

Master Radiation and its Effects on MicroElectronics and Photonics
Technologies (RADMEP)

SINGLE EVENT EFFECTS INSTRUMENTATION FOR SYSTEM-ON-
MODULE TESTING

Master Thesis Report

Presented by

Mauricio Ernesto Rodriguez Alas

and defended at

University Jean Monnet

9 September 2024

Academic Supervisor: Prof. Frédéric Saigné, University of Montpellier

Host Supervisor: Prof. Luigi Dilillo, University of Montpellier

Jury Committee: Prof. Sylvain Girard, University Jean Monnet

Prof. Arto Javanainen, University of Jyväskylä
Prof. Paul Leroux, KU Leuven
Prof. Frédéric Saigné, University of Montpellier

Single Event Effects Instrumentation for System-on-Module Testing

i

Abstract

Radiation testing and qualification of complex systems is a challenging and demanding

process due to the interactions and dependencies between systems. This thesis presents

the development of a low-cost, compact, robust, and highly synchronized testing

instrument designed to standardize Single Events Effects testing for modern System-

on-Chip devices. By increasing logging capabilities and timing synchronization, we can

get better control over the systems under test. The instrumentation performance is

demonstrated experimentally during a neutron irradiation campaign, showcasing its

reliability and ability to improve complex system testing.

Single Event Effects Instrumentation for System-on-Module Testing

ii

Table of Contents

Abstract .. i
Table of Contents .. ii
List of Abbreviations ... iv
1 Introduction ... 1

1.1 Objective of this work ... 1
1.2 Contributions .. 2
1.3 Scope and Limitations .. 2
1.4 State of the Art and Background .. 3

1.4.1 Neutron Radiation .. 3
1.4.2 Radiation Effects on FPGAs .. 3
1.4.3 System-Level Testing ... 4
1.4.4 Related Work .. 4
1.4.5 Improved Observability and Controllability ... 5

2 Methodology .. 6
2.1 Methodological Approach ... 6
2.2 Use Cases ... 6
2.3 Design and Development ... 6

2.3.1 Requirements ... 6
2.3.2 System Architecture .. 8
2.3.3 Selection of Components ... 9
2.3.4 Prototyping and Development of PCB ... 12
2.3.5 Prototyping and Development of HDL blocks .. 17

2.4 Experimental Design and Procedure ... 25
3 Results ... 27

3.1 Overview of Results ... 27
3.2 Detailed Presentation of Data .. 27

4 Conclusion .. 41
5 Future Work .. 42
References ... 43
Appendix ... 47

Appendix A – Full Bill of Materials for System ... 47
Appendix B – Monitoring Board Schematic ... 49
Appendix C – Monitoring Board PCB Design by layers ... 50
Appendix D – Code used to test I2C Communication .. 52

Single Event Effects Instrumentation for System-on-Module Testing

iii

Appendix E – VHDL Code and State Machines .. 53
UART ... 53
Redirect buffer .. 58
Current Report .. 59
Overcurrent handler .. 61
Command Interface .. 63
Registers .. 67
FIFO ... 72
Hex to UTF-8... 73
UTF-8 to Hex... 73
I2C .. 74
I2C GPIO ... 78
I2C INA Current Monitor ... 82
I2C TMP100 .. 86
I2C Controller .. 88
Timestamp ... 93

Single Event Effects Instrumentation for System-on-Module Testing

iv

List of Abbreviations

Abbreviation Definition

iES Institute of Electronics and Systems

WP Work Package

SEE Single Event Effect

SEU Single Event Upset

SEL Single Event Latch-up

DD Displacement Damage

TID Total Ionizing Dose

FPGA Field Programmable Gate Array

SoC System on Chip

MPSoC Multiple Processor System on Chip

SoM System on Module

SRAM Static Random Access Memory

COTS Commercial Off The Shelf

HDL Hardware Description Language

SUT System Under Test

UM University of Montpellier

RADIAC Radiation et Composants

RADNEXT Radiation facility Network for the

Exploration of effects for industry and

research

TI Texas Instrument

Single Event Effects Instrumentation for System-on-Module Testing

1

1 Introduction

The Institute of Electronics and Systems, under the authority of the University of

Montpellier, conducts research under five thematic axes: Energy, Instrumentation,

Photonics and Waves, Materials, and Reliability and Systems Under Constrained

Environments [1]. Under this last axis, the RADIAC team, conducts research on the

topics of reliability of electronics in radiation environments, developing expertise in

monitoring, modeling, understanding and testing of components, instruments, and

systems [2].

As part of a larger effort to create a network of expertise, facilities, and services related

to radiation effects of electronics components and systems, the University of

Montpellier and RADIAC group takes part as an academic partner in the EU-funded

RADNEXT project (RADiation facility Network for the Exploration of effects for

industry and research, Grant Agreement ID: 101008126) [3]. The RADNEXT project is

conducted as a joint-research activity at a European level and guided by four work

packages (WP) [3], given:

- WP5: Radiation monitors, dosimeters, and beam characterization.

- WP6: Standardization of system-level radiation qualification methodology.

- WP7: Cumulative radiation effects electronics.

- WP8: Complementary modeling tools.

This work is conducted based on the objectives and framework of WP6: Standardization

of system-level radiation qualification methodology, which seeks to test and qualify

integrated systems under radiation, and to determine which setup and stimuli are most

optimal to evaluate the response of complex systems such as memories, FPGAs, and

SoC [3]. Specifically, within the WP, the testing of systems is focused on adding high

observation capabilities [4], identifying good practices for system-level testing, and

creating pass/fail criteria [3]. The proposed instrumentation tries to simplify the

radiation testing instrumentation needed in terms of hardware and software, building

on past experiments conducted by the RADIAC group.

This document is structured as follows: Section 1 presents the objectives of the work, a

brief state of the art and related work, Section 2 discusses the methodology used, the

Design and development of the platform, Section 3 provides the results and data

obtained, Section 4 discusses the results obtained, and Section 5 presents future outlook

work.

1.1 Objective of this work

- To improve the understanding of radiation effects on SoC by means of improved

instrumentation.

- To identify the key observability metrics in SoC under radiation.

- To observe previously defined metrics by proposing improved instrumentation

hardware and software.

- To improve controllability parameters for SoC under radiation.

- To propose a way to synchronize and correlate collected data with observed

radiation effects.

Single Event Effects Instrumentation for System-on-Module Testing

2

1.2 Contributions

System-level testing of complex systems presents multiple challenges and

opportunities. The increased interest in using COTS components for space applications

requires new testing approaches to evaluate these systems in harsh environments, as

these components are usually not designed for radiation effects but provide cost

reduction and design flexibility for New Space actors [5]. System-level testing presents

itself as a more efficient testing method, that incorporates all the complexities of the

system into the test.

Some advantages of system-level testing are the possibility to observe the fault

propagation in the system, compare mitigation techniques, and get information about

complex failure modes [6]. Some disadvantages are the inherent complexity of the

system, additional resources, caches, and memories, which make some systems highly

susceptible to single-event induced failures [7]. Thus, identifying failure modes of the

devices becomes challenging, more so if the system is running multiple processing

cores.

This work proposes a low-cost platform for testing complex devices such as FPGAs,

MPSoC, and/or memories that adds observability and controllability of target devices

by using a reliable FPGA platform, allowing for further customization of the test

procedure, including but not limited to implementing worst-case conditions of the

target device i.e. temperature, voltage, and application following the SEE Testing

Guidelines of [8] and previous observations of high observability and system-level

testing demonstrated by the research group in [9].

1.3 Scope and Limitations

- The scope of this work is limited to SEE of devices and will not study the effects

of TID.

- The electronics systems under study are limited to the commercial components

previously found in literature, namely AMD Zynq-7000, Artix-7, and Microchip

Polarfire MPSoC.

- The experimental validation of the platform is limited to SEE under a neutron

beam at the ISIS ChipIR facility.

Single Event Effects Instrumentation for System-on-Module Testing

3

1.4 State of the Art and Background

1.4.1 Neutron Radiation

Atmospheric neutrons are generated from the interaction of cosmic rays with the

atmosphere. The flux of particles is dependent on altitude and latitude [9], and affects

most aircraft at flight altitudes around 10 to 12 km [10]. Neutrons are uncharged

particles and can penetrate the material deeply without being magnetically affected.

Neutrons will interact with the nucleus in the device by recoils, generating ionizing

nuclear fragments [11]. Not only are neutrons a concern for avionics, but they

increasingly become a reliability concern for highly integrated and downscaled devices.

Figure 1. Neutron Flux by altitude (left) and latitude (right). Adapted from [12].

Neutrons are increasingly capable of producing Soft Errors with each new technology

node. As devices shrink their size, the upset probability increases with the reduction of

the charge necessary to induce an upset [13]. These Soft Errors can negatively affect

functionality and reliability of critical systems, such as avionics, memories or FPGAs.

1.4.2 Radiation Effects on FPGAs

FPGAs are reconfigurable integrated circuits widely used for their flexibility and

performance. However, their complexity makes them particularly vulnerable to

radiation-induced errors. Single-Event Effects are caused by the interaction of particles

with materials in electronic devices [14]. FPGAs can be affected in their integrated

circuits including flip-flops or memory cells. Usually, error detection and correction are

employed to mitigate these effects. Some, but not all, relevant radiation effects on

FPGAs are described next.

Single Event Upsets (SEU)

Upsets can happen in memory elements. SRAM-based FPGAs are particularly

susceptible to this effect. This can corrupt the data or change the logic states inside the

device, leading to undesired behavior or system failures. Techniques such as Triple

Modular Redundancy is also employed to detect and overcome SEU-induced soft errors

[15], where three instances of the same design are utilized with a majority voter to

ensure no corrupted data is passed to the system.

Single Event Effects Instrumentation for System-on-Module Testing

4

Single Event Latch-up (SEL)

SEL is a condition where a high-energy particle induces a parasitic PNPN thyristor

structure in the device, causing a short circuit between power and ground. This can

result in a significant increase in current, potentially leading to permanent damage.

If it is not stopped it will lead to thermal failure. Furthermore, SEL probability is known

to increase at higher temperatures [16].

Configuration Memory Corruption

FPGAs rely heavily on configuration memory to define their operation. Radiation can

cause corruption in this memory, leading to incorrect circuit operation. Detection and

correction of these errors can be mitigated by configuration memory scrubbing, where

the memory is being read constantly, correct, and report any corrected errors.

Correction of the memory is carried out by partial or full reconfiguration of the memory

[15].

1.4.3 System-Level Testing

With the increasing interest in testing COTS systems for atmospheric and space

applications, component-level testing has become a time and resource intensive

process, therefore, a simplified approach is needed, where only the most critical

components and tested [6]. With increasing complexity in devices, such as memories,

FPGAs, SoC, and multicore MPSoC, it becomes increasingly hard or nearly impossible

to partition these systems. We want to test the whole functionality of the system and

monitor it during the irradiation test. The main advantage of system-level testing is we

acquire radiation data for the whole system, incorporating the margins given by the

system into the performance [6].

Th complexity of SoC devices naturally increases the resources needed to properly test

the devices. Only in the reconfigurable part of the FPGA, the Configurable Logic Blocks

plus the non-reconfigurable cores will present different cross sections and sensitivities.

Secondly, the design itself can be a source of amplification or masking of errors [17].

Finally, with the number of resources in a complex device, there needs to be a selection

of data streams that need to be monitored, and later correlate any effects seen on these

devices to a SEU or SEFI. To reduce complexity and recurring engineering costs, a trend

of using FPGA-based test setups has emerged, especially to test other FPGAs or

memories [17].

1.4.4 Related Work

For SoC testing of SEE, evaluation or development boards are utilized [18]. One of the

problems is the reduction in controllability of the device, since in the case of a SEL or

SEFI, there is no independent control of the SUT power. The gain in time by using

development boards comes at the expense of board complexity, since a lot of hardware

overhead is needed. Additionally, it has been shown that the extra components increase

the risk of system failure [6]. Some solutions have been proposed for the

standardization of radiation testing.

Besides the development boards traditionally used for testing, some long-term radiation

testing platforms exist, such as the CRaTeBo modular platform used for SoC, FPGA, and

memory testing. The board presented uses radiation-tolerant components and custom

Single Event Effects Instrumentation for System-on-Module Testing

5

ASICs designed at CERN, which makes it expensive to source and manufacture [19].

Despite fulfilling all the objectives for the testing application, companies are still

interested in testing a more diverse set of COTS SoC, with reduced testing cost and time

to test.

Another example of long-term measuring platform is the one presented in [20],

developed by CERN to monitor radiation exposure of various equipment and

characterize radiation induced effects. It has the capability to measure SEE, TID and

DD by using commercial memories, RadFets and PIN diodes.

1.4.5 Improved Observability and Controllability

An approach for improved observability has been demonstrated in [21] in which not

only the internal SoC status in monitored, but also the SUT total current is measured

and checked for determining different types of SEE. Additional peripherals are also

added, to be able to correlate the data collected and have a better understanding of the

effects on the system: real time clock, temperature, and communication are added to

the metrics collected.

This correlation of data using enhanced metrics has been demonstrated by previous

experiments in the group, presented in the work by the RADIAC group in [22], where

with the additional temporal synchronization, different SEE events were classified by

using current monitoring. The key addition in this approach is the addition of precise

timestamps for every measurement, allowing faster response to different events. In

addition to precise timing, statistical methods are also employed for the data analysis,

where each type of SEE can be calculated separately, by using the rate at which SEU or

SEFIs happen, it’s possible to distinguish between them, this has been proven in [17].

The addition of precision timestamping allows for the correlation of data, from different

sensors, and to gain a better understanding of how radiation affects the device.

Single Event Effects Instrumentation for System-on-Module Testing

6

2 Methodology

2.1 Methodological Approach

First, a comparison of existing platforms, existing monitoring techniques and

instruments was conducted, identifying the appropriate parameters that the system

needs to monitor, and comparing to existing solutions in terms of complexity, cost, ease

of use, parameters monitored.

Second, once key metrics are identified, an initial design phase is carried out, listing the

Use Cases of the Platform, as well as its overall requirements. Finally, after

requirements are gathered, an initial system architecture is proposed and then iterated

until the system fulfills all requirements. We then move on to component selection,

based on previous experiments or literature. Since we don’t need the components to be

tolerant to radiation, the costs and complexity of selection is diminished.

A hardware solution was developed, based on a custom PCB, utilizing an FPGA platform

that can be reconfigured for future iterations. The proposed instrument was validated

during a neutron irradiation campaign in the ISIS ChipIR neutron facility.

2.2 Use Cases

The main use of the platform is to facilitate the testing, monitoring, and reporting of a

SoC under test. To simplify the hardware needed to conduct radiation campaigns, while

keeping the cost of development low. As presented in 1.4.4 the main method of testing

FPGAs and SoCs is to use evaluation kits, but these come with a lot of hardware

overhead that can make it even harder to diagnose SEE during irradiation and may not

be suited to the common objective of testing the SoC/FPGA without much error masking

from the additional hardware. The proposed solution is made open source to open the

possibility of collaboration and for any researcher to quickly develop a base system or

to use widely available commercial modules.

2.3 Design and Development

2.3.1 Requirements

The whole testing system is composed of two boards:

- Monitoring Board (this work): this thesis describes the work done with this

board and design, along with the Carrier board it is part of a bigger system that

interfaces and synchronizes with the SUT and communicates back with the host

computer.

- Carrier Board: this board provides the interfaces, power, sensors and

communication to the Monitoring Board. This board holds the SoC under test

in the irradiation room. This board was designed by Mattos A. et al. and it is

described in more detail in [23].

Together, both boards comprise the full instrument, and are required for the proposed

goals. For clarity, a diagram and architecture of the whole system are described in 2.3.2

System Architecture.

Single Event Effects Instrumentation for System-on-Module Testing

7

The requirements of the Monitoring Board are shown in Table 1:

ID Requirement Note/Rationale

1 The system should have a minimum response

time of 100 millisecond.

This frequency is selected

to have a reasonable

response time in case of

SEL, since the thermal

effects are in the

millisecond range [24].

2 The system should operate at a minimum wired

distance of 100 meters.

The maximum cable

distance between the

control room and the

irradiation room.

3 The system should be able to control peripheral

devices.

Such as sensors, GPIO,

and power.

4 The system should be able to measure

temperature from the device.

To have data regarding

temperature dependence

of different effects.

5 The system should be able to measure current and

voltage from the SUT.

To monitor current

consumption and detect

SEL and anomalies.

6 The system should be able to timestamp the

incoming data from the SUT.

To be able to precisely

correlate different events

in time.

7 The system should be able to output data to a

serial terminal in the control room

To be able to monitor the

experiment in real time

8 The system shall be able to read a watchdog to

monitor the SUT for hangups, log the error and

restart the system.

In case we have hangups

in the SUT, the

Monitoring board can try

to reboot the system for

recovery.

9 The system shall be able to detect latch-ups and

cut the power when a current threshold is

surpassed.

To be able to detect and

log current events, and be

able to cut power to the

SUT to avoid thermal

damage.

10 The system shall be able to interface to a host

computer with minimal setup.

To facilitate experiment

setup and reduce

configuration errors.

11 The system should have multiple power options. To accommodate for

different control room

setups in different

facilities.

Table 1. Monitoring Board Requirements.

Single Event Effects Instrumentation for System-on-Module Testing

8

Additionally, some key design drivers were specified, to guide the selection of

components, interfaces, and features. The summary of the key design drivers is listed in

Table 2:

ID Design Driver Note

1 It would be useful to be able to program and

reprogram the SUT board over cabled distances of

up to 100 meters. This would be done using the

JTAG programming interface.

During radiation testing, if

the device fails, it’s useful

to reprogram the board, to

try to recover device

functionality, and to

change the device design

for different tests or

comparisons.

2 Most radiation facilities provide Ethernet

connections by default.

This connector is the

common denominator

between facilities, and

could be used in almost all

cases.

3 The Carrier Board components will be indirectly

irradiated and might be subject to SEE and TID.

We want to minimize

components, complex

components that could

prevent observability of

the device.

4 Both boards should use COTS components for

availability, cost, and scalability.

This would minimize

sourcing issues; parts are

easily replaceable, and we

can keep the overall

system cost low.

5 Both boards should be easily manufacturable. All components should be

hand solderable, including

passives and Surface

Mount Devices.

Table 2. Design Drivers for the whole system.

2.3.2 System Architecture

Figure 2 shows the initial system architecture for the monitoring board. So far only the

communication protocols internal to the PCB have been defined, and the justification

of ICs based on previous requirements will be detailed in section

2.3.3 Selection of Components.

Single Event Effects Instrumentation for System-on-Module Testing

9

Figure 2. Simplified System Architecture for Monitoring Board.

From the architectural diagram, going from left to right, we can see a simple power

interface, this is selected to be 5V, since a common option found from power supplies

or wall adapters, a Serial to USB component simplifies the connection to the host

computer and allows for interaction with the rest of the system, a JTAG connection

where the different SoC programmers are connected to program/reprogram the SUT.

We can see that the FPGA sits at the heart of almost all synchronization tasks, making

this component crucial to the overall setup. On the right side, we see the selected

protocols that the FPGA will be communicating: I2C for the temperature, current,

GPIO, and Watchdog devices; two UART ports that will be used to communicate with

the SUT, and finally the outgoing JTAG connection to the device.

2.3.3 Selection of Components

With an initial list of requirements, design drivers and overall architecture to guide the

selection, the following components are selected for the Monitoring Board:

ID Component Qty Note/Rationale

1 TEM0001-01A-

ABC-2 SMF2000

1 Flash-based FPGA to synchronize and control

the experiment

2 FT4232H-56Q

MINI MDL

1 UART to USB FTDI Chip with 4 channels

3 SN65LVDT41PW 1 LVDS Transceiver for JTAG programming

4 SN65HVD30MDR

EP

2 RS485 3.3V Transceiver

5 SN65HVD232D 2 CAN 3.3V Transceiver

6 P82B96DR 1 I2C Long Distance Buffer

14 HARTING

09455511123

1 RJ45 3-port Connector

17 DCJ200-10-A-K1-

K

1 DC Power Jack

18 TE Connectivity

5103310-1

1 JTAG connector

Table 3. Selected Components for Monitoring Board.

Single Event Effects Instrumentation for System-on-Module Testing

10

ID Component Qty Note/Rationale

3 SN65LVDT14PW 1 LVDS Transceiver for JTAG programming

4 SN65HVD30MDREP 2 RS485 3.3V Transceiver

5 SN65HVD232D 2 CAN 3.3V Transceiver

6 P82B96DR 1 I2C Long Distance Buffer

- TPS35AA38AGADDFRQ1 1 External Watchdog

- TMP100NA3K 1 I2C Temperature Sensor

- LP38693MP 1 Low Dropout Regulator for Setup

- MIC29302AWD 1 SoM Power Supply

- INA219BIDR 1 I2C SoM Power Monitor

- TCA9535PWR 1 I2C GPIO Extender

Table 4. Mirror Components for Carrier Board.

Table 3 and Table 4 shows the main components selected for the Monitoring and Carrier

board. To illustrate this interface dependency a full system diagram is shown in Figure

3, based on the full system design by Mattos A. et al. [23]. For a full breakdown of the

components and their costs, refer to Appendix A – Full Bill of Materials for .

Figure 3. Full setup diagram, with Monitoring (left) and Carrier board (Right). Adapted from

[23]

The component selection from Table 3 and Table 4 was based on the previous

requirements, previously utilized components, and past experiments:

- The TEM0001-01A-ABC-2 (SMF2000) FPGA was chosen due to the previous

experiments conducted in [22] and [25]. The component shows high tolerance

to radiation effects, due to being a flash-based FPGA, some generations of these

FPGAs have shown no radiation induced upsets in the flash cells, in contrast to

SRAM based devices [26]. Additionally, there was current availability of the

part in the laboratory stock, as it had already been ordered for previous

experiments.

- FTDI Chip FT4232H-56Q was selected to simplify the connection between the

host computer and the Monitoring Board, as it provides four different serial

ports with different configurations, only requiring one single USB port and

minimal drivers [27]. This allows the host computer to monitor four serial ports

Single Event Effects Instrumentation for System-on-Module Testing

11

at the same time, and as proven in [28] [29] it allows for data transfer rates of

up to 12 Mbit/s.

- UART has been utilized in similar experiments before and has proven to be

simple to use as a communication protocol between the host computer and a

device under test while requiring minimal hardware to setup [30].

- The UART over RS-485 protocol has been proven in multiple experiments to be

convenient and easy to use, especially for long-distance communication links

for FPGA applications [31].

- I2C over CAN, a reference designed was tested by Texas Instruments in which

I2C is converted into differential lines, that can be used for long distance

communication in noisy environments [32]. In this setup up to 300-meter

cables can be utilized by varying the setup time of the I2C protocol.

- JTAG over LVDS, a reference TI transceiver is used, due to its low power

consumption, potential high data rate, and long-distance capability. It is an

efficient protocol, with simple termination and low noise generation [33]. Since

the topology of using a JTAG programmer is a point-to-point scheme, requires

minimal hardware. This would allow to fulfill the programming over long

distances requirement, while also adding additional debug capabilities to the

system.

For reference, the Carrier board is shown in Figure 4 is an essential part of the

monitoring system, since it hosts the SUT under the beam, contains the power

regulators for the SUT, interfaces with the Monitoring board to provide the status of the

device, hosts the I2C peripherals (GPIO, temperature, current, watchdog), and hosts the

mirrored transceivers to convert the signals for long cables communications, including

the LVDS, CAN and RS-485 transceivers.

Figure 4. Carrier Board. Adapted from [23].

The Carrier board in conjunction with the Monitoring board, comprise the full testing

setup. The full details of the board and further results from the setup validation are

published in the Journal of Instrumentation in [23]. The work covered in this thesis

Single Event Effects Instrumentation for System-on-Module Testing

12

covers the design of the Monitoring board, as part of a bigger effort to make radiation

testing more accessible and reduce test development time.

2.3.4 Prototyping and Development of PCB

After the component selection and architecture were finalized, an initial PCB design was

commissioned, using KiCAD [34], this is a free and open-source EDA tool for PCB

design and manufacture. It has been partly supported by CERN as an Open-Source

initiative [35] to make it more efficient and be able to support designs with up to 32

layers.

Based on the previously described system architecture and the validated requirements,

a series of PCBs were designed, including the Monitoring, Carrier board, and additional

boards to test the Carrier board full functionality. This work covers the design of the

Monitoring board, and its full schematic diagram can be found in Appendix B.

The boards were sent for manufacturing using JLCPCB, which is an assembly service

for PCBs, the boards were designed and ordered using a 4-layer configuration, using a

Signal-Power-Ground-Signal stack up, as it is commonly used to have signals close to a

reference plane [36]. The details for the PCB fill, trace width and pad dimensions can

be found in Table 5. The rendered model for the front and back planes of the PCB can

be seen in Figure 5. Rendered front and back PCB assembly.

Specification Value

Layers 4

Layer Stack up Signal-Power-Ground-Signal

PCB dimensions 115 x 75 mm

Base Material FR4 Standard TG 135-140

PCB Thickness 1.6 mm

Surface Finish HASL (with lead)

Outer/Inner Copper Weight 1 oz / 0.5 oz

Vias Plugged, min size 0.3 mm

 Table 5. PCB Construction Details.

Single Event Effects Instrumentation for System-on-Module Testing

13

Figure 5. Rendered front and back PCB assembly.

The PCBs and its components were assembled using the stencil provided by the PCB

manufacturer, a hot air gun and low-temperature solder, an initial continuity test was

carried out, next the JTAG interface was tested with a simple circuit, where only the

JTAG over LVDS was tested, after the initial test and some debugging with the

programmer, a successful connection to a test FPGA was conducted. The JTAG

Programmer used to program the device is based on a similar FTDI device that is used

to simplify the connection between the host computer and the Monitoring board.

Single Event Effects Instrumentation for System-on-Module Testing

14

Figure 6. Test setup for JTAG over LVDS.

Figure 6 shows the test setup used to test the first interface of the boards, where only

the JTAG over LVDS transceivers are connected and powered up, the Monitoring board

is connected to a TEM0009-02 programmer, used for programming and connecting to

Microsemi FPGAs [37]. The programming test is conducted using the supported Libero

tools and FlashPro-5. A successful test is achieved, and signal integrity is tested.

Figure 7. Board to board signal test.

Figure 7 shows the board-to-board signal test performed: using a function generator a

3.3V 2 MHz signal is introduced in Channel 1 in the Monitoring board and the output

signal is measured in Channel 2, we can see that some of the high frequency components

Single Event Effects Instrumentation for System-on-Module Testing

15

are attenuated. Although not ideal, the signal quality at this point is sufficient for our

reprogramming test.

After a basic signal test was conducted with a 1-meter ethernet cable using the JTAG

programmer, multiple distances of cables were tested, and different programmers

tested, since Microsemi and Xilinx FPGAs use different programmers and software

tools. The summary of results is shown on Table 6. Notice that the programmer

frequency for the FlashPro-5 is dropped immediately to 1 MHz if the cable length is

more than 1 m.

Programmer/FPGA Programmer

Frequency (MHz)

Cable Length (m) Programming

Status

FlashPro-

5/Microchip

10 1 PASS

1 10 PASS

1 30 PASS

1 50 FAIL

1 100 FAIL

Vivado/Xilinx 10 1 PASS

4 10 PASS

2 30 PASS

1 50 PASS

1 100 FAIL

Table 6. Results for JTAG Programming Test.

One issue encountered with the JTAG programmer, specifically with the

FlashPro/Microchip programmer was the tool was not able to program the FPGA test

board if the cable length was greater than 30 meters or if the programmer’s frequency

was anywhere above 1 MHz, while the Vivado/Xilinx tools and FPGA was capable of

being programmed up to 50 meters, but using 1 MHz for the programmer’s clock. Figure

8 below shows the setup used to test the programming over JTAG, this setup was also

used to test the I2C communication. At the beginning it was tested using an Arduino

and the code found in Appendix D – Code used to test I2C Communication, this allowed

to test if the I2C devices were responding properly, namely the temperature sensor, the

current sensor and the GPIO IC. This test was conducted successfully using up to 50 m.

Single Event Effects Instrumentation for System-on-Module Testing

16

Figure 8. I2C test setup.

The Arduino in this setup was used as an I2C connectivity test, since the required

program for the SMF2000 FPGA was in development. This is the FPGA in the

Monitoring board that is used to synchronize the received data. After these initial steps,

the I2C, JTAG, and UART interfaces were validated, the development of the SMF2000

FPGA design was conducted.

Single Event Effects Instrumentation for System-on-Module Testing

17

2.3.5 Prototyping and Development of HDL blocks

The following section describes the design and development of the HDL code used

inside the SMF2000, first the block diagram of the overall system is presented, and

immediately the relevant details of each component are described. The implementation

is purely HDL, and it was synthesized and implemented using Libero SoC 2023.2, the

simulations were performed and visualized in Vivado Xilinx 2018.2 to have a better

visualization and debugging experience.

Figure 9. Block diagram of HDL design for SMF2000. Adapted from [23].

Figure 9 describes the block diagram of the logic used inside the SMF2000 FPGA.

Following the diagram, on the left side, we can see four UART channels that are

connected physically to the FTDI chip, Channel 1 and 2 are used to receive logging data

from the SUT, and are connected to a Redirect Buffer that acts as a FIFO and adds the

precise timestamp to the data received. On the right side, the redirected Ch1 and Ch2

are physically connected to the RS-485 transceivers described previously.

Channel 3 is used exclusively to monitor the device current, the current data is

registered in the Register block (Data registers) while the data is constantly being

updated by the I2C controller, additionally this channel has an Overcurrent Handler

that detects when the current data is over certain thresholds and power-cycles the device

for a specified amount of time.

Channel 4 is used to send commands to the Data and Configuration Register instance.

It can read-and-write any of the registers, and it is used to get the data from the

remaining I2C peripherals (GPIO, Temperature).

The I2C Controller coordinates the I2C peripherals read/write operations, and writes

the obtained data from Current Monitor, GPIO and Temperature to the Data Registers.

The design is broken down into simpler building blocks, this is to simplify the design

and testing. The full design is composed of the following blocks:

- Top: highest entity, encapsulates all other components.

- UART: implements serial data communication protocol. Used to communicate

to the FTDI chip and to the SUT device.

- Current Report: the Overcurrent Handler constantly monitors the electrical

current value, and reports with a bit flag if an overcurrent event occurs. Reports

overcurrent events to the UART interface.

Single Event Effects Instrumentation for System-on-Module Testing

18

- Overcurrent Handler: manages the GPIO and on/off times to be able to power-

cycle the device in case an overcurrent event occurs.

- Command: receives commands from UART Channel 4 to be able to read/write

to the Data and Configuration Registers.

- FIFO: a simple First In-First Out memory that holds incoming data until it can

be written.

- Hex to UTF8: converts Hexadecimal values used inside the HDL blocks to

human-readable UTF-8 characters.

- UTF8 to Hex: converts UTF-8 characters coming from the UART command

channel 3 to hexadecimal values used inside the HDL blocks.

- I2C: protocol implementation, data, and state machine implementation of the

protocol.

- I2C Controller: handles all different I2C device read/write operations in a single

block, including GPIO, INA Current Monitor, and GPIO. Also handles initial

configuration for the peripherals.

- I2C GPIO: implements register-level read/write operations required for the

configuration and functioning of the peripheral.

- I2C INA: implements register-level read/write operations required for the

configuration and functioning of the peripheral. Handles the calibration

operations.

- I2C TMP100: implements register-level read/write operations required for the

configuration and functioning of the peripheral.

- Redirect Buffer: receives UART data from the SUT, adds the data to a FIFO and

sends the data to the host UART with a timestamp.

- Registers: stores Data and Configuration registers. Implements 10

Configuration registers and 7 Data registers for the I2C peripherals.

- Timestamp: implements millisecond timestamp that is used by the rest of the

system.

The following section describes each in detail and how they relate to each other. For

brevity, the full state machine diagrams, HDL code, and in-depth explanations are

shown in Appendix E – VHDL Code and State Machines.

UART - UART.vhd

The UART serial interface was utilized in other SEE experiments in [22] [38] where it

was used successfully and simplifies the communication between devices and the host

computer. It implements a standard UART controller based on the protocol description

in [39], although the IP supports flow control, it is not implemented in this design, to

save physical pins in the PCB. The UART block is central in communication between the

host computer and the SUT, and it is instantiated multiple times throughout the design,

it’s utilized by the Redirect Buffer, Command Interface, and Current Report.

Figure 10. UART block design.

Single Event Effects Instrumentation for System-on-Module Testing

19

Redirect Buffer – redirect_buffer.vhd

This block makes use of the UART and timestamp implementation to buffer the

incoming data from the SUT, add a precise timestamp using a FIFO memory, and

forwards it to the host computer serial by using a second UART instantiation.

Additionally, the redirect buffer will detect if data is being lost, and will skip sending

timestamps, to avoid the loss of data from the SUT.

Figure 11. Redirect Buffer block diagram.

Current Report – current_report.vhd

The current report uses one UART instance to report when an overcurrent event occurs,

it uses the overcurrent_o output logic to signal if the current threshold has been

reached, and to timestamp the event. Additionally, it uses one process to increase the

sample rate temporarily until the internal FIFO is full of current measurements. The

most important inputs are the curr_th_i, the current threshold and curr_rdata_i, the

received current data, using both these inputs to make the internal comparison for an

overcurrent event.

Figure 12. Overcurrent Report block diagram.

Overcurrent Handler – overcurrent_handler.vhd

The Overcurrent Handler takes the overcurrent_i input that is connected to the Current

Report overcurrent_o output. It uses an internal state machine to turn the SUT on or

off in case of an overcurrent event. It uses an internal counter to compare with the input

values on_time_i and off_time_i, which controls the time the SUT is switched on and

off in case of an overcurrent event.

Figure 13. Overcurrent Handler block diagram.

Single Event Effects Instrumentation for System-on-Module Testing

20

Command Interface – cmd.vhd

This interface makes use of the tx_o and rx_i pins to communicate with the host

computer through Channel 4 of the FTDI, internally it makes use of a UART instance,

and uses the uart_rdone_w signal to control the state machine and determine when

the command has been received to process. The input/output to the block is determined

by the received command that is used to read/write from the Registers block. It also

instantiates hex_utf8.vhd and utf8_hex.vhd to convert the outgoing reads and the

incoming commands, respectively.

Figure 14. Command Interface block diagram.

Registers – registers.vhd

The registers are comprised of 10 configuration registers that hold informational values

such as the program version, board name, I2C and UART baud rates, and the

configuration for the current monitoring, including the current sample rate, current

thresholds, and on/off times when an overcurrent event is detected.

There are 7 data registers, the GPIO Tri State, GPIO Read/Write values, the current

value of voltage, power, current read from the INA, and the temperature value from the

TMP100 IC. This allows the system to be fully configurable, this is accomplished by

using the Command Interface via the serial terminal or a Python script. With this easy-

to-use interface, we can change any required parameters at runtime.

The Registers are connected to the Command Interface to read/write the corresponding

registers, and to the I2C controller, which updates the corresponding register value. All

the read/write operations are controlled with five ports: wr_en_i, rd_en_i, addr_i,

wdata_i, rdata_o – write enable, read enable, address, write data, read data.

Figure 15. Block diagram (top) and Data and Configuration Registers (bottom).

Single Event Effects Instrumentation for System-on-Module Testing

21

FIFO – fifo.vhd

Implements a simple memory that can hold data whenever is needed. It has two generic

parameters FIFO_SIZE, DATA_WIDTH to enable the FIFO to be flexible to the

implementation, this way we can reuse the FIFO all over the design.

The main control ports are the write_i, read_i, data_i, and data_o, which control the

write enable, read enable, input data, and read data, respectively. Additionally, the

empty_o and valid_o ports allow for data flow control to only read or request data when

the memory is not empty, and there is valid data on the memory.

Figure 16. FIFO block diagram.

Hex to UTF8 – hex_utf8.vhd

Converts Hexadecimal values used inside the HDL blocks to human-readable UTF-8

characters. This is an asynchronous block and will keep converting the input without

any control signals. Mainly used in conjunction with the Command Interface.

Figure 17. Hexadecimal to UTF-8 block diagram.

UTF8 to Hex – utf8_hex.vhd

Converts UTF-8 characters coming from the UART command channel 3 to hexadecimal

values used inside the HDL blocks. This is an asynchronous block and will keep

converting the input without any control signals. Mainly used in conjunction with the

Command Interface.

Figure 18. UTF-8 to Hexadecimal block diagram.

I2C – i2c.vhd

This block diagram makes the connection between the peripherals and the I2C

controller. It implements the Standard-mode with a Standard Bit Rate of 100 kbps and

the two wire communication with the SDA and SCL lines, Serial Data and Serial Clock

following the protocol description from [40]. The bit rate parameter is fully

configurable, to account for any propagation delay in the long-wired connection,

making it possible to reduce the frequency of the I2C communication, and guaranteeing

the peripheral communication works.

This IP is instantiated by the I2C controller to select which peripheral is being

addressed.

Figure 19. I2C block diagram.

Single Event Effects Instrumentation for System-on-Module Testing

22

I2C GPIO – i2c_gpio.vhd

The GPIO block implements the state machine for the required configuration and

read/write operations to communicate with the TCA9535 Bus Expander

implements register-level read/write operations required for the configuration and

functioning of the peripheral, following the required programming steps listed in the

datasheet [41].

Figure 20. I2C GPIO Block Diagram.

The device functionality can be summarized in three steps, all implemented in the

VHDL block:

a. Configuration: both configuration registers, two 8-bits registers require their

values being set on startup of the device, the values in these registers determine

if a corresponding pin port is set as an input or output.

b. Write: the I2C write function sends the START condition with the device

address and the last bit set to 0 to signal a Write operation. Figure 21 shows the

required bus transaction, sourced from [41].

Figure 21. Example I2C Write procedure for GPIO Bus Expander.

c. Read: reading from a register requires to send the address of the device with a

write instruction, followed by the internal register address to read; after

acknowledging the transaction, the data is transmitted until all data exchange

is completed. Figure 22 shows the example operation for a Read, sourced from

the datasheet of the device [41].

Figure 22. Example I2C Read procedure for GPIO Bus Expander.

The internal state machine in the I2C GPIO block implements all these three
procedures and repeats them in the I2C Controller by using the gpio_setup_en_i,
gpio_write_en_i, and gpio_read_en_i input ports, which are the setup enable, write
enable and read enable for the GPIO peripheral. For the full illustration of the state
machine of this block, refer to Appendix E – VHDL Code and State Machines.

Single Event Effects Instrumentation for System-on-Module Testing

23

I2C INA – i2c_ina.vhd

This block implements the state machine that carries the read/write enable operations

required for the configuration and functioning of the peripheral. The required

programming steps for the device are implemented following the requirements listed in

the datasheet [42].

Figure 23. I2C INA Current Monitor Block Diagram.

Similar to other peripherals, the device operations are broken down in the following:

a. Configuration: this operation is required on device startup to overwrite the

default values on the device. It is required to set the desired 16-bit Calibration

Register at address 0x00 as shown in Figure 24, sourced from the device

datasheet [42].

Figure 24. INA Configuration Register. Adapted from [42]

From MSB to LSB the Configuration Register gives values for: 15 - Reset bit or System-

Level Reset, 13 – Bus Voltage Range, 12-11 – PGA gain and range, 10-7 Bus ADC

Resolution, 6-3 Shunt ADC resolution, and bits 2-0 give the Operating Mode of the

device.

b. Calibration: the Calibration register is necessary to be able to use the Current

and Power registers. The value for the Calibration register needs to be

calculated using Equation 1, where Current LSB = 1 mA/bit, and RSHUNT =

0.02Ω.

𝐶𝑎𝑙 = 𝑡𝑟𝑢𝑛𝑐 (
0.04096

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑆𝐵 × 𝑅𝑆𝐻𝑈𝑁𝑇
)

Equation 1. Calibration Register value.

Figure 25. Calibration Register. Adapted from [42]

c. Read: When reading from the INA219, the last value stored in the register

pointer by a write operation determines which register is read during a read

operation. To change the register pointer for a read operation, a new value must

be written to the register pointer. If repeated reads from the same register are

desired, it is not necessary to continually send the register pointer bytes; the

INA219 retains the register pointer value until it is changed by the next write

Single Event Effects Instrumentation for System-on-Module Testing

24

operation. For our use case, the Bus Voltage, Power and Current register need

to be read, at internal addresses 0x02, 0x03, and 0x04

Figure 26. Bus Voltage Register. Adapted from [42]

Figure 27. Power Register. Adapted from [42]

Figure 28. Current Register. Adapted from [42]

I2C TMP100 – i2c_tmp100.vhd

The TMP100 block implements the necessary FSM and selects the appropriate register-

level read/write operations required for the configuration and functioning of the

peripheral according to the device datasheet [43].

Figure 29. I2C TMP100 Block Diagram.

Similar to other I2C devices on the system, the procedure needed are as follows:

a. Configuration: the Configuration Register shown in Figure 30 is a read-and-

write register. The correct value must be written on this register for the device

to function properly. From MSB to LSB, the configuration bits are as follows:

D7 – One Shot mode, single temperature conversion, D6-D5 converter

resolution between 9 to 12 bits, D4-D3 Fault Queue, triggered when the TLOW or

THIGH register values are exceeded, D2 polarity of the Alert output, D1

Comparator or Interrupt mode, D0 Shutdown for power saving.

Figure 30. TMP100 Configuration Register.

b. Read: the temperature conversion is stored in 12-bit representation, divided

into two-byte registers, for the read operation byte 1 is read first, followed by

byte 2. To access the Temperature Register, the address 0x00 must be written

to the Pointer Register with a write operation. After this write operation, the

contents of the Temperature registers are written on the bus.

Single Event Effects Instrumentation for System-on-Module Testing

25

Figure 31. TMP100 Temperature Register.

I2C Controller – i2c_controller.vhd

The I2C controller instantiates the I2C block, the I2C GPIO, I2C INA and I2C TMP100

blocks, and acts as the central point for communicating with the peripherals in the

Carrier board. The internal state machine continuously writes the initial values to the

configuration registers of all three devices: GPIO Bus Expander, INA Current Monitor,

and TMP100 temperature sensor. After initial configurations are completed, it gets the

read data from the devices, this process is repeated in an FSM loop that also controls

the write enable signal to the peripheral instances. A detailed FSM is shown on

Appendix E – VHDL Code and State Machines - Figure 102.

Figure 32. I2C Controller Block Diagram.

Timestamp – timestamp.vhd

The timestamp block is responsible for keeping the internal time in the device and

implements a millisecond timestamp that is used by the rest of the system. It uses a

simple tick counter, that increases the millisecond count every 49999 ticks at 50 MHz

Figure 33. Timestamp Block Diagram.

2.4 Experimental Design and Procedure

After the PCB was designed, soldered and tested, the next step was to simulate the

VHDL blocks described in the previous section. Simulations using Vivado 2018.2, and

Libero 2024 were carried out, and the simulation signals were compared to the

predefined behavior.

After all simulations were completed and verified, a hardware verification of each block

or group of related blocks was carried out. A bitstream for the FPGA was generated and

the design was tested on hardware using the SMF2000 FPGA and the Monitoring and

Carrier board.

Single Event Effects Instrumentation for System-on-Module Testing

26

After a successful hardware validation was conducted in the laboratory with a full test

setup, a neutron irradiation test was conducted in the ISIS Muon Sourced in the ChipIR

beam during July 2024, this further validated the usefulness of the platform. The

experimental procedure for testing the SoC boards follows the standard testing under

radiation suggested in other experiments [44].

Single Event Effects Instrumentation for System-on-Module Testing

27

3 Results

3.1 Overview of Results

The following section presents the results obtained from the Monitoring board,

including the visualization of the simulation using Vivado and the obtained logs. The

simulations performed serve as unitary and integration test of the system, since the

simulations were first carried out block by block, and then integrated into an

encompassing system-level simulation. This simulation approach simplified the design,

simulation and hardware validation of the overall design. A brief discussion of the

results is presented, along with any issues encountered during board testing.

3.2 Detailed Presentation of Data

UART

A successful UART simulation was conducted and verified at the signal simulation level.

Both receive and transmit operations are completed successfully. This block is then

integrated into the different blocks that require UART, specifically: Redirect Buffer,

Current Report, Command Interface.

Figure 34. UART Receive simulation.

Figure 35. UART Transmit simulation.

For the verification part of this block, a simple loopback test [45], where the TX and RX

pins on the Carrier board are connected to each other, and one or multiple characters

are sent using a Serial Terminal, the received message is the same message, this proves

that the serial communication works. Figure 36 shows the output of a simple loopback

test using the Visual Studio code Serial Monitor @115200 bps, 8 data bits, no parity.

This prototype was carried out in hardware, using the actual FPGA.

Figure 36. Simple loopback test with UART.

Single Event Effects Instrumentation for System-on-Module Testing

28

Redirect Buffer

The Redirect Buffer was implemented successfully, being able to receive data from the

SUT with the added timestamp. Figure 37 shows 1. the transmitted UART from the

redirect buffer, 2. the received UART from the SUT, 3. the transmitted data with the

additional timestamped data.

Figure 37. Redirect Buffer simulation.

For the functional verification, a simple loopback was implemented in the Carrier board

FPGA design, and it was verified that the sent string was returned with a timestamp

added. Figure 38 shows the output of the loopback test, where the message sent was

“cafe” in hexadecimal, and the return message was the sent message plus the timestamp

in milliseconds given in hexadecimal value.

Figure 38. Redirect Buffer functional verification.

Current Report

The Current Report was simulated by 1. setting the curr_th_i – current threshold input

port to a fixed value, 2. comparing the input current data from the registers

curr_rdata_i with the threshold value, 3. after the current value is higher than the

threshold, an overcurrent is reported using the overcurrent_o output port, this last

output will be connected to the Overcurrent Handler to turn the device on/off. 4. Finally,

all the events get logged in an internal FIFO memory that gets converted to UTF-8 and

sent to the UART for reporting. Figure 39 shows the labelled steps described above.

Figure 39. Current Report simulation.

Single Event Effects Instrumentation for System-on-Module Testing

29

Overcurrent Handler

The Handler takes 1. Waits for overcurrent flag overcurrent_i to power-cycle the device,

2. The device is turned on, then off for the duration set on the on_time_i and off_time_i,

which are configured from the Registers, this means that the on-off time for power cycle

can be configured before or during the experiment, 3. The gpio_wdata_o is used to

send the correct value to the GPIO register, to try to cycle the device.

Figure 40. Overcurrent Handler simulation.

Command Interface

This interface is key to the setup operation, as it reads and writes the corresponding

registers to power cycle the device using GPIO, read temperature values, and read

voltage, current and power from the INA.

The user can interact directly with the command interface by using Channel 4 of the

UART and a Serial Monitor with UTF-8 encoding. During the experiment, Python

scripts with the proper encoding are used to automatically send the commands to read-

and-write to the registers.

Write commands are 40-bits long, with 8-bits to store the “w” UTF-8 character, plus 16-

bits for the address, and 16-bits for the value to be written. An example command to

write “cafe” to register address “0001” would be “wcafe0001”. Figure 41 shows the

Commands simulation, by writing data “cafe” to address “0001”. We also see the correct

toggling of the wr_en_o port, this is the write enable to the Registers.

Figure 41. Command Write simulation.

Read commands are 24-bits in total: 8-bits to store the “r” (read) UTF-8 from the serial,

plus 16 bits to decode the address to be read e.g. “FFFF” would be an example address,

and the full command would be “rFFFF”, the equivalent of saying read Registers address

“FFFF”.

Figure 42 shows the rd_en_o signal going high, the read enable signal, the address to

be read is “0001”, and the read_data_i is “cafe”.

Figure 42. Command Read simulation.

Single Event Effects Instrumentation for System-on-Module Testing

30

The validation on hardware of the Command Interface was done using a Serial Monitor

and writing and reading from a series of registers. Figure 43 shows the serial output of

reading the board name at address “0001” is shown, then a Write operation to register

address “0007” followed by an immediate read, this is the current threshold register.

Figure 43. Validation of Command Interface.

Registers

The Write operation to the Registers is enabled by the wr_en_i port, which is connected

to the Command interface wr_en_o port, in this way the commands can directly control

the register writes. Figure 44 shows the Command Interface on the top, signaling the

write enable out signal. On the Figure, we can see the wr_en_i write enable input port

from the Registers being toggled, and the change in the wdata_i, the incoming data.

Figure 44. Register Write simulation.

The read operation is pretty similar to write, but now the controlling signal is the

rd_en_i – the read enable port. This is toggled by the Command Controller, and we

immediately see the data being outputted in the rdata_o port.

Figure 45. Register Read simulation.

The hardware validation for both Registers read-and-write is covered by the test

performed for the command interface shown in Figure 43. The Command Interface is

tested by writing and reading from the registers, so we can verify both blocks work with

a single functional verification.

Single Event Effects Instrumentation for System-on-Module Testing

31

FIFO

For the FIFO memory, we can break down the essential operations into two, reading

and writing, since the controlling ports for this block are the write_i and read_i, which

enable the writing and reading of the data, respectively. Figure 46 shows the writing

operation in 5 annotated steps: 1. Write is enabled via the controlling port, 2. The input

data is put on the data_i port, 3. The input data at the port is written for the duration

of the write enable signal, 4. FIFO empty_o status is changed after the first data write,

signaling that the memory is no longer empty, 5. As data is inputted in the FIFO, the

size of the memory keeps increasing, as well as the next address where the next data is

inserted.

Figure 46. Writing to FIFO simulation.

The reading portion of the FIFO is carried out in 5 steps: 1. Port read_i is set to 1,

enabling the read operation if the FIFO is not empty, this means if empty_o = 0, 2. The

FIFO internal register takes the value in the corresponding address of first_address_r,

which is the next value to be read, 3. The output port data_o takes the corresponding

value. 4. The address pointer first_address_r is updated with the new address value

next_first_addr_w, 5. The size_r register gets updated from new_size_v with the new

size of the FIFO. Figure 47 shows the annotated steps and its corresponding simulated

outputs.

Figure 47. Reading from FIFO simulation.

Hex to UTF-8

Hex to UTF-8 is successfully implemented and simulated, in Figure 48 we can see the

input hex codes and its corresponding conversion immediately. The conversions were

verified and implemented by using a UTF-8 encoding with its corresponding Unicode

code point from the table in [46].

Figure 48. Hex to UTF-8 simulation.

Single Event Effects Instrumentation for System-on-Module Testing

32

UTF-8 to Hex

UTF-8 to Hexadecimal is successfully implemented and simulated, in Figure 49 we can

see the input UTF-8 and its corresponding conversion to hexadecimal immediately in

the output port. The conversions were verified and implemented by using a UTF-8

encoding with its corresponding Unicode code point from the table in [46].

Figure 49. UTF-8 to Hex simulation.

I2C GPIO

For the GPIO we can see from Figure 50 that the enables for setup, read, and write are

being correctly simulated, lets see in detail what is being written on each state.

Figure 50. GPIO FSM enables simulation.

For the Configure operation, we see that we are sending data to the I2C port

i2c_wdata_o, which corresponds to the following:

06 – the address of configuration register 1.

FF – the value of the configuration value for register 1.

07 – the address of the configuration register 2.

FF – the value of the configuration value for register 2

With this we are setting all GPIO ports to inputs. This is shown in Figure 51.

Figure 51. GPIO Configure simulation.

For the write operation, we see that we are sending data to the I2C port i2c_wdata_o,

which corresponds to the following:

02 – the address of configuration register 1.

1E – the LSB value of the output register.

1A – the MSB value of the for the output register

With this, we are setting all GPIO outputs to 1A1E. This is shown in Figure 52.

Figure 52. GPIO Write simulation.

Single Event Effects Instrumentation for System-on-Module Testing

33

For the read operation, we see that we are receiving data to the GPIO port gpio_data_i,

which corresponds to the following:

00 – write the address of the output register.

1A – the MSB value of the output register.

1E – the LSB value of the for the output register

With this, we are reading both registers from the GPIO outputs . This is shown in Figure

53.

Figure 53. GPIO Read simulation.

Finally, the Register map implemented for the GPIO is shown in Table 7. Register map

for GPIO. Where the P00 to P17 is the bit number for the register is indicated, its

functional use and if the bit is configured as an input or output.

Bit P00 P01 P02 P03 P04 P05 P06 P07

Functi

on

SOM_

JTAG_

SEL

SOM_

PWR_

EN

SOM_

NOSE

Q

SOM_

PGOO

D

SOM_

BOOT

MODE

SOM_

Nrst

SOM_

GPIO_

0

SOM_

GPIO_

1

I/O OUT OUT OUT IN OUT OUT IN/OU

T

IN/OU

T

Bit P10 P11 P12 P13 P14 P15 P16 P17

Functi

on

SOM_

GPIO_

2

SETUP

_PWR

_EN

SETUP

_WDT

_WDO

SETUP

_ID_L

SB

SETUP

_ID_M

SB

SETUP

_GPIO

_TEST

PCIE_

GPIO

Not

used

I/O IN/OU

T

OUT IN IN IN IN/OU

T

IN/OU

T

NC

Table 7. Register map for GPIO.

I2C INA

For the INA we can see from Figure 54 that the enables for Configuration, Calibration,

Read, and Write are being correctly simulated, let’s see in detail what is being written

on each state.

For the Configuration operation, we see that we have enabled the controlling signal

write_setup_en_i. We send data to the I2C port i2c_wdata_o, which corresponds to

the following:

00 – the address of configuration register 1.

39 – the MSB value of the configuration register.

9F – the LSB value of the configuration register.

With this, we are setting the Configuration register to the value “399F”. This is shown

in Figure 54

Figure 54. INA Configuration simulation.

Single Event Effects Instrumentation for System-on-Module Testing

34

The Calibration is performed after the Configuration, using the same the controlling

signal write_setup_en_i. We send data to the I2C port i2c_wdata_o, which

corresponds to the following:

05 – the address of the Calibration register.

50 – the MSB value of the Calibration register.

00 – the LSB value of the Calibration register.

With this, we are setting the Calibration register to the value “5000”. This is shown in

Figure 55.

Figure 55. INA Calibration simulation.

The Read operation makes use of the controlling signal read_curr_en_i. We send data

to the I2C port i2c_wdata_o, which corresponds to the following:

02 – the address of the Bus Voltage register.

00 – the i2c_read_o is toggled, to read the incoming data. Voltage data is stored in the

internal register and sent to the volt_data_o port.

04 – the address of the Current register.

00 – the i2c_read_o is toggled, to read the incoming current data. Current data is stored

in the internal register and sent to the curr_data_o port.

03 – the address of the Power register.

00 – the i2c_read_o is toggled, to read the incoming Power data. Power data is stored

in the internal register and sent to the powr_data_o port.

We have read the three data registers from the INA peripheral. This simulation is shown

in Figure 56.

Figure 56. INA Read simulation.

I2C TMP100

For the TMP100 we can see from that, write_setup_en_i and read_temp_en_i are

being correctly toggled these are the Configuration, and read Read enable signals, let’s

see in detail what is being written on each state.

For the Configuration operation we see that we have enabled the controlling signal

write_setup_en_i. We send data to the I2C port i2c_wdata_o which corresponds to

the following:

00 – the address of configuration register 1.

39 – the MSB value of the configuration register.

9F – the LSB value of the configuration register.

With this we are setting the Configuration register to the value “399F”. This is shown in

Single Event Effects Instrumentation for System-on-Module Testing

35

Figure 57. TMP100 simulation.

For the Configuration operation, we see that we have enabled the controlling signal

write_setup_en_i. We send data to the I2C port i2c_wdata_o, which corresponds to

the following:

01 – the address of the configuration register.

60 – the 8-bit values of the configuration register.

With this, we are setting the Configuration register to the value “60”. This is shown in

Figure 58.

Figure 58. TMP100 Configuration simulation.

For the Read operation, we see that we have enabled the controlling signal

read_temp_en_i. We send data to the I2C port i2c_wdata_o, which corresponds to the

following:

00 – the address of the Temperature register. After this value has been written, we

disable the i2c_write_o signal, i2c_done_i signals that the I2C communication is done,

and we enable i2c_read_o to read the value of the Temperature register.

With this, we are reading the Temperature register value at the internal address “00”.

This is shown in Figure 59.

Figure 59. TMP100 Read simulation.

I2C Controller

For the I2C Controller, we can verify that the enable cycles of all three peripherals are

being toggled, and that the state machine is functioning properly. We can further verify

it with the I2C test, in which we are able to communicate correctly to all the peripherals.

The toggling of the enabling signals is shown in Figure 60.

Figure 60. I2C Controller simulation.

Single Event Effects Instrumentation for System-on-Module Testing

36

I2C

The I2C controller and the I2C implementation work together to have a proper

addressing, reading, and writing of the I2C peripherals in the Carrier board. At the

highest level of the hierarchy, this can be verified by the correct toggling of the SDA and

SCL signals, following the I2C protocol [40]. Figure 61 shows the different states for the

I2C using the state_r register, we can see the state going from a -> b -> 0 -> 1 -> 2 -> 3

-> f, these states signify the change from STOP -> WAIT -> START -> ADDR -> AACK

->ACKN, respectively. Additionally, we can verify the simulation with the i2c_sda_o

and i2c_scl_o ports, which will eventually be routed to the actual pins on the device.

Figure 61. I2C simulation.

Timestamp

The timestamp block is successfully simulated using the tick counter, Figure 62 shows

the simulation results, it can be seen that after the tick counter reaches the predefined

value of 0xC34F the millisecond register, millisecond_r, is increased, this continues

updating the millisecond value and outputs the value on the timestamp_ms_o output

port. We can see that the update of the port, value, and register happens around the 1

000 000 ns mark, which is equivalent to 1 millisecond.

Figure 62. Timestamp simulation result.

System Test

After development of the HDL blocks, and the functional verification of individual

blocks, the SMF2000 FPGA was flashed with the complete design and tested on the full

setup in the laboratory. The full test setup is shown in Figure 63.

Figure 63. System test setup.

Single Event Effects Instrumentation for System-on-Module Testing

37

The system was left running over a 24-hour period to check for stability and identify any

potential setup errors. Additionally, the hardware setup was integrated with the

scripting software to monitor, log and control the experiment from a computer terminal,

this is based on the series of Python scripts and Make files made by Mattos A. et al. in

[23] which make possible to interact with the devices, to send and interact using

commands to the device, monitor the devices, and continuously log the current.

The scripts generate .txt files as logs, and a Make file is used to simplify the creation of

the necessary folders, create a Python virtual environment with the necessary packages,

and centralize the initialization of the experiment from a single file. An example current

monitor terminal is shown in Figure 64, where we can see where the received data is

being logged to, which FTDI we are monitoring, and at which serial settings and the

Current information marked with the [CURR] tag.

Figure 64. Current terminal output (top) and annotated example log (bottom).

A SEL protection test was carried out, with modeled faults that intent to cover the

different current levels of the SUT, these states are: device OFF, device ON, device

BOOT, Nominal, Nominal (with SEFI), Watchdog timeout, and SEL. Mattos A. et al.

published the details of this test in [23], Figure 65 was prepared for the mentioned paper

and it’s presented as the expected response of the SUT under test.

Figure 65. Emulated current behavior of a SoM during various states. Adapted from [23].

Single Event Effects Instrumentation for System-on-Module Testing

38

The test setup was validated in the lab. Next all the necessary hardware was prepared

for a heavy-ion irradiation campaign in June 2024 using uranium U28+ in the GSI

Helmholtz Centre for Heavy Ion Research, unfortunately there was a problem with the

beam equipment and the test could not be carried out under irradiation, nonetheless

the test setup was validated with the facilities’ patch panel and interfaces, the

communication interfaces including UART and I2C were tested, and the current

monitoring was carried out. Figure 66 shows the test setup used with one of the Carrier

boards connected.

For the JTAG validation, the board could only be reprogrammed up to 50 meters using

the Vivado tools. Using the Libero programmer only 30 meters of JTAG programming

distance could be achieved, this is consistent with the tests carried out in the laboratory.

The main hypothesis is that the timing requirements for each of the programming tools

are different and that more testing or a better solution is needed when the user must

interchange between the different FPGA vendors using the proposed instrumentation.

Figure 66. GSI Test setup.

Single Event Effects Instrumentation for System-on-Module Testing

39

A second experiment was conducted in July 2024 at the ISIS Neutron and Muon Source,

in the ChipIR beam under an atmospheric neutron beam, for this experiment, the full

characterization of the Carrier board was completed, all the details regarding this test

will be published in future papers that will contain the radiation response of a Polarfire

MPSoC and a custom hardened processor developed in the group [30]. The test setup

used for this experiment is shown in Figure 67 and Figure 68.

Figure 67. ChipIR Test setup.

Figure 68. ChipIR Test setup, sideview.

In addition to the SoM irradiation, the Carrier board transceivers were also irradiated

directly, to measure the response of the system and prove a worst-case scenario. Using

a UART loopback test, no errors were detected on the UART communications, which

proves the robustness of the RS-485 transceivers. The I2C over CAN did not present any

errors either. During this irradiation test, the SoM was replaced by a fixed resistor to

simulate power consumption. Some register errors on the GPIO input port were

reported. The full details of the irradiation test are reported in [23].

Single Event Effects Instrumentation for System-on-Module Testing

40

Finally, an analysis of a classified SEFI during the experiment is shown in Figure 69. It

shows the irradiation of a Microchip Polarfire SoC. During this evaluation, we can

observe a failure of the device at 327 seconds, followed by a failure to recover, and an

attempt to restart the device by the watchdog timer flag. The device failed to recover

using the watchdog, until a beam glitch occurred (the marked read area on the figure),

this indicates that the device might have some SEE detection that locks up the

initialization of the device when errors are detected. At timestamp 2600 seconds, we

can see that the device is finally able to recover.

Figure 69. Investigation of SEFI events, including a watchdog timer reset using the current and

fault events in superposition with enhanced synchronization. Adapted from [23].

We can also see from the timing diagram that the timing response of the system with

the setup tested in the experiment, with around 50 meters of cabling distance, is less

than 1 second, close to around 100 milliseconds. With this metric we show that the

initial requirement of having a fast response time is fulfilled.

Single Event Effects Instrumentation for System-on-Module Testing

41

4 Conclusion

This work presents the full design of an improved instrumentation system for SoM and

FPGA radiation testing with enhanced observability. After initial validations in a

laboratory setting, we have demonstrated the full setup in a real experiment

environment, overcoming the limitations of current methodologies found in the

literature, by providing a common platform for multiple vendors of SoC.

The results obtained during demonstrated the usefulness of the setup, with increased

synchronization and observability, it was proven to be reliable, and tolerant to errors,

most importantly that we can reduce the test operator interventions and errors by

automating the device recovery process after a critical error. During the experiment, we

tested a Polarfire SoC with great success, providing better understanding of the effects

on the device at a system level. Additionally, we were able to correlate observed

parameters such as current and communication link, to device effects. The platform will

serve for multiple experiments that will support the group’s efforts in the future.

Currently, some limitations with the platform exist, such as the reprogramming

capabilities using JTAG, and more development time is needed to come up with a better

solution that will allow full or partial reconfiguration of a running device. This would

allow for more complex testing scenarios that would enhance the testing capabilities for

SoM devices.

Overall, the proposed requirements were fulfilled. The required response time, cabled

wire distance, peripheral devices sensing and control, including temperature, GPIO,

and current were achieved. These measurements can be timestamped by the controlling

hardware, allowing for the correlation of effects. By using standard communication

links such as serial UART, we can monitor the system’s response, and to automatically

respond to events without the need for user interaction.

The platform developed is adaptable in its control hardware, due to the reprogrammable

nature of the FPGA, and it can support additional devices and peripherals in the future.

The project is intended to be open source, this would encourage other users to

implement their own testing with the system, would foster collaboration and

innovation, by allowing researchers to come up with their own solutions and

contributing back to the project. The cost of the platform is relatively low compared to

existing solutions, and has the potential to reduce platform selection, test development,

and radiation testing.

Single Event Effects Instrumentation for System-on-Module Testing

42

5 Future Work

This work opens the doors for even more granular but simplified radiation analysis, by

automating setup, experiment execution, and proposing a unified environment for logs,

data, and analysis.

In the future, the platform can accommodate custom devices using the open-source

SoM specification, connecting additional devices to the Carrier board using the PCIe

connector, which allows the use of secondary devices such as SRAMs. These memories

can be utilized by the SUT for additional functionality, but also to observe SEU errors

and correlate the fluence, with the high precision synchronization. These has been

proven in other monitoring systems such as the radiation monitor presented in [20].

Latch-up free memories can be utilized, selected from COTS test data, these memories

typically work in a range of voltages that can be varied, this voltage variation can be

utilized as a variable parameter for different cross sections using the same memory.

Additional work is needed to overcome the programming limitations via the JTAG

interface during the experiment. Other interfaces could be explored, such as using

optical transceivers instead of wired differential transceivers, this would guarantee

signal integrity even under the worst radiation conditions and long links. Another

option would be to explore independent or vendor tools for custom programming jobs,

specifically for the Microchip devices, which present the major limitations when

programming via JTAG. By exploring reduced clock frequency programming, a slower

clock can be utilized to program the device in the worst-case timing scenario, while still

achieving the required timing closure.

Further validation under different radiation sources is required. The setup will be tested

under high-energy protons at the Proton Irradiation Facility at the Center for Neutron

and Muon Sciences in September 2024 and validating the test setup under different

beam conditions.

Improvements such as additional temperature and voltage control for worst-case

testing scenarios would be an asset for future iterations of the platform. The

improvement of the device temperature monitoring to a more appropriate peripheral is

needed. More testing is needed in scaling the instrumentation for larger systems or

more complex designs, such as heterogeneous systems.

Finally, more research and proposals are needed regarding the guidelines for testing

complex devices, FPGAs, memories, and heterogeneous systems, such as the

standardization of observability metrics. An open observability framework would

encourage collaborative best practices and metrics that will eventually lead to better

testing guidelines and outcomes.

Single Event Effects Instrumentation for System-on-Module Testing

43

References

[1] "Organigram of the University of Montpellier," 6 June 2024. [Online]. Available:

https://www.ies.umontpellier.fr/wp-

content/uploads/2024/06/organigramme_ies_20240606.pdf. [Accessed

August 2024].

[2] University of Montpellier, "RADIAC - Radiation and Componets," 2024.

[Online]. Available: https://www.ies.umontpellier.fr/la-recherche-et-

linnovation/les-equipes-de-recherche/radiac/. [Accessed August 2024].

[3] R. G. A. e. al., ""Heavy Ion Energy Deposition and SEE Intercomparison Within

the RADNEXT Irradiation Facility Network,"," IEEE Transactions on Nuclear

Science, vol. 70, no. doi: 10.1109/TNS.2023.3260309, pp. 1596-1605, 2023.

[4] D.-J. L. a. C. .. -N. J. L. Chin-Lung Chuang, "A snapshot method to provide full

visibility for functional debugging using FPGA," in 13th Asian Test Symposium,

Kenting, Taiwan, 2004.

[5] H. Bokil, "COTS Semiconductor Components for the New Space Industry," in

2020 4th IEEE Electron Devices Technology & Manufacturing Conference

(EDTM), Penang, Malaysia, 2020.

[6] F. S. P.-X. W. Tomasz Rajkowski, "Radiation Qualification by Means of the

System-Level Testing: Opportunities and Limitations," MDPI Electronics, vol.

378, no. 11, 2022.

[7] E. P. J. S. J. G. a. M. W. W. Stirk, "Comparison of Neutron Radiation Testing,"

IEEE Transactions on Nuclear Science, vol. 70, no. 4, pp. 505-514, 2023.

[8] NASA, "Guideline for Single-Event Effect (SEE)," JPL, Pasadena, 2018.

[9] J. Leray, "Effects of atmospheric neutrons on devices, at sea level and in avionics

embedded systems," Microelectronics Reliability, vol. 47, no. 9-11, pp. 1827-

1835, 2007.

[10] S. A. a. G. G. C. D. Frost, "A new dedicated neutron facility for accelerated SEE

testing at the ISIS facility," in 2009 IEEE International Reliability Physics

Symposium, Montreal, 2009 .

[11] P. Goldhagen, "Cosmic-Ray Neutrons on the Ground and in the Atmosphere,"

MRS Bulletin, vol. 28, no. 2, pp. 131-135, 2003.

[12] D. G. Toro, "Temporal Filtering with Soft Error Detection and Correction

Technique for Radiation Hardening Based on a C-element and BICS," Université

de Bretagne Occidentale, Bretagne, 2014.

[13] N. K. J. K. a. K. S. H. Kobayashi, "Alpha particle and neutron-induced soft error

rates and scaling trends in SRAM," pp. 206-211, 2009.

[14] M. B. S. G. A. C. a. C. D. F. C. Cazzaniga, "First Tests of a New Facility for Device-

Level, Board-Level and System-Level Neutron Irradiation of Microelectronics,"

IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 1, pp. 104-108,

2021.

[15] Actel, "Effects of Neutrons on Programmable Logic - White Paper," Actel,

California, 2002.

Single Event Effects Instrumentation for System-on-Module Testing

44

[16] G. B. a. J.-M. Palau, "Single particle-induced latchup," Nuclear Science, IEEE

Transactions, vol. 43, no. 2, p. 522–532, 1996.

[17] H. Quinn, "Challenges in Testing Complex Systems," IEEE TRANSACTIONS ON

NUCLEAR SCIENCE, vol. 61, no. 2, pp. 766-786, 2014.

[18] V. V. e. al, "Configuration Memory Scrubbing of the Xilinx Zynq-7000 FPGA

using a Mixed 2-D Coding Technique," in 2019 19th European Conference on

Radiation and Its Effects on Components and Systems (RADECS), Montpellier,

2019.

[19] P. G. R. F. M. B. M. L. D. F. S. J. B. S. D. A. M. A. Scialdone, "CRaTeBo: a high-

speed, radiation-tolerant and versatile testing platform for FPGA radiation

qualification for high-energy particle accelerator applications," Journal of

Instrumentation, vol. 19, 2024.

[20] S. Danzeca, "a. The new version of the Radiation Monitor system for the

electronics at the CERN: electronic components radiation hardness assurance

and sensors qualification," Université de Montpellier, Montpellier, 2015.

[21] I. S. e. al, "Enhancement of System Observability During System-Level Radiation

Testing through Total Current Consumption Monitoring," IEEE Transactions on

Nuclear Science, vol. 71, no. 8, pp. 1948-1955, 2024.

[22] A. Mattos, D. Santos, L. Luza, V. Gupta and L. Dilillo, "Investigation of Single-

Event Effects for Space Applications: Instrumentation for In-Depth System

Monitoring," Electronics 2024, vol. 13, no. 10, p. 1822, 2024.

[23] M. R. A. D. A. S. L. D. André M. P. Mattos, "Open-source, low-cost, and robust

instrumentation for single-event effect qualification of system-on-chip," Journal

of Instrumentation, 2024.

[24] D. R. B. e. al, "Single-Event Latchup in a 7-nm Bulk FinFET Technology," IEEE

Transactions on Nuclear Science, vol. 68, no. 5, pp. 830-834, , 2021.

[25] R. S. e. al., "Analysis of SEL on Commercial SRAM Memories and Mixed-Field

Characterization of a Latchup Detection Circuit for LEO Space Applications,"

IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2107-2114, 2017.

[26] Microsemi, "Single Event Effects A Comparison of Configuration Upsets and

Data Upsets," Microsemi, Aliso Viejo, 2015.

[27] FTDI Chip, "FT4232H-56Q," Future Technology Devices International Limited,

2024. [Online]. Available: https://ftdichip.com/products/ft4232h-56q/.

[Accessed August 2024].

[28] F. H. R. e. al., "Development of FPGA-Based Ingest System with Multi-Output

Interface for Receiving Low Resolution Remote Sensing Satellite Data," in 2023

IEEE 7th International Conference on Information Technology, Information

Systems and Electrical Engineering (ICITISEE), Purwokerto, 2023.

[29] K. Ramesh, "High-Precision and Low-Latency FPGA-Based Weather Station," in

2022 International Conference on Computer, Power and Communications

(ICCPC), Chennai, 2022.

[30] A. M. P. M. D. R. M. a. L. D. D. A. Santos, "Characterization of a Fault-Tolerant

RISC-V System-on-Chip for Space Environments," in 2023 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), Juan-Les-Pins, 2023.

Single Event Effects Instrumentation for System-on-Module Testing

45

[31] J. K. G. -Y. K. B. S. a. H. Y. G. Yoon, "Multiple RS-485 interface management

FPGA design for Power micro-metering," in 2019 10th International Conference

on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), Busan, 2019.

[32] Texas Instruments, "Reference Design for I2C Range Extension: I2C with CAN,"

Texas Instruments - TI Designs, Dallas, 2019.

[33] Texas Instruments, "LVDS Owner’s Manual," Texas Instruments, Dallas, 2008.

[34] KiCad, "About KiCad," KiCad, February 2024. [Online]. Available:

https://www.kicad.org/about/kicad/. [Accessed August 2024].

[35] A. D. Rosso, "KiCad software gets the CERN treatment," CERN, February 2015.

[Online]. Available: https://home.cern/news/news/computing/kicad-software-

gets-cern-treatment. [Accessed August 2024].

[36] Z. Peterson, "Designing a 4 Layer Stackup With 50 Ohm Impedance PCB Traces,"

Altium, July 2021. [Online]. Available:

https://resources.altium.com/p/designing-4-layer-pcb-stackup-50-ohm-

impedance. [Accessed August 2024].

[37] Trenz Electronics, "TEM0009-02 FPGA USB-Programmer JTAG," Trenz

Electronics, 2024. [Online]. Available: https://shop.trenz-

electronic.de/en/TEM0009-02-FPGA-USB-programmer-JTAG-for-

development-with-Microchip-FPGAs. [Accessed August 2024].

[38] D. A. S. L. M. L. V. G. T. B. a. L. D. A. M. P. Mattos, "Investigation on Radiation-

Induced Latch-Ups in COTS SRAM Memories On-Board PROBA-V," IEEE

Transactions on Nuclear Science, pp. 1-1, 2024.

[39] Texas Instruments, "KeyStone Architecture - Universal Asynchronous Receiver

Transmitter," Texas Instruments, Dallas, 2010.

[40] W. Joseph, "Application Note - A Basic Guide to I2C," Texas Instruments, Dallas,

2022.

[41] Texas Instruments, "TCA9535 Low-Voltage 16-Bit I2C and SMBus Low-Power

I/O Expander," May 2022. [Online]. Available:

https://www.ti.com/lit/ds/symlink/tca9535.pdf?ts=1723716654478&ref_url=h

ttps%253A%252F%252Fwww.ti.com%252Fproduct%252FTCA9535%253Futm

_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%25

3Dasc-null-null-gpn_en-cpc-pf-google-wwe%2526utm_content%253D.

[Accessed August 2024].

[42] Texas Instruments, "INA219 Zerø-Drift, Bidirectional Current/Power Monitor

With I," December 20215. [Online]. Available:

https://www.ti.com/lit/ds/symlink/ina219.pdf?ts=1723730677958&ref_url=ht

tps%253A%252F%252Fwww.ti.com%252Fproduct%252FINA219%253Fqgpn%

253Dina219%2526bm-

verify%253DAAQAAAAJ_____0HXJ00BQ7Ulz8JPQ8rSr6jvBh99jveIbxCsJS

QKpcZr0Ckno0GmaAsKAEGetAeDgAnROnOd_tPMvojXA. [Accessed August

2024].

[43] Texas Instruments, "TMP10x Temperature Sensor With I," November 2015.

[Online]. Available:

https://www.ti.com/lit/ds/symlink/tmp100.pdf?ts=1723746154424&ref_url=h

ttps%253A%252F%252Fwww.ti.com%252Fproduct%252FTMP100%252Fpart-

details%252FTMP100NA%252F3K%253Fbm-

Single Event Effects Instrumentation for System-on-Module Testing

46

verify%253DAAQAAAAJ_____wr4hCsFJ3JlzJnI8KhkXTSyI1Y1bpEcQ-

GmpULbPJHaI4pxri3clQhmHcWnGu5C. [Accessed August 2024].

[44] D. A. S. e. al., "Neutron Irradiation Testing and Analysis of a Fault-Tolerant

RISC-V System-on-Chip," in 2022 IEEE International Symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Austin, 2022.

[45] National Instruments, "How to Perform a Serial Loopback Test," National

Instruments, Jul 2023. [Online]. Available:

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YFtECA

W&l=en-US. [Accessed August 2024].

[46] UTF-8 Chartable, "UTF-8 encoding table and Unicode characters page with code

points U+0000 to U+00FF," UTF-8 Chartable, February 2024. [Online].

Available: https://www.utf8-chartable.de/. [Accessed August 2024].

[47] NASA, "Field Programmable Gate Array (FPGA) Single Event Effect," JPL,

Pasadena, 2012.

[48] P. S. J. H. A. a. E. A. B. E. L. Petersen, "Calculation of Cosmic-Ray Induced Soft

Upsets and Scaling in VLSI Devices," IEEE Transactions on Nuclear Science,

vol. 29, no. 6, pp. 2055-2063, 1982.

[49] R. C. Baumann, "Radiation-induced soft errors in advanced semiconductor

technologies," IEEE Transactions on Device and Materials Reliability, vol. 5,

no. 3, pp. 305-316, 2005.

[50] E. Normand, "Single-event effects in avionics," IEEE Transactions on Nuclear

Science, vol. 43, no. 2, pp. 461-474, 1996.

[51] P. G. R. F. M. B. M. L. D. F. S. J. B. S. D. A. M.] A. Scialdone, "CRaTeBo: a high-

speed, radiation-tolerant and versatile testing platform for FPGA radiation

qualification for high-energy particle accelerator applications," Journal of

Instrumentation, vol. 19, 2024.

Single Event Effects Instrumentation for System-on-Module Testing

47

Appendix

Appendix A – Full Bill of Materials for System

Full BOM for Monitoring Board

ID Component Qty Note/Rationale Price € Source

1 TEM0001-01A-ABC-2

SMF2000

1 Flash Based FPGA to

synchronize and control

experiment

41.00 Link

2 FT4232H-56Q MINI

MDL

1 UART to USB FTDI

Chip with 4 channels

28.64 Link

3 SN65LVDT41PW 1 LVDS Transceiver for

JTAG programming

7.06 Link

4 SN65HVD30MDREP 2 RS485 3.3V Transceiver 3.36 Link

5 SN65HVD232D 2 CAN 3.3V Transceiver 1.97 Link

6 P82B96DR 1 I2C Long Distance

Buffer

2.79 Link

7 Bivar SM0805PGC 2 Green LED SMD 0.32 Link

8 Bivar SM0805RC 2 Red LED SMD 0.24 Link

9 Bivar SM0805UOC 2 Orange LED SMD Link

10 YAGEO AC0805FR-

071KL

6 1kΩ SMD Resistors 0.02 Link

11 RC0805FR-07100RL 6 100 Ω Resistors 0.01 Link

12 CRCW0805100KFKEA 6 10 KΩ Resistors 0.01 Link

13 Vishay

VJ0805Y104KXAMR

7 0.1 uF Capacitors 0.08 Link

14 HARTING 09455511123 1 RJ45 3-port Connector 4.74 Link

15 Deltron 571-0500 1 Banana Connector –

Red

1.83 Link

16 Deltron 571-0100 1 Banana Connector -

Black

1.44 Link

17 DCJ200-10-A-K1-K 1 DC Power Jack 0.70 Link

18 TE Connectivity 5103310-

1

1 JTAG connector 1.43 Link

19 Header 2.54mm 1 1 row 6 pin header NA NA

Full BOM for Carrier Board

ID Component Qty Note/Rationale Price

€

Source

3 SN65LVDT14PW 1 LVDS Transceiver for

JTAG programming

6.14 Link

4 SN65HVD30MDREP 2 RS485 3.3V Transceiver 3.36 Link

5 SN65HVD232D 2 CAN 3.3V Transceiver 1.97 Link

6 P82B96DR 1 I2C Long Distance

Buffer

2.79 Link

 TPS35AA38AGADDFRQ1 External Watchdog 2.51 Link

 TMP100NA3K 1 I2C Temperature

Sensor

1.35 Link

https://shop.trenz-electronic.de/en/TEM0001-01A-ABC-2-SMF2000-FPGA-Module-with-Microchip-SmartFusion-2-8-MByte-SDRAM?c=486
https://www.mouser.fr/ProductDetail/FTDI/FT4232H-56Q-MINI-MDL?qs=u4lROS522ZWtkd9iq8DBzQ%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65LVDT41PW?qs=QViXGNcIEAu2oZm1OztEtQ%3D%3D
https://www.google.com/url?q=https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65HVD30DR?qs%3DsGAEpiMZZMumM9SKmFWhKhevH%25252BCLM%252FU4mUwX1mjqNU4%253D&sa=D&source=editors&ust=1723648308320407&usg=AOvVaw3csViy1WcP5B4fhZLd2Cea
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65HVD232DR?qs=QViXGNcIEAtY%252BrViRMr46w%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/P82B96DR?qs=aEuGZpxfbxXIZ74dGyDcwQ%3D%3D
https://www.mouser.fr/ProductDetail/Bivar/SM0805PGC?qs=jaLxTFIJCivDjJTQ3rjhAg%3D%3D
https://www.mouser.fr/ProductDetail/Bivar/SM0805RC?qs=jaLxTFIJCivm3JSYe5gHjQ%3D%3D
https://www.mouser.fr/ProductDetail/Bivar/SM0805UOC?qs=jaLxTFIJCivUzv0TgwDi7A%3D%3D
https://www.mouser.fr/ProductDetail/YAGEO/AC0805FR-071KL?qs=yhV1fb9g%2FKY2c2RZgjwsPg%3D%3D
https://www.mouser.fr/ProductDetail/YAGEO/RC0805FR-07100RL?qs=8Y8p%252BasKcI6MtXUgG4E6SQ%3D%3D
https://www.mouser.fr/ProductDetail/YAGEO/AC0805FR-0710KL?qs=yhV1fb9g%2FKbswcDAMQpnRQ%3D%3D
https://www.mouser.fr/ProductDetail/Vishay-Vitramon/VJ0805Y104KXAMR?qs=sGAEpiMZZMukHu%252BjC5l7YcJ3vlKLg1BHDURqyHwsK0g%3D
https://www.mouser.fr/ProductDetail/HARTING/09455511123?qs=LASUwJSZkDlU8405jbO2qQ%3D%3D
https://www.mouser.fr/ProductDetail/Deltron/571-0500?qs=E2gf03EXmtqN5S6PKlh9vA%3D%3D
https://www.mouser.fr/ProductDetail/Deltron/571-0100?qs=sGAEpiMZZMtTOasXncsdUQjBVxhHI7uE96CEMKTX5HU%3D
https://www.mouser.fr/ProductDetail/GCT/DCJ200-10-A-K1-K?qs=KUoIvG%2F9Ilayx8ZZ1Qrlrg%3D%3D
https://www.mouser.fr/ProductDetail/TE-Connectivity/5103310-1?qs=84A%2FDAdkstId6coQOsiVSw%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65LVDT41PW?qs=QViXGNcIEAu2oZm1OztEtQ%3D%3D
https://www.google.com/url?q=https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65HVD30DR?qs%3DsGAEpiMZZMumM9SKmFWhKhevH%25252BCLM%252FU4mUwX1mjqNU4%253D&sa=D&source=editors&ust=1723648308320407&usg=AOvVaw3csViy1WcP5B4fhZLd2Cea
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65HVD232DR?qs=QViXGNcIEAtY%252BrViRMr46w%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/P82B96DR?qs=aEuGZpxfbxXIZ74dGyDcwQ%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/TPS35AA38AGADDFRQ1?qs=1Kr7Jg1SGW%252BZ5Ss3cDWR9A%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/TMP100NA-3K?qs=RnzODY3cU8ttwUxnXA%252BgRQ%3D%3D

Single Event Effects Instrumentation for System-on-Module Testing

48

 LP38693MP Low Dropout Regulator

for Setup

1.37 Link

 MIC29302AWD 1 SoM Power Supply 2.33 Link

 INA219BIDR 1 I2C SoM Power Monitor 1.79 Link

 TCA9535PWR 1 I2C GPIO Extender 1.12 Link

https://www.mouser.fr/ProductDetail/Texas-Instruments/LP38693MP-3.3-NOPB?qs=1FNqv8aZn1SaB2T45Qa8CA%3D%3D
https://www.mouser.fr/ProductDetail/Microchip-Technology/MIC29302AWD?qs=kh6iOki%2FeLHCfDEMcJUwRg%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/INA219BIDR?qs=1WmUhT%2FVMINyGsXNJcdD5Q%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/TCA9535PWR?qs=AgKnS2cdFrcE0lUzhMSKXw%3D%3D

Single Event Effects Instrumentation for System-on-Module Testing

49

Appendix B – Monitoring Board Schematic

Single Event Effects Instrumentation for System-on-Module Testing

50

Appendix C – Monitoring Board PCB Design by layers

Figure 70. Layer 1 – Front signal plane

Figure 71. Layer 2 - Power plane.

Single Event Effects Instrumentation for System-on-Module Testing

51

Figure 72. Layer 3 - Ground plane.

Figure 73. Layer 4 - Back signal plane.

Single Event Effects Instrumentation for System-on-Module Testing

52

Appendix D – Code used to test I2C Communication

1. #include <Wire.h>

 2.

 3. void setup() {

 4. Wire.begin();

 5.

 6. Serial.begin(9600);

 7. while (!Serial); // Leonardo: wait for serial monitor

 8. Serial.println("\nI2C Scanner");

 9. }

10.

11. void loop() {

12. int nDevices = 0;

13.

14. Serial.println("Scanning...");

15.

16. for (byte address = 1; address < 127; ++address) {

17. // The i2c_scanner uses the return value of

18. // the Write.endTransmisstion to see if

19. // a device did acknowledge to the address.

20. Wire.beginTransmission(address);

21. byte error = Wire.endTransmission();

22.

23. if (error == 0) {

24. Serial.print("I2C device found at address 0x");

25. if (address < 16) {

26. Serial.print("0");

27. }

28. Serial.print(address, HEX);

29. Serial.println(" !");

30.

31. ++nDevices;

32. } else if (error == 4) {

33. Serial.print("Unknown error at address 0x");

34. if (address < 16) {

35. Serial.print("0");

36. }

37. Serial.println(address, HEX);

38. }

39. }

40. if (nDevices == 0) {

41. Serial.println("No I2C devices found\n");

42. } else {

43. Serial.println("done\n");

44. }

45. delay(5000); // Wait 5 seconds for next scan

46. }

Single Event Effects Instrumentation for System-on-Module Testing

53

Appendix E – VHDL Code and State Machines

The following Appendix gives more details on the implementation of each individual

VHDL block, including it’s block diagram, ports description, signals, procedures, state

machines, and instantiations.

UART

Figure 74. UART block diagram.

Ports

Port name Direction Type Description

rstn_i in std_logic

clk_i in std_logic

baud_div_i in std_logic_vector(15 downto 0)

parity_i in std_logic

rtscts_i in std_logic

tready_o out std_logic

tstart_i in std_logic

tdata_i in std_logic_vector(7 downto 0)

tdone_o out std_logic

rready_i in std_logic

rdone_o out std_logic

rdata_o out std_logic_vector(7 downto 0)

rerr_o out std_logic

uart_rx_i in std_logic

uart_tx_o out std_logic

uart_cts_i in std_logic

uart_rts_o out std_logic

Table 8. UART port description.

Single Event Effects Instrumentation for System-on-Module Testing

54

Signals

Name Type Description

baud_div_max_w std_logic_vector(15 downto 0)

baud_div_mid_w std_logic_vector(15 downto 0)

tx_curr_r std_logic_vector(2 downto 0)

tx_next_w std_logic_vector(2 downto 0)

tcounter_r std_logic_vector(2 downto 0)

tbaud_r std_logic_vector(15 downto 0)

tmax_w std_logic

rx_curr_r std_logic_vector(2 downto 0)

rx_next_w std_logic_vector(2 downto 0)

ctl_rbaud_clr_w std_logic

ctl_rbaud_cnt_w std_logic

ctl_rbit_clr_w std_logic

ctl_rbit_cnt_w std_logic

ctl_reg_rdata_w std_logic

ctl_reg_rparity_w std_logic

rdata_r std_logic_vector(8 downto 0)

rbaud_r std_logic_vector(15 downto 0)

rbaud_max_w std_logic

rbaud_mid_w std_logic

rcounter_r std_logic_vector(2 downto 0)

rbit_max_w std_logic

Table 9. UART signals.

Constants

Name Type Value Description

TX_IDLE std_logic_vector(2 downto 0) "000"

TX_WAIT_CTS std_logic_vector(2 downto 0) "001"

TX_START std_logic_vector(2 downto 0) "010"

TX_DATA std_logic_vector(2 downto 0) "011"

Single Event Effects Instrumentation for System-on-Module Testing

55

Name Type Value Description

TX_PARITY std_logic_vector(2 downto 0) "100"

TX_STOP std_logic_vector(2 downto 0) "101"

RX_IDLE std_logic_vector(2 downto 0) "000"

RX_START std_logic_vector(2 downto 0) "001"

RX_DATA std_logic_vector(2 downto 0) "010"

RX_PARITY std_logic_vector(2 downto 0) "011"

RX_STOP std_logic_vector(2 downto 0) "100"
Table 10. UART constants.

Processes

• p_TX_FSM: (clk_i, rstn_i)

• p_TX_NEXT: (all)

• p_TX_COUNTERS: (clk_i, rstn_i)

• p_RX_FSM: (clk_i, rstn_i)

• p_RX_NEXT: (all)

• p_RX_COUNTERS: (clk_i, rstn_i)

• p_RX_DATA: (clk_i, rstn_i)

Single Event Effects Instrumentation for System-on-Module Testing

56

State machines

Figure 75. UART Transmit FSM.

Single Event Effects Instrumentation for System-on-Module Testing

57

Figure 76. UART Receive FSM.

Single Event Effects Instrumentation for System-on-Module Testing

58

Redirect buffer

Generics

Generic name Type Value Description

T2H_FIFO_SIZE integer 64

H2T_FIFO_SIZE integer 64

Table 11. Redirect Buffer generics.

Ports

Port name Direction Type Description

clk_i in std_logic

rstn_i in std_logic

host_baud_rate_i in std_logic_vector(15 downto 0)

sut_baud_rate_i in std_logic_vector(15 downto 0)

timestamp_i in std_logic_vector(31 downto 0)

tx_host_o out std_logic

rx_host_i in std_logic

rx_sut_i in std_logic

tx_sut_o out std_logic

Table 12. Redirect Buffer ports description.

Signals

Name Type Description

t2h_uart_rdone_w std_logic

t2h_uart_rdata_w std_logic_vector(7 downto 0)

t2h_fifo_valid_w std_logic

t2h_tready_w std_logic

t2h_fifo_tdata_r std_logic_vector(7 downto 0)

h2t_uart_rdone_w std_logic

h2t_uart_rdata_w std_logic_vector(7 downto 0)

h2t_fifo_valid_w std_logic

Single Event Effects Instrumentation for System-on-Module Testing

59

Name Type Description

h2t_tready_w std_logic

h2t_fifo_tdata_r std_logic_vector(7 downto 0)

Table 13. Redirect Buffer signals.

Instantiations

• uart_transceivers_u: work.uart

• uart_host_u: work.uart

Current Report

Figure 77. Current Report block diagram.

Generics

Generic name Type Value Description

REPORT_FIFO_SIZE integer 64

Table 14. Current Report generics.

Ports

Port name Direction Type Description

clk_i in std_logic

rstn_i in std_logic

baud_rate_i in std_logic_vector(15 downto 0)

sample_rate_i in std_logic_vector(15 downto 0)

curr_th_i in std_logic_vector(15 downto 0)

rx_host_i in std_logic

tx_host_o out std_logic

timestamp_i in std_logic_vector(31 downto 0)

ina_wen_i in std_logic

curr_rdata_i in std_logic_vector(15 downto 0)

gpio_i2c_wr_i in std_logic

gpio_i2c_rd_i in std_logic

Single Event Effects Instrumentation for System-on-Module Testing

60

Port name Direction Type Description

gpio_i2c_wdata_i in std_logic_vector(15 downto 0)

gpio_i2c_rdata_i in std_logic_vector(15 downto 0)

overcurrent_o out std_logic

Table 15. Current Report ports description.

Signals

Name Type Description

current_timestamp_w std_logic_vector(31 downto 0)

current_w std_logic_vector(15 downto 0)

log_overcurrent_w std_logic

gpio_wtimestamp_w std_logic_vector(31 downto 0)

gpio_wdata_w std_logic_vector(15 downto 0)

gpio_rtimestamp_w std_logic_vector(31 downto 0)

gpio_rdata_w std_logic_vector(15 downto 0)

log_gpio_w std_logic

sample_counter_r std_logic_vector(31 downto 0)

sample_max_w std_logic

fifo_write_w std_logic

fifo_wdata_w
std_logic_vector(REPORT_SIZE-1

downto 0)

fifo_full_w std_logic

fifo_empty_w std_logic

fifo_valid_w std_logic

fifo_read_w std_logic

fifo_rdata_w
std_logic_vector(REPORT_SIZE-1

downto 0)

Table 16. Current Report signals.

Constants

Name Type Value Description

REPORT_SIZE integer 144

Table 17. Current Report constants.

Single Event Effects Instrumentation for System-on-Module Testing

61

Processes

• sample_rate_p: (rstn_i, clk_i)

Instantiations

• fifo_u: work.fifo

Overcurrent handler

Figure 78. Overcurrent Handler block diagram.

Ports

Port name Direction Type Description

rstn_i in std_logic

clk_i in std_logic

on_time_i in std_logic_vector(15 downto 0)

off_time_i in std_logic_vector(15 downto 0)

overcurrent_i in std_logic

gpio_wdata_i in std_logic_vector(15 downto 0)

gpio_wdata_o out std_logic_vector(15 downto 0)

Table 18. Overcurrent Handler ports description.

Signals

Name Type Description

state_r std_logic_vector(1 downto 0)

next_w std_logic_vector(1 downto 0)

counter_r std_logic_vector(31 downto 0)

on_time_done_w std_logic

off_time_done_w std_logic

sut_force_off_w std_logic

Table 19. Overcurrent Handler signals.

Constants

Name Type Value
Descriptio

n

IDLE
std_logic_vector(1

downto 0)
"00"

SUT_ON
std_logic_vector(1

downto 0)
"01"

Single Event Effects Instrumentation for System-on-Module Testing

62

SUT_OFF
std_logic_vector(1

downto 0)
"10"

MASK_GPIO_WDATA_SOM_O

FF

std_logic_vector(1

5 downto 0)

x"FFDD

"

Table 20. Overcurrent Handler constants.

Single Event Effects Instrumentation for System-on-Module Testing

63

Processes

• state_p: (rstn_i, clk_i)

• next_p: (all)

• counter_p: (rstn_i, clk_i)

State machines

Figure 79. Overcurrent Handler FSM.

Command Interface

Figure 80. Command Interface block diagram.

Ports

Port name Direction Type Description

rstn_i in std_logic

clk_i in std_logic

rx_i in std_logic

tx_o out std_logic

wr_en_o out std_logic

rd_en_o out std_logic

addr_o out std_logic_vector(15 downto 0)

wdata_o out std_logic_vector(15 downto 0)

Single Event Effects Instrumentation for System-on-Module Testing

64

Port name Direction Type Description

rdata_i in std_logic_vector(15 downto 0)

Table 21. Command Interface ports description.

Signals

Name Type Description

state_r std_logic_vector(4 downto 0)

next_w std_logic_vector(4 downto 0)

uart_rdone_w std_logic

uart_rdata_w std_logic_vector(7 downto 0)

uart_tstart_w std_logic

uart_tdata_w std_logic_vector(7 downto 0)

uart_tdone_w std_logic

en_waddr_w std_logic_vector(3 downto 0)

en_wdata_w std_logic_vector(3 downto 0)

en_wreg_w std_logic

en_raddr_w std_logic_vector(3 downto 0)

en_rdata_w std_logic_vector(3 downto 0)

en_rreg_w std_logic

addr_r std_logic_vector(15 downto 0)

data_r std_logic_vector(15 downto 0)

converted_rdata_w std_logic_vector (3 downto 0)

selected_wdata_w std_logic_vector(3 downto 0)

utf8_tdata_w std_logic_vector(7 downto 0)

write_lf_w std_logic

reg_data_w std_logic_vector(15 downto 0)

Table 22. Command Interface signals.

Constants

Name Type Value Description

IDLE std_logic_vector (4 downto 0) "00000"

WRITE_LF std_logic_vector (4 downto 0) "00001"

WADDR3 std_logic_vector (4 downto 0) "00010"

Single Event Effects Instrumentation for System-on-Module Testing

65

WADDR2 std_logic_vector (4 downto 0) "00011"

WADDR1 std_logic_vector (4 downto 0) "00100"

WADDR0 std_logic_vector (4 downto 0) "00101"

WDATA3 std_logic_vector (4 downto 0) "00110"

WDATA2 std_logic_vector (4 downto 0) "00111"

WDATA1 std_logic_vector (4 downto 0) "01000"

WDATA0 std_logic_vector (4 downto 0) "01001"

REG_WRITE std_logic_vector (4 downto 0) "01010"

RADDR3 std_logic_vector (4 downto 0) "01011"

RADDR2 std_logic_vector (4 downto 0) "01100"

RADDR1 std_logic_vector (4 downto 0) "01101"

RADDR0 std_logic_vector (4 downto 0) "01110"

REG_READ std_logic_vector (4 downto 0) "01111"

RDATA3 std_logic_vector (4 downto 0) "10000"

RDATA2 std_logic_vector (4 downto 0) "10001"

RDATA1 std_logic_vector (4 downto 0) "10010"

RDATA0 std_logic_vector (4 downto 0) "10011"

Table 23. Command Interface constants.

Processes

• current_state_p: (clk_i, rstn_i)

• next_state_p: (all)

• get_address_p: (clk_i)

• get_data_p: (clk_i)

Instantiations

• utf8_hex_u: work.utf8_hex

• hex_utf8_u: work.hex_utf8

• uart_u_1: work.uart

Single Event Effects Instrumentation for System-on-Module Testing

66

State machines

Figure 81. Command Interface FSM.

Single Event Effects Instrumentation for System-on-Module Testing

67

Registers

Figure 82. Registers block diagram.

Generics

Generic name Type Value Description

VERSION std_logic_vector(15 downto 0)

Figure 83. Registers generics.

Ports

Port name Direction Type Description

rstn_i in std_logic

clk_i in std_logic

wr_en_i in std_logic

rd_en_i in std_logic

addr_i in
std_logic_vector(15

downto 0)

wdata_i in
std_logic_vector(15

downto 0)

rdata_o out
std_logic_vector(15

downto 0)

system_i2c_div_o out
std_logic_vector(15

downto 0)

system_baud_rate_o out
std_logic_vector(15

downto 0)

sut_baud_rate_0_o out
std_logic_vector(15

downto 0)

sut_baud_rate_1_o out
std_logic_vector(15

downto 0)

current_sample_rate_o out
std_logic_vector(15

downto 0)

current_threshold_o out
std_logic_vector(15

downto 0)

Single Event Effects Instrumentation for System-on-Module Testing

68

Port name Direction Type Description

overcurrent_on_time_o out
std_logic_vector(15

downto 0)

overcurrent_off_time_o out
std_logic_vector(15

downto 0)

timestamp_i in
std_logic_vector(31

downto 0)

gpio_trist_o out
std_logic_vector(15

downto 0)

gpio_wdata_o out
std_logic_vector(15

downto 0)

temp_wen_i in std_logic

temp_i in
std_logic_vector(15

downto 0)

gpio_wen_i in std_logic

gpio_i in
std_logic_vector(15

downto 0)

ina_wen_i in std_logic

volts_i in
std_logic_vector(15

downto 0)

currt_i in
std_logic_vector(15

downto 0)

power_i in
std_logic_vector(15

downto 0)

Figure 84. Registers ports description.

Signals

Name Type Description

version_w std_logic_vector(15 downto 0)

board_name_r std_logic_vector(15 downto 0)

system_i2c_div_r std_logic_vector(15 downto 0)

system_baud_rate_r std_logic_vector(15 downto 0)

sut_baud_rate_0_r std_logic_vector(15 downto 0)

sut_baud_rate_1_r std_logic_vector(15 downto 0)

current_sample_rate_r std_logic_vector(15 downto 0)

Single Event Effects Instrumentation for System-on-Module Testing

69

Name Type Description

current_threshold_r std_logic_vector(15 downto 0)

overcurrent_on_time_r std_logic_vector(15 downto 0)

overcurrent_off_time_r std_logic_vector(15 downto 0)

gpio_tri_st_r std_logic_vector(15 downto 0)

gpio_read_r std_logic_vector(15 downto 0)

gpio_write_r std_logic_vector(15 downto 0)

temperature_r std_logic_vector(15 downto 0)

current_r std_logic_vector(15 downto 0)

voltage_r std_logic_vector(15 downto 0)

power_r std_logic_vector(15 downto 0)

Figure 85. Registers signals.

Constants

Name Type Value
Descripti

on

ADDR_VERSION
std_logic_vector

(15 downto 0)

x"0000

"

ADDR_BOARD_NAME
std_logic_vector

(15 downto 0)

x"0001

"

ADDR_SYSTEM_I2C_DIV
std_logic_vector

(15 downto 0)

x"0002

"

ADDR_SYSTEM_UART_BAUD_RA

TE

std_logic_vector

(15 downto 0)

x"0003

"

ADDR_SUT_UART_BAUD_RATE0
std_logic_vector

(15 downto 0)

x"0004

"

ADDR_SUT_UART_BAUD_RATE1
std_logic_vector

(15 downto 0)

x"0005

"

ADDR_CURRENT_SAMPLERATE
std_logic_vector

(15 downto 0)

x"0006

"

ADDR_CURRENT_THRESHOLD
std_logic_vector

(15 downto 0)

x"0007

"

ADDR_OVERCURRENT_ON_TIM

E

std_logic_vector

(15 downto 0)

x"0008

"

ADDR_OVERCURRENT_OFF_TIM

E

std_logic_vector

(15 downto 0)

x"0009

"

Single Event Effects Instrumentation for System-on-Module Testing

70

Name Type Value
Descripti

on

ADDR_TIMESTAMP_H
std_logic_vector

(15 downto 0)

x"0100

"

ADDR_TIMESTAMP_L
std_logic_vector

(15 downto 0)
x"0101"

ADDR_GPIO_TRI_ST
std_logic_vector

(15 downto 0)

x"0200

"

ADDR_GPIO_READ
std_logic_vector

(15 downto 0)

x"0201

"

ADDR_GPIO_WRITE
std_logic_vector

(15 downto 0)

x"0202

"

ADDR_VOLTAGE
std_logic_vector

(15 downto 0)

x"0203

"

ADDR_CURRENT
std_logic_vector

(15 downto 0)

x"0204

"

ADDR_POWER
std_logic_vector

(15 downto 0)

x"0205

"

ADDR_TEMPERATURE
std_logic_vector

(15 downto 0)

x"0206

"

DEFAULT_BOARD_NAME
std_logic_vector

(15 downto 0)

x"CAF

E"

DEFAULT_SYSTEM_I2C_DIV
std_logic_vector

(15 downto 0)

x"01F4

"

DEFAULT_SYSTEM_BAUDRATE
std_logic_vector

(15 downto 0)

x"01b2

"

DEFAULT_SUT_UART_BAUDRAT

E

std_logic_vector

(15 downto 0)

x"01b2

"

DEFAULT_CURRENT_SAMPLERA

TE

std_logic_vector

(15 downto 0)

x"017d

"

DEFAULT_CURRENT_THRESHOL

D

std_logic_vector

(15 downto 0)

x"7FFF

"

DEFAULT_OVERCURRENT_ON_T

IME

std_logic_vector

(15 downto 0)

x"0026

"

DEFAULT_OVERCURRENT_OFF_

TIME

std_logic_vector

(15 downto 0)

x"0099

"

Single Event Effects Instrumentation for System-on-Module Testing

71

Name Type Value
Descripti

on

DEFAULT_GPIO_TRISTATE
std_logic_vector

(15 downto 0)

x"FFFF

"

DEFAULT_GPIO_WRITE
std_logic_vector

(15 downto 0)

Figure 86. Registers constants.

Processes

• register_defaults_p: (clk_i, rstn_i)

• register_gpio_data_p: (clk_i, rstn_i)

• register_temperature_data_p: (clk_i, rstn_i)

• register_ina_data_p: (clk_i, rstn_i)

Single Event Effects Instrumentation for System-on-Module Testing

72

FIFO

Figure 87. FIFO block diagram.

Generics

Generic name Type Value Description

FIFO_SIZE integer

DATA_WIDTH integer

Table 24. FIFO generics.

Ports

Port name Direction Type Description

write_i in std_logic

data_i in
std_logic_vector(DATA_WIDTH-1

downto 0)

read_i in std_logic

clk_i in std_logic

rstn_i in std_logic

full_o out std_logic

empty_o out std_logic

valid_o out std_logic

rem_size_o out std_logic_vector(31 downto 0)

data_o out
std_logic_vector(DATA_WIDTH-1

downto 0)

Table 25. FIFO ports descriptions.

Signals

Name Type Description

fifo_r fifo_t(FIFO_SIZE-1 downto 0)

first_addr_r integer range 0 to FIFO_SIZE-1

insert_addr_r integer range 0 to FIFO_SIZE-1

size_r integer range 0 to FIFO_SIZE

next_first_addr_w integer range 0 to FIFO_SIZE-1

next_insert_addr_w integer range 0 to FIFO_SIZE-1

Single Event Effects Instrumentation for System-on-Module Testing

73

Name Type Description

full_w std_logic

empty_w std_logic

Table 26. FIFO signals.

Types

Name Type Description

fifo_t
array(natural range <>) of

std_logic_vector(DATA_WIDTH-1 downto 0)

Table 27. FIFO Types.

Processes

• p_MAIN: (clk_i, rstn_i)

Hex to UTF-8

Figure 88. Hex to UTF-8 block diagram.

Ports

Port name Direction Type Description

utf_data_i in std_logic_vector(7 downto 0)

data_o out std_logic_vector(3 downto 0)

Table 28. Hex to UTF-8 ports descriptions.

UTF-8 to Hex

Figure 89. UTF-8 to Hex block diagram.

Ports

Port name Direction Type Description

data_i in std_logic_vector(3 downto 0)

utf_data_o out std_logic_vector(7 downto 0)

Table 29. UTF-8 to Hex ports description.

Single Event Effects Instrumentation for System-on-Module Testing

74

I2C

Figure 90. I2C block diagram.

Ports

Port name Direction Type Description

rstn_i in std_logic

clk_i in std_logic

baud_div_i in std_logic_vector(15 downto 0)

write_i in std_logic

read_i in std_logic

ackn_o out std_logic

done_o out std_logic

busy_o out std_logic

addr_i in std_logic_vector(6 downto 0)

wdata_i in std_logic_vector(7 downto 0)

rdata_o out std_logic_vector(7 downto 0)

i2c_sda_i in std_logic

i2c_sda_o out std_logic

i2c_sdat_o out std_logic

i2c_scl_o out std_logic

Table 30. I2C ports descriptions.

Signals

Name Type Description

state_r std_logic_vector(3 downto 0)

next_w std_logic_vector(3 downto 0)

sda_in_w std_logic

baud_count_w std_logic

bit_count_w std_logic

get_ack_w std_logic

Single Event Effects Instrumentation for System-on-Module Testing

75

Name Type Description

get_data_w std_logic

baud_counter_r std_logic_vector(15 downto 0)

baud_counter_max_w std_logic

baud_counter_mid_w std_logic

baud_counter_first_half_w std_logic

baud_counter_second_half_w std_logic

baud_counter_mid_quarter_w std_logic

scl_stop_w std_logic

bit_counter_r std_logic_vector(2 downto 0)

bit_counter_zero_w std_logic

addr_data_w std_logic_vector(7 downto 0)

ackn_r std_logic

rdata_r std_logic_vector(7 downto 0)

conf_baud_count_max_w std_logic_vector(15 downto 0)

conf_mid_baud_div_w std_logic_vector(15 downto 0)

conf_quarter_baud_div_w std_logic_vector(15 downto 0)

conf_threequarter_baud_div_w std_logic_vector(15 downto 0)

Table 31. I2C signals.

Constants

Name Type Value Description

IDLE std_logic_vector(3 downto 0) x"0"

I2C_START std_logic_vector(3 downto 0) x"1"

I2C_ADDR std_logic_vector(3 downto 0) x"2"

I2C_AACK std_logic_vector(3 downto 0) x"3"

I2C_WDATA std_logic_vector(3 downto 0) x"4"

WDONE std_logic_vector(3 downto 0) x"5"

I2C_WACK std_logic_vector(3 downto 0) x"6"

I2C_RDATA std_logic_vector(3 downto 0) x"7"

RDONE std_logic_vector(3 downto 0) x"8"

Single Event Effects Instrumentation for System-on-Module Testing

76

Name Type Value Description

I2C_RACK std_logic_vector(3 downto 0) x"9"

I2C_STOP std_logic_vector(3 downto 0) x"A"

I2C_WAIT std_logic_vector(3 downto 0) x"B"

I2C_ACKN std_logic_vector(3 downto 0) x"F"

Table 32. I2C constants.

Processes

• current_p: (clk_i, rstn_i)

• next_p: (state_r, write_i, read_i, baud_counter_max_w,

bit_counter_zero_w, ackn_r)

• baud_counter_p: (clk_i, rstn_i)

• baud_p: (clk_i)

• rdata_p: (clk_i)

State machines

Single Event Effects Instrumentation for System-on-Module Testing

77

Figure 91. I2C FSM.

Single Event Effects Instrumentation for System-on-Module Testing

78

I2C GPIO

Figure 92. I2C GPIO block diagram.

Ports

Port name Direction Type Description

clk_i in std_logic

rstn_i in std_logic

gpio_setup_en_i in std_logic

gpio_read_en_i in std_logic

gpio_write_en_i in std_logic

gpio_trist_i in std_logic_vector(15 downto 0)

gpio_data_i in std_logic_vector(15 downto 0)

gpio_done_o out std_logic

gpio_wreg_o out std_logic

gpio_data_o out std_logic_vector(15 downto 0)

i2c_done_i in std_logic

i2c_busy_i in std_logic

i2c_write_o out std_logic

i2c_read_o out std_logic

i2c_rdata_i in std_logic_vector(7 downto 0)

i2c_wdata_o out std_logic_vector(7 downto 0)

Table 33. I2C GPIO ports descriptions.

Signals

Name Type Description

state_r std_logic_vector(4 downto 0)

next_w std_logic_vector(4 downto 0)

gpio_read_r std_logic_vector(15 downto 0)

Table 34. I2c GPIO signals.

Single Event Effects Instrumentation for System-on-Module Testing

79

Constants

Name Type Value Description

IDLE
std_logic_vector(4 downto

0)
"00000"

CFG_WRITE_PTR1
std_logic_vector(4 downto

0)
"00001"

CFG_WRITE_BYTE1
std_logic_vector(4 downto

0)
"00010"

CFG_WAIT1
std_logic_vector(4 downto

0)
"00011"

CFG_WRITE_PTR2
std_logic_vector(4 downto

0)
"00100"

CFG_WRITE_BYTE2
std_logic_vector(4 downto

0)
"00101"

GPIO_WRITE_PTR1
std_logic_vector(4 downto

0)
"00110"

GPIO_WRITE_BYTE1
std_logic_vector(4 downto

0)
"00111"

GPIO_WRITE_WAIT
std_logic_vector(4 downto

0)
"01000"

GPIO_WRITE_BYTE2
std_logic_vector(4 downto

0)
"01010"

GPIO_READ_PTR1
std_logic_vector(4 downto

0)
"01011"

GPIO_READ_BYTE1
std_logic_vector(4 downto

0)
"01100"

GPIO_READ_WAIT
std_logic_vector(4 downto

0)
"01101"

GPIO_READ_PTR2
std_logic_vector(4 downto

0)
"01110"

GPIO_READ_BYTE2
std_logic_vector(4 downto

0)
"01111"

GPIO_REG_WRITE
std_logic_vector(4 downto

0)
"10000"

BUSY
std_logic_vector(4 downto

0)
"10001"

Single Event Effects Instrumentation for System-on-Module Testing

80

Name Type Value Description

DONE
std_logic_vector(4 downto

0)
"10010"

Table 35. I2C GPIO constants.

Processes

• current_state_p: (clk_i, rstn_i)

• next_state_p: (all)

• register_gpio_data_p: (clk_i, rstn_i)

Single Event Effects Instrumentation for System-on-Module Testing

81

State machines

Figure 93. I2C GPIO FSM.

Single Event Effects Instrumentation for System-on-Module Testing

82

I2C INA Current Monitor

Figure 94. I2C INA block diagram.

Ports

Port name Direction Type Description

clk_i in std_logic

rstn_i in std_logic

read_curr_en_i in std_logic

write_setup_en_i in std_logic

ina_done_o out std_logic

volt_data_o out std_logic_vector(15 downto 0)

curr_data_o out std_logic_vector(15 downto 0)

powr_data_o out std_logic_vector(15 downto 0)

ina_wreg_o out std_logic

i2c_done_i in std_logic

i2c_busy_i in std_logic

i2c_write_o out std_logic

i2c_read_o out std_logic

i2c_rdata_i in std_logic_vector(7 downto 0)

i2c_wdata_o out std_logic_vector(7 downto 0)

Table 36. I2C INA ports descriptions.

Signals

Name Type Description

state_r std_logic_vector(4 downto 0)

next_w std_logic_vector(4 downto 0)

voltage_r std_logic_vector(15 downto 0)

current_r std_logic_vector(15 downto 0)

power_r std_logic_vector(15 downto 0)

Table 37. I2C INA signals.

Single Event Effects Instrumentation for System-on-Module Testing

83

Constants

Name Type Value Description

IDLE
std_logic_vector(4

downto 0)
"00000"

CFG_WRITE_PTR
std_logic_vector(4

downto 0)
"00001"

CFG_WRITE_MSB
std_logic_vector(4

downto 0)
"00010"

CFG_WRITE_WAIT1
std_logic_vector(4

downto 0)
"00011"

CFG_WRITE_LSB
std_logic_vector(4

downto 0)
"00100"

CFG_WRITE_WAIT2
std_logic_vector(4

downto 0)
"00101"

CALIBR_WRITE_PTR
std_logic_vector(4

downto 0)
"00110"

CALIBR_WRITE_MSB
std_logic_vector(4

downto 0)
"00111"

CALIBR_WRITE_WAIT1
std_logic_vector(4

downto 0)
"01000"

CALIBR_WRITE_LSB
std_logic_vector(4

downto 0)
"01001"

VOLT_WRITE_PTR
std_logic_vector(4

downto 0)
"01010"

VOLT_READ_MSB
std_logic_vector(4

downto 0)
"01011"

VOLT_WAIT1
std_logic_vector(4

downto 0)
"01100"

VOLT_READ_LSB
std_logic_vector(4

downto 0)
"01101"

VOLT_WAIT2
std_logic_vector(4

downto 0)
"01110"

CURR_WRITE_PTR
std_logic_vector(4

downto 0)
"01111"

CURR_READ_MSB
std_logic_vector(4

downto 0)
"10000"

Single Event Effects Instrumentation for System-on-Module Testing

84

Name Type Value Description

CURR_WAIT1
std_logic_vector(4

downto 0)
"10001"

CURR_READ_LSB
std_logic_vector(4

downto 0)
"10010"

CURR_WAIT2
std_logic_vector(4

downto 0)
"10011"

POWR_WRITE_PTR
std_logic_vector(4

downto 0)
"10100"

POWR_READ_MSB
std_logic_vector(4

downto 0)
"10101"

POWR_WAIT1
std_logic_vector(4

downto 0)
"10110"

POWR_READ_LSB
std_logic_vector(4

downto 0)
"10111"

BUSY
std_logic_vector(4

downto 0)
"11000"

DONE
std_logic_vector(4

downto 0)
"11001"

INA_REG_WRITE
std_logic_vector(4

downto 0)
"11010"

Table 38. I2C INA constants.

Processes

• current_state_p: (clk_i, rstn_i)

• next_state_p: (all)

• register_data_p: (clk_i, rstn_i)

Configuration Register Value

39F9

Calibration Register Value

5000

Single Event Effects Instrumentation for System-on-Module Testing

85

State machines

Table 39. I2C INA FSM.

Single Event Effects Instrumentation for System-on-Module Testing

86

I2C TMP100

Figure 95. I2C TMP100 block diagram.

Ports

Port name Direction Type Description

clk_i in std_logic

rstn_i in std_logic

read_temp_en_i in std_logic

write_setup_en_i in std_logic

done_o out std_logic

temperature_o out std_logic_vector(15 downto 0)

i2c_done_i in std_logic

i2c_busy_i in std_logic

i2c_write_o out std_logic

i2c_read_o out std_logic

i2c_rdata_i in std_logic_vector(7 downto 0)

i2c_wdata_o out std_logic_vector(7 downto 0)

Figure 96. I2C TMP100 ports descriptions.

Signals

Name Type Description

state_r std_logic_vector(3 downto 0)

next_w std_logic_vector(3 downto 0)

temperature_r std_logic_vector(15 downto 0)

Figure 97. I2C TMP100 signals.

Constants

Name Type Value Description

IDLE std_logic_vector(3 downto 0) x"0"

CFG_WRITE_PTR std_logic_vector(3 downto 0) x"1"

CFG_WRITE std_logic_vector(3 downto 0) x"2"

Single Event Effects Instrumentation for System-on-Module Testing

87

Name Type Value Description

TMP_WRITE_PTR std_logic_vector(3 downto 0) x"3"

TMP_WAIT std_logic_vector(3 downto 0) x"5"

TMP_READ_BYTE1 std_logic_vector(3 downto 0) x"6"

TMP_READ_BYTE2 std_logic_vector(3 downto 0) x"7"

BUSY std_logic_vector(3 downto 0) x"8"

DONE std_logic_vector(3 downto 0) x"9"

Figure 98. I2C TMP100 constants.

Processes

• current_p: (clk_i, rstn_i)

• next_p: (all)

• register_temp_data_p: (clk_i, rstn_i)

Registers

- Configuration Register

Single Event Effects Instrumentation for System-on-Module Testing

88

State machines

Figure 99. I2C TMP100 FSM.

I2C Controller

Figure 100. I2C Controller block diagram.

Single Event Effects Instrumentation for System-on-Module Testing

89

Ports

Port name Direction Type Description

clk_i in std_logic

rstn_i in std_logic

i2c_baud_div_i in std_logic_vector(15 downto 0)

i2c_sda_io inout std_logic

i2c_scl_o out std_logic

temp_wen_o out std_logic

temp_o out std_logic_vector(15 downto 0)

gpio_wen_o out std_logic

gpio_rdata_o out std_logic_vector(15 downto 0)

gpio_trist_i in std_logic_vector(15 downto 0)

gpio_wdata_i in std_logic_vector(15 downto 0)

ina_wen_o out std_logic

ina_volts_o out std_logic_vector(15 downto 0)

ina_currt_o out std_logic_vector(15 downto 0)

ina_power_o out std_logic_vector(15 downto 0)

gpio_i2c_wr_o out std_logic

gpio_i2c_rd_o out std_logic

Figure 101. I2C Controller ports descriptions.

Signals

Name Type Description

state_r std_logic_vector(3 downto 0)

next_w std_logic_vector(3 downto 0)

temp_done_w std_logic

temp_en_w std_logic

temp_setup_w std_logic

i2c_tmp100_write_w std_logic

i2c_tmp100_read_w std_logic

i2c_tmp100_done_w std_logic

i2c_tmp100_busy_w std_logic

Single Event Effects Instrumentation for System-on-Module Testing

90

Name Type Description

i2c_tmp100_wdata_w std_logic_vector(7 downto 0)

i2c_tmp100_rdata_w std_logic_vector(7 downto 0)

gpio_done_w std_logic

gpio_wen_w std_logic

gpio_ren_w std_logic

gpio_setup_w std_logic

i2c_gpio_write_w std_logic

i2c_gpio_read_w std_logic

i2c_gpio_done_w std_logic

i2c_gpio_busy_w std_logic

i2c_gpio_wdata_w std_logic_vector(7 downto 0)

i2c_gpio_rdata_w std_logic_vector(7 downto 0)

ina_done_w std_logic

ina_en_w std_logic

ina_setup_w std_logic

i2c_ina_done_w std_logic

i2c_ina_busy_w std_logic

i2c_ina_write_w std_logic

i2c_ina_read_w std_logic

i2c_ina_rdata_w std_logic_vector(7 downto 0)

i2c_ina_wdata_w std_logic_vector(7 downto 0)

i2c_sda_o_w std_logic

i2c_sdat_w std_logic

i2c_write_w std_logic

i2c_read_w std_logic

i2c_done_w std_logic

i2c_busy_w std_logic

i2c_ackn_w std_logic

i2c_addr_w std_logic_vector(6 downto 0)

Single Event Effects Instrumentation for System-on-Module Testing

91

Name Type Description

i2c_wdata_w std_logic_vector(7 downto 0)

i2c_rdata_w std_logic_vector(7 downto 0)

Table 40. I2C Controller signals.

Constants

Name Type Value Description

IDLE std_logic_vector(3 downto 0) x"0"

CFG_TEMP std_logic_vector(3 downto 0) x"1"

READ_TEMP std_logic_vector(3 downto 0) x"2"

CFG_GPIO std_logic_vector(3 downto 0) x"3"

WRITE_GPIO std_logic_vector(3 downto 0) x"4"

READ_GPIO std_logic_vector(3 downto 0) x"5"

CFG_INA std_logic_vector(3 downto 0) x"6"

READ_INA std_logic_vector(3 downto 0) x"7"

Table 41. I2C Controller constants.

Processes

• current_p: (clk_i, rstn_i)

• next_p: (all)

Single Event Effects Instrumentation for System-on-Module Testing

92

Instantiations

• i2c_u: work.i2c

• i2c_tmp100_u: work.i2c_tmp100

• i2c_gpio_u: work.i2c_gpio

• i2c_ina_u: work.i2c_ina

State machines

Figure 102. I2C Controller FSM.

Single Event Effects Instrumentation for System-on-Module Testing

93

Timestamp

Figure 103. Timestamp block diagram.

Ports

Port name Direction Type Description

clk_i in std_logic

rstn_i in std_logic

timestamp_ms_o out std_logic_vector(31 downto 0)

Figure 104. Timestamp ports descriptions.

Signals

Name Type Description

tick_r std_logic_vector(15 downto 0)

milisecond_r std_logic_vector(31 downto 0)

Figure 105. Timestamp signals.

Constants

Name Type Value Description

CLK_FREQUENCY integer 50000000

TICK_COUNTER std_logic_vector(15 downto 0) x"C34F"

Figure 106. Timestamp constants.

Processes

• count_up_p: (clk_i, rstn_i)

