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Thesis organization 

The present thesis consists of 6 chapters. Chapter 1 is an introduction to the research topic and 

the importance and motivation for the work. Chapter 2 introduces the host organization’s work, 

principles, and contributions to the field. Chapter 3, titled RTL-GDSII Implementation, briefly 

introduces post-RTL steps to tapeout. Chapter 4 describes cloud computing, models, and load 

management systems for EDA on the cloud. Chapter 5 outlines the working procedures, 

experiment constraints, tools, and software limitations during the internship. Chapter 6 is 

comprised of results and a discussion of the characterizations and data evaluation. In chapter 7, 

the major findings of this thesis are highlighted, along with potential directions for future 

research. 
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Abstract 

EDA workloads on both cloud and on-premises require an understanding of the jobs on the host 
for the best turnaround time and cost efficiency. A lot of EDA jobs are launched with over 
demanded compute resources than necessary. They often fail if launched with resources less than 
what is required, thus increasing turnaround time. It is important to have prior knowledge of 
resource requirements according to design size and workload nature. This work explores 
synthesis, floorplan, clock tree synthesis, placement, and routing jobs for a small and bigger Arm 
CPU core design on compute clusters within the Arm’s existing flow. The jobs dependency in 
terms of runtime and maximum memory utilization on multi-core jobs are investigated on 
different AMD and Intel machines on AWS cloud servers. It is found that a small design size does 
not benefit from parallelism. On the other hand, a bigger design has significantly reduced runtime 
for the implementation jobs when launched with multi-threaded CPUs. This work provides Arm 
with a method to extract information on EDA jobs with their flow and a schema that can be used 
for machine learning models to predict and build optimum job configuration.   
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Chapter 1 

1.1 Introduction 

The semiconductor industry has impacted all modern technologies directly or indirectly. 
The modern era is the era of computing and data. And that is possible due to the growth 
of computing chips. Today’s chips contain billions of transistors, with continuous 
increase in number. As with the growth, the complexity of designing and manufacturing 
chips also increased.  The chip design process is usually a sequence of standard steps of 
various simulations and analyses before moving into the fabrication or manufacturing 
stage. A digital chip design methodology can be divided into two steps: pre-RTL 
(Register Transfer Level) and implementation. Pre-RTL flow consists of several steps, 
from idea realization to functional implementation, using different design strategies. 
Considering the major steps, the implementation stage follows synthesis, physical 
implementation, timing, power analysis, and signoffs before converting the design to a 
layout or GDSII (Graphics Design System) file, which goes to foundries for chip 
fabrication. These steps require a lot of time, and repetitive performance, efficiency, and 
functionality testing is needed. A lot of computational, timing, and financial efforts are 
put into the implementation steps for productions [1] [2].  

For a design with millions of gates, the testing, verification, and implementations can’t 
be done manually; therefore, there is a need for EDA (Electronic Design Automation) 
tools. EDA tools automate these tasks and perform computations needed to generate 
desired data for the subsequent steps. Every design company uses these tools to 
automate their jobs for design productions. The computational tasks of these EDA tools 
require computing resources that don’t come with a single hardware. So, the jobs are 
usually deployed on cloud or in-house compute farms [3]. For optimum and efficient 
production, it is imperative to understand the behavior of these jobs in compute clusters 
by characterizing EDA tools on these compute platforms. This will effectively reduce 
turnaround time to production and meet the market schedule [4] [5]. This motivates 
Arm, the world's leading processor IP (Intellectual Property) provider, to conduct the 
research through this master thesis project, “Physical Implementation Workload 
Efficiency Improvement.” In this thesis work, I try to present the collection and 
evaluation of data of jobs launched for implementation flow steps with Arm internal 
flow.   

 

1.2 Objective of the research 

The objective of the research is to characterize different EDA tool jobs in terms of 
turnaround time and CPU time on computing machines with varying properties like the 
number of CPUs, memory, and machine type within Arm infrastructure. The data 
collected during this work will provide insights into the EDA tool's jobs deployment and 
performance and outline the best practices for production. The absolute data and the 
specific parameter information are all Arm internal and confidential. So, this 
publication will not publish the features of the EDA tools, host machine types, design 
information, and comparisons.  
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2 Chapter 2 

2.1 Host organization: Arm 

Arm is a leading semiconductor design and software manufacturing company. It 
pioneered high efficiency, low power, low-cost CPU, GPU, and NPU designs and 
technologies used by other semiconductor companies and original equipment 
manufacturers. Arm offers a wide range of processors to address the performance, 
power, and cost demands in mobile, IoT, laptop, and automotive markets. Arm was 
officially founded as a company in November 1990 as Advanced RISC Machines Ltd, as 
a joint venture between Acorn Computers, Apple Computer (now Apple Inc.), and VLSI 
Technology (now NXP Semiconductors N.V). Arm moved from single-product design to 
IP business in 1993 and continues to follow the same business model.  

In the mobile phone era, Arm showed its true capabilities and potential, empowering 
more than 99% of smartphones today. More than 70% of the world's population uses 
Arm-based products. Around 280 billion Arm-based chips have been shipped to date, 
and 50% of all chips with processors use Arm products. With this massive success and 
contribution, Arm has expanded to meet the demands of the computing market. Its 
global headquarters are located in Cambridge, and 43 offices are spread across 21 
countries in Asia, Europe, and the US. Arm is an international corporation, employing 
over 7,000 people worldwide, roughly 3,000 of whom work in the UK [6]. 

Arm, Sophia site is in the Sophia Antipolis Business Park in the South of France. It is a 
bilingual office of people from different nationalities and backgrounds. It is part of the 
worldwide collaboration network of Arm, consisting of more than 500 employees. The 
two main departments that operate at the Sophia site are CPU design and Physical IP 
design. Many teams are involved in various activities on-site or collaboratively with 
others internationally [7].  

This thesis project's work was conducted under the Methodology and support team 
within Design Enablement. The Design Enablement team consists of more than 60 
people from France, India, and the USA who work on various projects.  

 
 
 
 
 
 
 
 



 
 Physical Implementation Workload Efficiency Improvement 

3 

 

3 Chapter 3 

3.1 RTL to GDSII Implementation 

RTL-GDSII implementation refers to transforming a design (front-end) into 
manufacturable geometries in GDS formats. It starts with RTL design, and the resulting 
outcomes are polygon representations used for the fabrication stage. The GDS file is 
generated after certain consecutive stages of refinement, domain transformation, and 
optimizations. And they are done using a variety of EDA tools. RTL to GDSII 
implementation involves synthesis, floorplan, placement, clock tree synthesis, routing, 
signoff, and analysis before tape out for manufacture. Figure 3-1, shows the top level of 

RTL to GDS implementation flow. From floorplan to routing stages is called physical 
implementation.  

3.1.1 Logic synthesis 

Logic synthesis plays a pivotal role in the semiconductor design flow. It is the first step 
in the RTL to GDS flow, where an RTL (Register Transfer Level) model is converted to 
its gate-level netlist mapped to a specific technology. This process is crucial as it derives 
the complex layout level of a design, which is abstracted by the behavioral and 
architectural layers. The functionality of a chip is described by HDL (Hardware 
Description Language) languages like Verilog or VHDL, and all the constructs in HDL 

Figure 3-1:RTL to GDSII implementation workflow. 
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are synthesizable. RTL refers to codes that can be synthesized. A synthesis tool, 
functioning like a compiler, maps HDL constructs onto the library of gates called 
standard cells. In general, a logic synthesis tool takes design (RTL), library, and 
constraints files to generate a netlist file, which can be a layout, schematic, or text file 
describing the connectivity of the gates. In Figure 3-2, the general input and output files 
for logic synthesis are shown. The input RTL and the output netlists are expected to be 
functionally the same. However, a synthesis tool can generate a netlist that functionally 
differs from the original RTL input. After synthesis, a logic equivalence check (RTL vs 
netlist) is done to determine the functional discrepancies. 

 

 

 

 

 

 

 

 

 

 

 

 

Logic synthesis automates and simplifies complex design. It can manage design details, 
bugs, and optimizations, thus improving productivity that would be impossible for 
manual design of complex circuits [1] [8]. 

The output netlist generation follows certain steps. These synthesis flow steps or tasks 
are RTL code parsing, elaboration, optimization, and translation to technology-
dependent standard cells, primitive gates, registers, memory units, and FSMs, as shown 
in Figure 3-3. 

Mapped Netlist (text, 
layout/schematic) 

Logic synthesis 

Library 
(Liberty) 

RTL (Verilog or 
VHDL) 

(.v file) 

Constraints 
(SDC) 

(Area, Power, 
Timing, DFT) 

Figure 3-2:Logic synthesis inputs and outputs. 
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3.1.2 Test Insertion 

In VLSI design, Design for Testability (DFT) techniques are used to improve the circuit's 
testability after logic synthesis. These are some external circuitries added into the 
functional design so that the chip can be tested for faults or defects after fabrication. 
This additional hardware reduces or at least helps find the faults after production. The 
key test insertions that are performed: 

Scan Insertion: It is the simplest type of DFT used in IC testing. They are Flip-Flops 
(FFs), which are linked in a single or many chains to load and unload test stimuli and 
responses. The timing of the MUX introduced by scan insertion at each FF must be 
considered while functional optimizations on the design are being performed. 

Test Points Insertion: Test points are introduced to improve a design's fault coverage or 
increase the number of test patterns generated by automatic test pattern generation 
(ATPG) for the same fault coverage. It is better practice to insert this during synthesis. 

BIST insertion: Built in self-tests are embedded input test pattern generator and output 
analyzers. This makes testing more accessible, and the IC can test itself without external 
hardware. 

Tech. dependent
optimized netlist

Logic optimized
netlist

Elaborated generic
netlist

Parsed Syntax
Tree

RTL

Figure 3-3: General Logic synthesis steps. 
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Boundary Scan: This technique involves adding additional logic to the I/O pins of a 
device, allowing the testing of interconnects between devices on a board without 
requiring physical access to the board’s traces. 

Memory BIST (MBIST): This is a specialized version of BIST used to test embedded 
memory elements in a design. 

Automatic Test Pattern Generation (ATPG): ATPG tools automatically generate test 
vectors that can detect or classify manufacturing faults. 

These techniques help ensure that the manufactured chips are defects-free, improving 
yield and reliability [9]. 

3.1.3 Floorplan 

Floorplan is the very first step in physical design. The layout of the design is defined in 
this step. The design's physical size and aspect ratio are defined and go into the tool as 
inputs. It creates boundaries like core area, die area, blockages, place pins, I/O pads, 
insertion of power grids, and hard macros. The tool creates rows and columns according 
to standard cells' and other blocks' area, speed, and design constraints. A good floorplan 
ensures the best performance, power consumption, and area usage. These metrics are 
optimized in every stage of physical design iteratively. Still, a good initial state 
established with a good floorplan can reduce the iteration and provide top-level timing 
closure, as it depends on how cells and blocks are placed next. But there is no best floor 
plan for a design. Usually, the one that meets the design requirement is followed, while 
there is always room for improvement. The outcome of the floorplan works as the 
physical constraint of the subsequent steps. Depending on design size and complexity, 
Floorplan iterations can take days to weeks. Although this step can be expensive in terms 
of time and money, it’s crucial in physical design. 

The main input files are usually synthesized netlist (.v file), physical libraries for 
standard cells (.lef files), design constraints file (.sdc file), timing libraries (.lib file), 
MMMC view file. After floor planning, the descriptions and information on the 
placement of standard cells, macros, I/O pads, and power grids are written in a design 
exchange format (.def) file used in the placement stage. Area optimization is done after 
floorplan to get the optimized area constraint [1] [9]. 

3.1.4 Placement 

Placement is the step when standard cells and various modules are physically placed 
within the chip die area. During floorplan, big macros and block positions are defined, 
whereas, during placement, millions of standard cells are defined on the layout. The 
connections between cells and blocks are also calculated. During placement, the wiring 
is not done, estimates of wire length are created, and placement is done to meet the 
timing constraints. Optimizations are performed to minimize the total estimated wire 
length. Congestion problems are also handled by moving out cells from high-congestion 
regions during this stage. 

A placer tool also checks and fixes position legalization, alignment, and gap filling 
between cells for compaction. Power and thermal optimizations are also performed to 
improve energy efficiency and avoid hotspots.  
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3.1.5 Clock Tree Synthesis 

In VLSI design, clock tree synthesis is one of the critical steps in the physical design 
flow. This creates a topology that connects the clock from the clock port to the clock pin 
of sequential cells in the design. The primary goals of CTS are to balance the skew and 
minimize the insertion latency. Skew is defined as the difference in the arrival times of 
the clock signal to reach any pair of registers. It is either local, between registers with a 
valid timing path, or global, between any pair of registers regardless of a valid timing 
path. Balancing of skew is vital for satisfying all design constraints. On the other hand, 
insertion latency refers to the time delay that the clock takes to travel from the clock 
port to the clock pin of a sequential element. The delay is brought about by the parasitic 
capacitance and resistance of the nets. 

To balance these delays, clock inverters and clock buffers are used to create the clock 
tree. There are several structures to build a clock tree to achieve a minimum insertion 
delay as well as to balance the skew. Some are the H-Tree structure, X-Tree structure, 
Geometric Matching Algorithm (GMA), Pi Tree structure, and Fish bone. Adding 
inverters and clock buffers in the clock signal path introduces additional delay of their 
own. But for the delay and clock time balance, they are very useful. Another benefit of 
these elements in the clock signal path is that they can be used to strengthen the signal, 
which is degraded due to inevitable parasitics.  

CTS aims to find the right balance, ensuring minimal skew and insertion delay while 
maintaining signal integrity. This complex optimization problem is a critical aspect of 
VLSI design [10]. 

3.1.6 Routing 

Routing is the process of establishing connections between different standard cells, the 
macros, and the pins, utilizing connecting wires to achieve the required design layout. 
After CTS and optimizations, the routing tool establishes pathways between cells, 
buffers, blockages, and I/O pins with metal and vias. The physical connectivity is 
determined by the logical information provided in the netlist. A router tool’s primary 
job is to route the data signals. Power lines and clock signal paths are usually routed 
during the creation of the power delivery network and clock tree synthesis, respectively. 
As there are many components in a digital chip, routing requires a lot of computational 
time and power. Routing must respect timing, design rules like LVS and DRC, and 
congestion constraints while performing physical connections. This is why routing is 
one of the most complicated steps in digital design.   

Routing is usually divided into two tasks – global routing and detailed routing. Global 
routing assigns tracks for nets while minimizing global cell congestion and diversions. 
Detail routing lays the actual layout of nets. It uses the regions provided by global 
routing. Detail routing tries to make sure there are no DRC violations and improves 
signal integrity. After routing, signal integrity optimizations and insertion of filler cells 
and metal fills are performed. 

3.1.7 Signoff 

Signoff refers to the methods of verifying design rules of foundry, manufacturability, 
and original functionality in the netlist. The verification techniques are both logical and 
physical. It is only a reporting stage. The changes in the layout or design are not made 
during the signoff. However, this signoff reports the violations that need to be fixed in 
the implementation stage of the flow. Signoff can be done on the front end of the design, 
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which is on RTL. Logic Equivalence Checks (LEC), usually done after synthesis, is a 
front-end check. Backend checks a list of checks done post layout. After the layout is 
finished, the circuit and parasitics are extracted from the layout. The backend checks 
are performed after the extraction stage. Major signoff checks are static timing analysis 
(STA) for timing constraints between data and clock signals in synchronous circuits, 
layout versus schematic (LVS) check for comparing circuit extracted netlists from layout 
and logical source netlist to check functionality of the final layout, electrical rule check 
(ERC) for reporting faulty connections in the layout, design rule checks (DRC) to check 
if foundry provided rules are respected and the design is manufacturable. These rules 
can vary according to technology and foundry [1] [11]. 
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4 Chapter 4 

4.1 Cloud computing and Job management 

Cloud computing refers to the technology where computing services and resources like 
data storage, network, CPUs, and memories are hosted and used by end users without 
owning and maintaining any physical computing systems. The physical computing 
systems are provided and maintained by cloud service providers. Customers can request 
and use the required resources from the pool of near-infinite technology servers.  

As the complexity of computing, like scientific simulations, data analytics, graphics 
processing, etc., increased over time, the need for a powerful computer for heavy tasks 
also increased. However, using a heavy single computing system is expensive and often 
unsuitable as different tasks require different systems. Parallelizing multiple CPUs to 
work together on resource-hungry tasks solves the problem but still lacks flexibility, and 
often, users are bound to use one vendor-specific system. Cloud computing solves the 
problem by providing various computing nodes to multiple customers through time-
sharing. It is a distributed computing service model, enabling multiple customers to get 
access to systems as per their demands and budgets. Figure 4-1 shows a general cloud 
computing model that can provide many services to any end-user over the Internet.  

Cloud servers, often called data centers, are physical servers consisting of many 
computers connected to work together over a very high-speed network. There can be 
applications servers, storage facilities, and a specific software platform for clients from 
anywhere. 

Figure 4-1:Cloud computing structure with various services and 
applications [13] 
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4.2 Job management 

A job within the context of cloud computing refers to the execution of computing tasks. 
It can be a simple command or a heavy application. Before a compute node is used for 
job execution, a job scheduling software works as an intermediary in between the user 
and the compute node. This software is often called a Job scheduler. This software works 
as a central managing hub for organizing, communicating, and distributing jobs on the 
compute hosts. It is designed to suit an organization’s needs and can be customized as 
per needs. This software can monitor jobs and report resource usage and failures. The 
automation of job executions, prioritization of jobs, and automatic recovery in terms of 
failure make management of a large number of submitted jobs easier.  

LSF (Load Sharing Facility) from IBM is a job scheduling and resource management 
utility that provides a system that can take user job requests, find suitable compute 
resources for execution and monitor job progress. Figure 4-2 shows how LSF handles 
job requests.  

A cluster is a group of computers (hosts) that work together. Each computer in a cluster 
is connected to each other with high-speed network and each host runs its own instance 
of operating system. One of the hosts from the cluster works as a master host. A master 
host does not execute any submitted job. It handles scheduling and dispatching of jobs.  

The master host is always in constant communication with compute hosts for job 
deployments and monitoring the progress of jobs. There are some candidate hosts listed 
for the backup service of the master host in case the current master host faces failure or 
shuts down. 

When jobs are submitted, they go to the queue first. It works like a container for all jobs. 
All the jobs in the queue are in wait states. LSF checks resource demand and availability 
for submitted jobs while the jobs are in the queue. When LSF finds the suitable compute 
host available, it deploys the job on the compute host, and the job is executed. The 
dispatch of jobs is ordered according to job priority. LSF has different methods of 
controlling job priorities. They can be automatic job priority escalation, user-defined, 
and absolute priority scheduling (APS). These methods allow administrators to 

Figure 4-2: Overview of Load Sharing Facility (LSF) framework [14]. 
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customize priority management according to needs by allowing them to define job 
priority value according to job-related factors. 



Physical Implementation Workload Efficiency Improvement 

 12 

 

5 Chapter 5 

5.1 Methodology 

For the characterization of the implementation workloads, three design test cases were 
chosen. The test cases are for Arm CPU cores. Two of the three test cases, are from same 
CPU design family and type, only differing in technology nodes (3nm and 5nm designs). 
For discretionary reason, the specific design names, information, host information, and 
the comparison of EDA tool performance metrics shall be avoided in this report. 

The design testcases will be labelled as Design 1 (3nm), Design 1 (5nm), Design 2 (3nm). 
The type-number refers to the type of CPU core. Design 1 is smaller than Design 2, 
considering the number of gates and instances. The tests were done on both Intel and 
AMD machines. The host type will be labeled as Host1 and Host2 without specifying the 
type from the two in Chapter 6. Hyperthreaded processors were chosen for all the jobs. 

The implementation workload refers to synthesis and placement and route (PnR) flow 
steps. For synthesis and PnR steps, Cadence tool genus and innovus were used, 
respectively. For Static Timing Analysis (STA), tempus from Cadene was used. As the 
flow supports different EDA tools integration, Synopsys tools – Formality, Fusion 
compiler, Primetime, RTL Architect, StarRC, and Tweaker can also be used. However, 
within the scope of the thesis, these tools were not covered. Benchmarks of the tools can 
be a point of interest in the future.  

ARM internal implementation flow was used to deploy the implementation tasks. The 
steps were defined by the flow and were kept unchanged for different tests. A design 
flow is comprised of scripts used to chain different EDA tools for well-defined, flawless 
implementation tasks. The flow is designed according to design objectives and can vary 
from design to design, as well as EDA tools features and versions. During the experiment 
of each implementation step, all runs were made under the same conditions and with 
the same version of the flow. It’s always better to collect data with repeated 
measurements. However, within the limited duration of the thesis, only a single run was 
performed for each implementation job. 

The schema was built considering multiple factors that can impact the runtime. Tool 
version, technology, scenario for the test run, host type, AWS instance size and type, 
host CPU frequency, cache memory, and operating system information were collected 
to understand the compute time dependency on the host specification and tool features. 
All jobs were run with on-demand pricing. The performance metrics, CPU time, average 
and maximum memory usage, maximum swap availability, runtime, and turnaround 
time were collected from the LSF log. In Chapter 6, we present runtime and memory 
dependency on varying numbers of CPUs on hosts booked for each implementation 
step.  
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6 Chapter 6 

6.1 Results and Analysis 

Synthesis:  

Synthesis was performed both using the superflow (lsynth, logical synthesis) and sub 
flow steps – generic synthesis (syn_gen), mapping (syn_map), and optimizations 
(syn_opt). The runtime and maximum memory usage by the Cadence genus tool for the 
sample designs are shown in Figure 6-1. 

For both technologies and hosts, logical synthesis takes around 35 minutes and 50 
minutes, respectively, for Design1. It is evident that, for smaller designs like Design1, 
the tool is not benefitting from multi-core runs. Multithreaded runs are efficient and 
automatically enabled according to task load. For smaller designs like Design1, it is 
better not to launch synthesis with multi-CPU to reduce the compute cost. The 
maximum memory usage is also almost constant for different CPU runs. For 3nm and 
5nm nodes, 50 GB and 60 GB can be demanded as safer limits, respectively, for logical 
synthesis. On the other hand, Design2 is found to leverage the benefits of multi-CPU 
core runs. We see the reduced runtime as the number of CPU cores increases by up to 
20. Then, the runtime becomes constant as we go beyond 16 cores. The memory usage 
also increases with increasing cpu. Host1 always outperforms Host2 for the bigger core 
design, giving a maximum of 18% performance boost for 16 core and 8 core runs. But 
the absolute run time is smaller in 16 core run configuration. So, for design cores 
comparable 

Figure 6-1:Resource usage of logical synthesis superflow step. 
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to Design2 can use 16 cores and around 300 GB of memory safe limit with host type 
Host1 for optimum performance for logical synthesis tasks. For 4 cores and 28 cores 

runs, around 5 GB of extra memory is consumed by Host2 and Host1, respectively. It is 
speculated to be statistical and can be verified by repeated measurements. During the 
tests, only single-run data was collected. The first step of synthesis is generic synthesis. 
The runtime and memory usage for generic synthesis are shown in Figure 6-2. 

The syn_gen step takes up around 62% of the logical synthesis step’s runtime. For this 
substep, the trend is similar to that of lsynth. The runtime is almost constant, around 
25 minutes. For increasing the number of CPUs above 16 cores, both Host1 and Host2 
take more time to finish the job. For Design2, syn_gen utilizes a multi-core setup and 
provides reduced time. The efficiency improvement is saturated at 16 core runs. Host1 
is almost 18% faster than Host2 in this case. Memory usage linearly increases with CPU 
cores and similar, around 250 GB for both Host1 and Host2. The optimum configuration 
can be 16 cores of Host1 CPU with a 250 GB of memory limit.  

In Figure 6-3, similar metrics for technology mapping of synthesis are shown. For 
mapping, a similar trend of lsynth and syn_map is found. There is no improvement in 
increasing the CPU for Design1. For 3nm and 5nm nodes, syn_map takes around 12 
minutes and 15 minutes, respectively. The max memory usage is around 15 GB for both 
nodes. For more heavier computation in the case of Design2, 20 cores run has the 
minimum runtime for both Host1 and Host2. Host1 is again faster than Host2 by 10%, 
16%, and 23% for 16 cores, 20 cores, and 24 cores run, respectively. The maximum 
memory usage increases with increasing CPU, with a maximum of nearly 380 GB for 48 
core runs. The runtimes for 16 and 20 cores runs are 4.92 and 4.55 hours, respectively, 
for Host1. Although 20 core run is only around 22 minutes faster than 16 core run, the 
pricing for increased resources needs to be checked as equivalent to reduced runtime 

Figure 6-2: Generic synthesis (syn_gen). 



 
 Physical Implementation Workload Efficiency Improvement 

15 

 

for 16 core run test. It is not significant in this test, but it should be considered for 
production runs on bigger scale.  

 

In Figure 6-4, results of post mapping optimizations are shown.  

Figure 6-4: syn_opt runtime and resource utilization. 

Figure 6-3: Technology mapping (syn_map). 
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For 3nm and 5nm test cases, runtimes are 11 minutes and 17 minutes, respectively. 
Maximum memory demand should not be more than 15 GB. Host2 is faster in this case, 
but only by a minute or less, and does not show a significant difference. The 
optimization step is faster on Host1 for Design2. The task leverages the multi-core CPUs, 
and the minimum point is for 16 core runs with 160 GB of memory utilization.  

Floorplan: 

In Figure 6-5, the runtime of floorplan (fplan) step for Host1 and Host2 is presented. 
The runtime for Design1 slightly improved, this time for multithreaded runs. For both  

 

 

 

 

 

 

 

 

 

 

 

 

3nm and 5nm, the minimum runtime is achieved for 8 cores run with 10 GB of memory 
usage on Host2. In the case of Design2, Host1 is faster in all runs and runtime reduction 
saturates beyond 16 core test case. Memory usage is almost constant, around 55 GB. 

 

 

 

 

 

Figure 6-5: Floorplan runtime and resource utilization. 
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Prects: Prects is a placement and optimization step. It runs a check-design command 
to check if there are any major problems in the design prior to running placement. Then, 
it runs placement on the design, followed by optimizations. It is a long task and depends 
on the size of the design. Figure 6-6, shows prects runtime and resource utilization. For  

 
Figure 6-6: Pre clock tree synthesis step (prects). 
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Design1 at 3nm nodes. Host1 and Host2 provide similar performance, and there is not 
any significant change after 8 cores run. Memory usage increases with the number of 
cores booked for the job except for the case of 20, 40, and 48 cores test run on Host1. 
More tests need to be done to verify if this is a statistical variation or host specific reason. 
For Design1(5nm), the fastest configuration for the job is 8 cores, 20 GB on Host1. For 
Design2(3nm), 32 cores with 200 GB of reserved memory would be the fastest option 
on Host1 with 19 hours of runtime. 

CTS: During the CTS step, actual clock tree synthesis takes place. Figure 6-7, shows the  

Figure 6-7: Clock Tree synthesis (CTS). 
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metrics for CTS. For Design1 (3nm), 8 cores run is the optimum choice. The 5nm design 
takes more time for CTS. As they are not exactly the same, the technology dependency 
on turnaround time can’t be established. The minimum runtime is achieved with 16 
cores run with 20 GB of memory utilization. For Design2, on Host1, the minimum 
compute time is achieved with 32 cores run, being 19 hours, whereas, on Host2, the 
minimum compute time is 22 hours with 48 cores. For 32 and 40 cores run on Host2, 
the runtime is out of the general trend. As both jobs were run on the same host instance 
of the same number of CPUs, memory, and specifications, it is speculated to be due to 
some random events that caused the delay or multiple different jobs on the same host. 
Further test runs will be required to establish the correct cause. 

Postcts: During postcts, place and area optimizations and design checks are 
performed. The results of the test runs are shown in Figure 6-8. Postcts for Design1 (3n) 
is the fastest 

on Host1 with 8 cores and 15 GB configuration, whereas Design1(5nm) is fastest on 
Host1 with 16 cores and 20 GB of memory specification. The step is fastest on Host1 
with 32 cores and 140 GB of memory for Design2. Host2 takes the same time for 48 
cores run. 24 cores run is only 1h slower than 32 cores run for an overall 8 cores 
difference. So, the cost of a bigger CPU or a longer time for a cheaper host CPU can be 
considered according to budget and schedule. 

Figure 6-8: Postcts step. 
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Route: Routing run data for test designs are presented in Figure 6-9. For 
Design1(3nm), routing does not take much advantage of multi cores run. 8 cores, 20GB  

of memory on Host1 is the optimum configuration. For Design1(5nm), Host2 is faster 
than Host1 by around 10 minutes in most of the test runs. Memory usage is almost the 
same for all the tests and linearly increases with higher CPU demand. The optimum is 
8 cores and 15 GB of memory on Host2. For Design2, the fastest run was around 37 
hours for 32 cores run on Host1. For Host2, the run time keeps getting faster as the 
number of demanded CPUs increases, the lowest being 46 hours for 48 cores run. The 
memory utilization is same for both hosts. For routing, Host1 of 32 cores and 250 GB of 
memory is the optimum host. 

Figure 6-9: Routing. 
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Postroute: The minimum for postroute runtime is for 8 cores run with 30 GB memory  

for both Design1(3nm) and Design1(5nm), as shown in Figure 6-10. For Design2(3nm), 
on both hosts, the job gets faster as the number of cores is increased, with runtime being 
23.5 hours for 32 cores on Host1 and 29 hours for 24 cores run test. Memory usage 
increases to a maximum of 330 GB as the multi-core utilization increases. 

Figure 6-10: Postroute. 
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STA: Static Timing Analysis (STA) was run only on the smaller designs Design1(3nm) 
and Design1(5nm) as shown in Figure 6-11.STA for Design2(3nm) was not within the 
scope of this internship.  

STA on Design1(3nm) is very short and finishes within maximum of 4~6 minutes. STA 
on Design1(5nm), on the other hand, takes more than an hour for 2 cores to run and 
goes down to 12 minutes for 48 cores. A better understanding of the STA load on hosts 
can be understood when running jobs for bigger designs. Memory utilizations are the 
same for both hosts in this case.  

Finally, we propose that with a design of size comparable to Design2(3nm), 16 cores 
Host1 CPUs with memory of not more than 300 GB should be chosen for logical 
synthesis superflow step and sub-steps (syn_gen, syn_map, syn_opt). For the floorplan 
stage, 16 cores Host1 CPUs with 60 GB memory give the best TAT. For all the subsequent 
steps, prects, cts, and postcts, 32 cores Host1 CPUs can be the fastest compute hardware. 
The memory demand should be higher, more than 250 GB and 330 GB for route and 
postroute, respectively. For other steps, 200 GB can be a safe limit. For both 
Design1(3nm) and Design2(5nm), parallel computing is not rewarding for synthesis 
(both superflow step and sub flow steps) and floorplan. As a very small design core, it 
does not represent longer and more complex computations. In this case, 8 or 16 cores 
with a maximum 80 GB memory capacity should be well suited for physical 
implementation jobs.  

Figure 6-11: Static Timing Analysis. 
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7 Chapter 7 

7.1  Conclusion and Future Work 

This thesis work was conducted to understand load implementation loads on cloud and 
on-premises hosts so that jobs can be better and more efficiently deployed in the future. 
For most implementation jobs, Host1 is found to be faster than Host2 for both synthesis 
and physical implementation workloads. It is found that multi-threaded runs are 
leveraged by the tool only for bigger designs with a high (million or more) number of 
gates.  

The data harvested for the thesis research will provide insight into EDA loads on clouds 
and optimizations of the jobs for ARM. The efficiency heavily depends on software, i.e., 
EDA tools and host specifications. So, the results can be used for future reference for 
EDA vendor support. In the future, these metrics can be used to build an optimization 
and prediction model for EDA workloads on the cloud. This work has helped Arm to 
define optimum runs for the cases under study (small/big design tests) for 3nm and 
5nm technology nodes. It has also helped to define a data model that can be used for 
systemic data collection for use with Machine Learning models on top of it in the future 
and automatically build optimum testcase for any design /technology. 
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