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Abstract

Oxygen consumption ( _VO2) is an important measure for exercise test, such as walking and

running, that can be measured outdoors using portable spirometers or metabolic analyzers.

However, these devices are not feasible for regular use by consumers as they intervene

with the user’s physical integrity, and are expensive and difficult to operate. To circumvent

these drawbacks, indirect estimation of _VO2 using neural networks combined with motion

features and heart rate measurements collected with consumer-grade sensors has been

shown to yield reasonably accurate _VO2 for intra-subject estimation. However, estimating

_VO2 with neural networks trained with data from other individuals than the user, known as

inter-subject estimation, remains an open problem. In this paper, five types of neural net-

work architectures were tested in various configurations for inter-subject _VO2 estimation. To

analyse predictive performance, data from 16 participants walking and running at speeds

between 1.0 m/s and 3.3 m/s were used. The most promising approach was Xception net-

work, which yielded average estimation errors as low as 2.43 ml×min−1×kg−1, suggesting

that it could be used by athletes and running enthusiasts for monitoring their oxygen con-

sumption over time to detect changes in their movement economy.

Introduction

Oxygen consumption ( _VO2), also known as oxygen uptake, is frequently used to measure

walking and running economy since the exchange of oxygen and carbon dioxide is highly cor-

related to energy metabolism. By monitoring _VO2 over time, changes in movement economy

due to training, rehabilitation, etc. can be detected. For unconstrained walking or running, in

outdoor environments rather than on treadmills, _VO2 can be measured directly by metabolic

analyzers or portable spirometers, but these devices are inconvenient to use regularly, often

require trained personnel for operation, and are expensive.
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Therefore, research on indirect estimation of _VO2 from observations of surrogate features

has received a lot of attention over the last two decades. Indirect estimation has benefitted

from recent advances in machine learning techniques and development of consumer-grade,

small, wearable sensors. The most common approach for _VO2 estimation is based on Heart

Rate (HR) measurements [1]. For example, several commercial products, such as the Suunto

personal HR monitoring system, use HR data for estimating _VO2 and energy expenditure [2].

Because HR is affected by age, sex, fitness level, exercise modality, environmental conditions,

and day-to-day variability [3], HR index (HRI) is frequently used instead of HR [1, 4]. HRI is

obtained by dividing the HR measurement by an individual’s resting HR, which has the poten-

tial to remove the need for individual calibration [4]. In [2] additional features such as R-

wave-to-R-wave (R-R) heartbeat intervals, R-R-based respiration rate, and on-and-off _VO2

dynamics at various exercise conditions were used for _VO2 estimation. However, authors of

the study acknowledged the limitations in the estimation accuracy when including individual

maximal _VO2 and HR values. Several studies have used linear regression models to estimate

_VO2 [1–4], which worked well for moderate intensity exercises. However, for very low and

very high intensity exercises the relationship between _VO2 and HR is significantly nonlinear,

resulting in poor _VO2 estimates.

Other factors that can affect the relationship between _VO2 and HR include altitude, exercise

duration, hydration status, medication, state of training, and time of day [2 from pavel]. To

account for these factors, in cycling breathing frequency, mechanical power, and pedaling

cadence, which can be measured directly from cycling ergometers, can be included for _VO2

estimation [5–7]. For walking or running in unconstrained outdoor environments, breathing

frequency, cadence, speed, and speed variation calculated by wearable devices can be used as

input features [3].

In [8] we computed motion features, namely step-wise average speed, peak-to-peak speed

difference, step duration, and peak-to-peak difference in vertical movement from measure-

ments of an inertial navigation system combined with a Global Positioning System (INS/GPS)

device. The wearable INS/GPS device measured acceleration, velocity, angular velocity and

orientation of the upper body (for details the reader is referred to [3]. The four motion features

were used together with HR as input features for estimation of _VO2 during walking and run-

ning by a long short-term memory (LSTM) neural network. The results suggest that LSTM

neural networks are able to accurately estimate oxygen consumption; the achieved accuracy

was 2.49 ml×min−1×kg−1 (95% limits of agreement). For comparison, in [9] _VO2 during walk-

ing and other daily activities were estimated by random forest regression using breathing fre-

quency, HR, hip acceleration, minute ventilation, and walking cadence; the achieved accuracy

was 6.17 ml×min−1×kg−1 (95% limits of agreement).

One limitation of the study in [8] was that data for training the LSTM neural networks and

for evaluating its performance came from the same individual (intra-subject estimation). How-

ever, estimating oxygen consumption for an individual by a model trained with data from the

same individual is time-consuming and not always feasible. Ideally, the model would already

be trained beforehand, using training data from other individuals, and used immediately for

_VO2 estimation. This is referred to as inter-subject estimation. Furthermore, in [8] only light

and moderate intensity exercises were covered.

Therefore, in this paper a wide selection of neural network models are studied for estimat-

ing inter-subject oxygen consumption across a range of walking and running speeds (1.0 m/s

to 3.3 m/s) on a level outdoor track based on measurements of motion features and heart rate.

The contributions of our paper are three-fold. First, we demonstrate that by using an early exit
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strategy and optimizing hyperparameters the accuracy of the LSTM model from [8] can be sig-

nificantly improved (average estimation error was reduced by approximately 82%). Second,

we show that with more sophisticated neural network structures _VO2 estimates for inter-

subject estimations can be obtained that are more accurate than the intra-subject estimations

yielded by the LSTM model from [8]. Finally, a more detailed correlation analysis between the

neural networks’ input features (motion and HR data) and output feature ( _VO2) than in [8] is

provided, which yields insights into why neural networks are able to yield accurate _VO2

estimates.

Materials and methods

Experimental data

Sixteen healthy participants between 18 and 35 years of age (age 27.5 ± 3.5 yrs, height

175.3 ± 8.4 cm, body mass 71.8 ± 12.9 kg, body mass index 23.3 ± 3.4 kg/m2, eight females)

participated in the field tests on a level outdoor track. Ten of the participants were recreational

runners, meaning that they ran at least twice per week during summer and performed other

endurance sports during winter. Their statistics were: age 28.1 ± 3.7 yrs, height 177.6 ± 6.4 cm,

body mass 70.8 ± 11.4 kg, body mass index 22.3 ± 2.7 kg/m2, five females. For the remaining

six participants age 26.5 ± 3.1 yrs, height 171.5 ± 10.59 cm, body mass 73.3 ± 16.1 kg, body

mass index 24.8 ± 4.2 kg/m2, three females. These participants ran at most twice per month.

The Ethics Committee of the University of Jyväskylä approved the study. Participants were

recruited between 5 May 2018 and 31 July 2018. All participants were informed about the con-

tent and purpose of the testing procedure, and provided written informed consent, witnessed

by one researcher. The research was conducted in accordance with the World Medical Associ-

ation Declaration of Helsinki [10].

Each participant was equipped with a datalogger, a portable spirometer, and a chest strap

for measuring the heart rate. The datalogger was assembled on a Raspberry Pi 3 model B run-

ning Raspbian operating system, connecting with a high quality Vectornav VN-200 (Vector-

nav Technologies, United States) GPS-aided Inertial Navigation System (INS/GPS), a GPS

antenna, and a battery. The inertial measurement unit incorporates an accelerometer, a gyro-

scope, a magnetometer and a barometric pressure sensor (details can be found in [3]). The

device measures 150 x 75 x 48 mm and was carried on the participant’s upper back in an orien-

teering battery vest. Oxygen consumption and other breathing parameters were measured dur-

ing the walking, running and rest periods with a Jaeger Oxycon Mobile portable breath gas

analyser (Viasys Healthcare GmbH, Germany). The setup consists of a desktop and a portable

setup, with the latter including a sensorbox, a data exchange unit, and a mask to which a digital

volume transducer and a gas tube were connected. Both sensorbox and data exchange unit

were carried on the participant’s upper back with a special vest so that the units were located

on either side of the datalogger. Heart rate was measured using a Polar V800 heart rate moni-

tor and an H10 strap with integrated heart rate sensor (Polar Electro Oy, Finland).

Participants were asked to rest for five minutes at the beginning of the measurement session

to obtain oxygen consumption at rest, which enabled studying the effect of exercise on a par-

ticipant’s oxygen consumption. After that, participants were asked to walk or run along a 200

meter long track on the main straight of the level outdoor track at various speeds. Walking

speeds were 1.0 m/s, 1.3 m/s, and 1.5 m/s; running speeds were 2.2 m/s, 2.5 m/s, 2.8 m/s, 3.1

m/s and 3.3 m/s. Subject 3, in addition, also ran at 3.6 m/s. Each participant started with walk-

ing at 1.0 m/s. The order of the remaining seven speeds were randomized for each participant

individually by a browser-based randomizer (http://www.random.org/lists). Speed was con-

trolled by LED modules spaced at one meter along the track, which enabled control of speed
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with an accuracy of 0.1 m/s. Participants were asked to follow the lights while walking/running

for five minutes for each speed. After each walking/running speed, participants stopped for a

few seconds and then returned to the starting point to sit still for five minutes, allowing heart

rate and oxygen consumption to return to resting levels.

The Oxycon Mobile spirometer measured every five seconds _VO2 and respiratory fre-

quency using breath-by-breath methods. To ensure accurate measurements, the spirometer

was re-calibrated at the start of each measurement session.

In line with [8], oxygen consumption measurements were smoothed by applying a

Savitzky-Golay filter [11] with polynomial order and window length set to 3 and 1 respectively

three times. Due to unusually noisy data, for subject 7 also polynomial order set to 9 was tested

and used in inter-subject estimations. Heart rate was recorded continuously (beat-by-beat)

during the test at a sampling rate of 1 Hz. Data were smoothed and interpolated after the tests.

Smoothing was done by a moving average with window length 3. For subjects 4 and 9 the win-

dow length was increased to 5 due to the exceptionally noisy heart rate data. The INS/GPS

datalogger recorded acceleration, velocity, angular velocity and orientation at 400 Hz and

saved them to a memory card through a wired connection, preventing any data loss. Accuracy

levels of speed and speed difference were approximately 0.05 m/s; accuracies of computed ver-

tical oscillation and step duration were about 1 cm and 10 ms respectively (for more details

refer to [3]).

After the measurement campaign it was noticed that for subject 1 heart rate data was only

partly available. Thus, only parts for which heart rate data as well as data from the INS/GPS

datalogger and the portable spirometer were available were used for analysis. Similarly, the

dataset for subject 2 lacked spirometer data for approximately 90 s, thus all data from this

period was removed during data preprocessing. Subject 10 terminated the measurement cam-

paign after the fifth walking/running cycle. Due to the limited number of participants, data

from these five cycles were, nevertheless, included in the analysis.

Dataset preparation

After data collection, measurements of spirometer, INS/GPS datalogger, and heart rate device

were synchronized in time. Synchronization of spirometer and INS/GPS datalogger data was

based on the internal clocks of both devices. For oxygen and heart rate time series data the

cross-correlation of standardised oxygen and heart rate data was calculated and the highest

peak was used as offset estimate for synchronization.

Step segmentation described in [3] was applied to motion data from the INS/GPS datalog-

ger and used to compute walking/running metrics commonly used in gait analysis on a step-

by-step basis (see [3] for details). Accelerations and velocities were computed in the anatomical

frame. In the anatomical frame the x-axis is pointing into the direction of progression (anterior

direction) and the z-axis is pointing upwards, parallel to the field of gravity. The y-axis is per-

pendicular to x- and z-axes and completes a right-handed coordinate system. Oxygen con-

sumption and heart rate measurements were resampled to match the step-by-step frequency

of walking/running metrics.

In [8] feature engineering was used to identify features derived from the INS/GPS data and

heart rate data that yielded most accurate estimates for oxygen consumption, the so-called tar-

get feature, when being used as inputs for a long short-term memory neural network. The fol-

lowing five input features were validated in [8] based on consider-only-one and leave-one-out

approaches, and were used here as well:

• Speed: arithmetic mean of the velocity (= step length/duration of step) over one step, mea-

sured in m/s
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• Speed change: peak-to-peak difference in speed during one step, measured in m/s

• Step duration: measured in s

• Vertical oscillation: peak-to-peak difference in vertical movement, measured in m

• Heart rate: measured in bpm

Sequences of steps were used as inputs for the network training. The experiments for [8]

indicated that input sequences of 50 steps yielded satisfactory estimates of the time-dependent

decay between oxygen consumption (target feature) and past input values, thus the same

length was used in this paper as starting point and inputs were 5-by-50 matrices, with each

row containing the sequence of one of the aforementioned input features.

LSTM network architecture for intra-subject estimations

In [8] a many-to-one long short-term memory (LSTM, [12]) model was developed and tested

successfully for intra-subject oxygen consumption ( _VO2) estimation. The network structure

was simple and consisted of a sequence input layer, a LSTM layer with 150 hidden units, one

dense layer, and an output layer. For training the network the Adam optimizer was used; the

learning rate was set to 0.005; and training was run over 8 000 epochs. The motivation for

using such a large number of epochs was that only a small dataset was available (subjects only

walked/ran four times three minutes at four different speeds). Since a more extensive dataset

has been collected for this paper, the LSTMmodel from [8] was trained here for 1 000 epochs,

because preliminary tests showed that training and validation loss converged within 1 000

epochs.

For [8] the aim was to demonstrate that LSTM networks can successfully estimate oxygen

consumption, rather than finding the most accurate network model. For this paper several

alternative network structures were tested. First, twelve simple modifications of the LSTM

model were studied. The most promising modification was an Early Exit Neural Network (e.g.

[13]) that used 100 instead of 150 hidden units in the LSTM layer. The initial learning rate of

0.005 was decreased by factor 0.2 if the validation loss did not improve over the last 25 epochs.

The minimum learning rate was set to 10−6. Furthermore, in order to avoid overfitting, train-

ing was terminated if over the last 20 epochs no sequence of three epochs with decreasing dif-

ference between training and validation loss was observed. Hereafter, this model is referred to

as Modified LSTMmodel.
The LSTM model [8] was compared with the Modified LSTM model by analysing their per-

formances for intra-subject oxygen consumption estimation. Data from each of the 16 subjects

was divided into training (70% of all samples), validation (15%), and test datasets (15%) ran-

domly. The input sequences were normalised by removing the mean and scaling to unit vari-

ance to enable better fit and prevent divergence in the network training. After that for each

subject both the LSTM model and the Modified LSTM model were trained. While the LSTM

model was always trained for 1 000 epochs, Modified LSTM model was trained for 1 000

epochs or until the termination rule described above was fulfilled. The _VO2 estimation capabil-

ities of the both network structures were evaluated using the corresponding test datasets. This

process was repeated for each subject five times (5-fold cross-validation) to assess how well the

model generalises to different parts of the same participant’s dataset.

Network architecture for inter-subject estimations

For inter-subject estimations the simple neural networks used for intra-subject estimations are

insufficient, since the physiological and biomechanical features of gait differ between
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individuals. Therefore, in this paper a model architecture with a mandatory regression net-

work and an optional feature network was used for a selection of more sophisticated neural

network types (see Fig 1). This architecture allowed the model to process both temporal and

categorical input data. Temporal data included the same features as for the networks meant for

intra-subject estimation, namely speed, speed change, step duration, vertical oscillation, and

heart rate. Categorical data consisted of four individual features of test subjects, which are

described in Table 1.

The structure of the fully connected hidden layer in Fig 1 varied for the different tested net-

work types. For recurrent neural networks and convolutional neural networks no hidden layer

was used; for DenseNet the layer had output dimension 4, while for residual neural networks

and Xception networks the output dimension was 16. In all three network types ReLU activa-

tion was used (more details are given in the sections below).

Each network type was furthermore trained in various configurations. Due to the relatively

small size of the dataset 100 epochs proved to be sufficient for achieving convergence in the

network training phase. For all networks the AdamW optimizer [14] and the cosine learning

rate scheduler with an initial learning rate of 10−3 and a final learning rate of 10−5 were used.

Batch size was set to 64.

For evaluating the network types and configurations for inter-subject _VO2 estimation,

leave-one-out cross-validation was used, which prevented data leakage (i.e. data from one sub-

ject being used for both training and testing). For each of the sixteen participants data from

the remaining fifteen participants were used to train (data from thirteen participants) and vali-

date (data from two participants) the networks and afterwards _VO2 for the sixteenth subject

Fig 1. Network architecture used for inter-subject _VO2 estimation. Upper, optional branch used four categorical variables age, body mass index, sex

and whether or not the individual was a recreational runner as input data. Lower branch used temporal data for speed, speed change, step duration,

vertical oscillation, and heart rate as input. Estimated value was _VO2.

https://doi.org/10.1371/journal.pone.0303317.g001

Table 1. Overview of categorical features and their categories.

Feature Category 0 Category 1 Category 2

Age � 25 years 26–29 years � 30 years

Body Mass Index (BMI) <22 22–25 >25

Sex female male -

Fitness level untrained trained -

Column Feature shows the name of the categorical input features. The remaining columns show the condition for

being placed in one of the three categories. For features Sex and Fitness level only categories 0 and 1 were used.

https://doi.org/10.1371/journal.pone.0303317.t001
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was estimated with the trained models. This process was repeated five times for each of the six-

teen participants (5-fold cross-validation). In the end the average root-mean square error

(RMSE) and its corresponding standard deviation over all sixteen participants and five repeti-

tions per participants were calculated.

Multi-layer perceptron for processing participant-specific features. The feature head is

a multi-layer perceptron (MLP) with an output of two neurons. The network is described in

Fig 2. A four-dimensional vector containing participant-specific features was used as input. It

was fully connected to a two-dimensional output vector that was then forwarded to a ReLu

function.

Regression head. The mandatory regression head, which used temporal data as input,

was constructed with five different neural network types: conventional recurrent neural net-

works, convolutional neural networks, residual network, DenseNet, and Xception network.

The output of every network type in the regression branch was a vector of size 16 or 32 that

was used for regression or concatenation with the feature head.

Recurrent neural networks. Conventional recurrent neural networks (RNNs) can handle

temporal data of any length using a recurrent hidden state that is updated at each time step

using a nonlinear function that depends on the current measurement and the recurrent hidden

state of the previous time step [15]. The long-term gradients of a conventional RNN being

trained using back-propagation are at risk of converging to zero (so-called vanishing gradient

problem), which effectively terminates the network to learn. Therefore, in this paper, besides

recurrent neural network [16] layers, also long short-term memory [12], and gated recurrent

units (see e.g. [15]) layers were tested. LSTM was developed to tackle the vanishing gradient

problem. It is able to bridge long time intervals without sacrificing short time lag capabilities

by “enforcing constant error flow through internal states of special units” [12]. These units act

as a sort of memory and ensure that irrelevant information is forgotten and only important

information is propagated. Gated recurrent units (GRUs) are able to capture dependencies of

different time scales adaptively [15]. These units are similar to LSTM, but possess a gating

mechanism for inserting or forgetting information and lack separate memory cells [15].

In this paper RNN configurations having three RNN, LSTM or GRU layers were studied.

Each hidden layer contained 128 neurons. Both one-directional (see Fig 3(a)) and bi-direc-

tional versions (see Fig 3(b)) were tested.

Convolutional neural networks. In the experiment, a fully convolutional neural network

(CNN), mentioned in [17], was also evaluated. The network contained three 1D-convolutional

Fig 2. Multi-layer perceptron for attributes vector with rectified linear unit (ReLU) activation function. From left

to right the MLP consists of a four-dimensional attributes vector, a two-dimensional vector, and a two-dimensional

output vector.

https://doi.org/10.1371/journal.pone.0303317.g002
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layers and a fully connected layer at the end. The output is a vector of size 16 or 32. The archi-

tecture of the CNN is displayed in Fig 4. Kernel size was set to three and the number of filters

in the three convolutional layers were nf = {32, 64, 32}. Two CNN configurations were imple-

mented, one with 16 and one with 32 neurons in the last fully connected layer.

Residual neural networks. A residual network (ResNet) employs skip connections to facili-

tate the gradient flows during training. The architecture has been successfully applied to com-

puter vision tasks [18], but also application on time series data have been studied (e.g. [17]). In

this paper the architecture from [17] was used, with modifications to the hyperparameters to

ensure that the model was compatible with the considerably smaller dataset.

The residual network was built from so-called residual blocks, which each contained three

one-dimensional convolutional layers as well as a direct shortcut from input to output that

used addition. In the experiment, three blocks with three convolutional layers each were used.

For the kernel sizes Kks in each layer two different options were tested, Kks = {3, 3, 3} and Kks =

{7, 5, 3}. The number of filters in the three residual blocks were set to {nf, 2nf, 2nf} with nf = 24.

The dimension of the output vector (cout) was set to 16. The third block was followed by a

global average pooling layer and a fully connected layer. Fig 5 illustrates the tested network

architecture.

Fig 3. Architectures of RNN-type networks. One-directional versions are illustrated in (a), bi-directional versions in

(b).

https://doi.org/10.1371/journal.pone.0303317.g003

Fig 4. Architecture of the convolutional neural network. BN + ReLU stands for batch normalization followed by ReLU activation.

https://doi.org/10.1371/journal.pone.0303317.g004
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DenseNet. The DenseNet architecture is inspired by the skip connections in ResNet and

introduces a key pattern known as “dense connectivity.” Unlike ResNet, which sums the input

and output at each shortcut connection, DenseNet concatenates the output feature maps from

any given layer directly to subsequent layers. This approach ensures that each layer receives a

“collective knowledge” from all preceding layers, enhancing feature propagation and reuse

[19]. Overall, the DenseNet architecture is divided into three levels from simple to sophisti-

cated: dense module, dense block, and dense architecture.

Dense modules consist of two convolutional layers (see Fig 6(a)). In the context of this

paper, these layers are adapted to one-dimensional (1D) operations to handle time series data,

rather than the two-dimensional (2D) operations typically used for image processing. The

kernel sizes for convolutional layers were 1 and 3 respectively, and they were operated with 16

filters. Each dense layer employs a residual connection, where the outputs are added to the

inputs, facilitating the flow of gradients during training. Hence, after every dense module, the

number of features increases by 16, enriching the information collected by the model (see

Fig 5(a)).

Each dense block (see Fig 6(b)) is built from a positional encoding layer [20] to incorporate

the sequence order of the data, followed by four dense layers, and a 1D max pooling layer to

reduce the temporal dimensionality. The dense connectivity principle is fully applied here,

meaning the output from each layer is concatenated to every subsequent layer within the

block, exponentially increasing the feature maps passed along the network. After every dense

block, the number of feature maps increases by 64 and the temporal length is halved.

The overall network structure, the dense architecture (see Fig 6(c)), starts with a single con-

volutional layer that transforms the input time series, which is represented by an l-by-5 matrix

with l being the series length, into an initial feature map of size (l/2)-by-24. This map is fed

into four sequential dense blocks, each enhancing the feature set before passing it to the next,

culminating in a robust feature representation suitable for further analysis or classification

tasks. The number of input features for the next dense block always increases by 64 (= 16*4).

The last dense block outputs a matrix of size (l/16)-by-280. Two 1D convolutional layers were

applied to transform the output first to size (l/16)-by-32 and then to size (l/16)-by-16. Finally,

the output (l/16)-by-16 is flattened to provide an output vector for the regression task.

Xception network. The Xception network in this paper follows [21]. This network type con-

sists of Xception modules (see Fig 7(a)) that include two paths, a 3-depthwise separable convo-

lution and a max pooling path, and are linked by residual connections. This architecture

Fig 5. Architecture of the residual neural network, based on the architecture from [17]. Upper part shows the overall structure and

the lower part shows the architecture of the residual blocks. BN + ReLU stands for batch normalization followed by ReLU activation.

https://doi.org/10.1371/journal.pone.0303317.g005
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enables Xception networks to learn the input with various kernel sizes to obtain both the long

and short-term structure in the data [21].

Depthwise separable convolutions are a variant of traditional convolutions that help to

reduce complexity while maintaining the performance [22]. They split convolutions into a

depthwise convolution and a pointwise convolution. The depthwise convolution applies a sin-

gle convolutional filter to each input channel independently. In other words, it performs spa-

tial convolution separately for each channel. The pointwise convolution combines the outputs

of the three depthwise convolutions across all channels.

Similarly to ResNet, a Xception network incorporates residual connections to mitigate the

vanishing gradient problem. However, while Resnet uses standard convolution with high com-

putation complexity, the Xception network combines residual connections, which enables

easy gradient flow during training, and depthwise separable convolutions, which enhances effi-

ciency and performance (see [22] for details).

Fig 7(b) illustrates the complete Xception network architecture, which comprises multiple

Xception modules stacked together and residual connection links. The one-dimensional adap-

tive averaging pooling layer aggregates features, retaining information while reducing

dimensionality. Similarly to the other tested network types, the ReLU activation function and

batch normalization are used after convolution layers to introduce nonlinearity and normalize

feature maps, thus enhancing the network’s ability to learn complex patterns. In the tests nf =

{8, 16} were used and the output vector had size 16 or 32 respectively (variable cout).

Fig 6. Architecture and building blocks of DenseNet. Dense module architecture is shown in (a), dense block architecture in (b), and overall

architecture in (c).

https://doi.org/10.1371/journal.pone.0303317.g006
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Results

Correlation analysis

In [8] speed, speed change, step duration, vertical displacement, and heart rate were used as

input features. This choice was validated by the consider-only-one and leave-one-out

approaches. The correlation analysis in [8] revealed that the target feature oxygen consump-

tion ( _VO2) had highest correlations to input features speed, heart rate and speed change, while

it was only weakly negatively correlated to vertical oscillation and step duration. Still, adding

the latter two as input features to the LSTM model in [8] improved the accuracy of _VO2 esti-

mations somewhat. In order to being able to compare the data from [8] with the data used in

this paper, the correlation analysis was repeated for this paper.

However, one shortcoming of the analysis in [8] was that only Pearson correlation coeffi-

cients were computed, which indicate the strength of a linear relationship between two fea-

tures but do not provide information on potential nonlinear statistical relationships.

Therefore, for this paper additionally Spearman correlation coefficients were calculated. Spear-

man correlation coefficients describe how well a monotonic function describes the relation-

ship between two features. These coefficients do not rely on normality of the data and are

robust to outliers due to being a nonparametric measure of rank correlation.

The correlation coefficients for raw data are displayed in Fig 8. The Pearson correlation

coefficients (Fig 8(a)) show that heart rate, speed, and speed change have the highest linear

correlation with oxygen consumption. It is interesting to note that the correlation coefficients

for speed, vertical oscillation and step duration are approximately the same as in [8] (differ-

ences at most 0.05) but that the coefficients for heart rate and speed change were approxi-

mately 0.2 and 0.3 higher than in [8].

Fig 7. Architecture and building blocks of XceptionNet. Architecture of an Xception module is shown in (a), and the

Xception network architecture is illustrated in (b).

https://doi.org/10.1371/journal.pone.0303317.g007
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Looking at the Spearman correlation coefficients (Fig 8(b)) it can be noted that correlations

between oxygen consumption and heart rate and speed respectively are (almost) the same as

the Pearson coefficients, which could be expected due to a linear function being a monotonic

function. For speed change the Spearman coefficient is 0.12 larger, supporting the assumption

that the relationship between speed change and oxygen consumption is only approximately

linear. The most interesting finding is, however, that vertical oscillation and oxygen consump-

tion are strongly correlated (0.61). Together with the low Pearson coefficient (0.01) this indi-

cates that the relationship between these two features is highly nonlinear and explains why

adding it as predictor to the LSTM model in [8] improved the estimation accuracy. On the

contrary, the Spearman coefficient of step duration and oxygen consumption is, similarly to

the Pearson coefficient, approximately zero.

However, comparing the Pearson and Spearman correlations for data from only male with

those for data from only female participants reveals a potential explanation why step duration

is a useful input feature for estimating oxygen consumption. It is negatively correlated to oxy-

gen consumption for male (-0.37) but positively correlated for female (0.2). This indicates that

using step duration as an input feature could improve accuracy if gender is taken into account.

Since the analysed dataset was gender balanced this relationship was hidden when considering

the whole dataset. Other features that showed noticeable differences in correlation with oxygen

Fig 8. Correlation coefficients between oxygen consumption (target feature) and five input features. Input features

included speed, speed change, step duration, vertical displacement, and heart rate. Pearson and Spearman correlation

coefficients are shown in (a) and (b) respectively.

https://doi.org/10.1371/journal.pone.0303317.g008
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consumption between male and female participants were speed change (both Pearson and

Spearman coefficients) and vertical oscillation (only Spearman coefficient).

Interestingly enough, similar correlation values and differences as for male vs. female par-

ticipants were found for trained vs. untrained participants (fitness level set to 1 vs. 0), even so

both the trained and the untrained group had a male-to-female ratio of one. Furthermore, it

was noticed that heart rate and oxygen consumption showed very high Pearson and Spearman

coefficients for untrained participants, indicating an almost linear relationship between heart

rate and oxygen consumption.

Overall the analysis suggested that the data for this paper are comparable to the data used in

[8]. Hence, it was hypothesised that the LSTM model from [8] should yield accurate _VO2 with

the new dataset.

Intra-subject estimations

For comparing the performance of the Modified LSTM model with the performance of the

LSTM model [8] the root mean square error for the _VO2 estimations over all 16 subjects was

calculated. While the average RMSE for the LSTM model was 3.3459 ml×min−1×kg−1 (stan-

dard deviation: 2.3568 ml×min−1×kg−1), it was 0.6019 ml×min−1×kg−1 (standard deviation:

0.3076 ml×min−1×kg−1) for the Modified LSTM model. Fig 9(a) and 9(b) show the Bland-Alt-

man analysis for both model configurations. For the LSTM model the estimation bias was

-0.4356 ml×min−1×kg−1, which is approximately 0.8712% of peak _VO2, while the bias of the

Modified LSTM model was only -0.0078 ml×min−1×kg−1, which is approximately 0.0156% of

peak _VO2. The validity of estimated oxygen consumption expressed by 95% limits of agree-

ment were 8.2292 ml×min−1×kg−1 (approximately 16.4584% of peak _VO2) for LSTMmodel
and 1.5470 ml×min−1×kg−1 (approximately 3.0939% of peak _VO2) for Modified LSTM model.

This shows that by some simple improvements to the architecture of the LSTM model its accu-

racy for intra-subject _VO2 estimation can be improved considerably.

Fig 9. Bland–Altman analysis of the estimated and directly measured oxygen consumption. Figure on the left shows results for the LSTM

model from [8] and figure on the right shows results for the modified LSTM model with data from all 16 subjects. Dashed horizontal lines

represent the 95% limits of agreement and solid lines represent estimation biases. Each color represents data from a unique participant in the

test set. For better comparability the y-axes are equally scaled.

https://doi.org/10.1371/journal.pone.0303317.g009
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Inter-subject estimations

Table 2 lists the results of a selection of network configurations for inter-subject oxygen con-

sumption estimation, sorted with respect to the average root-mean square error of the oxygen

consumption estimations over all cross-validation rounds (column RMSE (mean)). The results

from all network configurations can be found in the supporting information (S1 Table).

For all configurations the average RMSE of test data and the corresponding standard devia-

tions are shown. All five neural network types were tested with input sequences of 50 and 200

steps (column seq. length), meaning that the input tensors were of dimensions 5-by-50 and

5-by-200 respectively. In addition, the impact of using participant-specific features such as age,

sex, body mass index and fitness level by enabling the optional MLP network for categorical

variables was tested (variable part. spec. set to TRUE; if FALSE then participant-specific fea-

tures were not used).

Discussion

The aim of [8] was to demonstrate that LSTM networks can successfully estimate oxygen con-

sumption when the network is trained with data from the same individual (intra-subject

Table 2. Results for a selection of neural network configurations for inter-subject estimation of oxygen consumption.

No. Network type RMSE (mean) RMSE (std) part. spec. seq. len. model configurations

1 XceptionNet 2.4295 0.2128 TRUE 200 nf = 16, cout = 16

2 XceptionNet 2.6109 0.3832 FALSE 200 nf = 16, cout = 16

3 XceptionNet 2.6262 0.3616 TRUE 200 nf = 16, cout = 32

4 XceptionNet 2.7328 0.5506 FALSE 200 nf = 16, cout = 32

5 XceptionNet 2.7533 0.4526 TRUE 200 nf = 8, cout = 32

6 XceptionNet 3.0478 0.8670 TRUE 200 nf = 8, cout = 16

7 XceptionNet 3.0600 0.6613 FALSE 200 nf = 8, cout = 32

8 ResNet 3.0751 0.5092 TRUE 200 nf = 24, cout = 16, kss = [3, 3, 3]

9 RNN 3.0865 0.1078 TRUE 200 one-directional GRU

10 ResNet 3.1489 0.4169 FALSE 200 nf = 24, cout = 16, kss = [7, 5, 3]

11 CNN 16 3.3202 0.5633 FALSE 200

12 RNN 3.3328 0.7950 FALSE 200 one-directional GRU

:

14 CNN 16 3.3694 0.3840 TRUE 200

:

20 XceptionNet 3.5048 0.1497 FALSE 50 nf = 16, cout = 16

:

24 CNN 3.6048 0.8707 FALSE 200

:

32 DenseNet 3.9190 0.9900 FALSE 200

:

37 CNN 4.4999 1.2157 TRUE 200

:

58 DenseNet 7.9411 9.1471 TRUE 200

Column Network type shows the type of network, column part. spec. is TRUE if participant- specific features were used in the network and FALSE otherwise. Columns

seq. len. and model configurations yield the length of input sequences and information on configuration hyperparameters respectively. Columns RMSE (mean) and

RMSE (std) contain the average root mean square errors and the corresponding standard deviations. Networks are ordered in ascending order with respect to their

average RMSE. The first column contains rankings of the shown network configurations. Results for all 60 tested configurations can be found from the S1 Table.

https://doi.org/10.1371/journal.pone.0303317.t002
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estimation), and analyse which input parameters would yield the most accurate estimates.

However, no attempts at optimizing the network structure or testing alternative architectures

were made in [8]. The results in Subsection Intra-subject estimations suggest that by including

some early exit strategies into the LSTM network, reducing the number of hidden layers in the

LSTM layer, and introducing an adaptive learning rate the estimation accuracy can be

improved tremendously. Using these modifications, the average root-mean square error for

oxygen consumption estimates was reduced by approximately 82% compared to the RMSE of

the LSTM network from [8]. The corresponding standard deviation was reduced by approxi-

mately 87%. Assuming a peak _VO2 of 50 ml×min−1×kg−1, the average RMSE of the Modified

LSTM model was 1.2038% of peak _VO2, which suggests that the setup consisting of INS/GPS

datalogger, heart rate monitor, and Modified LSTM model, may yield accurate enough _VO2

estimates for some monitoring applications, but it remains to be determined whether this

approach can detect small, long-term changes in _VO2, e.g. as a result of training.

For inter-subject _VO2 estimation preliminary tests with the simple network structure from

intra-subject _VO2 estimation yielded poor accuracy. Thus, more sophisticated network archi-

tectures were tested in Subsection Inter-subject estimations. The most accurate _VO2 estima-

tions were achieved by XceptionNet using sequences of 200 steps, participant-specific input

features, nf = 16, and 16 neurons in the output vector. The achieved RMSE of 2.4295

ml×min−1×kg−1 (standard deviation of 0.2128 ml×min−1×kg−1) is lower than the LSTM model

from [8] used for intra-subject estimations. Even without the use of participant-specific fea-

tures the RMSE of this XceptionNet configuration increased only to 2.6109 ml×min−1×kg−1

(+7.47%; standard deviation of 0.3832 ml×min−1×kg−1). Even more promising is the fact that

also using nf = 8 and/or 32 neurons in the output vector did not result in considerably worse

performances. The seven best configurations are all XceptionNet configurations, which sug-

gest that XceptionNet is the most promising network type for inter-subject oxygen consump-

tion estimation.

The best non-XceptionNet configurations are a ResNet configuration in eight and a RNN

configuration in ninth place. Their RMSE test are 26.58% respectively 27.05% larger than that

of the best XceptionNet. For CNN, the best accuracy was achieved with 16 neurons in the last

layer before the regression layer, input sequences of 200 steps, and without using participant-

specific features (11th best configuration). The best CNN with 32 neurons in the last layer

before the regression layer (24th best configuration) yielded a 8.57% higher RMSE test than the

best CNN 16. The worst network type for _VO2 estimation is, based on this study, DenseNet,

with the best configuration only yielding the 32nd best RMSE (mean) for the test data.

Overall, XceptionNet and to some extend ResNet yielded lower RMSEs than the remaining

neural network architectures for most of their configurations. A common feature of Xception-

Net and ResNet is the use of residual connections. Thus, it could be assumed that the use of

these connections and especially combinations of them in XceptionNet is the main reason for

these networks low RMSEs. This hypothesis is supported by several studies. For example, [18]

and [22] demonstrated the effectiveness of residual connections for mitigating the vanishing

gradient problem, thereby enhancing the training stage of deep networks. In addition, [23]

demonstrated that residual networks significantly improve the performance of convolutional

neural networks for sequence modeling tasks on sequential data. [24] proposed the SAR-UNet

model, which integrates residual connections and depthwise separable convolutions. The

model has shown substantial improvement in training efficiency and accuracy for forecasting

tasks, which involve predicting future states based on time-series data.

When it comes to length of input sequences, 200 steps seems to be a better choice than 50

steps, which is in contrast to the results in [8]. The best network configuration using input
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sequences of 50 steps is an XceptionNet with a RMSE test of 3.5048 ml×min−1×kg−1, which is

44.26% larger than the best overall network. The reason for the discrepancy between results

from [8] and this paper is most likely that the data available for training was significantly

smaller in [8], which only considered intra-subject _VO2 estimation and participants walking

and running at four different speeds.

Based on the study, no clear conclusion on the use of participant-specific features can be

drawn. For example, for XceptionNet configurations omitting these features but using other-

wise the same configuration resulted in six cases in 4.06% to 43.86% higher RMSE test, but in

two cases the RMSE test was 37.58% to 39.43% higher when using participant-specific features

than without them. For RNN configurations, however, using these features yielded in ten of

twelve cases 2.32% to 15.93% higher RMSE test (for two cases it reduced the RMSE test by

2.51% to 7.39%).

Conclusions

This paper had two aims. The first aim was to find techniques that would significantly increase

the accuracy of intra-subject oxygen consumption estimations using the LSTM neural network

architecture proposed in [8]. This aim was achieved by including some early exit strategies

into the LSTM network and modifying some of the network hyperparameters. The changes

resulted in an average root-mean square error reduction from 3.3459 ml×min−1×kg−1 to

0.6019 ml×min−1×kg−1.

These promising results encouraged us to investigate a more demanding task, namely

developing neural networks that are able to provide accurate oxygen consumption estimates

even for inter-subject estimations (second aim). Preliminary attempts with the simple network

structures that worked well for intra-subject estimation yielded poor accuracy. Thus, our

research focused then on studying five different state-of-the-art neural network architectures

with various configurations. The results, especially those of the XceptionNets, suggest that it is

indeed possible to accurately estimate the oxygen consumption of an individual from motion

and heart rate data using neural networks, even when the data on which the network is trained

were collected from other individuals, in other environmental conditions. This second result is

of higher importance as it has more relevance for real-world applications.

The achieved accuracy of XceptionNet was at least comparable with previously published

methods, suggesting that the presented method could be used by athletes and running enthusi-

asts to monitor their oxygen consumption over time to detect changes in their movement

economy due to training, rehabilitation, etc. However, the accuracy of XceptionNet for oxygen

consumption estimation should be verified also in other movements, such as skiing or swim-

ming, and its ability to track small long-term changes in oxygen consumption over the course

of several months or even years should be investigated.

In the current setup, oxygen consumption was determined post hoc, i.e. after motion and

heart rate data were obtained. In the future, the XceptionNet will be embedded in the datalog-

ger used in this study to provide estimates for oxygen consumption during exercising, once

sufficiently long input sequences of motion and heart rate data are available.

One limitation of the training procedure was that each participant walked/ran at the same

absolute speeds, but the anaerobic threshold (AT) speed can differ significantly. For example,

in [25] the average velocity at AT (vAT) varied from 4.17 m/s to 5.36 m/s for male and from

4.17 m/s to 4.81 m/s for female elite distance runners. Therefore, it is reasonable to assume a

lower average vAT and larger variation in vAT for the participants studied in this paper as the

group included participants that identified as recreational runners and some that did not. If

training data were collected from subjects with high vAT but _VO2 should be estimated for a
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subject with low vAT the estimation accuracy could suffer. Future research could examine this

idea using data from individualised vAT-based speeds. Moreover, future work could attempt

to estimate oxygen consumption in very low and very high intensity exercises, across multiple

testing days, as well as develop male/female specific models with larger datasets. Finally, strate-

gies for updating the estimation models with new unlabeled data should be developed, as the

model will often be required to make predictions for a new participant from whom data have

not yet been collected. Once data from the new user are added, the model could be fine-tuned

to yield more accurate _VO2 estimates in the future.

Another limitation is that due to the use of input sequences of 50 to 200 steps the proposed

setup would be unable to quickly react to changing oxygen consumption due to prompt and

significant changes in gait speed. Such highly dynamic settings could be found, for example, in

football or sprint disciplines. Developing methods for oxygen consumption estimation in such

settings would require different experimental settings including a spirometer that samples

_VO2 reference measurements at a considerably higher rate than the spirometer used in the

experiments for this paper.

Supporting information

S1 Table. The table contains results for all 60 tested neural network configurations for

inter-subject estimation of oxygen consumption and uses the same structure as Table 2.

Networks are ordered in ascending order with respect to their average RMSE.

(PDF)
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