tion) could be
used for the assortme n t volumes a nd v olume meas ure me n ts. It
mi gh t also be possible to extend the dev elope d model with a spa-
ti al correl ation structure betw e en the tracts and/or with a corre-
la tion structur e for the as s ortme n ts within the tra cts. Modelin g
the se corre lations would likely make the inve n tory returned by
our method chea pe r as each inve n tory o bs erv ation would yield
mor e informa tion a t the sa me cos t. The spa tial corr ela tion struc-
ture could be formulated, for example, using the dis ta nce be-
tw e en tracts, which could also be useful for formulating further
cons train ts to the inve n tory decision or ha rves t scheduling prob-
lem s, simil ar to the ideas of Eyvindson et al. ( 2018 ). 

‘The prior v ari a nce orde r’ cons train t (Definition 2) can be
seen as a simplifica tion tha t r educes the large solution space of
the unc onstraine d forest inv entory pro b lem to a smaller s o lution
spac e th at omits m any “re dund ant” s o lution s with cost gr ea tly
la rge r or smalle r tha n the bud ge t B . In s c en arios where some of
the as s ortme n ts a r e mor e importa n t or v aluab le tha n othe rs, the
pr ior var ia nce orde ring is not just ified , and it may be beneficial
to order the tracts based on some othe r qua n tity. An exa mple is
a n orde ring bas ed on (mone tary) v alue unce rtain ty c ompute d
using crude e stimate s of value per unit of timbe r volume. In ge n-
e ral, the orde ring should reflect the a moun t of unce rtain ty (of
some qua n tity), because it only makes sense to pay for measur-
ing what is unknown. 

To further take into ac c ount differenc es betw e en the as s ort-
me n ts, the ut ility funct ion ( 5 ) c ould be modifie d to include
(cons ta n t) assortme n t a nd time-spec i fic wei gh ts. This would
only lead to minor changes to the pa ra mete rs of ( 10 ), and thus
could be carried out with the prese n ted method. Furthe rmore,
formulating ( 5 ) in monetary terms would allow for direct VoI -
based opt imizat ion without budge t con s train ts. 

Final ly, the ful l pro b lem s e tup c ould be dev elope d into the
direct ion of mult i-o bj e ctiv e de cision-m aking, for example, by
con sidering als o the quality of the h arv este d m aterial in the in- 
ne r s ta ge. S uch exten sion s mi gh t bette r ac c ount for c omplexities
in opera tional for estry but might also cr ea te new c omputation al 
challenges for Bayesian de cision-m aking. 

A  C K N O W L  E D  G M E N TS  

The authors thank Lars Eli as s on, O skar G ustavs s on, Salme 
Kärkkäine n, Kais a Mie ttine n, a nd Babooshka Shavazipour for 
us eful dis cus sion s. 

S U P P L E M E N TA  RY  M AT E R I A  L S  

Supple me n ta ry mate rial is available at Biometrics online. 
Web Appe ndices a re av ail ab le with this pa pe r at the Biomet- 

rics website on Oxford Acade mic . The sourc e c ode use d to draw 

the conclusions of the pa pe r is available on Oxford Academic 
and at htt ps://g ithub.com/skarppinen/cost- eff- forest- inv. 

F U N D I N G  

The work has been funded by Peter Wallenberg Foundation 

(gra n t n umbe r 2022.0008). The resea rch is related to the the- 
ma tic r esear ch ar ea DEMO (D e cision An alyt ics ut iliz ing Causal 
Models and Multio bj e ctiv e Optimization) of the University of 
Jyväskylä. 

CO N F L I C T  O F  I N T E R E ST  

None de clare d. 

DATA  AVA  I L A  B I L I T Y  

The data on the 100 Sw e dish forest tracts and the numerical re- 
s ults ne e de d to cr ea te the figur es of the pa pe r a re av ail ab le at
htt ps://g ithub.com/skarppinen/cost- eff- forest- inv. 

R E F E R E N C E S  

Cook , S. A. (1971). The complexity of theor em-pr o vin g pr ocedur e s, In :
Procee di ngs of the T h ird An nu al ACM Sym posi um o n The o ry of Co mpu t-
ing , 151–158. 

Duvemo , K. , Lämås, T., Eriks s on, L. O. and Wikström, P. (2014). Intro- 
ducing cost-p lus-los s a nalysis in to a hie ra r chical for estry p l anning en-
vironme n t. An n a ls of Opera t io ns Research , 219, 415–431. 

Eidsvik , J. , Mukerji, T. and Bha t tacharjya, D. (2015). Val u e of Info rma t io n
in the Earth Scien ces: Inte grati ng S p atia l M o deling an d De cisio n An a lysis .
United Kingdom: Ca mbrid ge Unive rsity Press. 

Eyvind son , K. , Rasinmäk i, J. and Kangas, A. (2018). Evaluating a hie ra r- 
chical approach to l ands cape-lev el h arv est sche duling. Ca nad i a n Jou r-
n a l of Fo res t Research , 48, 208–215. 

Fishe r , M. L. , Jaikuma r, R. a nd Va n Was s e nhove, L. N. (1986). A m ul -
tipl ier ad justment method for the ge ne r aliz ed assi gnme n t pro b lem .
Managem ent Scien ce , 32, 1095–1103. 

Gr egoir e , T. , Næs s e t, E., Mcro be rts, R., Stahl, G., Ande rse n, H.-E.,
Go bakken, T. e t al . (2016). Stat ist ical rigor in L iDA R-assis ted es tima-
tion of abov e gr ound for est biomas s. Rem ote Sen si ng of Envi ronment ,
173, 98–108. 

Gurob i Optimi zer . (2023). Gurobi Op ti miza t io n, LLC . https://www.gu 
r obi.com/documentation/curr ent/ref m an/index.html [Ac c es s ed 12 
Septe mbe r 2024]. 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae104#supplementary-data
https://github.com/skarppinen/cost-eff-forest-inv
https://github.com/skarppinen/cost-eff-forest-inv
https://www.gurobi.com/documentation/current/refman/index.html


Biometrics , 2024, Vol. 80, No. 3 � 11 

H  

 

H  

 

H  

 

K  

 

K  

 

K  

K  

K  

 

L  

 

N  

 

 

P  

 

 

 

P  

 

P  

 

R  

S  

 

 

 

 

S  

 

U  

 

 

V  

 

R
©
A
c

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/artic
ahn , P. M. , Kim, B.-J., Guignard, M., Smith, J. M. and Zhu, Y.-R. (2008).
An algorithm for the ge ne r aliz ed quadr atic assi gnme n t proble m. Com-
pu ta t io nal Opt imiza t io n and Applic a t io ns , 40, 351–372. 

einone n , T. a nd P ukkala, T. (2004). A compa rison of one-a nd two-
compa rtme n t nei ghbourhood s in heuri s tic sea r ch with spa tial for est
m an ag ement g oals. Si lva Fen nica , 38, 319–332. 

irshleife r , J. a nd Riley, J. G. (1979). The analytics of unce rtain ty a nd
inform ation—an expository s urv ey. Jou rnal of Eco no mic Lit era ture , 17,
1375–1421. 

a ngas , A. , Ha rtikaine n, M. a nd Miettine n, K. (2014). Sim ulta neous opti -
mization of h arv est sche dule and meas ure me n t s trate gy. Sca nd inavi a n
Jo urn a l of Fo res t Research , 29, 224–233. 

angas , A. , Hartikainen, M. and Miettinen, K. (2015). Simultaneous op-
t imizat ion of h arv est sche dule a nd data quality. C ana dian Jo urn a l of
Fo res t Research , 45, 1034–1044. 

irkpa trick , S. , Gela t t, C. D. and Ve c chi, M. P. (1983). Opt imizat ion by
sim ulated a nnealing. Science , 220, 671–680. 

ivinen , V.-P. (2004). A genetic algorithm approach to tree bucking opti-
mization. Fo res t Science , 50, 696–710. 

oopmans , T. C. and Be ckm ann, M. (1957). Assignment pro b lem s and
the location of e c onomic activities . Eco no metric a: Jo urn a l of the Econo-
metric Society , 25, 53–76. 

ee , C.- G. and Ma , Z. (2004). The ge ne r aliz ed quadr atic assi gnme n t
pro b lem, Technical report, Dep artment of M ech anica l an d In dustria l
E ngine er ing , Univer sity of Toron to, Ca nada. 

ieuwe nh uis , M. , Malone, L., Mchugh, F. and Layton, T. (1999). D ev el-
opme n t a nd evalua tion of a pr e-h arv est inv entory and cr oss-cut ting
simula tion pr oc e dure to m aximis e v alue re c ov ery. Ir ish Fore stry , 56,
12–28. 
e c eiv e d: Nov e mbe r 20, 2023; Revise d: July 6, 2024; Ac c epte d: Septe mbe r 5, 2024 
The Author(s) 2024. Published by Oxford University Press on behalf of The In te rn ation al Biometri
 ttribution Licen s e ( https://creativ ec ommons .org/lic enses/by/4.0/ ), which permits unr estricted 

ited. 
es s oa , A . A . , Hahn, P. M., Gui gna rd, M. a nd Zh u, Y.-R. (2010). Algo-
rithms for the ge ne r aliz ed quadr atic assi gnme n t proble m combining
Lagrang e an de c omposition and the Refor mulation-L inearization
Te chnique. Eu ro p ea n Jou rnal of Op era t io nal Research , 206,
54–63. 

 ukkala , T. a nd Ka ngas, J. (1993). A heuris t ic opt imizat ion method for
forest p l anning and decision makin g. Scan din avian Jo urn a l of Fo res t Re-
search , 8, 560–570. 

 ukkala , T. a nd Kurttila, M. (2005). Exa mining the pe rforma nce of six
heurist ic opt imisat ion techniques in diffe re n t fores t p l anning pro b-
le ms. Si lva Fen nica , 39, 319–332. 

ai ffa , H. and Schlai ffer, R. (1967). App l ied Sta t is t ic al De cisio n The o ry .
New York, NY: Wiley. 

iipilehto , J. , Lindeman, H., Mikko, V., Yu, X. and Uusitalo , J . (2016).
Rel iabil ity of the pre dicte d s ta nd s tructure for clea r-cut s ta nds
using optional methods: Airborne laser scanning -base d meth-
od s, smart p hone-bas e d forest inv entory applica tion Tr estima
a nd pre-ha rves t measure me n t tool EMO. Si lva Fen nica , 50,
1–24. 

tåhl , G. (1994). Op ti mizi ng the Utility of Forest Inven tory Acti vities , PhD
thesis, Sw e dish Univ ersity of Agricultural Scienc es, D epa rtme n t of
B iometry a nd Fores t Ma nage me n t. 

lv dal , P. , Öhm an, K., Eriks s on, L. O., Wäs te rlund, D. S. and Lämås, T.
(2023). Handling uncert aintie s in fore st information : the hie ra rchical
forest p l anning proces s and its use of informa tion a t large for est com-
panies. Fo res try , 96, 62–75. 

auhkone n , J. , Malta mo, M., McRobe rts, R. E. and Næs s e t, E. (2014).
Introd u ct io n t o Fo res try App l ic a t io ns of Airbo rn e L aser Sca nn ing , 1–16.
Dor dr echt: S pring er. 
c S ociety. T hi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the C re ative Commons 
r euse, distribution, and r epr oduction in any me dium, provide d the origin al w ork is properly 

le/80/3/ujae104/7774592 by Jyvaskyla U
niversity user on 27 Septem

ber 2024

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 OVERVIEW OF THE DECISION PROBLEM
	3 DATA
	4 STATISTICAL MODELS FOR ASSORTMENT VOLUMES AND INVENTORY MEASUREMENTS
	5 THE FOREST INVENTORY PLANNING PROBLEM
	6 ALGORITHMS FOR APPROXIMATING THE POSTERIOR VALUE AND SOLVING THE PLANNING PROBLEM
	7 APPLICATION TO THE SWEDISH TRACT DATASET
	8 DISCUSSION
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	DATA AVAILABILITY
	REFERENCES

