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Abstract: A comprehensive analysis of cross-country skiing races is a pivotal step in establishing ef-
fective training objectives and tactical strategies. This study aimed to develop a method of classifying
sub-techniques and analyzing skiing characteristics during cross-country skiing skating style timed
races on snow using high-precision kinematic GNSS devices. The study involved attaching GNSS
devices to the heads of two athletes during skating style timed races on cross-country ski courses.
These devices provided precise positional data and recorded vertical and horizontal head movements
and velocity over ground (VOG). Based on these data, sub-techniques were classified by defining
waveform patterns for G2, G3, G4, and G6P (G6 with poling action). The validity of the classification
was verified by comparing the GNSS data with video analysis, a process that yielded classification
accuracies ranging from 95.0% to 98.8% for G2, G3, G4, and G6P. Notably, G4 emerged as the fastest
technique, with sub-technique selection varying among skiers and being influenced by skiing velocity
and course inclination. The study’s findings have practical implications for athletes and coaches as
they demonstrate that high-precision kinematic GNSS devices can accurately classify sub-techniques
and detect skiing characteristics during skating style cross-country skiing races, thereby providing
valuable insights for training and strategy development.

Keywords: high-precision GNSS; cross-country skiing; skating techniques; sub-technique classification

1. Introduction

Cross-country skiing courses are designed to utilize natural terrain, including uphill,
downhill, and flat sections, to reflect the athletes’ technical, tactical, and physical abilities [1].
Cross-country skiing has two main competition styles: classical style and skating style.
Different gears, known as sub-techniques with distinct movements, are used in each
competition style based on the course inclination. There are seven sub-techniques (G1–G7)
in the skating style. G1 involves pushing with one ski while simultaneously using the
opposite pole and is primarily employed on challenging terrain or when the skier is
fatigued. G2 is used on uphill sections and involves one asymmetrical poling action for
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every two leg movements. G3 is applied on flat to gradual uphill sections and features
one poling action and one leg movement. G4 is used on flat sections and involves one
symmetrical poling action for every two leg movements. In G5, skiers primarily rely on
their legs to propel themselves forward without using their poles; this technique is typically
used on flat or slightly descending terrain. G6 is introduced as a curve technique that
combines leg strokes with or without poling action. Finally, G7 is utilized in downhill
skiing, where the skier adopts a tuck position without using poles or performing leg
actions [2–4]. Since each sub-technique provides different skiing velocities [3], strategic
performance must select the sub-technique that maximizes skiing velocity depending on
the course inclination, muscle strength of the upper body, and gliding performance. It
has been reported that upper body power and maximal oxygen uptake are necessary for
sub-technique selection. Both tend to show superior performance in cross-country skiing
in athletes of higher ability, and it is likely that athletes with superior performance in both
abilities use faster sub-techniques [5–7].

However, what sub-techniques skiers use more frequently throughout a race has yet
to be well known. It is practically challenging to video-capture skiers throughout the
entire race. Determining the frequency of sub-technique use is an essential resource for
determining the relationship between physical fitness, such as upper body power and
maximal oxygen uptake, and the technical characteristics of individual athletes, which is
also essential for developing training goals and tactics.

In a previous study of race analysis in skating style, Anderson et al. [3] utilized the
Global Navigation Satellite System (GNSS) and video cameras to analyze sub-techniques,
skiing velocity, cycle time (CT), cycle length (CL), and other relevant parameters during
timed races. However, while accurate position data were available from GNSS data, the
sub-technique analysis relied on video cameras, making capturing multiple skiers simulta-
neously throughout the course challenging. Furthermore, the weight of the measurement
equipment, 1.64 kg, was a notable problem. Sakurai et al. [8] conducted a sub-technique
classification of roller skis using inertial sensors. However, skiing velocity has yet to be
clarified in this study. The Naos sensor developed by Archinisis integrates an inertial sensor,
a GNSS device, and a barometric pressure sensor in a single compact device, enabling
simultaneous data collection of ski technique, skiing velocity, and position information.
Analysis has also been conducted using this device [9,10]. However, it has been reported
that the GNSS positioning needs to maintain sufficient accuracy, which may cause errors
in position information [11], and the accuracy of the measurements is not sure. These
challenges highlight the need for a more effective and accurate method, which we aim to
address in this study.

On the other hand, Takeda et al. [12] used a high-precision kinematic GNSS device
to measure GNSS position information with extremely high precision to evaluate sub-
technique classification and skiing velocity during a classical style timed race for the
world’s top-level male skier. In this study, the GNSS device was attached to the head, and
technique classification was attempted based on the hypothesis that the vertical movement
of the head is different for each sub-technique. They reported that they could classify the
sub-techniques (double poling, diagonal stride, kick double polling, and herringbone) with
98% accuracy. Øyvind Gløersen et al. [13] used the same high-precision kinematic GNSS
device and classified sub-techniques in skating style techniques based on vertical and
horizontal head movement features. They reported correctly classifying sub-techniques G2,
G3, and G4 with an accuracy of 92.1% to 97.1%. However, the study by Øyvind Gløersen
et al. [13] attempted classification during roller skiing on paved trails. To the authors’
knowledge, no research has been done on the sub-technique classification of actual skating
style on unstable snow surfaces. Since the head movement in the skating style does not
differ much from one sub-technique to another compared with the classical style, it is
crucial to capture head movements in detail and with high accuracy.

The position information measurement technology of GNSS devices has been im-
proving at an accelerated pace in recent years. Accordingly, momentum and running
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speed analyses have been conducted using GNSS devices in many sports, such as soccer
and rugby. Most of these GNSS devices use relative positioning GPS (differential GPS),
which has a significant measurement error of about 1 m, and the measurement frequency
is generally 10 Hz [14]. Sports activities are high speed, and to detect slight differences
in skiing velocity and position information, it is necessary to measure position informa-
tion with high accuracy and to have a high measurement frequency. This point was also
pointed out by Takeda et al. [12] in another study of the cross-country skiing sub-technique.
Miyamoto et al. developed a compact, lightweight, low power consumption, and 10 Hz
update rate post-processing kinematic (PPK) GNSS logger (AT-H-02, AOBA Technologia
LLC, Sendai, Japan) that is suitable for skiing measurements [15]. The AT-H-02 does not
perform the positioning calculations for navigation commonly performed by GNSS devices,
but it specializes in logging the raw data required for PPK [15]. Kinematic positioning
based on carrier phase measurements provides higher accuracy than differential GPS,
reaching sub-centimeters. Furthermore, a GNSS logger (simpleRTK3B Pro, ArduSimple,
Lleida, Spain) has been developed, which maintains its size, weight, and measurement
accuracy while significantly increasing the sampling frequency from the traditional 10 Hz
to 100 Hz. This advancement of GNSS technologies enhances temporal resolution and pro-
vides unprecedented precision in data acquisition, enabling more accurate classification of
sub-techniques in skating style performed on unstable snow surfaces. We hypothesized that
this high-precision GNSS device could accurately classify sub-techniques in cross-country
ski skating style. Based on this, the present study used a high-precision kinematic GNSS
device to classify sub-techniques and analysis of skiing characteristics in cross-country ski
skating style.

2. Materials and Methods
2.1. Overall Design

Two male athletes (subject A and subject B) participated in a skating style timed race
on the Ikenotaira cross-country ski course in Japan, which was 4.1 km long (five laps, with
the first lap being 0.9 km and the second to fifth laps being 0.8 km each; Figure 1). Subject A
was a former member of the Japanese national team, and subject B was an elite athlete in the
Japanese U-15 category. The subjects used their own skis, poles, and boots. A GNSS device
was attached to the subjects to obtain head position data during the timed race. The GNSS
device consisted of an antenna (lightweight helical GNSS triple band + L-band antenna,
ArduSimple, Lleida, Spain; size, 40 mm φ × H82.8 mm; weight, 25 g) and a receiver
(simpleRTK3B Pro, ArduSimple, Lleida, Spain; size, W59 mm × D87 mm × H33 mm;
weight, 137 g). The antenna was attached to the subjects’ heads, and the receiver was stored
in a small bag at their waist (Figure 2). The receiver was equipped with a GNSS module
Mosaic-X5 (Septentrio, Leuven, Belgium), capable of performing RTK positioning at a
maximum sampling frequency of 100 Hz. The positioning accuracy was 0.6 cm + 0.5 ppm
horizontally and 1 cm + 1 ppm vertically. To enable the receiver to communicate with the
base station (NTRIP Caster/NTRIP Server) and obtain correction information (RTCM), a
mobile router (Aterm MP01LN, NEC, Tokyo, Japan; size, W50 × H12 × D91 mm; weight,
71 g) was stored in the small bag along with the receiver. During the timed race, the
subjects were followed by a snowmobile from behind, and all sub-techniques were recorded
throughout the entire race using a video camera (Hero9, GoPro, San Mateo, California,
USA). This study was conducted with the approval of the Ethics Committee of Doshisha
University (No. 23042).
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Figure 1. The figure shows the Ikenotaira cross-country ski course, Japan, used in this study. The 
plo ed data were obtained from the study subject, covering one lap of 0.8 km. The figure shows the 
course profile’s plan view data (a) and course inclination data (b). 

  

Figure 2. This picture and image show the experimental setup. The GNSS antenna was a ached to 
the skier’s head, and the receiver and mobile router were stored in a small bag at the skier’s waist. 
This setup obtained head positioning data (latitude, longitude, altitude, and VOG) during the timed 
race. 

2.2. Data Processing 
NMEA messages obtained the trajectory of head movement relative to the latitude, 

longitude, altitude, and VOG during the timed race, and the data analysis was conducted 
using MATLAB 2024a. 

The movement of the head obtained from GNSS data included the influence of the 
course inclination and curves; therefore, removing these effects allowed for the trajectory 
of pure head movement. The course inclination was derived by calculating a moving av-
erage from the altitude data. We used a sliding window approach with a window size of 
2푘  + 1 data points centered on each data point (where (푖)  represents a specific data 
point). In this study, 푘 was set to 55 (1.1 s). The course inclination is given by 

Figure 1. The figure shows the Ikenotaira cross-country ski course, Japan, used in this study. The
plotted data were obtained from the study subject, covering one lap of 0.8 km. The figure shows the
course profile’s plan view data (a) and course inclination data (b).
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Figure 2. This picture and image show the experimental setup. The GNSS antenna was attached
to the skier’s head, and the receiver and mobile router were stored in a small bag at the skier’s
waist. This setup obtained head positioning data (latitude, longitude, altitude, and VOG) during the
timed race.

2.2. Data Processing

NMEA messages obtained the trajectory of head movement relative to the latitude,
longitude, altitude, and VOG during the timed race, and the data analysis was conducted
using MATLAB 2024a.

The movement of the head obtained from GNSS data included the influence of the
course inclination and curves; therefore, removing these effects allowed for the trajectory of
pure head movement. The course inclination was derived by calculating a moving average
from the altitude data. We used a sliding window approach with a window size of 2k + 1
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data points centered on each data point (where (i) represents a specific data point). In this
study, k was set to 55 (1.1 s). The course inclination is given by

Course Inclination(i) =
1

2k + 1

i+k

∑
j=i−k

alt(j) (1)

With this procedure, it was possible to draw the course inclination for the entire course,
as shown in Figure 1b. The change in the trajectory of the net vertical movement of the head
was extracted by subtracting the course inclination data from the altitude data obtained
from GNSS [12].

When attempting to remove the effects of course curves using a similar method
with latitude and longitude data, the influence of the subject’s horizontal movements
was reflected, making it challenging to smoothly represent the changes in course curves.
Therefore, the calculation was performed using the following procedure: First, the LLH
(latitude, longitude, altitude) coordinates were converted into the ENU (east-north-up)
coordinates (vi(1), vi(2), vi(3)) using the given latitude, longitude, and altitude with the
MATLAB function llh2enu. Here, vi(1) represents the eastward component, vi(2) repre-
sents the northward component, and vi(3) represents the upward component. Next, the
horizontal components of the ENU coordinates (vi(1), vi(2)) were converted into polar
coordinates (θGNSS(i), ρ(i)) by Equation (2). Like Equation (1), the moving average of
θGNSS was then computed to derive θave by Equation (3). In this study, m was set to 52
(1.04 s). By subtracting θave(i) from θGNSS(i), the net angle change θnet(i) was obtained by
Equation (4). Finally, θnet was used to compute the horizontal movement of the head by
Equation (5).

θGNSS(i) = atan2(vi(2), vi(1))

ρ(i) =
√

vi(1)
2 + vi(2)

2
(2)

θave(i) =
1

2m + 1

i+m

∑
j=i−m

θGNSS (j) (3)

θnet(i) = θGNSS(i)− θave(i) (4)

Net horizontal movement(i + 1) = Net horizontal movement(i) + ρ(i) · sin(θnet(i)) (5)

The windows sizes of 1.10 s and 1.04 s used for calculating the moving average in
Equations (1) and (3), respectively, were not derived from a specific dataset but were instead
determined as the values that best reflected the changes in the slope inclination and curve
radius throughout the entire race course in this study. Therefore, it is possible that other
values may be more appropriate for courses other than those used in this study.

2.3. Sub-Technique Classification

In order to facilitate the classification of sub-techniques (G1–G7), techniques involving
poling action were the primary focus of the analysis. This was because techniques with
poling action exhibited noticeable vertical and horizontal head movements, making it
easier to capture key points for classification. As a result, four techniques involving poling
action—G2, G3, G4, and G6P (we will refer to G6 with poling action as G6P, without poling
action as G6N, and G6 as a general term encompassing both poling action and non-poling
action)—were included in the analysis. Additionally, movements involving poling that
could not be clearly classified (e.g., moments of loss of balance or double poling) were
categorized as “others”. G1 was not used at all. G5, G6N, and G7 were techniques that did
not involve poling action. In the case of G5 and G6N, it was difficult to determine whether
the movements were due to a loss of balance or a change in direction. Furthermore, G5 and
G6N were used in downhill sections and had low usage frequency. Along with G7, which
was a technique used in downhill sections, G5, G6N, and G7 were categorized together as
“downhill”. First, one poling action was defined as one cycle in each sub-technique. One
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poling action was extracted by classifying peaks in the net vertical movement of the head
waveform. Next, the typical waveform patterns for each sub-technique were defined based
on the differences in the patterns of net vertical and horizontal head movements and VOG
changes within one cycle. The differences in waveform patterns were focused on the shape,
amplitude, timing, and frequency of peaks and valleys. Finally, the sub-techniques during
the timed race were manually (visually) classified based on the typical waveform patterns.

The validity was verified by comparing the data classified visually from video data
obtained from a video camera mounted on the snowmobile with the data classified us-
ing GNSS data. Experts with over ten years of skiing experience, different from those
who classified the techniques based on waveform patterns, used Kinovea video software
(ver. 2023.1.2) to classify the techniques from the video data. The data classified from
the video were used as the validity standard, and the consistency with the data classified
from the GNSS was verified. The match rate (%) was calculated for all techniques and
sub-techniques (%Match = GNSS data/Video data).

2.4. Analysis of Skiing Characteristics

The usage ratio of each sub-technique concerning time and distance during the timed
race was calculated. Based on the head position data, the straight-line distance moved
by the head during one cycle was calculated as CL, and the time required for one cycle
was calculated as CT. Furthermore, the skiing velocity was calculated by dividing CL by
CT. The course inclination at which each sub-technique was used was calculated based
on the difference in course incline data between one cycle’s start and end points relative
to CL. Using Excel statistics, a one-way analysis of variance (ANOVA) was conducted on
CT, CL, skiing velocity, and course inclination for each of the two subjects. Bonferroni
multiple comparisons were performed if significant variance was observed to examine the
differences between the sub-techniques. The significance level was set to alpha = 0.05.

3. Results
3.1. The Typical Waveform Pattern of Each Sub-Technique

The typical waveform patterns for each sub-technique were defined based on the
differences in the patterns of net vertical and horizontal head movements and changes in
VOG within one cycle as follows (Figure 3). G3 was characterized by a single peak or valley
in the net horizontal head movement waveform within one cycle. G2 was characterized by
one peak and one valley in the net horizontal head movement waveform within one cycle.
Like G2, G4 had one peak and one valley in the net horizontal head movement waveform
within one cycle. However, G4 was characterized by a large wave followed by a slight
wave in the net vertical head movement waveform within one cycle. G6P had the same
waveform as G2 in net vertical and horizontal head movements. However, G2 and G6P
could be distinguished by the following criteria. Compared with G2, G6P had a smaller
amplitude in net horizontal head movement. Additionally, G6P had a higher VOG. The
timing of the peaks or valleys in net horizontal head movement also differed. In G2, these
were observed in the first half and middle of the cycle, whereas in G6P, they appeared in
the middle and latter half. These typical waveform patterns for each sub-technique were
observed in both subjects.



Sensors 2024, 24, 6073 7 of 16
Sensors 2024, 24, 6073 7 of 17 
 

 

(a) 

 

(b) 

 

Figure 3. The figure shows the typical waveform pa erns of subject A (a) and subject B (b) for G2, 
G3, G4, and G6P. The black dashed lines indicate the points where the net vertical head movement 
reaches a peak. The interval between two black lines represents one cycle. The green lines indicate 
the VOG. The blue waveform shows the trajectory of the net vertical head movement. The red wave-
form shows the trajectory of the net horizontal head movement. The red bars indicate the amplitude 
of the net horizontal head movement. 

3.2. Validity of Sub-Technique Classification Based on Waveform Pa erns 
The fix rate of the data obtained from the GNSS device was 99.1% for subject A and 
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Figure 3. The figure shows the typical waveform patterns of subject A (a) and subject B (b) for G2,
G3, G4, and G6P. The black dashed lines indicate the points where the net vertical head movement
reaches a peak. The interval between two black lines represents one cycle. The green lines indicate the
VOG. The blue waveform shows the trajectory of the net vertical head movement. The red waveform
shows the trajectory of the net horizontal head movement. The red bars indicate the amplitude of the
net horizontal head movement.

3.2. Validity of Sub-Technique Classification Based on Waveform Patterns

The fix rate of the data obtained from the GNSS device was 99.1% for subject A and
98.6% for subject B (Figure 4).
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Figure 4. The figure shows the quality of the positional data obtained from the RTK GNSS devices
for subject A and subject B. The green color indicates the fix solution, the orange color indicates the
float solution, and the blue color indicates the dGNSS solution.

The sub-techniques were classified with high accuracy for both subjects. The match rates
of sub-technique classifications from video data and GNSS data are shown in Tables 1 and 2.
Here, we also investigated the effects of different GNSS solutions used, such as fix, float,
and dGNSS, for sub-technique classification. The match rates obtained using both fix-only
solutions and all GNSS solutions including fix, float, and dGNSS were as follows: For
subject A, the match rates using fix solutions were 97.4% for G2, 98.5% for G3, 98.1% for
G4, and 97.0% for G6P, resulting in an overall match rate of 97.6% for G2, G3, G4, and G6P.
When using all GNSS solutions, the match rates were 97.4% for G2, 98.5% for G3, 98.2% for
G4, and 97.0% for G6P, resulting in an overall match rate of 97.7% (Table 1). For subject
B, the match rates using fix solutions were 96.3% for G2, 98.9% for G3, 94.7% for G4, and
100% for G6P, with an overall match rate of 96.6% for G2, G3, G4, and G6P. When using all
GNSS solutions, the match rates were 95.0% for G2, 98.6% for G3, 95.1% for G4, and 98.8%
for G6P, resulting in an overall match rate of 96.0% (Table 2).

Table 1. This table shows the consistency between the classifications using video data and GNSS
data, based on both fix-only solutions and all GNSS solutions, including fix, float, and dGNSS for
subject A.

Fix-Only Solutions
GNSS Classification

G2 G3 G4 G6P Others None Total Accuracy (%)

Video
classification

G2 148 0 0 4 0 0 152 97.4

G3 1 387 1 3 0 1 393 98.5

G4 0 1 52 0 0 0 53 98.1

G6P 0 2 1 97 0 0 100 97.0

Others 0 0 2 0 1 0 3 33.3
None 0 0 0 0 1 1
Total 149 390 56 104 2 1
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Table 1. Cont.

All Solutions
GNSS Classification

G2 G3 G4 G6P Others None Total Accuracy (%)

Video
classification

G2 150 0 0 4 0 0 154 97.4

G3 1 405 1 3 0 1 411 98.5

G4 0 1 56 0 0 0 57 98.2

G6P 0 2 1 97 0 0 100 97.0

Others 0 0 2 0 1 0 3 33.3
None 0 0 0 0 1 1
Total 151 408 60 104 2 1

Table 2. This table shows the consistency between the classifications using video data and GNSS data,
based on both fix-only solutions and all GNSS solutions, including fix, float, and dGNSS for subject B.

Fix-Only Solutions
GNSS Classification

G2 G3 G4 G6P Others None Total Accuracy (%)

Video
classification

G2 207 0 2 6 0 0 215 96.3

G3 1 268 0 2 0 0 271 98.9

G4 1 0 124 0 6 0 131 94.7

G6P 0 0 0 81 0 0 81 100

Others 0 1 1 0 2 0 4 50.0
None 2 0 0 2 0 4
Total 211 269 127 91 8 0

All Solutions
GNSS Classification

G2 G3 G4 G6P Others None Total Accuracy (%)

Video
classification

G2 211 0 5 6 0 0 222 95.0

G3 1 274 0 3 0 0 278 98.6

G4 1 0 135 0 6 0 142 95.1

G6P 0 1 0 81 0 0 82 98.8

Others 0 1 1 0 2 0 4 50.0
None 2 0 0 2 0 4
Total 215 276 141 92 8 2

3.3. Characteristics of Each Sub-Technique

The characteristics of each sub-technique were analyzed using all GNSS solutions.
The time required for the timed race was 909 s for subject A and 860 s for subject B. The
time percentages for each technique were as follows: G2 was 22.0% and 30.0%, G3 was
48.7% and 31.6%, G4 was 10.9% and 25.8%, G6P was 13.5% and 11.4%, “others” was 0.5%
and 1.3%, and downhill was 4.4% and 4.7% (Figure 5a). The distance percentages for each
technique were as follows: G2 was 16.5% and 24.5%, G3 was 48.1% and 32.4%, G4 was
12.6% and 29.0%, G6P was 14.5% and 12.6%, “others” was 0.6% and 1.5%, and downhill
was 7.7% and 8.2% (Figure 5b).

The sub-techniques used during the second lap of the timed race are shown on the
course profile’s plan view (Figure 6) and the course inclination (Figure 7). Figure 8 is the
VOG of the skier’s head plotted on the vertical axis.
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The average CLs for each sub-technique during the timed race for subjects A and B
were as follows (Figure 9): G2 was 4.52 ± 0.82 m and 4.31 ± 0.75 m, G3 was 4.87 ± 0.83 m
and 4.44 ± 0.85 m, G4 was 8.66 ± 1.23 m and 7.78 ± 1.16 m, and G6P was 5.75 ± 1.74 m
and 5.18 ± 0.98 m. The average CTs were as follows: G2 was 1.33 ± 0.10 s and 1.14 ± 0.09 s,
G3 was 1.09 ± 0.11 s and 0.94 ± 0.11 s, G4 was 1.66 ± 0.18 s and 1.50 ± 0.16 s, and G6P
was 1.19 ± 0.18 s and 1.02 ± 0.12 s. The average skiing velocities were as follows: G2 was
3.39 ± 0.50 m/s and 3.77 ± 0.57 m/s, G3 was 4.46 ± 0.55 m/s and 4.71 ± 0.64 m/s, G4 was
5.22 ± 0.32 m/s and 5.17 ± 0.51 m/s, and G6P was 4.78 ± 0.79 m/s and 5.10 ± 0.82 m/s. The
average course inclination for each technique was as follows: G2 was 3.98 ± 3.24 degrees
and 3.04 ± 3.42 degrees, G3 was 0.40 ± 2.66 degrees and 0.91 ± 2.79 degrees, G4 was
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−2.10 ± 1.45 degrees and −1.45 ± 2.31 degrees, and G6P was 0.55 ± 3.80 degrees and
0.04 ± 3.98 degrees. When comparing the CL, CT, skiing velocity, and course inclination
for each sub-technique between subjects A and B, subject A showed significant differences
in all sub-techniques except for the course inclination of G3 and G6P. Subject B showed
significant differences in all sub-techniques except for the CL of G2 and G3, the skiing
velocity of G4 and G6P, and the course inclination of G3 and G6P.
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The distribution of four sub-techniques used by two subjects during the timed race is
shown in Figures 10–12. Figure 10 shows the sub-technique distribution plotted against ski-
ing velocity (X-axis) and course inclination (Y-axis). Figures 11 and 12 show the frequency
distribution of sub-techniques as histograms for skiing velocity (Figure 11) and course
inclination (Figure 12), respectively. Each sub-technique was classified and described based
on GNSS data from the skier’s head.
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Figure 9. This figure shows the CL, CT, skiing velocity, and course inclination data for subjects A and
B’s sub-techniques during the timed race. Each sub-technique cycle was defined from the vertical
movement peak at the waveform data’s head to the next peak. The horizontal line within each box
represents the median value of the dataset, while the “x” symbol denotes the mean value. ** indicates
a significance level of p < 0.01.
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4. Discussion

This study aimed to establish a method for analyzing skating techniques on snow
using a high-precision kinematic GNSS device. Based on the head movement patterns
exhibited by each sub-technique, the classification accuracy was 95.0–98.6% for G2–G4
based on all GNSS solutions in this study. Øyvind Gløersen et al. [13] achieved 92.1–97.1%
accuracy for G2–G4 in classifying sub-techniques during roller skiing. The results of
our study indicated that high-accuracy classification is achievable on snow, as well as
in previous studies. For G6, our study achieved an accuracy of over 97.0%, whereas the
preliminary study reported an accuracy of 88%. While the preliminary study classified G6
based on changes in skiing direction, we specifically focused on G6 that included poling
actions. Our findings demonstrated that turns involving poling actions could be accurately
classified. The waveforms of vertical and horizontal head movements and VOG derived
from head position data obtained from the GNSS device exhibited characteristic patterns
for each sub-technique. The waveform from one peak to the next in the vertical movement
represented one poling action. Peaks or valleys in the horizontal movement waveforms
represented direction changes and indicate leg action. The GNSS data waveforms showed
that the relationship between the number of poling actions and leg actions per cycle
corresponded accurately with the movements of each sub-technique demonstrated in
previous studies [2,3]. For sub-techniques G2, G4, and G6P, the relationship between
the number of poling actions and leg actions within one cycle was the same. However,
it was possible to classify these sub-techniques based on the timing differences of the
peaks in net horizontal head movements, waveform, VOG changes, and differences in
the amplitude of net horizontal movements. The waveforms of G2 and G6P were very
similar. G2 was reflected in VOG as a slower technique because it tended to be used in
areas with steeper inclines [3,16]. The differences in the timing of horizontal movement
peaks and amplitude may be influenced by G6P being a sub-technique used while turning
on the course. Regarding the classification of G6, various criteria have been used, including
classification based on the displacement direction (≤10◦) [13], including it in skating



Sensors 2024, 24, 6073 14 of 16

without a pole [16], and including it in G2 [8]. Research focusing on G6 has mainly
addressed course inclination less than 0◦ [17], and studies on its use in other types of terrain
are still lacking. Our study revealed that G2 and G6P were sub-techniques with distinct
skiing characteristics, differing in skiing velocity, CL, CT, and course inclination. Detailed
analysis of G6 is also necessary to thoroughly analyze the skiing characteristics of athletes
in races.

The GNSS data also revealed skiing characteristics for each sub-technique. The results
showed that the ratio of each used sub-technique varied between the two subjects depend-
ing on time and distance. This suggested that the sub-techniques may differ depending
on the skier’s fitness and skill, even on the same course. Of the main sub-techniques
for skating (G2, G3, and G4), G4 was the fastest for both subjects, followed by G3 and
G2. The fact that G4 was used on the course with the most minor slope and G2 on the
course with the steepest slope suggested that the course’s slope influenced the choice
of sub-technique. The primary purpose of this study was to use GNSS for technique
discrimination of skating technique and not to compare the technique characteristics of
high-performing and non-performing athletes. However, we would like to add a few
considerations to show that this study can also classify the sub-technique use ratio and
technique characteristics of skiers with different skiing performances. Subject A was a
former representative of Japan’s national cross-country skiing team and continued training
and competing in national competitions after retiring from the national team. On the other
hand, subject B was a 15-year-old junior high school athlete, suggesting that subject A had
far greater physical strength and technique. Namely, as shown in Figures 10–12, subject A
used G3, which required upper body strength at high speeds, even on steep slopes. This
indicates that the higher-performing skier may be able to use faster techniques on the
same course incline compared with lower-performing skiers. Also, as shown in Figure 7,
subject A used the same technique more consistently than subject B, depending on the
course’s slope. In contrast, subject B used multiple techniques even at the same slope,
indicating that the skiers with superior performance have a higher ability to use the most
appropriate technique for a given situation consistently. However, the results of the time
race conducted in this study showed that subject A was 49 s slower than subject B. During
the time race of subject A, there was heavy snow in the second half of the race, and the
ski gliding performance was inferior from the middle of the race. In addition, since the
course used in this study had a relatively gentle slope, it is undeniable that the downhill
skiing performance also significantly impacted the performance times. This resulted in
the time of subject A, who was supposed to have high performance, being slower than
that of subject B. This should be understood as a difficulty in experiments on snow. Ideally,
such an experiment should be conducted on an occasion when weather conditions are
good. In any case, the authors would like to emphasize that the analysis method of this
study will provide concrete suggestions for the performance and technical analysis of skiers
during races.

In this study, we achieved a high-accuracy classification of skating sub-techniques and
analyzed skiing characteristics on snow using a high-precision GNSS device. The strength
of the high-precision GNSS device lies in its ability to provide detailed data on skiing
characteristics (CL, CT, skiing velocity, course inclination, and sub-technique selection) to
athletes and coaches. Knowing their skiing characteristics can benefit coaches and athletes
when planning race tactics. Furthermore, elucidating the relationship between these skiing
characteristics and physical fitness metrics, such as upper body power and maximal oxygen
uptake, can contribute to developing training goals.

However, several limitations were identified in our study. First, head position data
alone cannot directly measure body rotation or center of gravity load, as can be done with
sub-technique analysis based on IMU sensors [18,19], nor can it provide detailed motion
analysis of body parts as achieved with three-dimensional video analysis. Combining the
analysis of the differences in head movements revealed in this study with IMU sensors
and three-dimensional video analysis may allow for a more detailed examination of the
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athletes’ technique analysis. Second, the course used in this study is an open area also used
as a golf course with a very high GNSS fix rate (>99.1% and >98.6%). However, obtaining
fixed solutions in places where the course was narrow and with tall trees on both sides was
challenging. Even in such areas, we captured the main classification features with float
solutions and achieved high accuracy. On the other hand, on courses with many obstacles,
such as trees and buildings, the fixed rate may decrease, resulting in lower classification
accuracy. To improve the validity of this method further, it is essential to demonstrate it
on different terrains and courses. To maintain accuracy, it may be necessary to integrate
IMU data or use methods to optimize position information [20] to compensate for areas
where fixed solutions are not obtained. Finally, this study had a small sample size of only
two subjects, and sub-technique classification relied on visual observation. In the future, to
extend this classification method, increasing the number of subjects and automating the
process through the development of classification algorithms will be significant research
challenges. Furthermore, if our analysis methods can be used to analyze the day’s training,
races, and even training effectiveness, coaches and athletes will have more detailed insight
into analyzing athletes’ techniques and determining training effectiveness.

5. Conclusions

Based on the results of this study, it was demonstrated that by attaching a high-
precision kinematic GNSS device to the skier’s head during a cross-country ski skating
style timed race on snow, sub-techniques could be classified based on the vertical and
horizontal head movements, as well as differences in VOG. Additionally, it was shown
that skiing characteristics (CL, CT, skiing velocity, and course inclination) could be derived
from the GNSS data.
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