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ABSTRACT

Kuha, Mikko
Simulation of Quark-Gluon Plasma initial states with Monte-Carlo EKRT model

In this thesis, the initial state of the quark gluon plasma (QGP) generated in ul-
trarelativistic heavy-ion collisions is studied. For this purpose, the author has cre-
ated from scratch a completely new Monte-Carlo (MC) implementation of the
successful Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) initial state model. In
this model, the energy density generated in the heavy-ion collision is modelled
via minijets, small—down to 1 GeV—transverse momentum pT quarks and glu-
ons, produced via perturbative Quantum Chromodynamics (pQCD). A key in-
gredient is the saturation conjecture, here a local version which fluctuates event-
by-event (EbyE), which dynamically controls the generated minijet multiplicity.
Among the EbyE fluctuating minijet production, the most important new feature
of the model is the rapidity dependence of the output. As the four-momentum
of the minijets is fully known, the EbyE fluctuating energy–momentum tensor
Tµν of the QGP initial state can be computed, enabling 3+1D fluid dynamical
simulations producing rapidity dependent observables. Another novel feature
are the developed parton distribution functions (PDFs) which include spatial de-
pendence in nuclear shadowing in a new way that allows also for the largest
density fluctuations in the nuclear matter. Also energy conservation and valence
quark number conservation are now considered. Among its other features, the
new MC-EKRT event generator includes also a nucleon substructure model and
the tracking of the partonic flavour of the generated minijets.

The heart of the MC-EKRT event generator, the calculation of the inclusive
pQCD cross section of producing two jets in a nucleon–nucleon collision σjet with
nuclear shadowing, is employed in the article [PI] to investigate the possibility
of the need to account for nuclear shadowing in Monte-Carlo Glauber models
by using recent experimental data on heavy vector boson production at the LHC
as constraints. The article [PII] introduces the MC-EKRT model in detail. The ar-
ticles [PII] and [PIII] demonstrate the usage of the MC-EKRT initial states in a
centrality-class averaged 3+1D hydrodynamical simulation ([PII]) and in boost
independent 2+1D EbyE fluid simulation ([PIII]), yielding excellent agreement
with the experimental data in the observed rapidity distributions of the charged
particle multiplicity dNch/dη in Pb+Pb collisions at

√
sNN = 5.02 and 2.76 TeV,

and in Au+Au collisions at
√

sNN = 200 GeV, and in their corresponding ob-
served flow coefficients vn.

Keywords: Heavy-ion collision, Monte-Carlo simulation, EKRT model, pertur-
bative QCD, Quark-Gluon Plasma, saturation, rapidity distributions,
minijets



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Kuha, Mikko
Kvarkki-gluoniplasman alkutilan simulointi käyttäen Monte-Carlo EKRT -mallia

Tutkin tässä väitöskirjassa ultrarelativistisissa raskasionitörmäyksissä syntyvän
kvarkki-gluoniplasman (QGP) hydrodynaamista alkutilaa. Olen ohjelmoinut tätä
tarkoitusta varten alusta alkaen uuden Monte Carlo (MC) -toteutuksen jo men-
estyneestä Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) alkutilamallista. MC-
EKRT -mallissa raskasionitörmäyksessä syntyvää energiatiheyttä mallinnetaan
minijettien avulla. Minijetit ovat kvanttiväridynamiikan häiriöteorialla (pQCD)
tuotettuja kvarkkeja ja gluoneja, joilla on erittäin pieni poikittaisliikemäärä pT—
jopa 1 GeV. Mallin keskeinen rakennusosa on saturaatio-oletus, joka ottaa huo-
mioon paikalliset ainetiheyden vaihtelut törmäyksestä toiseen (EbyE). Saturaa-
tion tehtävä on dynaamisesti rajoittaa tuotettujen minijettien multiplisiteettiä.
Sen ohella, että uudessa MC-EKRT:ssä minijettien tuotto vaihtelee EbyE, mallin
tärkein uusi ominaisuus on tuotetun QGP-alkutilan rapiditeettiriippuvuus. Kos-
ka minijettien neliliikemäärät tunnetaan, voidaan myös QGP-alkutilan energia-
liikemäärätensori Tµν laskea jokaiselle törmäykselle erikseen. Tämä mahdollistaa
plasman rapiditeettiriippuvaisten suureiden 3+1 ulotteisen (3+1D) hydrodynaa-
misen simulaation. Toinen merkittävä uusi ominaisuus on partonien jakauma-
funktiot (PDF:t), jotka ottavat huomioon paikkariippuvuuden ydinvarjostuksessa
uudella tavalla, joka sallii myös kaikkein voimakkaimmat tiheysvaihtelut ydin-
aineessa. Tekemääni tapahtumageneraattoriin on sisällytetty myös energian ja
valenssikvarkkien lukumäärien säilymisvaatimus, sekä nukleonien alirakenne-
malli, ja lisäksi sen tuottamien minijettien partonimakua seurataan.

MC-EKRT-tapahtumageneraattorin ytimessä on kahden jetin tuottamisen
inklusiivisen pQCD-vaikutusalan σjet laskeminen ydinvarjostuksella kahden nuk-
leonin törmäyksessä. Käytimme samaa laskentaa artikkelissa [PI] tutkiessamme
tarvetta ottaa huomioon ydinvarjostus Monte Carlo Glauber -malleissa käyttä-
mällä rajoitteina viimeaikaisia kokeellisia LHC-tuloksia raskaiden vektoribosoni-
en tuotosta. Artikkelissa [PII] käymme MC-EKRT -mallin yksityiskohtaisesti läpi
ja annamme esimerkin MC-EKRT-alkutilojen käytöstä keskeisyysluokkakeskiar-
voistetussa 3+1D hydrodynaamisessa simulaatiossa. Artikkeli [PIII] havainnollis-
taa MC-EKRT-alkutilojen käyttöä puskuinvariantissa 2+1D EbyE hydrodynaami-
sessa simulaatiossa. Tuottamamme teoreettiset ennusteet yhtenevät erinomaisesti
kokeellisten tulosten kanssa varattujen hiukkasten multiplisiteetin rapiditeettiri-
ippuvuudesta dNch/dη lyijy–lyijy –törmäyksissä energioilla

√
sNN = 5.02 TeV

ja 2.76 TeV, sekä kulta–kulta –törmäyksissä energialla
√

sNN = 200 GeV. Samoin
vastaavien virtauskertoimien vn lasketut arvot olivat hyvin yhteneviä kokeellis-
esti havaittujen kanssa.

Avainsanat: Raskasionitörmäys, Monte-Carlo simulaatio, EKRT-malli, kvanttivä-
ridynamiikka, häiriöteoria, kvarkki-gluoniplasma, saturaatio
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and re-do all their work after I fixed those issues. Working with them has been an
absolute pleasure. The entire CoE group (and its predecessors) has provided me
with a wonderful, welcoming, and intellectually stimulating work environment.
Our out-of-office gatherings have also been most memorable. To all of you, I am
sincerely grateful.

The best luck that I have had during my thesis work must be that I ended up
in Holvi, which has evolved far beyond a mere grad student office. The extended
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1 INTRODUCTION

The quark gluon plasma (QGP) [1–6] is a state of matter, where quarks and glu-
ons are deconfined, free from their hadronic bound states such as protons and
neutrons. The study of the QGP allows to probe the fundamental properties of
Quantum Chromodynamics (QCD) [7], the theory describing the strong nuclear
interaction and an integral part of the Standard Model of particle physics [8–11].

The formation of this QCD matter, where quarks and gluons are deconfined,
is achieved through relativistic heavy ion collisions in the laboratory setting [12–
14]. These collisions involve heavy ions, for example gold, xenon or lead nuclei,
accelerated to nearly the speed of light in massive accelerator laboratories like
Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC). The ex-
treme conditions created in these collisions—temperatures over a trillion degrees
(over 2× 1012 K [15]) and energy densities far exceeding those in ordinary nuclear
matter—are instrumental in the formation of the QGP. Also in nature, hot QGP is
believed to have existed in the first microseconds after the Big Bang, where tem-
peratures were so high that hadrons such as protons and neutrons could not yet
form, and quarks and gluons roamed freely [16].

The heavy ion collision is a complex process involving several stages, each
with its own unique characteristics and dynamics. As the involved interaction
scales and physical phenomena are so varied, no single framework can model
the entirety of the process from the first impact all the way to the particles hitting
the detectors. The initial state is formed at the moment of the collision, where the
ions accelerated to relativistic speed have enough energy to form QGP as they
interact via the strong nuclear force. Here, the fastest processes are the ones with
high momentum exchange Q2, which produce the so called hard particles in the
end state [17]. After their production the numerous smaller Q2 interactions pro-
duce most of the matter contributing to the forming QGP [18–20]. After the initial
impact, the energy density is extremely high, and the system is far from thermal
equilibrium. During this phase, partons (quarks and gluons) interact with each
other free from the nucleons (protons and neutrons), and e.g. QCD kinetic theo-
ries [21–24] can be used to model the evolution of the system. Until this point, the
physical processes stand firmly in the regime of perturbative QCD (pQCD) [25].
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As the system continues to expand along the beam direction, it cools and
its energy density decreases. As is possible in a non-Abelian gauge theory [26,
27], the aymptotically free running causes the QCD coupling to increase towards
lower interaction energies [28, 29] rendering pQCD inapplicable. Here the mi-
croscopic physics can be best described by nonperturbative (lattice) QCD [30–32]
or effective field theories (EFTs) [33–38] with strongly coupled fields, or by anti-
de Sitter/conformal field theory (AdS/CFT) correspondence [39] at the limit of
infinite coupling. The system quickly approaches a state of local thermal equilib-
rium [21, 40], and starts to behave collectively. This phase can be described by
hydrodynamic models [41], which take into account the viscosity of the quark-
gluon plasma. The plasma behaves like a nearly perfect fluid with a very low
viscosity [15]. As the system expands and cools analogously to the early uni-
verse, quarks and gluons combine to form hadrons again, in a process known as
hadronization or confinement [42]. Afterwards, these hadrons can still interact
with each other, leading to chemical reactions that can change the composition of
the hadron gas [43]. At a certain point, the system becomes too dilute for inelastic
collisions to occur. This is the chemical freeze-out, where the relative abundances
of different particle species are fixed [44, 45]. Even after the chemical freeze-out,
elastic collisions can still occur, which do not change the particle species but can
change their momentum distributions. When the rate of these collisions becomes
too low in the cooling, expanding system, kinetic freeze-out is reached [46]. Here
the applicability of the hydrodynamic simulation ends. The momentum distri-
bution of particles is fixed, and, after the strong and electromagnetic decays of
unstable particles have taken place, the particles stream freely towards the detec-
tors. Physics of the hadrons from a sufficiently late hadron gas phase on can be al-
ternatively described by cascade models incorporating Boltzmann transport [47–
50]. These hadrons and their decay products are what is in the end actually ob-
served. All the information from the whole process thus far must be deciphered
from their properties, correlations and distribution.

Hydrodynamic models of the QGP most often use relativistic dissipative
second-order transient fluid dynamics first introduced by Israel and Stewart [51],
which can take into account the non-zero shear and bulk viscosities that may vary
as functions of temperature and chemical potential. Relativistic hydrodynamics
incorporates the limitations of relativity, like the speed of sound being limited by
the speed of light, and a relativistic equation of state (EOS) into the conservation
laws that form the basis of classical fluid dynamical models. Israel-Stewart theory
further introduces additional relaxation equations for the shear stress tensor and
bulk viscous pressure, which enables maintaining causality and stability.

The initial state in hydrodynamical simulations plays a crucial role in de-
termining the evolution and outcomes of the system [52]. The degree of spatial
anisotropy and the size of inhomogeneities can significantly affect observables
such as particle flow and flow harmonics during the subsequent hydrodynam-
ical expansion [53–58]. Successul frameworks modeling the initial state include
Monte Carlo (MC) Glauber models, models that use Color Glass Condensate
(CGC) EFT [36–38], and Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) satura-
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tion models [55, 59–61]. The MC Glauber approaches [62]—e.g. the widely used
TRENTo parametrization model [63]—sample the nucleon locations from known
nuclear distributions and determine the number of colliding nucleon–nucleon
pairs by using the measured inelastic proton–proton cross section. The CGC mod-
els like IP-Glasma [64, 65], have gluons as the primary degrees of freedom, in
particular at the high-energy limit where the gluons saturate to form a collec-
tive strongly interacting field. In EKRT model [55, 59–61], the colliding nuclei are
regarded as parton clouds, and a saturation conjecture is used in tandem with
pQCD calculation to limit the gluon density produced from the colliding nuclei.
There are also various models [66–71] which involve general purpose event gen-
erators for high energy nuclear collisions, for instance PYTHIA (Angantyr) [72,
73], HIJING [74, 75], AMPT [76], and EPOS [77–79], in the initial state calculation.

The actual properties of the QGP are extracted from so-called global analy-
ses, in which as many simulated observables as possible are simultaneously fitted
to the experimental data from various sources and processes [15, 52, 55, 80–86]. In
such analyses, it is of greatest importance to have an initial state that has physical
roots in QCD. Whenever a parametrization is used instead of a QCD-dynamical
calculation, there exists a possibility that the observed effects in the simulation
tell more about the parametrization, and less about the actual physical system
that is the QGP droplet.

In this thesis, a deep dive into the entirely novel Monte-Carlo implemen-
tation, programmed from scratch by the author, of the EKRT initial state model
(MC-EKRT) is presented. In this event generator, the initial energy density pro-
duced in the heavy ion collision comes from pQCD production of quarks and glu-
ons of very small—O(1 GeV)—transverse momentum pT called minijets, whose
multiplicity is controlled by the EKRT saturation conjecture. In MC-EKRT, the
full energy–momentum tensor Tµν of the event by event (EbyE) fluctuating ini-
tial state, including the rapidity dependence, is extractable. Although not studied
in detail in this thesis, the simulator should be able to model also small systems
like proton–nucleus (p+A) and perhaps even proton–proton (p+p) in addition
to the nucleus–nucleus (A+A) collisions, all consistently within the same frame-
work. The thesis serves as a manual of MC-EKRT, as it documents the physics
details of the model and also touches some of the development history to further
shed light on the choices made.

The MC-EKRT framework is built from the ground up in this thesis. First,
the entirety of the simulation is described shortly in Ch. 2. In rest of the chapters,
the model is described in detail in the logical order of the simulation, starting
from the nuclear collision geometry and the locations and spatial properties of the
nucleons in Ch. 3. Next, in Ch. 4, the minijet producing events are explained in
detail, including the eikonal minijet model for nucleon–nucleon scattering which
was used in [PI] to study the possibility of the need to account for nuclear shad-
owing in the Monte-Carlo Glauber models. Ch. 5 discusses the MC-EKRT way
of enforcing momentum and valence quark conservation and the local EKRT sat-
uration. Finally, the practical usage and the model parameters of the MC-EKRT
simulation are described in Ch. 6 along with the use-case examples in 3+1D and
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2+1D fluid dynamical simulation given by articles [PII] and [PIII]. Ch. 7 concludes
the thesis and gives an outlook to the future prospects of the model.



2 THE MC-EKRT SIMULATION IN A NUTSHELL

The flow chart in Fig. 1 depicts the different stages of the MC-EKRT simulation.
The simulation starts with an initialization phase, where all the relevant parame-
ters are either read from the user-provided parameter file, or calculated. After the
initialization, the simulator moves into the event generation phase. This phase is
run in parallel, using all the CPU resources available. The parallellized algorithm
simulates one collision per thread asynchronously. In a given collision, the simu-
lator first generates the colliding nucleons’ coordinates in the transverse plane
and determines, which are protons and which neutrons. After that, it checks
whether the collision trigger condition is satisfied. If it is not, the process starts
from the beginning. If a collision is triggered, the simulator goes through all the
binary pairs of nucleons, and samples the number of dijets that are produced
from each pair and the dijets’ kinematic variables and parton flavours. These di-
jets are then considered as candidates to the outputted initial state. After all the
binary pairs of nucleons are processed, the simulator filters the final output from
the candidate events. In this filtering, the EKRT saturation is first enforced locally,
and then momentum and valence quark number are required to be conserved on
a per-nucleon basis. This filtering is done in a transverse momentum pT ordered
manner, so that the jets which are produced at smaller pT (i.e., at later times 1/pT)
are inhibited by jets produced at larger pT. After the filtering, the simulator finally
collects the desired quantities from the remaining collection of dijets. When the
desired number of nucleus–nucleus collisions is simulated, the simulator moves
synchronously to the output phase. Here for example, the centrality classes can
be determined or some other analysis on the data can be done before saving, as
the raw jet output data of the simulation can grow very large.
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FIGURE 1 A graph depicting the flow of the MC-EKRT simulation.



3 GEOMETRY AND COLLISION OF TWO NUCLEI

3.1 Nucleon distribution

In the MC-EKRT model, the nuclei are simply collections of nucleons. The distri-
butions of the positions of these nucleons follow the nuclear charge density ex-
tracted from low energy electron scattering experiments [87, 88]. These densities
are parametrized using a deformed Fermi distribution in spherical coordinates

ρ(r, θ, ϕ) =

ρ0

{
1 + exp

(
r − RA (1 + β2Y20(θ) + β3Y30(θ) + β4Y40(θ))

d

)}−1

, (1)

where the nuclear radius parameter RA is expanded in spherical harmonics Y20,
Y30 and Y40 using quadrupole, octupole and hexadecapole deformation parame-
ters β2, β3 and β4, and d is the diffusion parameter. In the case of spherical nuclei
such as Pb208, the deformation parameters β are all zero and the distribution sim-
plifies into a purely radial two-parameter Fermi (2pF) distribution

ρ(r) =
ρ0

1 + exp
(

r−RA
d

) . (2)

The normalization constant ρ0 has no effect on the sampling. The parameters d
(the slope of the distribution), RA, β2, β3 and β4 are given as model input by the
user, and they are listed e.g. in [87, 88]. For example, for Pb208 RA = 6.624 fm
and d = 0.549 fm. Also Au197 is approximated as a spherical nucleus, in which
case RA = 6.380 fm and d = 0.535 fm are used. At the current state of the MC-
EKRT where only spherically symmetric nuclei have been studied, the nuclei are
not rotated in any way after the location sampling. In future, if deformed nuclei
were to be simulated, a random rotation should be applied to the orientations
of the nuclei for the simulation to account for all the possible shapes of collision
systems.

The simulation begins with the sampling of the nucleus–nucleus impact pa-
rameter b̄AB (see Fig. 2). As an arbitrary 2D vector, its probability measure follows
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A BO
b̄AB

2− b̄AB
2

s̄a
a

s̄b

bb̄abs̄s̄1

s̄2

FIGURE 2 The collision system in the transverse plane. The origin O is defined to be in
the middle of the impact parameter vector b̄AB that connects the centers of
masses of the nuclei A and B. The nucleon a with location vector s̄a is from
A and similarly the nucleon b with location vector s̄b is from B. The nucleon–
nucleon impact parameter between a and b is b̄ab. An arbitrary point s̄ in the
transverse plane is pointed by vectors s̄1 and s̄2 originating from a and b,
respectively.

bABdbABdθ = 1
2db2

ABdθ, so b2
AB can be taken from a uniform distribution. The

angle θ is not sampled at all, as the collision system does not have any special
direction and is thus symmetric with respect to rotations in the transverse plane.

The next step is to sample the positions of the nucleons for the colliding
nuclei A and B from Eq. (1) by rejection sampling. It is typically assumed that the
nucleons cannot be overlapping in the nucleus due to nucleon–nucleon repulsion.
Therefore, when the position of one nucleon is sampled, it is compared against
the positions of the other nucleons that have already been sampled. If its distance
from some nucleon would be smaller than some minimum dmin (= 0.4 fm by
default), the whole nucleus is discarded and the nucleon position sampling starts
from the beginning. This introduction of dmin deforms the radial density profile
by a small amount [89] (see Fig. 3). This is an ineffective method of implementing
the rejection distance in the sampling, but it suffices here. As long as dmin < 0.6 fm
(for Pb208), the nucleon sampling time seems to be negligible.

After determining the nucleon positions, the center of the mass of each nu-
cleus is first calculated, and then shifted to (−bAB/2, 0, 0) for the projectile nu-
cleus A and to (bAB/2, 0, 0) for the target nucleus B as shown in Fig. 2. This shift
also biases the nucleon radial density profile (see Fig. 3). Then, the simulator de-
termines randomly which of the nucleons are neutrons and which are protons.
Practically, this is done as follows: Consider the nucleus as a randomly ordered
vector of nucleons. The probability that the i:th nucleon is a proton is then Z−n

A−i+1 ,
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FIGURE 3 (Upper) Radial nucleon distributions of Pb208, generated with MC-EKRT
using different values of the rejection distance dmin. When generating nu-
clei for the dashed line with dmin = 0.4 fm, after the nucleons were sam-
pled, they were shifted so that their center of mass coincides with the ori-
gin. (Lower) The values of the same distributions in relation to the unbiased
(dmin = 0.0 fm) distribution.

where Z is the charge number of the nucleus, n is the number of protons that have
index <i and A is the mass number of the nucleus. Note that here no differences
between the spatial distributions of protons and neutrons are assumed, i.e. any
effects such as neutron skin are not taken into account. Finally after these steps,
the nucleon substructure is generated (see Ch. 3.3.2 for the details).
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3.2 Determining the nuclear collision

After the nuclei are generated, the simulation next needs to determine whether
this particular nucleus–nucleus system produces a collision or not. A great care is
needed in choosing this triggering procedure, as e.g. the centrality behaviour of
the simulation (see Ch. 6.1 for details) is very sensitive to it. The crux of the proce-
dure is to define a condition, which determines when two nuclei have interacting
matter close enough to each other that a collision is defined to happen. If it so
happens that the nuclei are generated to have all their matter too far apart from
each other, a new system of nuclei is generated from scratch and this one is dis-
carded to avoid any bias in the b̄AB distribution of the collisions. The triggering
conditions used here are similar to the ones used in MC Glauber models [62].

3.2.1 Nucleons with no substructure

Consider pairs of nucleons (a, b), where a is from the projectile nucleus and b is
from the target nucleus. Their location vectors in the transverse plane are s̄a and
s̄b, respectively. If there is even one pair, for which the transverse distance

√
(s̄a − s̄b)

2 ≤

√
σNN

trig

π
, (3)

the nucleus pair in question is decided to be colliding. For the triggering cross
section σNN

trig here, in the absence of nucleon substructure, the inelastic nucleon–
nucleon cross section is used. This condition corresponds to nucleons being hard
spheres colliding.

The used value for σNN
trig (if it is not given as a user input) is obtained from

the fits by COMPETE [90] to the total cross section σNN
tot and by TOTEM [91] to

the elastic cross section σNN
el in proton–proton scatterings at high energies as

σNN
tot (sNN)

mb
= 42.6s−0.46

NN − 33.4s−0.545
NN + 0.307 log2(sNN/29.1) + 35.5, (4)

σNN
el (sNN)

mb
= −1.617 log (sNN) + 0.1359 log2 (sNN) + 11.84, (5)

σNN
trig (sNN) = σNN

tot (sNN)− σNN
el (sNN), (6)

where sNN is the center-of-mass-system (CMS) energy squared, in units of GeV2.
For the sake of documenting the model development history of MC-EKRT,

originally the plan was to calculate the inelastic nucleon–nucleon cross section
σNN

inel from an eikonal minijet model [19, 92, see also PI] and use that in the trig-
gering:

σNN
trig = σNN

inel = π

∞∫
0

db2
(

1 − e−TNN(b̄)σjet(
√

s,p0)
)

, (7)
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where b̄ is the nucleon–nucleon impact parameter, the overlap function TNN(b̄)
is defined in Ch. 3.3.1 and the inclusive two-jet cross section σjet (see Ch. 4.3) was
to be controlled with momentum cutoff p0 so that the calculated σNN

inel would co-
incide with the measured one. It was also planned to use the nuclear-shadowed
inelastic nucleon–nucleon cross sections [PI] in the simulation of minijet produc-
tion from each nucleon–nucleon pair, which would have resulted in a HIJING-
like [74, 75] simulation of (physical) nucleon–nucleon subcollisions. In the end,
it proved that such an approach could not reproduce the original EbyE EKRT
results [55]. To produce enough minijet multiplicity through the simulation for
the local EKRT saturation to provide the desired dynamical regulation of the
low pT, σjet has to be allowed to be large enough. This in turn means that in
an EKRT-saturation approach a nucleus–nucleus collision is to be considered as
a collision of two partonic parton clouds rather than a collection of individual,
physical nucleon–nucleon subcollisions. If σNN

inel were then calculated from large
enough σjet in Eq (7), it would be much larger than the measured one. If used in
the triggering, this would lead then to skewed centrality behaviour as the more
peripheral collisions would have less minijet multiplicity (this trigger effect is
discussed more thoroughly in Ch. 6.2.2), and to larger total nucleus–nucleus col-
lision rate than what is observed. Therefore, to be clear, the presented MC-EKRT
simulation uses the measured value of σNN

inel (from Eq. (6)) only in the triggering
of the nucleus–nucleus collision (when no substructure for the nucleons is as-
sumed), but not at all in the simulation of multiple minijet production from the
nucleon–nucleon pairs.

3.2.2 Nucleons with substructure

In the nucleon substructure model optionally used in MC-EKRT, nucleons consist
of N hotspots (sub-nucleon matter density spikes). To have enough particle mul-
tiplicity to match the data even in the most peripheral collisions, the triggering
condition needs to be modified when nucleon substructure is introduced. Then,
instead of nucleon locations, the triggering condition in Eq. (3) is tested against
all hotspot locations s̄H

a in the nucleus A and s̄H
b in the nucleus B:

√(
s̄H

a − s̄H
b

)2 ≤

√
σHH

trig

π
. (8)

In this scenario, the triggering cross section σHH
trig does not correspond directly to

a physical observable. Instead, it needs to be tuned so that it leads to the same
inelastic cross section of the nucleus–nucleus collision as what is obtained with
the σNN

inel trigger [PIII] without nucleon substructure. Using this modification, in
every collision there is practically always enough overlapping matter to produce
minijets. A similar hotspot triggering approach is taken also in [93, 94].
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3.3 Thickness and overlap functions

3.3.1 Nucleons

The transverse spatial structure of a nucleon is encoded in the nucleon thickness
function TN(s̄), which is traditionally defined as a z-coordinate integral of the
spatial nucleon density distribution. A way to intuitively interpret the thickness
function is as the probability density to find some matter belonging to the nu-
cleon at transverse point s̄. Consequently, the overlap function TNN(b̄) is related
to the probability density that two nucleons, whose centers are separated by an
impact parameter vector b̄, have some overlapping matter. If the simulation is
run without nucleon substructure, TN is taken to be a 2D Gaussian distribution

TN(s̄) ≡
1

2πσ2
N

e
− s2

2σ2
N , (9)

which has the normalization ∫
d2s̄ TN(s̄) = 1. (10)

The Gaussian width parameter σN follows the parametrization [95]

σ2
N

GeV−2 = 4.9 + 4α′P log
(√

s
W0

)
(11)

with α′P = 0.06 and W0 = 90 GeV. As explained in the article [PII], it is de-
rived from the experimental results and the pQCD collinear-factorization for-
mulation [96] of exclusive photoproduction of J/ψ mesons at HERA [97]. The
nucleon–nucleon overlap function TNN(b̄) is then a convolution of two of these
thickness functions

TNN(b̄) ≡ (TN ∗ TN) (b̄) =
∫

d2s̄ TN(s̄)TN(s̄ − b̄) =
1

4πσ2
N

e
− b2

4σ2
N , (12)

and is likewise normalized to ∫
d2b̄ TNN(b̄) = 1. (13)

3.3.2 Nucleon substructure

In the nucleon substructure model used in MC-EKRT, nucleons consist of NH
normally distributed hotspots. Their thickness functions TH are also taken to be
Gaussian as in Eq. (9), but with a width parameter σH. Model parameters NH
and σH are external user inputs. Using the hotspots, nucleon thickness function
is redefined as

TN(s̄) ≡
1

NH

NH

∑
i=1

TH(s̄ − s̄i) =
1

NH

NH

∑
i=1

1
2πσ2

H
e
− (s̄−s̄i)

2

2σ2
H , (14)
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where s̄i is the location vector of a hotspot. The hotspots are distributed normally

around the nucleon center with a width parameter
√

σ2
N − σ2

H so that when NH →
∞, the definition in Eq. (14) approaches the definition in Eq. (9). When sampling
the hotspot locations, no recentering or hotspot–hotspot repulsion is used.

Also the hotspot–hotspot overlap function THH ≡ TH ∗ TH needs to be de-
fined like it was done for nucleons in Eq. (12). The nucleon–nucleon overlap func-
tion then becomes

TNN(b̄ab) =
1

N2
H

NH

∑
i=1

NH

∑
j=1

THH(bij) =
1

N2
H

NH

∑
i=1

NH

∑
j=1

1
4πσ2

H
e
−

b2
ij

4σ2
H , (15)

where the impact parameters b̄ are the vectors connecting the centers of two nu-
cleons b̄ab ≡ s̄b − s̄a and two hotspots b̄ij ≡ s̄j − s̄i.

3.3.3 Nuclei

A nucleus is built from A nucleons, and its thickness function TA is therefore a
sum of the nucleons’ thickness functions:

TA(s̄) ≡
A

∑
a=1

TN(s̄ − s̄a), (16)

where s̄a is the location vector of a nucleon a in the transverse plane. By Eq.(10),
TA(s̄) normalizes to ∫

d2s̄ TA(s̄) = A. (17)

Same as in Eq. (12), the nucleus–nucleus overlap function can be defined as

TAA(b̄) ≡ (TA ∗ TA) (b̄) =
∫

d2s̄ TA(s̄)TA(s̄ − b̄) (18)

=
∫

d2s̄
A

∑
a=1

TN(s̄ − s̄a)
A

∑
b=1

TN(s̄ − s̄b − b̄) (19)

=
A

∑
a=1

A

∑
b=1

TNN(b̄ − s̄a + s̄b) (20)

=
A

∑
a=1

A

∑
b=1

TNN(b̄ + b̄ab), (21)

where b̄ab ≡ s̄b − s̄a is the nucleon–nucleon impact parameter. Following Eq.(13),
TAA(b̄) has the normalization ∫

d2b̄ TAA(b̄) = A2. (22)



4 PRODUCTION OF MINIJETS

After the nucleus–nucleus collision has been triggered, as described in Ch. 3.2,
all the binary nucleon–nucleon pairs are treated as systems that may produce
a group of independent (mini)jets (pT ≳ O(1 GeV)). The model used here is
inspired by eikonal minijet models [19, 92], which use a high energy limit of
nonrelativistic potential scattering. In those models, the transverse momentum
cutoff p0 (or similar separation of soft and hard physics) is used to normalize
the nucleon–nucleon inelastic cross section σNN

inel , similar to in Eq. (7), to phys-
ical values. By contrast, here everything is treated with pQCD, neglecting the
effect of nonperturbative (soft) collisions. Instead, p0 is brought to as low as 1
GeV, still remaining in the perturbative region (p0 ≫ ΛQCD). This increases the
b̄-integrated eikonal minijet cross section on the r.h.s. of Eq. (7) to unphysically
large values and leads to so abundant production of minijets that the coordinate
space is overfilled. That in turn allows the locally fluctuating low-pT multiplicity
to be regulated dynamically by the EKRT saturation. Effectively this increases the
robustness of the model by making it rather insensitive to the momentum cutoff
p0—a sharp distinction to the aforementioned eikonal minijet models.

For each binary nucleon pair, first it is determined how many, if at all, dijets
are produced. After that, the output variables (kinematical variables, flavours)
for all the jets are sampled. As the generated collision is assumed to be a very
high energy interaction of parton clouds extending around Lorentz-contracted
nuclei, the events that produce minijets are assumed to all happen simultane-
ously at z = 0. As such, there should be no preferred order in which the binary
pairs are processed in the simulation. To achieve that, the pairs are processed in
a random order. In the current iteration of MC-EKRT this is, in fact, redundant,
as all the minijet producing nucleon–nucleon pairs are processed totally indepen-
dently from each other. Factorization is conserved until the filtering phase of the
simulation (see Ch. 5).

Again, to document the MC-EKRT development history, it is mentioned that
in the earlier versions of the simulation, the nucleon–nucleon subcollisions were
treated as physical, and momentum conservation was enforced on the subcolli-
sion level by reducing the available momentum of the nucleons by the amount
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reserved by the generated minijet production. In that setup, factorization was
broken during processing the subcollisions, and therefore the order in which the
processing was done mattered, i.e. randomization of the binary pairs became im-
portant. This randomization is still kept in the current MC-EKRT for potential
future use, as it has relatively miniscule performance overhead.

4.1 Conventional methods of determining a nucleon–nucleon in-
teraction

The very first step in the processing of a binary nucleon pair is to determine
whether it produces dijets or not. There are several ways to do this. One option
is to consider the nucleons as hard spheres that always collide when they over-
lap. This is the MC Glauber approach [62], and it can be used in MC-EKRT as an
optional feature. Another option is to have a more probabilistic approach of the
collision, with collision probability increasing the smaller the transverse distance
between the nucleon pair is. This is the approach taken in HIIJING [75], and what
was used in the early iterations of MC-EKRT. Both of these methods are discussed
here, but in the current MC-EKRT model this collision determination is not done
as a separate step at all, as is explained in Ch. 4.2. What the MC Glauber and
the probabilistic methods have in common, is that they use the physical inelastic
nucleon–nucleon cross section to determine a physical subcollision between the
nucleons. In MC-EKRT, the inelastic collision is triggered on the nucleus–nucleus
level, and the nucleon–nucleon pairs are not treated as physical collision systems.
Instead, the nuclei are thought as interacting clouds of partons provided by the
nucleons, once the nuclear collision is triggered. The parton clouds provided by
each nucleon–nucleon pair are then possible sources for (mini)jet production.

4.1.1 Hard spheres

The hard sphere model was already introduced in Ch. 3.2.1: Consider pairs of
nucleons (a, b), where a is from the projectile nucleus and b is from the target nu-
cleus, with location vectors s̄a and s̄b, respectively. If the distance in the transverse
plane √

(s̄a − s̄b)
2 ≤

√
σNN

inel
π

, (23)

the pair (a, b) is deemed to collide. The σNN
inel here is a nucleon–nucleon inelastic

cross section, which does not in general need to be the same as cross section σNN
trig

used for the triggering of the A+A-collision (see Ch. 3.2), as their role in the prop-
erties of the ultimate simulation output is different. The triggering cross section
σNN

trig affects mainly the centrality behaviour as in the larger σNN
trig allows for more

glancing nuclei to be counted as events. By contrast, larger σNN
inel affects mainly

the total number of produced dijets leading to e.g. more transverse energy ET.
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Therefore—even if their conceptual significance is very close to each other—if
they were to be treated as free parameters described by data, their values would
not necessarily coincide.

Using the eikonal approximation [19, 92], the value of σNN
inel can be calculated

as
σNN

inel = π
∫

db2
(

1 − e−TNN(b2)σjet
)

, (24)

where TNN(b2) is the nucleon–nucleon overlap function defined in Ch. 3.3.1 and
σjet is the inclusive cross section of producing two jets, which can be calculated
using pQCD and might include nuclear shadowing (details in Ch. 4.3), as was
suggested in the article [PI]. Using the Gaussian TNN(b2) from Eq. (12) and a
special function exponential integral E1 [98] the expression in Eq. (24) can be ex-
pressed as [99]:

σNN
inel = 4πσ2

(
γ + log

(
σjet

4πσ2

)
+ E1

(
σjet

4πσ2

))
, (25)

where γ ≈ 0.57722 is the Euler-Mascheroni constant.

4.1.2 Probabilistic collision

In the probabilistic model, the goal is to have the minijet production be more
probable the closer the nucleons are to each other. This is done using a b2-differen-
tial version of (24):

dσNN
inel

db2 (b2) = π
(

1 − e−TNN(b2) σjet
)

. (26)

To have this function give a collision probability distribution for any b2 > 0,
it needs to be normalized so that the probability of having a collision is 0 ≤
Pcollision(b2) ≤ 1. The positive definite dσNN

inel
db2 has its maximum at b2 = 0. The

simplest choice is therefore to choose

Pcollision(b2) =

dσNN
inel

db2 (b2)

dσNN
inel

db2 (b2 = 0)
, (27)

which corresponds to having Pcollision(b2 = 0) = 1. Note that this choice is at this
point arbitrary, as some other Pcollision(b2 = 0) < 1 could equally well be chosen.
All else being equal, this would lead to fewer events that produce any minijets
per nucleus–nucleus event.
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4.2 Sampling the number of dijets in MC-EKRT

In the current MC-EKRT model, once the nuclear collision has been triggered,
Poissonian statistics is used to determine the number of independent dijet pairs
produced from the parton clouds of one binary nucleon pair. For two nucleons a
and b from the nuclei A and B, with the impact parameter b̄ab (as in Fig. 2), the
probability of producing n independent (mini)jet pairs is

Pn(b2
ab,

√
sNN, p0, {s̄a}, {s̄b}) ≡

(
N̄ab

jets

)n

n!
e−N̄ab

jets , (28)

where n is now a non-negative integer and the expectation value of the number of
the dijets from the binary nucleon pair, N̄ab

jets, is assumed to depend on the impact
parameter b̄ab, available energy

√
sNN , pT cutoff p0, and the nucleon configura-

tions {s̄a} and {s̄b} of the nuclei A and B:

N̄ab
jets ≡ N̄ab

jets(b
2
ab,

√
sNN, p0, {s̄a}, {s̄b}) (29)

= TNN(b2
ab) σjet(

√
sNN, p0, {s̄a}, {s̄b}), (30)

where TNN stands for the nucleon–nucleon overlap defined in Eq. (12), and σjet
is the integrated inclusive two-jet cross section which will be defined in detail in
Ch. 4.3.2. Note that, in Eq. (28), n can also be zero, so there is no need to decide
beforehand whether a minijet producing event occurs. Even then, to reduce the
simulation time, the Poissonian distribution is not even sampled if b̄ is so large
that TNN(b2) < 10−8 1

mb as producing any jets then would be very improbable.
Finally, just as a side remark, note that if the event generator is, as an op-

tion, used to mimic the MC Glauber model, and the collision was to be sampled
separately as described in Ch. 4.1, a zero-truncated Poissonian distribution needs
to be used:

Pn>0(b2) ≡

(
N̄ab

jets

)n

(
eN̄ab

jets − 1
)

n!
. (31)

The n = 0 case has to be in this case truncated because there should be more than
zero dijets if it is already decided that minijets should be produced.

4.3 Minijet cross section

The inclusive pQCD cross section of producing two jets in a nucleon–nucleon
collision is a key component in several parts of the simulation. Here collinear fac-
torization framework is used [100]. In this picture, in leading order (LO) pQCD,
two partons, one from each nucleon, interact and produce two hard partons. This
process is depicted in Fig. 4. All the partons are assumed massless, and the num-
ber of flavours in the calculation is for simplicity fixed to 5. The information about
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FIGURE 4 Inclusive two jet production in nucleon–nucleon collision using collinear fac-
torization in LO pQCD. In the collision, the partons i and j undergo the sub-
process σ̂ to produce the partons (jets) k and l. The nucleons are marked with
N, while X denotes the remnants of the nucleons.

the nucleons themselves enters the calculation through parton distribution func-
tions (PDFs). A novel feature in MC-EKRT is that the PDFs are unique for all
the nucleons individually, and in each event, modified in a spatially dependent
way by all the surrounding color charges inside each nucleus. This leads to the
cross section also being unique for all the distinct nucleon pairs, of which there
are e.g. 208 × 208 = 43264 in a single Pb+Pb collision. Because these calculations
are made so numerous times in the simulation, some computational performance
considerations are also needed even on the model building level.

4.3.1 Differential minijet cross section

Using collinear factorization, the value of the spatially dependent LO pQCD dif-
ferential cross section of hard parton production at a transverse point s̄ can be
written as [101]

dσjet(s̄, {s̄a}, {s̄b})
dp2

Tdy1dy2
=

K ∑
i,j,k,l

x1 f a/A
i (s̄, {s̄a}, x1, Q2)x2 f b/B

j (s̄, {s̄b}, x2, Q2)× dσ̂ij→kl

dt̂
(
ŝ, t̂, û

)
, (32)

where the factor K accounts for the missing higher order terms, and the summa-
tion is schematic for now (see Ch. 4.3.4). For both of the outgoing hard partons
flavoured k and l, p2

T is the transverse momentum squared. Their rapidities are
y1 and y2, defined as

y ≡ 1
2

log
E + pL

E − pL
, (33)
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where E is the energy and pL is the longitudinal component of momentum. The
indices i and j correspond to the flavours of the partons from the incoming nucle-
ons, and f a/A

i and f b/B
j are their spatially dependent parton distribution functions

with nuclear modifications (snPDFs), which are defined in Ch. 4.3.3. It is worth
emphasizing that through these snPDFs σjet is specific for each of the nucleon–
nucleon pairs, and depends on the spatial configuration of all the other surround-
ing nucleons in both nuclei, as marked with the notation {s̄a} and {s̄b}. The mo-
mentum fractions for partons i and j are

x1 =
pT√

s
(ey1 + ey2) and (34)

x2 =
pT√

s
(
e−y1 + e−y2

)
, (35)

respectively. Q2 is the hard factorization scale related to the process in question.
In this work, Q2 = p2

T is used for both the renormalization and the factorization
scale. The summation in Eq. (32) is over all the possible LO pQCD 2 → 2 par-
tonic subprocesses (more on this follows), and σ̂ denotes their cross sections. The
parton level Mandelstam variables are defined as

ŝ = 2p2
T (1 + cosh (y1 − y2)) , (36)

t̂ = −p2
T

(
1 + e−(y1−y2)

)
and (37)

û = −p2
T

(
1 + e+(y1−y2)

)
. (38)

4.3.2 Expectation value of the number of the dijets N̄ab
jets

To obtain the spatially dependent, nuclear shadowed expectation value N̄ab
jets of

the Poisson distribution in Eq. (28), Eq. (32) needs to be integrated. The first limi-
tation for the maximal phase space region Ω(

√
s, p0) of the two jets is x1, x2 ≤ 1.

For the rapidities in Eq. (32), this translates into

|y1| ≤ arcosh
( √

s
2pT

)
and (39)

− log
(√

s
pT

− e−y1

)
≤ y2 ≤ log

(√
s

pT
− ey1

)
. (40)

A second limitation for Ω(
√

s, p0) is

p0 ≤ pT ≤
√

s
2

, (41)
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where p0 ≫ ΛQCD is a hard cutoff scale. The expectation value N̄ab
jets is then ob-

tained by integrating over the phase space Ω(
√

s, p0) and the transverse coordi-
nate plane as

N̄ab
jets(b

2
ab,

√
sNN, p0, {s̄a}, {s̄b}) =

K
∫

d2s̄1d2s̄2 δ(2)
(
s̄1 − s̄2 − b̄

) ∫
Ω(

√
s,p0)

dp2
Tdy1dy2 ∑

i,j,k,l

1
1 + δkl

× TN(s̄1) x1 f a/A
i (s̄, {s̄a}, x1, Q2) TN(s̄2) x2 f b/B

j (s̄, {s̄b}, x2, Q2)

× dσ̂ij→kl

dt̂
(
ŝ, t̂, û

)
, (42)

where the Kronecker symbol δkl prevents the double counting of the phase space
in the case of identical particles in the final state, and the transverse vectors s̄1 =
s̄ − s̄a and s̄2 = s̄ − s̄b (see Fig. 2). The term TN(s̄1) x1 f a/A

i (s̄, {s̄a}, x1, Q2) is the
number density of the flavour i partons from the parton cloud around the nucleon
a at the transverse location s̄, dependent on the locations of not only a but also
all the other nucleons of nucleus A, as indicated with {s̄a}. This density, and the
similar density from the parton cloud of the nucleon b, are forced to be probed at
the same spatial point by the delta function.

In Eq. (42), the spatially dependent nuclear PDF (snPDF) f a/A
i (s̄, {s̄a}, x, Q2)

includes the nuclear modifications that, in the general form, depend on the nu-
cleon density of the whole nucleus A (its nucleon configuration {s̄a}) at the loca-
tion s̄, i.e., on the nuclear thickness function TA(s̄) = ∑A

a=1 TN(s̄ − s̄a) as defined
in Eq. (16). Here, this snPDF can be defined with a free nucleon PDF f N

i and a
spatially dependent nuclear modification factor ra/A

i as

f a/A
i (s̄, {s̄a}, x, Q2) ≡ ra/A

i (s̄, {s̄a}, x, Q2) f N
i (x, Q2). (43)

Using this general form, however, the integrand in Eq. (42) does not factorize into
spatial and momentum phase space parts, and the integrals cannot be analytically
calculated. Thus, the integration would have to be made during the simulation for
every nucleon–nucleon pair in each nucleus–nucleus collision. To reduce the com-
putational cost of the simulation, a simplifying restriction is made: Assume that
the nuclear modification ra/A

i depends only on the locations of all the nucleons in
A, namely {s̄a}, and not on the spatial vector s̄,

f a/A
i (s̄, {s̄a}, x, Q2) ≈ f a/A

i ({s̄a}, x, Q2) ≡ ra/A
i ({s̄a}, x, Q2) f N

i (x, Q2). (44)

With the assumption in Eq. (44), the integral in Eq. (42) now factorizes into spatial
and momentum phase time parts, and performing the integrals yields the form

N̄ab
jets(b

2
ab,

√
sNN, p0, {s̄a}, {s̄b}) = TNN(b2

ab) σjet(
√

sNN, p0, {s̄a}, {s̄b}), (45)
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from Eq. (30), where now

σjet(
√

sNN , p0, {s̄a}, {s̄b}) = K
∫

Ω(
√

s,p0)

dp2
Tdy1dy2 ∑

i,j,k,l

1
1 + δkl

× x1 f a/A
i ({s̄a}, x1, Q2) x2 f b/B

j ({s̄b}, x2, Q2)× dσ̂ij→kl

dt̂
(
ŝ, t̂, û

)
. (46)

4.3.3 Nuclear PDF modifications with spatial dependence

A parton originating from a bound nucleon that is to experience a hard collision
is affected by the partons from multiple nucleons, resulting the effective PDFs of
a bound nucleon to distinctly differ from the PDFs of the free nucleons [102–107].
This gives rise to the scale dependent nuclear modifications RA

i into the bound
nucleon PDFs:

f N/A
i (x, Q2) ≡ RA

i (x, Q2) f N
i (x, Q2). (47)

The function f N
i (x, Q2) is the baseline proton PDF if N=p. Neutron PDFs can

be obtained from the proton PDFs using isospin symmetry. MC-EKRT uses the
CT14LO [108] as the baseline free proton PDFs with the LHAPDF [109] interpo-
lation library. The global nuclear modification factor RA

i to the PDFs used is from
EPS09LO [102].

The nuclear PDF defined in (47) is an average in a sense that it treats all the
nucleons in a given nucleus equally. It would be sensible to assume that the nu-
clear effects are larger in areas where the nuclear density is largest, whereas in the
regions where single nucleons are well separated from other nucleons, nucleons
would tend to behave more like free nucleons [110–113]. This gives motivation to
define such PDFs that the strength of nuclear effects a given nucleon experiences
depends on the density of other nucleons in the vicinity. This density is encoded
in the nuclear thickness function TA(s̄) with s̄ being the point in the transverse
plane where the parton is probed. The thickness function TA is, in the event-by-
event fluctuating framework of MC-EKRT, given by the sum of nucleon thickness
functions TN as defined in Eq. (16).

4.3.3.1 Linear spatial nPDF

Previous studies [110–113] have used an approach where the average nuclear
modification factor RA

i is given a dependence on the transverse point s̄ by ex-
panding as a power series in TA, which is calculated from the average spatial
distribution of the nucleons. In a similar spirit, the fluctuating TA in MC-EKRT
could be used for defining the spatial nuclear correction in Eq.(43) as

rA
i (s̄, {s̄a}, x, Q2) ≡ 1 + cA

i (x, Q2)TA(s̄) = 1 + cA
i (x, Q2)

A

∑
a=1

TN(s̄ − s̄a). (48)
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This approximation of the series with just the first power of TA is valid for low
values of TA, as now rA

i (s̄, x, Q2) → 1 when TA → 0, the total nPDF approaches
the free nucleon PDF when nuclear thickness is small. The coefficients cA

i can
be determined by requiring that this definition approaches some globally fitted
nPDF RA

i (x, Q2), like EPS09LO [102], when the PDFs are averaged over the whole
nucleus, the spatial dependence is integrated out, and an average over a large
collection {A} of sampled nuclei is taken:

RA
i (x, Q2) ≡

〈
1
A

∫
d2s̄ TA(s̄)rA

i (s̄, {s̄a}, x, Q2)

〉
{A}

(49)

=

〈
1
A

∫
d2s̄ TA(s̄)

(
1 + cA

i (x, Q2)TA(s̄)
)〉

{A}
(50)

= 1 +
cA

i (x, Q2)

A
⟨TAA(0)⟩{A} (51)

⇔ cA
i (x, Q2) =

A
⟨TAA(0)⟩{A}

(
RA

i (x, Q2)− 1
)

, (52)

where TAA is the nuclear overlap function defined in Eq. (21), and ⟨·⟩{A} means
averaging over all the different sampled nuclei. Note that in (51) it is assumed
that the coefficients cA

i do not depend on the event-by-event fluctuations (they
are the same for all the nuclei A), and that all the s̄ dependence is encoded only
in the thickness function TA.

While enticing due to its simplicity, the definition (48) turned out not to be
a good choice for MC-EKRT. Because of the fluctuations in the nucleon positions,
TA can grow very large, especially in the case of deformed nuclei. For Pb208, val-
ues over three times the maximum value of the average TA were observed. This
means that in the shadowing region where cA

i is negative, rn will actually system-
atically, for large enough TA, be negative, which is unphysical and thus unusable
in the LO calculation here.

4.3.3.2 Exponential spatial nPDF

The spatial nPDF can be made positive definite by continuing the expansion
in (48) to infinite order, turning it into an exponential function. To simplify all
the following calculations, and to speed up the simulations, TA is replaced by T̂a

A,
the average overlap of nucleon a and the nucleus A, defined as

T̂a
A({s̄a}) ≡

∫
d2s̄ TN(s̄ − s̄a) (TA(s̄)− TN(s̄ − s̄a))∫

d2s̄ TN(s̄ − s̄a)
(53)

=
A

∑
a′ ̸=a

∫
d2s̄ TN(s̄ − s̄a)TN(s̄ − s̄a′) =

A

∑
a′ ̸=a

TNN (s̄a − s̄a′) . (54)
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FIGURE 5 The distribution ρ(T̂a
A) of the values of T̂a

A for nucleons in 10 000 Pb208 gener-
ated with MC-EKRT. The values T̂a

A = 0.3 1
mb , 0.14 1

mb , and 0.05 1
mb represent

a nucleon in a dense, average density, and scarce region in the nucleus, re-
spectively. The value T̂a

A = 0.14 1
mb is the median of the distribution in panel

a). In panel a), nucleon width is σN = 0.475 fm, and no nucleon substructure
is used. In panel b) otherwise the setup is the same but each nucleon has
three hotspots with σH = 0.2 fm. Panel a) reproduced from [PII].

Here the normalization of TN(s̄) in Eq. (13) and the definition of the nucleon over-
lap function TNN in Eq. (12) are used. An example of the distribution of the values
T̂a

A can have is shown in Fig. 5. Note that the nucleon a’s contribution is removed
from T̂A so that T̂a

A → 0 when a is very far from the other nucleons. The con-
venience of T̂a

A lies in the fact that it does not depend on the vector s̄, but only
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on the position of nucleon a in the overall nucleon configuration (the transverse
distances |s̄a − s̄a′ |). This allows the spatial integral be factored out from the mo-
mentum phase space integral in Eq. (42). If not factored, both of the integrals
would have to be calculated during the simulation for every nucleon–nucleon
pair, which would be infeasible. Using T̂a

A allows the integrals to be calculated
beforehand, while still making each nucleon–nucleon pair specific σjet dependent
on the structures of both of the surrounding nuclei.

Now the nuclear modification ra
i can be defined, this time independent of

the spatial vector s̄ as in Eq. (44), as

ra
i ({s̄a}, x, Q2) ≡ exp

(
cA

i (x, Q2)T̂a
A({s̄a})

)
. (55)

This has the same low T̂a
A behaviour as the power series mentioned in Ch. 4.3.3.1.

Additionally note that, as by construction T̂a
A → 0 when a is very far from the

other nucleons, also ra
i ({s̄a}, x, Q2) → 1 and that nucleon’s snPDF will approach

the PDF of a free proton.
The coefficient cA

i will be set like it was done in (51), but this time the equa-
tion is not generally analytically invertible:

RA
i (x, Q2) =

〈
1
A

∫
d2s̄ TA(s̄)

〈
rA

i ({s̄a}, x, Q2)
〉

a

〉
{A}

(56)

=

〈
1
A

∫
d2s̄ TA(s̄)

〈
exp

(
cA

i (x, Q2)T̂a
A({s̄a})

)〉
a

〉
{A}

(57)

=
〈

exp
(

cA
i (x, Q2)T̂a

A({s̄a})
)〉

a,{A}
(58)

≡ F
(

cA
i (x, Q2)

)
, (59)

where the normalization (17) of TA is again used. Averaging over the different
nucleons in a specific nucleus is marked with ⟨·⟩a. The function F is a monotonous
function in the values of cA

i , so there exists an inverse function that yields the
normalization

cA
i (x, Q2) ≡ F−1

(
RA

i (x, Q2)
)

. (60)

The function F can be calculated numerically for any given cA
i by sampling a

large number of nuclei A. The inverse can then be approximated numerically by
creating an interpolation function for a list of values of F

(
cA

i (x, Q2)
)
, and then

inverting that interpolation function.
However, also the exponential ansatz has a problem. The geometric nuclear

modification factor h ≡ TAra
i , which should, after averaging and integrating over

the transverse plane, yield the average nuclear modification RA
i (see Eqs. (49)

and (56)), has problematic behaviour as a function of TA in the shadowing region.
Using again TA in place of T̂a

A, the factor reads

h(TA) = TA(s̄) exp
(

cA
i (x, Q2)TA(s̄)

)
. (61)
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FIGURE 6 The distribution of geometric nuclear modification factor h(T̂a
A) values of the

exponential snPDFs as defined in Eq. (62), as a function of TA(s̄), with c=-7
which corresponds approximately to an average nuclear modification factor
R ≈ 0.4. Calculated for 400 randomized nuclei with no nucleon substructure
for fixed s̄ values located on a dense grid covering the whole nucleus area
in the transverse plane. Note the downward trend of the maximal values of
h(T̂a

A) in the region TA = 0.2–0.5 1/fm2.

This has a maximum at TA(s̄) = −1/2cA
i (x, Q2) whenever c is negative (shad-

owing region). This is problematic, as it is not expected to have less nuclear flux
when there is more nuclear matter i.e. larger TA, which would here happen at
values TA(s̄) > −1/2cA

i (x, Q2).
In the MC-EKRT setup, the problem is less clearly defined as the geometric

nuclear modification factor equivalent to Eq. (61) would be

h(T̂a
A) =

A

∑
a=1

TN(s̄ − s̄a) exp
(

cA
i (x, Q2)T̂a

A({s̄a})
)

, (62)

which does not directly depend on TA(s̄) = ∑A
a=1 TN(s̄− s̄a), but instead can have

multiple values corresponding to the same value of TA. This factor is shown in
Fig. 6. It can be seen that in the deep shadowing region, the factor (62) cannot
reach as large values with higher TA as it can with some lower values of TA.
Therefore, the same problem exists for this setup as there was with the factor (61)

Another matter of concern with the exponential snPDFs comes from the
steepness of the exponential function. The nuclear effects might actually get un-
reasonably large in the antishadowing region due to the large fluctuations in T̂a

A.
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4.3.3.3 Logarithmic-geometric spatial nPDF

The final snPDF version that is ultimately used in MC-EKRT is defined as

ra
i ({s̄a}, x, Q2) ≡

1 + log
(
1 + cA

i (x, Q2)T̂a
A({s̄a})

)
if c ≥ 0

1
1−cA

i (x,Q2)T̂a
A({s̄a})

if c < 0
, (63)

here named logarithmic-geometric snPDF, where “geometric” refers to the geo-
metric series. Three examples of this nuclear modification factor ra

i for different
nucleons can be seen in Fig. 7. This form is also positive definite, has the same
small T̂a

A behaviour as the power series mentioned in Ch. 4.3.3.1, and now TAra
i

is always an increasing function in TA. The unphysically strong antishadowing
is also tamed by the logarithmic behaviour. Here again ra

i ({s̄a}, x, Q2) → 1 when
T̂a

A → 0 for a that is far from other nucleons.
The coefficient cA

i will be set identically as it was done in 4.3.3.2, with

RA
i (x, Q2) =

〈
1
A

∫
d2s̄ TA(s̄)

〈
rA

i ({s̄a}, x, Q2)
〉

a

〉
{A}

(64)

=
〈

ra
i ({s̄a}, x, Q2)

〉
a,{A}

(65)

≡ F
(

cA
i (x, Q2)

)
. (66)

Again the function F is monotonous in the values of cA
i , so it can be inverted to

yield the normalization function

cA
i (x, Q2) ≡ F−1

(
RA

i (x, Q2)
)

, (67)

which is again then approximated numerically by creating a linear interpolation
function for a list of numerically calculated values of F

(
cA

i (x, Q2)
)
, and then in-

verting that interpolation function. Currently, the values of F
(
cA

i
)

are calculated
for a list of 101 values of cA

i , spread in 50 logarithmically-even steps from -150 to
−10−3 and then another 51 steps from 10−3 to 1015, for 10 000 randomly sampled
nuclei.

With this choice of form for the snPDFs, the geometric nuclear modification
factor h(T̂a

A) takes the form

h(T̂a
A) =

A

∑
a=1

TN(s̄ − s̄a)

1 − cA
i (x, Q2)T̂a

A({s̄a})
(68)

for negative values of cA
i instead of the one in Eq. (62). As can be seen from Fig. 8,

this time it never has a decreasing trend.
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FIGURE 7 The Logarithmic-geometric spatial nuclear modification factor for gluons ra
g

(Eq. (63)) at a fixed scale of Q2 = 1.69 GeV2, with three different values of
the average nucleon–nucleus overlap T̂a

A, as a function of the momentum
fraction x. The values for T̂a

A (see Eq. (54)) correspond to nucleons that are
in the dense (T̂a

A = 0.3), scarce (T̂a
A = 0.05) and median (T̂a

A = 0.14) region
in the Pb208 nucleus with no nucleon substructure (see Fig. 5). The global
average nPDF EPS09LO [102] is shown for comparison. The smallest x re-
gion, where ra

g<1, is called shadowing region. It is followed by antishadow-
ing (ra

g>1), EMC-effect (ra
g<1 again), and Fermi motion (ra

g>1 again) regions.
Reproduced from [PII].

To account for the spatial effects especially in the nuclear shadowing region
has proved to be a crucial ingredient in describing the centrality behaviour of the
experimental data with MC-EKRT initial states. As can be seen in Fig. 9, a sig-
nificantly higher midrapidity transverse energy ET will be produced towards the
more peripheral collisions when snPDFs are used than when the traditional, aver-
aged nPDFs are used. This gentler slope persists after hydrodynamical evolution,
and is preferred by the experimental data (see [PII]).

4.3.3.4 Momentum conservation of the PDFs

By the definition of the PDFs [101],∫
dx ∑

i
xra

i ({s̄a}, x, Q2) f p
i (x, Q2) = 1 (69)
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FIGURE 8 The distribution of the nuclear modification factor h(T̂a
A) values of the

logarithmic-geometric snPDFs as defined in Eq. (68), as a function of TA(s̄),
with c = −25 which corresponds approximately to an average nuclear mod-
ification factor R ≈ 0.3. Calculated for 400 randomized nuclei with no nu-
cleon substructure for fixed s̄ values located on a dense grid covering the
whole nucleus area in the transverse plane. Note that the maximal values of
h(T̂a

A) have a never decreasing trend.

should hold for all protons, and

A

∑
a=1

∫
dx ∑

i
xra

i ({s̄a}, x, Q2) f a
i (x, Q2) = A (70)

should hold for all nuclei. In the snPDFs defined here there are no mechanisms to
ensure this. The underlying global nuclear modifications and the baseline proton
PDFs, on the other hand, enforce these in their fits. The violation of these con-
servation laws was investigated for the exponential snPDFs and the logarithmic-
geometric ones using a sample size of 20 000 Pb208 nuclei, see Fig. 10 for the re-
sults. The variation from free protons to EPS09LO can be attributed to numerical
interpolation and integration errors. Using the logarithmic-geometric snPDFs a
percent level accuracy of the conservation laws can be observed.

4.3.4 Integrated minijet cross section

Using a shorthand notation x1 f a/A
g ({s̄a}, x1, Q2) → g1 for gluons from the pro-

jectile side and x1 f a/A
q ({s̄a}, x1, Q2) → q1 for all the different quark flavours
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dy (|y| < 0.5) of the MC-

EKRT output, simulated with logarithmic-geometric snPDFs (black solid,
see Ch. 4.3.3.3) and with averaged nPDFs (red dashed, EPS09LO [102]), for
Pb+Pb collisions at

√
sNN = 5.02 TeV, as a function of event centrality. Here

K = 2.2, κsat = 2.5, σN = 0.532 fm, σH = 0.2 fm with 3 hotspots, and
σNN

trig = 11.19 mb for both curves.
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FIGURE 10 The normalized distributions of the momentum conservation integrals of
different PDFs for the nucleons in a sample of 20 000 Pb208 nuclei with
no nucleon substructure. The left panel has the distributions for the sin-
gle nucleons (Eq. (69)), while the right panel is summed over whole nu-
clei (Eq. (70)). The values for the exponential snPDFS varied between
0.998–1.018 (207.64–207.99) and for the logarithmic-geometric ones between
1.000–1.011 (208.07–208.42) in the left (right) panel.
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q ∈ {u, d, s, c, b}, and similarly for the antiquarks and g2 and q2 for the partons
from the target side, the summation in Eq. (45) can be written explicitly as

σjet(
√

s, p0) = K
∫
Ω

dp2
Tdy1dy2

1
2

g1g2
dσ̂gg→gg

dt̂
+ g1g2

dσ̂gg→qq̄

dt̂

+ g1 ∑
q

q2
dσ̂gq→gq

dt̂
+ g1 ∑̄

q
q̄2

dσ̂gq̄→gq̄

dt̂

+ g2 ∑
q

q1
dσ̂qg→qg

dt̂
+ g2 ∑̄

q
q̄1

dσ̂q̄g→q̄g

dt̂

+
1
2 ∑

q
q1q2

dσ̂qq→qq

dt̂
+

1
2 ∑̄

q
q̄1q̄2

dσ̂q̄q̄→q̄q̄

dt̂

+ ∑
q

∑
q′ ̸=q

q1q′2
dσ̂qq′→qq′

dt̂
+ ∑̄

q
∑

q̄′ ̸=q̄
q̄1q̄′2

dσ̂q̄q̄′→q̄q̄′

dt̂

+

(
∑
q

q1

)(
∑

q̄′ ̸=q̄
q̄′2

)
dσ̂qq̄′→qq̄′

dt̂
+

(
∑̄
q

q̄1

)(
∑

q′ ̸=q
q′2

)
dσ̂q̄q′→q̄q′

dt̂

+ ∑
q

q1q̄2

(
dσ̂qq̄→qq̄

dt̂
+

1
2

dσ̂qq̄→gg

dt̂
+ ∑

q′ ̸=q

dσ̂qq̄→q′ q̄′

dt̂

)

+ ∑
q

q̄1q2

(
dσ̂q̄q→q̄q

dt̂
+

1
2

dσ̂q̄q→gg

dt̂
+ ∑

q′ ̸=q

dσ̂q̄q→q̄′q′

dt̂

)
, (71)

where the extra factors of 1/2 are the symmetry factors of the identical final state
partons and the functional forms of the subprocess cross sections dσ̂ij→kl

dt̂

(
ŝ, t̂, û

)
are well known in the literature [101]. As the initial state partons come from
the parton clouds of different nucleons, their PDFs are also always different (see
Ch. 4.3.3), and therefore e.g. the processes g1q2 → XY are always separately cal-
culated from processes q1g2 → YX even though the subprocess is the same phys-
ical process. In MC-EKRT, the final state partons (minijets) are also kept track of.
Therefore the û–t̂ symmetrization, which is often done in the flavour blind cal-
culation of jet cross sections, cannot be performed. Moreover, all the PDFs for u
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and d quarks are split into valence and sea contributions (whose values of course
depend on whether the nucleon is a proton or a neutron),

u = uV + uS and (72)
d = dV + dS, (73)

so that it is possible to determine if a process was initiated by a valence quark for
valence number conservation (more on this in Chs. 4.4 and 5.4).

Using the logarithmic-geometric snPDFs from Ch. 4.3.3.3, σjet from Eq. (46)
can be integrated numerically. The integral varies from a nucleon–nucleon pair
to another, as it depends on the values of T̂a

A and T̂b
B, which are nucleon specific.

Therefore, an interpolation grid for σjet is calculated (or read from a file) in the
initialization phase of the MC-EKRT simulation. Whenever needed, the values
for integrated σjet are then read from that grid using linear interpolation. The
grid is constructed by computing σjet for varying T̂a

A and T̂b
B from minimal to

maximal values in equidistant steps. The number of steps in each dimension is
calculated so that the values of σjet do not change more than approximately 5%
from one grid point to the next. As all the ingredients for the expectation value
N̄ab

jets of the number of the dijets are now defined, some examples of the Poissonian
distribution in Eq. (28) can be seen in Fig. 11.

4.4 Sampling the properties of the jets

After the number of the dijet processes in a single nucleon–nucleon pair is de-
termined, as described in Ch. 4.2, the produced jets are given all their properties.
First, the integrand on the right hand side of the Eq. (71) is turned into a probabil-
ity density by normalizing with the full integrated σjet. The kinematical variables
pT, y1, and y2 of the two jets are then obtained from that distribution using im-
portance sampling [114]. With the kinematical variables set, the same probability
density (the integrand on the right hand side of the Eq. (71)) is interpreted as a
sum of discrete probability weights for all the different partonic subprocesses.
Randomly sampling this sum then yields the subprocess, which in turn deter-
mines the flavours of both the incoming and the outgoing partons (jets).

An invertible envelope function

E(pT, y1, y2) ≥
dσjet

dp2
Tdy1dy2

∀ pT, y1, y2 (74)

has to be defined for the importance sampling. For simplicity, in MC-EKRT a
factorized

E(pT, y1, y2) = EpT(pT)Ey1(y1)Ey2(y2) (75)
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FIGURE 11 Examples of the Poissonian probability distribution Pn(b2) for n indepen-
dent dijets generated from the parton clouds of one nucleon–nucleon pair
for three different values of nucleon–nucleon impact parameter b̄. The val-
ues for the average nucleon–nucleus overlap T̂a

A (see Eq. (54)) correspond
to nucleons that originate from dense (T̂a

A = 0.3), scarce (T̂a
A = 0.05) and

median (T̂a
A = 0.14) region in the Pb208 nucleus with no nucleon substruc-

ture (details of the implementation of the nucleon-configuration dependent
nuclear shadowing in Ch. 4.3.3, see also Fig. 5). Reproduced from [PII].
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is used. Further still, uniform distributions from ymin
i to ymax

i are used for both

Eyi . By examining the behaviour of
dσjet

dp2
T

when used with varying energies and

PDF sets, it was found that a suitable form for EpT in MC-EKRT is

EpT(pT) =

{
A
pT

if pT ≤ B

CpD
T if pT > B

, (76)

whenever p0 < 2.0 GeV. If p0 ≥ 2.0 GeV, the EpT(pT) ∝ 1/pT part is not used
at all. The constants A, B, C and D are otherwise determined in the initialization
phase of the simulation such that EpT is continuous everywhere and the condi-
tion (74) is met. The need for the EpT(pT) ∝ 1/pT part arises from the used PDFs.
Most of the published PDF sets are frozen to a constant value under the scale of
Q = 1.3 GeV [108] (pole mass of the charm quark), which causes there to be a
drastic change in the slope of

dσjet

dp2
T

around pT = 1.3 GeV when the PDF scale is set
to Q = pT.

After the subprocess is chosen, if there was a u or d quark in the initial state,
it needs to be decided whether that parton came from a valence or sea contribu-
tion to the PDF. In the current version of the MC-EKRT, the following procedure
is used. A uniformly distributed random number X ∈ [0, 1] is sampled, and then
if

fV({s̄a}, x, Q2) > X
(

fV({s̄a}, x, Q2) + fS({s̄a}, x, Q2)
)

, (77)

the dijet is flagged to have a valence quark contribution from the corresponding
mother nucleon. The values fV and fS are the valence and sea contributions to the
value that the quark PDF obtains in this particular jet process with its particular
parameters and x and Q2, calculated using the sampled variables pT, y1, and y2.
This procedure is equivalent to dividing all the terms in Eq. (71) having u or d
quarks in the initial state once more, into terms originating from valence quarks
and other terms originating from the sea quarks. The valence quark contribution
flags come into use when in the end state filtering phase of the simulation valence
quark number conservation is enforced (see Ch. 5.4).

Finally, a transverse-plane origination point for the jets needs to be sampled
from the distribution that is proportional to the product of the nucleon thick-
ness functions TN of the mother nucleons. When there is no nucleon substructure,
this product is Gaussian as a product of two Gaussian distributions, so the sam-
pling is straightforward. If nucleon substructure is included in the simulation,
the product TNTN is a sum of N2

H Gaussian functions, where NH is the number of
hotspots. This kind of multimodal distribution can be sampled by first choosing
a random hotspot pair from a discrete distribution where the probability weights
are the peak heights of the Gaussian functions of the hotspot pairs in question.
The chosen pair’s product THTH is then again proportional to a normal distribu-
tion which can be sampled for the location of the origination point of the dijet.
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4.5 About Monte-Carlo Glauber

Now, after the nuclear shadowing and the minijet cross section are defined, it
can also be explained how it was thought that MC Glauber models could be im-
proved using shadowing, as suggested in article [PI]. In MC Glauber models, the
nucleons are sampled from the Woods-Saxon distribution and the A+A collision
is triggered like described in Ch. 3. Then, the total number of binary nucleon–
nucleon subcollisions, Nbin, is determined by the procedure described by Eq. (23)
(see e.g. [62, 115]). One of the uses for these simulations is in the experimental
side of particle physics. One can use Nbin from MC Glauber in converting the
measured per-event yields of a hard-process observable, Nobs/Ncollisions, in A+A
collisions into cross sections:

σobs =
σNN

inel
Nbin

Nobs

Ncollisions
, (78)

where σNN
inel is the same nucleon–nucleon inelastic cross section as in Eq. (23).

Combined, Eqs. (23) and (78) establish a complicated relation between σNN
inel and

many of the experimentally determined cross sections in A+A—via MC Glauber.
In LHC Run II heavy electro-weak vector boson production measurements by
ATLAS collaboration [116, 117], the nuclear modification factors

RAA(y) =
1

A2

dσAA
dy

dσNN
dy

(79)

showed both a normalization-like difference in the rapidity y dependent mini-
mum bias (no centrality selection) results, and an enhancement towards the pe-
ripheral events in the centrality dependent results, compared to the theoretical
predictions (see Figs. 1 and 3 in [PI]). In [PI], it was shown that both of these
tensions actually went away, if a significantly lower value of σNN

inel was used. It
was further demonstrated that such a lower value of σNN

inel could be calculated
using the eikonal minijet model described in Ch. 3.2.1 (Eq. (7)), with σjet calcu-
lated using LO pQCD, like in Ch. 4.3 but with averaged nPDFs. This was taken
as a possible sign that the new precision data on the standard candles of the ini-
tial state like electro-weak bosons actually needs nuclear shadowing effects taken
into account in the MC Glauber models. Routinely, the measured free proton σ

pp
inel

is used in place of σNN
inel . Afterwards, however, the measurements of Z-bosons by

the CMS collaboration [118] and W±-bosons by the ALICE collaboration [119] did
not demonstrate the same effects.

The original idea chased by the study in the article [PI] was to use these
MC Glauber results of the well-understood heavy boson processes as a standard
candle to constrain the MC-EKRT model. If the used model would have used a
physical σNN

inel calculated from a physical σNN
jet to determine a collision between

physical nucleons, as described in Ch. 4.1, comparisons to MC Glauber results
could have been used to fix parameters like cutoff transverse momentum p0 and
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the scale choice Q2. In the end, this line of reasoning had to be abandoned in order
to obtain a model which is consistent with the previous EbyE EKRT model [55],
i.e. to allow for enough minijet production and saturation to match the experi-
mental results, as described in Ch. 3.2.1.



5 FILTERING OF THE CANDIDATE MINIJETS

After the dijets are generated from the nucleon–nucleon pairs, as described in
Ch. 4, a clearly unphysical overabundance of minijets is observed. This is in-
tentional. All of the produced dijets are next considered as candidates for the
initial state of the subsequent evolution of the A+A collision. To determine the
finally allowed physical initial state, the multiplicity of the candidate jets will be
reduced by filtering. The local EKRT saturation criterion is expected (and seen in
the testing phase when comparing against the data) to be the major driver in the
dynamical regulation of the low-pT jet multiplicity. To allow saturation to be the
dominant QCD mechanism that controls the minijet production, that criterion is
used first on the list of the dijet candidates. After that, the remaining list is sub-
jected simultaneously to filters that force conservation of momentum and valence
quark number per nucleon. The minijet list before and after the full filtering pro-
cedure is depicted in Fig. 12. In addition to defining the details of the MC-EKRT
model, also the numerous alternative paths that were thought and tested and
could have been used in MC-EKRT are described in this chapter, again to docu-
ment the model development history and to provide a rationale for the choices
made.

5.1 Ordering of the dijets

The order in which the dijets are passed through the filters affects the output,
as the filters are defined in such a manner that the minijets passing the filters
earlier will affect which minijets will pass later. Consider the energy budget of
a nucleon. The first dijet that is produced from that nucleon will never break
the energy budget, so it will never be filtered. If the produced dijets were, for
example, handled in some spatial order, the results would be spatially biased
to having more survived candidates towards the starting point of the filtering.
There are numerous other ways imaginable to biase the results in some manner
by negligent ordering. As a matter of fact, any kind of filtering also breaks the



47

−9.0 −6.0 −3.0 0.0 3.0 6.0 9.0
x [fm]

−9.00

−6.00

−3.00

0.00

3.00

6.00

9.00

y
[f

m
]

−9.0 −6.0 −3.0 0.0 3.0 6.0 9.0
x [fm]

−9.00

−6.00

−3.00

0.00

3.00

6.00

9.00

y
[f

m
]

a)

b)

FIGURE 12 The minijets produced in a single central Pb+Pb collision at
√

sNN =

5.02 TeV in the transverse plane, with parameters K = 2.0 and κsat = 0.5
with no nucleon substructure. The panel a) depicts all the candidate mini-
jets before the filtering, while panel b) depicts the same minijets after apply-
ing all the filters. The radius of a circle representing a minijet is 1/(κsat pT),
and the colors are darker for larger pT. Image credit Yuuka Kanakubo.
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FIGURE 13 The effects of filtering of the candidate events to the produced jet pT-
spectrum dNjet

dpT
in Pb+Pb collisions at

√
sNN = 5.02 TeV. In the left panel, the

spectra are split into minijets from central and peripheral collisions (notice
a multiplier on these). In the right panel, the spectra are split by the nuclear
density TATB at the formation location of the dijet into jets produced in a
scarce region (higher curves) and in a dense region (lower curves, also a
multiplier on these). Here K = 2.2, κsat = 2.5, σN = 0.532 fm, σH = 0.2 fm
with 3 hotspots, and σNN

trig = 11.19 mb.

factorization assumption of the pQCD calculation as the produced minijets are
not anymore independent of each other. A great care therefore is needed to choose
the ordering in a physically motivated way.

There must not be any spatial dependence in the ordering scheme for it to
not introduce any spatial bias. Another limitation comes from the jet pT-spectrum,
which tells that factorization is a good approximation in A+A for larger pT [102,
106, 120, 121]. The higher-twist effects scale in inverse powers of the virtuality
Q2, so factorization holds better for the higher scales. Therefore, to maintain fac-
torization, it is reasonable to order the dijets according to their jets’ pT in order to
have the filters cut minijets mainly from the small pT region. This conservation of
the jet pT-spectrum is demonstrated in Fig. 13.

Intuitively, the ordering of the dijets should follow the formation time τ.
The jets formed first would prevent the processes that might have formed jets
at a later time. The choice then boils down to the most valid definition of the
formation time. Originating from the uncertainty principle, a typical choice for a
jet formed in a hard process with a hard scale ∼ pT would be

τ = 1/pT. (80)

This is also the case for the latest iteration of MC-EKRT, where the default order-
ing is with decreasing (minij)jet pT.
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Another possible approach would be to include a rapidity y dependence
into τ. Consider a dijet process with virtuality Q. The jets can be thought to have
a formation time 1/Q in their rest frame. The process can be assumed in this cal-
culation to choose from the t- and u-channel graphs the one which yields smaller
virtuality. This is then boosted into the collider frame with a Lorentz gamma –
type factor of E/Q (where E is the energy of the jet), to get

τi =
Ei

Q2 =
cosh (yi)

pT
(
1 + e−|y1−y2|

) , (81)

where i = 1 or 2, and Ei = pTcosh (yi) and Q2 = min
(∣∣t̂∣∣, |û|) are used. The

formation time of the dijet would then be

τdijet = max (τ1, τ2) . (82)

Yet another different formation time could be defined as above in Eq. (81)
but calculating the formation time for the whole dijet with rapidity ydijet =

y1+y2
2

directly:

τdijet =
1
Q

Edijet

Mdijet
=

cosh
(

y1+y2
2

)
pT

√
1 + e−|y1−y2|

, (83)

where Edijet is the energy of the dijet, Mdijet is the invariant mass of the dijet, and
Edijet
Mdijet

is the Lorentz gamma factor.
All three of these different definitions of formation time τ were tested for

MC-EKRT. In the end, the simplest option (Eq. (80)) was chosen as it was pre-
ferred by the experimental data. Both of the rapidity dependent formation times
yielded transverse energy distributions dET

dy that were too narrow in rapidity, see
Fig. 14. In addition to reproducing the data better, the pT-ordering is also sup-
ported by purely theoretical view—the factorization holds better for larger virtu-
ality Q2, as discussed above, and the virtuality of the minijet production is given
here by the factorization scale choice Q2 = p2

T.

5.2 EKRT saturation

In the local EKRT saturation criterion used in MC-EKRT, each dijet is considered
to have a spatial uncertainty area in the transverse plane around their production
location with radius of 1/pT. An external parameter κsat, which acts as a “packing
factor” in determining how close to each other the dijets can be produced, is
introduced. Consider a dijet candidate with transverse momentum pcand

T that is
produced in the transverse location s̄cand. This candidate is then compared to all
of the previously accepted dijets with parameters pT and s̄. If for any of them√(

sx − scand
x

)2
+
(
sy − scand

y
)2

<
1

κsat

(
1
pT

+
1

pcand
T

)
, (84)
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FIGURE 14 A comparison of rapidity distributions of minijet transverse energy dET
dy in

central (left panel) and peripheral (right panel) Pb+Pb collisions at
√

sNN =

5.02 TeV for different definitions of the minijet formation time τ. The curves
correspond to the definitions of τ in Eqs. (80) (black solid), (81) (green
dashed), and (83) (red dashdotted). Here K = 2.2, κsat = 2.5, σN = 0.532 fm,
σH = 0.2 fm with 3 hotspots, and σNN

trig = 11.19 mb for all the curves.

the dijet is rejected due to breaking the local saturation criterion. See Fig. 15 for
the effect on the transverse energy of the output, and Fig. 13 on the effect on the
jet pT-spectrum.

The criterion in Eq. (84) stems from the original EKRT framework [55, 59–
61] for QCD matter initial conditions. It postulates, that in high energy A+A col-
lisions, a saturation mechanism arises to dynamically limit the ever rising mul-
tiplicity towards the low-pT (mini)jets. By a direct QCD calculation, this multi-
plicity massively overshoots the measured one if no limiting mechanism is in-
troduced. Some saturation phenomenon to limit the growth of the gluon PDFs
is needed to maintain unitarity [122]. In EbyE EKRT, this saturation is mecha-
nized by introducing a local saturation momentum scale psat that depends on the
event-by-event fluctuating local nuclear overlap TAA. Schematically, psat is found
at the scale, where 2 → 2 processes that would yield jets start to be dominated by
higher order processes, namely 3 → 2, 4 → 2 etc., when the initial gluon densi-
ties explode towards low x. This saturation is hence not a final state saturation of
gluons but effectively an upper limit of the gluon flux in the initial state.

At these scales, the initial state is dominated by the gluons. The average
local density of 2 → 2 processes producing minijets can be written as

dN2→2
AA (b̄)
d2s̄

≈ 1
2

∫
dp2

Tdy1dy2 TA(s̄)x1 fg(x1, p2
T)× TB(s̄)x2 fg(x2, p2

T)×
dσ̂2→2

dt̂
,

(85)
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where pT > p0 with momentum cutoff p0. Using the fact that the gluon produc-
tion cross section scales as

dσ̂2→2

dt̂
∝

α2
s

p4
0

, (86)

and by dimensional analysis, Eq. (85) becomes for central collisions (ignoring ra-
pidity dependence, assuming symmetric collision)

dN2→2
AA (0)
d2s̄

∼
(
TAx fg

)
×
(
TBx fg

)
×
(

α2
s

p2
0

)
(87)

with x ∼ p0/
√

sNN. Similarly for 3 → 2 processes it can be written that

dN3→2
AA (0)
d2s̄

∼
(
TAx fg

)2 ×
(
TBx fg

)
× αs

p2
0

(
α2

s

p2
0

)
, (88)

where the added 1
p2

0
is needed here to cancel the extra dimension introduced by

the additional TA, and an extra power of αs in the 3 → 2 case is accounted for.
It can then be solved that at the saturation scale where dN2→2

AA ∼ dN3→2
AA it also

holds that

TAx fg ∼
p2

0
αs

, (89)

which leads to

dN2→2
AA (0)
d2s̄

∼
p2

0
αs

×
p2

0
αs

× α2
s

p2
0
∼ p2

0 × constant, (90)
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when substituted to Eq. (87). This can now be integrated over the effective nuclear
transverse area πR2

A to obtain

N2→2
AA (0)

π

p2
0
∼ πR2

A, (91)

where the factor π/p2
0 can be interpreted as being the transverse area of the mini-

jet production process dictated by uncertainty principle. This is the original (ge-
ometric) EKRT saturation criterion [59]. The transverse locality was then intro-
duced, in EbyE EKRT [55], by a fairly similar line of reasoning, using the differ-
ential transverse energy dET/d2s̄ ∝ dNAA/d2s̄ × p0.

The evolution from saturation criterion Eq. (91) into criterion Eq. (84) can
be seen directly in the basic idea that the jet processes occupy a transverse area
∝ 1/p2

T, and that the lowest-pT minijets are cut off when the coordinate space
is filled. The packing factor κsat is very similar to Ksat from [55] (parametrically
κ2

sat ∝∼ Ksat), but their exact numerical values are not comparable due to the dif-
ferences in the frameworks.

Alternative approaches for saturation were also considered. Mainly the mo-
tivation was to introduce a rapidity dependent component to be able to control
the width of the rapidity distributions. There were three general approaches. The
first was to introduce a rapidity dependent factor directly to the jet radii on the
right hand side of Eq. (84). Its form could, for example, be some effective part
of gluon–gluon scattering cross section formula inspired by the factorized differ-
ential jet production cross section in Eq.(32). The second approach was to add
another, rapidity dependent, criterion in addition to the criterion in Eq. (84). This
could be, for example, an exclusion region in rapidity around both jet rapidities
or dijet rapidity ydijet =

y1+y2
2 . The third approach was to mimic the formula (89)

more directly, and remove the geometrical picture altogether. In this model, the
candidate dijet produced in a transverse location s̄ would be rejected if

TA(s̄)x1 f a/A
i (s̄, x1, p2

T)
αs(p2

T)

p2
T

> κsat or (92)

TB(s̄)x2 f b/B
j (s̄, x2, p2

T)
αs(p2

T)

p2
T

> κsat, (93)

where TA and TB are the nucleon configuration specific, fluctuating nuclear thick-
ness functions defined in Ch. 3.3.3 and f a/A

i and f b/B
j are the similarly fluctuating

spatial nPDFs defined in Ch. 4.3.3.
These rapidity dependent saturation criteria and some of their variations

were considered and tested. In the end, all the different methods could be tuned
to yield mostly very similar results. Thus it was again chosen to use the simplest
criterion—the local rapidity-independent one in Eq. (84)—in MC-EKRT.
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5.3 Momentum conservation

In the beginning of the project that came to be MC-EKRT, it was first planned
to conserve the momentum already during the generation of the candidate di-
jets in a manner not completely unlike what is done in HIJING [74, 75]. This was
done by reducing the momentum of the scattering nucleons each time a new dijet
was generated, so that the effective σjet would then become smaller for the subse-
quent nucleon–nucleon interactions. This, however, causes the jet pT-spectrum to
be smaller than in the non-momentum-conserving case, especially towards high-
pT jets. In fact, this effect is the greater the larger jet pT gets. This is directly in
contradiction with the fact that factorization should hold better the larger the jet
pT gets. The root of the issue can be understood as follows. The larger the avail-
able

√
sNN for the nucleon–nucleon collision is, the larger the probability of pro-

ducing a high-pT dijet becomes. With decreasing
√

sNN, the jet production cross
sections decrease and their pT-slopes steepen. Hence, with momentum conserva-
tion reducing the available

√
sNN in the successive nucleon–nucleon collisions, it

becomes increasingly less probable to produce high-pT jets. In the case of HIJING,
this bias is documented in [75], and is compensated for by generating the high-pT
jets first whenever such a trigger jet option is chosen.

The method that ultimately ended up in MC-EKRT, and that preserves fac-
torization for high-pT jets, is to use the following filter after all the candidate
minijets are already produced. When processing a dijet process having momen-
tum fractions x1 and x2, and originating from projectile nucleon a’s and target
nucleon b’s parton clouds, there exists n already accepted dijet processes from a’s
cloud and m accepted dijets from b’s cloud. Linked to these accepted processes,
momentum fractions (x(1)1 , . . . , x(n)1 ) are used from a and (x(1)2 , . . . , x(m)

2 ) are used
from b. Then, if either

x1 +
n

∑
a=1

x(a)
1 > 1 or (94)

x2 +
m

∑
a=1

x(a)
2 > 1, (95)

the candidate dijet exceeds the available per-nucleon momentum and is thus re-
jected. See Fig. 15 for the effect on the transverse energy of the output, and Fig. 13
for the effect on the jet pT-spectrum.

This method behaved well and yielded satisfying results as it was tested.
Again, to document the model building history, it is noted that, originally, this
filter was used simultaneously with the saturation filter for each minijet at a time.
Then the flow coefficient v2–v3 ratio was inspected (with 2+1 D EbyE hydrody-
namics) [PIII] and the model at that time did not achieve the same accuracy as
the previous EKRT studies. It was clear that saturation needed to be the most
dominant limiting factor on the output, see the discussion in Ch. 5.5. An attempt
was then made to relax the momentum conservation criterion somewhat. That



54

method was ultimately not included in MC-EKRT as applying the saturation fil-
ter first before all the other filters was found to be a better solution—especially
from the viewpoint of having saturation as the dominant dynamical mechanism
for regulating the produced minijet number—but it is still explained here for the
sake of completeness.

Again, as in Ch. 4.3.3, the nuclear collision is considered as a collision of two
clouds of partons. As the partons contributing to the production of the minijets
may come from any of the nucleons in the transverse vicinity, the energy budget
can also be extended to consider all the nearby nucleons as follows: Let a given
dijet with momentum fractions x1 and x2 originate from the scattering of nucleon
a0 from the nucleus A and nucleon b0 from the nucleus B. Let the nucleon a0 also
produce dijets (before considering filters) with nucleons (b1, . . . , bm). Similarly
the collection of nucleons (a0, . . . , an) is the part of the nucleus A that the nucleon
b0 produces dijets with. The momentum conservation is then considered on the
level of these collections. Let the nucleons (b0, . . . , bm) be associated with mo-
mentum fraction limits (xb0

max, . . . , xbm
max), and the nucleons (a0, . . . , an) with limits

(xa0
max, . . . , xan

max). Now, for the dijet process to be accepted, both conditions

x1 ≤
n

∑
i=0

xai
max and (96)

x2 ≤
m

∑
j=0

x
bj
max (97)

must be true. If the dijet process is accepted from all of the filters, all the limits

xai
max and x

bj
max are reduced by factors

Tnn(s̄ − s̄ai)
n
∑

i=0
Tnn(s̄ − s̄ai)

x1 and
Tnn(s̄ − s̄bj)

m
∑

j=0
Tnn(s̄ − s̄bj)

x2, (98)

respectively, where s̄ is the transverse location of the origination point of the dijet
(see Ch. 4.4), and s̄n is the transverse location of the nucleon n. If any of the limits
xmax were to go negative, they are set to zero and the remainder of the momen-
tum fraction is reduced from the other nucleons in their collections, again in the
same Tnn weighted manner. This process is continued iteratively until there are
no remainders left, and the total reduced from xai

max:s is x1 and similarly the total

reduced from x
bj
max:s is x2. What makes Tnn weighting sensible is that with it in

most cases most of the energy in a dijet process is taken from the nucleons that
are closest to the process itself.

This method had some merits being a looser requirement than the strict
per-nucleon momentum conservation, but it did not solve the problem with v2–
v3 ratio by itself. Therefore it was decided that the momentum conservation in
MC-EKRT would be implemented using the most straightforward and transpar-
ent per-nucleon method represented by Eqs. (94) and (95). The problem with the
flow coefficient was then solved by changing the ordering of the filters, see the
discussion in Ch. 5.5 and [PIII].
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FIGURE 16 The effects of the valence quark number conservation filter on the produced
minijet rapidity distribution of the baryon number dB/dy in central (left
panel) and peripheral (right panel) Pb+Pb collisions at

√
sNN = 5.02 TeV.

The curves correspond to the default MC-EKRT model with all the filters
enabled (solid black) and with valence quark filter disabled (red dashed).
Here K = 2.2, κsat = 2.5, σN = 0.532 fm, σH = 0.2 fm with 3 hotspots, and
σNN

trig = 11.19 mb for both of the curves.

5.4 Valence quark number conservation

A valence quark number conservation filter is applied to conserve baryon num-
ber and e.g. electromagnetic charge in nucleons. As explained in Ch. 4.4, the di-
jets that come from valence quark initiated processes are flagged. In the filtering
phase, a running count is then kept of the valence quark processes for all the nu-
cleons separately. All the dijets that would increase the valence counts over two u
quarks and one d quark for proton mother or over one u quark and two d quarks
for neutron mother will be rejected. This filtering is the most lenient of the three
at least in A+A scatterings when only the number of rejected processes is consid-
ered, as gluon-initiated processes clearly dominate the high energy collisions. For
smaller systems—e.g. p+A and especially p+p—this filter is expected to be more
significant, but those studies are beyond the scope of this thesis. See Fig. 16 for
the effect on the baryon number in Pb+Pb collisions at the LHC.

5.5 Ordering of the filters

The order in which the filters are implemented affects the end results. Consider
four candidate dijets A, B, C and D. Say, A blocks B and C blocks D because of mo-
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mentum conservation, and B blocks C due to saturation. Now, if the momentum
conservation filter were to be sequentially applied first to the list, there would be
dijets A and C left for the saturation filter. Both of them would be accepted then.
If the filters were applied the other way around, starting with the saturation, di-
jet C would be blocked first. Then after the momentum conservation filter, the
accepted dijets would be A and D, a different set from before.

This effect is amplified by the local nature of the filters. The saturation cri-
terion is geometrical, and the momentum conservation and valence quarks both
are affecting single nucleons at a time. Therefore the effects of all of the filters
are strongest in the same spatial regions—in the densest regions of the nuclear
matter. Considering that they all restrict the same general area, the end state will
end up looking fairly similar in many observables no matter what the ordering of
the filters is. As expected, global observables like ET does not see any remarkable
effects from changing the order of the filters in MC-EKRT.

The flip side of this locality of the overlapping of the filters is that the observ-
ables that depend on the fine spatial structure, like particle correlators, will un-
doubtedly be affected by the ordering. Using the logic above based on the global
observables, it was first chosen to have all the filters applied simultaneously in
MC-EKRT. A candidate dijet would on its turn be checked against all the criteria
before it could be accepted to the end state. This setup was working well, until
studying the flow coefficient v2–v3 ratio in the preparation of the article [PIII].
In predicting that ratio, the accuracy that the previous EKRT models [55, 123]
had could not be achieved. The coefficient v3 would always be much too small
compared to v2 in comparison with the data.

It was suspected, that this disparity to the previous EKRT results might have
come from the over-eagerness of the momentum conservation filter. It and the sat-
uration filter work mainly on the same neighbourhoods of jets, and have roughly
the same size of an effect at least in terms of ET, as can be seen from Figs. 15
and 13. The suspicion was that the simultaneous enforcing of the momentum
conservation would wash out the spatial fine structure generated by the satu-
ration filter. To replicate the success of the previous EKRT results in describing
the experimental data also with MC-EKRT, the effect of the saturation needed to
be maximized. To achieve that, the saturation filter is now applied on the whole
set of the candidate dijets first. Only after all the candidates have been processed
with that, the other filters are then applied to the remaining dijets, simultane-
ously. Now, the saturation filter does the bulk of the dijet multiplicity regulariza-
tion and thus the fine structure of the accepted end state dijets is mainly dictated
by saturation.

The saturation first –scheme is not only phenomenologically seen to work
better, but also physically motivated. If one could do the pQCD calculation to
the infinite order, include the higher twist effects, and use ideal many-parton
distributions, the momentum would be conserved in the saturation calculation
alone without the need of any momentum conservation scheme. But as the the-
ory stands, such a thing cannot be attained, and there are still some momentum
conservation left needing to be taken care of after the saturation effect. The capa-
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bilities and also limits of the saturation conjecture, as a pQCD regulating mecha-
nism but also as a device to conserve momentum, are among the main motivators
of the studies in this thesis.



6 APPLICATION

After the final list of the produced jets is filtered from the candidates, as described
in Ch. 5, the QCD matter initial conditions are ready to be formed. In this phase of
the simulation, all the desired minijet quantities are calculated and the centrality
selection is done. The main output from the MC-EKRT simulation is lists of gener-
ated jets in user defined centrality classes, but initial state quantities—e.g. minijet
transverse energy distributions dET/dy—can also be calculated directly from the
simulation. This may be desired for longer runs, as the jet listings grow rapidly
to very large filesizes.

Based on the list of MC-EKRT simulated jets, the QCD matter initial con-
ditions can then be computed. In article [PII], 3+1D hydrodynamical simulation
was run using centrality bin –averaged initial states constructed from spatially
smeared MC-EKRT minijets, to compute rapidity distributions of charged parti-
cle multiplicities dNch/dη in Pb+Pb collisions at

√
sNN = 5.02 and 2.76 TeV, and

in Au+Au collisions at
√

sNN = 200 GeV. Also elliptic flow coefficients v2 were
calculated. In article [PIII], EbyE 2+1D boost invariant fluid simulation was used
in conjunction with MC-EKRT with nucleon substructure, hotspots, to study the
flow coefficients vn.

6.1 Centrality selection

After all the A+A events are simulated, they need to be divided into central-
ity classes to be able to make comparisons with the data. In principle, to make
apples-to-apples comparisons with the experimental data, the centrality of an
event should be determined from the final state observables—e.g. charged par-
ticle multiplicity—after the hydrodynamical simulation. Here, to achieve the de-
sired computational efficiency, a good approximation is to use some minijet quan-
tity O, that has a monotonous relation with a final state observable, as a proxy to
determine the centrality with. Several different such quantities O can be used.
The selected O is then calculated for each of the A+A events in a simulation run,
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and the events are ordered in terms of decreasing O. The desired centrality class
is then taken from this ordered list. For example, using total ET (more on this be-
low) for the centrality selection in a run of 100 000 A+A events, the centrality class
0–2% would correspond to the 2 000 events with the largest total ET. In testing it
was found that at least the centrality behaviour of midrapidity transverse energy
dET/dy(|y| < 0.5) was not very sensitive for the choice of O, but the following
choices are nevertheless implemented in MC-EKRT, and implementing new ones
is straightforward.

The minijet quantity O used in the articles [PII] and [PIII] was the total pro-
duced transverse energy ET, integrated over rapidity, in the whole A+A event,
which is also the default in MC-EKRT. As the simulation consists of only LO
2 → 2 massless parton scatterings, the total produced ET of the event can then be
obtained as

EAA
T = ∑

j
pj

T, (99)

where pj
T is the transverse momentum pT carried by jet j, and j runs through all

the jets in the output of that particular event.
Another possible quantity O could be the produced minijet transverse en-

ergy ET in a chosen rapidity window, typically midrapidity |y| < 0.5 or e.g. some
forward calorimeter location of an experimental setup. This is calculated other-
wise identically to Eq. (99), but the pT of a jet is only summed if the jet hits the
rapidity window, i.e.

EAA
T (|y| < 0.5) = ∑

j
θ(0.5 − |yj|)pj

T, (100)

where θ is the Heaviside step function and yj is the rapidity of the jet j.
In MC Glauber simulations, with hard disk nucleon–nucleon cross sections,

quantities Npart and Nbin are typically defined. Npart is the total number of par-
ticipant nucleons in the A+A event. Nbin (sometimes also dubbed Ncoll) is the
total number of nucleon–nucleon subcollisions in the A+A event. As there is an
option to use MC-EKRT in such a setup, and also for the sake of comparison,
these are also defined here even though they are not applicable in the default
MC-EKRT model. Either one of these or a combination of them could be chosen
as the quantity determining centrality. Some noteworthy combinations of Npart
and Nbin (used in so called two-factor ancestor models, see e.g. [124, 125]) are of
the form

N2F = x × (1 − y)× Npart + y × Nbin, (101)

where the ALICE definition [126] is x = 1.0, y = 0.199, and—in some publica-
tions, e.g. [127, 128]—ATLAS has used the definition x = 0.5, y = 0.09. For a
given event, each of these N2F ancestors (rounded down) is associated with ET
that is generated from a negative binomial distribution whose parameters are
tuned iteratively so that the centrality classes of the MC Glauber output match
the observed data.
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6.2 Qualitative effects of the model parameters

The effect of different parameters of the MC-EKRT simulation can be studied
qualitatively directly from the distributions of the minijets. For example, the trans-
verse energy ET per momentum rapidity y distributions dET/dy of the minijets
are a qualitative proxy for the energy E per spacetime rapidity ηs = 1

2 ln
( t+z

t−z
)

distributions dE/dηs. If dET/dy markedly widens, it is to be expected that also
dE/dηs will widen and, furthermore, also the final state rapidity distribution
dNch/dy will widen. This is because the energy density will be converted to en-
tropy density and further, after hydrodynamical evolution and decoupling, to
number density of charged hadrons. The absolute magnitude of the effect is, how-
ever, not directly comparable, as e.g. a steep gradient in dET/dy (and thus in the
energy density profile used in the initialization of the hydrodynamics) will cause
the pressure gradients in the hydrodynamical evolution to push energy to higher
values of ηs, widening dE/dηs of the output.

6.2.1 Saturation parameter κsat and pQCD K-factor

The most impactful and important tuning parameters of the model are the satu-
ration parameter κsat and pQCD K-factor, which cannot be calculated from any-
thing a priori in the current framework, but must be decided based on the data.
Their effects are most intuitive when dET/dy at midrapidity |y| < 0.5 is studied
as a function of centrality of the collision, see Fig. 17. Generally, a larger K-factor
causes a larger dET/dy(|y| < 0.5), regardless of the centrality. Larger K-factor
increases σjet, causing more minijets to be produced (see Ch. 4.2). Increasing sat-
uration parameter κsat also increases dET/dy(|y| < 0.5), but more in central col-
lisions than in peripheral ones. Larger κsat (weaker saturation) allows more of
the minijets to pass the minijet filter. The saturation effects are larger in central
collisions, because the strength of the saturation effect depends on the number
of produced minijets. Therefore κsat can be used to control the centrality slope of
dET/dy(|y| < 0.5), and K-factor the normalization.

As the K-factor works by increasing the number of produced candidate
minijets, and κsat dictates how many of them are filtered away, the limitations
on the effects of these parameters are different. As σjet, and thus the expectation
value of the number of candidate minijets produced from a single nucleon pair,
depends linearly on the K-factor, the mechanism how the minijets get reduced as
it is decreased is straightforward. The effect is limited more subtly from above.
At some point, no more jets can be added due to the filters. On the other hand,
because the filters are applied in the inverse pT order, a rising K-factor will in-
crease the average jet’s pT. Therefore the produced energy can be continued to
be increased quite far by K-factor even though at some point the amount of jets
may not increase as much. This effect of increasing average jet pT has not been
studied in more detail yet. Previous studies of the next to leading order (NLO)
calculation of the minijet production K-factor have seen values in the single digit
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FIGURE 17 The effect of the saturation parameter κsat (left panel) and pQCD K-factor
(right panel) on the midrapidity minijet transverse energy dET

dy (|y| < 0.5)
of the MC-EKRT output for Pb+Pb collisions at

√
sNN = 5.02 TeV, as a

function of event centrality. Here K = 2.0 for all the curves in the left panel,
κsat = 2.0 for all the curves in the right panel, and σN = 0.532 fm, σH =

0.2 fm with 3 hotspots, and σHH
trig = 11.19 mb for all the curves.

range, even up to ∼7 [129, 130]. The mechanism of the effect of κsat is also intu-
itive. When decreasing, the radii of the dijet processes increase in the transverse
plane, and more candidates are filtered out (see Fig. 12). On the other hand, when
it is increased, at some point no jets will be filtered out, so there is a dynamical
upper limit after which increasing κsat does not do anything anymore.

6.2.2 Trigger condition and σNN
trig

The way that the A+A events are triggered decides which nuclear configurations
will collide. In central collisions there is with high probability always a pair of
nucleons close enough to collide. Therefore, changing the triggering cross sec-
tion σNN

trig (see Ch. 3.2) affects peripheral collisions the most. The larger σNN
trig is,

the larger the effective radii of the nucleons and thus nuclei can scatter from each
other from farther apart. For this reason, the larger σNN

trig is the less minijets are gen-
erated in the most peripheral collisions, as they have smaller expectation value
of the number of produced minijets (N̄ab

jets, see Ch. 4.2). See Fig. 18 for the effect of
changing σNN

trig .
With default setup and no nucleon substructure, σNN

trig and the proton width
σN come from the built-in parametrizations (Eqs. (6) and (11)) and the simulation
runs smoothly. But if too large a value of σNN

trig is provided by the user, it can lead
to the simulation run hanging, as σNN

trig is here not in any way coupled to N̄ab
jets.

If a very peripheral collision is barely triggered with one pair of nucleons being
just barely within each others reach, TNN(b2) will suppress the production of any
minijets in that event, exponentially in b2. In the current version of MC-EKRT, if
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FIGURE 18 The midrapidity minijet transverse energy dET
dy (|y| < 0.5) of the MC-EKRT

output, using the trigger σNN
trig value obtained from the parametrization in

Eq. (6) (black solid), half the parametrized value (red dashdotted), and
1.5 times the parametrized value (green dashed), for Pb+Pb collisions at√

sNN = 5.02 TeV, as a function of event centrality. Here K = 2.0 and
κsat = 2.0 for all the curves. Nucleon substructure was not used.

there are no minijets in the output of a triggered event, that nuclear configuration
will be simulated again ad infinitum. If for that triggering pair b2 is very large,
the simulation will not produce any minijets in any reasonable time, leaving the
program hanging. This problem can be even more severe with the nucleon sub-
structure, if the triggering is done according to nucleon–nucleon distance. The
hotspots can still be far away from each other even if the centers of the nucleons
are relatively close. This can be avoided by triggering according to the hotspot–
hotspot distance, as in Ch. 3.2.2.

6.2.3 Parameters of the minijet production

The number of minijets produced per a nucleon pair is dictated by N̄ab
jets (see

Ch. 4.2). The width parameter σ (be it the width of a nucleon or a hotspot) in TNN
has a large effect on the number of produced minijets, very similar to the pQCD
K-factor. It is in the current MC-EKRT model obtained from a parametrization of
the experimental results (see Ch. 3.3.1), but it is worth noting that the model is
very sensitive to it.

The value of the integrated σjet is very sensitive to the momentum cutoff
p0, but the total MC-EKRT model actually is not (see Fig. 13). The majority of the
extra minijets produced by lowering p0 will be generated near pT ≈ p0 region,
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which is mostly filtered away by the EKRT saturation. As a QCD calculation, σjet
is also fairly sensitive to the used PDF set and the factorization and renormal-
ization scales, as can be seen in [PI]. Clearly, the choices for the PDFs and the
renormalization/factorization scales are correlated with the value of the K-factor
as well, but these effects are not studied in detail yet.

6.2.4 Other parameters

The collision energy
√

sNN dependence is built-in in MC-EKRT as the cross sec-
tion σjet is always calculated separately and the widths of the thickness functions
are parametrized, but the energy is assumed to be large enough for collinear fac-
torization to be accurate, and the colliding nuclei are assumed to be contracted
to zero thickness. No assumptions are made on the nucleus itself (apart what is
said about its nucleon structure in Ch. 3.1), but the majority of the testing is done
with Pb208 and Au197. Nothing should prevent the model from working for any
other nuclei, as long as the correct PDFs are used and the randon rotation for the
deformed nuclei is added. The model is also suitable for p+A and even p+p sim-
ulation. While very interesting applications, these remain out of the scope of this
thesis.

6.3 Input and output

The user of the MC-EKRT simulation code is expected to provide a file that spec-
ifies the parameters of the simulation run. Its name can be given as a command
line argument of the program, and its format and the parameter options can be
found in a file called params_template and in Appendix 1.1. Another input
file can also be given, in which the centrality classes desired to be in the output
can be provided. This can be beneficial, if the run is very large and the size of
the output files is a concern. The name of the mentioned centrality class file is
taken as a parameter in the parameter file. Any number of centrality classes can
be specified, and if not otherwise specified, a single class of 0–100% centrality is
used. In yet another file, named output_params, the jet properties desired to be
saved are given. This is again to reduce the output filesize if not every property
is needed. The format and available options can be seen in the output_params
file provided with the code and in Appendix 1.2.

The specified properties of the simulated (mini)jets in the specified central-
ity classes are output in binary format to separate files for different centrality
classes. An example of how said binary files can be read and used can be found
in the provided source code jet_reader.cpp. Note that it is not necessary to
use specifically C++ to read the output files, but as the implementation of integers
and floating point numbers is platform dependent in C++, the number represen-
tation of the jet properties cannot be universally known but must be determined
by the user based on the used platform. Therefore it is often the most straight-
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forward to use the provided jet_reader.cpp at least as an intermediary. No
matter what the number representation, the file always begins by the amount of
total A+A events in this particular file. After this follow the properties of all the
events, starting with the most central one. The record of each event starts with the
total number of produced minijets. Then all the desired properties of each dijet
are listed, one after another. No breaking characters is used at any point.

6.4 Hydrodynamical initial state

The MC-EKRT simulation can be used to provide the initial state of the QCD
matter for a relativistic hydrodynamical simulation. As the initial state consists
of semi-hard and hard partons (jets) whose momenta are fully known, all the
components of the energy–momentum tensor Tµν can, in principle, be computed.
In practice, a fair amount of additional work is required, as explained in [PII].
Hydrodynamical simulations need to have a continuous and smooth enough ini-
tial state for the evolution algorithm to be stable, while the jets’ Tµν is a collection
of disrete spikes.

6.4.1 3+1D simulation

In [PII], a 3+1D viscous fluid dynamical simulation is initialized as follows. The
MC-EKRT simulated minijets are then propagated as free particles to the proper
time surface τ0 = 1/p0 (= 0.2 fm) and spacetime rapidity ηs = y, where ηs =
1
2 ln

( t+z
t−z
)

and y being the momentum rapidity.
A Gaussian smoothing is then used to obtain the event-by-event initial value

of the energy component of the energy–momentum tensor Tττ(τ, x⊥, ηs), which is
written in the hyperbolic coordinates with longitudinal proper time τ =

√
t2 − z2

= t/ cosh ηs, transverse coordinate x⊥ and ηs. Each minijet i contributes its mo-
mentum into Tττ as a Gaussian smeared distribution (see details in [PII]). This
yields

Tττ(τ, x⊥, ηs) =
1
τ ∑

i
pT,i g⊥(x⊥; x⊥,i)g∥(ηs; ηs,i) (102)

with smearing functions

g⊥(x⊥; x⊥,i) =
C⊥

2πσ2
⊥

exp

[
− (x⊥ − x⊥,i)

2

2σ2
⊥

]
, (103)

g∥(ηs; ηs,i) =
C∥√
2πσ2

∥

exp

[
− (ηs − ηs,i)

2

2σ2
∥

]
, (104)
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where the widths σ⊥ and σ∥ are model parameters determined on the basis of
experimental data. The smearing functions are normalized as∫

d2xTdηs g⊥(x⊥; x⊥,i)g∥(ηs; ηs,i) = 1. (105)

All the non-diagonal components of Tµν are then put to zero, while the rest of the
diagonal elements are obtained by

Tij = P(e)δij, (106)

where δ is the Kronecker symbol and P(e) is the isotropic pressure obtained from
the equation of state (EoS) of strongly interacting matter at zero net-baryon den-
sity. Here, the s95p-v1 [131] parametrization with a chemical freeze-out at tem-
perature T = 150 MeV is used. The smearing in ηs increases the energy in the
system, as the relation E = pT cosh ηs is not linear. In [PII], the increase in total
energy is observed to be ∼1% for σ∥ = 0.15, and ∼10% for σ∥ = 0.5, but the in-
crease is concentrated at the larger values of ηs, which in practice are not relevant
for this study.

The event-by-event Tττ is then converted into entropy density profile using
the EoS. These entropy density profiles are then averaged for each centrality class,
and then converted back to energy density. This averaging process minimizes
the amount of times the computationally very demanding 3+1D fluid simula-
tion needs to be run. The energy density is then fed to the relativistic dissipative
second-order transient fluid dynamics simulation (details in [PII, 51, 132, 133])
until the kinetic freeze-out at T = 130 MeV. In obtaining the results shown below,
either a constant value or the parametrization param1 (from [55]) for the shear
viscosity over entropy density η/s is used, and bulk viscous effects are ignored.
The nucleons had no substructure in MC-EKRT in [PII].

The charged particle multiplicity dNch/dη as a function of pseudorapidity
η = 1

2 log |p|+pz
|p|−pz

, where p is the three-momentum of the particle, was obtained
[PII] with the setup described above. The results for Pb+Pb collisions at LHC en-
ergies and Au+Au collisions at RHIC energy, with comparison to data as reported
by ALICE [134, 135] and PHOBOS [136] collaborations, are presented in Fig. 19.
The most notable feature of the results is that by fixing κsat once, the centrality be-
haviour of the data is reproduced for all the energies, given that the normalization
is also fixed by an energy-dependent K-factor. The combination of κsat and K is
chosen so that a simultaneous good agreement with the measured multiplicities
and with the flow coefficent v2 is achieved, see Fig. 16 in [PII]. The η-dependence
is also reproduced remarkably well up to at least |η|<2 for all the energies. At the
most off-center rapidities |η|>2, the simulated distributions were a bit too narrow.
This might hint that the per-nucleon momentum conservation criterion might be
too strict. This would be in line with the thinking employed in the developing of
the snPDFs, that one should imagine the nuclei rather as clouds of partons than
as collections of separate nucleons. In any case, the obtained good agreement is a
rather non-trivial result, recalling all the required model development steps. The
resulting rapidity distributions are also relatively robust against the parameter
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FIGURE 19 Pseudorapidity distribution of the charged particle multiplicity dNch
dη , ob-

tained with 3+1D hydrodynamical simulation using centrality class –
averaged MC-EKRT initial states [PII] (see 6.4.1), for Pb+Pb collisions at√

sNN = 5.02 TeV (top row) and
√

sNN = 2.76 TeV (middle row), and
Au+Au collisions at

√
sNN = 200 GeV (bottom row). Left hand panels are

for central collisions and right hand panels for peripheral collisions. The
different curves represent different parameters for MC-EKRT and the fluid
simulation, details in [PII]. The values of pQCD K-factor and saturation pa-
rameter κsat are, for each curve separately, determined by the experimental
data by ALICE and PHOBOS from [134–136]. The K-factor is treated as a
function of energy (constant for each row), while κsat is kept constant. Taken
from [PII].
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changes, which in turn lends support to the conjecture that the driving mecha-
nism in regulating pQCD parton production is indeed saturation.

6.4.2 2+1D simulation

In [PIII], a similar initialization scheme is used, but EbyE and for 2+1D viscous
fluid dynamical simulation with nonzero bulk viscosity and dynamical decou-
pling conditions to better capture the EbyE effects of collective dynamics on ob-
servables such as flow coefficients. To reduce the dimensionality from 3+1D to
2+1D, the longitudinal expansion is assumed boost invariant. The dynamical de-
coupling of the system depends on two criteria [123]: the decoupling happens
when the local Knudsen number reaches a constant value ∼1, or when the mean
free path in the system is of the same order as the system size. Here, as only the
midrapidity is concerned by the fluid simulation, the Gaussian smearing of the
minijets is needed only in x⊥. Instead of Eq. (102), the initial energy density is
given by

Tττ(τ, x⊥) =
1

τ∆y ∑
i

pT,ig⊥(x⊥; x⊥,i)θ(∆y/2 − |yi|), (107)

where θ is the Heaviside theta function that picks only the partons that are pro-
duced in the midrapidity ∆y and g⊥ is otherwise as in Eq. (103) but normalized
as ∫

d2xTg⊥(x⊥; x⊥,i) = 1. (108)

Figure 20 shows the results from [PIII] on the flow coefficients vn as a func-
tion of centrality, compared to the EbyE EKRT results [123] and the ALICE mea-
surements [53], in Pb+Pb collisions at the LHC energies. Of the different EbyE
MC-EKRT setups in Fig. 20, one uses the default parametrization (Eq. (11)) for nu-
cleon width σN and no nucleon substructure, while the other two use 3 hotspots,
one with the default σN parametrization and wider hotspots and the other with a
stronger energy dependence in σN and narrower hotspots. The pQCD K-factor is
first set at

√
sNN = 5.023 TeV to K = 2.5 for all the curves, and the saturation pa-

rameter κsat is adjusted so that similar values of charged particle multiplicities Nch
are produced at central collisions. Then, for

√
sNN = 2.76 TeV, the values of κsat

are kept constant, and the K-factors are adjusted similarly to achieve the correct
values of Nch at central collisions. It can be seen that the various fluctuations in
the initial states provided by MC-EKRT improve the results of the hydrodynami-
cal simulation—especially concerning the energy dependence—when compared
to the previous EKRT results. The addition of the nucleon substructure model is
shown to be essential to capture the centrality dependence of the flow coefficients
vn, and particularly the v3/v2 ratio, with narrower hotspots providing the best
agreement with the data. This gives further evidence that the saturation should
be the principal mechanism regulating the low-pT minijets, as the strength of the
saturation effects first increase when hotspots are added to the model and then
even more if the hotspots are made narrower.
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7 CONCLUSIONS AND OUTLOOK

This thesis explains the ins and outs of the brand new Monte-Carlo implemen-
tation of the EKRT initial state model, serving as a technical documentation of
the finer details—and the development history—of the model. The event gener-
ator based on the presented principles opens a brand new dimension to be ex-
plored, event-by-event, with the EKRT saturation framework, which has already
had a solid standing in describing the strongly interacting matter initial state for
a couple of decades. The new MC-EKRT model with rapidity dependent initial
states and minijet multiplicity fluctuations allows for a computation of rapidity-
dependent observables, which provide, via a global analysis, further constraints
to the QCD matter properties.

In the article [PI], the calculation of electro-weak boson production in Pb+Pb
scatterings was studied for the possibility of a data signal of nuclear shadow-
ing in the nucleon–nucleon inelastic scattering cross section used in Monte-Carlo
Glauber models. The interpretation of the shadowing signal leaned on the ability
to calculate the mentioned inelastic cross section from perturbative QCD using an
eikonal minijet model and nuclear shadowed PDFs in calculating the minijet pro-
duction cross section. While the σNN

inel -normalized version of the eikonal minijet
model is, in the end, not used in MC-EKRT, it was a crucial step in its evolution,
and the underlying minijet production calculation is nevertheless still the same.

A robust framework for introducing a spatial dependence to nuclear effects
in parton distribution functions of the nucleons bound in nuclei is presented.
These logarithmic-geometric snPDFs, which were already used in articles [PII]
and [PIII], are applicable—for the very first time—also in the case of the most
extreme nucleon density fluctuations found frequently in event-by-event sim-
ulations, thanks to a positive definite functional form that has an unbounded
domain. The snPDFs are also computationally light enough for event-by-event
simulations, as they use a handy density-quantity T̂a

A to incorporate the spatial
dependence. This quantity T̂a

A is the average overlap of nucleon a and the nu-
cleus A in a mean field approximation fashion. The resulting snPDFs of a specific
nucleon a depend spatially only on a’s position relative to the other nucleons,
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making the snPDFs unique for each nucleon and each nucleon configuration of
the nucleus.

The initial state created by MC-EKRT consists of a collection of dynamically
event-by-event fluctuating minijets generated by a fluctuating pQCD model. The
full 4-momentum vector, spatial location and partonic flavour is known for each
minijet, as well as information about their formation, like nuclear thickness on
their location and the PDFs used in the process they were generated in. The mul-
tiplicity of the minijet collection is locally in the transverse plane regulated by
a new event-by-event version of the EKRT saturation criterion, and the surviv-
ing minijet collection conserves momentum and the valence quarks of the initial
nuclei on a per-nucleon basis. As seen in the discussion in [PII], this per-nucleon
momentum conservation might in the end be too strict a criterion. Further studies
are certainly needed on that part.

The full NLO implementation of the σjet calculation in the simulation would
be a very interesting but quite a non-trivial task, and it would definitely come
with a performance cost. The K-factor used in MC-EKRT could be calculated ex-
actly in NLO accuracy (in [55, 129, 130] this was done for a midrapidity window).
Even though the scale dependence remains large for small pT at NLO, such a
calculation would give a controlled access to the pT and

√
sNN dependencies of

the K-factor. Still, even if the K-factor were determined from NLO, another model
parameter would have to be introduced to control the optimal scale choice deter-
mined by the data, i.e. the number of model parameters would remain the same.

Articles [PII] and [PIII] serve as proofs of concept for the validity of the MC-
EKRT model and study its capabilities in catching the intricacies of the nuclear
collisions represented by observables such as rapidity distributions of the pro-
duced particles and the flow coefficients. They also offer use-case examples of
how the minijet output of the MC-EKRT simulation could be used to start a fluid
dynamical simulation. As can be seen from the results of the articles [PII] and
[PIII], MC-EKRT manages to provide a detailed and well working, novel way to
describe the initial state of the QCD matter in a full 3D picture.

There are many avenues to venture in QGP studies. One fascinating direc-
tion, which was left untouched by the work in this thesis, is the high multiplicity
p+A events. MC-EKRT is ideal for studying the QCD matter possibly formed
there, as the large fluctuations that give rise to those events are inherently part
of the model. The effect of these event-by-event fluctuations is intriguing also
in A+A, where the complete initialization of the full energy–momentum tensor
Tµν will probably need parton showering (such as from PYTHIA [72]) to be in-
corporated in the model. QCD kinetic theory, as in [24], could also be used to
bridge the gap from the nonequilibrium of the initial state to the hydrodynamic
phase described by the fluid simulations. Another still missing feature is a more
detailed treatment of the uncertainty of the minijet production location in the
beam direction z, as currently all the partons are assumed to be produced ex-
actly at z = 0 [137]. Finally, all the studies involving hard probes—especially
hard partons which produce hard observable jets and high-energy hadrons—in
the strongly interacting matter would naturally benefit from an initial state gener-
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ator that can simultaneously generate the probe and the background within one
framework, like the one presented in this thesis.
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APPENDIX 1 INPUT FILES

APPENDIX 1.1 Model parameters

All the parameters of an MC-EKRT run are given in a parameter file. The name
of the parameter file is given as a command line argument, or if none are given,
the parameters are read from the file called params_template. The available
parameters are (default values in parentheses):

• name: Name of the run, affects the output filenames. (”example_name”)

• sigmajet_filename: Name of the file where the call table for the values
of σjet (see Ch. 4.3.2) is stored. (”example_sigma_jet.dat”)

• read_sigmajets_from_file: If true, the call table for the values of
σjet is not calculated at the start of the simulation, but read from the file
named by the parameter sigmajet_filename. The values need to be cal-
culated again, if anything affecting the snPDFs (nucleon distributions, σN,
hotspots), p0 or

√
sNN changes. Changing other parameters, such as pQCD

K-factor, does not affect the σjet file. (false)

• centrality_filename: Name of the file where the output centrality bins
(see Ch. 6.3) are stored. (”centrality_bins.csv”)

• n_events: Number of the total nucleus–nucleus events that is to be simu-
lated. (2000)

• b_max: Maximum absolute value of the nucleus–nucleus impact parameter
b̄AB in units of fm. (20)

• b_min: Minimum absolute value of the nucleus–nucleus impact parameter
b̄AB in units of fm. (0)

• sqrt_s: The center of momentum system energy
√

sNN of the simulation
in units of GeV. (5020.0)

• K_factor: The pQCD K-factor. (2.0)

• Kappa_factor: The saturation parameter κsat. (2.0)

• p0: Transverse momentum lower cutoff p0 in units of GeV. (1.0)

• proton_width_static: If true, the proton width parameter σN is an
user defined number. If false, it is calculated from the parametrization in
Eq. (11). (false)

• proton_width: The value of the proton width parameter σN in units of
fm. Only used if proton_width_static=true. (0.573)
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• sigma_inel_trigger: The value of the σNN
trig used for nucleus–nucleus

event triggering (see Ch. 3.2) in units of mb. If left 0, calculated from the
parametrization in Eq. (6). (0)

• envelope_marginal: As the maximum value of
dσjet

dp2
Tdy1dy2

needed to form

the envelope function described in Ch. 4.4 is approximate, the envelope
needs to be padded by a marginal so that Eq. (74) always holds. This pa-
rameter determines the size of that padding. Lower values lead to faster
simulation, but are more bound to error. If Eq. (74) is violated because of
too tight a margin, the program will tell so in the output. (1.05)

• A: The mass number of the projectile nucleus. (208)

• B: The mass number of the target nucleus. (208)

• ZA: The atomic number of the projectile nucleus. (82)

• ZB: The atomic number of the target nucleus. (82)

• nuclear_RA: The radius RA (see Ch. 3.1) of the projectile nucleus in units
of fm. (6.62435)

• nuclear_RB: The radius RA (see Ch. 3.1) of the target nucleus in units of
fm. (6.62435)

• nuclear_dA: The diffusion parameter d (see Ch. 3.1) of the projectile nu-
cleus in units of fm. (0.5498)

• nuclear_dB: The diffusion parameter d (see Ch. 3.1) of the target nucleus
in units of fm. (0.5498)

• nuclear_beta2A: The quadrupole deformation parameter β2 (see Ch. 3.1)
of the projectile nucleus. (0.0)

• nuclear_beta2B: The quadrupole deformation parameter β2 (see Ch. 3.1)
of the target nucleus. (0.0)

• nuclear_beta3A: The octupole deformation parameter β3 (see Ch. 3.1) of
the projectile nucleus. (0.0)

• nuclear_beta3B: The octupole deformation parameter β3 (see Ch. 3.1) of
the target nucleus. (0.0)

• nuclear_beta4A: The hexadecapole deformation parameter β4 of the pro-
jectile nucleus (see Ch. 3.1). (0.0)

• nuclear_beta4B: The hexadecapole deformation parameter β4 of the tar-
get nucleus (see Ch. 3.1). (0.0)

• rad_max: Nucleons’ maximum distance from the nucleus center in units of
fm. (30)
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• correct_overlap_bias: If true, the nucleons are forced to have a min-
imum distance dmin from each other (see Ch. 3.1). (true)

• nn_min_dist: The value of the nucleon–nucleon minimum distance dmin
(see Ch. 3.1) in units of fm. Only used if correct_overlap_bias=true.
(0.4)

• shift_cms: If true, after the nucleon locations are sampled, they are all
shifted so that their center of the mass is at the nucleus center (see Ch. 3.1).
(true)

• hotspots: If true, the nucleon substructure model is used (see Ch. 3.3.2).
(false)

• n_hotspots: The number of hotspots in the nucleon substructure (see
Ch. 3.3.2). Only used if hotspots=true. (3)

• hotspot_width: The gaussian width σH of the hotspots (see Ch. 3.3.2) in
units of fm. Only used if hotspots=true. If left 0, 20% of the σN value is
used. (0.0)

• is_mc_glauber: If true, the hard sphere model of nucleon–nucleon scat-
terings is used (see Ch. 4.1.1) and the simulation emulates MC Glauber
model. (false)

• sigma_inel_NN: The value of the σNN
inel used for nucleon–nucleon collision

triggering in the hard sphere model, when MC Glauber model is emulated,
in units of mb. Only used if is_mc_glauber=true. (70)

• only_protons: If true, all the nucleons’ PDFs are proton PDFs. (false)

• use_npdfs: If true, nuclear shadowing (by EPS09LO [102]) is used (see
Ch. 4.3.3). (true)

• use_snpdfs: If true, the logarithmic-geometric spatial nPDFs are used
(see Ch. 4.3.3.3). If false, the average EPS09LO nPDFs are used. Only used
if use_npdfs=true. (true)

• save_endstate_jets: If false, the simulation is run but the final state
minijets are not saved into files (see Ch. 6.3). (true)

• end_state_filtering: If false, no filters are applied to the candidate
events, they are all accepted (see Ch. 5). (true)

• is_saturation: If true, the candidate events are subjected to the EKRT
saturation filter (see Ch. 5.2). (true)

• is_mom_cons: If true, the candidate events are subjected to the per nu-
cleon momentum conservation filter (see Ch. 5.3). (true)

• is_val_cons: If true, the candidate events are subjected to the valence
quark number conservation filter (see Ch. 5.4). (true)
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APPENDIX 1.2 Minijet properties in the output

The file output_params specifies, which minijet properties should be saved in
the ouput files. The minijets are saved as pairs of minijets (dijets). The following
properties are available (the nucleons participating in the production of the dijet
are the nucleon a from the projectile nucleus A and the nucleon b from the target
nucleus B):

• t01: The formation time 1/pT of the minijet associated with the rapidity y1
in units of 1/GeV.

• t02: The formation time 1/pT of the minijet associated with the rapidity y2
in units of 1/GeV.

• x: The x-coordinate of the dijet formation location in units of fm.

• y: The y-coordinate of the dijet formation location in units of fm.

• pt: The transverse momentum pT of the minijets in units of GeV.

• y1: The momentum rapidity y1 of one of the minijets.

• y2: The momentum rapidity y2 of one of the minijets.

• tata: The value of TA(s̄)TB(s̄) (see Ch. 3.3.3), where s̄ = (x, y) is the dijet
formation location, in units of 1/mb2.

• init1: The parton flavour of the parton taken from a.

• init2: The parton flavour of the parton taken from b.

• final1: The parton flavour of the minijet associated with the rapidity y1.

• final2: The parton flavour of the minijet associated with the rapidity y2.

• ia: The index of a. Unique for all the nucleons from A.

• ib: The index of b. Unique for all the nucleons from B.

• xa: The x-coordinate of a in units of fm.

• ya: The y-coordinate of a in units of fm.

• za: The z-coordinate of a in units of fm.

• xb: The x-coordinate of b in units of fm.

• yb: The y-coordinate of b in units of fm.

• zb: The z-coordinate of b in units of fm.

• a_is_neutron: A Boolean flag of the neutron status of the nucleon a.

• b_is_neutron: A Boolean flag of the neutron status of the nucleon b.
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usually assumed, show the consequences for the centrality dependence of the cross sections, and address
the phenomenon in an eikonal minijet model with nuclear shadowing.
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Introduction.—In high-energy nucleus-nucleus colli-
sions, the main goals are to study the properties of strongly
interacting matter and QCD dynamics in the nuclear
environment (for a recent review see, e.g., [1]). In these
collisions, the produced particle multiplicity correlates
strongly with the collision geometry: the more central
the collision, typically the higher the multiplicity.
Experimentally, the centrality classification is obtained
by ordering the events according to their multiplicity or
transverse energy into bins of equal fraction, say 10%, of all
events. Conventionally, 0%–10% (90%–100%) centrality
refers to the events of highest (lowest) multiplicities and
0%–100% to all events, minimum bias.
Inclusive hard processes (h for hard) in turn are rarer

processes of a large momentum scale whose cross sections
in nucleus-nucleus collisions are traditionally obtained by
converting the measured per-event yields Nc

h=N
c
evt in a

centrality class c into hard nucleon-nucleon cross sections
σch through

σch ¼
σinelnn

hNbinic
Nc

h

Nc
evt

; ð1Þ

where hNbinic is the mean number of independent inelas-
tically interacting nucleon-nucleon pairs, binary collisions,
in the centrality class c, and σinelnn is the inelastic nucleon-
nucleon cross section. The model-dependent quantity
hNbinic here is obtained from the Monte Carlo (MC)
Glauber model [2]. The nuclear modification ratio Rh;c

AA

is then obtained by dividing σch by the corresponding
minimum-bias cross section in proton-proton collisions
where A refers to the colliding nuclei.
This method of constructing hard cross sections is a

routine procedure in the heavy-ion measurements at RHIC
and at the LHC, and it has been used, e.g., to construct
nuclear modification ratios for jets [3–6] and hadrons
[7–13], which, in turn, are widely used in theoretical
studies of jet quenching [14–16] and partonic energy loss
[17–20]. In the same way, Eq. (1) forms the basis for
measuring centrality-dependent cross sections of direct
photon [21–23] and electroweak (EW) boson [24–27]
production, which can be used to study, e.g., nuclear
effects in parton distribution functions (PDFs) [28,29].
The basic inputs of the Glauber model are the nuclear

geometry and σinelnn [2]. In the MC Glauber model, the
positions of the nucleons are sampled event by event
according to the nuclear density profile, usually the
Woods–Saxon distribution [30]. The probability for an
interaction between two nucleons depends on their mutual
distance and σinelnn . As a result, cross-section measurements
through Eq. (1) depend on σinelnn in a nontrivial way. An
established procedure dating back to early fixed-target
experiments, such as E178 at Fermilab [31], is to take
the value of σinelnn and its energy dependence from proton-
proton measurements. However, at high enough energies,
like those at the LHC, the particle production becomes
sensitive to QCD dynamics at small momentum fractions x
where some suppression is expected due to gluon shadow-
ing [32–34] or saturation phenomena [35–37]. Such effects
become more pronounced in heavy nuclei and toward lower
scales, so one could argue that, in collisions involving
heavy ions, the value of σinelnn should also be reduced relative
to what is measured in proton-proton collisions. Through
Eq. (1), this would then change the obtained hard cross
sections and nuclear modification ratios and thereby affect
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all the subsequent analyses that take these measured cross
sections as an input. In this way, the value of σinelnn is critical
and could have far-reaching consequences, e.g., for the
precision studies of jet quenching and other related
phenomena. Thus, an alternative benchmark for σinelnn is
called for.
As proposed in Ref. [28], the Glauber model and its

inputs could be tested by studying the production of well
known “standard candles,” such as EW bosons, in Pbþ Pb
collisions at the LHC, but so far this has been limited by the
precision of the LHC Run-I measurements [24–26,38].
Thanks to the increased luminosity and collision energy of
Run II, the recent W�- and Z-boson measurements by
ATLAS [39,40] have pushed the precision to a few-percent
level, enabling now a more precise Glauber model cali-
bration. In the present Letter, we use these ATLAS data to
study the possible nuclear suppression of σinelnn in Pbþ Pb
collisions. Since the ALICE measurement [41] is less
precise and has no reference pþ p data, we leave it out
of the analysis. The idea is to first establish the EW-boson
cross sections by using next-to-next-to-leading order
(NNLO) perturbative QCD (pQCD) with state-of-the-art
PDFs for protons and nuclei. Using the theory prediction on
the left-hand side of Eq. (1), we can then determine σinelnn
within the same MC Glauber implementation as in the
experimental analyses. We find that the data favor a
significant suppression in σinelnn . We also demonstrate that
the unexpected enhancement seen by ATLAS in the ratios
RW�;Z
PbPb toward peripheral collisions disappears with the

found smaller value of σinelnn . In addition, we show that
the suppression of σinelnn is compatible with predictions from
an eikonal minijet model with nuclear shadowing.
Nuclear suppression in σinelnn .—The observables we

exploit in this work to extract σinelnn are the rapidity-
dependent nuclear modification ratios forW� and Z-boson
production in different centrality classes. Experimentally
these are defined as

Rexp
PbPbðyÞ ¼

1

hTPbPbi
1

Nevt
dNW�;Z

PbPb =dy

dσW
�;Z

pp =dy
; ð2Þ

where the per-event yield is normalized into nucleon-
nucleon cross section by diving with the mean nuclear
overlap hTPbPbi ¼ hNbinic=σinelnn obtained from a MC
Glauber model calculation. For minimum-bias collisions,
the same quantity can be calculated directly as a ratio
between the cross sections in Pbþ Pb and pþ p collisions,

Rtheor
PbPbðyÞ ¼

1

ð208Þ2
dσW

�;Z
PbPb =dy

dσW
�;Z

pp =dy
; ð3Þ

which is completely independent of the Glauber modeling.
We have calculated the cross sections in Eq. (3) at NNLO
with the MCFM code (version 8.3) [42]. For the protons, we

use the recent NNPDF3.1 PDFs [43], which provide an
excellent agreement to ATLAS data for W� and Z-boson
production in pþ p collisions at

ffiffiffi
s

p ¼ 5.02 TeV [44]. The
nuclear modifications for the PDFs are obtained from the
centrality-independent EPPS16 NLO analysis [45], which
includes Run-I data for W� and Z production in pþ Pb
collisions at the LHC [46–48] and provides an excellent
description of the more recent Run-II data [49]. The
available NNLO nuclear PDFs [50,51] do not include
any constraints beyond deeply inelastic scattering, so the
applied PDFs provide currently the most accurately con-
strained setup for the considered observables. The factori-
zation and renormalization scales are fixed to the respective
EW-boson masses.
The ratios Rtheor

PbPb and Rexp
PbPb are compared in the upper

panel of Fig. 1. For W�, Rexp
PbPb is formed by diving the

normalized yield in Pbþ Pb from Ref. [39] with the
corresponding cross section in pþ p from Ref. [44], adding
the uncertainties in quadrature. The plotted experimental
uncertainties do not include the uncertainty in hTPbPbi. The
theoretical uncertainties derive from the EPPS16 error sets

FIG. 1. Nuclear modification ratios of W� and Z, computed
from pQCD (solid lines with error bands) and from ATLAS
data [39,40] with σinelnn ¼ 70 mb (upper panel) and 41.5 mb
(lower panel).
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and correspond to the 68% confidence level. Note that the
W� measurement is for 0%–80% centrality instead of full
0%–100%. However, for rare processes like the EW
bosons, the contribution from the 80%–100% region is
negligible, so the comparison with the minimum-bias
calculations is justified. It is evident that with σinelnn ¼
70 mb both the W� and the Z data tend to lie above the
calculated result, which we will interpret as an evidence of
nuclear suppression in σinelnn as explained below.
By equating Eqs. (2) and (3), we can convert each data

point to hTPbPbi. The outcome is shown in the upper panel
of Fig. 2. The obtained values tend to be higher than the
nominal hTPbPbi ¼ 5.605 mb−1 (0%–100%) and hTPbPbi ¼
6.993 mb−1 (0%–80%), which assume σinelnn ¼ 70 mb (see
Table I). The fact that the preferred values of hTPbPbi are
independent of the rapidity strongly suggests that the
original mismatch in RPbPb is a normalization issue—the
nuclear PDFs predict the rapidity dependence correctly.
Since each hTPbPbi maps to σinelnn through MC Glauber,

we can also directly convert Rexp
PbPb to σinelnn . Here, we have

used TGlauberMC (version 2.4) [52], which is the same MC
Glauber implementation as in the considered ATLAS
analyses. The centrality classification is done with a
two-component model, including negative binomial fluc-
tuations [53] similar to the ALICE prescription [54] with

parameters from Ref. [55]. The obtained values of hTPbPbi
are in an excellent agreement with the ATLAS values in
Refs. [39,40] in all centrality classes when using the
nominal, unsuppressed value σinelnn ¼ 70 mb. The values
of σinelnn extracted from each data point are shown in Fig. 2. It
is obvious that the data prefer a value of σinelnn , which is less
than the σinelpp ¼ 70 mb obtained from pþ p data.
To quantify the optimal σinelnn , we fit its value by requiring

a match between Rexp
PbPb and Rtheor

PbPb treating the EPPS16
uncertainties as Gaussian correlated errors. In practice, we
define a χ2 function by

χ2 ¼
X
i

�
N iR

exp
PbPb;i − Rtheor

PbPb;i þ
P

kfkβ
k
i

N iδ
exp
i

�2
þ T

X
k

f2k

N i ¼ hTi
PbPbðσinelpp Þi=hTi

PbPbðσinelnn Þi; ð4Þ

where i runs over the data points and k ¼ 1;…; 20 over the
number error-set pairs in EPPS16. The factors N i with
σinelpp ¼ 70 mb account for the shifted normalizations when
σinelnn changes. Also the data uncertainties δexpi are scaled by
this factor to avoid D’Agostini bias [56]. The tolerance
T ¼ 1.6452 in the penalty term takes into account scaling
the 90% confidence limit uncertainties of EPPS16 into 68%
and βki ≡ ½Rtheor

PbPb;iðSþk Þ − Rtheor
PbPb;iðS−k Þ�=2,where Sþk and S−k

are the positive and negative variations, respectively, of
EPPS16 error sets. The χ2 is minimized with respect to σinelnn
and fk (1þ 20 parameters). We find

σinelnn ¼ 41.5þ16.2
−12.0 mb;

where the uncertainties follow from the Δχ2 ¼ 1 criterion.
The resulting values for hTPbPbi and σinelnn are compared to
the data-extracted values in Fig. 2, and the renormalized
data for RPbPb are compared to theoretical predictions in the
lower panel of Fig. 1. It is worth stressing that different final
states prefer a very similar suppressed value of σinelnn and that
a very good agreement in RPbPb is found when normalizing
with hTPbPbi calculated using the suppressed cross section
in the MC Glauber calculation.
Centrality dependence.—Even the quite significant sup-

pression in σinelnn leads to rather modest modifications in
hTPbPbi for central and (close-to) minimum-bias collisions.
The impact, however, grows toward more peripheral
centrality classes (see Table I). To illustrate this, Fig. 3
compares the centrality-dependent Rexp

PbPb before and after
rescaling the data by hTPbPbðσinelpp Þi=hTPbPbðσinelnn Þi using the
fitted σinelnn . The left-hand panels show the original ATLAS
data, including the quoted hTPbPbi uncertainties. In the
right-hand panels, the data have been rescaled, and the
uncertainties follow from the σinelnn fit. The striking effect is
that the mysterious rise toward more peripheral collisions in
the original data becomes compatible with a negligible
centrality dependence, the central values indicating perhaps
a mildly decreasing trend toward peripheral bins. As

FIG. 2. Extracted values of the mean nuclear overlap functions
(upper panel) and σinelnn (lower panel). The dark gray bands show
the values obtained by fitting σinelnn and the dashed lines and the
light gray band corresponds to the nominal σinelpp .
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discussed, e.g., in the ATLAS publications [39,40], such a
suppression could be expected from selection and geo-
metrical biases associated with the MC Glauber modeling
[57]. Also other effects such as the possible centrality
dependence of σinelnn and the neutron-skin effect [58,59] may
become relevant to explain the data behavior in the far
periphery. However, for minimum-bias collisions, the
suppression effect arises mainly from midcentral collisions
(0%–60%), so the resulting value for σinelnn is robust against
the phenomena occurring in the periphery.
Minijets with shadowing.—To study the plausibility of

the obtained suppression in σinelnn , we calculate its value in an
eikonal model for minijet production with nuclear shadow-
ing. The model is based on a similar setup as in Ref. [60],
but in the eikonal function we include only the contribution
from the hard minijet cross section σjetð ffiffiffiffiffiffi

snn
p

; p0; ½Q�Þ,
calculated at leading order in pQCD. The transverse-
momentum cutoff p0 (which depends on

ffiffiffiffiffiffi
snn

p
, scale choice

Q, and the proton thickness) and the width of the assumed
Gaussian proton thickness function we fix so that the
model reproduces σinelpp ¼ 70 mb matching the COMPETE

TABLE I. Mean nuclear overlap functions hTPbPbi½1=mb� for
ATLAS centrality classes with nominal and fitted σinelnn .

σinelnn 70.0 mb 57.7 mb 41.5 mb 29.5 mb

0%–2% 28.26 28.39 28.55 28.69
2%–4% 25.51 25.67 25.91 26.10
4%–6% 23.09 23.28 23.55 23.80
6%–8% 20.94 21.14 21.45 21.73
8%–10% 19.00 19.23 19.56 19.86
10%–15% 16.08 16.31 16.67 17.02
15%–20% 12.58 12.83 13.22 13.59
20%–25% 9.762 10.01 10.40 10.78
25%–30% 7.487 7.722 8.102 8.469
30%–40% 4.933 5.138 5.474 5.808
40%–50% 2.628 2.780 3.036 3.300
50%–60% 1.281 1.378 1.550 1.733
60%–80% 0.395 0.435 0.510 0.595
80%–100% 0.052 0.060 0.076 0.096
0%–80% 6.993 7.143 7.385 7.624
0%–100% 5.605 5.726 5.923 6.118

FIG. 3. The centrality-dependent nuclear modification ratios for W� and Z-boson production in Pbþ Pb collisions from ATLAS
[39,40] compared to NNLO pQCD calculation with EPPS16 nuclear modification with the nominal value of σinelnn ¼ 70.0 mb (left) and
with the nuclear-suppressed value σinelnn ¼ 41.5 mb (right).
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analysis [61] at
ffiffiffi
s

p ¼ 5.02 GeV. The free proton PDFs are
here CT14lo [62], and we take the nuclear PDFmodifications
from the EPPS16 [45] and nCTEQ15 [63] analyses. The
results for σinelnn , obtained with p0 and proton thickness
function width fixed to the pþ p case, are shown in Fig. 4.
The error bars are again from the nuclear PDFs scaled to the
68% confidence level. As expected at the few-GeV scales,
the predicted σinelnn depends strongly on the factorization and
renormalization scale Q, but within the uncertainties the
nuclear suppression obtained from the fits to the ATLAS
W� and Z data seems compatible with the eikonal model
predictions with both nuclear PDFs.
Summary.—In the canonical approach, the normalization

for the measured per-event yields in nuclear collisions is
obtained from the Glauber model taking the value of σinelnn
from proton-proton measurements. Contrary to this, our
strategy was to compare the state-of-the-art pQCD calcu-
lations with the measured W� and Z-boson RPbPb and
thereby unfold the value for σinelnn at

ffiffiffiffiffiffi
snn

p ¼ 5.02 TeV. We
find that the recent high-precision ATLAS data from Run II
prefer the value σinelnn ¼ 41.5þ16.2

−12.0 mb, which is significantly
lower than σinelpp ¼ 70� 5 mb. This new benchmark value
for σinelnn in

ffiffiffiffiffiffi
snn

p ¼ 5.02 TeV Pbþ Pb collisions is the main
result of the present work. Such a suppression is in line with
the expectations from an eikonal minijet model, including
nuclear shadowing, but is not necessarily tied only to the
shadowing phenomenon. Remarkably, when using the
fitted value for σinelnn , the unexpected enhancements of
RPbPb in peripheral collisions disappear and the results
become compatible with no centrality dependence. A
possible hint of a slight decreasing trend toward peripheral
collisions is observed that would be qualitatively in line
with possible selection and geometrical biases. Our results

thus suggest that the standard paradigm of using σinelpp as an
input to Glauber modeling potentially leads to a misinter-
pretation of the experimental data. The possible suppres-
sion could be further scrutinized by repeating the
experimental analysis using a measured luminosity to
convert the yields into cross sections or by measuring
the total hadronic Pbþ Pb cross section at

ffiffiffiffiffiffi
snn

p ¼
5.02 GeV with high enough precision.
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MC-EKRT: Monte Carlo event generator with saturated minijet production for
initializing 3+1 D fluid dynamics in high energy nuclear collisions
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We present a novel Monte-Carlo implementation of the EKRT model, MC-EKRT, for computing
partonic initial states in high-energy nuclear collisions. Our new MC-EKRT event generator is based
on collinearly factorized, dynamically fluctuating pQCD minijet production, supplemented with a
saturation conjecture that controls the low-pT particle production. Previously, the EKRT model has
been very successful in describing low-pT observables at mid-rapidity in heavy-ion collisions at the
LHC and RHIC energies. As novel features, our new MC implementation gives a full 3-dimensional
initial state event-by-event, includes dynamical minijet-multiplicity fluctuations in the saturation
and particle production, introduces a new type of spatially dependent nuclear parton distribution
functions, and accounts for the conservation of energy/momentum and valence-quark number. In
this proof-of-principle study, we average a large set of event-by-event MC-EKRT initial conditions
and compute the rapidity and centrality dependence of the charged hadron multiplicities and elliptic
flow for the LHC Pb+Pb and RHIC Au+Au collisions using 3+1 D viscous fluid-dynamical evolution.
Also event-by-event fluctuations and decorrelations of initial eccentricities are studied. The good
agreement with the rapidity-dependent data suggests that the same saturation mechanism that has
been very successful in explaining the mid-rapidity observables, works well also at larger rapidities.

I. INTRODUCTION

The theory of the strong interaction, Quantum Chro-
modynamics (QCD), predicts that at very high energy
densities, at temperatures T >∼ 150 − 160 MeV and at a
vanishing baryochemical potential, strongly interacting
matter is in the form of a quark-gluon plasma (QGP) [1–
4]. Such extreme conditions can be momentarily created
and the properties of the QGP experimentally studied
in laboratory by colliding heavy ions at ultrarelativis-
tic energies at the CERN Large Hadron Collider (LHC)
and the Brookhaven National Laboratory (BNL) Rela-
tivistic Heavy Ion Collider (RHIC). In these collisions,
the "heating" of the matter necessary for the QGP for-
mation is obtained from the kinetic energy of the collid-
ing nuclei, through copious primary production of QCD
quanta, quarks and gluons [5].

The QCD system formed in ultrarelativistic heavy-ion
collisions is expected to experience various spacetime evo-
lution stages: initial formation of a nearly-thermalized
QGP, expansion and cooling of the QGP, transition of
the QGP into a hadron resonance gas (HRG), expan-
sion and cooling of the HRG, and finally decoupling of
the HRG into non-interacting hadrons, out of which the
resonances still decay before they can be detected. The
dynamical expansion stages of QCD matter can be de-
scribed with relativistic dissipative fluid dynamics [6–21]
which nowadays is a cornerstone in the event-by-event
analysis of heavy-ion observables.

The heavy-ion programs at the LHC and RHIC aim
especially at the determination of the QCD matter prop-
erties, such as the temperature dependencies of the spe-
cific shear and bulk viscosities and other transport coeffi-
cients, from the experimental data. In practice, this can
be achieved only by performing a fluid-dynamics based
"global analysis", a simultaneous study of various dif-

ferent (low-transverse-momentum) observables from as
many types of collision systems as possible. These anal-
yses have evolved from pioneering works [12, 14, 17] (see
also [22]) to those with a proper Bayesian statistical anal-
ysis and well defined uncertainty estimates [21, 23–31].
So far, the analyses have mainly focused on studies at
mid-rapidity, where one assumes a longitudinally boost
symmetric (but 3-dimensionally expanding) system de-
scribed by the 2+1 D fluid dynamical equations of mo-
tion. The studies of rapidity-dependent observables re-
quires a full 3+1 D implementation of viscous fluid dy-
namics [9–11, 32–38]. Recently, global analyses have been
also extended into this direction [39–41]. Moreover, neu-
ral networks have been developed for studying rare ob-
servables [42, 43].

In such global analyses, the results obtained for the
QCD matter properties are strongly correlated with the
the assumed fluid-dynamical initial conditions. Then,
if the initial states are obtained from an ad hoc
parametrization that is blind to QCD dynamics – as
is typically the case, see e.g. [21, 24–27, 29–31] – it
is not at all clear whether the initial densities such as
the ones extracted from the global analysis could ac-
tually be realized in the studied nuclear collisions. It
is therefore of paramount importance to try to study
and model the QCD collision dynamics responsible for
the QCD matter initial conditions. Works into this di-
rection include the developments of the IP-Sat+MUSIC
(Impact parameter dependent saturation + MUScl for
Ion Collisions) model [10, 14, 44], the EKRT (Eskola-
Kajantie-Ruuskanen-Tuominen) model [17, 45–47], the
EPOS (Energy conservation + Parallel scattering + fac-
tOrization + Saturation) model [48–53], the AMPT (A
Multi-Phase Transport) model [38, 54], and the Dynami-
cal Core-Corona Initialization model [55, 56] with initial
state generated by Pythia Angantyr [57], as well as initial
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state models such as in Refs. [58, 59].
In this work, we adopt, and significantly further de-

velop, the pQCD and saturation -based EKRT model for
computing event-by-event initial conditions of the QCD
matter produced in nucleus-nucleus collisions at the LHC
and at the highest RHIC energies. The leading idea in
the EKRT model [17, 45–47] is that at sufficiently high
collision energies the nucleus-nucleus collisions can be de-
scribed as collisions of parton clouds rather than a col-
lection of Glauber-model like nucleon-nucleon collisions.
Then, gluons and quarks that are produced with trans-
verse momenta (pT ) of the order of a few GeV, minijets,
become so copiously produced [60, 61] that their pro-
duction processes start to overlap in the transverse coor-
dinate space [62], which dynamically generates a satura-
tion scale (psat) that suppresses softer particle production
[47].

The original versions of the EKRT model [45, 46],
combined with longitudinally boost invariant 1+1 D
ideal fluid dynamics, predicted successfully the LHC and
RHIC hadron multiplicities and pT distributions at mid-
rapidity in central collisions [45, 63], and, with 2+1 D
fluid dynamics, also the centrality dependence of these
and of the elliptic flow coefficients (v2) of the azimuth-
angle asymmetries [64, 65]. Based on a well-defined
(collinear- and infrared-safe) pQCD calculation of mini-
jet transverse energy production [47, 66, 67], the model
was extended to next-to-leading order (NLO) in Ref. [47].
Combined then with shear-viscous fluid dynamics, the
NLO-improved EKRT model described well the central-
ity dependent hadron multiplicities, pT distributions and
v2 at mid-rapidity both at RHIC and LHC, systemati-
cally indicating a relatively low value for the QCD matter
shear-viscosity-to-entropy (η/s) ratio [47].

An event-by-event version of the EKRT model (EbyE-
EKRT) was developed in Ref. [17]. The pioneering global
analysis of a multitude of LHC and RHIC bulk (low-
pT ) observables presented in Ref. [17] demonstrated a
very good overall agreement with the measurements,
and resulted in improved constraints for the tempera-
ture dependence of η/s. Very interestingly (but not un-
expectedly), also the Bayesian global analysis of LHC
bulk observables of Ref. [26], which used QCD-blind
parametrized initial states, confirmed that the initial den-
sity profiles predicted by the EbyE-EKRT [17] and the
IP-Sat models [44] gave the best match with those ob-
tained from the Bayesian inference.

The first attempt to perform a Bayesian global analy-
sis of LHC and RHIC bulk observables using directly the
EKRT initial states as input for the fluid-dynamics, for
studying the effects of the EoS and for obtaining statis-
tically controlled uncertainty estimates on the tempera-
ture dependence of η/s, can be found in Ref. [28]. The
latest developments in the EKRT-initiated 2+1 D fluid-
dynamics framework are a dynamically determined de-
coupling, which improves the description of peripheral
collisions, and the inclusion of bulk viscosity. These de-
velopments are presented in Ref. [22] together with a

demonstration of a very good simultaneous global fit to
bulk observables from various collision systems at the
LHC and RHIC, and the corresponding extracted specific
shear and bulk viscosities of QCD matter. Finally, the
first study of how deep convolutional neural networks can
be trained to predict hydrodynamical bulk observables
from the EbyE-EKRT-generated energy density profiles,
and how they can significantly speed up the statistics-
expensive EbyE analysis of rare flow correlators espe-
cially, can be found in Ref. [42].

The predictive power of the EbyE-EKRT model orig-
inates from the underlying collinearly factorized NLO
pQCD calculation. The model has been remarkably suc-
cessful, especially in genuinely predicting bulk observ-
ables at mid-rapidity also for higher LHC energies, 5.02
TeV Pb+Pb collisions [68], as well as for collisions of de-
formed nuclei, 5.44 TeV Xe+Xe collisions at [69] – see
the data comparisons e.g. Refs. [22, 70]. However, there
still is a number of shortcomings with the EKRT-model
that need to be addressed.

First, for addressing also rapidity-dependent observ-
ables, the EbyE-EKRT initial state model should be ex-
tended to off-central rapidities and then coupled to 3+1
D viscous fluid dynamics.

Second, the average number of (or the average ET

from) the parton-parton collisions is thus far in the
EKRT saturation model computed as a product of a nu-
clear overlap function and (pT weighted) collinearly fac-
torized integrated minijet cross section. This assumes
essentially independent partonic collisions, and as dis-
cussed in Ref. [62], especially towards larger rapidities at
the LHC one easily violates the conservation of energy
and baryon number. This problem clearly needs to be
addressed together with the rapidity dependence.

Third, thus far in the EbyE-EKRT [17], the local fluc-
tuations of the saturation scale, and thus of the computed
energy densities, in the transverse coordinate plane are
only of a geometrical origin, i.e. they follow only from the
sampled fluctuating positions of the nucleons inside the
colliding nuclei. Dynamical, local EbyE fluctuations in
the minijet multiplicity, inducing then further local EbyE
fluctuations to the saturation scale and hence to the en-
ergy densities, should clearly be accounted for. Only by
including these fluctuations can the EKRT model be rele-
vantly applied to the studies of smaller collision systems,
i.e. proton-nucleus and perhaps even proton-proton col-
lisions.

Fourth, in an EbyE analysis the factorized minijet
cross sections must be computed using nuclear parton
distribution functions (nPDFs) that depend on the trans-
verse position (s̄) in each of the colliding nuclei. The spa-
tial dependence can be modeled in terms of a power series
of the nuclear thickness function, TA(s̄), as was done e.g.
in EPS09s nPDFs [71] that are used in EbyE-EKRT. The
EbyE fluctuating TA’s, however, often reach so large val-
ues (up to more than 3 times the largest average TA(0))
that the TA-applicability range of EPS09s is significantly
exceeded. In EbyE-EKRT this problem was solved by an
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ad-hoc extrapolation of the saturation scale towards the
larger values of TA. Clearly, this problem is not EKRT-
specific but should be addressed for the benefit of any
factorized EbyE study of centrality dependence of hard
processes, where spatial dependence of nPDFs is needed.

In this paper, we address these shortcomings and the
arising uncertainties in solving them, for the first time in
the EKRT-model framework. In particular, we introduce
a completely new Monte Carlo EKRT event-generator,
which we name MC-EKRT [72], for computing EbyE
fluctuating initial states for fluid dynamics in nuclear
collisions. We couple the MC-EKRT minijets to 3+1 D
shear-viscous fluid dynamics [73], and discuss the vari-
ous uncertainties in doing this. In this proof-of-principle
paper we do not, however, aim at a full EbyE global
analysis, yet, but instead study the model systematics by
computing averaged initial conditions for each centrality
class by summing over a large set of event-by-event MC-
EKRT initial states. Running then 3+1 D shear-viscous
fluid dynamics with these, we can meaningfully compare
the MC-EKRT results against the measured pseudora-
pidity distributions of charged hadrons in different cen-
trality classes, and also elliptic flow coefficients in semi-
central collisions in Pb+Pb collisions at the LHC and
Au+Au collisions at RHIC. We also study the decorrela-
tion of eccentricities in spacetime rapidity, which was to
our knowledge discussed first in [36, 54].

The paper is organized as follows: In Sec. II we define
the MC-EKRT model framework and discuss how the
previous shortcomings are solved. Section III discusses
our fluid-dynamics setup, and how the 3+1 D fluid dy-
namics is initialized with the computed MC-EKRT mini-
jet states. Comparisons against LHC and RHIC data,
and the results for the decorrelation of eccentricities, are
shown in Sec. IV. Finally, conclusions and outlook are
given in Sec. V.

II. MONTE CARLO EKRT MODEL SETUP

Let us first see how the geometric saturation criterion
that we will employ in the MC-EKRT set-up below, arises
using collinearly factorized lowest-order pQCD 2 → 2
gluonic processes as the basis and imagining the colliding
nuclei as parton (gluon) clouds [45, 74]. In an inelastic
nucleus-nucleus collision at an impact parameter b̄AA, the
average transverse density of the number of gluon-gluon
collisions that are producing minijets with pT above a
cut-off p0 and at rapidities y1,2, is

dN2→2
AA (b̄AA)

d2s̄
= TA(s̄1)TA(s̄2)

1

2

∫
p0

dp2T dy1dy2

× x1g(x1, Q
2)x2g(x2, Q

2)× dσ̂

dt̂

2→2

(1)

where TA(s̄) is the standard nuclear thickness function
obtained as an integral of the nuclear density over the lon-
gitudinal coordinate, s̄1,2 = s̄± b̄AA/2 are the transverse

coordinates, g(x,Q2) are the gluon PDFs, x1,2 ∼ pT /
√
s

are the longitudinal momentum fractions of the colliding
gluons and Q ∼ pT is the factorization/renormalization
scale, t̂ is a Mandelstam variable for the partonic scat-
tering and dσ̂2→2/dt̂ ∼ α2

s/p
4
T is the 2 → 2 LO pQCD

gluonic cross section.
On dimensional grounds, and ignoring the rapidity de-

pendence, we may write for a symmetric system in central
collisions [17]

dN2→2
AA (0)

d2s̄
∼ (TAxg)× (TAxg)×

(
α2
s

p20

)
, (2)

where x ∼ p0/
√
s. Correspondingly, for 3 → 2 processes,

which can be expected to become important at small x,
where the initial gluon densities become large, we would
on dimensional grounds write, assuming here the double-
PDFs from the nucleus 1 (and similarly for the other
nucleus),

dN3→2
AA (0)

d2s
∼ (TAxg)

2 × TAxg × αs

p20

(
α2
s

p20

)
, (3)

where we have accounted for the extra power of αs in
the numerator, and for the p20 in the denominator can-
celing the dimension of the extra TA there in the double-
PDF. Saturation effects are expected to become dom-
inant, and softer parton production suppressed, when
dN3→2

AA ∼ dN2→2
AA , i.e. when

TAxg ∼ p20
αs

. (4)

Substituting this back to Eq. (2), and integrating over
an effective nuclear transverse area πR2

A (RA being the
nuclear radius), gives the geometrical EKRT scaling law,
introduced in Ref. [45]

N2→2
AA (0)

π

p20
∼ πR2

A, (5)

where π/p20 can be interpreted as a transverse formation-
area for a produced dijet [45, 62]. Thus, the minijet pro-
duction saturates when the minijet production processes
fill the available transverse area in the nuclear collision.

In the MC-EKRT set-up introduced below, we will take
the above geometric interpretation of saturation as our
starting point, when deciding on an event-by-event and
on a parton-by-parton basis, whether the produced mini-
jet system becomes locally saturated. With the above
discussion, we would also like to emphasize that satura-
tion in the EKRT model is not fusion of produced final-
state gluons, but saturation of the minijet production
processes themselves.

Our MC-EKRT simulation of a nucleus-nucleus (A+B)
collision proceeds through the following steps, each of
which will be discussed in more detail in this and the
following sections.
1. Sample the positions of the nucleons in a ∈ A and
b ∈ B from the Woods-Saxon distribution, keeping track
of the proton/neutron identity of each nucleon (Sec. II A).
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2. Sample the impact parameter for the A+B collision
similarly as in the MC Glauber model (Sec. II B), and
check whether the chosen trigger condition for the A+B
collision is fulfilled. If it is not, start again from item 1
(Sec. II C).
3. If the A+B collision is triggered, find all the binary
ab pairs of nucleons, a ∈ A and b ∈ B. Then go through
the generated list of the ab pairs and regard each ab pair
as a possible independent source of multiple minijet pro-
duction. Sample the number of produced minijet pairs,
dijets, for each ab pair from a Poissonian probability dis-
tribution (Sec. II D 1).
4. For each produced dijet, sample the parton fla-
vors and momenta from collinearly factorized LO pQCD
cross sections (Sec. II D 2), using nuclear PDFs that de-
pend on the transverse positions of a ∈ A and b ∈ B
(Sec. II D 3). For quark-initiated processes, decide (sam-
pling the LO pQCD cross sections) whether the collid-
ing quarks are valence quarks or sea quarks (Sec. II D 2).
Sample also the transverse production point for each dijet
from a Gaussian overlap function for each nucleon pair
ab (Sec. II D 1).
5. Consider all the generated dijets as candidates for the
final minijet-state of this A+B event. For filtering away
the excess (unphysical) dijets, order the dijet candidates
according to the transverse momentum pT of the minijets
forming the dijet (Sec. II E).
6. Filter the excess dijets in the order of decreasing pT ,
by imposing a local geometric EKRT saturation crite-
rion (cf. Eq. (5)). If a dijet gets filtered, both final-state
partons are removed (Sec. II E).
7. Filter the surviving dijets further by imposing con-
servation of energy and valence quark number for each
nucleon, doing the filtering again in the order of decreas-
ing pT . Optionally, this filtering step can be ignored, or
chosen to be done simultaneously with the dijet filtering
in step 6 (Sec. II E).
8. Collect the MC-EKRT minijet output data for the
surviving dijets: the pT vector, the rapidity, and the
flavour of each minijet, along with the transverse location
of each dijet’s formation point, to be used in Sec. III B.
Order the A+B events according to the total minijet ET

(a scalar sum of minijet pT ’s) for the centrality selection
(Sec. II F).

A separate interface is then developed to initialize fluid
dynamics, with the following steps:
9. Propagate the surviving minijets as free particles to
the proper time surface τ0 = 1/p0, assuming that minijets
with momentum rapidity y move along the corresponding
spacetime rapidity ηs = y. The parameter p0 here is the
smallest partonic pT allowed in the pQCD cross sections
for the dijet candidates (Sec. III B 1).
10. Feed the minijets into 3+1 D fluid dynamics as initial
conditions at τ0: At each ηs and transverse-coordinate
grid cell, using a Gaussian smearing, convert the mini-
jet transverse energy ET into a local energy density
(Sec. III B 2).
11. Run 3+1 D viscous fluid dynamics with these mini-

jet initial conditions, in principle event by event. Note,
however, that in the present exploratory study we are
testing the model setup using averaged initial states for
each centrality class (Sec. III B 3). We do not couple the
fluid dynamics with a hadron cascade afterburner but run
fluid dynamics until the freeze-out of the system. Reso-
nance decays are accounted for, as usual (Sec. III A).
12. Form the observables for which statistics is collected
(Sec. IV).

Next, we look at the above steps in more detail, and
also specify the few parameters that the MC-EKRT mini-
jet event generator has.

A. Nucleon configurations of A and B

First, we construct the nucleon structure of the col-
liding nuclei. Here, we essentially follow the procedure
nowadays standard in the Monte Carlo Glauber approach
[75]. The distributions of the positions of the nucleons
are taken to follow the nuclear charge densities extracted
from low energy electron scattering experiments [76, 77].
The lead nucleus, Pb208 (used at the LHC) is assumed
perfectly spherical, and as the gold nucleus Au197 (used
at RHIC) is also nearly spherical, the current version of
the MC-EKRT assumes spherically symmetric nuclei A
and B. Thus, the azimuthal angle φ ∈ [0, 2π] and the
cosine of the polar angle cos θ ∈ [−1, 1] are sampled from
a uniform distribution, while the radial coordinate r is
sampled from the two-parameter Fermi (2pF) distribu-
tion, the Woods-Saxon distribution [78],

ρWS(r) =
ρ0

1 + exp
(
r−RA

d

) , (6)

where RA is the nuclear radius and d is the diffusion pa-
rameter. For the lead and gold nuclei we study here,
(RA, d) = (6.624, 0.550) fm and (6.380, 0.535) fm, corre-
spondingly [76]. The normalization constant ρ0 is fixed
by requiring the volume integral of ρWS(r) to give A,
but in the simulation here ρ0 has no effect. The nuclei
which have nucleons with positions closer to each other
than dmin = 0.4 fm, are discarded and sampled again.
The introduction of an exclusion radius dmin is known to
slightly deform the radial density profile [75, 79], but we
neglect this small effect here.

B. Impact parameter sampling

Next, the squared impact parameter, b̄2AB , for the
A+B collision is sampled from a uniform distribution.
As long as the colliding nuclei are spherically symmet-
ric on the average, we do not need to randomly rotate
the nuclei. We can fix the impact parameter vector, as a
vector in the transverse (x, y) plane, to be on the x-axis,
pointing from the nucleus A to the nucleus B – see Fig. 1.

Once the positions of the nucleons in each nucleus
– {s̄a} in A and {s̄b} in B – have been determined,
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A BO− b̄AB

2
b̄AB

2

s̄a
a

s̄b b

b̄abs̄
s̄1 s̄2

FIG. 1: Projection of the A+B collision system into the trans-
verse plane. The impact parameter vector b̄AB , extending
from the center-of-mass of the nucleus A to the center-of-mass
of the nucleus B, is along the x-axis (axes are not shown),
with the origin O in the middle. The location vectors of the
nucleons a ∈ A and b ∈ B are s̄a and s̄b, respectively. The
impact parameter between the nucleons a and b is b̄ab.

the center of the mass of the projectile nucleus A is
shifted to (−bAB/2, 0) and that of the target nucleus B to
(bAB/2, 0), thus fixing the origin O of the collision frame.
Finally, ZA (ZB) of the nucleons in A (B) are randomly
labeled as protons and the rest as neutrons, i.e. we ne-
glect possible effects arising from the differences of pro-
ton and neutron density distributions (such as a neutron
skin), in this study.

C. Trigger condition for the A+B collision

Next, our simulation checks whether an inelastic col-
lision between the generated nucleon configurations A
and B takes place. We devise the trigger condition for
the A+B collision as follows: Assuming a hard-sphere
scattering of two nucleons, a ∈ A and b ∈ B, with a
cross section σab

trig(sNN ) at a nucleon-nucleon center-of-
momentum system (CMS) energy

√
sNN , an A+B col-

lision takes place if for at least one of the ab pairs the
squared transverse distance between a and b does not ex-
ceed σab

trig(sNN )/π. In terms of the transverse-coordinate
vectors introduced in Fig. 1, with nucleons a ∈ A and
b ∈ B, their transverse positions at s̄a and s̄b, and impact
parameters b̄ab, the triggering condition for the A+B col-
lision is fulfilled if at least for one ab pair

|b̄ab| = |s̄b − s̄a| ≤
√

σab
trig(sNN )/π. (7)

If the above condition is not met, new nucleon configura-
tions A and B, and a new impact parameter b2AB are gen-
erated. For the triggering cross section σab

trig(sNN ) we use
the inelastic nucleon-nucleon cross section σNN

inel (sNN ),
calculated as

σNN
inel (sNN ) = σNN

tot (sNN )− σNN
el (sNN ), (8)

where the total cross section σNN
tot is obtained from a fit

by COMPETE [80],

σNN
tot (sNN )/mb = 42.6s−0.46 − 33.4s−0.545

+ 0.307 log2(s/29.1) + 35.5, (9)

and the elastic cross section from a fit by TOTEM [81],

σNN
el (sNN )/mb = −1.617 log(s) + 0.1359 log(s)2 + 11.84,

(10)
with s = sNN/GeV2. For the CMS energies

√
sNN =

5020, 2700, 200 GeV, which we study here, this gives
σNN

inel (sNN ) = 69.14, 62.96, 41.78 mb, correspondingly.
We emphasize that σNN

inel is here used only for the trig-
gering of the nuclear collision, i.e. for determining the
inelastic A+B cross-section. It does not play any other
role in what follows.

D. Multiple dijet production

1. Probability distribution and nucleon thickness function

If the trigger condition is fulfilled, the collision between
A and B takes place. The A+B collision here is assumed
to be a very high-energy one, and furthermore a collision
of two large parton clouds, which are originating from
the sampled nucleons and extending around the Lorentz
contracted nuclei. In this case, the multiple minijets orig-
inating from each ab pair are produced practically instan-
taneously around z ∼ 0, and simultaneously everywhere
in the transverse plane.

At this stage of our setup, all the ab pairs can be con-
sidered to be fully independent from each other, they just
divide the interaction of the two large nuclear parton-
clouds into ab contributions. Saturation and energy con-
servation, which will here be imposed in the order of de-
creasing minijet pT , do not depend on the ordering of the
ab pairs, either. Thus, in our setup the ordering of the
ab pairs becomes irrelevant 1.

Next, all the ab nucleon pairs will be considered as po-
tential sources for multiple minijet (dijet) production. In
each ab contribution, the candidate dijets are supposed to
be produced independently from each other, hence Pois-
sonian statistics is used in sampling the number of pro-
duced dijets. Then, the probability of producing n ≥ 0
independent dijets from the pair ab, where the locations
of a and b, in the fixed nucleon configurations of this
event, are s̄a and s̄b, correspondingly, and whose impact
parameter thus is b̄ab = s̄b − s̄a, is

Pn({s̄a}, {s̄b}, p0,√sNN ) =

(
N̄ab

jets
)n

n!
e−N̄ab

jets , (11)

1 Note, however, that if one models nuclear collisions as subse-
quent energy-conserving NN subcollisions (like e.g. in HIJING
[82]), then the ordering (randomization) of the ab pairs would be
important.
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where the average number of dijets produced from the
pair ab is

N̄ab
jets ≡ N̄ab

jets(p0,
√
sNN , {s̄a}, {s̄b}) (12)

= TNN (b̄ab)σ
ab
jet(p0,

√
sNN , {s̄a}, {s̄b}) (13)

where σab
jet is an integrated inclusive pQCD cross section

for producing a pair of minijets with transverse momenta
pT ≥ p0 and any rapidities (details of obtaining σab

jet will
be explained in Sec. II D 2), and with the notation {s̄a}
({s̄b}) we underline that the computed pQCD cross sec-
tion here depends both on the location s̄a (s̄b) of the
nucleon a ∈ A (b ∈ B) and on the positions of all other
nucleons in the nucleon configuration forming the nucleus
A (B) in each event. Above, TNN is the nucleon-nucleon
overlap function,

TNN (b̄ab) =

∫
d2s TN (s̄− s̄a)TN (s̄− s̄b) (14)

=

∫
d2s1 TN (s̄1)TN (s̄1 − b̄ab) (15)

where the transverse vectors s̄ − s̄a ≡ s̄1 and s̄ − s̄b =
s̄1 − b̄ab ≡ s̄2 measure the transverse distance from the
centers of the nucleons a ∈ A and b ∈ B, correspondingly,
see Fig. 1. Here, TN is the nucleon thickness function,
which is obtained from the spatial density distribution
ρN as

TN (s̄) =

∫ ∞

−∞
dzρN (x), (16)

where x = (s̄, z). Both TN and TNN are normalized to
one through the transverse integrals,∫

d2s TN (s̄) =

∫
d3x ρN (x) = 1, (17)∫

d2s TNN (s̄) = 1. (18)

It should also be emphasized that in writing Eq. (12)
into the form of Eq. (13), we are assuming that the PDFs
carry spatial dependence in that they do (quite strongly)
depend on the locations s̄a of a ∈ A and s̄b of b ∈ B,
as well as on the positions of all the other nucleons in A
and B (which all are fixed for one A+B collision event),
but that for each nucleon a ∈ A and b ∈ B we have fixed
PDFs that do not depend on the variable s̄ appearing in
Eq. (14). This allows us to factorize the nucleon-nucleon
overlap function TNN from the minijet cross section σab

jet
in Eq. (13).

Following Ref. [17], we extract ρN , and thereby TN ,
from exclusive J/ψ photo-production cross sections that
have been measured in γ + p → J/ψ + p collisions at
HERA [83]. As discussed e.g. in Ref. [84], the amplitude
of this process is proportional to generalized parton dis-
tribution functions (GPDs) and a two-parton form factor
FN (t) that depends on the Mandelstam variable t and is

linked to ρN via a 3D Fourier transform,

FN (t) =

∫
d3x eiq·xρN (x), (19)

where |q|2 = |t|, and FN (0) = 1. As the GPDs become
ordinary PDFs at the forward limit, and as the J/Ψ mass
scale is of the same order of magnitude as the dominant
minijet pT scale, the above ρN should to a good approx-
imation describe also the corresponding partonic spatial
density related to the PDFs we use here. The measured
HERA cross sections show a behavior dσ/dt ∝ e−b|t|,
with a slope parameter b that depends on the photon-
proton system c.m.s. energy W as

b/GeV−2 = b0 + 4α′
P log

(
W

W0

)
, (20)

where b0, α′
P and W0 are constants. Here, identifying

W =
√
sNN , our default choice is the parametrization

from Ref. [85] (also used in [84]), with b0 = 4.9, α′
P = 0.06

and W0 = 90 GeV. Then, an inverse Fourier transform
of FN (t) = exp(−b|t|/2) = exp(−b|q|2/2) results in a 3D
Gaussian density,

ρN (x) =

∫
d3q

(2π)3
e−iq·xFN (t) (21)

=

(
1

2πσ2
N

)3/2

exp

(
− |x|2
2σ2

N

)
, (22)

and a 2D Gaussian thickness function,

TN (s̄) =
1

2πσ2
N

exp

(
− |s̄|2
2σ2

N

)
, (23)

with a width parameter σ2
N ≡ b. With the parametriza-

tion (20), we have σN = 0.478 (0.472) fm, at
√
sNN =

5.02 (2.76) TeV at the LHC, and σN = 0.445 fm for√
sNN = 200 GeV at RHIC.
Then, with the Gaussian forms for TN , also the

nucleon-nucleon overlap function in Eq. (15) can be ex-
pressed in a closed form, which also becomes a Gaussian,

TNN (b̄ab) =
1

4πσ2
N

exp
(
−|b̄ab|2

4σ2
N

)
. (24)

Once the number of the independent dijet candidates
has been sampled, each dijet candidate is assigned a spa-
tial production point s̄ that is sampled from the product
distribution TN (s̄− s̄a)TN (s̄− s̄b).

The modeling here is inspired by the eikonal mini-
jet models [86, 87] which are high-energy limits of po-
tential scattering, but we emphasize the different roles
of the parameter p0 in these models. In MC-EKRT,
the impact parameter integral of the eikonal 1 − P0 =
1− exp(−TNN (b)σjet(p0)) is not normalized to an inelas-
tic NN cross section σNN

inel (sNN ) but is allowed to ob-
tain larger values. Instead, the parameter p0 needs to
be chosen so small, of the order 1 GeV, that minijets are
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produced so abundantly that they overfill the coordinate
space, so that saturation can become effective in regulat-
ing the smallest-pT minijet production. For this reason,
our results are also fairly insensitive to the value of p0,
unlike typically in the eikonal minijet models. Notice also
that as we extend the value of p0 to unphysically low val-
ues (but still keeping it in the pQCD region, p0 
 ΛQCD),
and since we are considering the earliest moments in the
collision, τ <∼ 1/p0, we do not include any soft particle
production component, but consider only the (semi)hard

(mini)jet production in what follows.

2. Dijet kinematics and parton chemistry

A key element in our MC-EKRT framework is the dif-
ferential LO pQCD cross section of hard parton produc-
tion [88, 89]

dσab
jet({s̄a}, {s̄b})
dp2Tdy1dy2

= K
∑
ij〈kl〉

x1f
a/A
i ({s̄a}, x1, Q

2)x2f
b/B
j ({s̄b}, x2, Q

2)
dσ̂ij→kl

dt̂

(
ŝ, t̂, û

)
, (25)

where y1 and y2 are the rapidities of the two final-state
partons, pT is the transverse momentum of each of them,
f
a/A
i ({s̄a}, x1, Q

2) (f b/B
i ({s̄b}, x2, Q

2)) is the nucleon-
configuration-specific PDF of a parton flavor i (j) of the
bound nucleon a ∈ A (b ∈ B) which is centered at s̄a (s̄b)
in the nucleon configuration of each event, and x1 (x2) is
the parton’s longitudinal momentum fraction, Q2 is the
factorization/renormalization scale which we set equal
to pT , and dσ̂ij→kl

dt̂ are the differential LO pQCD cross
sections, which depend on the parton-level Mandelstam
variables ŝ, t̂, and û. The notation 〈kl〉 indicates a sum
over pairs of final-state partons, so that, say, u1g2 → ug
and u1g2 → gu are the same process and hence are not
to be counted as two separate ones, whereas u1g2 → ug
and g1u2 → ug naturally are two different processes as
the initial-state partons originate from different nucleons.
Notice also that since we aim to follow the partons’ iden-
tities as well, we do not introduce any t, u-symmetrized
cross sections which are often used when observable jet
cross sections are studied. In the present exploratory
study, in the interest of the simulation speed and as there
anyways are various other uncertainties and scale depen-
dence present, we do not (yet) attempt to perform an
NLO calculation similar to that in [66, 67] but account

for the missing higher order terms simply by a K-factor
that is a constant for a fixed

√
sNN and that will be fitted

to the A+A data separately at the LHC and at RHIC.
Then, in LO, the momentum fractions can be expressed
in terms of the transverse momentum pT and rapidities
of each minijet as

x1,2 =
pT√
sNN

(
e±y1 + e±y2

)
, (26)

and the Mandelstam variables become

ŝ = 2p2T (1 + cosh(y1 − y2)) , (27)

t̂ = −p2T

(
1 + e−(y1−y2)

)
, (28)

û = −p2T

(
1 + e+(y1−y2)

)
. (29)

Once the spatially dependent nuclear PDFs (PDFs
of nucleons a and b) have been devised (see discus-
sion below), Eq. (25) can be integrated over the mo-
mentum phase space, to give the minijet cross section
σab

jet(p0,
√
sNN , {s̄a}, {s̄b}) which is employed in Eq. (11).

Explicitly, accounting for the symmetry factors for the
identical final-state partons, we have

σab
jet(p0,

√
sNN , {s̄a}, {s̄b}) = K

∫
dp2T dy1dy2

∑
ij〈kl〉

1

1 + δkl
x1f

a/A
i ({s̄a}, x1, Q

2)x2f
b/B
j ({s̄b}, x2, Q

2)
dσ̂ij→kl

dt̂

(
ŝ, t̂, û

)
,

(30)

where, assuming a fixed lower limit p0 = 1 GeV for pT ,
the integration limits become

p0 ≤ pT ≤ √
sNN/2, |y1| ≤ arcosh(1/xT ), (31)

− log(2/xT − e−y1) ≤ y2 ≤ log(2/xT − ey1), (32)

with xT = 2pT /
√
sNN .

With these elements, the dijet kinematics and parton
chemistry can be straightforwardly generated. Once the
number of independent dijets from an interaction of nu-
cleons a ∈ A and b ∈ B has been determined using the
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Poissonian probabilities of Eq. (11), the transverse mo-
mentum pT and rapidities y1, y2 of each (mini)jet in the
dijet are obtained with rejection sampling from the differ-
ential minijet cross section (integrand) of Eq. (30). With
the fixed kinematic variables, we then sample Eq. (30)
again for the parton process type that fixes the flavors
of the participating partons. If the parton process in-
volves a quark from either a or b, we also identify each
participating quark as a sea quark or as a valence quark
again on the basis of Eq. (30) (i.e. the PDFs, in this case,
(f

a/A
q − f

a/A
q̄ )/f

a/A
q being the probability for obtaining

a valence quark). Finally, one minijet in each dijet is as-
signed an azimuth angle φ from a flat distribution and its
partner is then an angle π apart in the 2 → 2 kinematics
assumed here.

3. EbyE fluctuating spatial nuclear PDFs

Systematic global analyses of collinearly factorized
nuclear PDFs (nPDFs) indicate that bound-nucleon
PDFs clearly differ from the free-proton PDFs, see e.g.
Refs. [90–95]. The resulting nuclear modifications in the
bound-proton PDFs f

p/A
i can be quantified with

f
p/A
i (x,Q2) = R

p/A
i (x,Q2)fp

i (x,Q
2), (33)

where i denotes the parton flavor, fp
i is the free-proton

PDF and R
p/A
i is the nuclear modification. The corre-

sponding neutron PDFs are obtained using isospin sym-
metry. The above PDFs and their modifications are, how-
ever, spatial averages of the nPDFs, they do not account
for the dependence of the nuclear density and especially
not its fluctuations, i.e. for the fact that in the lowest-
density regions the nuclear effects should vanish whereas
in the high-density regions they should be larger than
in the average R

p/A
i . These spatial effects can become

significant especially in the small-x region relevant for
lowest-pT minijet production of interest here, hence they
are an important contributing factor in computing hy-
drodynamic initial density profiles that directly influence
the centrality dependence of observables like multiplici-
ties and flow coefficients. Therefore, in an EbyE simula-
tion such as MC-EKRT here, we cannot use the spatially
averaged nPDFs but need to introduce EbyE-fluctuating
spatially dependent nPDFs (snPDFs), where the nuclear
modifications are sensitive to the nucleon-density fluctu-
ations from event to event. As we will discuss below, this
turns out to be a non-trivial problem in an EbyE simu-
lation where there are large density fluctuations present.

Originally, our idea was to directly utilize the available
non-fluctuating snPDFs, such as EPS09s [71], where the
nuclear modifications are encoded in as a power series of
the average (optical Glauber) nuclear thickness function,
TWS
A (s̄) =

∫
dz ρWS(x), as follows:

f
p/A
i (s̄, x,Q2) = fp

i (x,Q
2)r

p/A
i (s̄, x,Q2), (34)

where fp
i again are the free-proton PDFs, and the nuclear

modification part,

r
p/A
i (s̄, x,Q2) = 1 +

4∑
n=1

cin(x,Q
2)[TWS

A (s̄)]n, (35)

where the coefficients cin are A-independent, is normal-
ized to the known (EPS09 [90]) average nuclear modifi-
cations,

R
p/A
i (x,Q2) =

1

A

∫
d2s TWS

A (s̄)r
p/A
i (s̄, x,Q2). (36)

Alternatively, as done e.g. in Refs. [96–98], one could in
the interest of the simulation speed truncate the above
power series at the second term, allow some residual A
dependence in the remaining single coefficient, and ob-
tain

f
p/A
i (s̄, x,Q2) = fp

i (x,Q
2)

[
1 + ciA(x,Q

2)TWS
A (s̄)

]
,
(37)

where again the normalization to the average modifica-
tions R

p/A
i (x,Q2) would give

ciA(x,Q
2) =

A

TAA(0)

(
R

p/A
i (x,Q2)− 1

)
, (38)

with TAA(0) =
∫
d2s [TWS

A (s̄)]2. Then, with the nuclear
density fluctuations present in an EbyE simulation, one
could essentially just replace the average TWS

A by the fluc-
tuating TA(s̄) =

∑
a TN (s̄−s̄a), where TN is the Gaussian

density from Eq. (23). This procedure does not, however,
work, because in practice the maximal density at which
the above approaches are applicable is the maximum of
the average density [61], TWS

A (0) = 2ρ0d log
(
1 + eRA/d

)
,

and now with fluctuations we encounter densities that
easily exceed this (see Fig. 2 ahead), and can be even
more than 3TWS

A (0).
In particular with the latter approach above, in the

small-x nuclear shadowing region, where Rp/A
i (x,Q2) < 1

and thus ciA(x,Q
2) < 0, when a negative ciA is accompa-

nied by a large enough TA(s̄), the spatial PDFs become
negative, which cannot be allowed in LO. A possible cure
for this could be to introduce an exponentiated ansatz for
the above power series (motivated by Ref. [99]),

1 + ciA(x,Q
2)TA(s̄) → exp(ciA(x,Q

2)TA(s̄)). (39)

However, with density fluctuations, in the region where
TA(s̄) 
 TWS

A (0), also this form leads to too fast at-
tenuating small-x parton densities in that the density
function TA(s̄)exp(ciA(x,Q

2)TA(s̄)) (whose s̄-integral is
normalized to R

p/A
i (x,Q2)), is not a monotonically ris-

ing function of TA(s̄) contrary to what it should be. This
problem can be solved by using an another ansatz func-
tion, such as

1 + ciA(x,Q
2)TA(s̄) → 1/(1− ciA(x,Q

2)TA(s̄)) (40)
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instead, which, when multiplied by TA(s̄), conveniently
gives a positive-definite function that is monotonously
rising with TA(s̄). In the antishadowing region where
ciA(x,Q

2) > 0, and where the A-dependence of the nu-
clear modification is modest in any case, such a function
would at large TA’s lead to violation of the per-nucleon
momentum sum rule that is assumed in the global PDF
analyses. We have tested that this problem can be solved
approximately (conserving momentum on a percent level)
by choosing a more modestly increasing logarithmic func-
tion

1+ ciA(x,Q
2)TA(s̄) → 1+ log(1+ ciA(x,Q

2)TA(s̄)). (41)

Equations (40) and (41) above are therefore the func-
tional choices we make in what follows.

Now, exploiting these preliminary observations, we can
construct the needed snPDFs, fa/A

i ({s̄a}, x1, Q
2), which

are sensitive to the location s̄a of the nucleon a in the
nucleus A, and thereby also to the surrounding nucleon
density in each event (indicated by {s̄a}), but which do
not depend on the intra-nucleon density TN (s̄) of the
nucleon a or its fluctuations. This is the approximation
which we have used in writing Eq. (13) in its form, where
the minijet cross section depends spatially only on the
locations of the nucleons a and b but does not contain
any transverse-coordinate integrals.

First, for each fixed nucleon configuration in the nu-
cleus A (correspondingly for B), we define a nuclear
thickness function T a

A from where the contribution from

0.0 0.1 0.2 0.3 0.4 0.5
T̂a

A [ 1
mb]

1

2

3

4

5

ρ
(T̂

a A
)

A = 208

Dense
Median
Scarce

FIG. 2: Normalized distribution of the average nuclear thick-
ness function T̂ a

A experienced by a nucleon a ∈ A, defined in
Eq. (45), for the nucleus Pb208, sampled from 10 000 nuclei.
For comparison, optical Glauber TWS

A (0) ≈ 0.212/mb. The
vertical lines indicate the example-density regions to which we
refer as “dense” (dashed blue line), “median” (solid red line)
and “scarce” (dotted green line). The peak at the smallest
values of T̂ a

A arises at the edge of the nucleus where the inter-
nucleon distance becomes larger than the nucleonic width σN .

the nucleon a, whose center is at s̄a, has been excluded,

T a
A(s̄) ≡

A∑
a′ �=a

T a′
N (s̄− s̄a′). (42)

Then the average nuclear thickness function experienced
by the nucleon a ∈ A can be defined as

T̂ a
A({s̄a}) ≡

∫
d2s̄ TN (s̄− s̄a)T

a
A(s̄)∫

d2s̄ TN (s̄− s̄a)
(43)

=

A∑
a′ �=a

∫
d2s̄ TN (s̄− s̄a)T

a′
N (s̄− s̄a′) (44)

=

A∑
a′ �=a

T aa′
NN

(
b̄aa′

)
, (45)

where we have used the normalization of T a
N and

Eqs. (42) and (15) with b̄aa′ = s̄a′ − s̄a, and where the
overlap functions T aa′

NN (b̄aa′) are of the same Gaussian
form as that in Eq. (24). Two things are to be noted
here: First, for a specific nucleon a in a nucleus A with
a fixed (random) nucleon configuration, T̂ a

A({s̄a}) is a
fixed number, whose value depends on the positions of
the other nucleons (a′) relative to the nucleon a. Second,
the effect of the above self-exclusion is that in the region
of very low nucleon density, which is the case in an event
where a single nucleon a is far from other nucleons a′,
the density TN (s̄ − s̄a′) vanishes, bringing thus also T̂ a

A

appropriately to zero. The distribution of T̂ a
A for a lead

nucleus is shown in Fig. 2.

Now, essentially using T̂ a
A in place of TWS

A , we define
the EbyE fluctuating snPDFs for a nucleon a analogously
to the above discussion, as follows:

f
a/A
i ({s̄a}, x,Q2) = fa

i (x,Q
2)r

a/A
i ({s̄a}, x,Q2), (46)

where s̄a is the location of the nucleon a ∈ A, which is
fixed for each nucleon configuration (i.e., in each event),
and the nuclear modification is
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r
a/A
i ({s̄a}, x,Q2) = θ(ciA(x,Q

2))
[
1 + log(1 + ciA(x,Q

2)T̂ a
A({s̄a}))

]
+

θ(−ciA(x,Q
2))

1− ciA(x,Q
2)T̂ a

A({s̄a})
, (47)

where θ is the Heaviside step function. Because of the
reasons discussed above, we have chosen the above func-
tional forms for ensuring an appropriate behaviour of the
modifications in T̂ a

A, accurate enough momentum con-
servation, and a correct small-T̂ a

A limit. As explained
above, at the limit of vanishing nucleon density, i.e. if a
is an isolated single nucleon far away from other nucleons,
T̂ a
A → 0 and thus also r

a/A
i ({s̄a}, x,Q2) → 1.

The coefficient function ciA(x,Q
2) in Eq. (47) is deter-

mined for fixed x and Q2 by requiring that the average
modification, which is obtained by averaging first over
all the nucleons a in each nucleus and then averaging
over a large sample of nuclei A, becomes R

p/A
i (x,Q2) of

Eq. (33),

R
p/A
i (x,Q2) =

〈
1

A

∑
a

r
a/A
i ({s̄a}, x,Q2)

〉
{A}

(48)

≡ F
(
ciA(x,Q

2)
)
, (49)

where 〈. . . 〉{A} denotes the latter average. Note that here
for each parton flavor i we are summing the modifica-
tions r

a/A
i that are related to the bound proton’s R

p/A
i

(e.g. related to R
p/A
uV we sum r

p/A
uV from Z protons and

r
n/A
dV

= r
p/A
uV from A − Z neutrons). Since we assume

isospin symmetry and as the locations of the protons and
neutrons are sampled from the same Woods-Saxon dis-
tribution, we do not need to keep track of the nucleon
identity here but can take all nucleons to be just protons.
The function F (ciA) is a monotonous function of ciA, so
it can be inverted to yield the normalization function

ciA(x,Q
2) = F−1

(
R

p/A
i (x,Q2)

)
. (50)

The function F can be calculated numerically for any
given ciA by sampling a large number of nuclei A. The
inverse can then be approximated by creating an interpo-
lation function for a list of numerically calculated values
of F

(
ciA(x,Q

2)
)
, and then inverting that interpolation

function. In what follows, in computing the nucleon-
configuration-specific PDFs fa/A

i ({s̄a}, x,Q2) in Eq. (46),
we obtain the coefficients ciA(x,Q

2) in Eq. (50) using the
EPS09LO average modifications [90], and the free-proton
PDFs correspondingly from the CT14LO set [100] using
the LHAPDF library [101].

In Fig. 3 we compare the spatially dependent,
nucleon-configuration-specific gluon modifications
r
a/A
g ({s̄a}, x,Q2), computed from Eq. (47), with the

average nuclear gluon modifications RA
g (x,Q

2), obtained
from the EPS09LO nPDFs, for a lead nucleus at a

scale Q2 = 1.69GeV2. To illustrate how in the densest
(scarcest) regions the nuclear effects become larger
(smaller) than in the average modification RA

g (x,Q
2),

we show the snPDF gluon modifications for three
different fixed values of the average thickness function
T̂ a
A(s̄a).

10−4 10−3 10−2 10−1 100

x

0.5

1.0

1.5
ra/

A
g

an
d

R
A g

A = 208
Q2 = 1.69 GeV2

EPS09LO

T̂A = 0.3 1
mb

T̂A = 0.14 1
mb

T̂A = 0.05 1
mb

FIG. 3: Comparison of the snPDF gluon modification
r
a/A
g ({s̄a}, x,Q2 = 1.69GeV2) of Eq. (47) (dashed blue, solid

red and dotted green curves) with the average EPS09LO [90]
gluon modification RA

g (x,Q
2 = 1.69GeV2) (dashed-dotted

black curve) for the nucleus Pb208. The fixed values
T̂ a
A({s̄a}) = 0.3, 0.14, and 0.05 1/mb, chosen here as input for

rg({s̄a}, x,Q2 = 1.69GeV2), are representatives for a nucleon
in the dense, median, and scarce density regions, correspond-
ingly, see Fig. 2.

We have now discussed the elements necessary
for obtaining the nucleon-nucleon overlap function
TNN (b̄ab) and the integrated minijet cross section
σab

jet({s̄a}, {s̄b}, p0,
√
sNN ) that go into the calculation of

the probability distributions of multiple minijet produc-
tion in nucleon-nucleon collisions in Eq. (11). Figure 4
shows examples of these distributions in Pb+Pb collisions
at

√
sNN = 5.02 TeV and p0 = 1 GeV at three differ-

ent nucleon-nucleon impact parameters b̄ab, and choos-
ing both nucleons, a ∈ A and b ∈ B, from the same
densest, scarcest and median density regions of A and
B as in Fig. 3, T̂ a

A(s̄a) = T̂ b
B(s̄b) = 0.3, 0.05, and 0.14

1/mb. The figure nicely illustrates the large fluctuations
of the minijet multiplicity due to various sources. The
minijet multiplicity is heavily sensitive not only to the
nucleon-nucleon impact parameter b̄ab (the larger b̄ab the
smaller N̄ab

jets) but also to the spatial dependence of the
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FIG. 4: Examples of the Poissonian probability distributions
Pn of Eq. (11) for multiple candidate-dijet production with
partonic pT ≥ 1GeV from a nucleon pair ab, a ∈ A and
b ∈ B, at some fixed nucleon-nucleon impact parameters b̄ab
in Pb+Pb collisions at

√
sNN = 5.02 TeV. The values used

for σab
jet (with K = 2) here are chosen so that they represent

the cases where both of the nucleons originate from the same
dense (dashed blue curves), median (solid red curves) and
scarcest (dotted green curves) density regions as in Fig. 3.

nPDFs (large fluctuations at fixed b̄ab). We also see the
role of shadowing and its spatial dependence, in that the
colliding nucleons that come from the densest (scarcest)

0 20 40 60 80 100
% Centrality

101

102

103

104

d
E T

/
d

y
(|y

|<
0.

5)
[G

eV
] √

sNN = 5.02 TeV

Pb + Pb

Spatial nPDF
Average nPDF

FIG. 5: Minijet transverse energy in the mid-rapidity unit
as a function of the collision centrality in

√
sNN = 5.02TeV

Pb+Pb collisions, as predicted from the MC-EKRT model
using snPDFs (solid lines) and spatially averaged nPDFs
(dashed lines). Here K = 2 and κsat = 2, see Sec. II E for
the details of minijet filtering and Sec. II F for the details of
the centrality selection.

nuclear density regions produce clearly less (more) dijet
multiplicity than those who originate from the median-
density regions.

In Fig. 5, we show the centrality dependence of the pro-
duced minijet transverse energy at mid-rapidity that is
obtained from our MC-EKRT model with snPDFs and
with average nPDFs. The figure very clearly demon-
strates why it is important to account for the spatial
dependence of the nPDFs (the details of the centrality se-
lection and the imposed minijet filtering will be discussed
below). As can be seen in the figure, in central colli-
sions, where the minijet production on the average orig-
inates from the average nuclear-overlap regions (volume
effect), the spatial nuclear effects due to the snPDFs aver-
age essentially to those obtained with spatially averaged
nPDFs. Towards peripheral collisions, however, where
scarcer regions of the nuclei are colliding and where the
nuclear effects in the snPDFs become smaller, the differ-
ence to the average-nPDF results becomes increasingly
larger. As the figure shows, we can expect easily over
20 % changes relative to the average-nPDF results, which
is a significant effect when we compare the MC-EKRT re-
sults (after hydrodynamic evolution) with experimental
data (Sec. IV ahead).

E. Minijet filtering by saturation and conservation
of energy & valence quark number

After the dijet candidates have been generated from all
the nucleon–nucleon pairs as described in Sec. II D, the
next step in the MC-EKRT simulation is to filter away
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the excessive dijets on the basis of saturation, and con-
servation of energy/momentum and valence-quark num-
bers. Ideally of course the energy/momentum conserva-
tion should not be needed at all, as ideal multiparton dis-
tributions should conserve momentum, but as these are
not available, and especially not to all orders as would
be required here in the context of saturation, we have to
impose energy/momentum conservation separately from
the saturation. As we assume saturation to be the de-
cisive dynamical mechanism that regulates minijet pro-
duction at low transverse momenta, saturation-based fil-
tering is done first, and conservation of momentum only
after that. With such phenomenological details, experi-
mental data is our guide as well: we have tested, aver-
aging over the minijets falling into the mid-rapidity unit
and feeding them into 2+1 D hydrodynamics event-by-
event, that we reproduce systematically more correctly
the measured ratio of the flow coefficients v2 and v3
[102] when the energy/momentum-conservation filtering
is performed after the saturation-filtering and also when
the latter filtering has as little effect as possible.

As is obvious, any kind of filtering breaks the factor-
ization assumption of our pQCD calculation as the pro-
duced minijets are then not anymore independent of each
other. The higher-twist effects (causing saturation here)
die out in inverse powers of the virtuality Q2, so that at
the highest values of pT , factorization is expected to hold.
Also the global analysis of nPDFs [92, 94, 95] and jet pro-
duction in minimum-bias proton-nucleus collisions [103]
indicate this to be the case. Thus, to maintain factoriza-
tion at the highest values of pT , the list of all candidate
dijets in an A+B collision is next ordered in decreasing
pT . Both filterings are then done, separately, in this or-
der, starting from the jets with highest values of pT , and
rejecting all those dijets that fulfill the filtering condi-
tions.

Guided by the geometric EKRT saturation criterion,
Eq. (5), each dijet is assumed to have a spatial uncer-
tainty area of a radius ∝ 1/pT in the transverse plane
around the dijet production point. Consider a dijet can-
didate whose transverse momentum is pcand

T , and trans-
verse production point is s̄cand. All of the previously ac-
cepted dijets with corresponding parameters pT ≥ pcand

T
and s̄ are then inspected, and if for any of them

|s̄− s̄cand| < 1

κsat

(
1

pT
+

1

pcand
T

)
, (51)

the dijet candidate is rejected. The parameter κsat intro-
duced here is an external fit parameter, which acts as a
“packing factor” in determining how close to each other
the dijets can be produced. Notice that parametrically
κ2
sat ∝ Ksat of Ref. [17], and that the smaller κsat the

stronger the saturation, i.e. the more dijet candidates
get rejected.

After the saturation filtering above, the remaining, still
pT -ordered, list of accepted dijets is then subjected to
the filtering according to energy/momentum conserva-
tion. Again here it is not obvious, or even clear, whether

the momentum should be conserved for each nucleon sep-
arately, or only for the whole nucleus as a parton cloud, or
something in between. Here, to be consistent with what
is typically done in the global analyses of the nPDFs,
we require energy conservation at the nucleon level as
a default. We do, however, test also the case where no
separate energy/momentum conservation is required in
addition to saturation.

To force the energy/momentum conservation (energy
conservation, for short) per nucleon for a given dijet can-
didate with momentum fractions xcand

1 in a projectile nu-
cleon a ∈ A and xcand

2 in a target nucleon b ∈ B, we pro-
ceed as follows: Assume that we have a list of n already
accepted dijets that involve the same projectile nucleon
a, and m previously accepted dijets that involve the same
target nucleon b. These dijets have momentum fractions
(x

(1)
1 , . . . , x

(n)
1 )a and (x

(1)
2 , . . . , x

(m)
2 )b associated with a

and b, respectively. Now, if either

xcand
1 +

n∑
i=1

x
(i)
1 > 1 or xcand

2 +

m∑
j=1

x
(j)
2 > 1, (52)

the dijet candidate is rejected due to the breaking of the
per-nucleon energy budget.

The third filtering, performed simultaneously with the
above energy conservation, is the forcing of the valence
quark number conservation. As explained earlier in
Sec. II D 2, we can keep track of whether each candidate
dijet involves valence quarks from the nucleons a ∈ A
and/or b ∈ B. If a candidate dijet involves a valence
quark of a specific flavor either from a or from b, and if ei-
ther a or b has already consumed all its valence quarks of
that flavor in the prior parton scatterings at pT > pcand

T ,
then the candidate dijet is rejected. For the multiplicities
and elliptic flow that we will study later in this paper,
this filtering causes a negligible effect but we nevertheless
build it in for interesting further studies in the future.

As an illustration, in Fig. 6 we show the transverse-
plane distribution of dijet production points before and
after the filterings in a single central event. The ra-
dius of each disk surrounding the production points is
1/(κsatpT ). As seen in the left panel, the candidate dijets
overoccupy the transverse plane. As a result of applying
the saturation condition of Eq. (51), none of the disks
overlap in the right panel.

F. Centrality selection

To determine which centrality percentile each A+B
collision belongs to, one needs to classify the events ac-
cording to, e.g., the produced minijet transverse energy
ET in a chosen rapidity window. Alternatively, when
running hydrodynamics with the minijet initial condi-
tions, converting ET into initial state densities, one can
use either initial state entropy or final state multiplicity
as the criterion. In this work, in the interest of simula-
tion speed, we do the centrality selection according to the
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FIG. 6: Illustration of the effects of saturation and energy-conservation in the transverse distribution of produced dijets in
one central event. Left panel shows the production points of all the candidate dijets, and the right panel the case after the
filterings. The radius of the disk surrounding each dijet production point is 1/(κsatpT ). Here for the illustration, we use K = 2,
and κsat = 0.5.
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tion of minijet transverse energy dET /dy, as a function of rapidity y, in central (left panel) and peripheral Pb+Pb collisions
(right panel) at

√
sNN = 5.02TeV. Here K = 2 and κsat = 2.

total minijet ET produced (after the filterings) anywhere
in rapidity. We have checked that the results would be
very similar if e.g. a central rapidity unit would be used.
Concretely then, for a simulation of, say, 10 000 A+B
collisions, the 0-5 % centrality class refers to the collec-
tion of 500 collisions with the highest total transverse
energy.

G. Systematics of minijet filtering

Figures 7 and 8 illustrate the effect of the three fil-
ters. Figure 7 shows the rapidity distribution of the
transverse energy originating from the dijets, obtained
as a scalar sum of minijet pT ’s, plotted for 0-10 % cen-
tral (left panel) and 50-60 % central (right panel) Pb+Pb
collisions at

√
sNN = 5.02TeV, computed with K = 2,

and κsat = 2. The figure demonstrates first a consider-
able reduction of ET when going from all the candidate
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dijets (dotted brown curves) down to those who pass the
saturation filter (dashed-double-dotted blue curves), and
then a clearly smaller reduction down to those who pass
also the energy-conservation and valence quark filters in
addition (solid black curves). As expected, for this quan-
tity the effect of the valence quark filtering is very small
(see the overlapping dashed-dotted red and dashed green
curves). Interestingly, however, we notice that impos-
ing only the energy-conservation filter without saturation
(dashed-dotted red curves) would lead to a similar result
in ET as the saturation filter alone, which essentially is
a result of ordering the dijet candidates according to the
minijet pT . Here again, we note that although not visi-
ble in these plots, we have checked that the v2/v3 ratio
prefers a strongest possible saturation [102], and also that
imposing only the energy-conservation filter (when real-
ized as in here) typically leads to too narrow rapidity
distributions.

Figure 8 then, correspondingly, shows the pT distri-
bution of (mini)jets at all rapidities, originating from
the dijets which have not been filtered at all (dotted
brown curves), from those dijets that survived first the
saturation filter (dashed-double-dotted blue curves) and
then also the energy-conservation and valence-quark fil-
ters (black solid curves). In the left panel, we see – as
is expected by construction – how factorization in cen-
tral collisions (upper set of curves) remains unbroken at
pT >∼ 5 GeV, while both filters start to have an effect at
pT <∼ 5 GeV. In peripheral collisions (lower set of curves),
where the minijet multiplicities are smaller and therefore
saturation becomes effective at smaller pT , factorization
remains unbroken until slightly smaller values of pT than
in central collisions. We again also see how saturation
filter, the one imposed first, dominates here over that
of energy conservation, and also that the saturation fil-
ter tends to remove dijets at slightly larger values of pT
than the energy-conservation filter (see dashed-double-
dotted blue and the dotted-dashed red curves). Also here
the valence quark conservation causes a negligible effect.
The right panel of Fig. 8 is to demonstrate the differ-
ence of (mini)jet production in different spatial regions
of central collisions: In the dilute overlap regions (upper
set of curves) the factorization-breaking saturation and
energy-conservation effects set in at clearly smaller val-
ues of pT than in the regions of densest overlap (lower
set of curves).

Figures 9 and 10 show the minijet transverse energy
production in the central rapidity unit as a function of
centrality in Pb+Pb collisions at

√
sNN = 5.02TeV, com-

puted with various values of the fit parameters K and
κsat, with all filters imposed in Fig. 9, and with only the
saturation filter imposed Fig. 10. As can be seen from the
right panels, where κsat = 2 is fixed, changing K changes
mainly the overall normalization but essentially not the
centrality slope of the produced ET (and hence the fi-
nal multiplicities as well). The energy-conservation filter
weakens the K dependence, because with a larger K-
factor the energy-conservation filter removes more can-

didate dijets. The left panels in turn show how, for a
fixed value of K = 2, changing κsat changes both the
normalization and especially the centrality slope. Here
the energy-conservation filter in turn weakens the κsat
dependence, as with a larger κsat there is less saturation
and more minijet production and the energy conserva-
tion filter becomes more efficient in removing candidate
dijets. In any case, as long as κsat does not become too
large, and especially if only the saturation-filter is im-
posed, κsat serves as a centrality-slope parameter for the
mid-rapidity multiplicities, whereas the K-factor controls
mainly their normalization. This observation is exploited
in what follows (Sec. IV), in finding the possible values
for κsat and K with which we can reproduce the mea-
sured charged-hadron multiplicities.

III. FLUID DYNAMICAL EVOLUTION AND
PARTICLE SPECTRA

The MC-EKRT computation gives the initially pro-
duced parton state. In order to compare with the mea-
sured data, we need to first propagate the partons to a
proper time τ0 for initializing the 3+1 D fluid dynam-
ics, then compute the subsequent spacetime evolution of
the matter, and eventually determine the experimentally
measurable momentum spectra of hadrons.

A. Fluid dynamical framework

The spacetime evolution is computed using 3+1 D
fluid dynamics, applying the code package developed in
Ref. [73]. The fluid dynamical framework employed is
the relativistic dissipative second-order transient fluid
dynamics [104], originally formulated by Israel and Stew-
art [105].

The basic equations of motion governing the evolution
of a fluid are the local conservation laws for energy, mo-
mentum and conserved charges, like the net-baryon num-
ber. In the following we, however, will neglect the con-
served charges. In this case the state of the fluid is given
by its energy-momentum tensor that can be decomposed
with the help of the Landau-picture fluid 4-velocity uμ

as

Tμν = euμuν − PΔμν + πμν , (53)

where Δμν = gμν − uμuν is a projection operator,
e = Tμνuμuν is the energy density in the local rest
frame, P = − 1

3ΔμνT
μν is the isotropic pressure, and

πμν = T 〈μν〉 is the shear-stress tensor. The angular
brackets project the symmetric and traceless part of the
energy-momentum tensor that is orthogonal to the fluid
4-velocity. We will also neglect the bulk viscous pres-
sure, and the isotropic pressure is given by the equation
of state (EoS) of the strongly interacting matter at zero
net-baryon density, P = P (e). In the Landau picture the
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fluid 4-velocity is a time-like, normalized eigenvector of
the energy-momentum tensor, defined by Tμ

νu
ν = euμ.

The energy diffusion current Wμ = ΔμαTαβu
β is then

zero and does not contribute to the energy-momentum
tensor.

In the formalism by Israel and Stewart [105], the equa-
tions of motion for the remaining dissipative quantity,

shear-stress tensor, are given by [104, 106]

τπ
d

dτ
π〈μν〉 + πμν = 2ησμν + 2τππ

〈μ
α ων〉α

−δπππ
μνθ − τπππ

〈μ
α σν〉α + ϕ7π

〈μ
α πν〉α, (54)

where σμν = ∇〈μuν〉 and ωμν = 1
2 (∇μuν −∇νuμ) are

the strain-rate and vorticity tensors, respectively, θ =
∇μuμ is the volume expansion rate, and the gradient is
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FIG. 10: The same as in Fig. 9 but with only the saturation filter imposed.
.

defined as ∇μ = Δμ
α∂

α. The coefficient η is the shear
viscosity, τπ = 5η/(e + P ) is the shear relaxation time,
and the remaining coefficients of the second-order terms
are taken from the 14-moment approximation to massless
gas [104, 106, 107], i.e. δππ = (4/3)τπ, τππ = (10/7)τπ,
and ϕ7 = 9/(70P ). The shear viscosity over entropy
density η/s is chosen such that it roughly reproduces
the elliptic flow in semi-central collisions. For the EoS
of strongly interacting matter we use the s95p-v1 [108]
parametrization, which interpolates between the lattice
QCD at high temperatures and the hadron resonance gas
model at low temperatures. The partial chemical freeze-
out at T = 150 MeV is encoded into the hadronic part
of the EoS as temperature-dependent chemical potentials
for each hadron, μh = μh(T ) [109].

The Israel-Stewart equations together with the conser-
vation laws are solved numerically in 3+1 dimensions [73]
using the SHASTA algorithm [110] in (τ, x, y, ηs)–
coordinates, where

τ =
√

t2 − z2 (55)

is the longitudinal proper time, and

ηs =
1

2
ln

(
t+ z

t− z

)
(56)

is the spacetime rapidity. The grid resolution is Δηs =
0.15, Δx = Δy = 0.15 fm, and Δτ = 0.05 fm. For further
details of the algorithm, see Refs. [73, 111].

The final spectra of free hadrons are obtained by com-
puting the Cooper-Frye integrals [112] on a constant-
temperature decoupling surface, with Tdec = 130 MeV.
The momentum distributions of hadrons on the decou-
pling surface are given by the 14-moment approximation,
so that the single-particle momentum distribution func-
tion of a hadron h is

fh(p
μ, x) = f0h

(
1 + (1± f0h)

pμpνπ
μν

2T 2(e+ P )

)
, (57)

where +(−) is for bosons (fermions), pμ is the 4-
momentum of a hadron h, and f0h = f0h(T, μh) is the
corresponding Bose-Einstein or Fermi-Dirac equilibrium
distribution function. The Cooper-Frye integral is com-
puted for all the hadrons included into the hadron reso-
nance gas part of the EoS. As explained in Ref. [73], after
computing the full spectra of hadrons, dNh/dydp

2
T dφ, the

spectra are interpreted as probability densities and they
are randomly sampled to obtain a set of hadrons with 4-
momenta pμi . For the unstable hadrons the correspond-
ing 2- and 3-particle strong and electromagnetic decays
are then computed. The sampling procedure is then re-
peated several times in order to get smooth momentum
distributions for the hadrons that are stable under strong
decays.

B. Initialization

The equations of fluid dynamics take the energy-
momentum tensor as an initial condition at a fixed initial
proper time τ0. However, an MC-EKRT event consists
of a set of partons, and we need to convert this set to the
corresponding Tμν(τ0, x, y, ηs) using the momenta of the
produced particles. There are two essential ingredients
in this. First, we need to propagate the particles to a
fixed proper time τ0 = 1/p0, and for the determination
of densities from a finite set of particles, we need to de-
fine an averaging volume where the components of the
energy-momentum tensor are computed.

Naively, the grid size, e.g. Δx or Δηs in the numer-
ical algorithm to solve the Israel-Stewart theory would
provide such an averaging volume. However, the grid
defines rather a discretization of the continuous fields in
the hydrodynamic equations of motion, and in princi-
ple we should be able to take the limit to the contin-
uum, i.e. Δx,Δηs → 0, and at this limit densities are no
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longer well defined smooth functions. Thus, we should
distinguish between the averaging volume and the nu-
merical resolution. The procedure with which we define
the averaging volume through Gaussian smearing and ob-
tain the corresponding densities is described below. We
note that here we will eventually only construct the lo-
cal energy density from the MC-EKRT computation, and
neglect the initial velocity and shear-stress components.
Moreover, we do not take into account the event-by-event
fluctuations in the hydrodynamical phase, but compute
the initial conditions as averages over a large sample of
MC-EKRT events. However, the procedure below can
be extended to the computation of all the components
of Tμν . We will leave the studies that take into account
the event-by-event fluctuations as well as a complete Tμν

initialization as a future work.

1. Free streaming

Each parton i in an MC-EKRT event has the following
information: transverse coordinate x⊥,0i of the produc-
tion point, transverse momentum pTi, and rapidity yi.
All partons are massless in this work. We assume that
each parton is produced at the location x⊥,0i and zi = 0
at time t = 0. The partons are assumed to travel as free
particles along straight line trajectories. In this case, the
spacetime rapidity ηs,i of the parton i becomes equivalent
to its momentum rapidity yi, and longitudinal coordinate
of the propagating parton is given by zi(t) = t tanh ηs,i.
The transverse position of the parton at Cartesian co-
ordinate time t is given by x⊥i(t) = x⊥,0i + tpTi/Ei,
where Ei = pTi cosh yi. However, we need to initialize
fluid dynamics at a fixed proper time τ0 = t/ cosh ηs in
the τ -ηs coordinate system, in which case the parton’s
coordinates become (τ0,x⊥i(τ0), ηs,i), where x⊥i(τ0) =
x⊥,0i + τ0pTi/pTi.

2. Smearing

In general, the four-momentum pα = (pτ ,pT , p
η) of a

particle at a spacetime location xα = (τ,x⊥, ηs) in the
τ -ηs coordinates is obtained as

pα =
∂xα

∂x′μ p
′μ =

⎛
⎝ pT cosh(y − ηs)

pT

τ−1pT sinh(y − ηs)

⎞
⎠ , (58)

where x′μ and p′μ are the corresponding spacetime point
and four-momentum in the Cartesian coordinates.

The total number of partons N that flow through a
surface, whose surface element 4-vector is dΣμ, can be
written as

N =

∫
dΣαN

α(τ,x⊥, ηs), (59)

where the particle 4-current Nα in the τ -ηs coordinates
can be written using Eq. (58) as

Nα(τ,x⊥, ηs) =
∫

d3p

pτ
τpαf(τ,x,p), (60)

where we defined d3p = d2pT dp
η, and f is a scalar mo-

mentum distribution function at a constant τ . For a
constant-τ surface, the surface element 4-vector has only
the τ component, dΣτ = d2x⊥dηsτ , and the total num-
ber of partons can be written as

N =

∫
d2x⊥dηsτ

∫
d2pT dp

ητf(τ,x,p). (61)

Now, following Ref. [113], the scalar momentum distri-
bution function for a set of N partons can be written
in terms of delta functions in coordinate and momentum
space as

f(τ,x,p) =

N∑
i=1

δ(3)(x− xi)δ
(3)(p− pi)/|det(g)|, (62)

where xi = (x⊥i, ηs,i) is the three-location and pi =
(pTi, p

η
i ) is the three-momentum of the particle i at

proper time τ , and det(g) = −τ2 is the determinant of
the metric tensor gμν = diag(1,−1,−1,−τ2). The sum-
mation is over all the particles. Substituting Eq. (62)
into Eq. (61), it is easy to verify that we consistently ar-
rive at the correct number of particles, i.e. in our case the
number of partons from an MC-EKRT event. Similarly,
the components of the energy-momentum tensor can be
expressed as

Tαβ(τ,x⊥, ηs) =
∫

d2pT dp
η

pτ
τpαpβf(τ,x,p). (63)

In what follows, we will assume that pηi = 0, so that
yi = ηs,i. Changing the integration variable from pη to
rapidity y using Eq. (58), the integral can be then written
as

Tαβ =
∑
i

∫
d2pT dy

pαpβ

pτ
1

τ
cosh(y − ηs) (64)

× δ(2)(x⊥ − x⊥i)δ(ηs − ηs,i)δ
(2)(pT − pTi)δ(y − ηs).

The resulting δ(y − ηs) ensures that y = ηs, i.e. initial
longitudinal scaling flow holds even after we replace the
spatial delta functions by Gaussian smearing functions
below.

To obtain a smooth density profile for relativistic hy-
drodynamics from the partons, we replace the spatial
delta functions with Gaussian distributions,

δ(2)(x⊥ − x⊥i)δ(ηs − ηs,i) → g⊥(x⊥;x⊥i)g‖(ηs; ηs,i),
(65)

with

g⊥(x⊥;x⊥i) =
C⊥
2πσ2

⊥
exp

[
− (x⊥ − x⊥i)

2

2σ2
⊥

]
, (66)

g‖(ηs; ηs,i) =
C‖√
2πσ2

‖
exp

[
− (ηs − ηs,i)

2

2σ2
‖

]
, (67)
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where σ⊥ and σ‖ are the widths of the distributions in
the transverse and longitudinal directions, respectively.
Both σ⊥ and σ‖ are considered to be free parameters of
our model. Equations (66) and (67) are normalized as

∫
d2x⊥dηsg⊥(x⊥;x⊥i)g‖(ηs; ηs,i) = 1. (68)

To reduce the computational costs, we impose a cut-off
on the smearing range to ±3σ in each direction from the
centre of the Gaussian distribution. However, the cut-off
on the integration range and the numerical error originat-
ing from the discretization of Gaussian functions violate
the normalization condition in Eq. (68). Therefore, the
constants C⊥ and C‖ in Eqs. (66) and (67) are adjusted
in every fi(τ,x,p) so that the unit normalization is en-
sured. We checked, however, that C⊥ and C‖ are almost
unity with the current parameters in the simulations.

With these choices, the initial value of the
T ττ (τ0,x⊥, ηs) component of the energy-momentum ten-
sor in hydrodynamics is given as

T ττ (τ0,x⊥, ηs) = (69)
1

τ0

∑
i

pTig⊥(x⊥;x⊥i)g‖(ηs; ηs,i).

In this exploratory study, as we do not yet consider
a more detailed spacetime picture of parton production
[114], pQCD showering and secondary collisions of par-
tons, and especially as we consider only averaged ini-
tial conditions, we follow Ref. [17] and compute only
the above initial T ττ (τ0) component, and ignore the
initial bulk pressure and shear-stress tensor, as well as
set T τi(τ0) = 0, or equivalently set the spatial compo-
nents of the four-velocity uμ(τ0) = γ(1,vT (τ0), v

η(τ0))
initially to zero. Here vη(τ0) = 0 follows from the con-
dition y = ηs that corresponds to vz = z/t in the colli-
sion frame. The remaining diagonal components of the
energy-momentum tensor are then given by the EoS as
T ij(τ0) = P (e(τ0))δ

ij , where now in the absence of initial
transverse flow, e(τ0) = T ττ (τ0).

We note that this way of initializing does not explicitly
conserve energy, but with σ‖ = 0.15 the total energy is
increased only by ∼ 1 %, while with e.g. σ‖ = 0.5 al-
ready by ∼ 13 %. On the other hand, dE/dηs with a
rapidity independent distribution of particles would be
conserved in the smearing. The MC-EKRT distribution
is not rapidity independent, but in practice dE/dηs is
almost identical before and after the smearing of parton
distribution in the mid-rapidity region. Only at larger ra-
pidities, where experimental data are not available in any
case, we start to see the the smeared case dE/dηs deviat-
ing from the unsmeared minijet dE/dηs. This is shown in
Fig. 11, where we compare event-averaged dE/dηs com-
puted from the MC-EKRT partons to those obtained af-
ter smearing with different values of σ‖.
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FIG. 11: Spacetime rapidity distribution of the event-
averaged initial energy, dE/dηs as a function of ηs, at τ = τ0
in 0-5 % central (a) and 60-70 % central (b) 5.02 TeV Pb+Pb
collisions, obtained from the minijets before the smearing
(markers) and after the smearing with a fixed transverse width
σ⊥ = 0.15 fm and with different longitudinal widths σ‖ (solid,
dashed and dotted-dashed curves). The smaller panels show
the relative difference between the smeared and unsmeared
cases.

3. Averaging initial conditions

The above construction gives us the initial energy den-
sity event-by-event. As an example, the energy density
distribution at τ = τ0 obtained from a single event is
plotted in the x-y and ηs-x planes in panels (a) and (b)
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FIG. 12: Initial energy density profile above the QCD tran-
sition temperature Tc = 0.156 GeV [115] at τ = τ0 computed
from a single MC-EKRT event in the x-y plane (a), and in
the ηs-x plane (b).

of Fig. 12, respectively. Here we, however, want to avoid
computationally very intensive 3+1D event-by-event hy-
drodynamic simulations, and therefore compute event-
averaged initial conditions. As explained in Sec. II F, we
perform first the centrality selection according to the to-
tal initial transverse energy computed from the partons,
and average the initial conditions within each centrality
class. The hydrodynamic evolution is then computed for
each event-averaged initial conditions, i.e. one hydrody-
namic simulation per centrality class.

We first convert each event-by-event initial energy-
density profile to an entropy-density profile using the
EoS, and then average the entropy-density profiles and
convert the averaged entropy density back to energy den-
sity. The reason for this is that the total initial entropy

and the final hadron multiplicity have nearly a linear re-
lation, and therefore averaging over the entropy-density
profiles rather than over the energy-density profiles is a
better approximation for obtaining the event-averaged
final multiplicities, and their centrality dependence [28].
The difference here comes from the non-linear relation
between the energy and entropy densities. The linear re-
lation between the multiplicity and the initial entropy is
somewhat broken by event-by-event fluctuations in the
entropy production due to dissipation, but those fluctu-
ations relative to total entropy production are typically
small in central and semi-central collisions [17].

IV. RESULTS

In the following, we have applied MC-EKRT to 5.02
TeV and 2.76 TeV Pb+Pb, and 200 GeV Au+Au colli-
sions. In particular, we explore here how the centrality
and pseudorapidity dependence of charged particle mul-
tiplicity at different collision energies is affected by differ-
ent choices of the Gaussian smearing and shear viscosity.
We will also discuss the role of the energy conservation
at different collision energies.

For each investigated collision system 100 000 mini-
mum bias events were produced and sorted in centrality
classes based on their initial transverse energy ET . The
Gaussian smearing widths were chosen to be σ⊥ = 0.15
or 0.4 fm in the transverse plane and the longitudinal
smearing width was fixed to σ‖ = 0.15. The ratio of
shear viscosity to entropy density η/s was taken either
as constant, tuned to approximately reproduce the ellip-
tic flow measurements at RHIC and LHC, or to follow
the temperature dependent η/s = param1 from Ref. [17]
(see Fig. 1 there).

The free parameters in the MC-EKRT model, namely
K and κsat, were tuned to approximately reproduce the
centrality dependence of charged particle multiplicity at
midrapidity. The saturation parameter κsat was kept the
same for all systems, but the pQCD K-factor was tuned
for each collision system separately. We note that the
parameter values quoted here are specific to these re-
alizations of MC-EKRT computation, and are different
for different choices of e.g. smoothing and viscosity. Also
event-by-event fluctuations would likely change these val-
ues.

A. Data comparison with event-averaged initial
state

1. Charged particle pseudorapidity distribution

Figures 13, 14, and 15 show the charged particle
pseudorapidity (η) distributions for

√
sNN = 5.02 TeV

Pb+Pb, 2.76 TeV Pb+Pb, and 200 GeV Au+Au colli-
sions, respectively. The centrality classes are quoted in
the figures. We show all the cases tested here, namely
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FIG. 13: Charged particle multiplicity dNch/dη as a function of pseudorapidity in Pb+Pb collisions at
√
sNN = 5.02 TeV,

compared with ALICE data [116] (filled markers) and [117] (open markers). Left panels show the results with all the filters
on, and the curves with markers in the right panels show the results with only the saturation filter on. The solid green and
dashed-dotted red curves are the same in the left and right panels.
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FIG. 14: Charged particle multiplicity dNch/dη as a function of pseudorapidity in Pb+Pb collisions at
√
sNN = 2.76 TeV,

compared with ALICE data [118] (filled markers) and [119] (open markers). Left panels show the results with all the filters
on, and the curves with markers in the right panels show the results with only the saturation filter on. The solid green and
dashed-dotted red curves are the same in the left and right panels.



22

−6 −4 −2 0 2 4 6

η

0

100

200

300

400

500

600

700

d
N

ch
/d
η

Au+Au 200 GeV (0-6)%

PHOBOS

σ⊥ = 0.15 fm η/s = 0.20
κsat =3.0 K = 5.5

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

−6 −4 −2 0 2 4 6

η

0

100

200

300

400

500

600

700

d
N

ch
/d
η

Au+Au 200 GeV (0-6)%

PHOBOS

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

param1 sat only K = 3.8

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

η/s = 0.16 sat only K = 2.3

−6 −4 −2 0 2 4 6

η

0

50

100

150

200

250

d
N

ch
/d
η

Au+Au 200 GeV (25-35)%

PHOBOS

σ⊥ = 0.15 fm η/s = 0.20
κsat =3.0 K = 5.5

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

−6 −4 −2 0 2 4 6

η

0

50

100

150

200

250
d
N

ch
/d
η

Au+Au 200 GeV (25-35)%

PHOBOS

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

param1 sat only K = 3.8

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

η/s = 0.16 sat only K = 2.3

−6 −4 −2 0 2 4 6

η

0

20

40

60

80

100

d
N

ch
/d
η

Au+Au 200 GeV (45-55)%

PHOBOS

σ⊥ = 0.15 fm η/s = 0.20
κsat =3.0 K = 5.5

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

−6 −4 −2 0 2 4 6

η

0

20

40

60

80

100

d
N

ch
/d
η

Au+Au 200 GeV (45-55)%

PHOBOS

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

param1 sat only K = 3.8

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

η/s = 0.16 sat only K = 2.3

FIG. 15: Charged particle multiplicity dNch/dη as a function of pseudorapidity in Au+Au collisions at
√
sNN = 200 GeV,

compared with PHOBOS data [120]. Left panels show the results with all the filters on, and the curves with markers in the
right panels show the results with only the saturation filter on. The solid green and dashed-dotted red curves are the same in
the left and right panels.

σ⊥ = 0.15 fm with η/s = 0.20, σ⊥ = 0.15 fm with
η/s = param1, and σ⊥ = 0.4 fm with η/s = 0.16. The
values of κsat and K for each case are indicated in the
figures. The left panels show the full results where sat-
uration, energy conservation, and valence-quark number
conservation are taken into account. The curves with

markers in the right panels show the results with satu-
ration only, demonstrating the role of saturation in the
energy conservation, as well as the role of the per-nucleon
level energy conservation in narrowing the rapidity dis-
tributions.

The values for the K factors that are needed to re-
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produce the data are increasing with decreasing collision
energy. This is in line with the expectation that NLO
corrections become increasingly important towards lower
collision energy [66, 67]. We can, however, see that the
centrality dependence of the multiplicity is well described
by collision energy independent κsat. This is already a
non-trivial result, even if we have some freedom to tune
the centrality dependence by changing κsat. The range
of the centrality dependence with different values of κsat

is, as shown in Fig. 9, quite limited. Thus, the centrality
dependence of multiplicity is relatively robust prediction
of the MC-EKRT model, and the good agreement with
the data is similar to the NLO EbyE EKRT model [17],
where 2+1 D fluid dynamics was employed.

A significant new feature in the MC-EKRT model is
that we can obtain full 3D initial conditions, and subse-
quently we can compute the pseudorapidity dependence
of the charged particle multiplicity. The overall agree-
ment with the rapidity spectra is encouragingly good.
At both LHC energies we can essentially reproduce the
measurements in all the centrality classes. Only in the
most peripheral collisions with |η| > 2, we can start to
see some more significant deviations from the shape of
the measured rapidity distribution. In the most central
collisions at RHIC the agreement is very similar as at the
LHC. In peripheral collisions we start to get too narrow
spectrum, but even then the agreement remains good up
to |η| ∼ 2.

The transverse smoothing range σ⊥ and the η/s
parametrization slightly affect both the centrality depen-
dence and the width of the rapidity spectra. The en-
ergy per unit rapidity is independent of σ⊥, but since
the conversion from energy density to entropy density is
non-linear, the final multiplicity depends on σ⊥. As a re-
sult, the rapidity spectra get wider with larger smoothing
range. Temperature dependence of η/s also affects the
width of the rapidity distribution through the entropy
production. If η/s increases with increasing tempera-
ture, the relative entropy production becomes larger at
higher temperatures or energy densities, and the rapidity
distribution becomes narrower than with a constant η/s.
Even though the main features of the rapidity spectra are
here coming from the MC-EKRT model, the finer details
of the obtained spectra depend also on the details of the
initialization and on the details of the fluid dynamical
evolution.

In the right panels of Figs. 13, 14, and 15 we show the
charged particle pseudorapidity distributions with satu-
ration only, i.e. we do not explicitly impose the nucleon-
level energy and valence-quark number conservations. As
we can see from the figures, comparing the curves with
and without the markers, the rapidity distributions be-
come wider without the per-nucleon energy conservation.
This is natural, as dijets with large rapidity carry a lot
of energy, and are thus more constrained by the energy
conservation. It is interesting to note that the saturation-
only results can also reproduce the shape of the rapid-
ity distribution in peripheral Au+Au collisions at RHIC.

On the other hand, the saturation-only distributions with
κsat = 4 at the LHC tend to get too wide in the most
central collisions.

We have checked that with the saturation-only κsat = 4
central-collision cases, i.e. with weaker saturation, the en-
ergy conservation of the contributing nucleons is violated
on the average already by ∼ 50 % at the LHC, and ∼ 20
% at RHIC. Interestingly, however, with the saturation-
only κsat = 2 central-collision cases, i.e. with stronger
saturation, the average violation is only ∼ 5 % at the
LHC, and energy is practically conserved at RHIC.

These results suggest that, given strong enough satu-
ration, the total energy budget could be conserved even
without a requirement of a tight per-nucleon energy con-
servation, supporting the view that the high-energy nu-
clear collisions can be described as collisions of two par-
ton clouds rather than as a collection of sub-collisions of
individual nucleons.

2. Charged particle elliptic flow

Figure 16 shows the pseudorapidity dependence of el-
liptic flow, the second-order Fourier coefficient v2{4} of
the azimuthal angle distribution of charged hadrons, in
semi-central 2.76 TeV Pb+Pb and 200 GeV Au+Au col-
lisions. The model results are calculated using the 4-
particle cumulant method [123]. Since our initial en-
ergy density profiles are averages over multiple events,
v2{EP} ≈ v2{2} ≈ v2{4} 2.

The η-differential flow is determined with respect to a
reference flow vector, which is typically constructed from
particles in a separate rapidity bin to avoid autocorrela-
tions. For the comparison with the ALICE data [121], the
reference flow vector is calculated using particles in the
TPC pseudorapidity acceptance |ηref | < 0.8 and in addi-
tion there is also a pT cut (0.2 < pT < 5.0) GeV. When
calculating v2(η) in the rapidity bins with |η| > 2.0, the
particles in the η bin are correlated with the full refer-
ence flow vector. For the rapidity bins with |η| < 2.0,
the particles with η < 0 are correlated with the positive-
rapidity reference particles 0 < ηref < 0.8, while the neg-
ative reference −0.8 < ηref < 0 is used for particles with
η > 0. In the PHOBOS comparison [122], the reference
flow for the η < 0 bins is determined from particles in
the pseudorapidity range 0.1 < ηref < 2.0 and the refer-
ence for η > 0 is determined from particles in the range
−2.0 < ηref < −0.1.

As our average initial energy density profiles lack
event-by-event fluctuations, at present the comparison
to v2 data has to be considered more qualitative than

2 PHOBOS states in Ref. [122] that their event plane v2{EP} re-
sults are most consistent with the 4-particle cumulant method,
so we consider v2{EP} and v2{4} to be comparable in this par-
ticular case.
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FIG. 16: Charged particle v2{4} as a function of pseudorapidity in Pb+Pb collisions at
√
sNN = 2.76 TeV, in the 20-30 %

centrality class, compared with ALICE data [121] (left panel), and in Au+Au collisions at
√
sNN = 200 GeV, in the 15-25 %

centrality class, compared with PHOBOS hit-based event plane v2 data [122] (right panel). The curves without markers show
the results with all filters on, and the ones with markers the saturation-only cases. The parameter setups and the curve labelings
are the same as in Figs. 13-15.

quantitative in nature. Nevertheless, the currently ob-
served trends look very promising; the magnitude of v2
is already close to data for both investigated collision
systems, and we observe stronger dependence on pseu-
dorapidity at 200 GeV compared to 2.76 TeV, as is also
suggested by the data. This steeper fall-off of dv2/dη at
RHIC can be understood as a sign of incomplete con-
version of spatial eccentricity into momentum anisotropy
due to the shorter lifetime of the hot QCD medium at
lower collision energies. This result is rather robust with
respect to the implementation details of the MC-EKRT
initialization. The largest effect is seen when relaxing the
energy conservation requirement, which leads to a visi-
ble decrease in v2, but in this case we have not tried to
adjust η/s to reproduce the data.

B. Event-by-event fluctuations of the initial state
eccentrities

Even though we have not performed here event-by-
event fluid dynamical evolution, we can still compute the
initial state eccentricities event-by-event, and in partic-
ular examine the decorrelation of the eccentrities as a
function of spacetime rapidity. The spatial eccentricity
vector with the magnitude ε2 pointing at the angle Ψ2

can be defined as a complex number constructed from a
weighted average,

ε2e
i2Ψ2 =

∑
k wkr

2
ke

i2φk∑
k wkr2k

=

∑
k wkr

2
k(cos(2φk) + i sin(2φk))∑

k wkr2k
.

Here r and φ indicate the polar coordinates (radius and
angle) in the transverse plane: r2 = x̂2 + ŷ2, cos(2φ) =

(x̂2 − ŷ2)/r2 and sin(2φ) = 2x̂ŷ/r2, where we have de-
fined x̂ = x − xcm and ŷ = y − ycm with respect to the
center-of-mass point (xcm, ycm) =

(∑
k wkxk∑
k wk

,
∑

k wkyk∑
k wk

)
.

The weight wk is the initial energy density at τ = τ0 in
a hydro cell and the sum is over the cells in a transverse
slice of the hydro grid which has the width Δηs.

Once we have determined the eccentricities for each
event, we can compute the Pearson correlation of the
eccentricity magnitudes between different rapidity bins
ηs and ηs0,

c(ε2(ηs),ε2(ηs0))

=
〈(ε2(ηs)− 〈ε2(ηs)〉)(ε2(ηs0)− 〈ε2(ηs0)〉)〉

σ(ε2(ηs))σ(ε2(ηs0))
, (70)

where 〈·〉 indicates an average over events and σ is the
corresponding standard deviation.

In Fig. 17 we show the event-averaged eccentricities
and the Pearson correlations between the eccentricities
at finite rapidity ε2(ηs) and midrapidity ε2(ηs0 = 0) in
Pb+Pb collisions at

√
sNN = 2.76 TeV in the LHC and in

Au+Au collisions at
√
sNN = 200 GeV at RHIC. The ra-

pidity bin width was chosen to be Δηs = 1.0. The event-
averaged eccentricities remain nearly constant close to
midrapidity, but both at RHIC and LHC the eccentricity
starts to increase at higher rapidities. We also see that
if we relax the energy conservation, the mid-rapidity ec-
centricities decrease by ∼ 10 % at the LHC, and ∼ 15
% at RHIC, which explains the decrease in v2 in the
saturation-only cases in Fig. 16.

As seen in the right panel of Fig. 17, the Pearson corre-
lation becomes weaker at higher rapidities, and at RHIC
the eccentricity beyond |ηs| >∼ 3.5 is no longer correlated
with midrapidity, while at the LHC the correlation spans
a considerably larger rapidity range |ηs| <∼ 5.0. The de-
creasing number of particles at RHIC compared to the
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FIG. 17: Spacetime rapidity dependence of the event-averaged eccentricity (left panel) and the Pearson correlation (right
panel) between ε2(ηs) and ε2(ηs = 0) (midrapidity bin indicated by the gray band) in 20-30 % central Pb+Pb collisions at√
sNN = 2760 GeV and in 15-25 % central Au+Au collisions at

√
sNN = 200 GeV. The dashed blue and dotted red curves

show the results with all filters on, and the dashed dark blue and dotted brown curves the saturation-only cases. The errorbars
show the standard deviation of the calculation.

LHC, and also towards larger rapidities leads to larger
fluctuations of eccentricity, and therefore also to a weaker
correlation with midrapidity at RHIC and at large ra-
pidities. In the saturation-only cases the correlation is
stronger at large rapidities than in the fully filtered cases.
To our understanding, also this is a multiplicity effect,
originating from the increased multiplicities at larger ra-
pidities.

We also note that the Pearson correlation from the
EbyE initial conditions should not be directly compared
to the rapidity dependence of elliptic flow in Fig. 16. The
elliptic flow is computed from event-averaged initial con-
ditions, and all the decorrelation effects disappear in the
averaging. We rather expect that the decreasing multi-
plicity at larger rapidity leads to a shorter lifetime in the
fluid evolution, and thus the conversion from eccentric-
ity to elliptic flow is not completed at higher rapidities,
and we get smaller v2. In a full EbyE computation both
the lifetime effect and the decorrelation effect would be
present.

The CMS collaboration has defined the rapidity de-
pendent correlation ratio [124] as

r2 =
〈v2(−η)v2(ηref) cos 2 [Ψ2(−η)−Ψ2(ηref)]〉
〈v2(η)v2(ηref) cos 2 [Ψ2(η)−Ψ2(ηref)]〉 , (71)

where the η bin is somewhere in the central rapidity re-
gion 0 < η < 2.5, its negative-side counterpart is at −η,
and the reference bin will be somewhere further away
in forward rapidity ηref > 3.0 to reduce nonflow effects.
Since we have performed full MC-EKRT + fluid dynam-
ics simulations only for event-averaged initial profiles, we
are not able to study event-by-event fluctuations of v2.
We can, however, estimate r2 from the pre-averaging ec-
centricities, assuming v2(η) ≈ kε2(ηs) for some propor-
tionality factor k:

r2 ≈ 〈ε2(−ηs)ε2(ηs,ref) cos 2 [Ψ2(−ηs)−Ψ2(ηs,ref)]〉
〈ε2(ηs)ε2(ηs,ref) cos 2 [Ψ2(ηs)−Ψ2(ηs,ref)]〉 ,

(72)
where Ψ2 is obtained from Eq. (70). Using the same
replacement v2 → ε2 we can also investigate the “twist
factor” Rn|n;2 ≡ R2, by the ATLAS collaboration [125]
where the ratio is controlled by the cosine term:

R2 ≈ 〈ε2(−ηs,ref)ε2(−ηs)ε2(ηs)ε2(ηs,ref) cos 2 [Ψ2(−ηs,ref)−Ψ2(ηs,ref) + (Ψ2(−ηs)−Ψ2(ηs))]〉
〈ε2(−ηs,ref)ε2(−ηs)ε2(ηs)ε2(ηs,ref) cos 2 [Ψ2(−ηs,ref)−Ψ2(ηs,ref)− (Ψ2(−ηs)−Ψ2(ηs))]〉 . (73)

We show the eccentricity correlation ratio r2 and twist
factor R2 in Fig. 18 in 20-30 % central Pb+Pb collisions
at

√
sNN = 2.76 TeV and in 15-25 % central Au+Au col-

lisions at
√
sNN = 200 GeV. Both r2 and R2 show a sim-

ilar behavior as the Pearson correlator, i.e. decorrelation
at larger rapidities, and the decorrelation is stronger at
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RHIC than at the LHC. The decreasing trend of the cal-
culated r2 and R2 is similar as seen in the CMS and AT-
LAS measurements, but the calculated r2 and R2 show
slightly stronger correlations than the measurements do.
However, as we do not perform event-by-event fluid dy-
namical evolution, a direct comparison is not really fea-
sible here [38], but our results should be rather taken as
qualitative.

V. CONCLUSIONS

We have developed a new MC-EKRT model for
computing initial particle production in ultrarelativis-
tic heavy-ion collisions. This is an extension of the
EbyE EKRT model [17], which has very successfully
predicted the midrapidity low-pT observables from 200
GeV Au+Au collisions at RHIC to the top energy LHC
Pb+Pb collisions. The essential new feature in the
new Monte-Carlo framework is the implementation of
the dynamical minijet-multiplicity-originating fluctua-
tions in the saturation and particle production. Also en-
ergy/momentum conservation and valence-quark number
conservation were implemented, together with a new type
of spatially dependent nuclear PDFs that cope with the
large density fluctuations present in an event-by-event
study. As a result, the MC-EKRT model now gives a full
3-dimensional initial state that can be coupled to 3+1 D
fluid dynamics.

We have applied the novel MC-EKRT framework to
5.02 TeV Pb+Pb, 2.76 TeV Pb+Pb, and 200 GeV Au+Au
collisions. The 3+1 D spacetime evolution is computed
with viscous relativistic hydrodynamics [73]. We have
studied the uncertainties related to converting the par-
tonic state, given by the MC-EKRT, to an initial state
of fluid dynamics, and also discussed the role of energy
conservation in rapidity distributions of charged particle
multiplicities and elliptic flow coefficients.

Although the MC-EKRT initial state model gives the
full 3–dimensional initial state that include all the EbyE
fluctuations, we have here made only an exploratory
study of the final observables. The main simplification
here is that we have first computed the initial conditions
by averaging a large number of EbyE MC-EKRT initial
states for each centrality class, and then computed the
fluid dynamical evolution only for the averaged initial
conditions. Obviously, this limits the number of observ-
ables that we can study, but it also decreases the com-
putational cost by a huge amount. The averaging of the
initial conditions is performed in such a way that the
final multiplicities resemble as closely as possible those
that would be obtained by a full EbyE computation.

The comparison with the measured charged particle
multiplicities at the LHC and RHIC shows that MC-
EKRT can describe the centrality dependence of the
multiplicity very well, practically at the same level as
the earlier EbyE EKRT implementation. Moreover, the
new framework describes the rapidity dependence as well.

The overall agreement with the measured shape of the ra-
pidity spectra is very good. This is a non-trivial result, as
it is a rather robust outcome from the MC-EKRT model,
and essentially dominated by the pQCD minijet produc-
tion and saturation. Note also that there is no parame-
ter to directly control the rapidity distribution. Only in
peripheral collisions at RHIC we start to see larger de-
viations from the data. Interestingly, we observed that
when we give up the detailed nucleon-level energy con-
servation, the agreement with the data extends all the
way to peripheral RHIC collisions. This might indicate
that in the view that ultrarelativistic nuclear collision are
rather collisions of parton clouds than collisions between
individual nucleons, the nucleon-level energy conserva-
tion is an unrealistically strict condition.

We have also computed the rapidity dependence of el-
liptic flow, and the agreement with the LHC and RHIC
data is good. The rapidity dependence of the computed
v2 is only slightly weaker than that of the data. Even
though the computation of the flow coefficients without
EbyE fluctuations should be viewed rather as qualitative
than quantitative, the fact that the computed rapidity
dependence of the elliptic flow is very similar to what
is seen in the data is very promising. Moreover, we see
that the EbyE initial state eccentricities at different ra-
pidities are slightly decorrelated. As these decorrelations
are not accounted for in the averaged initial state, our
result suggests that eventually the computation of the
true EbyE flow coefficients that include the decorrela-
tions could show a slightly stronger rapidity dependence
than the ones now computed from the averaged initial
state.

As an outlook, we can see various exciting avenues
along which the current MC-EKRT framework can be
developed further. First, similarly to Refs. [66, 67], a
well-defined NLO pQCD calculation for the integrated
minijet cross section σab

jet, which determines the multi-
plicity of the candidate dijets here, can and should be
done, and also its snPDF and scale dependencies should
be charted. Second, pQCD parton showering should be
included as a dynamical way to distribute the initially
produced parton’s energy and momentum into the phase
space. Third, also a more detailed spacetime picture of
parton production along the lines of Ref. [114] should be
studied, relaxing especially the assumption of all partons
being produced at z = 0 and thus making the initial
parton production more isotropic. Fourth, pre-thermal
evolution, i.e. the effects of the isotropizing and thermal-
izing secondary collisions of the produced partons [126–
137] should be considered. After all these developments,
an extraction of the full initial energy-momentum tensor
Tμν for 3+1 D fluid dynamics could be more realistically
done, and effects of e.g. initial velocity [36, 138, 139] and
shear-stress tensor to observables studied. Finally, we
note that the MC-EKRT framework provides a promis-
ing platform for jet-quenching studies, where both the
QCD-matter initial conditions for fluid dynamics and the
high-energy partons that are losing energy are consistenly
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obtained from the same computation, event-by-event.
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We investigate the effects of saturation dynamics on midrapidity flow observables by adding fluctuating
hotspots into the novel Monte Carlo EKRT (MC-EKRT) event generator for high-energy nuclear collisions.
We demonstrate that the intensity of the saturation effects significantly affects the ratio between the flow
coefficients v3 and v2 at the LHC. Adding a hotspot substructure to the nucleons enhances the saturation effects
and improves the agreement with the measured data. We show that the collision-energy dependence of the flow
coefficients obtained using the MC-EKRT initial states with hotspots is improved in comparison with the earlier
event-by-event EKRT model. In addition, we present the results for the charged hadron multiplicity distribution
in Pb+Pb collisions at the LHC, and show that the minijet multiplicity originating fluctuations of the saturation
scale included in MC-EKRT, as well as the presence of hotspots, are necessary for describing the measured
large-multiplicity tail in the distribution.

DOI: 10.1103/PhysRevC.110.034911

I. INTRODUCTION

The highest-energy nucleus-nucleus collisions, ultrarela-
tivistic heavy-ion collisions, which are currently performed
at the CERN Large Hadron Collider (LHC) and at the
Brookhaven National Laboratory (BNL) Relativistic Heavy
Ion Collider (RHIC), aim at determining the properties of
the nearly net-baryon-free hot quark-gluon plasma (QGP).
One also strives for a detailed understanding of the strong-
interaction dynamics that is responsible for the creation and
further evolution of the QGP in these collisions. See, e.g.,
Ref. [1] for a review.

According to lattice simulations of quantum chromody-
namics (QCD), the theory of the strong interaction, the
strongly interacting matter takes the form of the QGP at
high temperatures of T � 150–160 MeV [2,3] at a vanishing
baryochemical potential. Quarks and gluons can be produced
in ultrarelativistic heavy-ion collisions from the kinetic en-
ergy of the colliding nuclei so copiously that the effective
temperature (energy over particle ratio) of the system clearly
exceeds 160 MeV. In these conditions, the normal formation
of the color-confined, color-singlet bound states, hadrons, is
momentarily inhibited, and a nearly thermalized QGP, where
the degrees of freedom are colored gluons, quarks, and anti-
quarks, can be formed. The subsequent spacetime evolution
stages of such a QCD matter—the expansion and cooling of

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

the QGP, the crossover transition to a hadron gas, followed
by the expansion and cooling of the hadron gas—as well
as the simultaneous appearance of the QGP and hadron-gas
phases in different density regions of the expanding system,
are describable in terms of relativistic dissipative fluid dynam-
ics [4–27]. While QCD is a cornerstone of the standard model
of particle physics, relativistic fluid dynamics has become a
standard tool in the analysis of heavy-ion observables.

The determination of the QCD matter properties, such
as its equation of state and transport properties such as the
shear and bulk viscosities, from the measured LHC and RHIC
observables is a highly challenging task. Clearly, a precise
determination requires a simultaneous analysis of as many
heavy-ion observables as possible, from as many collision sys-
tems and collision energies as possible—a global analysis of
heavy-ion observables [11,14,17,28]. A proper statistical anal-
ysis, Bayesian inference [26,29–40] is necessary for setting
well-defined uncertainties to the extracted matter properties.
Interestingly, neural networks are currently making it possible
to include also statistics-expensive observables, such as com-
plicated rare flow correlators, into the global analysis [41,42]
(see also Ref. [43]).

The mentioned global analyses of heavy-ion observables
are based on a fluid-dynamical description, which takes initial
densities and flow velocities of the produced QCD matter as
initial conditions. One either parametrizes these initial con-
ditions [26,29–33,35–40,44] or tries to compute them from a
QCD dynamical model for the initial production of gluons and
quarks [14,17,28,38]. In both cases there is some number of
fit parameters that characterize the initial states, and these will
obviously be correlated with the actual QCD-matter properties
extracted from the data via Bayesian inference. It is therefore
important to model the QCD-matter initial states based on
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QCD dynamics as far as is possible, in order to understand
the dominant particle production mechanism, to reduce the
uncertainties in the extraction of the initial states, and to have
predictive power for moving from one system to another.

The EKRT (Eskola-Kajantie-Ruuskanen-Tuominen)
model [17,45–47], which treats the nuclear collisions as col-
lisions of parton clouds, and supplements a perturbative QCD
(pQCD) calculation for the production of few-GeV partons
(minijets) [48,49] with a collinear factorization-inspired QCD
saturation mechanism [17,47] for regulating the small-pT

minijet production (pT being transverse momentum), is an
example of such a QCD-based initial state modeling with
predictive power. The event-by-event (EbyE) version of
the model, EbyE-EKRT [17], has been quite successful in
explaining a large collection of heavy-ion bulk observables
at the LHC and RHIC [17,28,34,50–52]. The latest progress
here is the novel Monte Carlo (MC)-EKRT event generator,
introduced recently in Ref. [53], and employed in the present
paper.

The new features in MC-EKRT [53] relative to EbyE-
EKRT [17] are that now the produced partonic system
contains local fluctuations of the minijet multiplicity, which
in turn induce dynamical fluctuations to the saturation
controlling the initial parton production. Also per-nucleon
conservation of energy and valence-quark numbers are ac-
counted for. MC-EKRT also introduces a new type of spatially
dependent nuclear parton distribution functions (snPDFs) that
are specific to the nucleon configuration in each event and can
cope with the largest density fluctuations of the nucleon den-
sities. Thanks to these new features, MC-EKRT gives initial
conditions for full (3+1)-dimensional [(3+1)D] EbyE fluid
dynamics, and thus enables the studies of rapidity-dependent
observables, such as rapidity distributions of yields and flow
coefficients of charged hadrons in Pb+Pb collisions at the
LHC and at the highest-energy Au+Au collisions at RHIC,
see Ref. [53].

In this paper, we employ the new MC-EKRT framework for
computing event-by-event initial conditions for (2+1)D dis-
sipative shear- and bulk-viscous second-order transient fluid
dynamics in the midrapidity unit of 5.02 and 2.76 TeV Pb+Pb
collisions at the LHC. In particular, we study the sensitiv-
ity of the flow coefficients vn to the model details, such as
the nucleonic width and substructure, the Gaussian smear-
ing in coupling the individual minijets to continuous fluid
dynamics, as well as the order in which we do the minijet
filtering based on saturation and conservation of energy. In
addition, we show how the added minijet multiplicity fluc-
tuations are the piece formerly missing from EbyE-EKRT in
explaining the behavior of the charged multiplicity distribu-
tions in the most central collisions. The recently developed
neural networks for predicting flow observables directly from
the initial energy density event by event [41,42], are also
utilized. As the main result of this paper, we show that a
detailed simultaneous description of the vn’s requires satu-
ration to be the driving QCD mechanism for initial parton
production. In particular, this result calls for further nucleonic
substructure, hotspots, to be introduced in MC-EKRT. We
also implement these in MC-EKRT and discuss their inter-
esting interplay with saturation, in describing the v2/v3 ratio

as well as in explaining the measured charged multiplicity
distributions.

II. MC-EKRT INITIAL STATE FOR FLUID DYNAMICS

A. Minijet sampling

The MC-EKRT event generator of Ref. [53] produces par-
tonic initial states, i.e., saturated systems of gluons and quarks
with pT � p0 ∼ 1 GeV, that can be fed as initial conditions
to (3+1)D event-by-event fluid-dynamical simulations. The
generation of such MC-EKRT initial states proceeds via the
following steps (for details, see Ref. [53]).

First, the nucleon configurations of the colliding (here
spherically symmetric) nuclei A and B are generated by sam-
pling the standard two-parameter Woods-Saxon distribution,
and by requiring an exclusion radius of 0.4 fm. A squared
impact parameter b2

AB for the A + B collision, defining the
distance between the centers of masses of the colliding nu-
clei, is sampled from a uniform distribution. In the absence
of hotspots (i.e., without subnucleonic density fluctuations),
the A + B collision is triggered using MC Glauberlike black-
disc nucleons with a trigger cross section identical to the
inelastic nucleon-nucleon cross section σ NN

inel , which is ob-
tained from the measured total and elastic nucleon-nucleon
cross sections as a function of the nucleon-nucleon center-of-
momentum system (CMS) energy

√
sNN [54,55].

Once the A + B collision is triggered, MC-EKRT does not
consider nucleonic subcollisions at all but pictures the entire
nuclear collision as a collision of two extensive parton clouds.
For distributing the parton subclouds spatially around each
nucleon, MC-EKRT assumes a Gaussian thickness function,

TN (s̄) = 1

2πσ 2
N

exp

(
− |s̄|2

2σ 2
N

)
, (1)

with a width parameter σN = σN (
√

sNN) that is obtained from
exclusive photoproduction of J/� in photon-proton collisions
at HERA [56,57]. Then, multiple dijet production, i.e., the
number of independent dijets with jet transverse momentum
pT � p0 = 1 GeV, that is assigned to originate from each
ab pair, is sampled from a Poissonian probability distribution
with a mean

N̄ab
jets = TNN(b̄ab) σ ab

jet (p0,
√

sNN, {s̄a}, {s̄b}), (2)

where TNN(b̄ab) is the nucleonic overlap function and b̄ab is
the impact parameter between the nucleons a and b, while σ ab

jet
is the integrated pQCD (mini)jet cross section, which MC-
EKRT computes using the novel snPDFs for a and b, and all
possible leading-order (LO) partonic 2 → 2 subprocesses. A
CMS-energy-dependent multiplicative K factor is introduced
to σ ab

jet as a free fit parameter, to account for the missing higher-
order contributions. The (mini)jet cross section depends on
the transverse momentum cutoff parameter p0, on the CMS
energy

√
sNN, as well as on the transverse locations s̄a and s̄b

of a and b in the nucleon configurations of A and B, indicated
here with {s̄a} and {s̄b}.

As explained in detail Ref. [53], the novel snPDFs are now
nucleon-configuration specific and account for the nuclear
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modifications of each nucleon’s PDFs caused by all other nu-
cleons in the nucleus. In other words, the MC-EKRT snPDFs
are nucleon specific and nucleon-configuration specific. Also
noteworthy is that these novel snPDFs can fully cope with the
event-by-event density fluctuations, which was not the case
with the formerly developed spatial nPDFs, such as those in
Ref. [58]. The MC-EKRT snPDFs are normalized (averaging
over all nucleons in each nucleus and over a large number of
nuclei) to the spatially averaged nuclear PDF modifications of
the EPS09LO set [59], and CT14LO [60] are employed for
the free proton PDFs.

Finally, the transverse location for each produced dijet
is sampled from the product of the two overlap functions
TN , whose transverse integral gives the usual overlap func-
tion TNN. The kinematic variables and the flavor chemistry
of the produced partons, along with identifying the valence
quark-consuming processes, is sampled from the differential
jet sub-cross-sections, as explained in Ref. [53].

B. Minijet filtering

The next, and decisive, step in MC-EKRT is the filtering
of the excessive candidate dijets, based on the EKRT satura-
tion [17,45–47] and conservation of energy and valence quark
numbers. As explained in Refs. [17,47,53] saturation here
is expected to occur when all the higher-order (n > 2) → 2
parton processes start to dominate over the 2 → 2 ones. For
maintaining collinear factorization at the highest values of jet
transverse momenta, the filterings are performed in the order
of decreasing factorization scale, which here is the jet pT .
Then, the highest-pT partons can remain in the system while
the lower-pT ones may get filtered away.

For the saturation filtering, MC-EKRT assigns a transverse
radius 1/(κsat pT ) for each dijet candidate, where κsat is a
packing factor, a free parameter to be fitted from the data. The
transverse position of each candidate dijet is kept track of, and
a candidate dijet gets filtered away if it overlaps with any of
the previously accepted dijets. As shown in Ref. [53], after the
saturation filtering the pT distribution of surviving partons is
not anymore sensitive to the original cutoff parameter p0 but
now saturation is the dynamical and local regulation mecha-
nism for these distributions. This is the major difference to the
traditional minijet eikonal models (and models alike), which
are employed in event generators describing multiparton in-
teractions, such as HIJING [61].

Similarly, MC-EKRT keeps track of all the longitudinal
momentum fractions and valence quarks drawn out from their
mother nucleons by the candidate dijets. If the candidate dijet
would make its mother nucleon exceed its energy or valence-
quark budget, again checking the dijet candidates in the order
of decreasing pT , then that dijet candidate gets filtered away.
In the EKRT framework, in the spirit of suggesting saturation
as the dominant QCD mechanism that regulates and controls
initial parton production in highest-energy nuclear collisions,
the default is to do the saturation filtering first, and only then
the energy and valence-quark number conservation filterings.
There is, however, an option in the code, which we utilize, and
consequences we study in this paper, to have all the filterings
done simultaneously.

C. Nucleon substructure and hotspot trigger

The fluctuating substructure to the nucleons of the MC-
EKRT framework is implemented as follows. While there
is clear evidence that the nucleon substructure is necessary
for describing the measured incoherent J/ψ photoproduc-
tion [62], the situation is less clear in heavy-ion collisions. The
global analyses performed in Refs. [37,44] provide a slight
preference towards the inclusion of the nucleon substructure,
but the evidence is not conclusive. However, these analyses
use the TRENTo [63] initial-state model, in which the effect of
the substructure can partly be compensated with other initial-
state parameters.

In the MC-EKRT model, the addition of the nucleon sub-
structure enhances the saturation effects since it confines the
minijet production into more localized transverse regions.
This leads to a change in the initial geometry, which might
have an impact on the flow observables. The nucleon substruc-
ture is implemented by introducing Gaussian hotspots to the
nucleon thickness function:

TN (s̄) = 1

Nh

Nh∑
i=1

1

2πσ 2
h

exp

(
−

∣∣s̄ − s̄h
i

∣∣2

2σ 2
h

)
, (3)

where Nh is the number of hotspots, and σh is the width of
the hotspot. In this paper, Nh = 3 is always used when the
nucleon substructure is enabled. The hotspot locations s̄h

i are
sampled from a two-dimensional Gaussian distribution with
a width σs. The total nucleon width σN is then related to
the hotspot widths via σ 2

N = σ 2
s + σ 2

h . Therefore, only two of
the three widths are independent. As in Refs. [53,57,64], the
energy dependence of the total nucleon width is parametrized
as σN = √

b with

b/GeV−2 = b0 + 4α′
P ln

(
W

W0

)
, (4)

where W = √
sNN, and b0, α′

P, and W0 are fit parameters. In
the present paper, our default choice of parameters, based on
the H1 measurements [64], are b0 = 4.63, α′

P = 0.164, and
W0 = 90 GeV. This corresponds to σN = 0.517 fm for 2.76
TeV, and σN = 0.532 fm for 5.023 TeV collision energies.

In principle, the nucleon substructure needs to be ac-
counted for when performing the triggering of the nuclear
collision event [65,66] since otherwise there might be events
where the collision is accepted even though there is no
hadronic interaction. As mentioned before, without any sub-
structure, the triggering is done by assuming hard-sphere
scattering between two nucleons. The event is accepted if the
distance dNN

min between any nucleons a ∈ A and b ∈ B satisfy

dNN
min <

√
σ NN

inel

π
, (5)

where σ NN
inel is the inelastic nucleon-nucleon cross section.

The same kind of geometrical criterion can be extended to
account for the locations of the hotspots. That is, the triggering
with the nucleon substructure is done based on the minimum
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distance between two colliding hotspots dHS
min, i.e.,

dHS
min <

√
σHS

π
, (6)

where σHS is an effective hotspot-hotspot cross section fitted
to reproduce the same nucleus-nucleus cross section as ob-
tained with condition (5). Therefore, the value of σHS will
depend on the hotspot sampling width σs and the collision
system.

Even though in principle hotspot triggering could have a
notable impact, we have noticed that in most cases all the
measured observables remain nearly unchanged in the 0–80 %
centrality range. The largest effects are most visible in the
most peripheral charged particle multiplicity region, where
usually no measured data are given. In the 60–80 % cen-
tralities, the differences in charged particle multiplicities are
only a few percent at most. However, since in MC-EKRT we
sample dijets from the same nucleon configuration until at
least one is produced in a collision, the addition of hotspot
triggering there speeds up the generation of the initial states.

D. Initialization of fluid dynamics

The initial condition of fluid dynamics is the energy-
momentum tensor T μν at some initial proper time τ0.
However, MC-EKRT produces a list of massless partons with
known momentum rapidities yi, transverse momenta pTi, and
transverse coordinates x⊥,0i. Thus, the partons need to be
propagated to the τ0 surface and converted to the components
of the energy-momentum tensor. Here we assume that all the
partons are produced at the longitudinal location zi = 0 at
time t = 0, and that they propagate as free particles to the
proper time τ0 = 0.2 fm. Therefore, spacetime and momen-
tum rapidities are equivalent, i.e., ηs,i = yi. The spacetime
coordinates of the parton i are then [τ0, x⊥i(τ0), ηs,i] where
x⊥i(τ0) = x⊥,0i + τ0pTi/pTi.

The components of the energy-momentum tensor in the
τ − ηs coordinates are obtained as in Ref. [53],

T αβ (xα ) =
∑

i

∫
d2pT dy

pα pβ

pτ

1

τ
cosh(y − ηs)

× δ(2)(x⊥ − x⊥i )δ(ηs − ηs,i )δ
(2)(pT − pTi )

× δ(y − ηs), (7)

where the four-momentum pα = (pτ , pT , pη ) at a spacetime
location xα = (τ, x⊥, ηs) is given by

pα =
⎛
⎝ pT cosh(y − ηs)

pT

τ−1 pT sinh(y − ηs)

⎞
⎠. (8)

Depositing all energy and momentum of a parton into a
single cell on a hydro grid as suggested by the delta functions
appearing in Eq. (7) would lead to extreme fluctuations in
energy and momentum densities. To obtain smooth density
distributions, smearing is required. Here we are performing
(2+1)D hydrodynamic simulations, where a natural choice is
to let all partons that are produced in the midrapidity win-
dow y contribute to the fluid dynamical initial state. That

is, in Eq. (7) we replace δ(ηs − ηs,i ) → θ (y/2 − |ηs,i|)/y,
where θ is the Heaviside theta function. Here we use y =
1.0, but we have tested that the final results are practically
insensitive to the choice of y as long as 0.5 � y � 2.0.
The smearing in the transverse (x, y) plane is performed by
replacement δ(2)(x⊥ − x⊥i ) → g⊥(x⊥; x⊥i ), where

g⊥(x⊥; x⊥i ) = C⊥
2πσ 2

⊥
exp

[
− (x⊥ − x⊥i )2

2σ 2
⊥

]
(9)

is a Gaussian distribution with transverse smearing width σ⊥,
which is normalized as∫

d2x⊥g⊥(x⊥; x⊥i ) = 1. (10)

The computation cost is reduced by imposing a ±3σ⊥ cutoff
on the smearing range, and the coefficient C⊥ takes care of the
unit normalization.

As in Ref. [53], we only consider the local rest frame
energy density e when initializing the fluid dynamical system,
i.e., we neglect the initial transverse velocity and the initial
components of the shear-stress tensor. Therefore, the initial-
ization is determined by

T ττ (τ0, x⊥,y) = 1

τ0y

∑
i

pTig⊥(x⊥; x⊥i )θ (y/2 − |yi|),

(11)

which in this case coincides with e. The remaining compo-
nents are then obtained, using the equation of state, as T i j =
P(e)δi j .

Finally, we emphasize that even if we utilize only the
midrapidity minijets in computing the above initial condi-
tions, the underlying MC-EKRT event generation is fully
3D. Thus, the midrapidity initial conditions are influenced
also by the finite-rapidity effects in saturation and in energy
conservation.

III. FLUID SIMULATION FRAMEWORK

The simulations performed in this paper focus on midra-
pidity observables and therefore we assume that the longitu-
dinal expansion of the system is boost invariant. The same
framework as in Ref. [28] is used, i.e., we evolve the initially
formed strongly interacting matter using dissipative fluid
dynamics, and compute the final particle spectra at the dy-
namical decoupling surface. Additionally, the neural networks
trained in Ref. [41] are utilized for significantly decreasing the
computation time of the simulations. In this section, we give
a brief recapitulation of each aspect of the framework.

A. Fluid dynamics

Fluid dynamics is based on the local conservation laws for
energy, momentum, and conserved charges. Here we neglect
the conserved charges, in which case the conservation law
for the energy-momentum tensor, ∂μT μν = 0, controls the
dynamics. The energy-momentum tensor can be decomposed
with respect to four-velocity uμ as

T μν = euμuν − Pμν + πμν, (12)
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where μν = gμν − uμuν is a projection operator, P =
− 1

3μνT μν is the total isotropic pressure, e = T μνuμuν is
the local rest frame energy density, and πμν = T 〈μν〉 is the
shear-stress tensor. The angular brackets denote the symmet-
ric, traceless part of the tensor that is orthogonal to the fluid
four-velocity. Here the fluid velocity is defined in the Landau
frame, i.e., T μ

ν uν = euμ. The bulk viscous pressure is defined
as the deviation of the isotropic pressure P from the equilib-
rium pressure P0, i.e., � = P − P0. The equilibrium pressure
is given by the equation of state (EoS) of the QCD matter
at zero baryon density, P0 = P0(e). In this work, we use the
s95p-v1 parametrization [67] for the EoS, which includes the
partial chemical decoupling at Tchem = 155 MeV. The partial
chemical decoupling is implemented by adding temperature-
dependent chemical potentials for each hadron in the hadronic
part of the EoS [68–70].

The conservation laws together with the EoS are enough to
solve the evolution in equilibrium, but additional constraints
are needed when dissipative effects are present. The dissipa-
tive parts of the energy-momentum tensor are the shear-stress
tensor and the bulk viscous pressure. In the formalism by
Israel and Stewart [71], the equations of motion for dissipative
parts take a form

τ�

d

dτ
� + � = −ζθ − δ���θ + λ�ππμνσμν, (13)

τπ

d

dτ
π 〈μν〉 + πμν = 2ησμν + 2τππ 〈μ

α ω
ν〉α

− δπππμνθ − τπππ 〈μ
α σ

ν〉α

+ϕ7π
〈μ
α π

ν〉α + λπ��σμν, (14)

where θ = ∇μuμ is the expansion rate, σμν = ∇〈μuν〉 is the
strain-rate tensor, and ωμν = 1

2 (∇μuν − ∇νuμ) is the vorticity
tensor. The first-order transport coefficients η and ζ are called
shear and bulk viscosity, respectively. In a 14-moment approx-
imation to the massless gas [72–75], the first-order transport
coefficients are related to the shear and bulk relaxation
times as

τπ = 5η

e + P0
, τ� =

(
15

(
1

3
− c2

s

)2

(e + P0)

)−1

ζ , (15)

and the remaining second-order transport coefficients are

δ�� = 2

3
τ�, λ�π = 8

5

(1

3
− c2

s

)
τ�, δππ = 4

3
τπ ,

τππ = 10

7
τπ , ϕ7 = 9

70P0
, λπ� = 6

5
τπ , (16)

where cs is the speed of sound. The specific shear viscosity
η/s and specific bulk viscosity ζ/s are from the η/s = dyn
parametrization introduced in Ref. [28].

B. Decoupling and particle spectra

The fluid dynamic evolution is continued until reaching
the kinetic decoupling surface. Here the decoupling surface

is determined by the dynamical decoupling conditions

Kn = τπθ = CKn (17)
γ τπ

R
= CR, (18)

where Kn is the Knudsen number, γ is the Lorentz gamma
factor, and the coefficients CKn and CR are proportionality
constants of O(1), which are fitted to the measured data.
Here, values CKn = 0.8 and CR = 0.15 are used according to
Ref. [28]. The size of the system R is defined as

R =
√

A

π
, (19)

where A is the area in the transverse (x, y) plane where Kn <

CKn. Additionally, the decoupling is forced to happen in the
hadronic phase of the QCD matter, i.e., when T < 150 MeV.
Given these conditions the decoupling surface is determined
using the Cornelius algorithm [76].

At the decoupling surface � with the directed surface ele-
ment d�μ, the Lorentz-invariant particle spectrum for particle
type i is computed according to the Cooper-Frye integral,

E
d3Ni

d3k
=

∫
�

d�μkμ fi(x, k), (20)

where E and kμ are particles energy and four-momentum,
respectively. The distribution function for particle species i
is decomposed into in- and out-of-equilibrium parts as fi =
f0i + δ fi, where the equilibrium part is given by

f0i(x, k) =
[

exp

(
kμ

i uμ − μi

T

)
± 1

]−1

, (21)

where + (−) sign is for fermions (bosons), and μi is the chem-
ical potential. Here, the viscous corrections to the equilibrium
distribution are of the form [6,77–79]

δ fi = − f0i f̃0i
Cbulk

T

[
m2

3Ek
−

(
1

3
− c2

s

)
Ek

]
�

+ f0i f̃0i

2T 2(e + P0)
πμνkμkν, (22)

with f̃0i = 1 ± f0i (+ for bosons and − for fermions) and the
coefficient

1

Cbulk
=

∑
i

gim2
i

3T

∫
d3k

(2π )3k0
f0i f̃0i

[
m2

i

3Ek
−

(
1

3
− c2

s

)
Ek

]
,

(23)
where gi is the degeneracy factor. After computing the spectra
from Eq. (20), the two- and three-body decays of unstable
particles are computed as in Ref. [80].

C. Neural networks

To reduce the computational cost of the simulations, deep
convolutional neural networks trained in Ref. [41] are utilized
here for predicting final-state event-by-event observables at
midrapidity. Each neural network takes the discretized initial
energy density profile in the transverse-coordinate (x, y) plane
as an input, and outputs one pT -integrated observable. Sepa-
rate neural networks are used to predict flow coefficients vn,
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FIG. 1. Neural network validation test for the flow coefficients v2{2}, v3{2}, and v4{2} in 5.023 TeV Pb+Pb collisions. The networks were
trained with the EbyE-EKRT data from Ref. [28] as described in Ref. [41]. The hydro results and the neural network validation results were
obtained from 10k MC-EKRT initial states, which included hotspots and multiplicity fluctuations that were not present in the training data.
The measured data are from the ALICE Collaboration [81].

charged particle multiplicities dNch/dη, and mean transverse
momenta [pT ]. Predicting flow observables with neural net-
works is many orders of magnitude faster than performing full
hydrodynamic simulations. For example, predicting results
for 107 events takes only around 20 h with Nvidia Tesla V100
GPU.

As the training data for the neural networks is from
Ref. [28], and the predictions made using these networks emu-
late the same dynamics as the training data, the viscosities η/s,
and ζ/s, and other parameters affecting the fluid-dynamical
evolution are the same ones as in Ref. [28].

In Ref. [41], it was demonstrated that the neural networks
work accurately when using the EbyE version of the EKRT
model. However, it is nontrivial that the accuracy of the neural
networks, which are trained by the EbyE-EKRT data from
Ref. [28], and not from MC-EKRT, would extend to the MC-
EKRT initial states with hotspots, where the initial geometry
can be significantly different. Therefore, the neural networks
were validated by generating 10 000 MC-EKRT initial states
and comparing the neural network predictions against (2+1)D
fluid dynamical simulations for the 5.023 TeV Pb+Pb col-
lision system. The validation tests for the flow coefficients
v2, v3, and v4 are shown in Fig. 1. The initial-state parameters
used in the validation test were κsat = 2.5, K = 2.2, σ⊥ = 0.4
fm, and σh = 0.2 fm. The obtained excellent agreement be-
tween the fluid dynamical simulations and neural network
predictions illustrates the versatility of the neural networks
with different initial conditions. Additionally, we have verified
that the accuracy of the employed neural networks remains
good for other training observables as well.

IV. RESULTS

In this section, we present the results of fluid-dynamical
simulations with MC-EKRT initial states for midrapidity bulk
observables, and compare the results against the earlier EbyE
EKRT work [28]. All the fluid dynamical results are generated
using our neural networks, and they contain 50 000 collision

events, except the multiplicity distribution results, which are
obtained from 150 000 events. As discussed in Sec. III C,
the neural network results correspond to the fluid dynamical
simulations with the matter properties and decoupling param-
eters from Ref. [28]. Therefore, any differences between the
presented results are due to differences in the initial states.

When examining the effects of the initial-state through
final-state observables, it is important to remember that some
observables are highly sensitive to the properties of the matter.
For instance, the magnitude of flow coefficients is signifi-
cantly influenced by the shear viscosity to entropy density
ratio η/s. In contrast, the ratios of flow coefficients are less
sensitive to such details, particularly the ratio between v3 and
v2, which can provide valuable insights into the geometry and
structure of the initial state [82].

The effect of the Gaussian smearing width σ⊥ is demon-
strated in Fig. 2, where the ratios of the flow coefficients
v2, v3, and v4 in 5.023 TeV Pb+Pb collision system are shown
as a function of centrality for different smearing widths. The
MC-EKRT initial-state parameters are set to κsat = 1.4, and
K = 2.5. Nucleon substructure is not included in these plots.
As can be seen in the left panel, the magnitude of flow is
sensitive to the Gaussian smearing width σ⊥. However, σ⊥
has only little impact on the ratios between the flow coeffi-
cients, as shown by the middle and right panels. Therefore, the
parameter σ⊥ is influencing the flow coefficients in a similar
manner as the shear viscosity. Here, and in what follows, we
adjust σ⊥ to obtain the measured v2 in midcentral collisions
for all different MC-EKRT results. However, we want to em-
phasize that this is only done to illustrate the capabilities and
uncertainties of MC-EKRT. To get the best overall fit to all
different observables, a global analysis is needed, but this is
beyond the purpose of this study.

An intriguing aspect of the MC-EKRT model is the inter-
play between the saturation and conservation-law filters. The
impact of different filters on the flow coefficients in 5.023
TeV Pb+Pb collisions is illustrated in Fig. 3. In all these
scenarios, a value of K = 2.5 is used, while the saturation
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FIG. 2. The effect of the Gaussian smearing width σ⊥ on the two-particle flow coefficient v2{2} (left panel) and the ratios v3{2}/v2{2}
(middle panel), and v4{2}/v2{2} (right panel) in 5.023 TeV Pb+Pb collisions. No nucleon substructure is included here. The experimental data
for the ratios are computed based on the ALICE measurements for the two-particle flow coefficients [81].

parameter κsat is adjusted to achieve roughly identical charged
particle multiplicities in central collisions. This corresponds
to κsat = 1.3 for the saturation-only case, and κsat = 1.4 for
the other cases. The nucleon width is set according to the
default parametrization from Eq. (4), i.e., σN = 0.53 fm, and
no nucleon substructure is introduced. For the saturation-first
case σ⊥ = 0.3 fm, for the case with all filters at the same time
σ⊥ = 0.4 fm, and for the saturation-only case σ⊥ = 0.3 fm.

The most notable feature in Fig. 3 is the significant im-
pact of saturation on the ratio between v3 and v2. The case
with only saturation reproduces the measured v2 and v3 most
accurately, while the simultaneous application of all the fil-
ters leads to a clear underestimation of v3. When saturation
is applied before other filters, the results approach those of
the saturation-only scenario, as anticipated. The discrepancies
in the v3/v2 ratio arise from the geometrical differences in
saturation and momentum conservation. Saturation does not
allow geometrical overlap in the transverse plane. This leads
to a more evenly distributed energy density profile. Energy

conservation, on the other hand, gives no direct geometrical
constraints. The stronger the saturation the more the eccen-
tricity ε2 is suppressed compared to the eccentricity ε3. The
reduced eccentricity ε2 can be compensated by decreasing
the smearing width σ⊥ so that the elliptic flow v2 remains
nearly unchanged, while ε3 increases. This is reflected in
the shown flow coefficients. It is also noteworthy that the
v3/v2 ratio is very similar between the MC-EKRT model
with only saturation and the EbyE-EKRT model, which does
not explicitly include momentum conservation. Since strong
saturation appears to be necessary for matching the measured
v3/v2 ratio, we will now focus exclusively on the scenarios
where saturation is applied first, followed by the conser-
vation filters. This approach is also theoretically justified
because, in principle, saturation should inherently account
for conservation laws. However, achieving this would require
implementing saturation through momentum-conserving mul-
tiparton distributions to all orders, which is not practically
feasible.

FIG. 3. The flow coefficients vn{2} as a function of centrality for 5.023 TeV Pb+Pb collisions. The simulation results with different
MC-EKRT filter settings are compared against the ALICE measurements [81], and the EbyE-EKRT results from Ref. [28]. No nucleon
substructure was included here.
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FIG. 4. The flow coefficients vn{2} as a function of centrality for 5.023 TeV Pb+Pb collisions. The MC-EKRT results with and without
nucleon substructure are compared against the ALICE measurements [81], and the EbyE-EKRT results from Ref. [28].

Since saturation is sensitive to the nuclear overlap TATB

(nuclear thickness function TA is the sum of TN s), the hotspots
introduce interesting dynamics. With the hotspots, TA can
reach ≈10 times higher values than with the average nucleon
geometry. Therefore, one would expect the saturation strength
and the v3/v2 ratio to increase when hotspots are included.

The effect of hotspots on the flow coefficients is illustrated
in Fig. 4, which compares two different hotspot parametriza-
tions. The first parametrization uses the default nucleon width
from parametrization Eq. (4), together with hotspots with
width σh = 0.2 fm. In this case, the MC-EKRT parameters are
set to κsat = 2.5, K = 2.2, and σ⊥ = 0.4 fm. For the second
parametrization, the nucleon width is obtained from Eq. (4),
but this time a significantly stronger energy dependence with
α′ = 0.6 is used. This corresponds to a nucleon width σN =
0.75 fm for 5.023 TeV collision energy. This nucleon width
is in line with the many global analyses, where values in
the range ∼0.6–1.0 fm are preferred [33,37,44,83]. With a
wider nucleon, a narrower hotspot with σh = 0.15 fm is used
together with parameters κsat = 2.5, K = 2.4, and σ⊥ = 0.25
fm. The saturation-first case from Fig. 3 is here left as a
reference curve.

As expected, the addition of hotspots appears to increase
the v3/v2 ratio. The best overall fit to the measurements is
obtained with the narrow hotspots, i.e., σh = 0.15 fm, cor-
responding thus to the strongest saturation. In this case, the
centrality dependence of v2, and v3 matches nearly perfectly
to the ALICE measurements [81], while maintaining a good
agreement for v4. These findings suggest that the interplay be-
tween hotspots and saturation is crucial for the simultaneous
description of the flow coefficients and especially of the v3/v2

ratio.
In Fig. 5, the flow coefficients are shown for 2.76 TeV

Pb+Pb collisions. The different curves correspond to the same
cases as in Fig. 4, but the K factor is adjusted to obtain
a reasonable agreement with the measured charged particle
multiplicity. The obtained values are K = 2.5 for the σh = 0.2
fm case, while the σh = 0.15 fm and the no-hotspots cases
both use K = 2.7. The agreement between the data and the re-
sults is quite similar to the 5.023 TeV collision energy results.

At both energies, the narrow-hotspot case with σh = 0.15 fm
can describe the measured flow coefficients well, while the
centrality dependence of v2 is slightly off for the σh = 0.2 fm
case. From Figs. 4 and 5 it can be seen that MC-EKRT with
the nucleon substructure captures the energy dependence of
the flow coefficients significantly better than the EbyE-EKRT
model.

In Fig. 6, the charged particle multiplicity as a function
of centrality is shown for the same initial-state parametriza-
tions in 2.76 TeV and 5.023 TeV Pb+Pb collisions.
The agreement between the results and the ALICE mea-
surements [84,85] is good in all cases, even though there
are some minor discrepancies in the centrality behavior. The
initial state without hotspots seems to produce slightly too
weak a centrality dependence, while, with the hotspots, the
centrality dependence is a bit too steep. However, these are
small differences, and further improvements could be ob-
tained by fine tuning the matter properties and initial state
parameters.

The MC-EKRT approach adds minijet-multiplicity-
originating saturation-scale fluctuations to the EKRT initial
state. These fluctuations, together with hotspot fluctuations,
should in principle increase the hadron multiplicity
fluctuations in the most central collisions. This effect is
studied in Fig. 7, where the charged hadron multiplicity
distributions from MC-EKRT with and without hotspots are
compared against the EbyE-EKRT results, which do not
contain multiplicity-originating fluctuations of the saturation
scale or hotspots. To make the results comparable with the
V0 amplitude measured by ALICE [86], they are normalized
to have approximately the same mean as the V0 amplitude.
As shown also in Ref. [17], the EbyE-EKRT results almost
completely miss the high-multiplicity tail in the distribution.
The addition of the further saturation scale fluctuations indeed
enhances the high-multiplicity tail in the distribution, and
therefore improves the agreement with the measurements as
one would expect. The addition of the hotspots is important
also for this observable, as it increases the fluctuations
and high-multiplicity tail further, leading to a very good
agreement with the ALICE data.
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FIG. 5. The flow coefficients vn{2} as a function of centrality for 2.76 TeV Pb+Pb collisions. The MC-EKRT results with and without
nucleon substructure are compared against the ALICE measurements [81], and the EbyE-EKRT results from Ref. [28].

V. CONCLUSIONS

In this paper, we have studied the effects of the MC-EKRT
initial states on midrapidity flow observables. The computa-
tionally slow fluid dynamics simulations were replaced with
the neural networks, that could predict flow observables di-
rectly from the initial state. The networks used here did not
contain any information about the MC-EKRT initial states.
Even so, the neural networks did accurately describe the flow
observables, emphasizing the versatility and usefulness of the
neural networks.

We found that essentially the strength of saturation controls
the ratio between two-particle flow coefficients v3/v2. With-
out any nucleon substructure, the measured data preferred
that no local momentum conservation was enforced, so that
the saturation would be the only effect that regulates the
initial low-pT parton production. The addition of the nucleon
substructure enhanced the saturation strength, and led to a
good agreement with the measured data, even with the local

momentum conservation imposed. Our flow coefficient results
lend support to having relatively narrow hotspots in a rela-
tively wide nucleon, and rather systematically saturation as
the decisive QCD mechanism for regulating the initial parton
production.

The results from the MC-EKRT initial state with the nu-
cleon substructure managed to improve the agreement with
the LHC measurements relative to the previous EbyE-EKRT
model. The novel MC-EKRT model now captures the mea-
sured energy dependence of the flow coefficients better, while
the added saturation scale fluctuations and the inclusion of
hotspots systematically improves the agreement with the mea-
sured multiplicity distribution in the most central collisions.

Overall, the MC-EKRT results presented here show an
excellent agreement with the data for the flow coefficients and
the charged particle multiplicity. We want to note that this was
achieved even without adjusting the QCD matter properties
or the dynamical decoupling conditions from previous works,

FIG. 6. The charged particle multiplicity as a function of centrality in 2.76 TeV (left panel), and 5.023 TeV (right panel) Pb+Pb collisions.
The MC-EKRT results with and without nucleon substructure are compared against the ALICE measurements [84,85], and the EbyE-EKRT
results from Ref. [28].
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FIG. 7. The probability distribution of charged particle multiplic-
ity for 2.76 TeV Pb+Pb collisions. The MC-EKRT results with and
without nucleon substructure are compared against the parametriza-
tion of the ALICE V0 amplitude read off from Ref. [86], and the
EbyE-EKRT results from Ref. [28].

and therefore this acts as a baseline for what can be achieved.
More detailed global analysis with more observables and col-
lision systems should be done to constrain the QCD matter
properties. Particularly interesting are the smaller collision

systems, such as proton-nucleus, light-ion, and even proton-
proton collisions, which offer also very interesting further
tests of the proposed saturation, momentum conservation, and
hotspot dynamics, especially because in the smaller systems
the effects of fluctuations and longitudinal dynamics become
enhanced, see, e.g., Refs. [27,87–93]. Additionally, at the
lower collision energies, the finite longitudinal overlap area
in the initial collision together with the initial transverse flow
can play an important role in the simulations. These aspects
were not considered here, but are left as future work.
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[7] P. Bożek and I. Wyskiel-Piekarska, Phys. Rev. C 85, 064915

(2012).
[8] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. Lett. 106, 042301

(2011).
[9] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 82, 014903

(2010).
[10] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 85, 024901

(2012).
[11] H. Song, S. A. Bass, and U. Heinz, Phys. Rev. C 83, 054912

(2011); 87, 019902 (2013).
[12] H. Niemi, G. S. Denicol, P. Huovinen, E. Molnar, and D. H.

Rischke, Phys. Rev. Lett. 106, 212302 (2011).
[13] L. Pang, Q. Wang, and X. N. Wang, Phys. Rev. C 86, 024911

(2012).
[14] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan,

Phys. Rev. Lett. 110, 012302 (2013).
[15] H. Niemi, G. S. Denicol, P. Huovinen, E. Molnar, and D. H.

Rischke, Phys. Rev. C 86, 014909 (2012).

[16] J. Noronha-Hostler, G. S. Denicol, J. Noronha, R. P. G.
Andrade, and F. Grassi, Phys. Rev. C 88, 044916 (2013).

[17] H. Niemi, K. J. Eskola, and R. Paatelainen, Phys. Rev. C 93,
024907 (2016).

[18] G. Denicol, A. Monnai, and B. Schenke, Phys. Rev. Lett. 116,
212301 (2016).

[19] S. Ryu, J. F. Paquet, C. Shen, G. S. Denicol, B. Schenke, S.
Jeon, and C. Gale, Phys. Rev. Lett. 115, 132301 (2015).

[20] L. G. Pang, H. Petersen, G. Y. Qin, V. Roy, and X. N. Wang,
Eur. Phys. J. A 52, 97 (2016).

[21] I. A. Karpenko, P. Huovinen, H. Petersen, and M. Bleicher,
Phys. Rev. C 91, 064901 (2015).

[22] G. Giacalone, J. Noronha-Hostler, M. Luzum, and J. Y.
Ollitrault, Phys. Rev. C 97, 034904 (2018).
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