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Abstract 

Radiation testing and qualification of complex systems is a challenging and demanding 

process due to the interactions and dependencies between systems. This thesis presents 

the development of a low-cost, compact, robust, and highly synchronized testing 

instrument designed to standardize Single Events Effects testing for modern System-

on-Chip devices. By increasing logging capabilities and timing synchronization, we can 

get better control over the systems under test. The instrumentation performance is 

demonstrated experimentally during a neutron irradiation campaign, showcasing its 

reliability and ability to improve complex system testing. 
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1 Introduction 

The Institute of Electronics and Systems, under the authority of the University of 

Montpellier, conducts research under five thematic axes: Energy, Instrumentation, 

Photonics and Waves, Materials, and Reliability and Systems Under Constrained 

Environments [1]. Under this last axis, the RADIAC team, conducts research on the 

topics of reliability of electronics in radiation environments, developing expertise in 

monitoring, modeling, understanding and testing of components, instruments, and 

systems [2]. 

 

As part of a larger effort to create a network of expertise, facilities, and services related 

to radiation effects of electronics components and systems, the University of 

Montpellier and RADIAC group takes part as an academic partner in the EU-funded 

RADNEXT project (RADiation facility Network for the Exploration of effects for 

industry and research, Grant Agreement ID: 101008126) [3]. The RADNEXT project is 

conducted as a joint-research activity at a European level and guided by four work 

packages (WP) [3], given: 

- WP5: Radiation monitors, dosimeters, and beam characterization. 

- WP6: Standardization of system-level radiation qualification methodology. 

- WP7: Cumulative radiation effects electronics. 

- WP8: Complementary modeling tools. 

 

This work is conducted based on the objectives and framework of WP6: Standardization 

of system-level radiation qualification methodology, which seeks to test and qualify 

integrated systems under radiation, and to determine which setup and stimuli are most 

optimal to evaluate the response of complex systems such as memories, FPGAs, and  

SoC [3]. Specifically, within the WP, the testing of systems is focused on adding high 

observation capabilities [4], identifying good practices for system-level testing, and 

creating pass/fail criteria [3]. The proposed instrumentation tries to simplify the 

radiation testing instrumentation needed in terms of hardware and software, building 

on past experiments conducted by the RADIAC group. 

 

This document is structured as follows: Section 1 presents the objectives of the work, a 

brief state of the art and related work, Section 2 discusses the methodology used, the 

Design and development of the platform, Section 3 provides the results and data 

obtained, Section 4 discusses the results obtained, and Section 5 presents future outlook 

work. 

1.1 Objective of this work 

- To improve the understanding of radiation effects on SoC by means of improved 

instrumentation. 

- To identify the key observability metrics in SoC under radiation. 

- To observe previously defined metrics by proposing improved instrumentation 

hardware and software. 

- To improve controllability parameters for SoC under radiation. 

- To propose a way to synchronize and correlate collected data with observed 

radiation effects. 
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1.2 Contributions 

System-level testing of complex systems presents multiple challenges and 

opportunities. The increased interest in using COTS components for space applications 

requires new testing approaches to evaluate these systems in harsh environments, as 

these components are usually not designed for radiation effects but provide cost 

reduction and design flexibility for New Space actors [5]. System-level testing presents 

itself as a more efficient testing method, that incorporates all the complexities of the 

system into the test. 

 

Some advantages of system-level testing are the possibility to observe the fault 

propagation in the system, compare mitigation techniques, and get information about 

complex failure modes [6]. Some disadvantages are the inherent complexity of the 

system, additional resources, caches, and memories, which make some systems highly 

susceptible to single-event induced failures [7]. Thus, identifying failure modes of the 

devices becomes challenging, more so if the system is running multiple processing 

cores. 

 

This work proposes a low-cost platform for testing complex devices such as FPGAs, 

MPSoC, and/or memories that adds observability and controllability of target devices 

by using a reliable FPGA platform, allowing for further customization of the test 

procedure, including but not limited to implementing worst-case conditions of the 

target device i.e. temperature, voltage, and application following the SEE Testing 

Guidelines of [8] and previous observations of high observability and system-level 

testing demonstrated by the research group in [9]. 

 

1.3 Scope and Limitations 

- The scope of this work is limited to SEE of devices and will not study the effects 

of TID. 

- The electronics systems under study are limited to the commercial components 

previously found in literature, namely AMD Zynq-7000, Artix-7, and Microchip 

Polarfire MPSoC. 

- The experimental validation of the platform is limited to SEE under a neutron 

beam at the ISIS ChipIR facility. 
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1.4 State of the Art and Background 

1.4.1 Neutron Radiation 

Atmospheric neutrons are generated from the interaction of cosmic rays with the 

atmosphere. The flux of particles is dependent on altitude and latitude [9], and affects 

most aircraft at flight altitudes around 10 to 12 km [10]. Neutrons are uncharged 

particles and can penetrate the material deeply without being magnetically affected. 

Neutrons will interact with the nucleus in the device by recoils, generating ionizing 

nuclear fragments [11]. Not only are neutrons a concern for avionics, but they 

increasingly become a reliability concern for highly integrated and downscaled devices.  

 

Figure 1. Neutron Flux by altitude (left) and latitude (right).  Adapted from [12]. 

Neutrons are increasingly capable of producing Soft Errors with each new technology 

node. As devices shrink their size, the upset probability increases with the reduction of 

the charge necessary to induce an upset [13]. These Soft Errors can negatively affect 

functionality and reliability of critical systems, such as avionics, memories or FPGAs. 

1.4.2 Radiation Effects on FPGAs 

FPGAs are reconfigurable integrated circuits widely used for their flexibility and 

performance. However, their complexity makes them particularly vulnerable to 

radiation-induced errors. Single-Event Effects are caused by the interaction of particles 

with materials in electronic devices [14]. FPGAs can be affected in their integrated 

circuits including flip-flops or memory cells. Usually, error detection and correction are 

employed to mitigate these effects. Some, but not all, relevant radiation effects on 

FPGAs are described next. 

 

Single Event Upsets (SEU) 

Upsets can happen in memory elements. SRAM-based FPGAs are particularly 

susceptible to this effect. This can corrupt the data or change the logic states inside the 

device, leading to undesired behavior or system failures. Techniques such as Triple 

Modular Redundancy is also employed to detect and overcome SEU-induced soft errors 

[15], where three instances of the same design are utilized with a majority voter to 

ensure no corrupted data is passed to the system. 
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Single Event Latch-up (SEL) 

SEL is a condition where a high-energy particle induces a parasitic PNPN thyristor 

structure in the device, causing a short circuit between power and ground. This can 

result in a significant increase in current, potentially leading to permanent damage. 

If it is not stopped it will lead to thermal failure. Furthermore, SEL probability is known 

to increase at higher temperatures [16]. 

 

Configuration Memory Corruption 

FPGAs rely heavily on configuration memory to define their operation. Radiation can 

cause corruption in this memory, leading to incorrect circuit operation. Detection and 

correction of these errors can be mitigated by configuration memory scrubbing, where 

the memory is being read constantly, correct, and report any corrected errors. 

Correction of the memory is carried out by partial or full reconfiguration of the memory 

[15].  

 

1.4.3 System-Level Testing 

With the increasing interest in testing COTS systems for atmospheric and space 

applications, component-level testing has become a time and resource intensive 

process, therefore, a simplified approach is needed, where only the most critical 

components and tested [6]. With increasing complexity in devices, such as memories, 

FPGAs, SoC, and multicore MPSoC, it becomes increasingly hard or nearly impossible 

to partition these systems. We want to test the whole functionality of the system and 

monitor it during the irradiation test. The main advantage of system-level testing is we 

acquire radiation data for the whole system, incorporating the margins given by the 

system into the performance [6]. 

 

Th complexity of SoC devices naturally increases the resources needed to properly test 

the devices. Only in the reconfigurable part of the FPGA, the Configurable Logic Blocks 

plus the non-reconfigurable cores will present different cross sections and sensitivities. 

Secondly, the design itself can be a source of amplification or masking of errors [17]. 

Finally, with the number of resources in a complex device, there needs to be a selection 

of data streams that need to be monitored, and later correlate any effects seen on these 

devices to a SEU or SEFI. To reduce complexity and recurring engineering costs, a trend 

of using FPGA-based test setups has emerged, especially to test other FPGAs or 

memories [17]. 

 

1.4.4 Related Work 

For SoC testing of SEE, evaluation or development boards are utilized [18]. One of the 

problems is the reduction in controllability of the device, since in the case of a SEL or 

SEFI, there is no independent control of the SUT power. The gain in time by using 

development boards comes at the expense of board complexity, since a lot of hardware 

overhead is needed. Additionally, it has been shown that the extra components increase 

the risk of system failure [6]. Some solutions have been proposed for the 

standardization of radiation testing. 

 

Besides the development boards traditionally used for testing, some long-term radiation 

testing platforms exist, such as the CRaTeBo modular platform used for SoC, FPGA, and 

memory testing. The board presented uses radiation-tolerant components and custom 
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ASICs designed at CERN, which makes it expensive to source and manufacture [19]. 

Despite fulfilling all the objectives for the testing application, companies are still 

interested in testing a more diverse set of COTS SoC, with reduced testing cost and time 

to test. 

 

Another example of long-term measuring platform is the one presented in [20], 

developed by CERN to monitor radiation exposure of various equipment and 

characterize radiation induced effects. It has the capability to measure SEE, TID and 

DD by using commercial memories, RadFets and PIN diodes. 

 

1.4.5 Improved Observability and Controllability 

An approach for improved observability has been demonstrated in [21] in which not 

only the internal SoC status in monitored, but also the SUT total current is measured 

and checked for determining different types of SEE. Additional peripherals are also 

added, to be able to correlate the data collected and have a better understanding of the 

effects on the system: real time clock, temperature, and communication are added to 

the metrics collected. 

 

This correlation of data using enhanced metrics has been demonstrated by previous 

experiments in the group, presented in the work by the RADIAC group in [22], where 

with the additional temporal synchronization, different SEE events were classified by 

using current monitoring. The key addition in this approach is the addition of precise 

timestamps for every measurement, allowing faster response to different events. In 

addition to precise timing, statistical methods are also employed for the data analysis, 

where each type of SEE can be calculated separately, by using the rate at which SEU or 

SEFIs happen, it’s possible to distinguish between them, this has been proven in [17]. 

The addition of precision timestamping allows for the correlation of data, from different 

sensors, and to gain a better understanding of how radiation affects the device.  
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2 Methodology 

2.1 Methodological Approach 

First, a comparison of existing platforms, existing monitoring techniques and 

instruments was conducted, identifying the appropriate parameters that the system 

needs to monitor, and comparing to existing solutions in terms of complexity, cost, ease 

of use, parameters monitored. 

 

Second, once key metrics are identified, an initial design phase is carried out, listing the 

Use Cases of the Platform, as well as its overall requirements. Finally, after 

requirements are gathered, an initial system architecture is proposed and then iterated 

until the system fulfills all requirements. We then move on to component selection, 

based on previous experiments or literature. Since we don’t need the components to be 

tolerant to radiation, the costs and complexity of selection is diminished.  

 

A hardware solution was developed, based on a custom PCB, utilizing an FPGA platform 

that can be reconfigured for future iterations. The proposed instrument was validated 

during a neutron irradiation campaign in the ISIS ChipIR neutron facility. 

  

2.2 Use Cases 

The main use of the platform is to facilitate the testing, monitoring, and reporting of a 

SoC under test. To simplify the hardware needed to conduct radiation campaigns, while 

keeping the cost of development low. As presented in 1.4.4  the main method of testing 

FPGAs and SoCs is to use evaluation kits, but these come with a lot of hardware 

overhead that can make it even harder to diagnose SEE during irradiation and may not 

be suited to the common objective of testing the SoC/FPGA without much error masking 

from the additional hardware. The proposed solution is made open source to open the 

possibility of collaboration and for any researcher to quickly develop a base system or 

to use widely available commercial modules. 

2.3 Design and Development 

2.3.1 Requirements 

The whole testing system is composed of two boards: 

- Monitoring Board (this work): this thesis describes the work done with this 

board and design, along with the Carrier board it is part of a bigger system that 

interfaces and synchronizes with the SUT and communicates back with the host 

computer. 

- Carrier Board: this board provides the interfaces, power, sensors and 

communication to the Monitoring Board. This board holds the SoC under test 

in the irradiation room. This board was designed by Mattos A. et al. and it is 

described in more detail in [23]. 

Together, both boards comprise the full instrument, and are required for the proposed 

goals. For clarity, a diagram and architecture of the whole system are described in 2.3.2 

System Architecture. 
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The requirements of the Monitoring Board are shown in Table 1: 

ID Requirement Note/Rationale 

1 The system should have a minimum response 

time of 100 millisecond. 

This frequency is selected 

to have a reasonable 

response time in case of 

SEL, since the thermal 

effects are in the 

millisecond range [24]. 

2 The system should operate at a minimum wired 

distance of 100 meters. 

The maximum cable 

distance between the 

control room and the 

irradiation room. 

3 The system should be able to control peripheral 

devices. 

Such as sensors, GPIO, 

and power. 

4 The system should be able to measure 

temperature from the device. 

To have data regarding 

temperature dependence 

of different effects. 

5 The system should be able to measure current and 

voltage from the SUT. 

To monitor current 

consumption and detect 

SEL and anomalies. 

6 The system should be able to timestamp the 

incoming data from the SUT. 

To be able to precisely 

correlate different events 

in time. 

7 The system should be able to output data to a 

serial terminal in the control room 

To be able to monitor the 

experiment in real time 

8 The system shall be able to read a watchdog to 

monitor the SUT for hangups, log the error and 

restart the system. 

In case we have hangups 

in the SUT, the 

Monitoring board can try 

to reboot the system for 

recovery. 

9 The system shall be able to detect latch-ups and 

cut the power when a current threshold is 

surpassed. 

To be able to detect and 

log current events, and be 

able to cut power to the 

SUT to avoid thermal 

damage. 

10 The system shall be able to interface to a host 

computer with minimal setup. 

To facilitate experiment 

setup and reduce 

configuration errors. 

11 The system should have multiple power options. To accommodate for 

different control room 

setups in different 

facilities. 

Table 1. Monitoring Board Requirements. 
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Additionally, some key design drivers were specified, to guide the selection of 

components, interfaces, and features. The summary of the key design drivers is listed in 

Table 2: 

ID Design Driver Note 

1 It would be useful to be able to program and 

reprogram the SUT board over cabled distances of 

up to 100 meters. This would be done using the 

JTAG programming interface. 

During radiation testing, if 

the device fails, it’s useful 

to reprogram the board, to 

try to recover device 

functionality, and to 

change the device design 

for different tests or 

comparisons. 

2 Most radiation facilities provide Ethernet 

connections by default. 

This connector is the 

common denominator 

between facilities, and 

could be used in almost all 

cases. 

3 The Carrier Board components will be indirectly 

irradiated and might be subject to SEE and TID. 

We want to minimize 

components, complex 

components that could 

prevent observability of 

the device. 

4 Both boards should use COTS components for 

availability, cost, and scalability. 

This would minimize 

sourcing issues; parts are 

easily replaceable, and we 

can keep the overall 

system cost low. 

5 Both boards should be easily manufacturable. All components should be 

hand solderable, including 

passives and Surface 

Mount Devices. 

Table 2. Design Drivers for the whole system. 

 

2.3.2 System Architecture 

Figure 2 shows the initial system architecture for the monitoring board. So far only the 

communication protocols internal to the PCB have been defined, and the justification 

of ICs based on previous requirements will be detailed in section  

2.3.3 Selection of Components. 
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Figure 2. Simplified System Architecture for Monitoring Board.  

From the architectural diagram, going from left to right, we can see a simple power 

interface, this is selected to be 5V, since a common option found from power supplies 

or wall adapters, a Serial to USB component simplifies the connection to the host 

computer and allows for interaction with the rest of the system, a JTAG connection 

where the different SoC programmers are connected to program/reprogram the SUT.  

We can see that the FPGA sits at the heart of almost all synchronization tasks, making 

this component crucial to the overall setup. On the right side, we see the selected 

protocols that the FPGA will be communicating: I2C for the temperature, current, 

GPIO, and Watchdog devices; two UART ports that will be used to communicate with 

the SUT, and finally the outgoing JTAG connection to the device.  

2.3.3 Selection of Components 

With an initial list of requirements, design drivers and overall architecture to guide the 

selection, the following components are selected for the Monitoring Board: 

ID Component Qty Note/Rationale 

1 TEM0001-01A-

ABC-2 SMF2000  

1 Flash-based FPGA to synchronize and control 

the experiment 

2 FT4232H-56Q 

MINI MDL 

1 UART to USB FTDI Chip with 4 channels 

3 SN65LVDT41PW 1 LVDS Transceiver for JTAG programming 

4 SN65HVD30MDR

EP 

2 RS485 3.3V Transceiver 

5 SN65HVD232D 2 CAN 3.3V Transceiver 

6 P82B96DR 1 I2C Long Distance Buffer 

14 HARTING 

09455511123 

1 RJ45 3-port Connector 

17 DCJ200-10-A-K1-

K 

1 DC Power Jack 

18 TE Connectivity 

5103310-1 

1 JTAG connector 

Table 3. Selected Components for Monitoring Board. 
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ID Component Qty Note/Rationale 

3 SN65LVDT14PW  1 LVDS Transceiver for JTAG programming 

4 SN65HVD30MDREP 2 RS485 3.3V Transceiver 

5 SN65HVD232D 2 CAN 3.3V Transceiver 

6 P82B96DR 1 I2C Long Distance Buffer 

- TPS35AA38AGADDFRQ1 1 External Watchdog 

- TMP100NA3K 1 I2C Temperature Sensor 

- LP38693MP 1 Low Dropout Regulator for Setup 

- MIC29302AWD 1 SoM Power Supply 

- INA219BIDR 1 I2C SoM Power Monitor 

- TCA9535PWR 1 I2C GPIO Extender 

Table 4. Mirror Components for Carrier Board. 

Table 3 and Table 4 shows the main components selected for the Monitoring and Carrier 

board. To illustrate this interface dependency a full system diagram is shown in Figure 

3, based on the full system design by Mattos A. et al. [23]. For a full breakdown of the 

components and their costs, refer to Appendix A – Full Bill of Materials for . 

 

 
Figure 3. Full setup diagram, with Monitoring (left) and Carrier board (Right). Adapted from 

[23] 

The component selection from Table 3 and Table 4 was based on the previous 

requirements, previously utilized components, and past experiments: 

- The TEM0001-01A-ABC-2 (SMF2000) FPGA was chosen due to the previous 

experiments conducted in [22] and [25]. The component shows high tolerance 

to radiation effects, due to being a flash-based FPGA, some generations of these 

FPGAs have shown no radiation induced upsets in the flash cells, in contrast to 

SRAM based devices [26]. Additionally, there was current availability of the 

part in the laboratory stock, as it had already been ordered for previous 

experiments.  

- FTDI Chip FT4232H-56Q was selected to simplify the connection between the 

host computer and the Monitoring Board, as it provides four different serial 

ports with different configurations, only requiring one single USB port and 

minimal drivers [27]. This allows the host computer to monitor four serial ports 
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at the same time, and as proven in [28] [29] it allows for data transfer rates of 

up to 12 Mbit/s. 

- UART has been utilized in similar experiments before and has proven to be 

simple to use as a communication protocol between the host computer and a 

device under test while requiring minimal hardware to setup [30]. 

- The UART over RS-485 protocol has been proven in multiple experiments to be 

convenient and easy to use, especially for long-distance communication links 

for FPGA applications [31]. 

- I2C over CAN, a reference designed was tested by Texas Instruments in which 

I2C is converted into differential lines, that can be used for long distance 

communication in noisy environments [32]. In this setup up to 300-meter 

cables can be utilized by varying the setup time of the I2C protocol. 

- JTAG over LVDS, a reference TI transceiver is used, due to its low power 

consumption, potential high data rate, and long-distance capability. It is an 

efficient protocol, with simple termination and low noise generation [33]. Since 

the topology of using a JTAG programmer is a point-to-point scheme, requires 

minimal hardware. This would allow to fulfill the programming over long 

distances requirement, while also adding additional debug capabilities to the 

system. 

 

For reference, the Carrier board is shown in Figure 4 is an essential part of the 

monitoring system, since it hosts the SUT under the beam, contains the power 

regulators for the SUT, interfaces with the Monitoring board to provide the status of the 

device, hosts the I2C peripherals (GPIO, temperature, current, watchdog), and hosts the 

mirrored transceivers to convert the signals for long cables communications, including 

the LVDS, CAN and RS-485 transceivers. 

 

 
Figure 4. Carrier Board. Adapted from [23]. 

The Carrier board in conjunction with the Monitoring board, comprise the full testing 

setup. The full details of the board and further results from the setup validation are 

published in the Journal of Instrumentation in [23]. The work covered in this thesis 
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covers the design of the Monitoring board, as part of a bigger effort to make radiation 

testing more accessible and reduce test development time. 

 

2.3.4 Prototyping and Development of PCB 

After the component selection and architecture were finalized, an initial PCB design was 

commissioned, using KiCAD [34], this is a free and open-source EDA tool for PCB 

design and manufacture. It has been partly supported by CERN as an Open-Source 

initiative [35] to make it more efficient and be able to support designs with up to 32 

layers. 

 

Based on the previously described system architecture and the validated requirements, 

a series of PCBs were designed, including the Monitoring, Carrier board, and additional 

boards to test the Carrier board full functionality. This work covers the design of the 

Monitoring board, and its full schematic diagram can be found in Appendix B. 

 

The boards were sent for manufacturing using JLCPCB, which is an assembly service 

for PCBs, the boards were designed and ordered using a 4-layer configuration, using a 

Signal-Power-Ground-Signal stack up, as it is commonly used to have signals close to a 

reference plane [36]. The details for the PCB fill, trace width and pad dimensions can 

be found in Table 5. The rendered model for the front and back planes of the PCB can 

be seen in Figure 5. Rendered front and back PCB assembly. 

Specification Value 

Layers 4 

Layer Stack up Signal-Power-Ground-Signal 

PCB dimensions 115 x 75 mm 

Base Material FR4 Standard TG 135-140 

PCB Thickness 1.6 mm 

Surface Finish HASL (with lead) 

Outer/Inner Copper Weight 1 oz / 0.5 oz 

Vias Plugged, min size 0.3 mm 

 Table 5. PCB Construction Details. 
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Figure 5. Rendered front and back PCB assembly. 

The PCBs and its components were assembled using the stencil provided by the PCB 

manufacturer, a hot air gun and low-temperature solder, an initial continuity test was 

carried out, next the JTAG interface was tested with a simple circuit, where only the 

JTAG over LVDS was tested, after the initial test and some debugging with the 

programmer, a successful connection to a test FPGA was conducted. The JTAG 

Programmer used to program the device is based on a similar FTDI device that is used 

to simplify the connection between the host computer and the Monitoring board. 
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Figure 6. Test setup for JTAG over LVDS. 

Figure 6 shows the test setup used to test the first interface of the boards, where only 

the JTAG over LVDS transceivers are connected and powered up, the Monitoring board 

is connected to a TEM0009-02 programmer, used for programming and connecting to 

Microsemi FPGAs [37]. The programming test is conducted using the supported Libero 

tools and FlashPro-5. A successful test is achieved, and signal integrity is tested. 

 
Figure 7. Board to board signal test. 

Figure 7 shows the board-to-board signal test performed: using a function generator a 

3.3V 2 MHz signal is introduced in Channel 1 in the Monitoring board and the output 

signal is measured in Channel 2, we can see that some of the high frequency components 
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are attenuated. Although not ideal, the signal quality at this point is sufficient for our 

reprogramming test. 

After a basic signal test was conducted with a 1-meter ethernet cable using the JTAG 

programmer, multiple distances of cables were tested, and different programmers 

tested, since Microsemi and Xilinx FPGAs use different programmers and software 

tools. The summary of results is shown on Table 6. Notice that the programmer 

frequency for the FlashPro-5 is dropped immediately to 1 MHz if the cable length is 

more than 1 m. 

Programmer/FPGA Programmer 

Frequency (MHz) 

Cable Length (m) Programming 

Status 

FlashPro-

5/Microchip 

10 1 PASS 

1 10 PASS 

1 30 PASS 

1 50 FAIL 

1 100 FAIL 

Vivado/Xilinx 10 1 PASS 

4 10 PASS 

2 30 PASS 

1 50 PASS 

1 100 FAIL 

Table 6. Results for JTAG Programming Test. 

One issue encountered with the JTAG programmer, specifically with the 

FlashPro/Microchip programmer was the tool was not able to program the FPGA test 

board if the cable length was greater than 30 meters or if the programmer’s frequency 

was anywhere above 1 MHz, while the Vivado/Xilinx tools and FPGA was capable of 

being programmed up to 50 meters, but using 1 MHz for the programmer’s clock. Figure 

8 below shows the setup used to test the programming over JTAG, this setup was also 

used to test the I2C communication. At the beginning it was tested using an Arduino 

and the code found in Appendix D – Code used to test I2C Communication, this allowed 

to test if the I2C devices were responding properly, namely the temperature sensor, the 

current sensor and the GPIO IC. This test was conducted successfully using up to 50 m. 
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Figure 8. I2C test setup. 

The Arduino in this setup was used as an I2C connectivity test, since the required 

program for the SMF2000 FPGA was in development. This is the FPGA in the 

Monitoring board that is used to synchronize the received data. After these initial steps, 

the I2C, JTAG, and UART interfaces were validated, the development of the SMF2000 

FPGA design was conducted. 
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2.3.5 Prototyping and Development of HDL blocks 

The following section describes the design and development of the HDL code used 

inside the SMF2000, first the block diagram of the overall system is presented, and 

immediately the relevant details of each component are described. The implementation 

is purely HDL, and it was synthesized and implemented using Libero SoC 2023.2, the 

simulations were performed and visualized in Vivado Xilinx 2018.2 to have a better 

visualization and debugging experience. 

 
Figure 9. Block diagram of HDL design for SMF2000. Adapted from [23]. 

Figure 9 describes the block diagram of the logic used inside the SMF2000 FPGA. 

Following the diagram, on the left side, we can see four UART channels that are 

connected physically to the FTDI chip, Channel 1 and 2 are used to receive logging data 

from the SUT, and are connected to a Redirect Buffer that acts as a FIFO and adds the 

precise timestamp to the data received. On the right side, the redirected Ch1 and Ch2 

are physically connected to the RS-485 transceivers described previously.  

 

Channel 3 is used exclusively to monitor the device current, the current data is 

registered in the Register block (Data registers) while the data is constantly being 

updated by the I2C controller, additionally this channel has an Overcurrent Handler 

that detects when the current data is over certain thresholds and power-cycles the device 

for a specified amount of time. 

 

Channel 4 is used to send commands to the Data and Configuration Register instance. 

It can read-and-write any of the registers, and it is used to get the data from the 

remaining I2C peripherals (GPIO, Temperature). 

The I2C Controller coordinates the I2C peripherals read/write operations, and writes 

the obtained data from Current Monitor, GPIO and Temperature to the Data Registers. 

 

The design is broken down into simpler building blocks, this is to simplify the design 

and testing. The full design is composed of the following blocks: 

- Top: highest entity, encapsulates all other components.  

- UART: implements serial data communication protocol. Used to communicate 

to the FTDI chip and to the SUT device. 

- Current Report: the Overcurrent Handler constantly monitors the electrical 

current value, and reports with a bit flag if an overcurrent event occurs. Reports 

overcurrent events to the UART interface. 
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- Overcurrent Handler: manages the GPIO and on/off times to be able to power-

cycle the device in case an overcurrent event occurs. 

- Command: receives commands from UART Channel 4 to be able to read/write 

to the Data and Configuration Registers. 

- FIFO: a simple First In-First Out memory that holds incoming data until it can 

be written. 

- Hex to UTF8: converts Hexadecimal values used inside the HDL blocks to 

human-readable UTF-8 characters. 

- UTF8 to Hex: converts UTF-8 characters coming from the UART command 

channel 3 to hexadecimal values used inside the HDL blocks. 

- I2C: protocol implementation, data, and state machine implementation of the 

protocol. 

- I2C Controller: handles all different I2C device read/write operations in a single 

block, including GPIO, INA Current Monitor, and GPIO. Also handles initial 

configuration for the peripherals. 

- I2C GPIO: implements register-level read/write operations required for the 

configuration and functioning of the peripheral. 

- I2C INA: implements register-level read/write operations required for the 

configuration and functioning of the peripheral. Handles the calibration 

operations. 

- I2C TMP100: implements register-level read/write operations required for the 

configuration and functioning of the peripheral. 

- Redirect Buffer: receives UART data from the SUT, adds the data to a FIFO and 

sends the data to the host UART with a timestamp. 

- Registers: stores Data and Configuration registers. Implements 10 

Configuration registers and 7 Data registers for the I2C peripherals. 

- Timestamp: implements millisecond timestamp that is used by the rest of the 

system. 

The following section describes each in detail and how they relate to each other. For 

brevity, the full state machine diagrams, HDL code, and in-depth explanations are 

shown in  Appendix E – VHDL Code and State Machines. 

 

UART - UART.vhd  

The UART serial interface was utilized in other SEE experiments in [22] [38] where it 

was used successfully and simplifies the communication between devices and the host 

computer. It implements a standard UART controller based on the protocol description 

in [39], although the IP supports flow control, it is not implemented in this design, to 

save physical pins in the PCB. The UART block is central in communication between the 

host computer and the SUT, and it is instantiated multiple times throughout the design, 

it’s utilized by the Redirect Buffer, Command Interface, and Current Report. 

 
Figure 10. UART block design. 
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Redirect Buffer – redirect_buffer.vhd 

This block makes use of the UART and timestamp implementation to buffer the 

incoming data from the SUT, add a precise timestamp using a FIFO memory, and 

forwards it to the host computer serial by using a second UART instantiation. 

Additionally, the redirect buffer will detect if data is being lost, and will skip sending 

timestamps, to avoid the loss of data from the SUT. 

 
Figure 11. Redirect Buffer block diagram. 

Current Report – current_report.vhd  

The current report uses one UART instance to report when an overcurrent event occurs, 

it uses the overcurrent_o output logic to signal if the current threshold has been 

reached, and to timestamp the event. Additionally, it uses one process to increase the 

sample rate temporarily until the internal FIFO is full of current measurements. The 

most important inputs are the curr_th_i, the current threshold and curr_rdata_i, the 

received current data, using both these inputs to make the internal comparison for an 

overcurrent event. 

 
Figure 12. Overcurrent Report block diagram. 

Overcurrent Handler – overcurrent_handler.vhd 

The Overcurrent Handler takes the overcurrent_i input that is connected to the Current 

Report overcurrent_o output. It uses an internal state machine to turn the SUT on or 

off in case of an overcurrent event. It uses an internal counter to compare with the input 

values on_time_i and off_time_i, which controls the time the SUT is switched on and 

off in case of an overcurrent event. 

 
 

Figure 13. Overcurrent Handler block diagram. 
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Command Interface – cmd.vhd 

This interface makes use of the tx_o and rx_i pins to communicate with the host 

computer through Channel 4 of the FTDI, internally it makes use of a UART instance, 

and uses the uart_rdone_w signal to control the state machine and determine when 

the command has been received to process. The input/output to the block is determined 

by the received command that is used to read/write from the Registers block. It also 

instantiates hex_utf8.vhd and utf8_hex.vhd to convert the outgoing reads and the 

incoming commands, respectively.  

 
Figure 14. Command Interface block diagram. 

Registers – registers.vhd  

The registers are comprised of 10 configuration registers that hold informational values 

such as the program version, board name, I2C and UART baud rates, and the 

configuration for the current monitoring, including the current sample rate, current 

thresholds, and on/off times when an overcurrent event is detected. 

There are 7 data registers, the GPIO Tri State, GPIO Read/Write values, the current 

value of voltage, power, current read from the INA, and the temperature value from the 

TMP100 IC. This allows the system to be fully configurable, this is accomplished by 

using the Command Interface via the serial terminal or a Python script. With this easy-

to-use interface, we can change any required parameters at runtime. 

 

The Registers are connected to the Command Interface to read/write the corresponding 

registers, and to the I2C controller, which updates the corresponding register value. All 

the read/write operations are controlled with five ports: wr_en_i, rd_en_i, addr_i, 

wdata_i, rdata_o – write enable, read enable, address, write data, read data.  

 

 
Figure 15. Block diagram (top) and Data and Configuration Registers (bottom). 
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FIFO – fifo.vhd 

Implements a simple memory that can hold data whenever is needed. It has two generic 

parameters FIFO_SIZE, DATA_WIDTH to enable the FIFO to be flexible to the 

implementation, this way we can reuse the FIFO all over the design. 

The main control ports are the write_i, read_i, data_i, and data_o, which control the 

write enable, read enable, input data, and read data, respectively. Additionally, the 

empty_o and valid_o ports allow for data flow control to only read or request data when 

the memory is not empty, and there is valid data on the memory. 

 
Figure 16. FIFO block diagram. 

Hex to UTF8 – hex_utf8.vhd 

Converts Hexadecimal values used inside the HDL blocks to human-readable UTF-8 

characters. This is an asynchronous block and will keep converting the input without 

any control signals. Mainly used in conjunction with the Command Interface. 

 
Figure 17. Hexadecimal to UTF-8 block diagram. 

UTF8 to Hex – utf8_hex.vhd  

Converts UTF-8 characters coming from the UART command channel 3 to hexadecimal 

values used inside the HDL blocks. This is an asynchronous block and will keep 

converting the input without any control signals. Mainly used in conjunction with the 

Command Interface. 

 
Figure 18. UTF-8 to Hexadecimal block diagram. 

 
I2C – i2c.vhd  

This block diagram makes the connection between the peripherals and the I2C 

controller. It implements the Standard-mode with a Standard Bit Rate of 100 kbps and 

the two wire communication with the SDA and SCL lines, Serial Data and Serial Clock 

following the protocol description from [40]. The bit rate parameter is fully 

configurable, to account for any propagation delay in the long-wired connection, 

making it possible to reduce the frequency of the I2C communication, and guaranteeing 

the peripheral communication works. 

This IP is instantiated by the I2C controller to select which peripheral is being 

addressed. 

 
Figure 19. I2C block diagram. 
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I2C GPIO – i2c_gpio.vhd 

The GPIO block implements the state machine for the required configuration and 

read/write operations to communicate with the TCA9535 Bus Expander 

implements register-level read/write operations required for the configuration and 

functioning of the peripheral, following the required programming steps listed in the 

datasheet [41].  

 
Figure 20. I2C GPIO Block Diagram. 

The device functionality can be summarized in three steps, all implemented in the 

VHDL block: 

a. Configuration: both configuration registers, two 8-bits registers require their 

values being set on startup of the device, the values in these registers determine 

if a corresponding pin port is set as an input or output. 

b. Write: the I2C write function sends the START condition with the device 

address and the last bit set to 0 to signal a Write operation. Figure 21 shows the 

required bus transaction, sourced from [41]. 

 
Figure 21. Example I2C Write procedure for GPIO Bus Expander. 

c. Read: reading from a register requires to send the address of the device with a 

write instruction, followed by the internal register address to read; after 

acknowledging the transaction, the data is transmitted until all data exchange 

is completed. Figure 22 shows the example operation for a Read, sourced from 

the datasheet of the device [41]. 

 
 

Figure 22. Example I2C Read procedure for GPIO Bus Expander. 

The internal state machine in the I2C GPIO block implements all these three 
procedures and repeats them in the I2C Controller by using the gpio_setup_en_i, 
gpio_write_en_i, and gpio_read_en_i input ports, which are the setup enable, write 
enable and read enable for the GPIO peripheral. For the full illustration of the state 
machine of this block, refer to Appendix E – VHDL Code and State Machines. 
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I2C INA – i2c_ina.vhd 

This block implements the state machine that carries the read/write enable operations 

required for the configuration and functioning of the peripheral. The required 

programming steps for the device are implemented following the requirements listed in 

the datasheet [42]. 

 
Figure 23. I2C INA Current Monitor Block Diagram. 

Similar to other peripherals, the device operations are broken down in the following: 

a. Configuration: this operation is required on device startup to overwrite the 

default values on the device. It is required to set the desired 16-bit Calibration 

Register at address 0x00 as shown in Figure 24, sourced from the device 

datasheet [42]. 

 
Figure 24. INA Configuration Register. Adapted from [42] 

From MSB to LSB the Configuration Register gives values for: 15 - Reset bit or System-

Level Reset, 13 – Bus Voltage Range, 12-11 – PGA gain and range, 10-7 Bus ADC 

Resolution, 6-3 Shunt ADC resolution, and bits 2-0 give the Operating Mode of the 

device. 

b. Calibration: the Calibration register is necessary to be able to use the Current 

and Power registers. The value for the Calibration register needs to be 

calculated using Equation 1, where Current LSB = 1 mA/bit, and RSHUNT = 

0.02Ω. 

𝐶𝑎𝑙 = 𝑡𝑟𝑢𝑛𝑐 (
0.04096

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑆𝐵 ×  𝑅𝑆𝐻𝑈𝑁𝑇
) 

Equation 1. Calibration Register value. 

 
Figure 25. Calibration Register. Adapted from [42] 

c. Read: When reading from the INA219, the last value stored in the register 

pointer by a write operation determines which register is read during a read 

operation. To change the register pointer for a read operation, a new value must 

be written to the register pointer. If repeated reads from the same register are 

desired, it is not necessary to continually send the register pointer bytes; the 

INA219 retains the register pointer value until it is changed by the next write 
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operation. For our use case, the Bus Voltage, Power and Current register need 

to be read, at internal addresses 0x02, 0x03, and 0x04 

 
Figure 26. Bus Voltage Register. Adapted from [42] 

 
Figure 27. Power Register. Adapted from [42] 

 
Figure 28. Current Register. Adapted from [42] 

 

I2C TMP100 – i2c_tmp100.vhd 

The TMP100 block implements the necessary FSM and selects the appropriate register-

level read/write operations required for the configuration and functioning of the 

peripheral according to the device datasheet [43]. 

 
Figure 29. I2C TMP100  Block Diagram. 

Similar to other I2C devices on the system, the procedure needed are as follows: 

a. Configuration: the Configuration Register shown in Figure 30 is a read-and-

write register. The correct value must be written on this register for the device 

to function properly. From MSB to LSB, the configuration bits are as follows: 

D7 – One Shot mode, single temperature conversion, D6-D5 converter 

resolution between 9 to 12 bits, D4-D3 Fault Queue, triggered when the TLOW or 

THIGH register values are exceeded, D2 polarity of the Alert output, D1 

Comparator or Interrupt mode, D0 Shutdown for power saving. 

 
Figure 30. TMP100 Configuration Register. 

b. Read: the temperature conversion is stored in 12-bit representation, divided 

into two-byte registers, for the read operation byte 1 is read first, followed by 

byte 2. To access the Temperature Register, the address 0x00 must be written 

to the Pointer Register with a write operation. After this write operation, the 

contents of the Temperature registers are written on the bus. 
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Figure 31. TMP100 Temperature Register. 

I2C Controller – i2c_controller.vhd 

The I2C controller instantiates the I2C block, the I2C GPIO, I2C INA and I2C TMP100 

blocks, and acts as the central point for communicating with the peripherals in the 

Carrier board. The internal state machine continuously writes the initial values to the 

configuration registers of all three devices: GPIO Bus Expander, INA Current Monitor, 

and TMP100 temperature sensor. After initial configurations are completed, it gets the 

read data from the devices, this process is repeated in an FSM loop that also controls 

the write enable signal to the peripheral instances. A detailed FSM is shown on 

Appendix E – VHDL Code and State Machines - Figure 102. 

 
Figure 32. I2C Controller Block Diagram. 

Timestamp – timestamp.vhd 

The timestamp block is responsible for keeping the internal time in the device and 

implements a millisecond timestamp that is used by the rest of the system. It uses a 

simple tick counter, that increases the millisecond count every 49999 ticks at 50 MHz  

 
Figure 33. Timestamp Block Diagram. 

2.4 Experimental Design and Procedure 

After the PCB was designed, soldered and tested, the next step was to simulate the 

VHDL blocks described in the previous section. Simulations using Vivado 2018.2, and 

Libero 2024 were carried out, and the simulation signals were compared to the 

predefined behavior. 

 

After all simulations were completed and verified, a hardware verification of each block 

or group of related blocks was carried out. A bitstream for the FPGA was generated and 

the design was tested on hardware using the SMF2000 FPGA and the Monitoring and 

Carrier board.  
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After a successful hardware validation was conducted in the laboratory with a full test 

setup, a neutron irradiation test was conducted in the ISIS Muon Sourced in the ChipIR 

beam during July 2024, this further validated the usefulness of the platform. The 

experimental procedure for testing the SoC boards follows the standard testing under 

radiation suggested in other experiments [44]. 
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3 Results 

3.1 Overview of Results 

The following section presents the results obtained from the Monitoring board, 

including the visualization of the simulation using Vivado and the obtained logs. The 

simulations performed serve as unitary and integration test of the system, since the 

simulations were first carried out block by block, and then integrated into an 

encompassing system-level simulation. This simulation approach simplified the design, 

simulation and hardware validation of the overall design. A brief discussion of the 

results is presented, along with any issues encountered during board testing. 

3.2 Detailed Presentation of Data 

UART 

A successful UART simulation was conducted and verified at the signal simulation level. 

Both receive and transmit operations are completed successfully. This block is then 

integrated into the different blocks that require UART, specifically: Redirect Buffer, 

Current Report, Command Interface. 

 
Figure 34. UART Receive simulation. 

 
Figure 35. UART Transmit simulation. 

For the verification part of this block, a simple loopback test [45], where the TX and RX 

pins on the Carrier board are connected to each other, and one or multiple characters 

are sent using a Serial Terminal, the received message is the same message, this proves 

that the serial communication works. Figure 36 shows the output of a simple loopback 

test using the Visual Studio code Serial Monitor @115200 bps, 8 data bits, no parity. 

This prototype was carried out in hardware, using the actual FPGA. 

 
Figure 36. Simple loopback test with UART. 
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Redirect Buffer 

The Redirect Buffer was implemented successfully, being able to receive data from the 

SUT with the added timestamp. Figure 37 shows 1. the transmitted UART from the 

redirect buffer, 2. the received UART from the SUT, 3. the transmitted data with the 

additional timestamped data. 

 
Figure 37. Redirect Buffer simulation. 

For the functional verification, a simple loopback was implemented in the Carrier board 

FPGA design, and it was verified that the sent string was returned with a timestamp 

added. Figure 38 shows the output of the loopback test, where the message sent was 

“cafe” in hexadecimal, and the return message was the sent message plus the timestamp 

in milliseconds given in hexadecimal value.  

  
Figure 38. Redirect Buffer functional verification. 

Current Report 

The Current Report was simulated by 1. setting the curr_th_i – current threshold input 

port to a fixed value, 2. comparing the input current data from the registers 

curr_rdata_i with the threshold value, 3. after the current value is higher than the 

threshold, an overcurrent is reported using the overcurrent_o output port, this last 

output will be connected to the Overcurrent Handler to turn the device on/off. 4. Finally, 

all the events get logged in an internal FIFO memory that gets converted to UTF-8 and 

sent to the UART for reporting. Figure 39 shows the labelled steps described above. 

 
Figure 39. Current Report simulation. 
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Overcurrent Handler 

The Handler takes 1. Waits for overcurrent flag overcurrent_i to power-cycle the device, 

2. The device is turned on, then off for the duration set on the on_time_i and off_time_i, 

which are configured from the Registers, this means that the on-off time for power cycle 

can be configured before or during the experiment, 3. The gpio_wdata_o is used to 

send the correct value to the GPIO register, to try to cycle the device. 

 
Figure 40. Overcurrent Handler simulation. 

Command Interface 

This interface is key to the setup operation, as it reads and writes the corresponding 

registers to power cycle the device using GPIO, read temperature values, and read 

voltage, current and power from the INA.  

 

The user can interact directly with the command interface by using Channel 4 of the 

UART and a Serial Monitor with UTF-8 encoding. During the experiment, Python 

scripts with the proper encoding are used to automatically send the commands to read-

and-write to the registers. 

Write commands are 40-bits long, with 8-bits to store the “w” UTF-8 character, plus 16-

bits for the address, and 16-bits for the value to be written. An example command to 

write “cafe” to register address “0001” would be “wcafe0001”. Figure 41 shows the 

Commands simulation, by writing data “cafe” to address “0001”. We also see the correct 

toggling of the wr_en_o port, this is the write enable to the Registers. 

 
Figure 41. Command Write simulation. 

Read commands are 24-bits in total: 8-bits to store the “r” (read) UTF-8 from the serial, 

plus 16 bits to decode the address to be read e.g. “FFFF” would be an example address, 

and the full command would be “rFFFF”, the equivalent of saying read Registers address 

“FFFF”. 

Figure 42 shows the rd_en_o signal going high, the read enable signal, the address to 

be read is “0001”, and the read_data_i is “cafe”. 

 

 
Figure 42. Command Read simulation. 
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The validation on hardware of the Command Interface was done using a Serial Monitor 

and writing and reading from a series of registers. Figure 43 shows the serial output of 

reading the board name at address “0001” is shown, then a Write operation to register 

address “0007” followed by an immediate read, this is the current threshold register. 

 

Figure 43. Validation of Command Interface. 

Registers 

The Write operation to the Registers is enabled by the wr_en_i port, which is connected 

to the Command interface wr_en_o port, in this way the commands can directly control 

the register writes. Figure 44 shows the Command Interface on the top, signaling the 

write enable out signal. On the Figure, we can see the wr_en_i write enable input port 

from the Registers being toggled, and the change in the wdata_i, the incoming data. 

 
Figure 44. Register Write simulation. 

The read operation is pretty similar to write, but now the controlling signal is the 

rd_en_i – the read enable port. This is toggled by the Command Controller, and we 

immediately see the data being outputted in the rdata_o port. 

 
Figure 45. Register Read simulation. 

The hardware validation for both Registers read-and-write is covered by the test 

performed for the command interface shown in Figure 43. The Command Interface is 

tested by writing and reading from the registers, so we can verify both blocks work with 

a single functional verification. 
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FIFO 

For the FIFO memory, we can break down the essential operations into two, reading 

and writing, since the controlling ports for this block are the write_i and read_i, which 

enable the writing and reading of the data, respectively. Figure 46 shows the writing 

operation in 5 annotated steps: 1. Write is enabled via the controlling port, 2. The input 

data is put on the data_i port, 3. The input data at the port is written for the duration 

of the write enable signal, 4. FIFO empty_o status is changed after the first data write, 

signaling that the memory is no longer empty, 5. As data is inputted in the FIFO, the 

size of the memory keeps increasing, as well as the next address where the next data is 

inserted. 

 
Figure 46. Writing to FIFO simulation. 

The reading portion of the FIFO is carried out in 5 steps: 1. Port read_i is set to 1, 

enabling the read operation if the FIFO is not empty, this means if empty_o = 0, 2. The 

FIFO internal register takes the value in the corresponding address of first_address_r, 

which is the next value to be read, 3. The output port data_o takes the corresponding 

value. 4. The address pointer first_address_r is updated with the new address value 

next_first_addr_w, 5. The size_r register gets updated from new_size_v with the new 

size of the FIFO. Figure 47 shows the annotated steps and its corresponding simulated 

outputs. 

 
Figure 47. Reading from FIFO simulation. 

Hex to UTF-8 

Hex to UTF-8 is successfully implemented and simulated, in Figure 48 we can see the 

input hex codes and its corresponding conversion immediately. The conversions were 

verified and implemented by using a UTF-8 encoding with its corresponding Unicode 

code point from the table in [46]. 

 
Figure 48. Hex to UTF-8 simulation. 
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UTF-8 to Hex 

UTF-8 to Hexadecimal is successfully implemented and simulated, in Figure 49 we can 

see the input UTF-8 and its corresponding conversion to hexadecimal immediately in 

the output port. The conversions were verified and implemented by using a UTF-8 

encoding with its corresponding Unicode code point from the table in [46]. 

 
Figure 49. UTF-8 to Hex simulation. 

I2C GPIO 

For the GPIO we can see from Figure 50 that the enables for setup, read, and write are 

being correctly simulated, lets see in detail what is being written on each state. 

 
Figure 50. GPIO FSM enables simulation. 

For the Configure operation, we see that we are sending data to the I2C port 

i2c_wdata_o, which corresponds to the following: 

06 – the address of configuration register 1. 

FF – the value of the configuration value for register 1. 

07 – the address of the configuration register 2. 

FF – the value of the configuration value for register 2 

With this we are setting all GPIO ports to inputs. This is shown in Figure 51. 

 
Figure 51. GPIO Configure simulation. 

For the write operation, we see that we are sending data to the I2C port i2c_wdata_o, 

which corresponds to the following: 

02 – the address of configuration register 1. 

1E – the LSB value of the output register. 

1A – the MSB value of the for the output register 

With this, we are setting all GPIO outputs to 1A1E. This is shown in Figure 52. 

 
Figure 52. GPIO Write simulation. 
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For the read operation, we see that we are receiving data to the GPIO port gpio_data_i, 

which corresponds to the following: 

00 – write the address of the output register. 

1A – the MSB value of the output register. 

1E – the LSB value of the for the output register 

With this, we are reading both registers from the GPIO outputs . This is shown in Figure 

53.  

 
Figure 53. GPIO Read simulation. 

Finally, the Register map implemented for the GPIO is shown in Table 7. Register map 

for GPIO. Where the P00 to P17 is the bit number for the register is indicated, its 

functional use and if the bit is configured as an input or output. 

Bit P00 P01 P02 P03 P04 P05 P06 P07 

Functi

on 

SOM_

JTAG_

SEL 

SOM_

PWR_

EN 

SOM_

NOSE

Q 

SOM_

PGOO

D 

SOM_

BOOT

MODE 

SOM_

Nrst 

SOM_

GPIO_

0 

SOM_

GPIO_

1 

I/O OUT OUT OUT IN OUT OUT IN/OU

T 

IN/OU

T 

Bit P10 P11 P12 P13 P14 P15 P16 P17 

Functi

on 

SOM_

GPIO_

2 

SETUP

_PWR

_EN 

SETUP

_WDT

_WDO 

SETUP

_ID_L

SB 

SETUP

_ID_M

SB 

SETUP

_GPIO

_TEST 

PCIE_

GPIO 

Not 

used 

I/O IN/OU

T 

OUT IN IN IN IN/OU

T 

IN/OU

T 

NC 

Table 7. Register map for GPIO. 

I2C INA 

For the INA we can see from Figure 54 that the enables for Configuration, Calibration, 

Read, and Write are being correctly simulated, let’s see in detail what is being written 

on each state. 

For the Configuration operation, we see that we have enabled the controlling signal 

write_setup_en_i. We send data to the I2C port i2c_wdata_o, which corresponds to 

the following: 

00 – the address of configuration register 1. 

39 – the MSB value of the configuration register. 

9F – the LSB value of the configuration register. 

With this, we are setting the Configuration register to the value “399F”. This is shown 

in Figure 54 

 
Figure 54. INA Configuration simulation. 

 

 



Single Event Effects Instrumentation for System-on-Module Testing 

 

34 

 

The Calibration is performed after the Configuration, using the same the controlling 

signal write_setup_en_i. We send data to the I2C port i2c_wdata_o, which 

corresponds to the following: 

05 – the address of the Calibration register. 

50 – the MSB value of the Calibration register. 

00 – the LSB value of the Calibration register. 

With this, we are setting the Calibration register to the value “5000”. This is shown in 

Figure 55. 

 
Figure 55. INA Calibration simulation. 

The Read operation makes use of the controlling signal read_curr_en_i. We send data 

to the I2C port i2c_wdata_o, which corresponds to the following: 

02 – the address of the Bus Voltage register.  

00 – the i2c_read_o is toggled, to read the incoming data. Voltage data is stored in the 

internal register and sent to the volt_data_o port. 

04 – the address of the Current register. 

00 – the i2c_read_o is toggled, to read the incoming current data. Current data is stored 

in the internal register and sent to the curr_data_o port. 

03 – the address of the Power register. 

00 – the i2c_read_o is toggled, to read the incoming Power data. Power data is stored 

in the internal register and sent to the powr_data_o port. 

We have read the three data registers from the INA peripheral. This simulation is shown 

in Figure 56.

  
Figure 56. INA Read simulation. 

 

I2C TMP100 

For the TMP100 we can see from that, write_setup_en_i and read_temp_en_i  are 

being correctly toggled these are the Configuration, and read Read enable signals, let’s 

see in detail what is being written on each state. 

For the Configuration operation we see that we have enabled the controlling signal 

write_setup_en_i. We send data to the I2C port i2c_wdata_o which corresponds to 

the following: 

00 – the address of configuration register 1. 

39 – the MSB value of the configuration register. 

9F – the LSB value of the configuration register. 

With this we are setting the Configuration register to the value “399F”. This is shown in 
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Figure 57. TMP100 simulation. 

For the Configuration operation, we see that we have enabled the controlling signal 

write_setup_en_i. We send data to the I2C port i2c_wdata_o, which corresponds to 

the following: 

01 – the address of the configuration register. 

60 – the 8-bit values of the configuration register. 

With this, we are setting the Configuration register to the value “60”. This is shown in 

Figure 58. 

  
Figure 58. TMP100 Configuration simulation. 

For the Read operation, we see that we have enabled the controlling signal 

read_temp_en_i. We send data to the I2C port i2c_wdata_o, which corresponds to the 

following: 

00 – the address of the Temperature register. After this value has been written, we 

disable the i2c_write_o signal, i2c_done_i signals that the I2C communication is done, 

and we enable i2c_read_o to read the value of the Temperature register. 

With this, we are reading the Temperature register value at the internal address “00”. 

This is shown in Figure 59.

 
Figure 59. TMP100 Read simulation. 

I2C Controller 

For the I2C Controller, we can verify that the enable cycles of all three peripherals are 

being toggled, and that the state machine is functioning properly. We can further verify 

it with the I2C test, in which we are able to communicate correctly to all the peripherals. 

The toggling of the enabling signals is shown in Figure 60. 

 
Figure 60. I2C Controller simulation. 
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I2C 

The I2C controller and the I2C implementation work together to have a proper 

addressing, reading, and writing of the I2C peripherals in the Carrier board. At the 

highest level of the hierarchy, this can be verified by the correct toggling of the SDA and 

SCL signals, following the I2C protocol [40]. Figure 61 shows the different states for the 

I2C using the state_r register, we can see the state going from a -> b -> 0 -> 1 -> 2 -> 3 

-> f, these states signify the change from STOP -> WAIT -> START -> ADDR -> AACK 

->ACKN, respectively. Additionally, we can verify the simulation with the i2c_sda_o 

and i2c_scl_o ports, which will eventually be routed to the actual pins on the device. 

 
Figure 61. I2C simulation. 

Timestamp 

The timestamp block is successfully simulated using the tick counter, Figure 62 shows 

the simulation results, it can be seen that after the tick counter reaches the predefined 

value of 0xC34F the millisecond register, millisecond_r, is increased, this continues 

updating the millisecond value and outputs the value on the timestamp_ms_o output 

port. We can see that the update of the port, value, and register happens around the 1 

000 000 ns mark, which is equivalent to 1 millisecond. 

 
Figure 62. Timestamp simulation result. 

System Test 

After development of the HDL blocks, and the functional verification of individual 

blocks, the SMF2000 FPGA was flashed with the complete design and tested on the full 

setup in the laboratory. The full test setup is shown in Figure 63. 

 
Figure 63. System test setup. 
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The system was left running over a 24-hour period to check for stability and identify any 

potential setup errors. Additionally, the hardware setup was integrated with the 

scripting software to monitor, log and control the experiment from a computer terminal, 

this is based on the series of Python scripts and Make files made by Mattos A. et al. in 

[23] which make possible to interact with the devices, to send and interact using 

commands to the device, monitor the devices, and continuously log the current. 

 

The scripts generate .txt files as logs, and a Make file is used to simplify the creation of 

the necessary folders, create a Python virtual environment with the necessary packages, 

and centralize the initialization of the experiment from a single file. An example current 

monitor terminal is shown in Figure 64, where we can see where the received data is 

being logged to, which FTDI we are monitoring, and at which serial settings and the 

Current information marked with the [CURR] tag. 

 

 
Figure 64. Current terminal output (top) and annotated example log (bottom). 

A SEL protection test was carried out, with modeled faults that intent to cover the 

different current levels of the SUT, these states are: device OFF, device ON, device 

BOOT, Nominal, Nominal (with SEFI), Watchdog timeout, and SEL. Mattos A. et al. 

published the details of this test in [23], Figure 65 was prepared for the mentioned paper 

and it’s presented as the expected response of the SUT under test. 

 

 
Figure 65. Emulated current behavior of a SoM during various states. Adapted from [23]. 
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The test setup was validated in the lab. Next all the necessary hardware was prepared 

for a heavy-ion irradiation campaign in June 2024 using uranium U28+ in the GSI 

Helmholtz Centre for Heavy Ion Research, unfortunately there was a problem with the 

beam equipment and the test could not be carried out under irradiation, nonetheless 

the test setup was validated with the facilities’ patch panel and interfaces, the 

communication interfaces including UART and I2C were tested, and the current 

monitoring was carried out. Figure 66 shows the test setup used with one of the Carrier 

boards connected. 

 

For the JTAG validation, the board could only be reprogrammed up to 50 meters using 

the Vivado tools. Using the Libero programmer only 30 meters of JTAG programming 

distance could be achieved, this is consistent with the tests carried out in the laboratory. 

The main hypothesis is that the timing requirements for each of the programming tools 

are different and that more testing or a better solution is needed when the user must 

interchange between the different FPGA vendors using the proposed instrumentation. 

 
Figure 66. GSI Test setup. 
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A second experiment was conducted in July 2024 at the ISIS Neutron and Muon Source, 

in the ChipIR beam under an atmospheric neutron beam, for this experiment, the full 

characterization of the Carrier board was completed, all the details regarding this test 

will be published in future papers that will contain the radiation response of a Polarfire 

MPSoC and a custom hardened processor developed in the group [30]. The test setup 

used for this experiment is shown in Figure 67 and Figure 68. 

 

 
Figure 67. ChipIR Test setup. 

 
Figure 68. ChipIR Test setup, sideview. 

In addition to the SoM irradiation, the Carrier board transceivers were also irradiated 

directly, to measure the response of the system and prove a worst-case scenario. Using 

a UART loopback test, no errors were detected on the UART communications, which 

proves the robustness of the RS-485 transceivers. The I2C over CAN did not present any 

errors either. During this irradiation test, the SoM was replaced by a fixed resistor to 

simulate power consumption. Some register errors on the GPIO input port were 

reported. The full details of the irradiation test are reported in [23]. 
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Finally, an analysis of a classified SEFI during the experiment is shown in Figure 69. It 

shows the irradiation of a Microchip Polarfire SoC. During this evaluation, we can 

observe a failure of the device at 327 seconds, followed by a failure to recover, and an 

attempt to restart the device by the watchdog timer flag. The device failed to recover 

using the watchdog, until a beam glitch occurred (the marked read area on the figure), 

this indicates that the device might have some SEE detection that locks up the 

initialization of the device when errors are detected. At timestamp 2600 seconds, we 

can see that the device is finally able to recover. 

 
Figure 69. Investigation of SEFI events, including a watchdog timer reset using the current and 

fault events in superposition with enhanced synchronization. Adapted from [23]. 

We can also see from the timing diagram that the timing response of the system with 

the setup tested in the experiment, with around 50 meters of cabling distance, is less 

than 1 second, close to around 100 milliseconds. With this metric we show that the 

initial requirement of having a fast response time is fulfilled.
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4 Conclusion 

This work presents the full design of an improved instrumentation system for SoM and 

FPGA radiation testing with enhanced observability. After initial validations in a 

laboratory setting, we have demonstrated the full setup in a real experiment 

environment, overcoming the limitations of current methodologies found in the 

literature, by providing a common platform for multiple vendors of SoC.  

 

The results obtained during demonstrated the usefulness of the setup, with increased 

synchronization and observability, it was proven to be reliable, and tolerant to errors, 

most importantly that we can reduce the test operator interventions and errors by 

automating the device recovery process after a critical error. During the experiment, we 

tested a Polarfire SoC with great success, providing better understanding of the effects 

on the device at a system level. Additionally, we were able to correlate observed 

parameters such as current and communication link, to device effects. The platform will 

serve for multiple experiments that will support the group’s efforts in the future. 

 

Currently, some limitations with the platform exist, such as the reprogramming 

capabilities using JTAG, and more development time is needed to come up with a better 

solution that will allow full or partial reconfiguration of a running device. This would 

allow for more complex testing scenarios that would enhance the testing capabilities for 

SoM devices. 

 

Overall, the proposed requirements were fulfilled. The required response time, cabled 

wire distance, peripheral devices sensing and control, including temperature, GPIO, 

and current were achieved. These measurements can be timestamped by the controlling 

hardware, allowing for the correlation of effects. By using standard communication 

links such as serial UART, we can monitor the system’s response, and to automatically 

respond to events without the need for user interaction. 

 

The platform developed is adaptable in its control hardware, due to the reprogrammable 

nature of the FPGA, and it can support additional devices and peripherals in the future. 

The project is intended to be open source, this would encourage other users to 

implement their own testing with the system, would foster collaboration and 

innovation, by allowing researchers to come up with their own solutions and 

contributing back to the project. The cost of the platform is relatively low compared to 

existing solutions, and has the potential to reduce platform selection, test development, 

and radiation testing. 
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5 Future Work 

This work opens the doors for even more granular but simplified radiation analysis, by 

automating setup, experiment execution, and proposing a unified environment for logs, 

data, and analysis. 

 

In the future, the platform can accommodate custom devices using the open-source 

SoM specification, connecting additional devices to the Carrier board using the PCIe 

connector, which allows the use of secondary devices such as SRAMs. These memories 

can be utilized by the SUT for additional functionality, but also to observe SEU errors 

and correlate the fluence, with the high precision synchronization. These has been 

proven in other monitoring systems such as the radiation monitor presented in [20]. 

Latch-up free memories can be utilized, selected from COTS test data, these memories 

typically work in a range of voltages that can be varied, this voltage variation can be 

utilized as a variable parameter for different cross sections using the same memory. 

 

Additional work is needed to overcome the programming limitations via the JTAG 

interface during the experiment. Other interfaces could be explored, such as using 

optical transceivers instead of wired differential transceivers, this would guarantee 

signal integrity even under the worst radiation conditions and long links. Another 

option would be to explore independent or vendor tools for custom programming jobs, 

specifically for the Microchip devices, which present the major limitations when 

programming via JTAG. By exploring reduced clock frequency programming, a slower 

clock can be utilized to program the device in the worst-case timing scenario, while still 

achieving the required timing closure. 

 

Further validation under different radiation sources is required. The setup will be tested 

under high-energy protons at the Proton Irradiation Facility at the Center for Neutron 

and Muon Sciences in September 2024 and validating the test setup under different 

beam conditions. 

 

Improvements such as additional temperature and voltage control for worst-case 

testing scenarios would be an asset for future iterations of the platform. The 

improvement of the device temperature monitoring to a more appropriate peripheral is 

needed. More testing is needed in scaling the instrumentation for larger systems or 

more complex designs, such as heterogeneous systems. 

 

Finally, more research and proposals are needed regarding the guidelines for testing 

complex devices, FPGAs, memories, and heterogeneous systems, such as the 

standardization of observability metrics. An open observability framework would 

encourage collaborative best practices and metrics that will eventually lead to better 

testing guidelines and outcomes. 
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Appendix 

Appendix A – Full Bill of Materials for System 

Full BOM for Monitoring Board 

ID Component Qty Note/Rationale Price € Source 

1 TEM0001-01A-ABC-2 

SMF2000  

1 Flash Based FPGA to 

synchronize and control 

experiment 

41.00 Link 

2 FT4232H-56Q MINI 

MDL 

1 UART to USB FTDI 

Chip with 4 channels 

28.64 Link 

3 SN65LVDT41PW 1 LVDS Transceiver for 

JTAG programming 

7.06 Link 

4 SN65HVD30MDREP 2 RS485 3.3V Transceiver 3.36 Link 

5 SN65HVD232D 2 CAN 3.3V Transceiver 1.97 Link 

6 P82B96DR 1 I2C Long Distance 

Buffer 

2.79 Link 

7 Bivar SM0805PGC 2 Green LED SMD 0.32 Link 

8 Bivar SM0805RC 2 Red LED SMD 0.24 Link 

9 Bivar SM0805UOC 2 Orange LED SMD  Link 

10 YAGEO AC0805FR-

071KL 

6 1kΩ SMD Resistors 0.02 Link 

11 RC0805FR-07100RL 6 100 Ω Resistors 0.01 Link 

12 CRCW0805100KFKEA 6 10 KΩ Resistors 0.01 Link 

13 Vishay 

VJ0805Y104KXAMR 

7 0.1 uF Capacitors 0.08 Link 

14 HARTING 09455511123 1 RJ45 3-port Connector 4.74 Link 

15 Deltron 571-0500 1 Banana Connector – 

Red 

1.83 Link 

16 Deltron 571-0100 1 Banana Connector - 

Black 

1.44 Link 

17 DCJ200-10-A-K1-K 1 DC Power Jack 0.70 Link 

18 TE Connectivity 5103310-

1 

1 JTAG connector 1.43 Link 

19 Header 2.54mm 1 1 row 6 pin header NA NA 

 

Full BOM for Carrier Board 

ID Component Qty Note/Rationale Price 

€ 

Source 

3 SN65LVDT14PW  1 LVDS Transceiver for 

JTAG programming 

6.14 Link 

4 SN65HVD30MDREP 2 RS485 3.3V Transceiver 3.36 Link 

5 SN65HVD232D 2 CAN 3.3V Transceiver 1.97 Link 

6 P82B96DR 1 I2C Long Distance 

Buffer 

2.79 Link 

 TPS35AA38AGADDFRQ1  External Watchdog 2.51 Link 

 TMP100NA3K 1 I2C Temperature 

Sensor 

1.35 Link 

https://shop.trenz-electronic.de/en/TEM0001-01A-ABC-2-SMF2000-FPGA-Module-with-Microchip-SmartFusion-2-8-MByte-SDRAM?c=486
https://www.mouser.fr/ProductDetail/FTDI/FT4232H-56Q-MINI-MDL?qs=u4lROS522ZWtkd9iq8DBzQ%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65LVDT41PW?qs=QViXGNcIEAu2oZm1OztEtQ%3D%3D
https://www.google.com/url?q=https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65HVD30DR?qs%3DsGAEpiMZZMumM9SKmFWhKhevH%25252BCLM%252FU4mUwX1mjqNU4%253D&sa=D&source=editors&ust=1723648308320407&usg=AOvVaw3csViy1WcP5B4fhZLd2Cea
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65HVD232DR?qs=QViXGNcIEAtY%252BrViRMr46w%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/P82B96DR?qs=aEuGZpxfbxXIZ74dGyDcwQ%3D%3D
https://www.mouser.fr/ProductDetail/Bivar/SM0805PGC?qs=jaLxTFIJCivDjJTQ3rjhAg%3D%3D
https://www.mouser.fr/ProductDetail/Bivar/SM0805RC?qs=jaLxTFIJCivm3JSYe5gHjQ%3D%3D
https://www.mouser.fr/ProductDetail/Bivar/SM0805UOC?qs=jaLxTFIJCivUzv0TgwDi7A%3D%3D
https://www.mouser.fr/ProductDetail/YAGEO/AC0805FR-071KL?qs=yhV1fb9g%2FKY2c2RZgjwsPg%3D%3D
https://www.mouser.fr/ProductDetail/YAGEO/RC0805FR-07100RL?qs=8Y8p%252BasKcI6MtXUgG4E6SQ%3D%3D
https://www.mouser.fr/ProductDetail/YAGEO/AC0805FR-0710KL?qs=yhV1fb9g%2FKbswcDAMQpnRQ%3D%3D
https://www.mouser.fr/ProductDetail/Vishay-Vitramon/VJ0805Y104KXAMR?qs=sGAEpiMZZMukHu%252BjC5l7YcJ3vlKLg1BHDURqyHwsK0g%3D
https://www.mouser.fr/ProductDetail/HARTING/09455511123?qs=LASUwJSZkDlU8405jbO2qQ%3D%3D
https://www.mouser.fr/ProductDetail/Deltron/571-0500?qs=E2gf03EXmtqN5S6PKlh9vA%3D%3D
https://www.mouser.fr/ProductDetail/Deltron/571-0100?qs=sGAEpiMZZMtTOasXncsdUQjBVxhHI7uE96CEMKTX5HU%3D
https://www.mouser.fr/ProductDetail/GCT/DCJ200-10-A-K1-K?qs=KUoIvG%2F9Ilayx8ZZ1Qrlrg%3D%3D
https://www.mouser.fr/ProductDetail/TE-Connectivity/5103310-1?qs=84A%2FDAdkstId6coQOsiVSw%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65LVDT41PW?qs=QViXGNcIEAu2oZm1OztEtQ%3D%3D
https://www.google.com/url?q=https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65HVD30DR?qs%3DsGAEpiMZZMumM9SKmFWhKhevH%25252BCLM%252FU4mUwX1mjqNU4%253D&sa=D&source=editors&ust=1723648308320407&usg=AOvVaw3csViy1WcP5B4fhZLd2Cea
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN65HVD232DR?qs=QViXGNcIEAtY%252BrViRMr46w%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/P82B96DR?qs=aEuGZpxfbxXIZ74dGyDcwQ%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/TPS35AA38AGADDFRQ1?qs=1Kr7Jg1SGW%252BZ5Ss3cDWR9A%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/TMP100NA-3K?qs=RnzODY3cU8ttwUxnXA%252BgRQ%3D%3D
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 LP38693MP  Low Dropout Regulator 

for Setup 

1.37 Link 

 MIC29302AWD 1 SoM Power Supply 2.33 Link 

 INA219BIDR 1 I2C SoM Power Monitor 1.79 Link 

 TCA9535PWR 1 I2C GPIO Extender 1.12 Link 

  

https://www.mouser.fr/ProductDetail/Texas-Instruments/LP38693MP-3.3-NOPB?qs=1FNqv8aZn1SaB2T45Qa8CA%3D%3D
https://www.mouser.fr/ProductDetail/Microchip-Technology/MIC29302AWD?qs=kh6iOki%2FeLHCfDEMcJUwRg%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/INA219BIDR?qs=1WmUhT%2FVMINyGsXNJcdD5Q%3D%3D
https://www.mouser.fr/ProductDetail/Texas-Instruments/TCA9535PWR?qs=AgKnS2cdFrcE0lUzhMSKXw%3D%3D
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Appendix B – Monitoring Board Schematic 
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Appendix C – Monitoring Board PCB Design by layers 

  
Figure 70. Layer 1 – Front signal plane 

 

 

Figure 71. Layer 2 - Power plane. 
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Figure 72. Layer 3 - Ground plane. 

     
Figure 73. Layer 4 - Back signal plane.  
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Appendix D – Code used to test I2C Communication 

1. #include <Wire.h> 

 2.   

 3. void setup() { 

 4.   Wire.begin(); 

 5.   

 6.   Serial.begin(9600); 

 7.   while (!Serial); // Leonardo: wait for serial monitor 

 8.   Serial.println("\nI2C Scanner"); 

 9. } 

10.   

11. void loop() { 

12.   int nDevices = 0; 

13.   

14.   Serial.println("Scanning..."); 

15.   

16.   for (byte address = 1; address < 127; ++address) { 

17.     // The i2c_scanner uses the return value of 

18.     // the Write.endTransmisstion to see if 

19.     // a device did acknowledge to the address. 

20.     Wire.beginTransmission(address); 

21.     byte error = Wire.endTransmission(); 

22.   

23.     if (error == 0) { 

24.       Serial.print("I2C device found at address 0x"); 

25.       if (address < 16) { 

26.         Serial.print("0"); 

27.       } 

28.       Serial.print(address, HEX); 

29.       Serial.println("  !"); 

30.   

31.       ++nDevices; 

32.     } else if (error == 4) { 

33.       Serial.print("Unknown error at address 0x"); 

34.       if (address < 16) { 

35.         Serial.print("0"); 

36.       } 

37.       Serial.println(address, HEX); 

38.     } 

39.   } 

40.   if (nDevices == 0) { 

41.     Serial.println("No I2C devices found\n"); 

42.   } else { 

43.     Serial.println("done\n"); 

44.   } 

45.   delay(5000); // Wait 5 seconds for next scan 

46. } 
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Appendix E – VHDL Code and State Machines 

The following Appendix gives more details on the implementation of each individual 

VHDL block, including it’s block diagram, ports description, signals, procedures, state 

machines, and instantiations. 

 

UART 

 
Figure 74. UART block diagram. 

Ports 

Port name Direction Type Description 

rstn_i in std_logic  

clk_i in std_logic  

baud_div_i in std_logic_vector(15 downto 0)  

parity_i in std_logic  

rtscts_i in std_logic  

tready_o out std_logic  

tstart_i in std_logic  

tdata_i in std_logic_vector(7 downto 0)  

tdone_o out std_logic  

rready_i in std_logic  

rdone_o out std_logic  

rdata_o out std_logic_vector(7 downto 0)  

rerr_o out std_logic  

uart_rx_i in std_logic  

uart_tx_o out std_logic  

uart_cts_i in std_logic  

uart_rts_o out std_logic  

Table 8. UART port description. 
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Signals 

Name Type Description 

baud_div_max_w std_logic_vector(15 downto 0)  

baud_div_mid_w std_logic_vector(15 downto 0)  

tx_curr_r std_logic_vector(2 downto 0)  

tx_next_w std_logic_vector(2 downto 0)  

tcounter_r std_logic_vector(2 downto 0)  

tbaud_r std_logic_vector(15 downto 0)  

tmax_w std_logic  

rx_curr_r std_logic_vector(2 downto 0)  

rx_next_w std_logic_vector(2 downto 0)  

ctl_rbaud_clr_w std_logic  

ctl_rbaud_cnt_w std_logic  

ctl_rbit_clr_w std_logic  

ctl_rbit_cnt_w std_logic  

ctl_reg_rdata_w std_logic  

ctl_reg_rparity_w std_logic  

rdata_r std_logic_vector(8 downto 0)  

rbaud_r std_logic_vector(15 downto 0)  

rbaud_max_w std_logic  

rbaud_mid_w std_logic  

rcounter_r std_logic_vector(2 downto 0)  

rbit_max_w std_logic  

Table 9. UART signals. 

 

Constants 

Name Type Value Description 

TX_IDLE std_logic_vector(2 downto 0) "000"  

TX_WAIT_CTS std_logic_vector(2 downto 0) "001"  

TX_START std_logic_vector(2 downto 0) "010"  

TX_DATA std_logic_vector(2 downto 0) "011"  
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Name Type Value Description 

TX_PARITY std_logic_vector(2 downto 0) "100"  

TX_STOP std_logic_vector(2 downto 0) "101"  

RX_IDLE std_logic_vector(2 downto 0) "000"  

RX_START std_logic_vector(2 downto 0) "001"  

RX_DATA std_logic_vector(2 downto 0) "010"  

RX_PARITY std_logic_vector(2 downto 0) "011"  

RX_STOP std_logic_vector(2 downto 0) "100"   
Table 10. UART constants. 

 

 

Processes 

• p_TX_FSM: ( clk_i, rstn_i ) 

• p_TX_NEXT: ( all ) 

• p_TX_COUNTERS: ( clk_i, rstn_i ) 

• p_RX_FSM: ( clk_i, rstn_i ) 

• p_RX_NEXT: ( all ) 

• p_RX_COUNTERS: ( clk_i, rstn_i ) 

• p_RX_DATA: ( clk_i, rstn_i ) 
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State machines 

 
Figure 75. UART Transmit FSM. 
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Figure 76. UART Receive FSM. 
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Redirect buffer 

 
Generics 

Generic name Type Value Description 

T2H_FIFO_SIZE integer 64  

H2T_FIFO_SIZE integer 64  

Table 11. Redirect Buffer generics. 

 

Ports 

Port name Direction Type Description 

clk_i in std_logic  

rstn_i in std_logic  

host_baud_rate_i in std_logic_vector(15 downto 0)  

sut_baud_rate_i in std_logic_vector(15 downto 0)  

timestamp_i in std_logic_vector(31 downto 0)  

tx_host_o out std_logic  

rx_host_i in std_logic  

rx_sut_i in std_logic  

tx_sut_o out std_logic  

Table 12. Redirect Buffer ports description. 

Signals 

Name Type Description 

t2h_uart_rdone_w std_logic  

t2h_uart_rdata_w std_logic_vector(7 downto 0)  

t2h_fifo_valid_w std_logic  

t2h_tready_w std_logic  

t2h_fifo_tdata_r std_logic_vector(7 downto 0)  

h2t_uart_rdone_w std_logic  

h2t_uart_rdata_w std_logic_vector(7 downto 0)  

h2t_fifo_valid_w std_logic  

                    
                    

              
               

                                             
                                            
                                        

                  
                 

                  
                 



Single Event Effects Instrumentation for System-on-Module Testing 

 

59 

 

Name Type Description 

h2t_tready_w std_logic  

h2t_fifo_tdata_r std_logic_vector(7 downto 0)  

Table 13. Redirect Buffer signals. 

Instantiations 

• uart_transceivers_u: work.uart 

• uart_host_u: work.uart 

 

Current Report 

 
Figure 77. Current Report block diagram. 

Generics 

Generic name Type Value Description 

REPORT_FIFO_SIZE integer 64  

Table 14. Current Report generics. 

Ports 

Port name Direction Type Description 

clk_i in std_logic  

rstn_i in std_logic  

baud_rate_i in std_logic_vector(15 downto 0)  

sample_rate_i in std_logic_vector(15 downto 0)  

curr_th_i in std_logic_vector(15 downto 0)  

rx_host_i in std_logic  

tx_host_o out std_logic  

timestamp_i in std_logic_vector(31 downto 0)  

ina_wen_i in std_logic  

curr_rdata_i in std_logic_vector(15 downto 0)  

gpio_i2c_wr_i in std_logic  

gpio_i2c_rd_i in std_logic  
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Port name Direction Type Description 

gpio_i2c_wdata_i in std_logic_vector(15 downto 0)  

gpio_i2c_rdata_i in std_logic_vector(15 downto 0)  

overcurrent_o out std_logic  

Table 15. Current Report ports description. 

Signals 

Name Type Description 

current_timestamp_w std_logic_vector(31 downto 0)  

current_w std_logic_vector(15 downto 0)  

log_overcurrent_w std_logic  

gpio_wtimestamp_w std_logic_vector(31 downto 0)  

gpio_wdata_w std_logic_vector(15 downto 0)  

gpio_rtimestamp_w std_logic_vector(31 downto 0)  

gpio_rdata_w std_logic_vector(15 downto 0)  

log_gpio_w std_logic  

sample_counter_r std_logic_vector(31 downto 0)  

sample_max_w std_logic  

fifo_write_w std_logic  

fifo_wdata_w 
std_logic_vector(REPORT_SIZE-1 

downto 0) 
 

fifo_full_w std_logic  

fifo_empty_w std_logic  

fifo_valid_w std_logic  

fifo_read_w std_logic  

fifo_rdata_w 
std_logic_vector(REPORT_SIZE-1 

downto 0) 
 

Table 16. Current Report signals. 

Constants 

Name Type Value Description 

REPORT_SIZE integer 144  

Table 17. Current Report constants. 
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Processes 

• sample_rate_p: ( rstn_i, clk_i ) 

Instantiations 

• fifo_u: work.fifo 

Overcurrent handler 

 
Figure 78. Overcurrent Handler block diagram. 

Ports 

Port name Direction Type Description 

rstn_i in std_logic  

clk_i in std_logic  

on_time_i in std_logic_vector(15 downto 0)  

off_time_i in std_logic_vector(15 downto 0)  

overcurrent_i in std_logic  

gpio_wdata_i in std_logic_vector(15 downto 0)  

gpio_wdata_o out std_logic_vector(15 downto 0)  

Table 18. Overcurrent Handler ports description. 

Signals 

Name Type Description 

state_r std_logic_vector(1 downto 0)  

next_w std_logic_vector(1 downto 0)  

counter_r std_logic_vector(31 downto 0)  

on_time_done_w std_logic  

off_time_done_w std_logic  

sut_force_off_w std_logic  

Table 19. Overcurrent Handler signals. 

Constants 

Name Type Value 
Descriptio

n 

IDLE 
std_logic_vector(1 

downto 0) 
"00"  

SUT_ON 
std_logic_vector(1 

downto 0) 
"01"  
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SUT_OFF 
std_logic_vector(1 

downto 0) 
"10"  

MASK_GPIO_WDATA_SOM_O

FF 

std_logic_vector(1

5 downto 0) 

x"FFDD

" 
 

Table 20. Overcurrent Handler constants. 
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Processes 

• state_p: ( rstn_i, clk_i ) 

• next_p: ( all ) 

• counter_p: ( rstn_i, clk_i ) 

 

State machines 

 
Figure 79. Overcurrent Handler FSM. 

Command Interface 

 
Figure 80. Command Interface block diagram. 

Ports 

Port name Direction Type Description 

rstn_i in std_logic  

clk_i in std_logic  

rx_i in std_logic  

tx_o out std_logic  

wr_en_o out std_logic  

rd_en_o out std_logic  

addr_o out std_logic_vector(15 downto 0)  

wdata_o out std_logic_vector(15 downto 0)  
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Port name Direction Type Description 

rdata_i in std_logic_vector(15 downto 0)  

Table 21. Command Interface ports description. 

Signals 

Name Type Description 

state_r std_logic_vector(4 downto 0)  

next_w std_logic_vector(4 downto 0)  

uart_rdone_w std_logic  

uart_rdata_w std_logic_vector(7 downto 0)  

uart_tstart_w std_logic  

uart_tdata_w std_logic_vector(7 downto 0)  

uart_tdone_w std_logic  

en_waddr_w std_logic_vector(3 downto 0)  

en_wdata_w std_logic_vector(3 downto 0)  

en_wreg_w std_logic  

en_raddr_w std_logic_vector(3 downto 0)  

en_rdata_w std_logic_vector(3 downto 0)  

en_rreg_w std_logic  

addr_r std_logic_vector(15 downto 0)  

data_r std_logic_vector(15 downto 0)  

converted_rdata_w std_logic_vector (3 downto 0)  

selected_wdata_w std_logic_vector(3 downto 0)  

utf8_tdata_w std_logic_vector(7 downto 0)  

write_lf_w std_logic  

reg_data_w std_logic_vector(15 downto 0)  

Table 22. Command Interface signals. 

Constants 

Name Type Value Description 

IDLE std_logic_vector (4 downto 0) "00000"  

WRITE_LF std_logic_vector (4 downto 0) "00001"  

WADDR3 std_logic_vector (4 downto 0) "00010"  
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WADDR2 std_logic_vector (4 downto 0) "00011"  

WADDR1 std_logic_vector (4 downto 0) "00100"  

WADDR0 std_logic_vector (4 downto 0) "00101"  

WDATA3 std_logic_vector (4 downto 0) "00110"  

WDATA2 std_logic_vector (4 downto 0) "00111"  

WDATA1 std_logic_vector (4 downto 0) "01000"  

WDATA0 std_logic_vector (4 downto 0) "01001"  

REG_WRITE std_logic_vector (4 downto 0) "01010"  

RADDR3 std_logic_vector (4 downto 0) "01011"  

RADDR2 std_logic_vector (4 downto 0) "01100"  

RADDR1 std_logic_vector (4 downto 0) "01101"  

RADDR0 std_logic_vector (4 downto 0) "01110"  

REG_READ std_logic_vector (4 downto 0) "01111"  

RDATA3 std_logic_vector (4 downto 0) "10000"  

RDATA2 std_logic_vector (4 downto 0) "10001"  

RDATA1 std_logic_vector (4 downto 0) "10010"  

RDATA0 std_logic_vector (4 downto 0) "10011"  

Table 23. Command Interface constants. 

Processes 

• current_state_p: ( clk_i, rstn_i ) 

• next_state_p: ( all ) 

• get_address_p: ( clk_i ) 

• get_data_p: ( clk_i ) 

 

Instantiations  

• utf8_hex_u: work.utf8_hex 

• hex_utf8_u: work.hex_utf8 

• uart_u_1: work.uart 
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State machines 

 
Figure 81. Command Interface FSM. 
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Registers 

 
Figure 82. Registers block diagram. 

Generics 

Generic name Type Value Description 

VERSION std_logic_vector(15 downto 0)   

Figure 83. Registers generics. 

Ports 

Port name Direction Type Description 

rstn_i in std_logic  

clk_i in std_logic  

wr_en_i in std_logic  

rd_en_i in std_logic  

addr_i in 
std_logic_vector(15 

downto 0) 
 

wdata_i in 
std_logic_vector(15 

downto 0) 
 

rdata_o out 
std_logic_vector(15 

downto 0) 
 

system_i2c_div_o out 
std_logic_vector(15 

downto 0) 
 

system_baud_rate_o out 
std_logic_vector(15 

downto 0) 
 

sut_baud_rate_0_o out 
std_logic_vector(15 

downto 0) 
 

sut_baud_rate_1_o out 
std_logic_vector(15 

downto 0) 
 

current_sample_rate_o out 
std_logic_vector(15 

downto 0) 
 

current_threshold_o out 
std_logic_vector(15 

downto 0) 
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Port name Direction Type Description 

overcurrent_on_time_o out 
std_logic_vector(15 

downto 0) 
 

overcurrent_off_time_o out 
std_logic_vector(15 

downto 0) 
 

timestamp_i in 
std_logic_vector(31 

downto 0) 
 

gpio_trist_o out 
std_logic_vector(15 

downto 0) 
 

gpio_wdata_o out 
std_logic_vector(15 

downto 0) 
 

temp_wen_i in std_logic  

temp_i in 
std_logic_vector(15 

downto 0) 
 

gpio_wen_i in std_logic  

gpio_i in 
std_logic_vector(15 

downto 0) 
 

ina_wen_i in std_logic  

volts_i in 
std_logic_vector(15 

downto 0) 
 

currt_i in 
std_logic_vector(15 

downto 0) 
 

power_i in 
std_logic_vector(15 

downto 0) 
 

Figure 84. Registers ports description. 

Signals 

Name Type Description 

version_w std_logic_vector(15 downto 0)  

board_name_r std_logic_vector(15 downto 0)  

system_i2c_div_r std_logic_vector(15 downto 0)  

system_baud_rate_r std_logic_vector(15 downto 0)  

sut_baud_rate_0_r std_logic_vector(15 downto 0)  

sut_baud_rate_1_r std_logic_vector(15 downto 0)  

current_sample_rate_r std_logic_vector(15 downto 0)  
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Name Type Description 

current_threshold_r std_logic_vector(15 downto 0)  

overcurrent_on_time_r std_logic_vector(15 downto 0)  

overcurrent_off_time_r std_logic_vector(15 downto 0)  

gpio_tri_st_r std_logic_vector(15 downto 0)  

gpio_read_r std_logic_vector(15 downto 0)  

gpio_write_r std_logic_vector(15 downto 0)  

temperature_r std_logic_vector(15 downto 0)  

current_r std_logic_vector(15 downto 0)  

voltage_r std_logic_vector(15 downto 0)  

power_r std_logic_vector(15 downto 0)  

Figure 85. Registers signals. 

Constants 

Name Type Value 
Descripti

on 

ADDR_VERSION 
std_logic_vector 

(15 downto 0) 

x"0000

" 
 

ADDR_BOARD_NAME 
std_logic_vector 

(15 downto 0) 

x"0001

" 
 

ADDR_SYSTEM_I2C_DIV 
std_logic_vector 

(15 downto 0) 

x"0002

" 
 

ADDR_SYSTEM_UART_BAUD_RA

TE 

std_logic_vector 

(15 downto 0) 

x"0003

" 
 

ADDR_SUT_UART_BAUD_RATE0 
std_logic_vector 

(15 downto 0) 

x"0004

" 
 

ADDR_SUT_UART_BAUD_RATE1 
std_logic_vector 

(15 downto 0) 

x"0005

" 
 

ADDR_CURRENT_SAMPLERATE 
std_logic_vector 

(15 downto 0) 

x"0006

" 
 

ADDR_CURRENT_THRESHOLD 
std_logic_vector 

(15 downto 0) 

x"0007

" 
 

ADDR_OVERCURRENT_ON_TIM

E 

std_logic_vector 

(15 downto 0) 

x"0008

" 
 

ADDR_OVERCURRENT_OFF_TIM

E 

std_logic_vector 

(15 downto 0) 

x"0009

" 
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Name Type Value 
Descripti

on 

ADDR_TIMESTAMP_H 
std_logic_vector 

(15 downto 0) 

x"0100

" 
 

ADDR_TIMESTAMP_L 
std_logic_vector 

(15 downto 0) 
x"0101"  

ADDR_GPIO_TRI_ST 
std_logic_vector 

(15 downto 0) 

x"0200

" 
 

ADDR_GPIO_READ 
std_logic_vector 

(15 downto 0) 

x"0201

" 
 

ADDR_GPIO_WRITE 
std_logic_vector 

(15 downto 0) 

x"0202

" 
 

ADDR_VOLTAGE 
std_logic_vector 

(15 downto 0) 

x"0203

" 
 

ADDR_CURRENT 
std_logic_vector 

(15 downto 0) 

x"0204

" 
 

ADDR_POWER 
std_logic_vector 

(15 downto 0) 

x"0205

" 
 

ADDR_TEMPERATURE 
std_logic_vector 

(15 downto 0) 

x"0206

" 
 

DEFAULT_BOARD_NAME 
std_logic_vector

(15 downto 0) 

x"CAF

E" 
 

DEFAULT_SYSTEM_I2C_DIV 
std_logic_vector

(15 downto 0) 

x"01F4

" 
 

DEFAULT_SYSTEM_BAUDRATE 
std_logic_vector

(15 downto 0) 

x"01b2

" 
 

DEFAULT_SUT_UART_BAUDRAT

E 

std_logic_vector

(15 downto 0) 

x"01b2

" 
 

DEFAULT_CURRENT_SAMPLERA

TE 

std_logic_vector

(15 downto 0) 

x"017d

" 
 

DEFAULT_CURRENT_THRESHOL

D 

std_logic_vector

(15 downto 0) 

x"7FFF

" 
 

DEFAULT_OVERCURRENT_ON_T

IME 

std_logic_vector

(15 downto 0) 

x"0026

" 
 

DEFAULT_OVERCURRENT_OFF_

TIME 

std_logic_vector

(15 downto 0) 

x"0099

" 
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Name Type Value 
Descripti

on 

DEFAULT_GPIO_TRISTATE 
std_logic_vector

(15 downto 0) 

x"FFFF

" 
 

DEFAULT_GPIO_WRITE 
std_logic_vector

(15 downto 0) 
  

Figure 86. Registers constants. 

Processes 

• register_defaults_p: ( clk_i, rstn_i ) 

• register_gpio_data_p: ( clk_i, rstn_i ) 

• register_temperature_data_p: ( clk_i, rstn_i ) 

• register_ina_data_p: ( clk_i, rstn_i ) 
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FIFO 

 
Figure 87. FIFO block diagram. 

Generics 

Generic name Type Value Description 

FIFO_SIZE integer   

DATA_WIDTH integer   

Table 24. FIFO generics. 

Ports 

Port name Direction Type Description 

write_i in std_logic  

data_i in 
std_logic_vector(DATA_WIDTH-1 

downto 0) 
 

read_i in std_logic  

clk_i in std_logic  

rstn_i in std_logic  

full_o out std_logic  

empty_o out std_logic  

valid_o out std_logic  

rem_size_o out std_logic_vector(31 downto 0)  

data_o out 
std_logic_vector(DATA_WIDTH-1 

downto 0) 
 

Table 25. FIFO ports descriptions. 

Signals 

Name Type Description 

fifo_r fifo_t(FIFO_SIZE-1 downto 0)  

first_addr_r integer range 0 to FIFO_SIZE-1  

insert_addr_r integer range 0 to FIFO_SIZE-1  

size_r integer range 0 to FIFO_SIZE  

next_first_addr_w integer range 0 to FIFO_SIZE-1  

next_insert_addr_w integer range 0 to FIFO_SIZE-1  
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Name Type Description 

full_w std_logic  

empty_w std_logic  

Table 26. FIFO signals. 

Types 

Name Type Description 

fifo_t 
array(natural range <>) of 

std_logic_vector(DATA_WIDTH-1 downto 0) 
 

Table 27. FIFO Types. 

Processes 

• p_MAIN: ( clk_i, rstn_i ) 

 

Hex to UTF-8 

 
Figure 88. Hex to UTF-8 block diagram. 

Ports 

Port name Direction Type Description 

utf_data_i in std_logic_vector(7 downto 0)  

data_o out std_logic_vector(3 downto 0)  

Table 28. Hex to UTF-8 ports descriptions. 

UTF-8 to Hex 

 
Figure 89. UTF-8 to Hex block diagram. 

Ports 

Port name Direction Type Description 

data_i in std_logic_vector(3 downto 0)  

utf_data_o out std_logic_vector(7 downto 0)  

Table 29. UTF-8 to Hex ports description. 
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I2C 

 
Figure 90. I2C block diagram. 

Ports 

Port name Direction Type Description 

rstn_i in std_logic  

clk_i in std_logic  

baud_div_i in std_logic_vector(15 downto 0)  

write_i in std_logic  

read_i in std_logic  

ackn_o out std_logic  

done_o out std_logic  

busy_o out std_logic  

addr_i in std_logic_vector(6 downto 0)  

wdata_i in std_logic_vector(7 downto 0)  

rdata_o out std_logic_vector(7 downto 0)  

i2c_sda_i in std_logic  

i2c_sda_o out std_logic  

i2c_sdat_o out std_logic  

i2c_scl_o out std_logic  

Table 30. I2C ports descriptions. 

Signals 

Name Type Description 

state_r std_logic_vector(3 downto 0)  

next_w std_logic_vector(3 downto 0)  

sda_in_w std_logic  

baud_count_w std_logic  

bit_count_w std_logic  

get_ack_w std_logic  
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Name Type Description 

get_data_w std_logic  

baud_counter_r std_logic_vector(15 downto 0)  

baud_counter_max_w std_logic  

baud_counter_mid_w std_logic  

baud_counter_first_half_w std_logic  

baud_counter_second_half_w std_logic  

baud_counter_mid_quarter_w std_logic  

scl_stop_w std_logic  

bit_counter_r std_logic_vector(2 downto 0)  

bit_counter_zero_w std_logic  

addr_data_w std_logic_vector(7 downto 0)  

ackn_r std_logic  

rdata_r std_logic_vector(7 downto 0)  

conf_baud_count_max_w std_logic_vector(15 downto 0)  

conf_mid_baud_div_w std_logic_vector(15 downto 0)  

conf_quarter_baud_div_w std_logic_vector(15 downto 0)  

conf_threequarter_baud_div_w std_logic_vector(15 downto 0)  

Table 31. I2C signals. 

Constants 

Name Type Value Description 

IDLE std_logic_vector(3 downto 0) x"0"  

I2C_START std_logic_vector(3 downto 0) x"1"  

I2C_ADDR std_logic_vector(3 downto 0) x"2"  

I2C_AACK std_logic_vector(3 downto 0) x"3"  

I2C_WDATA std_logic_vector(3 downto 0) x"4"  

WDONE std_logic_vector(3 downto 0) x"5"  

I2C_WACK std_logic_vector(3 downto 0) x"6"  

I2C_RDATA std_logic_vector(3 downto 0) x"7"  

RDONE std_logic_vector(3 downto 0) x"8"  
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Name Type Value Description 

I2C_RACK std_logic_vector(3 downto 0) x"9"  

I2C_STOP std_logic_vector(3 downto 0) x"A"  

I2C_WAIT std_logic_vector(3 downto 0) x"B"  

I2C_ACKN std_logic_vector(3 downto 0) x"F"  

Table 32. I2C constants. 

Processes 

• current_p: ( clk_i, rstn_i ) 

• next_p: ( state_r, write_i, read_i, baud_counter_max_w, 

bit_counter_zero_w, ackn_r ) 

• baud_counter_p: ( clk_i, rstn_i ) 

• baud_p: ( clk_i ) 

• rdata_p: ( clk_i ) 

 

State machines 
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Figure 91. I2C FSM. 
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I2C GPIO 

 
Figure 92. I2C GPIO block diagram. 

Ports 

Port name Direction Type Description 

clk_i in std_logic  

rstn_i in std_logic  

gpio_setup_en_i in std_logic  

gpio_read_en_i in std_logic  

gpio_write_en_i in std_logic  

gpio_trist_i in std_logic_vector(15 downto 0)  

gpio_data_i in std_logic_vector(15 downto 0)  

gpio_done_o out std_logic  

gpio_wreg_o out std_logic  

gpio_data_o out std_logic_vector(15 downto 0)  

i2c_done_i in std_logic  

i2c_busy_i in std_logic  

i2c_write_o out std_logic  

i2c_read_o out std_logic  

i2c_rdata_i in std_logic_vector(7 downto 0)  

i2c_wdata_o out std_logic_vector(7 downto 0)  

Table 33. I2C GPIO ports descriptions. 

Signals 

Name Type Description 

state_r std_logic_vector(4 downto 0)  

next_w std_logic_vector(4 downto 0)  

gpio_read_r std_logic_vector(15 downto 0)  

Table 34. I2c GPIO signals. 

 

 

              
               
                        
                       
                        

                                         
                                        

                   
                   

                                       

                    
                    
                                        
                    
                   
                                       



Single Event Effects Instrumentation for System-on-Module Testing 

 

79 

 

Constants 

Name Type Value Description 

IDLE 
std_logic_vector(4 downto 

0) 
"00000"  

CFG_WRITE_PTR1 
std_logic_vector(4 downto 

0) 
"00001"  

CFG_WRITE_BYTE1 
std_logic_vector(4 downto 

0) 
"00010"  

CFG_WAIT1 
std_logic_vector(4 downto 

0) 
"00011"  

CFG_WRITE_PTR2 
std_logic_vector(4 downto 

0) 
"00100"  

CFG_WRITE_BYTE2 
std_logic_vector(4 downto 

0) 
"00101"  

GPIO_WRITE_PTR1 
std_logic_vector(4 downto 

0) 
"00110"  

GPIO_WRITE_BYTE1 
std_logic_vector(4 downto 

0) 
"00111"  

GPIO_WRITE_WAIT 
std_logic_vector(4 downto 

0) 
"01000"  

GPIO_WRITE_BYTE2 
std_logic_vector(4 downto 

0) 
"01010"  

GPIO_READ_PTR1 
std_logic_vector(4 downto 

0) 
"01011"  

GPIO_READ_BYTE1 
std_logic_vector(4 downto 

0) 
"01100"  

GPIO_READ_WAIT 
std_logic_vector(4 downto 

0) 
"01101"  

GPIO_READ_PTR2 
std_logic_vector(4 downto 

0) 
"01110"  

GPIO_READ_BYTE2 
std_logic_vector(4 downto 

0) 
"01111"  

GPIO_REG_WRITE 
std_logic_vector(4 downto 

0) 
"10000"  

BUSY 
std_logic_vector(4 downto 

0) 
"10001"  
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Name Type Value Description 

DONE 
std_logic_vector(4 downto 

0) 
"10010"  

Table 35. I2C GPIO constants. 

Processes 

• current_state_p: ( clk_i, rstn_i ) 

• next_state_p: ( all ) 

• register_gpio_data_p: ( clk_i, rstn_i ) 
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State machines 

 
Figure 93. I2C GPIO FSM. 
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I2C INA Current Monitor 

 
Figure 94. I2C INA block diagram. 

Ports 

Port name Direction Type Description 

clk_i in std_logic  

rstn_i in std_logic  

read_curr_en_i in std_logic  

write_setup_en_i in std_logic  

ina_done_o out std_logic  

volt_data_o out std_logic_vector(15 downto 0)  

curr_data_o out std_logic_vector(15 downto 0)  

powr_data_o out std_logic_vector(15 downto 0)  

ina_wreg_o out std_logic  

i2c_done_i in std_logic  

i2c_busy_i in std_logic  

i2c_write_o out std_logic  

i2c_read_o out std_logic  

i2c_rdata_i in std_logic_vector(7 downto 0)  

i2c_wdata_o out std_logic_vector(7 downto 0)  

Table 36. I2C INA ports descriptions. 

Signals 

Name Type Description 

state_r std_logic_vector(4 downto 0)  

next_w std_logic_vector(4 downto 0)  

voltage_r std_logic_vector(15 downto 0)  

current_r std_logic_vector(15 downto 0)  

power_r std_logic_vector(15 downto 0)  

Table 37. I2C INA signals. 
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Constants 

Name Type Value Description 

IDLE 
std_logic_vector(4 

downto 0) 
"00000"  

CFG_WRITE_PTR 
std_logic_vector(4 

downto 0) 
"00001"  

CFG_WRITE_MSB 
std_logic_vector(4 

downto 0) 
"00010"  

CFG_WRITE_WAIT1 
std_logic_vector(4 

downto 0) 
"00011"  

CFG_WRITE_LSB 
std_logic_vector(4 

downto 0) 
"00100"  

CFG_WRITE_WAIT2 
std_logic_vector(4 

downto 0) 
"00101"  

CALIBR_WRITE_PTR 
std_logic_vector(4 

downto 0) 
"00110"  

CALIBR_WRITE_MSB 
std_logic_vector(4 

downto 0) 
"00111"  

CALIBR_WRITE_WAIT1 
std_logic_vector(4 

downto 0) 
"01000"  

CALIBR_WRITE_LSB 
std_logic_vector(4 

downto 0) 
"01001"  

VOLT_WRITE_PTR 
std_logic_vector(4 

downto 0) 
"01010"  

VOLT_READ_MSB 
std_logic_vector(4 

downto 0) 
"01011"  

VOLT_WAIT1 
std_logic_vector(4 

downto 0) 
"01100"  

VOLT_READ_LSB 
std_logic_vector(4 

downto 0) 
"01101"  

VOLT_WAIT2 
std_logic_vector(4 

downto 0) 
"01110"  

CURR_WRITE_PTR 
std_logic_vector(4 

downto 0) 
"01111"  

CURR_READ_MSB 
std_logic_vector(4 

downto 0) 
"10000"  
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Name Type Value Description 

CURR_WAIT1 
std_logic_vector(4 

downto 0) 
"10001"  

CURR_READ_LSB 
std_logic_vector(4 

downto 0) 
"10010"  

CURR_WAIT2 
std_logic_vector(4 

downto 0) 
"10011"  

POWR_WRITE_PTR 
std_logic_vector(4 

downto 0) 
"10100"  

POWR_READ_MSB 
std_logic_vector(4 

downto 0) 
"10101"  

POWR_WAIT1 
std_logic_vector(4 

downto 0) 
"10110"  

POWR_READ_LSB 
std_logic_vector(4 

downto 0) 
"10111"  

BUSY 
std_logic_vector(4 

downto 0) 
"11000"  

DONE 
std_logic_vector(4 

downto 0) 
"11001"  

INA_REG_WRITE 
std_logic_vector(4 

downto 0) 
"11010"  

Table 38. I2C INA constants. 

Processes 

• current_state_p: ( clk_i, rstn_i ) 

• next_state_p: ( all ) 

• register_data_p: ( clk_i, rstn_i ) 

 

Configuration Register Value 

39F9 

Calibration Register Value  

5000  
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State machines 

 
Table 39. I2C INA FSM. 
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I2C TMP100 

 
Figure 95. I2C TMP100 block diagram. 

Ports 

Port name Direction Type Description 

clk_i in std_logic  

rstn_i in std_logic  

read_temp_en_i in std_logic  

write_setup_en_i in std_logic  

done_o out std_logic  

temperature_o out std_logic_vector(15 downto 0)  

i2c_done_i in std_logic  

i2c_busy_i in std_logic  

i2c_write_o out std_logic  

i2c_read_o out std_logic  

i2c_rdata_i in std_logic_vector(7 downto 0)  

i2c_wdata_o out std_logic_vector(7 downto 0)  

Figure 96. I2C TMP100 ports descriptions. 

Signals 

Name Type Description 

state_r std_logic_vector(3 downto 0)  

next_w std_logic_vector(3 downto 0)  

temperature_r std_logic_vector(15 downto 0)  

Figure 97. I2C TMP100 signals. 

Constants 

Name Type Value Description 

IDLE std_logic_vector(3 downto 0) x"0"  

CFG_WRITE_PTR std_logic_vector(3 downto 0) x"1"  

CFG_WRITE std_logic_vector(3 downto 0) x"2"  
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Name Type Value Description 

TMP_WRITE_PTR std_logic_vector(3 downto 0) x"3"  

TMP_WAIT std_logic_vector(3 downto 0) x"5"  

TMP_READ_BYTE1 std_logic_vector(3 downto 0) x"6"  

TMP_READ_BYTE2 std_logic_vector(3 downto 0) x"7"  

BUSY std_logic_vector(3 downto 0) x"8"  

DONE std_logic_vector(3 downto 0) x"9"  

Figure 98. I2C TMP100 constants. 

Processes 

• current_p: ( clk_i, rstn_i ) 

• next_p: ( all ) 

• register_temp_data_p: ( clk_i, rstn_i ) 

 
Registers 

- Configuration Register  
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State machines 

 
Figure 99. I2C TMP100 FSM. 

 

I2C Controller 

 
Figure 100. I2C Controller block diagram. 
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Ports 

Port name Direction Type Description 

clk_i in std_logic  

rstn_i in std_logic  

i2c_baud_div_i in std_logic_vector(15 downto 0)  

i2c_sda_io inout std_logic  

i2c_scl_o out std_logic  

temp_wen_o out std_logic  

temp_o out std_logic_vector(15 downto 0)  

gpio_wen_o out std_logic  

gpio_rdata_o out std_logic_vector(15 downto 0)  

gpio_trist_i in std_logic_vector(15 downto 0)  

gpio_wdata_i in std_logic_vector(15 downto 0)  

ina_wen_o out std_logic  

ina_volts_o out std_logic_vector(15 downto 0)  

ina_currt_o out std_logic_vector(15 downto 0)  

ina_power_o out std_logic_vector(15 downto 0)  

gpio_i2c_wr_o out std_logic  

gpio_i2c_rd_o out std_logic  

Figure 101. I2C Controller ports descriptions. 

Signals 

Name Type Description 

state_r std_logic_vector(3 downto 0)  

next_w std_logic_vector(3 downto 0)  

temp_done_w std_logic  

temp_en_w std_logic  

temp_setup_w std_logic  

i2c_tmp100_write_w std_logic  

i2c_tmp100_read_w std_logic  

i2c_tmp100_done_w std_logic  

i2c_tmp100_busy_w std_logic  
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Name Type Description 

i2c_tmp100_wdata_w std_logic_vector(7 downto 0)  

i2c_tmp100_rdata_w std_logic_vector(7 downto 0)  

gpio_done_w std_logic  

gpio_wen_w std_logic  

gpio_ren_w std_logic  

gpio_setup_w std_logic  

i2c_gpio_write_w std_logic  

i2c_gpio_read_w std_logic  

i2c_gpio_done_w std_logic  

i2c_gpio_busy_w std_logic  

i2c_gpio_wdata_w std_logic_vector(7 downto 0)  

i2c_gpio_rdata_w std_logic_vector(7 downto 0)  

ina_done_w std_logic  

ina_en_w std_logic  

ina_setup_w std_logic  

i2c_ina_done_w std_logic  

i2c_ina_busy_w std_logic  

i2c_ina_write_w std_logic  

i2c_ina_read_w std_logic  

i2c_ina_rdata_w std_logic_vector(7 downto 0)  

i2c_ina_wdata_w std_logic_vector(7 downto 0)  

i2c_sda_o_w std_logic  

i2c_sdat_w std_logic  

i2c_write_w std_logic  

i2c_read_w std_logic  

i2c_done_w std_logic  

i2c_busy_w std_logic  

i2c_ackn_w std_logic  

i2c_addr_w std_logic_vector(6 downto 0)  
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Name Type Description 

i2c_wdata_w std_logic_vector(7 downto 0)  

i2c_rdata_w std_logic_vector(7 downto 0)  

Table 40. I2C Controller signals. 

Constants 

Name Type Value Description 

IDLE std_logic_vector(3 downto 0) x"0"  

CFG_TEMP std_logic_vector(3 downto 0) x"1"  

READ_TEMP std_logic_vector(3 downto 0) x"2"  

CFG_GPIO std_logic_vector(3 downto 0) x"3"  

WRITE_GPIO std_logic_vector(3 downto 0) x"4"  

READ_GPIO std_logic_vector(3 downto 0) x"5"  

CFG_INA std_logic_vector(3 downto 0) x"6"  

READ_INA std_logic_vector(3 downto 0) x"7"  

Table 41. I2C Controller constants. 

Processes 

• current_p: ( clk_i, rstn_i ) 

• next_p: ( all ) 
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Instantiations 

• i2c_u: work.i2c 

• i2c_tmp100_u: work.i2c_tmp100 

• i2c_gpio_u: work.i2c_gpio 

• i2c_ina_u: work.i2c_ina 

State machines 

 
Figure 102. I2C Controller FSM. 
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Timestamp 

 
Figure 103. Timestamp block diagram. 

 

Ports 

Port name Direction Type Description 

clk_i in std_logic  

rstn_i in std_logic  

timestamp_ms_o out std_logic_vector(31 downto 0)  

Figure 104. Timestamp ports descriptions. 

Signals 

Name Type Description 

tick_r std_logic_vector(15 downto 0)  

milisecond_r std_logic_vector(31 downto 0)  

Figure 105. Timestamp signals. 

Constants 

Name Type Value Description 

CLK_FREQUENCY integer 50000000  

TICK_COUNTER std_logic_vector(15 downto 0) x"C34F"  

Figure 106. Timestamp constants. 

Processes 

• count_up_p: ( clk_i, rstn_i ) 

              
               

                                           


