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A B S T R A C T

This paper discusses the process of optimizing the shape of systems that are controlled by
the Stokes flow with threshold leak boundary conditions. In the theoretical part it focuses on
studying the stability of solutions to the state problem in relation to a specific set of domains. In
order to facilitate computation, the slip term and impermeability condition are regulated. In the
computational part, the optimized portion of the boundary is defined using Bézier polynomials,
in order to create a finite dimensional optimization problem. The paper also includes numerical
examples to demonstrate the computational efficiency of this approach.

1. Introduction

Control and optimization of fluid mechanics models including shape optimization is nowadays well established discipline with
many practical applications, see [12,19] and references therein. Typically the behavior of the controlled system is governed by
generally nonlinear partial differential equations comprising appropriate boundary conditions. Their solutions are usually smooth
functions of control parameters. Some thirty years ago, mathematicians introduced into fluid models the so-called threshold
boundary conditions which are well-known in contact mechanics of solids as unilateral and friction conditions. Fujita in his
pioneering paper [8] studied two types of such conditions in the Stokes and Navier–Stokes model, namely slip and leak boundary
conditions of Tresca type, when slip, leak on the boundary may occur only if the shear, and normal stress, respectively, attains a
threshold bound given a-priori. A possible way how to express these conditions is to write them in the form of inclusions involving
multivalued mappings which represent the subdifferential of appropriate nonsmooth convex functions. The whole mathematical
model then leads to an inequality type problem whose complexity depends partly on the flow model and partly on the choice of the
slip/leak law see [2,3,18], e.g. Optimization of systems governed by nonsmooth state relations gives rise to possible nonsmoothness
of the whole optimization problem. This fact creates some difficulties from the computational point of view. If we use the original
nonsmooth formulation then (to be correct) discretized models should be solved by methods which are tailored just for this type
of problems [21]. But their successful application needs some elementary knowledge of tools of nonsmooth analysis. On the other
hand, classical gradient type methods when used for solving nonsmooth problems usually fail or give unsatisfactory results. One of
ways how to overcome these difficulties is to replace the original state problem by a sequence of smooth ones and to use them as
the new state relation in optimization. The resulting problem becomes smooth (provided that the cost function is smooth, too) and
so it can be solved by standard methods. Just this way is used in this paper.

The present paper deals with a class of 2D shape optimization problems governed by the Stokes equations with threshold leak
boundary conditions of Tresca–Navier type which are prescribed on an optimized part of the boundary. It extends the previous
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papers [15,16] which are devoted to the Stokes system but with the threshold slip conditions and, in addition it improves several
results obtained there. To simplify our presentation we shall consider a very simple geometry of admissible domains. Moreover, the
optimized part of the boundary will be represented by the graph of 𝐶1,1 functions which will play the role of the design variables.
The velocity formulation of the state relation leads to a variational inequality of the 2nd kind using the terminology from [10]
due to the presence of the nonsmooth leak term 𝑗. To regularize the problem, 𝑗 is replaced by an appropriate sequence of smooth
functionals 𝑗𝜀, 𝜀 → 0+. There is yet another troublesome thing from the computational point of view: namely the zero tangential
velocity condition 𝑢𝜏 = 0 prescribed on the optimized part of the boundary. This condition is realized in computations by a smooth
penalty technique. Thus we use simultaneously a penalty and regularization approach for solving the state problem.

The paper is organized as follows: in Section 2, the state and shape optimization problems in their original, i.e. nonsmooth form,
are defined together with the assumptions guaranteeing the existence of a solution. The most important result needed in the existence
analysis is the proof of a stability of solutions with respect to domains. i.e. to show that the solutions to the state problem considered
as a function of domains depend continuously (in an appropriate sense) on domain variations. To this end one needs another very
important property: to show that any test function used in the weak formulation to the Stokes equations on any admissible domain
can be approximated by functions which can be used as test functions on close domains. In [16] this property has been proven
for functions satisfying the impermeability condition 𝑣𝜈 = 0 on the slip part of the boundary. In the present paper this result is
extended to the more general boundary condition of the form 𝒗 ⋅ 𝒔 = 0 prescribed on the optimized part of the boundary, where
𝒔 is a sufficiently smooth vector field depending continuously on the boundary variations. Shape optimization problems with the
penalized/regularized state equations are introduced in Section 3. Their solutions now depend on the regularization/penalization
parameter 𝜀. It is shown that if 𝜀 → 0+, they tend on subsequences to a solution of the original nonsmooth optimization problem.
Also this convergence result is stronger than these ones in [15,16]. Section 5 deals with computational aspects. Optimized part
of the boundary with the leak conditions is parametrized by Bézier polynomials, while the regularized-penalized state problem is
discretized by stable P1-bubble/P1 elements. The gradient of the cost function is evaluated using the algebraic adjoint state approach.
Finally, Section 6 presents computational results for two model problems.

The paper uses the following notation. If 𝑄 is a bounded domain in R𝑛, 𝑛 = 1, 2 then 𝐻𝑘(𝑄), 𝑘 ≥ 0 integer, denotes the standard
Sobolev space of functions defined in 𝑄 which are together with their derivatives up to order 𝑘 square integrable in 𝑄. We set
𝐻0(𝑄) = 𝐿2(𝑄). The norm in 𝐻𝑘(𝑄) will be denoted by ‖ ⋅ ‖𝑘,𝑄 and the scalar product by ( , )𝑘,𝑄. If 𝑋 is an ordered vector space
then 𝑋+ stands for the cone of its non-negative elements. Algebraic vectors and vector functions will be denoted by bold characters.
If 𝐚,𝐛 are two vectors from 𝑅𝑑 , 𝑑 = 1, 2,… their scalar product is denoted by 𝐚 ⋅ 𝐛. If 𝐀=(𝑎𝑖𝑗 ), 𝐁=(𝑏𝑖𝑗 ) are two 𝑛 × 𝑛 matrices then

∶ 𝐁 ∶= 𝑎𝑖𝑗𝑏𝑖𝑗 (the summation convention is used). The symbol 𝑐 stands for a generic positive constant, which may take different
alues at different places of its occurrence.

. State problem

Let 𝛺 ⊂ R2 be a bounded domain with the Lipschitz boundary 𝜕𝛺 = 𝛤 ∪𝛤N ∪𝑆, where 𝛤 , 𝛤N, and 𝑆 are non-empty, disjoint parts
open in 𝜕𝛺. The classical formulation of the state problem reads as follows: find the velocity vector 𝒖 ∶ 𝛺 → R2 and the pressure
𝑝 ∶ 𝛺 → R such that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−2𝜇 div (D𝒖) + ∇𝑝 = 𝒇 in 𝛺,

div 𝒖 = 0 in 𝛺,

𝒖 = 𝟎 on 𝛤 ,

𝝈𝝂 = 𝝈𝑁 on 𝛤N,

𝑢𝜏 = 0 on 𝑆,

|𝜎𝜈 + 𝜅𝑢𝜈 | ≤ 𝑔, (𝜎𝜈 + 𝜅𝑢𝜈 )𝑢𝜈 + 𝑔|𝑢𝜈 | = 0 on 𝑆.

(2.1)

ere 𝜇 > 0 is the dynamic viscosity of the fluid, 𝒇 ∈ (𝐿2(𝛺))2, 𝝈𝑁 ∈ (𝐿2(𝛤N))2, 𝑔, 𝜅 ∶ 𝑆 → R+ denote an external force, a given value
f the stress vector, a non-negative leak threshold, and leak coefficient, respectively. Further D𝒖 = 1

2 (∇𝒖 + (∇𝒖)T) is the symmetric
part of the gradient of 𝒖, 𝝂, 𝝉 are the unit normal, and tangential vector, respectively, to 𝜕𝛺. Finally, 𝑣𝜈 = 𝒗 ⋅ 𝝂, 𝑣𝜏 = 𝒗 ⋅ 𝝉 are the
normal, and tangential components of a vector 𝒗 ∈ R2 on 𝜕𝛺, respectively, 𝝈 = 2𝜇(D𝒖) − 𝑝𝑰 is the stress tensor, and 𝜎𝜈 = 𝝈𝝂⋅𝝂 is
the normal component of the stress vector 𝝈𝝂 on 𝜕𝛺.

From (2.1)6 it follows:

∙ if 𝑢𝜈 (𝑥) = 0 then |𝜎𝜈 (𝑥)| ≤ 𝑔(𝑥), 𝑥 ∈ 𝑆,
∙ if 𝑢𝜈 (𝑥) ≠ 0 then 𝜎𝜈(𝑥) = −𝜅(𝑥)𝑢𝜈 (𝑥) − 𝑔(𝑥) sign 𝑢𝜈 (𝑥), 𝑥 ∈ 𝑆.

}

(2.2)

The relation between 𝜎𝜈 and −𝑢𝜈 is depicted in Fig. 1. Thus a leak at 𝑥 ∈ 𝑆 occurs only if |𝜎𝜈 (𝑥) + 𝜅(𝑥)𝑢𝜈 (𝑥)| = 𝑔(𝑥).
The weak formulation of (2.1) reads:

⎧

⎪

⎨

⎪

Find 𝒖 ∈ V(𝛺), 𝑝 ∈ 𝐿2(𝛺) such that
𝑎(𝒖, 𝒗 − 𝒖) + 𝑏(𝒗 − 𝒖, 𝑝) + 𝑗(𝑣𝜈 , 𝑢𝜈 ) − 𝑗(𝑢𝜈 , 𝑢𝜈 ) ≥ 𝐿(𝒗 − 𝒖) ∀𝒗 ∈ V(𝛺)

2

()
181

⎩
𝑏(𝒖, 𝑞) = 0 ∀𝑞 ∈ 𝐿 (𝛺),
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Fig. 1. Relation between normal velocity and normal stress on 𝑆.

where

V(𝛺) = {𝒗 ∈ (𝐻1(𝛺))2 ∣ 𝒗 = 𝟎 on 𝛤 , 𝑣𝜏 = 0 on 𝑆},

𝑎(𝒖, 𝒗) = 2𝜇 ∫𝛺
D𝒖 ∶ D𝒗 𝑑𝑥, 𝒖, 𝒗 ∈ (𝐻1(𝛺))2,

𝑏(𝒗, 𝑞) = −∫𝛺
𝑞 div 𝒗 𝑑𝑥, 𝒗 ∈ (𝐻1(𝛺))2, 𝑞 ∈ 𝐿2(𝛺),

𝐿(𝒗) = ∫𝛺
𝒇 ⋅ 𝒗 𝑑𝑥 + ∫𝛤N

𝝈𝑁 ⋅ 𝒗 𝑑𝑠, 𝒇 ∈ (𝐿2(𝛺))2, 𝝈𝑁 ∈ (𝐿2(𝛤N))2, 𝒗 ∈ (𝐻1(𝛺))2,

𝑗(𝑣𝜈 , 𝑢𝜈 ) = ∫𝑆
(𝑔|𝑣𝜈 | + 𝜅 𝑣𝜈𝑢𝜈) 𝑑𝑠, 𝑔, 𝜅 ∈ 𝐿∞

+ (𝑆), 𝒖, 𝒗 ∈ (𝐻1(𝛺))2.

Problem () has been studied in [8,9] provided that 𝛤N = ∅ and 𝜅 ≡ 0 on 𝑆. Fujita proved that 𝒖 is unique, whereas 𝑝 is
determined up to an additive constant which is subject to appropriate constraints arising from the leak conditions (2.1)6. In our
case the pressure is unique since the boundary condition of 𝛤N fixes the value of 𝑝 on 𝑆.

In what follows we shall suppose that 𝜇 = 1
2 . Concerning the existence and uniqueness of the solution to () we have the

following

Theorem 2.1. Problem () has a unique solution (𝒖, 𝑝) for any 𝒇 ∈ (𝐿2(𝛺))2, 𝝈𝑁 ∈ (𝐿2(𝛤N))2, and 𝑔, 𝜅 ∈ 𝐿∞
+ (𝑆). In addition,

‖𝒖‖1,𝛺 ≤ 1
𝑐𝐾

‖𝐿‖∗ ≤ 1
𝑐𝐾

(

‖𝒇‖0,𝛺 + 𝑐𝑡𝑟‖𝝈𝑁‖0,𝛤N

)

(2.3)

and

𝛽‖𝑝‖0,𝛺 ≤ ‖𝑎‖‖𝒖‖1,𝛺 + 𝑐𝑡𝑟‖𝑔‖∞,𝑆 |length𝑆|
1∕2 + 𝑐2𝑡𝑟‖𝜅‖∞,𝑆‖𝒖‖1,𝛺 , (2.4)

where 𝑐𝐾 > 0 is the constant in Korn’s inequality, 𝑐𝑡𝑟 > 0 is the norm of the trace mapping 𝑡𝑟 ∶ V(𝛺) → (𝐿2(𝜕𝛺))2, ‖𝑎‖, ‖𝐿‖∗ is the norm
of 𝑎, and 𝐿, respectively, and 𝛽 > 0 is the constant in the inf-sup condition for 𝑏.

Proof. The existence and uniqueness of the solution to () follows from V(𝛺)-ellipticity of the bilinear form 𝑎 which is a consequence
of Korn’s inequality

∃𝑐𝐾 = const. > 0 ∶ ∫𝛺
D𝒗 ∶ D𝒗 𝑑𝑥 ≥ 𝑐𝐾‖𝒗‖21,𝛺 ∀𝒗 ∈ V(𝛺) (2.5)

and the inf-sup condition satisfied by the form 𝑏 on V(𝛺) × 𝐿2(𝛺) [17]:

∃𝛽 = const. > 0 ∶ sup
𝒗∈V(𝛺)⧵{𝟎}

𝑏(𝒗, 𝑞)
‖𝒗‖1,𝛺

≥ 𝛽‖𝑞‖0,𝛺 ∀𝑞 ∈ 𝐿2(𝛺). (2.6)

nserting 𝒗 = 𝟎, 2𝒖 into ()1, we obtain:

𝑎(𝒖, 𝒖) + 𝑗(𝑢𝜈 , 𝑢𝜈 ) = 𝐿(𝒖), (2.7)

𝑎(𝒖, 𝒗) + 𝑏(𝒗, 𝑝) + 𝑗(𝑢𝜈 , 𝑣𝜈 ) ≥ 𝐿(𝒗) ∀𝒗 ∈ V(𝛺). (2.8)

rom (2.7) and (2.5) we have:
2

182

𝑐𝐾‖𝒖‖1,𝛺 ≤ 𝑎(𝒖, 𝒖) + 𝑗(𝑢𝜈 , 𝑢𝜈) ≤ ‖𝐿‖∗‖𝒖‖1,𝛺 . (2.9)
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Fig. 2. Decomposition of the boundary of 𝛺(𝛼).

t is readily seen that

‖𝐿‖∗ ≤ ‖𝒇‖0,𝛺 + 𝑐𝑡𝑟‖𝝈𝑁‖0,𝛤N .

rom this and (2.9) the estimate (2.3) follows.
To prove (2.4) we use the inf-sup condition (2.6) and (2.8). It is easy to see that

(div 𝒗, 𝑞)0,𝛺
‖𝒗‖1,𝛺

≤ ‖𝑎‖‖𝒖‖1,𝛺 + 𝑐𝑡𝑟‖𝑔‖∞,𝑆 |length𝑆|
1∕2 + 𝑐2𝑡𝑟‖𝜅‖∞,𝑆‖𝒖‖1,𝛺

holds for any 𝒗 ∈ V(𝛺), 𝒗 ≠ 𝟎. From this and (2.6) the estimate (2.4) follows. □

3. Optimal shape design problem: definition and existence analysis

The aim of this section is to present and analyze a class of shape optimization problems with the state problem introduced in
Section 2.

To this end we use the following system of admissible domains:

 = {𝛺(𝛼) ∣ 𝛼 ∈ 𝑎𝑑}

where

𝛺(𝛼) = {(𝑥1, 𝑥2) ∣ 𝑥2 ∈ (0, 1), 𝛼(𝑥1) < 𝑥2 < 𝛾}

and

𝑎𝑑 = {𝛼 ∈ 𝐶1,1([0, 1]) ∣ −𝛾 + 𝛥 < 𝛼min ≤ 𝛼 ≤ 𝛼max < 𝛾 in [0, 1],

|𝛼(𝑗)| ≤ 𝐶𝑗 a.e. in [0, 1], 𝑗 = 1, 2}. (3.1)

Here 𝛼min is a real constant and 𝛼max, 𝛾, 𝐶1, 𝐶2, 𝛥 are positive constants such that 𝑎𝑑 ≠ ∅. By 𝛺 = (0, 1) × (−𝛾, 𝛾) we denote the
hold-all domain, i.e. 𝛺(𝛼) ⊆ 𝛺 ∀𝛼 ∈ 𝑎𝑑 . The boundary of any 𝛺(𝛼) will be decomposed as follows: 𝜕𝛺(𝛼) = 𝛤 ∪𝛤N(𝛼) ∪𝑆(𝛼), where

𝛤 = (0, 1) × {1}, 𝑆(𝛼) = graph of 𝛼, 𝛤N(𝛼) = 𝜕𝛺(𝛼) ⧵ (𝛤 ∪ 𝑆(𝛼))

(see Fig. 2).
Since the state problem on 𝛺(𝛼) will be defined for variable 𝛼 ∈ 𝑎𝑑 we shall suppose that 𝒇 ∈ (𝐿2(𝛺))2 and 𝝈𝑁 ∈ (𝐿2(𝛤N))2,

where 𝛤N is the union of the vertical sides of 𝛺. To define the functions 𝑔, 𝜅 appearing in the leak term 𝑗 on any 𝑆(𝛼), 𝛼 ∈ 𝑎𝑑 we
use functions 𝑔̃, 𝜅̃ ∈ 𝐿∞

+ ((0, 1)) and set

𝑔(𝑥1, 𝑥2) = 𝑔̃(𝑥1), 𝜅(𝑥1, 𝑥2) = 𝜅̃(𝑥1) ∀(𝑥1, 𝑥2) ∈ 𝛺.

Hence

‖𝑔‖∞,𝑆(𝛼) = ‖𝑔̃‖∞,(0,1), ‖𝜅‖∞,𝑆(𝛼) = ‖𝜅̃‖∞,(0,1) ∀𝛼 ∈ 𝑎𝑑 . (3.2)

On any 𝛺(𝛼), 𝛼 ∈ 𝑎𝑑 we consider the following state problem:

⎧

⎪

⎪

⎨

⎪

⎪

Find (𝒖(𝛼), 𝑝(𝛼)) ∈ V(𝛺(𝛼)) × 𝐿2(𝛺(𝛼)) such that
𝑎𝛼(𝒖(𝛼), 𝒗−𝒖(𝛼)) + 𝑏𝛼(𝒗−𝒖(𝛼), 𝑝(𝛼)) + 𝑗𝛼(𝒗⋅𝝂𝛼 , 𝒖(𝛼)⋅𝝂𝛼)

− 𝑗𝛼(𝒖(𝛼)⋅𝝂𝛼 , 𝒖(𝛼)⋅𝝂𝛼) ≥ 𝐿𝛼(𝒗−𝒖(𝛼)) ∀𝒗 ∈ V(𝛺(𝛼))
2

((𝛼))
183

⎩

𝑏𝛼(𝒖(𝛼), 𝑞) = 0 ∀𝑞 ∈ 𝐿 (𝛺(𝛼)),
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where V(𝛺(𝛼)) is the space V(𝛺) defined in Section 2 with 𝛺 ∶= 𝛺(𝛼), 𝑆 ∶= 𝑆(𝛼), and 𝛤N ∶= 𝛤N(𝛼). To point out that the forms
, 𝑏, 𝐿 and the leak term 𝑗 depend on 𝛼 ∈ 𝑎𝑑 , we use notation 𝑎𝛼 , 𝑏𝛼 , 𝐿𝛼 , and 𝑗𝛼 , respectively in what follows. The same convention
olds for the vectors 𝝂𝛼 , 𝝉𝛼 .

Finally, let 𝐽 ∶ 𝑎𝑑 × (𝐻1(𝛺))2 × 𝐿2(𝛺) → R be a cost functional. The optimal shape design problem we shall study reads as
ollows:

{

Find 𝛼∗ ∈ 𝑎𝑑 such that
𝐽 (𝛼∗, 𝒖(𝛼∗), 𝑝(𝛼∗)) ≤ 𝐽 (𝛼, 𝒖(𝛼), 𝑝(𝛼)) ∀𝛼 ∈ 𝑎𝑑 ,

(P)

where (𝒖(𝛼), 𝑝(𝛼)) is the solution to ((𝛼)).
Our aim is to show that under appropriate assumptions on 𝐽 , problem (P) has at least one solution. We start with

Lemma 3.1. Solutions to ((𝛼)) are uniformly bounded with respect to 𝛼 ∈ 𝑎𝑑 : there exists a positive constant 𝑐, which does not depend
on 𝛼 ∈ 𝑎𝑑 such that

‖𝒖(𝛼)‖1,𝛺(𝛼) + ‖𝑝(𝛼)‖0,𝛺(𝛼) ≤ 𝑐 ∀𝛼 ∈ 𝑎𝑑 . (3.3)

Proof. From (2.3) and the assumptions on 𝒇 and 𝝈𝑁 it follows:

‖𝒖(𝛼)‖1,𝛺(𝛼) ≤
1
𝑐𝐾

(

‖𝒇‖0,𝛺 + 𝑐𝑡𝑟𝛼‖𝝈𝑁‖0,𝛤N

)

. (3.4)

The constant 𝑐𝐾 of Korn’s inequality can be chosen to be independent of 𝛼 ∈ 𝑎𝑑 (see [20]). Further 𝑡𝑟𝛼 stands for the norm of the
trace mapping 𝑡𝑟𝛼 ∶ V(𝛺(𝛼)) → (𝐿2(𝜕𝛺(𝛼)))2. It is readily seen that 𝑡𝑟𝛼 can be chosen to be independent of 𝛼 ∈ 𝑎𝑑 [14]. From this
and (3.4) uniform boundedness of ‖𝒖(𝛼)‖1,𝛺(𝛼) follows. The prove the same for ‖𝑝(𝛼)‖0,𝛺(𝛼) we use (2.4):

‖𝑝(𝛼)‖0,𝛺(𝛼) ≤
1
𝛽
(

‖𝑎𝛼‖‖𝒖(𝛼)‖1,𝛺(𝛼) + 𝑐𝑡𝑟𝛼‖𝑔‖∞,𝑆(𝛼)|lenght 𝑆(𝛼)|
1∕2

+𝑐2𝑡𝑟𝛼‖𝜅‖∞,𝑆(𝛼)‖𝒖(𝛼)‖1,𝛺(𝛼)
)

, (3.5)

The constant 𝛽 > 0 of the inf-sup condition can be chosen again to be independent of 𝛼 ∈ 𝑎𝑑 [4] and the same holds for ‖𝑎𝛼‖.
Finally |length𝑆(𝛼)|1∕2 ≤

√

1 + 𝐶2
1 ∀𝛼 ∈ 𝑎𝑑 as follows from the definition of 𝑎𝑑 . Taking into account all these facts together with

(3.2), (3.4), (3.5), we obtain uniform boundedness of ‖𝑝(𝛼)‖0,𝛺(𝛼) with respect to 𝛼 ∈ 𝑎𝑑 . □

The solution (𝒖(𝛼), 𝑝(𝛼)) to ((𝛼)), 𝛼 ∈ 𝑎𝑑 will be extended from 𝛺(𝛼) on the hold-all domain 𝛺 and denoted as (𝒖̂(𝛼), 𝑝̂(𝛼)) ∈
(𝐻1(𝛺))2 × 𝐿2(𝛺) in what follows. We can use any extension mapping which preserves the uniform boundedness property of
(𝒖̂(𝛼), 𝑝̂(𝛼)) with respect to 𝛼 ∈ 𝑎𝑑 :

∃𝑐 > 0 ∶ ‖𝒖̂(𝛼)‖1,𝛺 + ‖𝑝̂(𝛼)‖0,𝛺 ≤ 𝑐
(

‖𝒖(𝛼)‖1,𝛺(𝛼) + ‖𝑝(𝛼)‖0,𝛺(𝛼)
)

(3.3)
≤ 𝑐 ∀𝛼 ∈ 𝑎𝑑 , (3.6)

where 𝑐 is a positive constant which does not depend on 𝛼 ∈ 𝑎𝑑 .
For the pressure 𝑝(𝛼) ∈ 𝐿2(𝛺(𝛼)) we simply use the extension by zero on 𝛺 ⧵𝛺(𝛼). The extension of 𝒖(𝛼) ∈ (𝐻1(𝛺(𝛼)))2 is more

nvolved. One can use either a general result from [5] on the uniform extension property of domains satisfying the uniform cone
roperty or to construct himself an extension mapping taking advantage of a simple shape of 𝛺(𝛼) ∈  and the condition |𝛼′| ≤ 𝐶1
n [0, 1].

The key role in the existence analysis plays

heorem 3.1. For any sequence {(𝛼𝑛, 𝒖𝑛, 𝑝𝑛)}, where 𝛼𝑛 ∈ 𝑎𝑑 and (𝒖𝑛, 𝑝𝑛) ∶= (𝒖(𝛼𝑛), 𝑝(𝛼𝑛)) ∈ V(𝛺(𝛼𝑛)) × 𝐿2(𝛺(𝛼𝑛)) solves ((𝛼𝑛)),
→ ∞ there exist: its subsequence (denoted by the same symbol) and functions 𝛼 ∈ 𝑎𝑑 , (𝒖, 𝑝) ∈ (𝐻1(𝛺))2 × 𝐿2(𝛺) such that

⎧

⎪

⎨

⎪

⎩

𝛼𝑛 → 𝛼 in 𝐶1([0, 1]),

𝒖̂𝑛 ⇀ 𝒖 (weakly) in (𝐻1(𝛺))2,

𝑝̂𝑛 ⇀ 𝑝 in 𝐿2(𝛺), 𝑛 → ∞.

(3.7)

In addition, (𝒖, 𝑝)
|𝛺(𝛼) = (𝒖(𝛼), 𝑝(𝛼)) solves ((𝛼)).

Proof. The existence of a subsequence satisfying (3.7) results from compactness of 𝑎𝑑 in 𝐶1([0, 1]) and (3.6). To prove that (𝒖, 𝑝)
|𝛺(𝛼)

solves ((𝛼)) we first verify that 𝒖
|𝛺(𝛼) ∈ V(𝛺(𝛼)). To this end it is sufficient to show that

𝒖
|𝑆(𝛼) ⋅ 𝝉𝛼 = 0 on 𝑆(𝛼). (3.8)

rom Lemma 2.21 in [14] we know that

𝒖̂𝑛◦𝛼𝑛 ∶= 𝒖̂𝑛(𝑥1, 𝛼𝑛(𝑥1)) → 𝒖◦𝛼 in (𝐿2((0, 1)))2, 𝑛 → ∞

and also

0 = 𝒖̂𝑛◦𝛼𝑛 ⋅ 𝝉𝛼𝑛◦𝛼𝑛 → 𝒖◦𝛼 ⋅ 𝝉𝛼◦𝛼 in 𝐿2((0, 1))

aking use of (3.7) . Thus (3.8) holds and so 𝒖 ∈ V(𝛺(𝛼)).
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Let 𝜒𝑛, 𝜒𝛼 be the characteristic functions of 𝛺(𝛼𝑛), and 𝛺(𝛼), respectively and 𝜒̂𝑛, 𝜒̂𝛼 ∈ 𝐿2(𝛺) their extensions by zero on 𝛺. From
(3.7)1 it easily follows that

𝜒̂𝑛 → 𝜒̂𝛼 in 𝐿2(𝛺), 𝑛 → ∞. (3.9)

The definition of ((𝛼𝑛)), (3.7)2 and (3.9) yield:

0 = 𝑏𝑛(𝒖𝑛, 𝑞) = 𝑏𝛺(𝒖̂𝑛, 𝜒̂𝑛𝑞) → 𝑏𝛺(𝒖, 𝜒̂𝛼𝑞) = 𝑏𝛼(𝒖, 𝑞) ∀𝑞 ∈ 𝐿2(𝛺), (3.10)

here for brevity of notation 𝑏𝑛 ∶= 𝑏𝛼𝑛 and similarly for other forms in the sequel. Hence div 𝒖
|𝛺(𝛼) = 0.

To accomplish the proof it remains to show that the couple (𝒖, 𝑝)
|𝛺(𝛼) satisfies the inequality in ((𝛼)).

Let 𝒗 ∈ V(𝛺(𝛼)) be given. Then accordingly to Theorem A.1 and Remark A.2 from Appendix there exist: a sequence {𝒗𝑘},
𝒗𝑘 ∈ (𝐻1(𝛺))2 and a function 𝒗 ∈ (𝐻1(𝛺))2 such that 𝒗

|𝛺(𝛼) = 𝒗 and

𝒗𝑘 → 𝒗 in (𝐻1(𝛺))2, 𝑘 → ∞. (3.11)

Moreover, for any 𝑘 ∈ N there exists 𝑛𝑘 ∈ N such that

𝒗𝑘|𝛺(𝛼𝑛𝑘 )
∈ V(𝛺(𝛼𝑛𝑘 )) (3.12)

nd consequently 𝒗𝑘|𝛺(𝛼𝑛𝑘 )
can be used as a test function in ((𝛼𝑛𝑘 )):

𝑎𝑛𝑘 (𝒖𝑛𝑘 , 𝒗𝑘 − 𝒖𝑛𝑘 ) + 𝑏𝑛𝑘 (𝒗𝑘 − 𝒖𝑛𝑘 , 𝑝𝑛𝑘 ) +

𝑗𝑛𝑘 (𝒗𝑘⋅𝝂
𝑛𝑘 , 𝒖𝑛𝑘 ⋅𝝂

𝑛𝑘 ) − 𝑗𝑛𝑘 (𝒖𝑛𝑘 ⋅𝝂
𝑛𝑘 , 𝒖𝑛𝑘 ⋅𝝂

𝑛𝑘 ) ≥ 𝐿𝑛𝑘 (𝒗𝑘 − 𝒖𝑛𝑘 ) (3.13)

olds for any 𝑘 ∈ N, where 𝑎𝑛𝑘 ∶= 𝑎𝛼𝑛𝑘 , 𝝂𝑛𝑘 ∶= 𝝂𝛼𝑛𝑘 , etc.
Next, we pass to the limit with 𝑘 → ∞ in (3.13). From (3.7)2, (3.9) and (3.11) we obtain:

lim sup
𝑘→∞

𝑎𝑛𝑘 (𝒖𝑛𝑘 , 𝒗𝑘 − 𝒖𝑛𝑘 ) = lim sup
𝑘→∞ ∫𝛺

𝜒̂𝑛𝑘D𝒖̂𝑛𝑘 ∶ D(𝒗𝑘 − 𝒖̂𝑛𝑘 ) 𝑑𝑥

≤ ∫𝛺
𝜒̂𝛼D𝒖 ∶ D(𝒗 − 𝒖) 𝑑𝑥 = 𝑎𝛼(𝒖, 𝒗 − 𝒖) (3.14)

sing weak lower semicontinuity of 𝑎𝛺 and the fact that 𝒗
|𝛺(𝛼) = 𝒗.

Similarly

lim
𝑘→∞

𝑏𝑛𝑘 (𝒗𝑘 − 𝒖𝑛𝑘 , 𝑝𝑛𝑘 ) = lim
𝑘→∞

𝑏𝑛𝑘 (𝒗𝑘, 𝑝𝑛𝑘 ) = 𝑏𝛼(𝒗 − 𝒖, 𝑝) (3.15)

s follows from (3.10) and

lim
𝑘→∞

𝐿𝑛𝑘 (𝒗𝑘 − 𝒖𝑛𝑘 ) = 𝐿𝛼(𝒗 − 𝒖). (3.16)

inally, the leak term:

𝑗𝑛𝑘 (𝒗𝑘⋅𝝂
𝑛𝑘 , 𝒖𝑛𝑘 ⋅𝝂

𝑛𝑘 ) = ∫𝑆(𝛼𝑛𝑘 )
𝜅(𝒗𝑘⋅𝝂𝑛𝑘 )(𝒖𝑛𝑘 ⋅𝝂

𝑛𝑘 ) 𝑑𝑠 + ∫𝑆(𝛼𝑛𝑘 )
𝑔|𝒗𝑘⋅𝝂𝑛𝑘 | 𝑑𝑠

= ∫

1

0
𝜅̃(𝒗𝑘⋅𝝂𝑛𝑘 )◦𝛼𝑛𝑘 (𝒖𝑛𝑘 ⋅𝝂

𝑛𝑘 )◦𝛼𝑛𝑘
√

1 + (𝛼′𝑛𝑘 )
2 𝑑𝑥1

+∫

1

0
𝑔̃|𝒗𝑘⋅𝝂𝑛𝑘 |◦𝛼𝑛𝑘

√

1 + (𝛼′𝑛𝑘 )
2 𝑑𝑥1 → 𝑗𝛼(𝒗⋅𝝂𝛼 , 𝒖⋅𝝂𝛼) (3.17)

sing (3.7)1,2, (3.11) and convergence of {𝝂𝑛𝑘◦𝛼𝑛𝑘} to 𝝂𝛼◦𝛼 in (𝐿2([0, 1]))2. Similarly for the second leak term.
From (3.13)–(3.17) we arrive at the assertion of the theorem. □

emark 3.1. Besides (3.7)2 one can prove strong convergence of 𝒖𝑛 to 𝒖(𝛼) in the 𝐻1
𝑙𝑜𝑐(𝛺(𝛼))-norm. Indeed, from (2.7) it follows

that

‖𝜒̂𝑛D𝒖̂𝑛 ∶ D𝒖̂𝑛‖0,𝛺 → ‖𝜒̂𝛼D𝒖 ∶ D𝒖‖0,𝛺 .

From this, (3.7)2, and the fact that we already know that 𝒖
|𝛺(𝛼) = 𝒖(𝛼), we have

‖𝒖(𝛼) − 𝒖𝑛‖1,𝐷 → 0, 𝑛 → ∞, (3.18)

hat holds for any subdomain 𝐷 ⊂ 𝛺(𝛼) such that dist (𝐷,𝑆(𝛼)) > 0. The same result has been proven in [16, Remark 3] for the
Stokes system with the threshold slip boundary condition of Tresca type.

Next we show that the sequence {𝑝𝑛} tends strongly to 𝑝(𝛼) in the 𝐿2
𝑙𝑜𝑐 (𝛺(𝛼))-norm. To this end we introduce the set 𝐺𝛿(𝛼) =

𝛺(𝛼) ⧵ BL𝛿(𝛼), where

BL (𝛼) = {(𝑥 , 𝑥 ) ∈ 𝛺(𝛼) ∣ 𝑥 ∈ (0, 1), 𝛼(𝑥 ) < 𝑥 < 𝛼(𝑥 ) + 𝛿}
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is the boundary layer along 𝑆(𝛼) and 𝛿 > 0 is an arbitrary but sufficiently small. Let such 𝛿 > 0 be fixed. On any 𝐺𝛿(𝛼) we consider
the spaces

V0(𝐺𝛿(𝛼)) = {𝒗 ∈ (𝐻1(𝐺𝛿(𝛼)))2 ∣ 𝒗 = 𝟎 on 𝛤 ∪ 𝑆𝛿(𝛼), 𝑆𝛿(𝛼) = 𝑆(𝛼) + 𝛿}

and

V̂0(𝐺𝛿(𝛼)) = {𝒗̂ ∈ (𝐻1(𝛺))2 ∣ 𝒗̂
|𝐺𝛿 (𝛼) = 𝒗 ∈ V0(𝐺𝛿(𝛼)), 𝒗̂ = 𝟎 in 𝛺 ⧵ 𝐺𝛿(𝛼)}.

Owing to (3.7)1 there exists 𝑛1 ∶= 𝑛1(𝛿) such that ‖𝛼𝑛 − 𝛼‖𝐶([0,1]) < 𝛿∕2 ∀𝑛 ≥ 𝑛1. Hence any function from V̂0(𝐺𝛿(𝛼)) can be used as a
test function in ((𝛼)), and ((𝛼𝑛)), 𝑛 ≥ 𝑛1. The inequality (2.8) corresponding to ((𝛼𝑛)) with test functions 𝒗̂ ∈ V̂0(𝐺𝛿(𝛼)) changes
into the equation

𝑎𝛺(𝒖̂𝑛, 𝒗̂) + 𝑏𝛺(𝒗̂, 𝑝̂𝑛) = 𝐿𝛺(𝒗̂) 𝒗̂ ∈ V̂0(𝐺𝛿(𝛼)). (3.19)

Since 𝒗 = 𝟎 on 𝑆(𝛼𝑛), 𝑛 ≥ 𝑛1, the leak term 𝑗𝛼𝑛 disappears. From the definition of V̂0(𝐺𝛿(𝛼)) we see that (3.19) is equivalent to

𝑎𝐺𝛿 (𝛼)(𝒖𝑛, 𝒗) + 𝑏𝐺𝛿 (𝛼)(𝒗, 𝑝𝑛) = 𝐿𝐺𝛿 (𝛼)(𝒗) ∀𝒗 ∈ V0(𝐺𝛿(𝛼)), 𝑛 ≥ 𝑛1.

The same holds for the solution (𝒖(𝛼), 𝑝(𝛼)) to ((𝛼)):

𝑎𝐺𝛿 (𝛼)(𝒖(𝛼), 𝒗) + 𝑏𝐺𝛿 (𝛼)(𝒗, 𝑝(𝛼)) = 𝐿𝐺𝛿 (𝛼)(𝒗) ∀𝒗 ∈ V0(𝐺𝛿(𝛼)).

Subtracting the second equation from the first one we obtain

∫𝐺𝛿 (𝛼)
div 𝒗 (𝑝𝑛 − 𝑝(𝛼)) 𝑑𝑥 = 𝑎𝐺𝛿 (𝛼)(𝒖𝑛 − 𝒖(𝛼), 𝒗) ∀𝒗 ∈ V0(𝐺𝛿(𝛼)).

Finally from this and the inf-sup condition we obtain

𝛽‖𝑝𝑛 − 𝑝(𝛼)‖0,𝐺𝛿 (𝛼) ≤ 𝑐‖𝒖𝑛 − 𝒖(𝛼)‖1,𝐺𝛿 (𝛼)
(3.18)
⟶ 0,

where 𝑐 = const. > 0 which does not depend on 𝑛. □

To guarantee the existence of a minimizer of 𝐽 in the optimal shape design problem (P), we shall suppose that 𝐽 is lower
semicontinuous in the following sense: for any sequence {(𝛼𝑛, 𝒚𝑛, 𝑧𝑛)}, 𝛼𝑛 ∈ 𝑎𝑑 , 𝒚𝑛 ∈ (𝐻1(𝛺))2 and 𝑧𝑛 ∈ 𝐿2(𝛺) such that

𝛼𝑛 → 𝛼 in 𝐶1([0, 1]),

𝒚𝑛 ⇀ 𝒚 in (𝐻1(𝛺))2,

𝑧𝑛 ⇀ 𝑧 in 𝐿2(𝛺), 𝑛 → ∞,

it holds that

lim inf
𝑛→∞

𝐽 (𝛼𝑛, 𝒚𝑛|𝛺(𝛼𝑛), 𝑧𝑛|𝛺(𝛼𝑛)) ≥ 𝐽 (𝛼, 𝒚
|𝛺(𝛼), 𝑧|𝛺(𝛼)). (3.20)

Theorem 3.2. Problem (P) has a solution.

Proof. The result follows from (3.20) using compactness arguments stated in Theorem 3.1. □

Remark 3.2. In the next computational section we shall use two cost functionals:

𝐽1(𝛼) =
1
2 ∫

1

0
(𝑢𝜈 (𝛼)◦𝛼 − 𝑢̃)2 𝑑𝑥1, 𝑢̃ ∈ 𝐿∞((0, 1)) given,

and

𝐽2(𝛼) =
1
2𝑎𝛼(𝒖(𝛼), 𝒖(𝛼)),

where 𝒖(𝛼) is the velocity component of the solution to ((𝛼)). It is easy to see that on the basis of Theorem 3.1 both cost functionals
satisfy (3.20) (𝐽1 is in fact even continuous).

4. Shape optimization with penalized/regularized state problem

Problem (P) studied in the previous section posseses two inconveniences from the computational point of view. First of all,
the problem is nonsmooth since the state relation is represented by the variational inequality ((𝛼)). This fact restricts the use of
numerical minimization methods. Secondly, the tangential no-slip condition 𝑢𝜏 = 0 is prescribed on the designed part 𝑆(𝛼). To avoid
these drawbacks we use a penalization to release this condition on 𝑆(𝛼) and a regularization of the nonsmooth leak term.

To simplify the presentation, the smooth part of the leak functional 𝑗 ∶ (𝐻1(𝛺(𝛼)))2 ×(𝐻1(𝛺(𝛼)))2 → R+ defined in Section 2 will
be added to the bilinear form 𝑎𝛼 , 𝛼 ∈ 𝑎𝑑 and the new form will be denoted as

𝑎 (𝒖, 𝒗) ∶= 𝑎 (𝒖, 𝒗) + (𝜅𝒖 ⋅ 𝝂𝛼 , 𝒗 ⋅ 𝝂𝛼) , 𝒖, 𝒗 ∈ (𝐻1(𝛺(𝛼)))2 (4.1)
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and set

𝑗𝛼(𝒗 ⋅ 𝝂𝛼) ∶= ∫𝑆(𝛼)
𝑔|𝒗 ⋅ 𝝂𝛼| 𝑑𝑠, 𝒗 ∈ (𝐻1(𝛺(𝛼)))2. (4.2)

We use the simplest penalty functional

𝑡𝛼𝜀 (𝒗 ⋅ 𝝉
𝛼) = 1

2𝜀‖𝒗 ⋅ 𝝉
𝛼
‖

2
0,𝑆(𝛼), 𝒗 ∈ (𝐻1(𝛺(𝛼)))2. (4.3)

Regularization of 𝑗𝛼 defined by (4.2) consists in its approximation by an appropriate sequence {𝑗𝜀𝛼}, 𝜀 → 0+ of smooth functionals
𝑗𝜀𝛼 . We do not specify their particular choice at the moment, only summarize their properties which will be needed in what follows:

∙ 𝑗𝜀𝛼 ∶ 𝐿2(𝑆(𝛼)) → R+ are convex, 𝐶2-functionals ∀𝜀 > 0, 𝛼 ∈ 𝑎𝑑 , (4.4)

∙
𝛼𝑛 → 𝛼 in 𝐶1([0, 1]), 𝛼𝑛, 𝛼 ∈ 𝑎𝑑

𝒗𝑛 ⇀ 𝒗 in (𝐻1(𝛺))2, 𝑛 → ∞

}

⟹ 𝑗𝜀𝑛𝛼𝑛 (𝒗𝑛⋅𝝂
𝛼𝑛 ) ⟶

𝜀𝑛→0+
𝑗𝛼(𝒗⋅𝝂𝛼), (4.5)

∙ ∃𝑐0 > 0 ∃𝜀0 > 0 ∶ 𝑗𝜀𝛼(0) ≤ 𝑐0 ∀𝜀 ∈ [0, 𝜀0], 𝛼 ∈ 𝑎𝑑 . (4.6)

On any 𝛺(𝛼), 𝛼 ∈ 𝑎𝑑 and 𝜀 > 0 we define the following penalized/regularized state problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find (𝒖𝜀(𝛼), 𝑝𝜀(𝛼)) ∈ Ṽ(𝛺(𝛼)) × 𝐿2(𝛺(𝛼)) such that
𝑎𝜅,𝛼(𝒖𝜀(𝛼), 𝒗) + 𝑏𝛼(𝒗, 𝑝𝜀(𝛼)) + (∇𝑗𝜀𝛼(𝒖

𝜀(𝛼) ⋅ 𝝂𝛼), 𝒗 ⋅ 𝝂𝛼)0,𝑆(𝛼)
+ 1

𝜀 (𝒖
𝜀(𝛼) ⋅ 𝝉𝛼 , 𝒗 ⋅ 𝝉𝛼)0,𝑆(𝛼) = 𝐿𝛼(𝒗) ∀𝒗 ∈ Ṽ(𝛺(𝛼))

𝑏(𝒖𝜀(𝛼), 𝑞) = 0 ∀𝑞 ∈ 𝐿2(𝛺(𝛼)),

(𝜀(𝛼))

where

Ṽ(𝛺(𝛼)) = {𝒗 ∈ (𝐻1(𝛺(𝛼)))2 ∣ 𝒗 = 𝟎 on 𝛤 }.

From (4.4) and (4.5) it follows that 𝜀(𝛼) has a unique solution for any 𝜀 > 0 and 𝛼 ∈ 𝑎𝑑 .1
We define the new shape optimization problem in which the state equation (𝜀(𝛼)) instead of ((𝛼)) is used: given 𝜀 > 0,

{

Find 𝛼∗𝜀 ∈ 𝑎𝑑 such that
𝐽 (𝛼∗𝜀 , 𝒖

𝜀(𝛼∗𝜀 ), 𝑝
𝜀(𝛼∗𝜀 )) ≤ 𝐽 (𝛼, 𝒖𝜀(𝛼), 𝑝𝜀(𝛼)) ∀𝛼 ∈ 𝑎𝑑 ,

(P𝜀)

here 𝐽 is the same cost functional as in (P) and (𝒖𝜀(𝛼), 𝑝𝜀(𝛼)) solves (𝜀(𝛼)).
In what follows we shall study if there is a relation between (P) and (P𝜀) as 𝜀 → 0+. We start with

emma 4.1. Solutions to (𝜀(𝛼)) are uniformly bounded with respect to 𝜀 > 0 and 𝛼 ∈ 𝑎𝑑 :

∃𝑐 = const. > 0 ∶ ‖𝒖𝜀(𝛼)‖1,𝛺(𝛼) + ‖𝑝𝜀(𝛼)‖0,𝛺(𝛼) +
1
2𝜀‖𝒖

𝜀(𝛼) ⋅ 𝝉𝛼‖20,𝑆(𝛼) ≤ 𝑐, (4.7)

where 𝑐 does not depend on 𝜀 > 0 and 𝛼 ∈ 𝑎𝑑 .

Proof. It is well-known that the velocity component 𝒖𝜀(𝛼) solves the following minimization problem:

⎧

⎪

⎨

⎪

⎩

Find 𝒖𝜀(𝛼) ∈ Ṽdiv(𝛺(𝛼)) such that
 𝜀
𝛼 (𝒖

𝜀(𝛼)) = min
𝒗∈Ṽdiv(𝛺(𝛼))

 𝜀
𝛼 (𝒗)

(4.8)

where

 𝜀
𝛼 (𝒗) =

1
2𝑎𝜅,𝛼(𝒗, 𝒗) + 𝑗𝜀𝛼(𝒗 ⋅ 𝝂

𝛼) + 1
2𝜀‖𝒗 ⋅ 𝝉

𝛼
‖

2
0,𝑆(𝛼) − 𝐿𝛼(𝒗) (4.9)

and

Ṽdiv(𝛺(𝛼)) = {𝒗 ∈ Ṽ(𝛺(𝛼)) ∣ div 𝒗 = 0 in 𝛺(𝛼)}. (4.10)

From (4.8), (4.9), nonnegativeness of 𝑗𝜀𝛼 , 𝑡𝛼 , Korn’s inequality and (4.6) we have:
1
2𝑎𝜅,𝛼(𝒖

𝜀(𝛼), 𝒖𝜀(𝛼)) + 1
2𝜀‖𝒖

𝜀(𝛼) ⋅ 𝝉𝛼‖20,𝑆(𝛼) ≤  𝜀
𝛼 (𝒖

𝜀(𝛼)) + 𝐿𝛼(𝒖𝜀(𝛼))

≤  𝜀
𝛼 (𝟎) +

(

‖𝒇‖0,𝛺 + 𝑐𝑡𝑟𝛼‖𝝈𝑁‖0,𝛤N

)

‖𝒖𝜀(𝛼)‖1,𝛺(𝛼) ≤ 𝑐, (4.11)

where the meaning of 𝛺, 𝑐𝑡𝑟𝛼 , and 𝛤N is the same as in Section 3.

1 In fact, the existence and uniqueness of the solution can be established under weaker assumptions (see [10]). The stronger assumptions (4.4)–(4.6) are
𝜀

187

eeded because 𝑗𝛼 depends also on 𝛼 ∈ 𝑎𝑑 .



Mathematics and Computers in Simulation 221 (2024) 180–196J. Haslinger and R.A.E. Mäkinen

I

I

𝒗

w

h

R
s

I

To prove boundedness of ‖𝑝𝜀(𝛼)‖0,𝛺(𝛼) we proceed as follows. Let

Ṽ0(𝛺(𝛼)) = {𝒗 ∈ Ṽ(𝛺(𝛼)) ∣ 𝒗 = 𝟎 on 𝑆(𝛼)}.

Then the definition of (𝜀(𝛼)) with test functions 𝒗 ∈ Ṽ0(𝛺(𝛼)) yields:

𝑎𝜅,𝛼(𝒖𝜀(𝛼), 𝒗) + 𝑏𝛼(𝒗, 𝑝𝜀(𝛼)) = 𝐿𝛼(𝒗) ∀𝒗 ∈ Ṽ0(𝛺(𝛼)).

From this, the inf-sup condition for 𝑏𝛼 on Ṽ0(𝛺(𝛼)) × 𝐿2(𝛺(𝛼)), and (4.11) uniform boundedness of ‖𝑝𝜀(𝛼)‖0,𝛺(𝛼) and hence (4.7)
follows. □

As before the solutions (𝒖𝜀(𝛼), 𝑝𝜀(𝛼)) ∈ Ṽ(𝛺(𝛼)) × 𝐿2(𝛺(𝛼)) to (𝜀(𝛼)) will be extented from 𝛺(𝛼) to 𝛺 and then denoted by
(𝒖̂𝜀(𝛼), 𝑝̂𝜀(𝛼)) ∈ (𝐻1(𝛺))2×𝐿2(𝛺). We use again the extension mappings which preserve uniform boundedness with respect to 𝛼 ∈ 𝑎𝑑
and 𝜀 > 0:

∃𝑐 = const. > 0 ∶ ‖𝒖̂𝜀(𝛼)‖1,𝛺 + ‖𝑝̂𝜀(𝛼)‖0,𝛺 ≤ 𝑐 ∀𝛼 ∈ 𝑎𝑑 , 𝜀 > 0. (4.12)

Next we prove a stability type result which is parallel to Theorem 3.1.

Theorem 4.1. For any sequence {(𝛼𝑘, 𝒖
𝜀𝑘
𝑘 , 𝑝𝜀𝑘𝑘 )}, where 𝛼𝑘 ∈ 𝑎𝑑 and (𝒖𝜀𝑘𝑘 , 𝑝𝜀𝑘𝑘 ) ∶= (𝒖𝜀𝑘 (𝛼𝑘), 𝑝𝜀𝑘 (𝛼𝑘)) is a solution to (𝜀𝑘 (𝛼𝑘)), 𝜀𝑘 → 0+

as 𝑘 → ∞, there exist its subsequence (denoted by the same symbol) and functions 𝛼 ∈ 𝑎𝑑 , (𝒖, 𝑝) ∈ (𝐻1(𝛺))2 × 𝐿2(𝛺) such that

⎧

⎪

⎨

⎪

⎩

𝛼𝑘 → 𝛼 in 𝐶1([0, 1]),

𝒖̂𝜀𝑘𝑘 ⇀ 𝒖 in (𝐻1(𝛺))2,

𝑝̂𝜀𝑘𝑘 ⇀ 𝑝 in 𝐿2(𝛺), as 𝑘 → ∞.

(4.13)

n addition, (𝒖, 𝑝)
|𝛺(𝛼) = (𝒖(𝛼), 𝑝(𝛼)) solves ((𝛼)).

Proof. The existence of a subsequence and a couple (𝒖, 𝑝) satisfying (4.13) is obvious. It is readily seen that 𝒖
|𝛺(𝛼) is divergence

free in 𝛺(𝛼) and 𝒖 ⋅ 𝝉𝛼 = 0 on 𝑆(𝛼). Indeed,

‖𝒖̂𝜀𝑘𝑘 ⋅ 𝝉𝛼𝑘‖0,𝑆(𝛼𝑘) = ‖𝒖𝜀𝑘𝑘 ⋅ 𝝉𝛼𝑘‖0,𝑆(𝛼𝑘) → ‖𝒖 ⋅ 𝝉𝛼‖0,𝑆(𝛼) = 0

taking into account (4.13)1,2 and (4.7). Hence

𝒖
|𝛺(𝛼) ∈ V(𝛺(𝛼)) and 𝑏𝛼(𝒖, 𝑞) = 0 ∀𝑞 ∈ 𝐿2(𝛺(𝛼)). (4.14)

t remains to verify that (𝒖, 𝑝)
|𝛺(𝛼) satisfies the first inequality in ((𝛼)).

Let 𝒗 ∈ V(𝛺(𝛼)) be arbitrary but fixed and 𝒗, 𝒗𝑘, 𝑘 → ∞ be functions from (𝐻1(𝛺))2 satisfying (3.11) and (3.12). Since2

𝑘|𝛺𝑛𝑘
∈ V(𝛺𝑛𝑘 ) ⊆ Ṽ(𝛺𝑛𝑘 ) it can be used as a test function in (𝜀𝑘 (𝛼𝑛𝑘 )) which can be equivalently written as follows [10]:

𝑎𝜅,𝑛𝑘 (𝒖
𝜀𝑘
𝑛𝑘 , 𝒗𝑘 − 𝒖

𝜀𝑘
𝑛𝑘 ) + 𝑏𝑛𝑘 (𝒗𝑘 − 𝒖

𝜀𝑘
𝑛𝑘 , 𝑝

𝜀𝑘
𝑛𝑘 )

+𝑗𝜀𝑘𝑛𝑘 (𝒗𝑘 ⋅ 𝝂
𝑛𝑘 ) − 𝑗𝜀𝑘𝑛𝑘 (𝒖

𝜀𝑘
𝑛𝑘 ⋅ 𝝂

𝑛𝑘 ) ≥ 𝐿𝑛𝑘 (𝒗𝑘 − 𝒖
𝜀𝑘
𝑛𝑘 ) ∀𝑘, (4.15)

here {𝜀𝑘}, 𝜀𝑘 > 0 is an arbitrary sequence tending to zero. Here we used the fact that the penalty term
1

2𝜀𝑘
‖𝒗𝑘 ⋅ 𝝉𝑛𝑘‖20,𝑆𝑛𝑘

− 1
2𝜀𝑘

‖𝒖𝜀𝑘𝑛𝑘 ⋅ 𝝉
𝑛𝑘
‖

2
0,𝑆𝑛𝑘

= − 1
2𝜀𝑘

‖𝒖𝜀𝑘𝑛𝑘 ⋅ 𝝉
𝑛𝑘
‖

2
0,𝑆𝑛𝑘

≤ 0

since 𝒗𝑘|𝛺𝑛𝑘
∈ V(𝛺(𝛼𝑛𝑘 )). Passing to the limit with 𝑘 → ∞ and using (3.14)–(3.16) and (4.5), we arrive at

𝑎𝜅,𝛼(𝒖, 𝒗 − 𝒖) + 𝑏𝛼(𝒗 − 𝒖, 𝑝) + 𝑗𝛼(𝒗 ⋅ 𝝂𝛼) − 𝑗𝛼(𝒖 ⋅ 𝝂𝛼) ≥ 𝐿𝛼(𝒗 − 𝒖)

olds for any 𝒗 ∈ V(𝛺(𝛼)) using that 𝒗
|𝛺(𝛼) = 𝒗. From this and (4.14) we may conclude that (𝒖, 𝑝)

|𝛺(𝛼) = (𝒖(𝛼), 𝑝(𝛼)) solves ((𝛼)). □

emark 4.1. Similarly to Section 3 one can show that there exists a subsequence of {(𝒖𝜀𝑘𝑘 , 𝑝𝜀𝑘𝑘 )} (denoted by the same symbol)
uch that

(𝒖𝜀𝑘𝑘 , 𝑝𝜀𝑘𝑘 ) → (𝒖(𝛼), 𝑝(𝛼)) in (𝐻1
𝑙𝑜𝑐(𝛺(𝛼)))2 × 𝐿2

𝑙𝑜𝑐 (𝛺(𝛼)), as 𝑘 → ∞. (4.16)

ndeed, from (4.13)2 it follows:

lim inf
𝑘→∞ ∫𝛺

𝜒𝑘D𝒖̂
𝜀𝑘
𝑘 ∶ D𝒖̂𝜀𝑘𝑘 𝑑𝑥 ≥ ∫𝛺

𝜒̂𝛼D𝒖̂(𝛼) ∶ D𝒖̂(𝛼) 𝑑𝑥. (4.17)

2 To simplify notation we shall write 𝛺 ∶= 𝛺(𝛼 𝑛𝑘 𝛼𝑛𝑘
188

𝑛𝑘 𝑛𝑘 ), 𝝉 = 𝝉 , 𝑎𝜅,𝑛𝑘 ∶= 𝑎𝜅,𝛼𝑛𝑘 , etc.
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From Theorem A.1 in Appendix we know that there exists a function 𝒛 ∈ (𝐻1(𝛺))2 and a sequence {𝒛𝑘}, 𝒛𝑘 ∈ (𝐻1(𝛺))2 such that
|𝛺(𝛼) = 𝒖(𝛼) and

{

𝒛𝑘 → 𝒛 in (𝐻1(𝛺))2

𝒛𝑘|𝛺𝑛𝑘
∈ V(𝛺𝑛𝑘 )

(4.18)

or an appropriate 𝑛𝑘 ∈ N. Using 𝒛𝑘 instead of 𝒗𝑘 in (4.15) we get:

𝑎𝜅,𝑛𝑘 (𝒖
𝜀𝑘
𝑛𝑘 , 𝒛𝑘 − 𝒖

𝜀𝑘
𝑛𝑘 ) ≥ 𝐿𝑛𝑘 (𝒛𝑘 − 𝒖

𝜀𝑘
𝑛𝑘 ) − 𝑏𝑛𝑘 (𝒛𝑘 − 𝒖

𝜀𝑘
𝑛𝑘 , 𝑝

𝜀𝑘
𝑛𝑘 )

−𝑗𝜀𝑘𝑛𝑘 (𝒛𝑘 ⋅ 𝝂
𝑛𝑘 ) + 𝑗𝜀𝑘𝑛𝑘 (𝒖

𝜀𝑘
𝑛𝑘 ⋅ 𝝂

𝑛𝑘 ) → 0 as 𝑘 → ∞

aking use of the properties of 𝒛, (4.18)1, and (4.5). Therefore

lim sup
𝑘→∞

𝑎𝜅,𝑛𝑘 (𝒖
𝜀𝑘
𝑛𝑘 , 𝒖

𝜀𝑘
𝑛𝑘 ) ≤ lim

𝑘→∞
𝑎𝜅,𝑛𝑘 (𝒖

𝜀𝑘
𝑛𝑘 , 𝒛𝑘) = 𝑎𝜅,𝛼(𝒖(𝛼), 𝒖(𝛼)).

rom this and the definition of 𝑎𝜅,𝑛𝑘 it easily follows that

lim sup
𝑘→∞ ∫𝛺

𝜒̂𝑛𝑘D𝒖̂
𝜀𝑘
𝑛𝑘 ∶ D𝒖̂𝜀𝑘𝑛𝑘 𝑑𝑥 ≤ ∫𝛺

𝜒̂𝛼D𝒖̂(𝛼) ∶ D𝒖̂(𝛼) 𝑑𝑥

hich together with (4.17) gives

lim
𝑘→∞∫𝛺

𝜒̂𝑛𝑘D𝒖̂
𝜀𝑘
𝑛𝑘 ∶ D𝒖̂𝜀𝑘𝑛𝑘 𝑑𝑥 = ∫𝛺

𝜒̂𝛼D𝒖̂(𝛼) ∶ D𝒖̂(𝛼) 𝑑𝑥.

rom this, local convergence of {𝒖𝜀𝑘𝑘 } to 𝒖(𝛼) in (𝐻1
𝑙𝑜𝑐 (𝛺(𝛼)))2 follows. To prove that 𝑝𝜀𝑘𝑘 tends to 𝑝(𝛼) in 𝐿2

𝑙𝑜𝑐 (𝛺(𝛼)) we proceed exactly
s in Remark 3.1. □

Due to the choice of the penalty term 𝑡𝛼 and the regularization functional 𝑗𝜀𝛼 which satisfies (4.4), state problem (𝜀(𝛼)) is smooth,
.e. the control-to-state mapping 𝛼 ↦ (𝒖𝜀(𝛼), 𝑝𝜀(𝛼)) is differentiable with respect to 𝛼 ∈ 𝑎𝑑 . Hence, problem (P𝜀) is smooth, provided
hat 𝐽 is smooth, too. This makes it possible to use classical, gradient-type methods for numerical minimization of 𝐽 .

It remains to establish a relation between (P𝜀) and (P) for 𝜀 → 0+. We start with

Theorem 4.2. Let (3.20) be satisfied. Then (P𝜀) has a solution for any 𝜀 > 0.

Proof. By reason of its simplicity we only sketch it. The existence of a solution follows from Lemma 4.1 and the stability type result
for the solution to (𝜀(𝛼)) with respect to 𝛼 ∈ 𝑎𝑑 keeping 𝜀 > 0 fixed. In addition, since functions from Ṽ(𝛺(𝛼)) are not subject to
any kinematic constraint on 𝑆(𝛼), there is no need to use Theorem A.1 from Appendix. □

Before we pass to the final result we shall need an additional continuity assumption on the cost functional 𝐽 ∶ 𝑎𝑑 × (𝐻1(𝛺))2 ×
𝐿2(𝛺) → R. We shall suppose that for any 𝛼 ∈ 𝑎𝑑 fixed, 𝐽 is continuous function of the remaining two variables. More precisely,
if (𝒚𝑛, 𝑧𝑛), 𝑛 = 1, 2,… and (𝒚, 𝑧) are elements of (𝐻1(𝛺))2 × 𝐿2(𝛺) such that

{

(𝒚𝑛, 𝑧𝑛)|𝛺(𝛼) → (𝒚, 𝑧)
|𝛺(𝛼) in (𝐻1(𝛺(𝛼)))2 × 𝐿2(𝛺(𝛼)) then

lim
𝑛→∞

𝐽 (𝛼, 𝒚𝑛|𝛺(𝛼), 𝑧𝑛|𝛺(𝛼)) = 𝐽 (𝛼, 𝒚
|𝛺(𝛼), 𝑧|𝛺(𝛼))

(4.19)

holds for any 𝛼 ∈ 𝑎𝑑 .

Theorem 4.3. Let (3.20) and (4.19) be satisfied. Then for any sequence {(𝛼∗𝜀 , 𝒖
𝜀(𝛼∗𝜀 ), 𝑝

𝜀(𝛼∗𝜀 ))}, 𝜀 → 0+, where 𝛼∗𝜀 solves (P𝜀)
and (𝒖𝜀(𝛼∗𝜀 ), 𝑝

𝜀(𝛼∗𝜀 )) is the solution to ((𝛼∗𝜀 )), one can find a subsequence (denoted by the same symbol) and a triplet (𝛼∗, 𝒖∗, 𝑝∗) ∈
𝑎𝑑 × (𝐻1(𝛺))2 × 𝐿2(𝛺) such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛼∗𝜀 → 𝛼∗ in 𝐶1([0, 1]),

𝒖̂𝜀(𝛼∗𝜀 ) ⇀ 𝒖∗ in (𝐻1(𝛺))2,

𝒖𝜀(𝛼∗𝜀 ) → 𝒖∗ in (𝐻1
𝑙𝑜𝑐 (𝛺(𝛼∗)))2,

𝑝̂𝜀(𝛼∗𝜀 ) ⇀ 𝑝∗ in 𝐿2(𝛺),

𝑝𝜀(𝛼∗𝜀 ) → 𝑝∗ in 𝐿2
𝑙𝑜𝑐 (𝛺(𝛼∗)), as 𝜀 → 0 + .

(4.20)

In addition, 𝛼∗ is a solution to (P) and (𝒖∗, 𝑝∗)
|𝛺(𝛼∗) = (𝒖(𝛼∗), 𝑝(𝛼∗)) solves ((𝛼∗)). Any accumulation point of {(𝛼∗𝜀 , 𝒖𝜀(𝛼∗𝜀 ), 𝑝𝜀(𝛼∗𝜀 ))} in the

sense of (4.20) has this property.

Proof. The existence of a subsequence and a triplet (𝛼∗, 𝒖∗, 𝑝∗) such that (𝑢∗, 𝑝∗)
|𝛺(𝛼∗) = (𝒖(𝛼∗), 𝑝(𝛼∗)) solves ((𝛼∗)) and (4.20) holds

ollows from Theorem 4.1 and Remark 4.1. Only what we need to show is that 𝛼∗ solves (P).
The definition of (P𝜀) yields:

∗ 𝜀 ∗ 𝜀 ∗ 𝜀 𝜀
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𝐽 (𝛼𝜀 , 𝒖 (𝛼𝜀 ), 𝑝 (𝛼𝜀 )) ≤ 𝐽 (𝛼, 𝒖 (𝛼), 𝑝 (𝛼)) ∀𝛼 ∈ 𝑎𝑑 . (4.21)
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Let 𝛼̄ ∈ 𝑎𝑑 be fixed. Then it is well-known that the sequence {(𝒖𝜀(𝛼̄), 𝑝𝜀(𝛼̄))}, 𝜀 → 0+ of solutions to (𝜀(𝛼̄)) tends to the solution
(𝒖(𝛼̄), 𝑝(𝛼̄)) of ((𝛼̄)):

{

𝒖𝜀(𝛼̄) → 𝒖(𝛼̄) in (𝐻1(𝛺(𝛼̄)))2,

𝑝𝜀(𝛼̄) → 𝑝(𝛼̄) in 𝐿2(𝛺(𝛼̄)).
(4.22)

Letting 𝜀 → 0+ in (4.21) we obtain:

𝐽 (𝛼∗, 𝒖(𝛼∗), 𝑝(𝛼∗)) ≤ lim inf
𝜀→0+

𝐽 (𝛼∗𝜀 , 𝒖
𝜀(𝛼∗𝜀 ), 𝑝

𝜀(𝛼∗𝜀 ))

≤ lim
𝜀→0+

𝐽 (𝛼̄, 𝑢𝜀(𝛼̄), 𝑝𝜀(𝛼̄)) = 𝐽 (𝛼̄, 𝒖(𝛼̄), 𝑝(𝛼̄))

making use of (3.20), (4.19) and (4.22). □

5. Approximation and numerical realization of (P𝜺)

In this section we describe how to discretize and realize shape optimization problems governed by the regularized and penalized
Stokes system. The admissible domains 𝛺 are determined by functions 𝛼 ∈ 𝑎𝑑 . The control variable 𝛼 ∈ 𝑎𝑑 will be discretized by
Bézier functions, while a stable mixed finite element method will be used to discretize the state equation (𝜀(𝛼)).

5.1. Discrete design parametrization and a finite element approximation of the state problem

We define the following finite dimensional parametrization of the leak boundary

𝑆(𝛼𝑚) = {(𝑥1, 𝑥2) ∣ 𝑥1 ∈ [0, 1], 𝑥2=𝛼𝑚(𝑥1)}, 𝛼𝑚 ∈ 𝑎𝑑

using the 𝑚th degree Bézier functions:

𝛼𝑚(𝑥1) =
𝑚
∑

𝑖=0
𝑎𝑖𝐵

(𝑚)
𝑖 (𝑥1), (5.1)

where 𝐵(𝑚)
𝑖 (𝑡) =

(𝑚
𝑖

)

𝑡𝑖(1 − 𝑡)𝑚−𝑖, 𝑖=0,… , 𝑚 are the Bernstein polynomials on [0, 1]. Then the discrete design variable vector 𝐚 =
(𝑎0, 𝑎1,… , 𝑎𝑚) consists of the coefficients in the linear combination (5.1).

Next we discretize the state problem (𝜀(𝛼𝑚)) using the P1-bubble/P1 elements satisfying the LBB condition [1]. Let 𝛺ℎ(𝛼𝑚) be
a polygonal approximation of 𝛺(𝛼𝑚) and let ℎ be its triangulation. We define

̃ℎ(𝛼𝑚) = {𝑣ℎ ∈ 𝐶(𝛺ℎ(𝛼𝑚)) ∣ 𝑣ℎ|𝑇 ∈ 𝑃1(𝑇 ) ∀𝑇 ∈ ℎ, 𝑣ℎ = 0 on 𝛤 },

ℎ(𝛼𝑚) =
{

𝑣ℎ ∈ 𝐶(𝛺ℎ(𝛼𝑚)) ∣ 𝑣ℎ|𝑇 ∈ span(𝑏𝑇 ) ∀𝑇 ∈ ℎ
}

,

where 𝑏𝑇 ∈ 𝑃3(𝑇 ) are the ‘‘bubble’’ functions satisfying 𝑏𝑇 = 0 on 𝜕𝑇 . The construction of the reference mesh ̂ℎ and its deformation
in 𝑥2-direction ̂ℎ → ℎ ∶= ℎ(𝛼𝑚) are constructed in the same way as in [15]. Then we introduce the following finite element spaces:

Ṽℎ(𝛼𝑚) = [̃ℎ(𝛼𝑚) + ℎ(𝛼𝑚)]2,

𝑄ℎ(𝛼𝑚) =
{

𝑞ℎ ∈ 𝐶(𝛺ℎ(𝛼𝑚)) ∣ 𝑞ℎ|𝑇 ∈ 𝑃1(𝑇 ) ∀𝑇 ∈ ℎ
}

,

hich are the discretizations of the spaces V(𝛺(𝛼𝑚)) and 𝐿2(𝛺(𝛼𝑚)), respectively.
The finite element approximation of the regularized/penalized state problem in the parametrized domain 𝛺(𝛼𝑚) then reads

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find (𝒖𝜀ℎ(𝛼𝑚), 𝑝
𝜀
ℎ(𝛼𝑚)) ∈ Ṽℎ(𝛼𝑚) ×𝑄ℎ(𝛼𝑚) such that

𝑎𝜅,𝛼𝑚 (𝒖
𝜀
ℎ, 𝒗ℎ) + 𝑏𝛼𝑚 (𝒗ℎ, 𝑝

𝜀
ℎ) + (∇𝑗𝜀𝛼𝑚 (𝒖

𝜀
ℎ ⋅ 𝝂

𝛼𝑚 ), 𝒗ℎ ⋅ 𝝂𝛼𝑚 )0,𝑆(𝛼𝑚)
+ 1

𝜀 (𝒖
𝜀
ℎ ⋅ 𝝉

𝛼𝑚 , 𝒗ℎ ⋅ 𝝉𝛼𝑚 )0,𝑆(𝛼𝑚) = 𝐿𝛼𝑚 (𝒗ℎ) ∀𝒗ℎ ∈ Ṽℎ(𝛼𝑚)

𝑏𝛼𝑚 (𝒖
𝜀
ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑄ℎ(𝛼𝑚).

(ℎ
𝜀 (𝛼𝑚))

5.2. Finite dimensional optimization problem and its sensitivity analysis

After performing the finite element discretization of (ℎ
𝜀 (𝛼𝑚)), its algebraic form is given by the following system of nonlinear

algebraic equations:

𝒓([𝐮,𝐩]T) ∶=
⎡

⎢

⎢

⎣

𝐀+𝐋𝜀(𝐮)+
1
𝜀𝐓 𝐁

𝐁T 𝟎

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐮

𝐩

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝐟

𝟎

⎤

⎥

⎥

⎦

= 𝟎, (5.2)

here 𝐮 ∈ R𝑛𝑢 ,𝐩 ∈ R𝑛𝑝 is the vector of the nodal values of the velocity 𝒖 and the pressure 𝑝, respectively, 𝐀 ∈ R𝑛𝑢×𝑛𝑢 is a symmetric
and positive definite matrix, 𝐁 ∈ R𝑛𝑝×𝑛𝑢 is the velocity–pressure coupling matrix, 1

𝜀𝐓 ∈ R𝑛𝑐×𝑛𝑢 is a matrix representation of the
enalized no-slip condition 𝑢 = 0, 𝐋 (𝐮) ∈ R𝑛𝑐×𝑛𝑢 is a matrix function representation of the smoothed leak term, and 𝐟 is the
190
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discretization of the forcing term 𝐿(⋅). Further 𝑛𝑝 is the total number of the nodes in ℎ, 𝑛𝑐 is the number of the nodes lying on the
leak boundary 𝑆(𝛼𝑚), and 𝑛𝑢 is the dimension of the solution component representing the velocity. The system (5.2) can be solved
teratively by using Newton’s method with line search, e.g. Let

 =
{

𝐚∈R𝑚+1 ∣ 𝛼min≤𝑎𝑖≤𝛼max, 𝑖=0,… , 𝑚; |𝑎𝑖+1 − 𝑎𝑖| ≤
𝐶1
𝑚 , 𝑖=0,… , 𝑚−1,

|𝑎𝑖+2 − 2𝑎𝑖+1 + 𝑎𝑖| ≤
𝐶2
𝑚2 , 𝑖=0,… , 𝑚−2

}

,

here 𝐶1 and 𝐶2 are the same as in (3.1), be the set of admissible discrete design variables. From the properties of the Bernstein
olynomials [6] it easily follows that if 𝐚 ∈  then 𝛼𝑚 ∈ 𝑎𝑑 , where 𝛼𝑚 is defined by (5.1).

As the residual vector 𝒓 in (5.2) depends also on the design variable 𝐚, we write the algebraic state problem (5.2) in the form

𝐫(𝐚,𝐮(𝐚)) = 𝟎, 𝐪(𝐚) = [𝐮(𝐚),𝐩(𝐚)]T.

enote J𝑖 ∶  → R, J𝑖(𝐚) ∶= 𝑖(𝐚,𝐪(𝐚)), where 𝑖 is a discretization of the cost functional 𝐽𝑖, 𝑖 = 1, 2, mentioned in Remark 3.2. Then
he discrete optimization problem to be realized reads as follows:

𝐚∗ ∈ argmin
𝐚∈

{

J𝑖(𝐚) ∣ 𝐫(𝐚,𝐪(𝐚)) = 𝟎
}

. (5.3)

In order to be able to use gradient-based nonlinear programming algorithms for solving (5.3) we need to evaluate the gradient
f J𝑖 with respect to the design variable vector 𝐚. The cost function J𝑖 is continuously differentiable provided that 𝑖 is so owing to
he fact that ℎ is a smooth topologically equivalent deformation of ̂ℎ (see [14]). Then, it is well-known that the partial derivatives
f J𝑖 with respect to the design variables are given by

dJ𝑖(𝐚)
d𝑎𝑘

=
𝜕𝑖(𝐚,𝐪(𝐚))

𝜕𝑎𝑘
+ 𝜼T

[

𝜕𝐫(𝐚,𝐪(𝐚))
𝜕𝑎𝑘

]

, 𝑘 = 0,… , 𝑚, (5.4)

here 𝜼 is the solution to the adjoint equation
[

𝜕𝐫(𝐚,𝐪(𝐚))
𝜕𝐪

]T
𝜼 = ∇𝐪𝑖(𝐚,𝐪(𝐚)). (5.5)

The computation of partial derivatives in (5.4) and (5.5) can be done by hand or by using automatic differentiation of computer
programs. For further details, see, e.g., [11,14].

6. Numerical examples

The MATLAB programming language was employed to implement both the state solver and the cost function evaluation [22].
The partial derivatives required in Eqs. (5.4) and (5.5) were straightforward enough to be manually computed and implemented. The
minimization process was executed through the utilization of the sequential quadratic programming algorithm (SQP). Specifically,
we employed the SQP implementation provided by the MATLAB Optimization Toolbox, utilizing the wrapper function ‘fmincon’ with
the ‘sqp’ option. The parameters governing the stopping criterion were selected as TolX=10−4, TolFun=10−5, and TolCon=10−5.

Example 1
Let 𝜇 = 1

2 , 𝑔 = 15, and 𝜅 = 30. Functions 𝒇 and 𝝈𝑁 appearing on the right hand side of (2.1) are given by 𝒇 = −2𝜇divD(𝒖exp)+∇𝑝exp
and 𝝈𝑁 = 2𝜇D(𝒖exp)𝝂 − 𝑝exp𝝂, where

𝒖exp(𝑥) =
[

(1 − cos(2𝜋𝑥1)) sin(2𝜋𝑥2), sin(2𝜋𝑥1)(cos(2𝜋𝑥2) − 1)
]

,

𝑝exp(𝑥) = 2𝜋(1 − cos(2𝜋𝑥1) + 2 cos(2𝜋𝑥2)).

With 𝛼 ≡ 0, the state problem is then the one used as a test problem in paper [13].
The parameters defining  are 𝑚 = 20, 𝛼min = −0.1, 𝛼max = 0.2, 𝐶1 = 5, and 𝐶2 = 10. As the objective function we use

𝐽1(𝛼) with the (fixed) target profile 𝑢̃ defined by the monotonic 𝐶1 cubic spline [7] interpolating the following set of datapoints
(𝑋𝑖, 𝑌𝑖), 𝑖 = 1,… , 10, where

𝑋𝑖 ∈ {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1},

𝑌𝑖 ∈ {0, 0, 0.06, 0.16, 0.24, 0.26, 0.22, 0.12, 0, 0}

(see Fig. 3).
We solved the discretized shape optimization problem using a reference mesh ̂ℎ consisting of 19604 elements. For regulariza-

tion/penalization parameters we used three different values 𝜀 = 10−3, 10−4, 10−5. In all cases 𝛼𝑚 ≡ 0 was used as the initial guess.
These regularization/penalization parameter values represent a compromise. Larger parameter values result in poorly enforced
constraints, while smaller values lead to ill-conditioned state and optimization problems. The selected parameter values strike a
good compromise between accuracy and ill-conditioning.

The optimized 𝛼∗𝑚 and convergence histories of the objective function values are shown in Fig. 4. The behavior with respect
to 𝜀 is reasonably stable justifying the regularization/penalization approach used. The velocity and pressure as well as the normal
velocity component 𝑢𝜈 and the normal stress 𝜎𝜈 on 𝑆(𝛼∗𝑚) for 𝜀 = 10−5 are shown in Figs. 5 and 6. It is well-known that the used
descent type optimization method is only guaranteed to find an approximate local minimum. However, by examining Fig. 6, it can
191

be concluded that the computed solution is close to the global optimum of J1 in  .
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Fig. 3. Target profile 𝑢̃ defined by the monotonic cubic spline interpolating given data.

Fig. 4. Optimized shapes (left) and convergence histories (right) for different values of parameter 𝜀.

Fig. 5. Streamlines/velocity (left) and pressure (right) in optimized domain (𝜀 = 10−5).

Example 2
In this example we minimize the objective function 𝐽2(𝛼) =

1
2𝑎𝛼(𝒖(𝛼), 𝒖(𝛼)). Let the state problem be defined by the data 𝜇 = 1

2 ,
𝑔 = 15, 𝜅 = 0, 𝝈𝑁 = 𝟎, and

𝒇 (𝑥) =

{

(0, [(𝑥2 − 0.2)(1 − 𝑥2)]2) if 𝑥 ∈ [ 14 ,
3
4 ] × [ 2

10 , 1]
(0, 0) otherwise.

The parameters defining  are 𝑚 = 40, 𝛼min = −0.1, 𝛼max = 0.1, 𝐶1 = 5, and 𝐶2 = 10. As the objective function contains a domain
integral (that can be reduced simply by shrinking the area) we add an additional area constraint meas𝛺(𝛼) = 1 to the problem, i.e.
192
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Fig. 6. Normal velocity 𝑢𝜈 and normal stress 𝜎𝜈 (𝜀 = 10−5).

Fig. 7. Streamlines/velocity (left) and pressure (right) in optimized domain.

we minimize over the set  †
𝑎𝑑 ∶= 𝑎𝑑 ∩ {𝛼 ∣ ∫ 1

0 𝛼(𝑥1) 𝑑𝑥1 = 0}. This added constraint does not cause any significant problems in the
theoretical or numerical analysis.

We solved the discretized shape optimization problem using the same reference mesh as in the previous example. The value of
the regularization parameter was 𝜀 = 10−4 and 𝛼 ≡ 0 was again used as the initial guess.

The objective function value corresponding to the initial guess was 26.14. After two iterations (and five function evaluations)
the objective value was reduced to 23.16. The low iteration count might be due to the bang–bang like nature of the optimized
shape, i.e. many constraints become immediately active. The velocity and pressure contours in the optimized domain are depicted
in Fig. 7. The normal velocity component 𝑢𝜈 and the normal stress 𝜎𝜈 on 𝑆(𝛼∗𝑚) corresponding the initial and optimized domain are
shown in Fig. 8. Examining the initial and final normal stress distributions, it can be observed that the minimization of 𝐽2 tends to
produce a more uniform stress distribution. This kind of behavior appears also in shape optimization of an elastic body governed
by the Signorini state problem (see [14, Section 3.3]) and is a consequence of the constant volume constraint in the definition of
 †

𝑎𝑑 .

7. Conclusions

In the present paper we have considered shape optimization with the state constraint given by the Stokes system with the
threshold leak boundary conditions on a part of the computational domain. In numerical realization, the part of boundary to be
optimized is parametrized using a Bézier function. The state problem is discretized by stable finite elements of the lowest order. The
leak boundary condition is realized approximately using a combination of the penalty method and smoothing of the nondifferentiable
leak term. The numerical examples demonstrate the computational feasibility of our approach.
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Fig. 8. Normal velocity 𝑢𝜈 and normal stress 𝜎𝜈 .

Appendix

The aim of this part is to justify (3.11) and (3.12) in Theorem 3.1 which plays the key role in the existence analysis. Roughly
speaking, we want to prove that any function from the function space on the limit domain which is used in the weak formulation
can be approximated by functions from the same type of spaces on close domains.

Before we start, let us recall some notation which will be used in the sequel. If 𝝋, 𝝃 ∶ 𝑄 ↦ R2, 𝑄 ⊆ R𝑑 , 𝑑 = 1, 2, are two vector
functions, then

‖𝝋‖ ∶= ‖𝝋‖∞,𝑄 = ess sup
𝑥∈𝑄

‖𝝋(𝑥)‖,

here ‖𝝋(𝑥)‖ denotes the Euclidian norm of 𝝋(𝑥) ∈ R2 and

𝝋 ⋅ 𝝃 ∶ 𝑄 → R1, (𝝋 ⋅ 𝝃)(𝑥) = 𝝋(𝑥) ⋅ 𝝃(𝑥) ∀𝑥 ∈ 𝑄.

The system of admissible domains is exactly the same as in Section 3. Unlike domains 𝛺(𝛼) ∈  considered in Section 3 the
boundaries of which are decomposed into 𝛤 , 𝛤𝑁 (𝛼), 𝑆(𝛼), boundaries of domains considered in this appendix are split into two
parts: 𝜕𝛺(𝛼) = 𝛤 (𝛼) ∪ 𝑆(𝛼), 𝑆(𝛼) = graph of 𝛼.

On any 𝛺(𝛼), 𝛼 ∈ 𝑎𝑑 we define the space

V(𝛼) = {𝒗 ∈ (𝐻1(𝛺(𝛼)))2 ∣ 𝒗 = 𝟎 on 𝛤 (𝛼), 𝒗 ⋅ 𝒔𝛼 = 0 on 𝑆(𝛼)},

where 𝒔𝛼 ∶ [0, 1] → R2 is a given unit vector field defined on 𝑆(𝛼):

𝒔𝛼(𝑥1) ∶= 𝒔𝛼(𝑥1, 𝛼(𝑥1))

‖𝒔𝛼(𝑥1)‖ = 1

}

∀𝑥1 ∈ (0, 1) ∀𝛼 ∈ 𝑎𝑑 .

et 𝒓𝛼 ∶ [0, 1] → R2 be another unit vector field on 𝑆(𝛼) which is perpendicular to 𝒔𝛼 at any point of 𝑆(𝛼):

𝒔𝛼 ⋅ 𝒓𝛼 = 0

‖𝒓𝛼(𝑥1)‖ = 1

}

∀𝑥1 ∈ (0, 1) ∀𝛼 ∈ 𝑎𝑑 . (A.1)

Both these vector fields will be extended from 𝑆(𝛼) on the hold-all domain 𝛺̂ = (0, 1) × (−𝛾, 𝛾) as follows:

𝒔𝛼(𝑥1, 𝑥2) = 𝒔𝛼(𝑥1), 𝒓𝛼(𝑥1, 𝑥2) = 𝒓𝛼(𝑥1) ∀𝑥 = (𝑥1, 𝑥2) ∈ 𝛺̂. (A.2)

Convention: from now on the symbols 𝒔𝛼 and 𝒓𝛼 will denote the vector fields defined by (A.2) in the whole 𝛺.
Since the pair (𝒔𝛼 , 𝒓𝛼) is the orthonormal basis at any 𝑥 ∈ 𝛺 as follows from (A.1), any function 𝒗 ∶ 𝛺 → R2 can be written in

the form

𝒗 = 𝒗⋅𝒔𝛼𝒔𝛼 + 𝒗𝒓𝛼 = 𝒗⋅𝒔𝛼𝒔𝛼 + 𝒗⋅𝒓𝛼𝒓𝛼 in 𝛺. (A.3)

In the next theorem we shall need the following assumptions imposed on 𝒔𝛼 and 𝒓𝛼 :

∙ 𝒔𝛼 , 𝒓𝛼 ∈ (𝐶0,1(𝛺))2 ∀𝛼 ∈ 𝑎𝑑 , (A.4)

∙ ∃𝐶3 = const. > 0 ∶ ‖∇𝒔𝛼‖∞,𝛺 ≤ 𝐶3 ∀𝛼 ∈ 𝑎𝑑 , (A.5)

∙ 𝛼 → 𝛼 in 𝐶1([0, 1]), 𝛼 , 𝛼 ∈  ⟹ 𝒔𝛼𝑛 → 𝒔𝛼 in (𝐶(𝛺))2. (A.6)
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Theorem A.1. Let (A.4)–(A.6) be satisfied and 𝛼𝑛, 𝛼 ∈ 𝑎𝑑 be such that 𝛼𝑛 → 𝛼 in 𝐶1([0, 1]). Then for any 𝒗 ∈ V(𝛼) there exists a
sequence {𝒗𝑘}, 𝒗𝑘 ∈ (𝐻1(𝛺))2 and a function 𝒗 ∈ (𝐻1(𝛺))2 such that 𝒗

|𝛺(𝛼) = 𝒗 and

𝒗𝑘 → 𝒗 in (𝐻1(𝛺))2, 𝑘 → ∞. (A.7)

In addition, for any 𝑘 ∈ N there exists 𝑛𝑘 ∈ N such that

𝒗𝑘|𝛺(𝛼𝑛𝑘 )
∈ V(𝛼𝑛𝑘 ). (A.8)

roof. Let 𝒗 ∈ V(𝛼), 𝛼 ∈ 𝑎𝑑 be fixed and 𝛼𝑛 → 𝛼 in 𝐶1([0, 1]), as 𝑛 → ∞. We denote

𝜑 ∶= 𝒗 ⋅ 𝒔𝛼 , 𝝍 ∶= 𝒗𝒓𝛼 = 𝒗⋅𝒓𝛼𝒓𝛼 in 𝛺(𝛼). (A.9)

From the definition of V(𝛼) it follows that 𝜑 ∈ 𝐻1
0 (𝛺(𝛼)) and 𝝍 ∈ (𝐻1(𝛺(𝛼)))2, 𝝍 = 𝟎 on 𝛤 (𝛼). Using the density arguments we know

that there exist sequences {𝜑𝑘}, 𝜑𝑘 ∈ 𝐶∞
0 (𝛺(𝛼)) and {𝝍𝑘}, 𝝍𝑘 ∈ (𝐶∞(𝛺(𝛼)))2 such that dist(supp𝝍𝑘, 𝛤 (𝛼)) > 0 for all 𝑘 ∈ N and

{

𝜑𝑘 → 𝜑 in 𝐻1
0 (𝛺(𝛼)),

𝝍𝑘 → 𝝍 in (𝐻1(𝛺(𝛼)))2.
(A.10)

Therefore3

{

𝜑̂𝑘 → 𝜑̂ in 𝐻1
0 (𝛺),

𝝍̂𝑘 → 𝝍̂ in (𝐻1(𝛺))2.
(A.11)

Moreover we may suppose that dist(supp 𝝍̂𝑘, 𝛤 ) > 0 ∀𝑘 ∈ N, where

𝛤 = {0} × (−𝛾, 𝛾) ∪ {1} × (−𝛾, 𝛾).

To construct the sequence {𝒗𝑘} which satisfies (A.7) and (A.8), let us suppose for the moment that for any 𝑘 ∈ N there exist: 𝑛𝑘 ∈ N
such that

∙ 𝑆(𝛼𝑛) ∩ supp𝜑̂𝑘 = ∅ ∀𝑛 ≥ 𝑛𝑘 (A.12)

and a function 𝐍𝑛𝑘 ∈ (𝐶0,1(𝛺))2 satisfying:

∙ 𝐍𝑛𝑘 |𝑆(𝛼𝑛𝑘 )
= 𝒔𝛼𝑛𝑘

|𝑆(𝛼𝑛𝑘 )
, (A.13)

∙ 𝐍𝑛𝑘 → 𝒔𝛼 in (𝐻1(𝛺))2 as 𝑘 → ∞, (A.14)

∙ ∃𝐶4 = const. > 0 ∶ ‖𝐍𝑛𝑘‖∞,𝛺 + ‖∇𝐍𝑛𝑘‖∞,𝛺 ≤ 𝐶4 ∀𝑘 ∈ N. (A.15)

hen the sequence {𝒗𝑘} is defined as follows:

𝒗𝑘 = 𝜑̂𝑘𝐍𝑛𝑘 + 𝝍̂𝑘 − 𝝍̂𝑘⋅𝐍𝑛𝑘𝐍𝑛𝑘 . (A.16)

learly 𝒗𝑘 ∈ (𝐻1(𝛺))2, 𝒗𝑘 = 𝟎 on 𝛤 (𝛼𝑛𝑘 ) and

(𝒗𝑘 ⋅ 𝒔
𝛼𝑛𝑘 )

|𝑆(𝛼𝑛𝑘 )
= (𝜑̂𝑘𝐍𝑛𝑘 ⋅ 𝒔

𝛼𝑛𝑘 )
|𝑆(𝛼𝑛𝑘 )

+ (𝝍̂𝑘 ⋅ 𝒔
𝛼𝑛𝑘 )

|𝑆(𝛼𝑛𝑘 )

−(𝝍̂𝑘 ⋅ 𝐍𝑛𝑘 )|𝑆(𝛼𝑛𝑘 )(𝐍𝑛𝑘 ⋅ 𝒔
𝛼𝑛𝑘 )

|𝑆(𝛼𝑛𝑘 )

= (𝝍̂𝑘 ⋅ 𝒔
𝛼𝑛𝑘 )

|𝑆(𝛼𝑛𝑘 )
− (𝝍̂𝑘 ⋅ 𝐍𝑛𝑘 )|𝑆(𝛼𝑛𝑘 ) = 0

making use of (A.12) and (A.13). From (A.16), (A.11), (A.14), and (A.15) we see that

𝒗𝑘 ⟶
𝑘→∞

𝜑̂𝒔𝛼 + 𝝍̂ − 𝝍̂ ⋅𝒔𝛼𝒔𝛼 =∶ 𝒗 in (𝐻1(𝛺))2.

Finally from (A.3) and (A.9) it follows that 𝒗
|𝛺(𝛼) = 𝒗.

It remains to construct the functions 𝐍𝑛𝑘 and the sequence {𝑛𝑘}, 𝑘 → ∞ satisfying (A.13)–(A.15). Let 𝜉𝑘 ∈ 𝐶∞([0,∞)), 𝑘 → ∞ be
unctions such that 0 ≤ 𝜉𝑘 ≤ 1 in [0,∞), 𝜉𝑘|[0,1∕(2𝑘)] = 1, 𝜉𝑘|[1∕𝑘,∞) = 0 ∀𝑘 ∈ N. For any 𝑘, 𝑛 ∈ N we define

𝐍𝑛,𝑘(𝑥) = 𝜉𝑘(|𝑥2 − 𝛼(𝑥1)|)(𝒔𝛼𝑛 − 𝒔𝛼) + 𝒔𝛼 in 𝛺. (A.17)

t is readily seen that 𝐍𝑛𝑘 ∈ (𝐶0,1(𝛺))2. Further

‖𝐍𝑛,𝑘‖∞,𝛺 ≤ 3 ∀𝑘, 𝑛 ∈ N (A.18)

and from (A.17) and (A.6)

‖𝐍𝑛,𝑘 − 𝒔𝛼‖0,𝛺 ≤ ‖𝒔𝛼𝑛 − 𝒔𝛼‖0,𝛺 → 0, 𝑛 → ∞ (A.19)

3 Let us observe that for functions from 𝐻1(𝛺(𝛼)) the symbol ‘‘ ̂ ’’ above the function means its extension by zero from 𝛺(𝛼) on 𝛺.
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𝐍

t

uniformly with respect to 𝑘.
Let 𝑘 ∈ N be fixed. Since 𝛼𝑛 → 𝛼 in 𝐶1([0, 1]), there exists an index 𝑛0 ∶= 𝑛0(𝑘) such that (A.12) holds for any 𝑛 ≥ 𝑛0 and so

𝑛,𝑘|𝑆(𝛼𝑛) = 𝒔
𝛼𝑛
|𝑆(𝛼𝑛) ∀𝑛 ≥ 𝑛0, i.e. (A.13) is satisfied. To estimate ‖∇𝐍𝑛,𝑘‖∞,𝛺 we only need to estimate the term

max
𝑥∈𝛺

(

‖

‖

‖

∇𝜉𝑘(|𝑥2 − 𝛼(𝑥1)|)
‖

‖

‖

)

‖𝒔𝛼𝑛 − 𝒔𝛼‖∞,𝛺‖𝒔
𝛼
‖∞,𝛺 . (A.20)

Since 𝜉′𝑘 is unbounded on [1∕(2𝑘), 1∕𝑘] as 𝑘 → ∞, one has to compensate this fact by (A.6). Thus for 𝑘 fixed, there exists 𝑛1 ∶= 𝑛1(𝑘)
such that the expression (A.20) is bounded by (say) 2 for any 𝑛 ≥ 𝑛1. The remaining terms appearing in ∇𝐍𝑛,𝑘 are uniformly bounded
due to (A.5). This, together with (A.18) proves (A.15).

To verify (A.14) it remains to estimate ‖∇(𝐍𝑛,𝑘 − 𝒔𝛼)‖0,𝛺. From (A.17) and the definition of 𝜉𝑘 is follows:

‖∇(𝐍𝑛,𝑘 − 𝒔𝛼)‖0,𝛺 ≤

max
𝑥∈𝛺

‖∇𝜉𝑘(|𝑥2 − 𝛼(𝑥1)|)‖‖𝒔𝛼𝑛 − 𝒔𝛼‖0,𝛺 + ‖∇(𝒔𝛼𝑛 − 𝒔𝛼)‖0,{|𝑥2−𝛼(𝑥1)|<1∕𝑘}

≤
√

1 + 𝐶2
1 ‖𝜉

′
𝑘‖∞,[0,∞)‖𝒔𝛼𝑛 − 𝒔𝛼‖0,𝛺 + (1∕𝑘),

where 𝐶1, 𝐶3 are the constants from (3.1) and (A.5). Then we proceed in the same way as in the estimation of (A.20). One can
find 𝑛2 ∶= 𝑛2(𝑘) ∈ N such that ‖∇(𝐍𝑛,𝑘 − 𝒔𝛼)‖0,𝛺 = (1∕𝑘) for any 𝑛 ≥ 𝑛2. This, together with (A.19) proves (A.14). The function
𝐍𝑛𝑘 ∶= 𝐍𝑛𝑘 ,𝑘 having the required properties is defined by (A.17) with 𝑛𝑘 = max{𝑛0, 𝑛1, 𝑛2}. □

Remark A.1. It is easy to show that the assertion of Theorem A.1 remains valid also for the space V(𝛺(𝛼)), 𝛺(𝛼) ∈  introduced
in Section 3 when 𝛤𝑁 ≠ ∅.

Remark A.2. In the previous part of the paper we use Theorem A.1 with 𝒔𝛼 ∶= 𝝉𝛼 , and 𝒓𝛼 ∶= 𝝂𝛼 , where 𝝉𝛼 , 𝝂𝛼 are the unit
angential, and outward normal vectors at points of 𝑆(𝛼), 𝛼 ∈ 𝑎𝑑 , respectively. Since

𝝉𝛼 =

(

1
√

1 + (𝛼′)2
, 𝛼′
√

1 + (𝛼′)2

)

, 𝝂𝛼 =

(

𝛼′
√

1 + (𝛼′)2
, −1
√

1 + (𝛼′)2

)

,

it is effortless to show that (A.4)–(A.6) are satisfied. This justifies the use of Theorem A.1 to this particular choice of 𝒔𝛼 , 𝒓𝛼 .
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