
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY-NC 4.0

https://creativecommons.org/licenses/by-nc/4.0/

Requirements Risk Management for Continuous Development : Organisational Needs

© 2024 Sanna Kainulainen, Tuure Tuunanen, Tero Vartiainen

Published version

Kainulainen, Sanna; Tuunanen, Tuure; Vartiainen, Tero

Kainulainen, S., Tuunanen, T., & Vartiainen, T. (2024). Requirements Risk Management for
Continuous Development : Organisational Needs. Australasian Journal of Information Systems,
28. https://doi.org/10.3127/ajis.v28.4441

2024

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

Received 19 Mar 2023, accepted 14 May 2024 after 5 rounds of review with Karlheinz Kautz as accepting Editor
 1

Requirements Risk Management for Continuous
Development: Organisational Needs

Sanna Kainulainen

Faculty of Information Technology, University of Jyvaskyla, Jyväskylän yliopisto, Finland

Tuure Tuunanen*

tuure.t.tuunanen@jyu.fi, Faculty of Information Technology, University of Jyvaskyla,

Jyväskylän yliopisto, Finland

tuure.t.tuunanen@jyu.fi

Tero Vartiainen

School of Technology and Innovations, Information Systems Science,

University of Vaasa, Vaasa, Finland

Abstract

Information systems development has recently evolved from traditional to agile and

continuous forms. Continuous development (CD) methods, such as development and

operations (DevOps), integrate many well-regarded parts of agile development and add

collaboration among an organisation’s development, operations and quality assessment

departments. We argue that requirements risk management (RRM) poses additional

challenges to projects where development work is carried out quickly and continuously.

However, in the literature, most methods for prioritising requirements and managing risks are

more suited to traditional development. This raises the need for new tools and methodologies

to meet CD challenges. As these challenges constantly evolve, project management must be

able to control CD, changes in the determination of requirements and the accompanying risks.

Based on a systematic literature review, we define the key features of CD and develop a

conceptual three-dimensional framework that can be used to understand the organisational

needs of RRM for CD.

Keywords: Requirements risk management, Agile, Continuous development, Development

and operations, DevOps, Systematic literature review.

1 Introduction

Information systems (IS) development comprises the development activities required to create

an IS. ISD involves multidisciplinary stakeholder collaboration to achieve better outcomes.

Stakeholders influence the complex development process and are affected in turn (Maruping

& Matook, 2020b; Siau et al., 2019). If cross-sectoral collaboration does not work, it can lead to

higher requirement risks and project failures (Wang et al., 2016). Defining requirements has

always been a critical part of project work. One of the most critical factors for moving a project

forward and defining software functions and features is identifying industry-specific details

and requirements. In agile projects, prioritising requirements and involving customers are

critical to success (Stray et al., 2019).

Today’s business constantly evolves; thus, continuous development (CD) requirements are

increasing, and CD is seen as a future form of project development. Our study is interested in

how requirements risk management (RRM) has been considered for CD, what specific

characteristics have been defined for a CD project type and what tools and methods should be

mailto:tuure.t.tuunanen@jyu.fi

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

2

considered in risk management and definition. Previous studies have shown that using agile

methods helps solve challenges with traditional methods and improves performance

(Lwakatare et al., 2016). For example, the extreme programming method focuses on meeting

customer requirements flexibly and interacting with customers during the development

process to improve the provision and handling of continuous feedback. Adopting this method

has been argued to require less reworking than traditional methods and, thus, be more cost-

effective (Iyawa, 2020).

In contrast, CD focuses on organisational change because development is continuous and

iterative, with no definite end. It aims to connect the development and operation domains to

improve software development flow (Hemon-Hildgen et al., 2020), add services to the digital

infrastructure and include continuous feedback and learning among actors from different

organisational levels (Osmundsen & Bygstad, 2022). While organisations continue to move

away from traditional stage gate approaches (Cois et al., 2014; Heemstra & Kusters, 1996;

Royce, 1987) to agile and CD approaches (Hütterman, 2012), project management methods

have not evolved at the same pace. Much of the literature posits that existing methods only

suit traditional projects (Ghobadi & Mathiassen, 2016; Jiang et al., 2006; Racheva et al., 2010;

Ramesh et al., 2010).

IS development requires new tools and techniques because traditional information systems

development (ISD) methods and techniques are unsuitable for modern agile development

(Kautz et al., 2007). Agile development enables a better understanding of customer needs and

adaptation to today’s needs (Cao & Ramesh, 2008; Kautz et al., 2007). Requirements usually

come from business needs, and changing requirements threaten project success if not handled

properly (Maruping et al., 2009). Maruping et al. (2009) argue that very little guidance is

available on managing teams in agile development and that managing changing requirements

as effectively as possible is essential because change is inevitable. Cao and Ramesh (2008) state

that organisations need to be able to respond rapidly to merging change requests, which are

critical and arise throughout the software development process. They differentiate the process

of agile requirements engineering (RE) from traditional development, requiring new methods

for handling requirements.

The above discussion raises important questions: If many methods and models are based on

traditional development, when and where are requirements defined at the beginning of the

project (Heemstra & Kusters, 1996)? More importantly, how should changing requirements be

managed and prioritised with the latest post-agile CD approaches? We posit that CD requires

methods focusing on change and feedback (Dingsøyr et al., 2019). In our study, we seek to

answer the following research question: How should requirement risks be managed in CD, and

what are the organisational needs for accomplishing this?

We apply a systematic literature review (SLR) method to identify CD's current state of the art

and how it is defined and understood. Our analysis was conducted from both IS and RE

perspectives.

Based on our SLR, we construct a framework with dimensions describing the organisational

needs of RRM for CD. These dimensions can be used to define a project’s aspects from a CD

perspective and determine whether an organisation implements the critical CD development

features and how the project meets the organisational needs of RRM for CD. The dimensions

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

3

can be used to set preferences and priorities for project development to meet better CD

requirements, such as rapid response and prioritisation of new needs.

This article is structured as follows. First, the theoretical background is presented, and the SLR

process is described. The results are presented thereafter. The framework is then presented.

Next, we discuss the findings and implications for research and practice. We conclude by

discussing the study’s limitations and offering avenues for future research.

2 Theoretical background

Wallace et al. (2004) define complexity risk and requirement risk as the technical dimensions

of IS project risks: requirement risk describes the potential impact of a project’s requirements

or requirement management process. It represents the probability of project failure when an

IS project’s requirements are unclear or highly unstable.

Project requirement risk examples include missing or incorrect stakeholders, unclear,

incomplete, inconsistent or unrealised requirements, undocumented or inaccurate

assumptions, business requirements falsely defined as functional requirements, an inability to

link applicable requirements to business requirements and unvalidated requirements. Projects

based on flawed requirements will likely face challenges and problems and may fail

(Venkatesh et al., 2018; Wallace et al., 2004).

In response to fast-changing requirements, agile development emerged as a new form of ISD

to deliver new services (Mangalaraj et al., 2009; Mathiassen & Pries-Heje, 2006; Olszewska &

Waldén, 2015). Agile methodology divides projects into phases, focusing on continuous

collaboration and development. Teams follow a planning, implementation and evaluation

cycle (Dingsøyr et al., 2019; Shimada et al., 2019).

CD, in turn, evolved from agile development. It extends agile development by focusing on

short continuous learning and development cycles with a continuous feedback loop

(Lwakatare et al., 2016; Osmundsen & Bygstad, 2022; Virmani, 2015).

Gatrell (2016) states, “Technology has moved from continuous integration to continuous deployment

and, finally, to continuous delivery” (p. 104). Continuous integration combines several authors’

source code changes into a single software project. Automated functions ensure the code’s

correctness and allow quick feedback on its quality (Gall & Pigni, 2021; Stray et al., 2019).

Continuous deployment refers to frequent, automated software deployments (Gall & Pigni,

2021). Continuous delivery aims to shorten release cycles by automating software testing and

acceptance (Chen, 2015; Ghantous & Gill, 2017). CD can be seen as an umbrella term that

includes many DevOps processes, including continuous integration, testing, delivery and

deployment (Osmundsen & Bygstad, 2022). According to Gall and Pigni (2021), advancing CD

is critical for companies because agile methods cannot deliver quality results fast enough due

to the market’s dynamic nature.

In this article, development and operations (DevOps) are considered an instantiation of CD in

which agile development is connected with fast delivery cycles, short feedback loops and

automation. The CD is perceived as a way to organise functional units to achieve the necessary

sensitivity and responsiveness to market conditions and demands (Maruping & Matook,

2020a; Wiedermann et al., 2020). DevOps is a CD approach that extends agile principles to the

entire software process and cooperation between the operations, development and quality

assessment domains, including testers and quality assurance teams (Ebert, 2018; Krey et al.,

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

4

2022; Lwakatare et al., 2016; Osmundsen & Bygstad, 2022; Stray et al., 2019). DevOps can also

be regarded as a set of new practices for deploying production changes more efficiently

without compromising quality (Lwakatare et al., 2016; Ozkaya, 2019). Appendix 1 lists the key

concepts and definitions used in this article.

Maruping and Matook (2020a) note that the academic literature has only just begun to

understand the DevOps phenomenon and its impacts. Ghantous and Gill’s (2017) literature

review revealed no universal definition of DevOps. Despite the extensive literature on

DevOps, it does not clearly explain what DevOps is and lacks conceptual inclusion. This lack

is considered a significant barrier to the mainstream adoption of DevOps, preventing a

thorough understanding of what DevOps includes and means and how organisations can

successfully transition to DevOps (Gall & Pigni, 2021; Hüttermann & Rosenkrantz, 2019). For

example, Krey et al. (2022) note that the implementation of DevOps in small and medium-

sized enterprises has not been comprehensively researched.

3 Research Methodology: Systematic Literature Review

We chose an SLR for this study, applying Kitchenham et al.’s (2010) method to define the

theoretical background. The SLR process is detailed in Appendices 2, 3 and 4. The literature

review and analysis were used to create a conceptual framework, with each search step adding

more detailed search criteria and further analysis. We examined 768 articles during the SLR,

with 83 used to develop the framework.

First, we searched Google Scholar (separately for RRM and CD) for the Association for IS’s

Basket of Eight Journals1 (AISBASKET8) with no time limit to examine how the IS literature

addresses DevOps and CD in its top eight publications. Next, the first author conducted the

first coding of the selected articles. This process began by the first author reading all the

selected articles and highlighting text defining the features and concepts of continuous and

agile development. Seventeen articles were transferred to ATLAS.ti, and several codes

describing CD features or concepts were extracted from these articles.

Appendix 3 includes an example of the coding process. During the analysis, defining codes

involved several systematic steps to ensure they accurately represented the key concepts and

themes identified in the literature. The first step involved reading the articles and highlighting

texts relevant to the research focus. These highlighted texts included vital phrases, sentences

or paragraphs that address aspects of agile, DevOps, or Continuous Development (CD). The

highlighted texts were then assigned initial codes by the first author. These initial codes were

often descriptive labels that captured the essence of the highlighted text. For instance, a text

discussing the importance of cooperation in DevOps might be initially coded as “cooperation”.

After initial coding, the codes were reviewed and refined to ensure they accurately

represented the highlighted texts. The authors reviewed the coding results together and

worked on the code processing further in a workshop. This involved combining similar codes,

splitting broad codes into more specific ones, and ensuring consistency in coding across

different texts. For example, codes related to communication, cooperation, and knowledge

1 European Journal of Information Systems, Information Systems Journal, Information Systems Research, Journal of

Association for Information Systems, Journal of Information Technology, Journal of Management Information Systems,

Journal of Strategic Information Systems and MIS Quarterly.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

5

sharing were grouped into a code group related to project culture. Each code belonged to only

one code group, ensuring that the classification was distinct and organised, and each code

group represented a broader category of concepts. This involved articulating what each group

encompassed and ensuring that all the codes within a group were relevant to this definition.

The process was iterative, meaning that the first author would switch back and forth between

the texts and the codes, continually refining and adjusting the codes and code groups. This

ensured that the codes aligned with the article’s content and the research objectives.

Documentation was maintained throughout the coding process. This included justifying why

certain texts were highlighted, specific codes were assigned, and code groups and dimensions

were defined. This documentation was crucial for ensuring transparency and reproducibility

of the analysis.

The final step of coding involved organising the code groups into more significant,

overarching dimensions in a workshop. The all of the authors were involved in the process of

creating the dimensions. As a result of this work, three dimensions were built: The first,

culture, comprised subgroups – project and organisation. The other dimensions were methods

and tools, and pace and seamlessness. These dimensions provided a structured lens for the

analysis. Appendix 3, Table A4, lists the codes, code groups, and dimensions.

In summary, defining codes involved a systematic and iterative approach to highlighting

relevant texts, assigning and refining initial codes, grouping similar codes into thematic code

groups, and organising these groups into broader dimensions. This structured process

ensured that the codes accurately reflected the key concepts and themes within the literature,

providing a robust framework for analysis.

IS conference proceedings2 were similarly handled, with 13 papers coded in ATLAS.ti. Next,

articles found as part of the original search’s forward and backward reference search results

(other than the AISBASKET8 journal articles and IS conference proceedings papers) were

selected for coding.

The SLR’s first phase focused on IS, encoding the concepts IS research focused on in DevOps

and CD. We next wanted to determine how the IS literature studies DevOps and CD and

which concepts it focuses on in terms of the earlier identified framework dimensions. Articles

were selected similarly to the first search, resulting in 25 papers analysed using the defined

research lens with three new dimensions. The purpose was to discover how key features of

agile development, DevOps and CD are described and how the features of the different

dimensions are highlighted. Appendix 2, Tables A1 and A2 list the search results and number

of selected articles, papers and conference proceedings.

The initial results revealed a lack of focus on CD: 16 articles (64%) focused on methods and

tools, 12 (48%) on culture/project culture structure, 7 (28%) on culture/organisational culture

structure and 4 (16%) on development speed or seamlessness. Most articles mentioned only

traditional development methods; 28% mentioned agile development, but only 4% mentioned

CD.

2 The International Conference on Applied Mathematics, Informatics, and Computing Software (AMICS), European

Conference on Information Systems (ECIS), Hawaii International Conference on System Sciences (HICSS), International

Conference on Information Systems (ICIS) and Pacific Asia Conference on Information Systems (PACIS).

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

6

Next, we expanded the search to cover the corresponding literature in a selection of RE

journals3. Three searches were performed separately for DevOps and CD, the last of which

resulted in 159 articles, with 8 selected for analysis. Appendix 2, Table A3, lists the search

results and selected articles. The articles were again coded with ATLAS.ti. The coding results

were very similar to those for the IS articles, with similar concepts emerging. This reinforced

our results from the IS article analysis and provided further evidence to refine the framework.

Five (63%) articles focused on methods and tools, 3 (38%) on culture/project culture, 4 (50%)

on culture/organisational culture and 5 (63%) on development speed or seamlessness. Most

articles commented on agile, DevOps or CD.

Appendix 4 lists all analysed and referenced articles. Our descriptive analyses of the IS and

RE literature show an almost equal focus on the dimensions of methods and tools: 64% of the

IS articles and 63% of the RE articles. The difference was slightly higher for the culture/project

culture dimension: 48% of the IS articles and 38% of the RE articles. The most significant

differences were in the culture/organisational culture and development speed or seamlessness

dimensions. The IS articles focused much less on these dimensions than the RE articles. Only

28% of the IS articles concentrated on elements of the culture/organisational culture

dimension; in the RE articles, the coverage was 50%. The difference was even more significant

in the development speed or seamlessness dimension. Only 16% of the IS articles presented

this dimension’s elements, while in the RE articles, the coverage was 63%. There was also a

clear difference in development style mentions. In the IS literature, only traditional methods

were usually mentioned, and there was little focus on CD. In contrast, in the RE literature,

most articles mentioned agile development, DevOps or CD.

4 Findings

Based on our SLR, we identify the key features and concepts that can be used to determine the

characteristics of CD methods. Table 1 summarises the three dimensions of CD: culture,

methods and tools and pace and seamlessness.

Culture is divided into project culture and organisational culture. Project culture describes

how a project’s organisation is managed, its functionality, knowledge sharing, roles and

groups. Because information is fragmented within an organisation, projects must involve

people with in-depth knowledge of the development objectives and risks. Everyone should

share information and knowledge openly, as changes occur quickly and development work is

continuous.

Organisational culture focuses on the organisation doing the development work. The critical

features are cooperation, work tasks and overall transformation of the organisational culture

based on CD. While progress in CD is achieved in collaboration with the firm’s development,

operations and quality assurance domains, users and customers are also actively involved in

the work. This work aims to develop a purpose-built, flexible system tailored to customers’

and users’ needs and requirements. Development work must quickly and seamlessly progress

to meet new challenges, requirements and risks. Testing and development operate together,

and the project must have the right resources to guide the development work in the correct

3 Empirical Software Engineering: An International Journal, IEEE Software, IEEE Transactions on Software Engineering,

Information and Software Technology, Information Systems (IS), Requirements Engineering Journal, Software and Systems

Modelling, Software Practice and Expertise and Software Quality Journal.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

7

direction. CD and constant change require action to keep the organisation responsive.

Information technology (IT) projects are particularly vulnerable to commitment challenges,

mainly due to requirements volatility and software’s intangible nature (Horlach et al., 2020;

Lee et al., 2021).

The literature shows there is a demand for new methods and tools to keep project management

consistent with CD (see, e.g. Babb et al., 2017; Bragge & Merisalo-Rantanen, 2009; Hüttermann

& Rosenkranz, 2019; Lwakatare et al., 2016).

The methods and tools dimension focuses on the need for practical and usable tools to

implement risk management in CD and the need to develop valuable and cost-saving tools for

handling risk management. The pace and seamlessness dimension refers to the ability to

respond quickly to requirements and change requests, to work in an iterative CD environment

and the possibility to receive and react to continuous feedback from customers and users.

Dimension 1a: Culture – Project Culture

Definition Organisation’s approach to project management and implementation.

 Activities Development, operations, knowledge sharing, cooperation, defining roles and

groups and continuing cooperation with users and customers.

Explanation Project work is built on seamless cooperation and knowledge sharing among

developers, users, operations staff and customers; requirements and different

groups and users define risks, and practitioners with the proper knowledge must

participate in the project. The focus is on continuous feedback and self-organisation.

Dimension 1b: Culture – Organisational Culture

Definition Organisation’s approach to managing CD and its further development.

Activities Development, operations and quality assurance cooperation.

Explanation Development organisation includes developers, operations and quality assurance

teams. Development is not only done by developers. Cooperation among different

departments is essential.

Dimension 2: Methods and tools

Definition The means to support change cycles and fast development according to changing

requirements.

Activities Adoption and development of methods and tools suitable for CD.

Explanation Methods must support rapid, cyclical development and changing requirements and

risks. Tools must account for cultural effects and user values when eliciting

requirements. Knowledge-sharing tools are essential because development is based

on knowledge-sharing.

Dimension 3: Pace and seamlessness

Definition The development process is rapid, continuous and without interruptions.

Activities Rapid development, continuous work and continuous, flexible processes.

Explanation Development is a continuous, flexible process that can adapt to changing demands

and adjust to constant feedback.

Table 1. Dimensions of organisational needs of RRM for CD.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

8

In the following subsections, the three dimensions are discussed in more detail, including

perspectives from the RE and RRM literature.

4.1 Project culture for RRM

This dimension relates to the development and operations of a project and to its users and

customers for the results. When defining a project’s organisation, the project team members’

expertise is paramount. While collaboration and knowledge sharing often identify broad risks

(Jiang et al., 2006), it is essential to focus on changing requirements and project goals

(Maruping et al., 2009). Requirements ambiguity contributes to software project challenges in

critical domains. Failure is less likely when the right people are involved (Niederman et al.,

1991). However, unclear and changing requirements in the middle of a project are among the

significant challenges of software development projects. As a result, it is almost impossible for

development teams to identify and meet all customer expectations (Ghanbari, 2016).

Similarly, an inability to respond to changing user requirements is one of the most critical

reasons for project failure. Failure also includes delayed project schedules, budget overruns

and poor quality (Maruping et al., 2009; Mathiassen et al., 2007). These factors also contribute

to the difficulty of sharing knowledge between individuals. Previous research has shown that

organisational culture influences how knowledge is transferred and stored and affects the

success of managing IT project requirements (Azizi & Rowlands, 2018).

Identifying the roles and key stakeholders in a project is an essential first step in risk

management. Li et al. (2003) state that the IS user environment needs more research, while

Keil et al. (2002) explore how different roles can help identify project risks. People in different

positions will recognise diverse project risks. Groups can also define risks differently, so it is

vital to maintain open communication and have good knowledge-sharing practices and

discussion opportunities (Keil et al., 2002; Li et al., 2003). It is well recognised that managing

risks in IT projects is essential and that failure to address them might cause project problems,

such as user dissatisfaction (Elbanna & Sarker, 2015; Keil et al., 2002; Li et al., 2003; Ramesh et

al., 2010). A necessary part of project success is communication between users and developers.

Although merging different stakeholders’ knowledge is recognised as a critical part of project

success, there is no research on integrating different stakeholders into project risk

management (Keil et al., 2002; Li et al., 2003).

Project risks typically relate to users (Elbanna & Sarker, 2015) and include poor

communication with users and stakeholders at the project level, a lack of user involvement or

misunderstanding of user requirements or failure to manage user expectations or

accommodate defined requirements and scope changes. Communication among different

groups and roles critically influences risk management (Li et al., 2003; Ramesh et al., 2010).

However, an organisation’s ability to define risks strongly affects a project’s quality (Karlsson

et al., 2007). It is also essential to introduce development methods to users, incorporate them

into the project and coordinate expertise so that specialised knowledge is spread and

integrated among the project’s many roles or phases (Gemino et al., 2007; Patnayakuni et al.,

2006). This can be perceived as a practical risk management approach (Gemino et al., 2007).

According to the agile manifesto, collaboration and responsiveness to change are essential.

Several studies (e.g. Azizi & Rowlands, 2018; Ghanbari, 2016; Kiper, 2016; Sletholt et al., 2012;

Stray et al., 2019) identify lack of knowledge about requirements and organised activities and

testing principles as problem areas. Identifying and defining requirements are problematic

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

9

because they may be predefined or unknown (Sletholt et al., 2012). Therefore, the requirement

planning phase should be extended with activities that collect and exploit new sources of

information (i.e. development activities should be more closely integrated with operational

activities). The possibility of using direct user feedback and a central infrastructure also poses

challenges for testing and validation processes (Stuckenberg & Heinzl, 2010). Once software

requirements have been received from stakeholders, they should be validated to ensure they

meet user needs. Requirements must also be prioritised to address technical constraints,

business considerations and critical stakeholder preferences (Kiper, 2016).

Babb et al. (2017) assert that a lack of knowledge sharing is a problem for agile development

and CD. Similarly, Ghobadi and Mathiassen (2017) observe that agile development lacks

appropriate tools to manage risks associated with knowledge sharing and introduce a

theoretical model for mitigating such risks in several ways to assess and clarify project

information-sharing risk profiles and aiming to create an overall plan for reducing and

resolving risks. Their study’s results highlight how different risk management profiles for

information sharing can lead to varying project performance outcomes. Their model

introduces concepts and detailed processes for managing a project’s knowledge-sharing risks.

Davison (2017) remarks that with this model, it is easy to show how risk management can be

used in agile development to achieve better performance and outcomes.

In examining how progressive obstacles to knowledge sharing are observed and differ

according to the observer’s role, Ghobadi and Mathiassen (2016) conclude that sharing

information is challenging and influenced by the actors’ knowledge of the work organisation

and environment. In turn, organisational success depends on how effectively employees share

information (Qureshi et al., 2018). Knowledgeable practitioners must actively participate in

the project (Taylor et al., 2012). It is typically assumed that managers are well informed about

possible risks in using project methods, but this is not always so (Schmidt et al., 2001).

However, such knowledge is often fragmented throughout the organisation, so project

managers should employ experienced users who can share information and work

collaboratively (Tiwana & Keil, 2004). Barriers can be caused by internal organisational

tensions, value systems, personality clashes and policies related to knowledge transfer.

4.2 Organisational culture for RRM

The organisational culture dimension relates to changes in organisational culture and

cooperation among different departments. In many organisations, managing risks is one of

the most critical challenges. Taylor et al. (2012) note that organisations often do not apply

research or knowledge on risk management and risk factors. This is a problem, considering

that the project outcome depends on how well the organisation prioritises its requirements

(Karlsson et al., 2007). Up to a third of development costs are due to incorrect requirements

(Patnayakuni et al., 2006). Jiang et al. (2006) describe partnering as a possible solution for

improving RRM in that cooperation between users and IT staff creates new possibilities to

define requirements better. Collaborative knowledge exchange positively impacts the whole

development process and performance.

The importance of cooperation is stressed in agile development methods, which require

collaboration between development teams and customers, including customer feedback,

throughout the project (Cao et al., 2009; Xiao et al., 2018). The literature identifies the

importance of a designated customer representative role in an agile project (Maruping &

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

10

Matook, 2020b; Matook & Maruping, 2014). However, managing this role can be challenging,

as it is multifaceted and takes many forms. Mapping the modes of action the role requires is

not easy because hardly any theory exists on the definitions of the different modes of action

(Maruping & Matook, 2020b).

The DevOps team comprises staff from the development, operations and quality assessment

departments. Their collaboration is critical, and changing the organisation’s structure is

important for these previously independent departments to become part of one development

unit. Requirements definitions and related risks pose additional challenges to ongoing

development projects in which development is quick and continuous. While traditional

development requirements are defined at the project’s beginning, agile development

requirements are defined iteratively throughout the project (Ramesh et al., 2010). The same

applies to CD projects. Krancher et al. (2018) identify continuous feedback and self-

organisation as other key issues in CD. Rapid feedback and other DevOps practices help create

and strengthen the development team’s autonomy (Callanan & Spillane, 2016) and focus on

valuable features and requirements (Chen, 2015).

The lack of both knowledge and guidance is challenging for organisations shifting to DevOps

(Gall & Pigni, 2021). Previous studies have shown that agile development methodologies focus

on ISD (Dev) but pay little attention to the operational (Ops) aspects of software deployment

in a production environment (Gall & Pigni, 2021; Ghantous & Gill, 2017). The definition and

concepts of DevOps are still unclear, and there is little understanding of the factors that

influence the adoption of DevOps practices in an organisation (Gall & Pigni, 2021; Ghantous

& Gill, 2017). Sharp and Babb (2018) highlight the fact that there is no universally accepted

definition of DevOps and note fundamental differences between the Software Engineering

and IS literature; in IS, the conceptual elements of DevOps remain undefined. This lack of a

commonly agreed-upon definition of DevOps is a critical area for future research (Sharp &

Bagg, 2018).

Traditionally, different organisational units, teams and individuals coordinate. In agile

contexts, organisational structure changes are encouraged, limiting the stability and alignment

they can provide. Therefore, alignment must allow flexible structural design, while letting

people work together as smoothly as possible. From a customer perspective, agility is the

ability to continue delivering customer value (Horlach et al., 2020). Ramesh et al. (2010) state

that a customer’s inability to provide the correct requirements to the development team and a

lack of harmony between developers and customers significantly impact the development

process, for example, if requirements are poorly drafted. Chen (2015) comments that despite

the extant literature on organisational change, little research focuses on introducing

continuous delivery or development to an organisation.

Conversely, according to Lwakatare et al. (2019), studies of successful adoptions and

implementations of CD, specifically DevOps, show organisations’ abilities to change their

structures, processes and tools. Osmundsen and Bygstad (2022) recognise the potential of such

changes in organisations, enabling them to respond to customer needs and requirements more

innovatively. User input and communication across different organisational levels are

considered the leading factors enabling value delivery in CD. Cao et al. (2009) note that the

literature recommends using agile methods in organisations with a flat structure. In

organisations with centralised and hierarchical structures, the organisational culture may

cause problems between the top management and the project team.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

11

4.3 RRM methods and tools

Different means to support developers to track requirements are needed because requirements

constantly evolve. Requirements must be continuously modified and improved during a

project, necessitating methods and tools to help developers track requirements. However,

such advanced tools in smaller projects may be considered unnecessary (Ghanbari, 2016).

Davis (1982) emphasised the importance of determining requirements and observed obstacles

to and challenges in defining correct requirements: human limitations and complexity of and

variety in information and user–analyst interaction models. Various methods and tools are

needed to overcome these obstacles and challenges. Heemstra and Kusters (1996) present

different tools and methods for risk management elicitation and definition in various steps

and project phases, determining that the purpose of risk prioritisation in traditional projects is

to choose from identified risks. The most important should be on a manageable list at the

project’s beginning.

Tiwana and Keil’s (2004) one-minute risk assessment tool aims to help project teams conduct

“what-if” analyses and improve software practices. It comprises project risk levels and

questions to estimate an overall risk score. Project managers and stakeholders assign scores to

each question, and the results produce a background image of each project’s risk exposure.

They argue that the most critical risk driver is the choice of methodology, followed by

customer involvement.

Taylor et al. (2012) note inconsistent methods, and Ramesh et al. (2010) report a lack of

information on requirements management in real agile projects. Several checklists for defining

risks have been developed, but few organisations adopt them (Wallace et al., 2004). The

challenge lies in creating practical tools for implementing risk management.

As there is no consistent model for managing knowledge-sharing risks in agile projects,

Ghobadi and Mathiassen’s (2017) tool aims to help understand and manage knowledge-

sharing risks in agile development environments when moving from project risks to effective

knowledge-sharing and resolution strategy plans. It presents seven risk area categories and

five resolution strategies. For example, one defined risk area is team diversity, referring to

conceptual, geographical and time differences between team members that may hinder

effective knowledge sharing. The resolution strategy to overcome this is strengthening

resources (i.e. strategies to develop supportive capabilities, experiences and technologies).

Ghobadi and Mathiassen (2017) note that agile development must find a way to identify

customers’ requirements and demands. In turn, Tuunanen and Kuo (2015) argue for the need

for tools that account for cultural influences and user values. Similarly, Bragge and Merisalo-

Rantanen (2009) state that challenges remain involving users in development, especially with

traditional methodologies. Simply put, traditional methods do not include explicit

information about when and in which part of the project user involvement should occur.

4.4 Pace and seamlessness for RRM

In CD, development is rapid, continuous and seamless. This is based on business demands,

where quick responses to changes and new requirements are mandatory. Organisations must

be able to deliver agile IS, whereby development phases are repeated multiple times in cycles

and requirements are defined and fulfilled at the beginning of each iteration cycle (Hickey &

Davis, 2004; Patnayakuni et al., 2006). While several different agile approaches exist, all focus

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

12

on development that can respond flexibly and seamlessly to customers’ and developers’

requests and needs (Elbanna & Sarker, 2015).

According to Ramesh et al. (2010), traditional requirement methods and practices are often too

cumbersome to evolve with the rapidly changing field of agile development. They propose

new techniques to help execute the RE process in agile projects to compensate for the

limitations of traditional methods. An example is in-person communication instead of written

specifications to transfer ideas between customers and the development team without

extensive documentation and generate a flexible way to consider various requirements (Xiao

et al., 2018).

Another good technique to define requirements in agile development involves user stories

that can be used to determine high-level requirements (Cao & Ramesh, 2008). Elbanna and

Sarker (2015) note that short iteration cycles allow changes to be considered faster and more

efficiently, and user requirements can be clarified more effectively. Face-to-face interaction

and ongoing communication with users and business groups improve this relationship and

help develop a common understanding of project requirements. Racheva et al. (2010) state that

the agile RE literature has too little information on how reprioritisation work is done in

practice, and generic models of how they should be processed are missing.

Chen et al. (2016) comment that feedback loops must be open in agile development. Feedback

should include technical and business feedback, such as performance, security and availability

issues and new requirements, such as new user features. Handling feedback should be

continuous, a learning cycle and part of the development cycle. Krancher et al. (2018) note that

continuous frequent feedback is essential for gathering customers’ ideas and requirements; it

should be handled as fast as possible, and learning cycles should be kept as short as possible

to be able to learn as much as possible.

5 Discussion

Digitalisation and today’s business demands create challenges requiring new ways of working

(Ebert, 2018). We argue that CD is a new way to develop IS systems to meet rapidly changing

situations and requirements (Ramesh et al., 2010). Consequently, we determined the

literature’s position on CD and its instantiation of DevOps. We determined key dimensions of

CD: (1a) culture – project culture, (1b) culture – organisational culture, (2) methods and tools

and (3) pace and seamlessness. More specifically, we explored how these development

methods accommodate RRM needs to answer our research question.

Our findings align with other research. Gall and Pigni (2021) define a continuous culture

concept that corresponds to the project and organisational culture dimensions; continuous

monitoring corresponds to the methods and tools dimension; and continuous automation, to

some extent, matches the pace and seamlessness dimension. However, notably our findings

show that the IS literature does not focus on automation (continuous automation, monitoring,

etc.) but mostly on other aspects. Therefore, the dimensions defined in this study cannot be

directly compared with Gall and Pigni’s (2021) model. Krey et al. (2022) argue that DevOps

implementations consist of the following interrelated categories: agility, collaboration,

automation, measurement, monitoring and transparency. These categories can be used to find

correspondences between our three dimensions and the elements of Gall and Pigni’s (2021)

model.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

13

Jayakody and Wijayanayake (2023) group the critical success factors of DevOps into four areas:

collaborative culture, DevOps practices, skilled DevOps teams and metrics and measurement.

They argue that, in addition to culture, DevOps affects the processes, products, related

technologies and organisational structures used in software development and operations

processes. There is a clear convergence between these concepts and the dimensions and key

concepts defined in our research. Jha et al. (2023) state three key themes associated with

DevOps culture and thinking: collaboration, continuous improvement and automation,

corresponding with the dimensions defined in our study. Finally, Khan et al. (2022) state that

“culture, practices, and tools are the three backbones of DevOps; culture defines a way of thinking with

some basic standards. Practices reflect culture’s significant success, and numerous tools are required to

implement these methods” (p. 14339).

Our findings also reveal that the extant IS and RE literature has, to some extent, focused on

traditional-style waterfall model development and the applicable tools and methods (see, e.g.

Ghobadi & Mathiassen, 2016; Highsmith & Cockburn, 2009; Jiang et al., 2006; Racheva et al.,

2010). In the traditional model, at the beginning of a project, the objectives, requirements and

schedules are defined (Heemstra & Kusters, 1996) and implemented by a specific group of

experts and project management professionals in the IT department. Cao and Ramesh (2008)

echo this finding by arguing that there is a scarcity of research on how RE is managed in agile

projects. Ramesh et al. (2010) state that the literature does not elaborate well on how RE

activities are considered in agile projects. This is problematic, as CD projects require seamless

cooperation from developers, users and operations staff. The pace of change in CD is faster

than that of legacy agile development (Highsmith & Cockburn, 2009), and many tools are

designed for slower development work. This highlights the importance of knowledge sharing

and cooperation, which have always been crucial in development projects but are even more

so with CD.

5.1 Implications for research and practice and a roadmap

We believe that CD requires new methods and tools to modernise the requirements definition

process and improve knowledge sharing without disrupting development work (Ghobadi &

Mathiassen, 2017; Ramesh et al., 2010). It is also essential that development considers changing

requirements throughout the process. However, we argue that this can create problems with

knowledge sharing, as different stakeholder groups often have other priorities (Ghobadi &

Mathiassen, 2016), which can result in a further lack of cooperation (Li et al., 2003; Ramesh et

al., 2010).

Our findings highlight the need to change project organisation and structures to involve the

necessary stakeholders with appropriate knowledge (Gemino et al., 2007; Patnayakuni et al.,

2006; Taylor et al., 2012). Additionally, knowledge sharing and internal communication

require development and a new way of thinking collaboratively and creatively. For example,

brainstorming or frequent social interaction through IT can effectively share information (Babb

et al., 2017; Qureshi et al., 2018). Organisations need to collaborate and create structures that

support CD work. Essential components are iterative requirements, definition work and self-

organisation (Cao et al., 2009; Krancher et al., 2018; Ramesh et al., 2010). Our research also

shows the need to introduce CD to an organisation and simultaneously reformat its culture

and structure to support a cyclical, continuous way of working (Cao et al., 2009; Chen, 2015;

Matook & Maruping, 2014; Xiao et al., 2018).

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

14

The developed framework highlights the cultural changes required to enable an organisation

to work in accordance with CD. It helps the organisation prepare for the challenges of CD,

improve collaboration between different departments, and structure the project organisation

to work with CD to achieve seamless collaboration and knowledge sharing between all

stakeholders, including ongoing collaboration with users and customers. The CD also requires

the IT department to be restructured so that there is a seamless collaboration between

development, operations, and QA rather than departments working in isolation. The CD also

requires new methods and tools to support a continuous, rapid development cycle, respond

to continuous feedback, encourage and improve knowledge sharing, and consider cultural

influences and user values as part of the requirements definition.

Agile methodologies are inherently different from CD requirements in terms of challenges and

characteristics: continuous feedback, interdepartmental cooperation, collaboration, changing

organisational structure, rapid and seamless continuous development, forming a project

organisation. Our framework emphasises organisational and project culture changes,

collaboration, cooperation, feedback loops and seamless automation, which also means new

tools. With new methods and tools that support continuous, rapid development cycles,

respond to continuous feedback, encourage and improve knowledge sharing, and help to

consider cultural influences and user values when defining requirements.

When we compare Maruping et al. (2009)’s work with ours, we note that our framework

highlights more the need for feedback loops and advanced monitoring, adapting development

strategies based on real-time data and changing user requirements. Furthermore, our

framework enables organisations to further improve their ability to effectively manage

changing user requirements, optimise development processes, and deliver high-quality

software products in dynamic and rapidly evolving environments.

Ramesh et al. (2010), in turn, developed agile RE practices in their study. We argue that, to

support CD, these practices need to incorporate DevOps and CD principles such as

automation, collaboration, and continuous delivery into agile practices, as well as a feedback

mechanism such as implementing feedback loops, as our framework emphasises. Thus, RE

practices must support continuous feedback throughout the CD lifecycle - collecting,

analysing and acting on feedback from stakeholders, users and team members. In line with

our framework, real-time collaboration and communication are essential in CD and require

new tools tailored to CD methodologies.

In the following, we present a roadmap for CD RRM based on the dimensions of the developed

framework and propose some research problems and related research questions. We also

suggest research approaches, objectives, and, finally, how managers would need to address

the risks associated with CD requirements. Table 2 summarises this roadmap.

5.1.1 Project Culture: Stakeholder Roles and Knowledge Sharing

First of all, we find that the CD project comprises various stakeholders from different parts of

the business or organisation. It includes multiple roles and areas of expertise from developers,

operations staff, users and customers. Customer engagement is essential in digital

transformation and development (Sebastian et al., 2017). Communication among different

stakeholders is critical for a project’s success (Keil et al., 2002; Li et al., 2003; Ramesh et al.,

2010). Knowledge sharing is part of organisational success and depends on how effectively

stakeholders share information (Qureshi et al., 2018). It is an essential part of project work, as

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

15

is seamless cooperation among the project stakeholders, including users and customers

(Dingsøyr et al., 2019; Elbanna & Sarker, 2015; Krancher et al., 2018; Tiwana & Keil, 2004).

Different stakeholders also define requirements and risks, which can be modified/added to as

part of the development cycle based on their feedback during the project. In CD, practitioners

with appropriate knowledge must participate in the project. Project and development work

focus on continuous feedback and self-organisation (Krancher et al., 2018; Matook &

Maruping, 2014).

According to our study, managers need to address requirement risks in CD projects by

perceiving them as business projects, not merely as IT projects. Stakeholders and knowledge

can be found in various departments, roles, and users. Managers should focus on changing

requirements, project goals, and identified risks. They must prioritise requirements to address

technical constraints, business considerations, and critical stakeholder preferences. It is

essential to introduce practical risk management approaches and tools to users and integrate

them into the project while coordinating expertise. Information should be shared through

open communication and good knowledge-sharing practices.

We suggest an in-depth qualitative study (Klein & Myers, 1999) of CD teams to investigate

project culture, focusing on roles and knowledge-sharing dynamics. This approach analyses

real-world CD team structures to determine their effectiveness in managing requirement risks.

5.1.2 Organisational Culture: Structure and Cross-Department Collaboration

Consequently, the organisational structure of CD brings a significant change in organisational

culture compared with traditional development (Dremel et al., 2017; Mathiassen & Pries-Heje,

2006). In CD (and DevOps), the organisational structure is built on cooperation among

different departments, including development, operations and quality assurance.

Collaboration among various departments is essential (Dremel et al., 2017; Lwakatare et al.,

2019; Ozkaya, 2019). However, our findings show that an organisation’s hierarchical structure

prevents cooperation across borders and complicates development work (Dremel et al., 2017),

creating poor communication between stakeholders and easily creating sporadic development

work (Lwakatare et al., 2019). We argue that businesses must play a substantial role in

development work and ensure that their needs and requests are considered part of the project

and that they obtain what the business needs (Matook & Maruping, 2014).

To effectively support CD, the project organisation must find a way to involve all necessary

stakeholders in both the project and project risk management. They need to create an

environment where knowledge sharing among different organisational departments, users,

and stakeholders is developed and prioritised. Managers should create a cohesive structure

that allows previously independent departments to function as a unified development unit,

facilitating cooperation and ensuring that the needs and requests of all stakeholders are

included and addressed throughout the project lifecycle.

Furthermore, businesses need to assign a substantial role to development work and ensure

that their needs and requests are included in the project and that they obtain what they need.

Managers should change the organisation’s structure so that previously independent

departments become part of one development unit. Cooperation between users and IT staff

should be enabled to define requirements iteratively throughout the project and prioritise

them. Continuous definition and configuration work, feedback, and self-organisation should

focus on the most valuable features and requirements. This comprehensive approach ensures

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

16

that CD projects are effective and aligned with business needs, fostering a collaborative

environment that can adapt to changing requirements and risks.

To support CD, organisational culture and structure must be developed to promote

collaboration, flexibility, and transparency. This involves creating a unified development unit

where previously siloed departments work together seamlessly, facilitating communication

and cooperation. An organisational culture that encourages iterative feedback and values

continuous improvement is essential. Such a culture supports the iterative definition and

prioritisation of requirements, ensuring that development work remains aligned with

business goals.

Organisational knowledge plays a crucial role in the success of RRM. Businesses can more

accurately identify and articulate their needs by leveraging the organisation's collective

expertise and insights. This shared knowledge base helps in the iterative requirement

definition process, making it easier to adjust to changes and effectively incorporate feedback.

Ensuring that all stakeholders are well-informed and engaged in the development process

enhances the overall quality and relevance of the requirements.

Establishing robust feedback mechanisms and maintaining close collaboration between IT staff and

business users is vital to ensuring the accuracy of the business's requirements. Regularly scheduled

reviews, continuous configuration work, and self-organised teams can help capture the most critical and

valuable features.

Additionally, a mixed methods study (Venkatesh et al., 2013) examining cultural factors within CD

environments and their effects on feedback processes is recommended. The objective of such a study is

to investigate how organisational culture influences the implementation of continuous feedback loops

in CD. Understanding these cultural dynamics can provide insights into improving the accuracy and

effectiveness of requirements management, ultimately contributing to the success of CD projects.

5.1.3 Methods and Tools: Innovation for Rapid Cyclical Development

Our findings also reveal that most tools and methods have been created for traditional

development work (e.g. Ghobadi & Mathiassen, 2016; Highsmith & Cockburn, 2009; Jiang et

al., 2006; Racheva et al., 2010; Tuunanen & Kuo, 2015) and do not consider the functionalities

required for CD. Consequently, new methods that support rapid cyclical development are

needed. These tools must handle changing requirements and risks and account for users’

cultural influences and values when eliciting requirements (Tuunanen & Kuo, 2015). CD

highlights the importance of knowledge-sharing tools because development work is based

firmly on knowledge sharing (Ghobadi & Mathiassen, 2017). This point of view has neither

been part of traditional development nor considered when designing tools for traditional

project management (Bragge & Merisalo-Rantanen, 2009).

Managers, therefore, should address requirement risks in CD projects by treating the choice

of methodology and customer involvement as the most critical risk drivers of the project. They

should introduce new tools and methods to respond to cyclical development processes and

handle changing requirements and risks, including cultural effects and user values. Managers

should also focus on the changing requirements, project goals, and identified risks. They must

prioritise requirements to address technical constraints, business considerations, and critical

stakeholder preferences. Additionally, they should introduce practical risk management

approaches and tools to users, integrating them into the project while coordinating expertise.

Effective information sharing through open communication and good knowledge-sharing

practices is essential.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

17

We suggest conducting design science research (Hevner et al., 2004; Peffers et al., 2007) studies

to assess the utility and performance of tools and their impact on risk management at a team

level. A goal of such a study should be to evaluate the effectiveness of new tools and

techniques for managing dynamic requirements in CD projects, thereby contributing to the

advancement of CD practices.

Reflecting on these points, several critical questions emerge. How can customer requirements

and demands be identified in CD? This involves engaging customers early and continuously

through iterative feedback loops, using user stories, personas, and direct communication to

understand and refine their needs. How can users be involved in the development process,

and how should user involvement occur? Users should be integrated into the development

process through regular feedback sessions, usability testing, and collaborative workshops.

Their involvement should be structured to ensure continuous input and validation of the

product's direction and functionality. Addressing these questions is essential for refining

methodologies and ensuring the successful implementation of CD practices.

5.1.4 Pace and Seamlessness: Rapid Iteration

We also find that the pace and seamlessness dimension differs between traditional

development and CD. Traditional development is typically a rigid, pre-planned process

whose results are available when all the development work has been completed, and the

project closed, whereas CD’s development process is fast, continuous and seamless. The pace

of change in CD is even quicker than in agile development (Highsmith & Cockburn, 2009). CD

can flexibly adapt to changing demands and adjust to continuous feedback. Changes are

implemented as fast as possible; cycles can vary from many times a day to a few times a week

or month (Chen, 2015). The key argument is that users and customers do not need to wait long

to receive replies to their new requests or feedback, and the short iteration cycles and frequent

releases help reduce risks, clarify requirements and increase the speed of feedback (Elbanna

& Sarker, 2015; Lwakatare et al., 2019). Consequently, CD’s objective is to implement system

changes as a cyclical process with no definite end.

Managers should, thus, focus on short iteration cycles and frequent releases when addressing

requirement risks in CD. To achieve this, managers should develop and implement open

feedback loops and learning cycles that are as fast and short as possible. They should enable

continuous customer and user feedback that is processed quickly and seamlessly from the

customer’s or user’s point of view, ensuring that ideas and requirements are gathered

effectively.

To effectively implement CD, the organisational workflow needs to be restructured to support

rapid development cycles and manage changing requirements. Cross-departmental

communication must be enhanced to ensure all teams are aligned and respond swiftly to

changes. This might involve integrating cross-functional teams and ensuring that

development, operations, quality assurance, and other relevant departments work closely

together from the start. Such integration helps in quicker identification and resolution of

issues. Automating processes, especially testing, integration, and deployment, is crucial for

speeding up development cycles and reducing human error. Continuous training and

development are also essential to keep teams updated with CD's latest tools and practices,

maintaining high efficiency and adaptability.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

18

The project must establish robust mechanisms to provide quick responses and manage risks

associated with change requests and new requirements. Real-time monitoring and feedback

systems are vital, providing real-time insights into the system's performance and continuously

gathering user feedback. Developing frameworks that assess the risks of each change request

based on impact, urgency, and feasibility helps prioritise tasks and manage resources

efficiently. Adopting an incremental update approach, where changes are broken down into

smaller, manageable updates, minimises the risk of significant disruptions and makes

identifying and addressing issues easier. Engaging stakeholders actively through regular

updates and reviews ensures their needs are understood and met promptly, aligning project

goals with business requirements.

A multi-case study (see, e.g., Stake, 2013) of CD projects focusing on workflow changes and

their impact on risk reduction can be carried out to explore and develop the dimension of pace

and seamlessness. The aim is to examine workflow changes that enable CD teams to respond

quickly to change requests while managing the risks associated with requirements. This study

could analyse different CD implementations to compare how various organisations have

modified their workflows to accommodate CD and the outcomes of these changes.

Evaluating risk management practices and documenting best practices for integrating

feedback loops, automating processes, and fostering cross-departmental collaboration would

provide valuable insights. By reflecting on these questions and incorporating the findings into

their strategies, managers can better navigate the challenges of CD and leverage its benefits

for faster, more responsive, and less risky software development.

6 Conclusions

In this research, we summarised the IS and RE literature on RRM for CD to understand the

state of the art, revealing that there is still little focus on RRM for CD. Through an SLR, we

constructed a framework with dimensions describing the organisational needs of RRM for CD.

This conceptual framework can set preferences and priorities for project development to better

meet CD requirements, such as rapid response and prioritisation of emerging needs.

We posit that CD and RRM should proceed in an interleaved step-by-step manner, with the

development cycle considering new requirements and their associated risks as part of a

continuous improvement process. This approach requires a change in project culture and an

organisation’s operations and culture. Above all, it requires new methods and tools so that the

integration of RRM into the CD process is a fast, seamless and practical part of the

development process. We also presented research topics and questions that should be

considered in future studies (Table 2).

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

19

CD element(s) Implications for Research and Suggested Research

Questions

Suggested Research Approaches and

Objectives

Implications for Practice: How managers

need to address requirement risks in CD?

Project Culture A change in project organisation is needed when moving

to CD. This puts forward research questions such as the

following:

How should project organisation be structured to support

CD?

How can all the necessary stakeholders be involved in

project and project risk management?

How can knowledge sharing among different

organisational departments, users and stakeholders be

developed?

What approaches and tools are needed in a project to

manage risks associated with knowledge sharing and

requirements?

Focus on managing the organisation’s internal

communications and operating environment.

Approach: In-depth qualitative study

of CD teams, focusing on roles and

knowledge-sharing dynamics.

Objective: Analyze real-world CD

team structures to determine their

effectiveness in managing

requirement risks.

Projects should be perceived as business

projects, not only as IT projects. Stakeholders

and knowledge can be found in many

different departments, roles, users, etc.

Managers should therefore:

Focus on the changing requirements, project

goals and identified risks.

Prioritise requirements to address technical

constraints, business considerations and

critical stakeholder preferences.

Introduce practical risk management

approaches and tools to users, and integrate

them into the project and coordinates

expertise.

Share information through open

communication and good knowledge-

sharing practices.

Organisational

Culture

Changes need to be made so that the organisational

structure can support continuous feedback, definitions of

iterative requirements and self-organisation in CD. This

puts forward research questions such as the following:

How do organisational culture and structure need to be

developed to support CD?

How can organisational knowledge contribute to the

success of RRM?

How can the accuracy of the requirements defined by the

business be ensured?

Approach: Mixed methods study

examining cultural factors within CD

environments and their effects on

feedback processes.

Objective: Investigate how

organisational culture influences the

implementation of continuous

feedback loops in CD.

Businesses need to assign a substantial role

to development work and ensure that their

needs and requests are included in the

project and that they obtain what they need.

Managers should therefore:

Change the organisation’s structure so that

previously independent departments become

part of one development unit.

Enable cooperation between users and IT

staff to define requirements iteratively

throughout the project and prioritise them.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

20

Address continuous definition and

configuration work, feedback and self-

organisation focusing on most valuable

features and requirements.

Methods and

Tools

New methods that support fast, cyclical development are

needed. These tools should be able to handle changing

requirements and risks and consider cultural effects and

user values when eliciting requirements. This puts

forward research questions such as the following:

How can customer requirements and demands be

identified in CD?

How can users be involved in the development process,

and how should user involvement occur?

Approach: Design science research

study conducted with CD teams,

assessing tool utility and

performance and its impact on risk

management.

Objective: Evaluate the utility and

effectiveness of new tools and

techniques for managing dynamic

requirements in CD projects.

The choice of methodology and customer

involvement need to be treated as the most

critical risk drivers of the project. Managers

should therefore:

Introduce new tools and methods to respond

to cyclical development processes and

handle changing requirements and risks,

including cultural effects and user values.

Pace and

Seamlessness

Pace and change in CD are faster than in agile

development and CD should be studied from multiple

perspectives, such as well-being at work. This puts

forward research questions such as the following:

How does the organisational workflow need to be

changed to communicate across different departments

and work with fast-developing cycles and changing

requirements?

How can the project provide quick responses and define

risks to change requests and new requirements defined

by the business?

Approach: A multiple case study of

the CD projects, focusing on

workflow modifications and their

impact on risk mitigation.

Objective: Examine real-world

workflow adaptations that enable CD

teams to respond quickly to change

requests while managing

requirement risks.

In CD, focusing on short iteration cycles and

frequent releases is essential. Managers

should therefore:

Develop and implement open feedback loops

and learning cycles as fast and short as

possible.

Enable continuous customer/user feedback

that is processed quickly and seamlessly

from a customer’s or user’s point of view to

gather ideas and requirements.

Table 2. Roadmap for RRM research and practice in CD

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

21

Our study has some limitations. The AISBASKET8, conference proceedings and a few other

sources cover only part of the IS field. We applied a rigorous SLR approach, but this study is

not a comprehensive literature review. We aimed to investigate how mainstream IS journals

address CD and RRM issues. Similarly, we reviewed top journals publishing RE research to

obtain their perspectives. In addition, our research question and choice of keyword searches

contributed to the limitations of the SLR methodology. These limitations may also be reflected

in the reduction of data and data extraction accuracy. Another related limitation is related to

the use of Google Scholar to search the literature. Use of other literature sources, such ones

offered by the academic publishers (e.g., EBSCO or Proquest), may potentially result different

search results depending on the algorythms used by different search engine providers. In

addition, the mapping exercise used systematic reading of the articles to determine the

keyword annotation. Thus, intrepretive assessment was used in the data analysis and coding,

which may have introduced bias. We also recognize that our study could be extended by

searching the Senior Scholars’ List of Premier Journals and choosing articles from a field of

Software Engineering other than RE. In addition, our search used specific selected terms; it can

be considered whether these terms were sufficient and appropriate.

Application of the framework has some boundary conditions. Based on the SLR, the

framework’s dimensions are the key challenges faced by a traditional development

organisation when adopting RRM for CD. Consequently, our framework can be used to 1)

define the state of the organisation and development work in terms of the CD definitions, 2)

how the organisation’s and project culture have evolved and 3) how they compare with the

characteristics defined in the framework. In addition, we can use the framework to examine,

for example, how the tools and methods used in an organisation work for CD development,

what changes are needed to support CD, how knowledge sharing works in the organisation

and how effective collaboration is. Therefore, our framework can be used to determine an

organisation’s capacity and status to adopt or use CD. It can also outline where changes should

be made in an organisation to make the rapid cyclical improvement model work without

unnecessary interruptions, delays or knowledge-sharing problems.

In our ongoing study, we seek to answer the question of how changing requirements should

be managed and prioritised in CD and further develop an RRM method we have been working

on (Tuunanen et al., 2023). For this, we apply a design science research approach (Hevner et

al., 2004; Peffers et al., 2007) and the developed framework. We are testing the RRM method

in an industrial environment and using it in a multinational enterprise resource planning

system implementation and deployment project. Our initial goal is to determine how to further

develop the RRM method to better address CD projects’ needs and mitigate practitioners’

concerns about a new tool for managing project requirements risks. We see that the developed

conceptual framework can help prioritise requirements and determine their scope and severity

and thus directly impact our RRM method development. The framework may help determine

how agile methodologies and their associated requirements affect team performance

(Maruping et al., 2009), which may have implications for our study. In addition, we are

considering using Ramesh et al.’s (2010) framework to assess the applicability of the method

and identify requirements risk practices to further improve the method. It would also be

interesting to see if our conceptual framework can assist us in defining and managing cultural

change in organisations and how this, in turn, may impact our ongoing study.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

22

To conclude, according to Almeida et al. (2022), DevOps applications lack clear

implementation guidelines for organisations. Since the most critical challenge identified in

DevOps is cultural change (Jayakody & Wijayanayake, 2023)—specifically, the change in

collaboration culture—we anticipate that the developed framework can offer ways to tackle

this challenge in the development method in general, but also specifically for RRM for CD.

Khan et al. (2022) also state that DevOps needs further research on which methods to adopt

and how to apply and improve them, as DevOps requires learning new tools, skills and social

norms. This is something we believe as well and our design science research study should

offer insights to resolving these challenges, in addition to developing a novel method.

References

Almeida, F., Simões, J., & Lopes, S. (2022). Exploring the benefits of combining devops and

agile. Future Internet, 14(2), 63.

Azizi, N., & Rowlands, B. (2018). The moderating effects of organisational culture on the

relationship between knowledge sharing and IT risk management success. In Proceedings

of the 26th European Conference on Information Systems (ECIS), 1–10.

Babb, J. S., Nørbjerg, J., & Yates, D. J. (2017). The empire strikes back: The end of agile as we

know it? In H. Holone, S. Koch Stiberg, & J. Karlsen (Eds.), Selected papers of the IRIS; issue

8, 44–49. IRIS.

Baham, C., & Hirschheim, R. (2022). Issues, challenges, and a proposed theoretical core of agile

software development research. Information Systems Journal, 32(1), 103–129.

Bragge, J., & Merisalo-Rantanen, H. (2009). Engineering e-collaboration processes to obtain

innovative end-user feedback on advanced web-based information systems. Journal of

the Association for Information Systems, 10(3), 196–220.

Callanan, M., & Spillane, A. (2016). DevOps: Making it easy to do the right thing. IEEE Software,

33(3), 53–59.

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile development

methodologies. European Journal of Information Systems, 18(4), 332–343.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical study.

IEEE Software, 25(1), 60–67.

Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE Software, 32(2),

50–54.

Chen, H.-M., Kazman, R., & Haziyev, S. (2016). Agile big data analytics development: An

architecture-centric approach. In T. X. Bui & R. H. Sprague, Jr. (Eds.) Proceedings of the

49th Hawaii International Conference on System Sciences (HICSS), 5378–5387, IEEE.

Cois, C. A., Yankel, J., & Connell, A. (2014). Modern DevOps: Optimizing software

development through effective system interactions. In Proceedings of the 2014 IEEE

International Professional Communication Conference (IPCC), 1–7, IEEE.

Davern, M., Shaft, T., & Te’eni, D. (2012). More enduring questions in cognitive IS research: A

reply. Journal of the Association for Information Systems, 13(12), 1012–1016.

Davis, G. B. (1982). Strategies for information requirements determination. IBM Systems

Journal, 21(1), 4–30.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

23

Davison, R. M. (2017). Editorial: The limitations of limitations. Information Systems Journal,

27(6), 695–697.

Dingsøyr, T., Falessi, D., & Power, K. (2019). Agile development at scale: The next frontier.

IEEE Software, 36(2), 30–38.

Dremel, C., Wulf, J., Herterich, M. M., Waizmann, J. C., & Brenner, W. (2017). How AUDI AG

established big data analytics in its digital transformation. MIS Quarterly Executive, 16(2),

81–100.

Ebert, C. (2018). 50 years of software engineering: Progress and perils. IEEE Software, 35(5), 94–

101.

Elbanna, A., & Sarker, S. (2015). The risks of agile software development: Learning from

adopters. IEEE Software, 33(5), 72–79.

Gall, M., & Pigni, F. (2021). Taking DevOps mainstream: A critical review and conceptual

framework. European Journal of Information Systems, 31(5), 548–567.

Gantman, S. (2011). Boundary objects and internal control in outsourced ISD projects: Results

of a pilot study. In Proceedings of the 17th Americas Conference on Information Systems

(AMCIS) (pp. 1–9).

Gatrell, M. (2016). The value of a single solution for end-to-end ALM tool support. IEEE

Software, 33(5), 103–105.

Gemino, A., Reich, B. H., & Sauer, C. (2007). A temporal model of information technology

project performance. Journal of Management Information Systems, 24(3), 9–44.

Ghanbari, H. (2016). Seeking technical debt in critical software development projects: An

exploratory field study. In Proceedings of the 49th Hawaii International Conference on System

Sciences (HICSS) (pp. 5407–5416). IEEE.

Ghantous, G. B., & Gill, A. (2017). DevOps: Concepts, practices, tools, benefits and challenges.

In Proceedings of the Pacific Asia Conference on Information Systems (PACIS) (pp. 1–12).

Ghobadi, S., & Mathiassen, L. (2016). Perceived barriers to effective knowledge sharing in agile

software teams. Information Systems Journal, 26(2), 95–125.

Ghobadi, S., & Mathiassen, L. (2017). Risks to effective knowledge sharing in agile software

teams: A model for assessing and mitigating risks. Information Systems Journal, 27(6), 699–

731.

Heemstra, F. J., & Kusters, R. J. (1996). Dealing with risk: A practical approach. Journal of

Information Technology, 11(4), 333–346.

Hemon-Hildgen, A., Rowe, F., & Monnier-Senicourt, L. (2020). Orchestrating automation and

sharing in DevOps teams: A revelatory case of job satisfaction factors, risk and work

conditions. European Journal of Information Systems, 29(5), 474–499.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems

research. MIS Quarterly, 28(1), 75–105.

Hickey, A. M., & Davis, A. M. (2004). A unified model of requirements elicitation. Journal of

Management Information Systems, 20(4), 65–84.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

24

Highsmith, J., & Cockburn, A. (2009). Agile software development: The business of innovation.

Computer, 34(9), 120–127.

Horlach, B., Drews, P., Drechsler, A., Schirmer, I., & Böhmann, T. (2020). Reconceptualising

business-IT alignment for enabling organisational agility. In Proceedings of the 28th

European Conference on Information Systems (ECIS), An Online AIS Conference, June 15–17,

2020.

Hütterman, M. (2012). DevOps for developers. Apress.

Hüttermann, M., & Rosenkranz, C. (2019). DevOps: Walking the shadowy bridge from

development success to information systems success. In Proceedings of the 40th

International Conference on Information Systems (ICIS), 1–9.

Iyawa, G. E. (2020). Personal extreme programming: Exploring developers’ adoption. In

Proceedings of the 26th Americas Conference on Information Systems (AMCIS), 1–10.

Jayakody, V., & Wijayanayake, J. (2023). Critical success factors for DevOps adoption in

information systems development. International Journal of Information Systems and Project

Management, 11(3), 60–82.

Jha, A. V., Teri, R., Verma, S., Tarafder, S., Bhowmik, W., Kumar Mishra, S., Appasani, B.,

Srinivasulu, A., & Philibert, N. (2023). From theory to practice: Understanding DevOps

culture and mindset. Cogent Engineering, 10(1), 1–31.

Jiang, J. J., Klein, G., & Chen, H. G. (2006). The effects of user partnering and user non-support

on project performance. Journal of the Association for Information Systems, 7(2), 68–90.

Karlsson, L., Thelin, T., Regnell, B., Berander, P., & Wohlin, C. (2007). Pair-wise comparisons

versus planning game partitioning – experiments on requirements prioritization

techniques. Empirical Software Engineering, 12(1), 3–33.

Kautz, K., Madsen, S., and Nørbjerg, J. (2007). Persistent problems and practices in information

systems development. Information Systems Journal, 17(3), 217–239.

Keil, M., Tiwana, A., & Bush, A. (2002). Reconciling user and project manager perceptions of

IT project risk: A Delphi study. Information Systems Journal, 12(2), 103–119.

Khan, M. S., Khan, A. W., Khan, F., Khan, M. A., & Whangbo, T. K. (2022). Critical challenges

to adopt DevOps culture in software organizations: A systematic review. IEEE Access,

10, 14339–14349.

Kiper, J. R. (2016). Needs to know: Validating user needs for a proposed FBI Academy

Knowledge Management System. In Proceedings of the 49th Hawaii International Conference

on System Sciences (HICSS) (pp. 4334–4343). IEEE.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman,

S. (2010). Systematic literature reviews in software engineering—A tertiary study.

Information and Software Technology, 52(8), 792–805.

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting and evaluating

interpretive field studies in information systems. MIS quarterly, 23(1), 67-93.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

25

Krancher, O., Luther, P., & Jost, M. (2018). Key affordances of platform-as-a-service: Self-

organization and continuous feedback. Journal of Management Information Systems, 35(3),

776–812.

Krey, M., Kabbout, A., Osmani, L., & Saliji, A. (2022). DevOps adoption: Challenges & barriers.

In Proceedings of the 55th Hawaii International Conference on System Sciences (HICSS),

virtual, January 3–7, 2022, 7297–7309, University of Hawai’i at Manoa.

Lee, J. S., Keil, M., & Wong, K. F. E. (2021). When a growth mindset can backfire and cause

escalation of commitment to a troubled information technology project. Information

Systems Journal, 31(1), 7–32.

Li, E. Y., Jiang, J. J., & Klein, G. (2003). The impact of organizational coordination and climate

on marketing executives’ satisfaction with information systems services. Journal of the

Association for Information Systems, 4(1), 99–117.

Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H., Bosch, J., & Oivo, M.

(2016). Towards DevOps in the embedded systems domain: Why is it so hard? In

Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), 5437–

5446. IEEE.

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Kuvaja, P.,

Mikkonen, T., Oivo, M., & Lassenius, C. (2019). DevOps in practice: A multiple case

study of five companies. Information and Software Technology, 114(1), 217–230.

Mangalaraj, G., Mahapatra, R., & Nerur, S. (2009). Acceptance of software process

innovations—the case of extreme programming. European Journal of Information Systems,

18(4), 344–354.

Maruping, L. M., & Matook, S. (2020a). The evolution of software development orchestration:

Current state and an agenda for future research. European Journal of Information Systems,

29(5), 443–457.

Maruping, L. M., & Matook, S. (2020b). The multiplex nature of the customer representative

role in agile information systems development. MIS Quarterly, 44(3), 1411–1437.

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A control theory perspective on agile

methodology use and changing user requirements. Information Systems Research, 20(3),

377–399.

Mathiassen, L., & Pries-Heje, J. (2006). Business agility and diffusion of information

technology. European Journal of Information Systems, 15(2), 116–119.

Mathiassen, L., Saarinen, T., Tuunanen, T., & Rossi, M. (2007). A contingency model for

requirements development. Journal of Association of Information Systems, 8(11), 569–597.

Matook, S., & Maruping, L. M. (2014). A competency model for customer representatives in

agile software development projects. MIS Quarterly Executive, 13(2), 77–95.

Niederman, F., Brancheau, J. C., & Wetherbe, J. C. (1991). Information systems management

issues for the 1990s. MIS Quarterly, 15(4), 475–500.

Olszewska, M., & Waldén, M. (2015). DevOps meets formal modelling in high-criticality

complex systems. In Proceedings of the 1st International Workshop on Quality-Aware DevOps

(QUDOS), 7–12. ACM Press.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

26

Osmundsen, K., & Bygstad, B. (2022). Making sense of continuous development of digital

infrastructures. Journal of Information Technology, 37(2), 144–164.

Ozkaya, I. (2019). Are DevOps and automation our next silver bullet? IEEE Software, 36(4), 3–

5.

Patnayakuni, R., Ruppel, C. P., & Rai, A. (2006). Managing the complementarity of knowledge

integration and process formalization for systems development performance. Journal of

the Association for Information Systems, 7(8), 545–567.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science

research methodology for information systems research. Journal of Management

Information Systems, 24(3), 45–77.

Qureshi, I., Fang, Y., Haggerty, N., Compeau, D. R., & Zhang, X. (2018). IT‐mediated social

interactions and knowledge sharing: Role of competence‐based trust and background

heterogeneity. Information Systems Journal, 28(5), 929–955.

Racheva, Z., Daneva, M., Herrmann, A., & Wieringa, R. J. (2010). A conceptual model and

process for client-driven agile requirements prioritization. In P. Loucopoulos & J. L.

Cavarero (Eds.), Proceedings of the Research Challenges in Information Science (RCIS), 2010

4th International Conference, 287–298, IEEE.

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering practices and

challenges: An empirical study. Information Systems Journal, 20(5), 449–480.

Rowe, F. (2014). What literature review is not: Diversity, boundaries and recommendations.

European Journal of Information Systems, 23(3), 241–255.

Royce, W. W. (1987). Managing the development of large software systems: Concepts and

techniques. In Proceedings of the 9th International Conference of Software Engineering (ICSE

‘87), 328–338, ACM Press.

Salmela, H., Baiyere, A., Tapanainen, T., & Galliers, R. D. (2022). Digital agility:

Conceptualizing agility for the digital era. Journal of the Association for Information

Systems, 23(5), 1080–1101.

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software project risks: An

international Delphi study. Journal of Management Information Systems, 17(4), 5–36.

Sebastian, I. M., Ross, J. W., Beath, C., Mocker, M., Moloney, K. G., & Fonstad, N. O. (2017).

How big old companies navigate digital transformation. MIS Quarterly Executive, 16(3),

197–213.

Sharp, J., & Babb, J. (2018). Is information systems late to the party? The current state of

DevOps research in the association for information systems eLibrary. In Proceedings of

the 24th Americas Conference on Information Systems (AMCIS),1–8.

Shimada, T., Ang Soo-Keng, J., & Ee, D. (2019). Exploring the impact of IS function maturity

and IS planning process on IS planning success: An ACE analysis. European Journal of

Information Systems, 28(4), 457–472.

Siau, K., Long, Y., & Ling, M. (2010). Toward a unified model of information systems

development success. Journal of Database Management, 21(1), 80–101.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

27

Sletholt, M. T., Hannay, J. E., Pfahl, D., & Langtangen, H. P. (2012). What do we know about

scientific software development’s agile practices? Computing in Science & Engineering,

14(2), 24–37.

Stake, R. E. (2013). Multiple case study analysis. Guilford press.

Stray, V., Moe, N. B., & Aasheim, A. (2019). Dependency management in large-scale agile: A

case study of DevOps teams. In Proceedings of the 52nd Hawaii International Conference on

System Sciences (HICSS), 7007–7016.

Stuckenberg, S., & Heinzl, A. (2010). The impact of the software-as-a-service concept on the

underlying software and service development processes. In Proceedings of the Pacific Asia

Conference on Information Systems (PACIS),1297–1308.

Taylor, H., Artman, E., & Woelfer, J. P. (2012). Information technology project risk

management: Bridging the gap between research and practice. Journal of Information

Technology, 27(1), 17–34.

Tiwana, A., & Keil, M. (2004). The one-minute risk assessment tool. Communications of the ACM,

47(11), 73–77.

Tuunanen, T., & Kuo, I. T. (2015). The effect of culture on requirements: A value-based view

of prioritization. European Journal of Information Systems, 24(3), 295–313.

Tuunanen, T., Vartiainen, T., Kainulainen, S., & Ebrahim, M. (2023). Development of an Agile

Requirements Risk Prioritization Method: A Design Science Research

Study. Communications of the Association for Information Systems, 52(1), 609-637.

Venkatesh, V., Brown, S. A., & Bala, H. (2013) Bridging the qualitative-quantitative

divide: Guidelines for conducting mixed methods research in information systems. MIS

Quarterly, 37(1), 21–54.

Venkatesh, V., Rai, A., & Maruping, L. M. (2018). Information systems projects and individual

developer outcomes: Role of project managers and process control. Information Systems

Research, 29(1), 127–148.

Virmani, M. (2015). Understanding DevOps & bridging the gap from continuous integration

to continuous delivery. In Proceedings of the 5th International Conference on the Innovative

Computing Technology (INTECH 2015), 78–82, IEEE.

Wallace, L., Keil, M., & Rai, A. (2004). How software project risk affects project performance:

An investigation of the dimensions of risk and an exploratory model. Decision Sciences,

35(2), 289–321.

Wang, S. Y., Chang, T. H., Hsu, J. S. C., & Lin, T. C. (2016). A study of the influences of

knowledge boundary spanning on project performance in information system

development projects. In Proceedings of the Pacific Asia Conference on Information Systems

(PACIS) (pp. 1–10).

 Wiedemann, A., Wiesche, M., Gewald, H., & Krcmar, H. (2020). Understanding how DevOps

aligns development and operations: A tripartite model of intra-IT alignment. European

Journal of Information Systems, 29(5), 458–473.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

28

 Xiao, X., Lindberg, A., Hansen, S., & Lyytinen, K. (2018). ‘Computing’ requirements for open

source software: A distributed cognitive approach. Journal of the Association for

Information Systems, 19(12), 1217–1252.

Appendix 1. Key concepts and definitions

Table A1: Key concepts and definitions

Appendix 2. Systematic literature review (SLR)

Our SLR followed Kitchenham et al.’s (2010) guidelines (Figure 1). In Step 1, we defined the

need for this study. Several IS articles have identified the need for further research on how CD

and DevOps can be used in ISD. We wanted to investigate how the current IS literature covers

the key elements of CD (Step 2) and sought answers to our research question (Step 3): “How

Information Systems Development (ISD) Development activities that are required to create an

information system. (Kautz et al., 2007; Gantman, 2011)

Agile Development Methodology focusing on collaboration, efficiency, and

flexibility in software development. (Cao & Ramesh, 2008;

Dingsøyr et al., 2019; Maruping et al., 2009; Mathiassen &

Pries-Heje, 2006;)

Continuous Development (CD) An umbrella term that includes many DevOps processes,

including continuous integration, testing, delivery, and

deployment.

Extends agile development by focusing on continuous and

short learning cycles with a constant feedback loop.

(Lwakatare et al., 2016; Osmundsen & Bygstad, 2022;

Virmani, 2015)

Continuous Integration Practice that automates and combines all source code

changes by several authors into a single software project

(Gall & Pigni, 2021; Stray et al., 2019).

Continuous Deployment Practice that automates the release process through frequent

and automated deployments (Gall & Pigni, 2021).

Continuous Delivery Extension of continuous integration that aims to shorten

release cycles by automating software testing and approval

(Chen, 2015; Ghantous & Gill, 2017).

DevOps Instantiation of CD: fast delivery cycles, short feedback loops

and automation. Extends agile principles to the entire

software process and adds cooperation between operations,

development, and quality assessment. (Ebert, 2018; Krey et

al., 2022; Lwakatare et al., 2016; Olszewska & Waldén, 2015;

Osmundsen & Bygstad, 2022, Ozkaya, 2019; Stray et al., 2019)

Requirements Risk Management (RRM) Focuses on the active identification and management of

solution-related uncertainties. Helps anticipate and solve

problems that may affect requirements during the

implementation process. It is a process to handle risks

associated with the requirements of a project or system.

(Venkatesh et al., 2018; Wallace et al., 2004)

Requirements Engineering (RE) Defines, documents, and maintains the needs and

expectations of a software system. (Ramesh et al., 2010)

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

29

should requirement risks be managed in CD, and what are the organisational needs for

accomplishing this?” In Step 4, we searched Google Scholar. A more detailed description

follows.

A2.1 Finding DevOps and CD in the IS literature

A Google Scholar search (Step 4) was performed in August 2018 to obtain an overview of how

the AISBASKET8 covers CD, DevOps, continuous analysis, continuous implementation,

continuous integration and development and secure operations (DevSecOps). Because a

simple search for “DevOps” returned only 15 articles, additional criteria were added to the

search (Step 5), as follows: “continuous analysis” OR “continuous development” OR

“continuous implementation” OR “continuous integration” OR “DevOps” OR “DevSecOps”.

This extended search, without a defined time limit, generated 171 articles, 16 of which were

selected for further processing after all the articles were read. Ten other journal and conference

results were found as a result of the original search or a forward and backward reference

search. Four of these articles were selected for further processing (Step 6).

The selection criteria for further processing were that the article included the search terms in

the text and that the article focused on software development using agile DevOps or CD. If the

search terms were mentioned only in an article’s reference list, it was excluded (Step 7).

Another Google Scholar search with the same criteria was conducted on the proceedings of

the following conferences: the American Conference for IS (AMCIS), the European Conference

for IS (ECIS), the Hawaiian International Conference for System Sciences (HICSS), the

International Conference for IS (ICIS) and the Pacific-Asian Conference IS (PACIS). This search

generated 113 CD articles, of which 16 were selected for further examination.

In September 2019, an updated search (u2) on the AISBASKET8 was performed to include

articles published after August 2018. This search yielded eight articles; two were chosen for

further handling and coding with ATLAS.ti.

In May 2022, an updated search (u3) on the AISBASKET8 was performed to find the newest

articles. Of 22 found, 9 were chosen for further handling.

From the IS literature searches, we selected 43 of 314 articles for further processing. Ten other

suitable journal articles and conference proceedings were defined during the search process,

and four were selected for further processing.

The Google Scholar searches for IS journals and conference proceedings returned 314 (171 + 8

+ 22 + 113) articles, of which 43 (16 + 2 + 9 + 16) were selected for further processing. After

adding other journals and conference proceedings, the searches returned 324 (314 + 10) items,

of which 47 (43 + 4) were processed further.

A2.2 Finding RRM in the IS literature

The next step defined how widely the selected IS journals covered RRM. The Google Scholar

search on RRM without any defined time limit used the following search string: “requirement”

+ “risk management” -finance* -economic* -biotech* -medical* -military. The search was

limited to articles from the AISBASKET8. This search (s1) generated 114 articles, of which 14

were selected after the articles were read. The selection criteria for the articles were that they

covered requirements and risk management in ISD; articles that did not cover the desired

concepts or mentioned search terms only in the reference list were left out.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

30

 Figure A1. Systematic literature review steps based on Kitchenham et al. (2010).

Another Google Scholar search with the same criteria was conducted to cover knowledge of

this subject in IS conferences. Articles were selected from the AMCIS, ECIS, HICSS, ICIS and

PACIS proceedings. Of the 135 RRM articles generated, 10 were selected for further

examination. The first two IS RRM literature searches defined 24 (of 249) articles for further

processing.

In September 2019, an updated search (u2) on the AISBASKET8 was performed to include

articles published after August 2018. An updated search for RRM yielded six new articles,

none of which were selected for further processing.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

31

In May 2022, an updated search (u3) on the AISBASKET8 was performed to find the newest

articles. Two of the 11 recent ones were chosen for further handling.

From the search results and using a forward and backward reference search, 22 interesting

and suitable articles and conference proceedings were found from publications other than the

specified AISBASKET8 or IS conference proceedings, of which 10 were selected for further

processing.

Based on the RRM search results from IS journals, conference proceedings and other

interesting journals and conference proceedings, 36 (14 + 0 + 2 + 10 +10) articles were selected

out of the 288 (114 + 135 + 6 + 11 + 22) articles. After analysing the 36 documents, 25 were

selected for further processing.

A2.3 Creating the framework dimensions

The qualitative research software ATLAS.ti was used to code the articles, group the codes and

define the key features of CD. Certain concepts and terms emerged repeatedly from the

literature. First, key elements (Step 8) were extracted from the articles by tagging the paper’s

paragraphs, and then the tagged sections were coded with ALTAS.ti (Step 9). Code groups

were formed from the codes, the metadata-level concepts were defined, and the framework’s

three dimensions were combined (Step 10). Dimensions of the framework were determined:

(1a) culture – project-related tasks, such as roles, resources, instructions and guidance,

management of work, teamwork, cooperation and knowledge sharing; (1b) culture –

organisation-related issues, such as organisational structure in the development process; (2)

different methods and tools; and (3) pace, seamlessness and continuous work – all typical

features of CD. These dimensions formed the framework used as a research lens to analyse the

RRM articles (Step 10).

A2.4 Analysing IS RRM articles with a three-dimensional research lens

The selected IS RRM articles (25 of 36) were analysed using the three-dimensional framework

described above. The aim was to discover how key features of agile development, DevOps

and CD were defined in IS RRM articles. Of 25 RRM articles, 16 (64%) focused on methods and

tools, 12 (48%) on culture/project structure, 7 (28%) on culture/organisational structure and 4

(16%) on development speed or seamlessness. Most articles did not comment on the

development approaches, other than some notes about traditional methods; 28% mentioned

agile development and only 4% mentioned CD. Thus, the literature review revealed that,

despite the extensive IS literature, there was still a lack of focus on CD.

A2.5 Finding RRM, DevOps and CD in the RE literature

The same search was performed in journals on RE. The nine journals that published RE articles

(Table A3) were searched without a time limit for articles that covered the desired research

subject and two selected terms – RRM and CD. The search was conducted in three phases. The

first phase (s1) was searching for articles with the search criterion of DevOps or CD. To reduce

the number of results, the terms “requirements” and “risk” were added in the second search

(s2). The criterion “software engineering” was added in the third search (s3). After three search

cycles, the third search generated 159 (DevOps 86 + CD 73) articles, of which 8 (7 + 1) were

selected for further processing. Those that covered DevOps, CD or agile development, where

the focus was not only on the agility of publishing or deployment of software, were selected.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

32

Many articles written from the software development perspective dealt only with the agile

deployment of software versions and were thus beyond this study’s scope.

A2.6 Analysing the RE RRM articles

The selected RE articles were coded with ATLAS.ti, with very similar results to the RE articles

emerging from similar concepts, thus reinforcing the concepts defined in the IS articles.

These articles were also analysed using the developed framework as a research lens. Five (63%)

articles focused on methods and tools, 3 (38%) on culture/project, 4 (50%) on

culture/organisation and 5 (63%) on development speed or seamlessness. Most articles

commented on agile, DevOps or CD. These findings revealed that, in the RE literature, agile

development, especially DevOps and CD, was recognised and studied much more than in the

IS literature.

A2.7 Comparing the analyses and refining the framework

In the SLR, we analysed articles from the IS and RE literature. Table A1 shows the Google

Scholar search steps, the search results and the selected articles on requirements risk

management (RRM) and continuous development (CD) from the IS literature. Table A3

presents the information from the RE literature. Table A2 lists the Google Scholar search

results and the selected articles from IS conference proceedings.

The IS and RE articles showed an almost equal focus on the methods and tools dimension: 64%

vs. 63%, respectively. The difference was slightly higher for the culture/project dimension: 48%

vs. 38%, respectively. The most significant differences were in the culture/organisation and

development speed or seamlessness dimensions. The IS articles focused much less on these

dimensions than the RE articles. Only 28% of the IS articles concentrated on the elements of

the culture/organisation dimension, compared to 50% of the RE articles. The difference was

even more significant in the development speed or seamlessness dimension. Only 16% of the

IS articles presented this dimension’s elements, while in the RE articles, the coverage was 63%.

There was also a clear difference in mentioning the development style. On the IS side, it was

usually not mentioned for anything other than traditional methods, and there was still little

focus on CD. In contrast, in RE, most articles mentioned agile development, DevOps or CD.

This comparative analysis showed that agile development, especially DevOps and CD, was

much more acknowledged in the RE literature than in the IS literature.

 Journal

RRM

CD

 Search

s1/u2/u3

Selected

articles

s1/u2/u3

Search

s1/u2/u3

Selected articles

s1/u2/u3

 European Journal of Information Systems 10/0/0 1/0/0 16/1/7 3/1/6

 Information Systems Journal 11/0/2 3/0/1 16/1/5 1/0/0

 Information Systems Research 25/0/1 1/0/0 26/0/3 3/0/0

 Journal of Information Technology 38/1/2 4/0/0 75/1/3 1/0/1

 Journal of Management Information

 Systems

7/0/0 1/0/0 13/2/2 2/0/1

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

33

 Journal of Strategic Information Systems 1/1/1 0/0/0 3/1/0 0/0/0

 Journal of the Association for

 Information Systems

6/2/2 3/0/0 7/1/0 2/1/0

 MIS Quarterly 16/2/3 1/0/1 15/1/4 4/0/1

 Total AISBASKET8 114/6/11 14/0/2 171/8/22 16/2/9

 IS conference proceedings (Table A2) 135 10 113 16

 Other journals/conference proceedings 22 10 10 4

 Total (including update) 288 36 324 47

Table A2. Google Scholar search results and selected articles about RRM and CD

 Conference proceedings

 RRM CD

Search results Selected articles Search results Selected articles

 AMICS 11 3 29 4

 ECIS 10 2 17 2

 HICSS 24 3 29 5

 ICIS 33 0 28 1

 PACIS 57 2 10 4

 Total 135 10 113 16

Table A3. Google Scholar search results for RRM and CD and selected articles from IS conference

proceedings

 Journal DevOps CD

Search results,

s1/s2/s3

Selected articles Search results,

s1/s2/s3

Selected articles

 Empirical Software Engineering 0 0 0 0 0 0 0 0

 IEEE Software 98 39 39 6 13 10 7 1

 IEEE Transactions on Software Engineering 12 7 6 0 7 5 4 0

 Information and Software Technology 23 12 12 1 24 15 14 0

 Information Systems (IS) 95 47 25 0 463 196 47 0

 Requirements Engineering Journal 0 0 0 0 0 0 0 0

 Software and Systems Modelling 1 1 1 0 0 0 0 0

 Software Practice and Expertise 13 5 2 0 4 2 1 0

 Software Quality Journal 1 1 1 0 0 0 0 0

 Total 243/112/86 7 511/228/73 1

Table A4. Google Scholar search results and selected RE articles

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

34

Appendix 3. Coding process

As an example of the coding process, we present the definition of the first codes in the article

“Key Affordances of Platform-as-a-Service: Self-Organisation and Continuous Feedback” by

Krancher, O., Luther, P. and Jost, M., published in 2018 in the Journal on Management

Information Systems. We present the first highlighted texts we coded, from which the base codes

were defined and then selected and added to the code groups to specify the dimensions.

Quotation 1: “… rapidly deliver innovative software, many software development teams attempt to

follow movements such as agile [29] and lean [62] software development2, continuous integration and

delivery [41], and DevOps1 [2]. Common to these movements is the aim to increase agility4 (i.e., the

ability to rapidly create, react to, and learn from change [19]) by adopting practices based on self-

organizing5 and frequent feedback3 [28, 73]”.

Figure A2: Codes: DevOps1, agile development2, frequent feedback3, agility4, self-organizing5

Quotation 2: “Practices based on self-organizing6 are a hallmark of the agile software development

movement, which values “individuals and interactions over [externally imposed] processes” [29] and

which advocates uniting business users and developers7,9 in a self-organizing team [29]. These teams

make decisions about requirements10, solution designs, and the distribution of work [66]. Self-organizing

is also a key idea behind DevOps8, which advocates joint teams of developers and system administrators7

with no rigid separation of roles11 between the two [42]”.

Figure A3: Codes: self-organizing6, cooperation7, DevOps8, business users9, requirements10, roles11

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

35

Quotation 3: “… as realized by the DevOps12 movement, software development teams often lack

control over infrastructure13 and knowledge14 to manage infrastructure13”.

Figure A4: Codes: DevOps12, infrastructure13, knowledge14

Quotation 4: “While the DevOps17 movement suggests removing this barrier by including system

administrators into development teams and by eliminating the rigid separation15 of roles18, empirical

evidence shows that developers and operations often take their traditional division of labor for granted

[63]. In such teams, the transition to self-organizing practices is a relatively slow process of cultural

change16”.

Figure A5: Codes: cooperation15, cultural change16, DevOps17, roles18

Quotation 5: “Lean methods acknowledge that such time-boxed rhythms may still delay feedback21.

They recommend further “increas[ing] the frequency of the feedback loops22” [62, p. 38] because “the

shorter these cycles are, the more can be learned23” [62, p. 14]. Principle is put into practice by the

continuous integration20 and continuous delivery19 (CI/CD) movement”.

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

36

Figure A6: Codes: continuous delivery19, continuous integration20, feedback21, feedback loops22,

learning cycles23

Quotation 6: “… agile26 methods advocate frequent feedback24 through time-boxed iterations, often of a

duration of a few weeks [73], which are seen as “learning cycles25”.

Figure A7: Codes: frequent feedback24, learning cycles25, agile26

Selected codes were grouped into code groups, which were used to define dimensions.

Table A5 presents the codes, code groups and dimensions.

Code Code Group Dimension

 Business users Project characteristics 1a) Culture – Project Culture

 Business value Project characteristics 1a) Culture – Project Culture

 Business needs Project characteristics 1a) Culture – Project Culture

 Cooperation Project characteristics 1a) Culture – Project Culture

 Collaboration Project characteristics 1a) Culture – Project Culture

 Communication Project characteristics 1a) Culture – Project Culture

 Coordination Project characteristics 1a) Culture – Project Culture

 Customer engagement Project characteristics 1a) Culture – Project Culture

 Customer representative Project characteristics 1a) Culture – Project Culture

 Feedback Project characteristics 1a) Culture – Project Culture

 Frequent feedback Project characteristics 1a) Culture – Project Culture

 Interaction Project characteristics 1a) Culture – Project Culture

 Knowledge Project characteristics 1a) Culture – Project Culture

 Knowledge sharing Project characteristics 1a) Culture – Project Culture

 Learning cycles Project characteristics 1a) Culture – Project Culture

 Obstacle Project characteristics 1a) Culture – Project Culture

 Performance Project characteristics 1a) Culture – Project Culture

 Project management Project characteristics 1a) Culture – Project Culture

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

37

 Requirements Project characteristics 1a) Culture – Project Culture

 Resources Project characteristics 1a) Culture – Project Culture

 Risk level Project characteristics 1a) Culture – Project Culture

 Risk management Project characteristics 1a) Culture – Project Culture

 Roles Project characteristics 1a) Culture – Project Culture

 Threat Project characteristics 1a) Culture – Project Culture

 Users and user involvement Project characteristics 1a) Culture – Project Culture

 Business environment Organisation structure 1b) Culture – Organisational

Culture

 Infrastructure Organisation structure 1b) Culture – Organisational

Culture

 Organisation Organisation structure 1b) Culture – Organisational

Culture

 Work environment Organisation structure 1b) Culture – Organisational

Culture

 Business agility Organisation structure 1b) Culture – Organisational

Culture

 Cultural change Organisation structure 1b) Culture – Organisational

Culture

 Organisational culture Organisation structure 1b) Culture – Organisational

Culture

 Organisational change Organisation structure 1b) Culture – Organisational

Culture

 Lack of knowledge of DevOps Continuous development 2) Methods and Tools

 Lack of guidance Continuous development 2) Methods and Tools

 Lack of research Continuous development 2) Methods and Tools

 Agile development Development style 2) Methods and Tools

 Agile principles and methodology Development style 2) Methods and Tools

 Agile to DevOps Development style 2) Methods and Tools

 Continuous delivery Development style 2) Methods and Tools

 Continuous deployment Development style 2) Methods and Tools

 Continuous development Development style 2) Methods and Tools

 Continuous integration Development style 2) Methods and Tools

 Definition of DevOps Development style 2) Methods and Tools

 Development cycle Development style 2) Methods and Tools

 DevOps Development style 2) Methods and Tools

 Fast agile development Development style 2) Methods and Tools

 Method engineering Development style 2) Methods and Tools

 Software development Development style 2) Methods and Tools

 Traditional developing Development style 2) Methods and Tools

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

38

 Behaviour-driven monitoring Features and components 2) Methods and Tools

 Shared goal Features and components 2) Methods and Tools

 Tools Features and components 2) Methods and Tools

 Flexibility Pace and seamlessness 3) Pace and seamlessness

 Quickness Pace and seamlessness 3) Pace and seamlessness

 Speed Pace and seamlessness 3) Pace and seamlessness

Table A5. Codes, code groups and dimensions

Appendix 4. Analysed and referenced articles

European Journal of Information Systems

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile development

methodologies. European Journal of Information Systems, 18(4), 332–343. https://doi.org/10.1057/ejis.2009.26

Gall, M., & Pigni, F. (2021). Taking DevOps mainstream: A critical review and conceptual

framework. European Journal of Information Systems, 31(5), 548–567.

https://doi.org/10.1080/0960085X.2021.1997100

Hemon-Hildgen, A., Rowe, F., & Monnier-Senicourt, L. (2020). Orchestrating automation and sharing in

DevOps teams: A revelatory case of job satisfaction factors, risk and work conditions. European Journal of

Information Systems, 29(5), 474–499. https://doi.org/10.1080/0960085X.2020.1782276

Mangalaraj, G., Mahapatra, R., & Nerur, S. (2009). Acceptance of software process innovations—the case

of extreme programming. European Journal of Information Systems, 18(4), 344–354.

https://doi.org/10.1057/ejis.2009.23

Maruping, L. M., & Matook, S. (2020a). The evolution of software development orchestration: Current state

and an agenda for future research. European Journal of Information Systems, 29(5), 443–457.

https://doi.org/10.1080/0960085X.2020.1831834

Mathiassen, L., & Pries-Heje, J. (2006). Business agility and diffusion of information technology. European

Journal of Information Systems, 15(2), 116–119. https://doi.org/10.1057/palgrave.ejis.3000610

Rowe, F. (2014). What literature review is not: Diversity, boundaries and recommendations. European

Journal of Information Systems, 23(3), 241–255. https://doi.org/10.1057/ejis.2014.7

Shimada, T., Ang Soo-Keng, J., & Ee, D. (2019). Exploring the impact of IS function maturity and IS

planning process on IS planning success: An ACE analysis. European Journal of Information Systems, 28(4),

457–472. https://doi.org/10.1080/0960085X.2018.1557373

Tuunanen, T., & Kuo, I. T. (2015). The effect of culture on requirements: A value-based view of

prioritization. European Journal of Information Systems, 24(3), 295–313. https://doi.org/10.1057/ejis.2014.29

Wiedemann, A., Wiesche, M., Gewald, H., & Krcmar, H. (2020). Understanding how DevOps aligns

development and operations: A tripartite model of intra-IT alignment. European Journal of Information

Systems, 29(5), 458–473. https://doi.org/10.1080/0960085X.2020.1782277

Journal of the Association for Information Systems

Bragge, J., & Merisalo-Rantanen, H. (2009). Engineering e-collaboration processes to obtain innovative end-

user feedback on advanced web-based information systems. Journal of the Association for Information

Systems, 10(3), 196–220. https://doi.org/10.17705/1jais.00188

https://doi.org/10.1057/ejis.2009.26

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

39

Davern, M., Shaft, T., & Te’eni, D. (2012). More enduring questions in cognitive IS research: A reply. Journal

of the Association for Information Systems, 13(12), 1012–1016. https://doi.org/10.17705/1jais.00317

Jiang, J. J., Klein, G., & Chen, H. G. (2006). The effects of user partnering and user non-support on project

performance. Journal of the Association for Information Systems, 7(2), 68–90.

https://doi.org/10.17705/1jais.00082

Li, E. Y., Jiang, J. J., & Klein, G. (2003). The impact of organizational coordination and climate on marketing

executives’ satisfaction with information systems services. Journal of the Association for Information Systems,

4(1), 99–117. https://doi.org/10.17705/1jais.00031

Patnayakuni, R, Ruppel, C. P., & Rai, A. (2006). Managing the complementarity of knowledge integration

and process formalization for systems development performance. Journal of the Association for Information

Systems, 7(8), 545–567. https://www.proquest.com/scholarly-journals/managing-complementarity-

knowledge-integration/docview/198858662/se-2

Salmela, H., Baiyere, A., Tapanainen, T., & Galliers, R. D. (2022). Digital agility: Conceptualizing agility for

the digital era. Journal of the Association for Information Systems, 23(5), 1080-1101.

https://doi.org/10.17705/1jais.00767

Xiao, X., Lindberg, A., Hansen, S., & Lyytinen, K. (2018). ‘Computing’ requirements for open source

software: A distributed cognitive approach. Journal of the Association for Information Systems, 19(12), 1217–

1252. https://doi.org/10.17705/1jais.00525

Information Systems Journal

Baham, C., & Hirschheim, R. (2022). Issues, challenges, and a proposed theoretical core of agile software

development research. Information Systems Journal, 32(1), 103-129. https://doi.org/10.1111/isj.12336

Davison, R. M. (2017). Editorial: The limitations of limitations. Information Systems Journal, 27(6), 695–697.

https://doi.org/10.1111/isj.12167

Ghobadi, S., & Mathiassen, L. (2016). Perceived barriers to effective knowledge sharing in agile software

teams. Information Systems Journal, 26(2), 95–125. https://doi.org/10.1111/isj.12053

Ghobadi, S., & Mathiassen, L. (2017). Risks to effective knowledge sharing in agile software teams: A model

for assessing and mitigating risks. Information Systems Journal, 27(6), 699–731.

https://doi.org/10.1111/isj.12117

Kautz, K., Madsen, S., and Nørbjerg, J. (2007). Persistent problems and practices in information systems

development. Information Systems Journal, 17(3), 217–239. https://doi.org/10.1111/j.1365-2575.2007.00222.x

Keil, M., Tiwana, A., & Bush, A. (2002). Reconciling user and project manager perceptions of IT project

risk: A Delphi study. Information Systems Journal, 12(2), 103–119. https://doi.org/10.1046/j.1365-

2575.2002.00121.x

Lee, J. S., Keil, M., & Wong, K. F. E. (2021). When a growth mindset can backfire and cause escalation of

commitment to a troubled information technology project. Information Systems Journal, 31(1), 7–32.

https://doi.org/10.1111/isj.12287

Qureshi, I., Fang, Y., Haggerty, N., Compeau, D. R., & Zhang, X. (2018). IT‐mediated social interactions

and knowledge sharing: Role of competence‐based trust and background heterogeneity. Information

Systems Journal, 28(5), 929–955. https://doi.org/10.1111/isj.12181

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering practices and challenges: An

empirical study. Information Systems Journal, 20(5), 449–480. https://doi.org/10.1111/j.1365-

2575.2007.00259.x

MIS Quarterly

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS

Quarterly, 28(1), 75–105. https://doi.org/10.2307/25148625

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

40

Maruping, L. M., & Matook, S. (2020b). The multiplex nature of the customer representative role in agile

information systems development. MIS Quarterly, 44(3), 1411–1437.

https://doi.org/10.25300/MISQ/2020/12284

Niederman, F., Brancheau, J. C., & Wetherbe, J. C. (1991). Information systems management issues for the

1990s. MIS Quarterly, 15(4), 475–500. https://doi.org/10.2307/249452

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative divide: Guidelines for

conducting mixed methods research in information systems. MIS Quarterly, 37(1), 21–54.

https://doi.org/10.25300/MISQ/2013/37.1.02

MISQ Executive

Dremel, C., Wulf, J., Herterich, M. M., Waizmann, J. C., & Brenner, W. (2017) How AUDI AG established

big data analytics in its digital transformation. MIS Quarterly Executive, 16(2), Article 3.

https://aisel.aisnet.org/misqe/vol16/iss2/3

Matook, S., & Maruping, L. M. (2014). A competency model for customer representatives in agile software

development projects. MIS Quarterly Executive, 13(2), Article 3. https://aisel.aisnet.org/misqe/vol13/iss2/3

Sebastian, I. M., Ross, J. W., Beath, C., Mocker, M., Moloney, K. G., & Fonstad, N. O. (2017). How big old

companies navigate digital transformation. MIS Quarterly Executive, 16(3), Article 6.

https://aisel.aisnet.org/misqe/vol16/iss3/6

Journal of Management Information Systems

Gemino, A., Reich, B. H., & Sauer, C. (2007). A temporal model of information technology project

performance. Journal of Management Information Systems, 24(3), 9–44. https://doi.org/10.2753/MIS0742-

1222240301

Hickey, A. M., & Davis, A. M. (2004). A unified model of requirements elicitation. Journal of Management

Information Systems, 20(4), 65–84. https://doi.org/10.1080/07421222.2004.11045786

Krancher, O., Luther, P., & Jost, M. (2018). Key affordances of platform-as-a-service: Self-organization and

continuous feedback. Journal of Management Information Systems, 35(3), 776–812.

https://doi.org/10.1080/07421222.2018.1481636

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research

methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.

https://doi-org.ezproxy.jyu.fi/10.2753/MIS0742-1222240302

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software project risks: An international

Delphi study. Journal of Management Information Systems, 17(4), 5–36.

https://doi.org/10.1080/07421222.2001.11045662

Journal of Information Technology

Heemstra, F. J., & Kusters, R. J. (1996). Dealing with risk: A practical approach. Journal of Information

Technology, 11(4), 333–346. https://doi.org/10.1177/026839629601100407

Taylor, H., Artman, E., & Woelfer, J. P. (2012). Information technology project risk management: Bridging

the gap between research and practice. Journal of Information Technology, 27(1), 17–34.

https://doi.org/10.1057/jit.2011.29

Osmundsen, K., & Bygstad, B. (2022). Making sense of continuous development of digital

infrastructures. Journal of Information Technology, 37(2), 144–164. https://doi.org/10.1177/02683962211046621

Information Systems Research

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A control theory perspective on agile methodology

use and changing user requirements. Information Systems Research, 20(3), 377–399.

https://doi.org/10.1287/isre.1090.0238

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

41

Venkatesh, V., Rai, A., & Maruping, L. M. (2018). Information systems projects and individual developer

outcomes: Role of project managers and process control. Information Systems Research, 29(1), 127–148.

https://doi.org/10.1287/isre.2017.0723

Journal of Association of Information Systems

Mathiassen, L., Saarinen, T., Tuunanen, T., & Rossi, M. (2007). A contingency model for requirements

development. Journal of Association of Information Systems, 8(11), 569–597.

https://doi.org/10.17705/1jais.00143

IEEE Access

Khan, M. S., Khan, A. W., Khan, F., Khan, M. A., & Whangbo, T. K. (2022). Critical challenges to adopt

DevOps culture in software organizations: A systematic review. IEEE Access, 10, 14339–14349.

https://doi.org/10.1109/ACCESS.2022.3145970

IEEE Software

Callanan, M., & Spillane, A. (2016). DevOps: Making it easy to do the right thing. IEEE Software, 33(3), 53–

59. https://doi.org/10.1109/MS.2016.66

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical study. IEEE Software,

25(1), 60–67. https://doi.org/10.1109/MS.2008.1

Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE Software, 32(2), 50–54.

https://doi.org/10.1109/MS.2015.27

Dingsøyr, T., Falessi, D., & Power, K. (2019). Agile development at scale: The next frontier. IEEE Software,

36(2), 30–38. https://doi.org/10.1109/MS.2018.2884884

Ebert, C. (2018). 50 years of software engineering: Progress and perils. IEEE Software, 35(5), 94–101.

https://doi.org/10.1109/MS.2018.3571228

Elbanna, A., & Sarker, S. (2015). The risks of agile software development: Learning from adopters. IEEE

Software, 33(5), 72–79. https://doi.org/10.1109/MS.2015.150

Gatrell, M. (2016). The value of a single solution for end-to-end ALM tool support. IEEE Software, 33(5),

103–105. https://doi.org/10.1109/MS.2016.109

Ozkaya, I. (2019). Are DevOps and automation our next silver bullet? IEEE Software, 36(4), 3–5.

https://doi.org/10.1109/MS.2019.2910943

Information and Software Technology

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010).

Systematic literature reviews in software engineering—A tertiary study. Information and Software

Technology, 52(8), 792–805. https://doi.org/10.1016/j.infsof.2010.03.006

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Kuvaja, P., Mikkonen, T.,

Oivo, M., & Lassenius, C. (2019). DevOps in practice: A multiple case study of five companies. Information

and Software Technology, 114(1), 217–230. https://doi.org/10.1016/j.infsof.2019.06.010

Journal of Database Management

Siau, K., Long, Y., and Ling, M. (2010). Toward a unified model of information systems development

success. Journal of Database Management, 21(1), 80-101. https://doi.org/10.4018/jdm.2010112304

Communications of the ACM

Tiwana, A., & Keil, M. (2004). The one-minute risk assessment tool. Communications of the ACM, 47(11), 73–

77. https://doi.org/10.1145/1029496.1029497

Communications of the Association for Information Systems

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

42

Tuunanen, T., Vartiainen, T., Kainulainen, S., & Ebrahim, M. (2023). Development of an Agile

Requirements Risk Prioritization Method: A Design Science Research Study. Communications of the

Association for Information Systems, 52(1), 609-637. https://doi.org/10.17705/1CAIS.05226

Decision Sciences

Wallace, L., Keil, M., & Rai, A. (2004). How software project risk affects project performance: An

investigation of the dimensions of risk and an exploratory model. Decision Sciences, 35(2), 289–321.

https://doi.org/10.1111/j.00117315.2004.02059.x

Empirical Software Engineering

Karlsson, L., Thelin, T., Regnell, B., Berander, P., & Wohlin, C. (2007). Pair-wise comparisons versus

planning game partitioning – experiments on requirements prioritization techniques. Empirical Software

Engineering, 12(1), 3–33. https://doi.org/10.1007/s10664-006-7240-4

IBM Systems Journal

Davis, G. B. (1982). Strategies for information requirements determination, IBM Systems Journal, 21(1), 4–

30. https://doi.org/10.1147/sj.211.0004

Computer

Highsmith, J., & Cockburn, A. (2009). Agile software development: The business of innovation. Computer

(Long Beach, Calif.), 34(9), 120–127. https://doi.org/10.1109/2.947100

Future Internet

Almeida, F., Simões, J., & Lopes, S. (2022). Exploring the benefits of combining devops and agile. Future

Internet, 14(2), 63. https://doi.org/10.3390/fi14020063

International Journal of Information Systems and Project Management

Jayakody, V., & Wijayanayake, J. (2023). Critical success factors for DevOps adoption in information

systems development. International Journal of Information Systems and Project Management, 11(3), 60-82.

https://doi.org/10.12821/ijispm110304

Cogent Engineering

Jha, A. V., Teri, R., Verma, S., Tarafder, S., Bhowmik, W., Kumar Mishra, S., Appasani, B., Srinivasulu, A.,

& Philibert, N. (2023). From theory to practice: Understanding DevOps culture and mindset. Cogent

Engineering, 10(1), 1-31. https://doi.org/10.1080/23311916.2023.2251758

Computing in Science & Engineering

Sletholt, M., Hannay, J. E., Langtangen, H. P., & Pfahl, D. (2012). What do we know about scientific

software development’s Agile practices? Computing in Science & Engineering, 14(2), 24–37.

https://doi.org/10.1109/MCSE.2011.113

Conference Proceedings

Azizi, N., & Rowlands, B. (2018, June 23-28). The moderating effects of organisational culture on the

relationship between knowledge sharing and IT risk management success [Research-in-Progress Papers]. 26th

European Conference on Information Systems (ECIS), Portsmouth, United Kingdom.

https://aisel.aisnet.org/ecis2018_rip/39

Babb, J. S., Nørbjerg, J., & Yates, D. J. (2017, August 6-9). The empire strikes back: The end of agile as we know

it? [Paper presentation]. Selected papers of the IRIS, Halden, Norway. http://aisel.aisnet.org/iris2017/8

Chen, H-M., Kazman, R., & Haziyev, S. (2016, January 5-8). Agile big data analytics development: An

architecture-centric approach [Paper presentation]. 49th Hawaii International Conference on System Sciences

(HICSS), Koloa, HI, USA. https://doi.org/10.1109/HICSS.2016.665

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

43

Cois, C. A., Yankel, J., & Connell, A. (2014, October 13-15). Modern DevOps: Optimizing software development

through effective system interactions [Paper presentation]. 2014 IEEE International Professional

Communication Conference (IPCC), Pittsburgh. PA, USA. https://doi.org/10.1109/IPCC.2014.7020388

Gantman, S. (2011, August 4-8). Boundary objects and internal control in outsourced ISD projects: Results of a

pilot study [Paper presentation]. 17th Americas Conference on Information Systems (AMCIS), 3, Detroit,

Michigan, USA. https://aisel.aisnet.org/amcis2011_submissions/200

Ghanbari, H. (2016, January 5-8). Seeking technical debt in critical software development projects: An exploratory

field study [Paper presentation]. 49th Hawaii International Conference on System Sciences (HICSS)), Koloa,

HI, USA. https://doi.org/10.1109/HICSS.2016.668

Ghantous, G. B., & Gill, A. (2017, July 16-20). DevOps: Concepts, practices, tools, benefits and challenges [Paper

presentation]. 21st Pacific Asia Conference on Information Systems (PACIS), Langkawi, Malaysia.

https://aisel.aisnet.org/pacis2017/96

Horlach, B., Drews, P., Drechsler, A., Schirmer, I., & Böhmann, T. (2020, June 15-17). Reconceptualising

business-IT alignment for enabling organizational agility [Paper presentation]. 28th European Conference on

Information Systems (ECIS), Marrakech, Morrocco. https://aisel.aisnet.org/ecis2020_rp/95

Hüttermann, M., & Rosenkranz, C. (2019, December 15-18). DevOps: Walking the shadowy bridge from

development success to information systems success [Paper presentation]. 40th International Conference on

Information Systems (ICIS), Munich, Germany.

https://aisel.aisnet.org/icis2019/is_development/is_development/10

Iyawa, G. E. (2020, August 10-14). Personal extreme programming: Exploring developers’ adoption [Paper

presentation]. 26th Americas Conference on Information Systems (AMCIS), Salt Lake City, Utah, USA.

https://aisel.aisnet.org/amcis2020/it_project_mgmt/it_project_mgmt/1

Kiper, J. R. (2016, January 5-8). Needs to know: Validating user needs for a proposed FBI Academy Knowledge

Management System [Paper presentation]. 49th Hawaii International Conference on System Sciences

(HICSS), Koloa, HI, USA. https://doi.org/10.1109/HICSS.2016.538

Krey, M., Kabbout, A., Osmani, L., & Saliji, A. (2022, January 4-7). DevOps adoption: Challenges & barriers

[Paper presentation]. 55th Hawaii International Conference on System Sciences (HICSS), Maui, HI, USA.

http://hdl.handle.net/10125/80219

Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H., Bosch, J., & Oivo, M. (2016, January

5-8). Towards DevOps in the embedded systems domain: Why is it so hard? [Paper presentation]. 49th Hawaii

International Conference on System Sciences (HICSS), Koloa, HI, USA.

https://doi.org/10.1109/HICSS.2016.671

Olszewska, M., & Waldén, M. (2015, September 1). DevOps meets formal modelling in high-criticality complex

systems [Paper presentation]. 1st International Workshop on Quality-Aware DevOps (QUDOS 2015),

Bergamo, Italy. https://doi.org/10.1145/2804371.2804373

Racheva, Z., Daneva, M., Herrmann, A., & Wieringa, R. J. (2010, May 19-21). A conceptual model and

process for client-driven agile requirements prioritization [Paper presentation]. 2010 Fourth International

Conference on Research Challenges in Information Science (RCIS 2010), Nice, France.

https://doi.org/10.1109/RCIS.2010.5507388

Royce, W. W. (1987, March 30 - April 2). Managing the development of large software systems: Concepts and

techniques [Paper presentation]. 9th International Conference of Software Engineering (ICSE ‘87),

Monterey, California, USA. https://doi.org/10.5555/41765.41801

Sharp, J., & Babb, J. (2018, August 16-18). Is information systems late to the party? The current state of DevOps

research in the Association for Information Systems eLibrary [Paper presentation]. 24th Americas Conference

on Information Systems (AMCIS), New Orleans, LA, USA.

https://aisel.aisnet.org/amcis2018/AdvancesIS/Presentations/26

Australasian Journal of Information Systems Kainulainen, Tuunanen & Vartiainen
2024, Vol 28, Research Article Requirements risk management for continuous dev.

44

Stray, V., Moe, N. B., & Aasheim, A. (2019, January 8-11). Dependency management in large-scale agile: A case

study of DevOps teams [Paper presentation]. 52nd Hawaii International Conference on System Sciences

(HICSS), Maui, HI, USA. http://hdl.handle.net/10125/60137

Stuckenberg, S., & Heinzl, A. (2010, July 9-12). The impact of the software-as-a-service concept on the underlying

software and service development processes [Paper presentation]. Pacific Asia Conference on Information

Systems (PACIS), Taipei, Taiwan. https://aisel.aisnet.org/pacis2010/125

Virmani, M. (2015, May 20-22). Understanding DevOps & bridging the gap from continuous integration to

continuous delivery [Paper presentation]. 5th International Conference on the Innovative Computing

Technology (INTECH 2015), Galicia, Spain. https://doi.org/10.1109/INTECH.2015.7173368

Wang, S. Y., Chang, T. H., Hsu, J. S. C., & Lin, T. C. (2016, June 27-July 1). A study of the influences of

knowledge boundary spanning on project performance in information system development projects [Paper

presentation]. Pacific Asia Conference on Information Systems (PACIS), Chiayi, Taiwan.

http://aisel.aisnet.org/pacis2016/135

Books

Hütterman, M. (2012) DevOps for developers. Apress. https://doi.org/10.1007/978-1-4302-4570-4

Table A6: Analysed and referenced articles

