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ABSTRACT: Enzymes are widely used in biotechnology due to
their ability to catalyze chemical reactions: food making, laundry,
pharmaceutics, textile, brewing�all these areas benefit from
utilizing various enzymes. Proton concentration (pH) is one of
the key factors that define the enzyme functioning and efficiency.
Usually there is only a narrow range of pH values where the
enzyme is active. This is a common problem in biotechnology to
design an enzyme with optimal activity in a given pH range. A large
part of this task can be completed in silico, by predicting the
optimal pH of designed candidates. The success of such
computational methods critically depends on the available data. In this study, we developed a language-model-based approach to
predict the optimal pH range from the enzyme sequence. We used different splitting strategies based on sequence similarity, protein
family annotation, and enzyme classification to validate the robustness of the proposed approach. The derived machine-learning
models demonstrated high accuracy across proteins from different protein families and proteins with lower sequence similarities
compared with the training set. The proposed method is fast enough for the high-throughput virtual exploration of protein space for
the search for sequences with desired optimal pH levels.
KEYWORDS: protein engineering, enzyme optimal pH, large language models, machine learning

■ INTRODUCTION
Enzymes are catalytic molecules that are widely used in
biotechnological production: food, brewing, fermentation,
textile, laundry, paper, and pharmaceutical industries rely on
enzymes.1 Commonly, the catalytic reactions start by trans-
ferring the proton from a protein residue to the substrate,
forming the stable charged intermediate.2−5 The need for such
proton transfer requires the amino acids forming the active site
to be in a particular protonation state, which is defined by the
solution proton concentration (pH) and the amino acid proton
affinity (pKa). Despite pKa values being well-known for single
amino acids in water,6 the electrostatic interactions formed by
the protein environment can lead to significant pKa shifts.
These shifts are usually unknown, making it difficult to predict
the pH range for which the reaction can be catalyzed by
enzymes.
To close the gap in experimental knowledge of amino acid

pKa values in proteins, a lot of computational tools have been
developed aiming to predict those values.7−12 However, there
is still a need for improved methods for the pKa prediction.

13

Most of the first-principles methods require a structural model
to predict pKa. However, biotechnology often requires to
design of a novel enzyme working in the given pH range
without prior information about the atomic structure. One can
use algorithms for protein structure prediction,14−16 to create a
structural model for pKa prediction of protein amino acids.

However, structural models might be computationally costly,
preventing such workflows from being applied for screening
large databases of enzyme candidates, let alone the methods for
pKa predictions still work better for the experimentally
determined structures.13 Additionally, due to possible inter-
actions between the amino acids, derivation of optimal pH
range from individual pKa is not always evident.

17,18 Thus, to
facilitate the design of new enzymes for biotechnological
production, new fast methods for predicting optimal enzyme
pH range from its sequence are in high demand.
In contrast to structural methods for pKa prediction, the

majority of sequence-based approaches are knowledge-based.
The models are first trained on experimental data sets that
contain information about both enzyme sequence and optimal
pH and then applied to new sequences to predict their
properties. One of the first machine learning models solved
classification problems, for example, to discriminate between
the alkaline (active within pH > 7.0) and acidic (active within
pH < 7.0) enzymes.19−22 The other models relied on neural
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networks to predict optimal pH for enzymes from a specific
protein family, such as beta-glucosidase23 or glucoside-
hydrolase.24 Finally, nonspecific machine learning methods
emerge that rely on the protein embeddings calculated with
large language models.25 The applicability of knowledge-based
methods depends on the size and quality of the training data
set. Most of the existing models utilized either manually
prepared databases, or publicly available databases such as
Brenda-Enzymes.26,27 In this study, we present a novel
machine learning method that predicts the optimal pH range
of enzymes solely based on their amino acid sequence. We
rigorously evaluated the performance of our developed method
using various train-validation splitting strategies, consistently
observing robust and reliable predictions. Furthermore, our
approach exhibits the potential for continuous improvement
through the incorporation of new data into the training
process. This indicates that as new enzyme pH data become
available, our method can be enhanced to achieve even higher
accuracy and predictive power. The developed method,
dubbed OphPred, is fast in both the learning and inference
stages, allowing efficient screenings of a thousand enzymes in
less than a second, making it highly practical for large-scale
analysis and screening tasks. Finally, to ensure widespread
accessibility and usability, we have implemented our method in
a user-friendly, zero-code platform that can be easily accessed
and utilized by the scientific community.

■ RESULTS AND DISCUSSION
Here, we present OphPred, the sequence- and machine
learning-based approach to predict the optimal pH of a
protein (see Figure 1). OphPred utilizes the ESM-2 protein

language model in combination with KNN and XGBoost
models. It is trained on the Brenda-Enzymes data set. We used
rigorous validation involving four different splitting strategies:
random, homology based, PFAM based, and EC based to avoid
bias related to the sharing of similar sequences between the
training and validation sets. Given the train-validation split, we
processed protein sequences using the ESM-2 protein language
model followed by the derivation of k-nearest neighbor (KNN)
and eXtreme gradient boosting (XGBoost) models to predict
enzyme optimal pH. To train the models, we used the Brenda-
Enzymes data sets of optimal pH values collected for ∼3,000
(version November 2021) and for ∼10,000 (version March
2023) proteins with the UniProt identifiers. Hereinafter, we
provide the results obtained for the models trained with the
enrichment from the newer version of the Brenda-Enzymes
data set (see Methods), while the corresponding results for the
models trained using the older version are provided in the
Supporting Information.

Random and Homology Split. The models demonstrated
similar performance with the mean absolute error of ∼0.7 for
random and homology splits with 0.2, 0.4, and 0.6 thresholds,
respectively (see Table S10 and Figure 2). As for the
Spearman’s correlation coefficient, the XGBoost and KNN
models showed 0.59 and 0.58 values on the random split and a
slight decrease to 0.50 and 0.49 values, respectively, for the
homology split with the 0.6 threshold (see Table S10). It is
important to note that many known enzymes work at close to
neutral pH conditions. Indeed, for the enriched data set 5586
(56%) out of 10 031 sequences fall into the [6.0,8.0] pH range.
As a consequence, a naive model that predicts 7.3 pH (the
median value) for any protein sequence demonstrates a mean
absolute error of ∼0.9. At the same time, one is typically more
interested in detecting sequences with an optimal pH beyond
the standard range. To avoid such a pitfall and verify the
robustness of the derived models, we eliminated sequences
with experimental pH values falling into δ = 0.5,1.0,1.5 vicinity
of the median pH value of the data set (pH = 7.3) and
recalculated the performance metrics (see Figure 2 and Table
S10). We observed a gradual decrease in terms of the mean
absolute error from 0.7 to 1.4 for the random split and
homology splits, respectively, as δ increased from 0.0 to 1.5.
While the mean absolute error increases as δ increases, we
observed that the Spearman’s correlation coefficient does not
change or even slightly improves (see Figure 2). Therefore, the
OphPred model can be useful for protein screening campaigns,
where one is typically interested in selecting Top N protein
sequences for experimental validation.
Impact of Different Embeddings. The derived OphPred

model is based on ESM-2, which is suitable to compute rich
embeddings of protein sequences in high-throughput mode.
However, there are other methods to calculate protein
embeddings that can be also used to derive machine learning
models for the downstream tasks. To test the impact of
different embeddings for the optimal pH prediction problem,
we considered one-hot encoding and deep learning-based
embeddings from 11 language models with diverse architec-
tures (CNN, RNN, LSTM, Transformers) and trained on
different large databases (see Methods). We trained models
using these embeddings and a homology split with a threshold
value (ε) of 0.6. As expected, the transformer-based models
(various modifications of ProtTrans and ESM) showed
comparable performance, while CNN-, LSTM-, and RNN-
based models performed slightly worse, and the one-hot
encoding-based models demonstrated the worst performance
(see Figure S6).
It is worth noting that databases used to train protein

language models are typically biased with respect to the
superkingdoms. For instance, there are twice as many bacterial
sequences as eukaryotic sequences in the UniProt database. It
may lead to an uneven distribution of species of sequences in
the training set of large language models like ESM-2. To test
whether the derived OphPred models are biased to the types of
organisms, we retrieved information about the superkingdoms
of the species from which protein sequences came and saw
how the performance metrics are distributed across the
superkingdoms. We observed that models’ metrics are similar
for different superkingdoms on different splits; the largest
discrepancy of ∼0.10 in the performance metric with respect to
the entire test set was observed for the Archaea superkingdom
subset (see Tables S12 and S13 and Figure S7). The fact that
the metrics are not strongly influenced by the origin of the

Figure 1. Illustration of the model pipeline.
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protein sequences indicates the applicability of the model to
sequences from different superkingdoms.
Comparison with EpHod. We compared OphPred with

EpHod, another sequence-based method for predicting
enzyme optimal pH.25 For rigorous comparison, we retrieved
the training (7,124 sequences) and test (1,972 sequences)
subsets from the corresponding Zenodo repository (https://
zenodo.org/records/8011249) and retrained our models from
scratch. We observed that OphPred outperforms EpHod on
the test set in terms of the mean absolute error, demonstrating
a mean absolute error of 0.6 and a correlation coefficient of
0.55, while EpHod achieves a mean absolute error of 0.7 and a
correlation of 0.59.

PFAM and EC Splits. To diversify the train-test split
strategy further, we carried out a hold-out evaluation based on
the PFAM annotations (see Methods). We considered only
mean absolute errors as the performance metrics because we
observed a lot of small clusters corresponding to the same
PFAM annotation (typically ≤10), hence nonrepresentative
correlation coefficients. We observed similar performance in
terms of the average mean absolute errors for the hold-out
subsets (∼0.9), indicating the absence of apparent biases of the
developed models with respect to particular protein families
(see Figure 3). However, we also observed a larger std. value
(∼±0.4), and Figure S1 shows the MAE along with the std.
value with respect to the size of the cluster. Next, we carried
out the EC-based split, where we trained the hydrolase-specific
and nonhydrolase-specific models, and tested both models on
the hydrolase sequences (see Methods). We found that the
models performed better when trained on the same class of
enzyme. For instance, OphPred-KNN trained on hydrolases
achieves a mean absolute error of 0.7 ± 0.1 and a correlation of
0.71 ± 0.03, while the nonhydrolase-specific model demon-

strated a mean absolute error of 1.1 ± 0.1 and a correlation of
0.36 ± 0.04. (see Figure 4) On the one hand, these results
indicate a limitation of the derived models’ application to the
novel protein classes; and on the other hand, it indicates the
usability of the family specific models.

OphPred Improves with New Data Available.With the
rapid accumulation of new biophysical data, it is important for
machine learning approaches to demonstrate improved
performance over time. We observed that the OphPred
models derived using the enriched training sets demonstrate
∼10% increase of the Spearman correlation coefficient, while
approximately the same mean absolute errors compared to the
nonenriched models (see Figure 5 and S3−5, Tables S8 and
S10 for more details). Importantly, for a fair comparison, we
kept the test set unchanged and enriched only the training sets
(from ∼2,000 to ∼10,000 sequences). Thus, the OphPred
approach can be enhanced to achieve even higher accuracy and
predictive power with the accumulation of new optimal pH
data.
To further explore the data set expansion, we considered the

mean growth pH data. It has been shown for at least five

Figure 2. Performance of different models trained on random (ϵ = 0) and homology splits. The top row schematically explains the meaning of the ϵ
and δ parameters. The middle row shows MAE metrics for different models and combinations of the ϵ and δ parameters. The bottom row shows
the correlation metrics for different models and combinations of the ϵ and δ parameters. Since the naive model always predicts the median value
from the training set, the correlation metric is absent for this model.

Figure 3. Left side of the figure schematically illustrates the PFAM-
based split. The right side of the figure demonstrates the distribution
of the MAE performance metric on the hold-out PFAM families for
different models.
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different enzymes that the average temperature of the catalytic
optimum correlates with the growth temperature of the
organism.28 Furthermore, including information about the
mean growth temperature of microorganisms improves the
accuracy of the predictive models for the catalytic temperature
of enzymes.29 Therefore, one may hypothesize that similarly,
including information about the optimal growth pH should
improve models for optimal enzyme pH prediction. To test if
optimal and mean growth pH values are indeed related, we
trained an additional model on the optimal growth pH data set
(see Methods), which contains ∼50 times more sequences,
compared to our optimal pH data set.
The derived model showed promising results on the

validation sets corresponding to the mean growth pH values
(the mean absolute errors ∼0.5−0.8 and Spearman’s
correlation coefficients ∼0.65−0.77; see Table S10). However,
it demonstrated poor results for the optimal enzyme pH data
set. More specifically, we observed the mean absolute errors of
≥1.4 for optimal pH data sets and no correlation in terms of
Spearman’s rank correlation coefficients. Thus, the obtained
results indicate that the mean growth pH and the optimal
enzyme pH are not strongly correlated. Additionally, we found
364 protein sequences that have both the mean growth pH and
the optimal enzyme pH measured. The Pearson’s correlation
coefficient between them is −0.17, which confirms the lack of
strong relationships between mean growth pH and optimal
enzyme pH. Nonetheless, the obtained results also show that
the proposed approach is not limited to optimal enzyme pH

prediction problem and can be used to derive target-specific
predictive models.

■ CONCLUSION
In this study, we have developed a machine learning-based
approach, OphPred, to predict enzyme optimal pH. We
considered different splitting strategies, including random,
homology-based, EC-based, and PFAM-based splits, to test
OphPred predictive power and observed a solid performance
in terms of the mean absolute error and Spearman correlation
coefficient. Additionally, we observed that OphPred benefits
from adding new data to the training. OphPred operates with
the protein sequence information only and, hence, is fast to
screen large-size protein libraries. OphPred is available at
https://github.com/i-Molecule/optimalPh. and https://
research.constructor.tech/public/project/optimalph.

■ METHODS
Data Sets. Optimal pH. We retrieved entries from the two

versions of the Brenda-Enzymes database26 (version Novem-
ber 2021 and version March 2023) with known optimal pH
values, as well as the optimal pH range. For the latter case, we
assigned the optimal pH value to an entry as the average of the
lower and upper boundaries of the optimal pH range. Note
that the database does not contain the protein sequences, but
the protein name, EC number,30 organism information, and, in
rare cases, the UniProt accession identifier. To avoid data
ambiguity, we considered only entries with UniProt accession
identifiers and retrieved the corresponding protein sequences.
For the sequences with several pH values, we calculated the
standard deviation (std.) of the pH values and discarded
sequences with std. > 1.0; for the remaining sequences we used
the averaged pH value, as the optimal enzyme pH. In total, we
obtained two data sets consisting of 2,840 (for Brenda-
Enzymes database version November 2021) and 10,031 (for
Brenda-Enzymes database version March 2023) protein
sequences with assigned optimal pH values. Additionally, we
extracted taxonomy information from the Uniprot accession
identifiers: 5,020 proteins belong to eukaryotes, 4,090 to
bacteria, 724 to archaea, 72 to viruses, and 125 remained
unclassified.
Mean Growth pH. In addition, we collected 2,516,572

protein sequences with known mean growth pH values from
the GOLD database.31 Note that the same proteins may (i)
occur in different organisms and (ii) correspond to several
measurements; therefore, each sequence may be associated
with different growth pH values. Indeed, we observed only
252,491 unique protein sequences. For consistency, we
discarded sequences associated with multiple growth pH
values, if the corresponding standard deviation is larger than
1.0, resulting in 169,517 protein sequences. As the mean
growth pH, we used the averaged value according to
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where K is the number of different organisms with known
mean growth pH for the protein sequence s, Oj is the total
number of measurements for s within the organism j, and pHi

j

is the corresponding measurement.
Train and Validation Splits. Train and validation splitting

are vital parts of computational experiments. Therefore, to

Figure 4. Performances of the hydrolase-specific and nonhydrolase-
specific models. The top row schematically shows how both models
were trained and tested. The middle row shows the MAE metrics for
the hydrolase-specific (left) and the nonhydrolase-specific (right)
models. The bottom row shows the correlation metric for the
hydrolase-specific (left) and the nonhydrolase-specific (right) models.
Since the naive model always predicts the median value from the
training set, the correlation metric is absent for this model.
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evaluate the robustness of the developed approach, we divided
the data sets into training and validation parts using four
different splitting strategies: (i) the random split, (ii) the
homology split, (iii) the PFAM split, and (iv) the EC split, as
follows.
Random Split. For the random split, we simply divided data

sets randomly into the train and validation subsets with a 3:1
ratio. Note that commonly used random split likely leads to
overestimated results due to the highly similar protein
sequences shared between the training and validation subsets.
Homology Split. To overcome potential bias related to the

random split, one can group sequences based on their
sequence similarity followed by the cluster-based split, such
that any two similar sequences together belong either to train
or validation set. For each data set, we constructed multiple
sequence alignments using MAFFT(v7.450)32 with default
parameters except for the option “−anysymbol” which was

turned on to guarantee the correctness of parsing of sequences
with noncanonical amino acids. Then we calculated pairwise
sequence similarity matrix |S|, where the pairwise scores were
divided by the length of the shortest sequence providing a
more strict clusterization criterion. Next, we calculated the
distance matrix as |I|−|S|, where |I| is the matrix of ones. Then,
we used the DBSCAN33 algorithm implemented in the sklearn
python library34 to obtain clusters from the distance matrix.
Thus, any pair of sequences from two different clusters has
distance ≤ ε, where ε is the input threshold. We tested three
different values of the threshold parameter ε: 0.2, 0.4, and 0.6.
Note that this procedure may result in orphan sequences, i.e.,
not assigned to any cluster; in such cases, we grouped all the
orphan sequences into a separate cluster. For example, for the
optimal pH data set using ε = 0.2 leads to the orphan cluster
comprising 85% of the Brenda-Enzymes data set (version
November 2021) (see Table S1). Finally, the obtained clusters

Figure 5. Effect of data enrichment on the performance of the models. The top row schematically shows the data enrichment. The middle row
shows the MAE metrics for different models, where the metrics obtained with the original data set are shown with transparent bars, while metrics
obtained with the enriched data set are shown with opaque bars. The bottom row shows the correlation metrics for different models, where the
metrics obtained with the original data set are shown with opaque bars, while metrics obtained with the enriched data set are shown with
transparent bars. Since the naive model always predicts the median value from the training set, the correlation metric is absent for this model.
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were split in a way to preserve the 3:1 ratio with respect to the
number of sequences between the training and validation sets.
Table S1 lists clusterization details for the mean growth pH
and enzyme optimal pH data sets. Note that rigorous
clusterization of the mean growth pH data set is not feasible,
as it requires dozens of billions of comparisons and ∼100 GB
RAM for DBSCAN. Instead, we used CD-HIT35 for
homology-based clusterization of the mean growth pH data
set. CD-HIT is suitable for large sets of sequences, although it
does not guarantee the absence of similar sequences between
two different clusters. We set the ε parameter to 0.6 for
clusterization with CD-HIT because smaller values lead to
degradation in both speed and accuracy of clusterization.36

PFAM Split. The PFAM database of protein families37

annotates each entry with one of six different types: family,
domain, motif, repeat, coiled-coil, or disordered, indicating the
class of the functional unit being represented by that entry.
Given a protein sequence, one can retrieve the PFAM
annotation by searching against the PFAM library of Hidden
Markov Model profiles calculated from the PFAM’s MSAs. We
obtained the PFAM annotations for 2,774 out of 2,840
sequences from the Brenda-Enzymes data set (version
November 2021), 9,784 out of 10 031 from the Brenda-
Enzymes data set (version March 2023), as well as for 165,820
out of 169,517 sequences from the mean growth pH data set,
using the PfamScan web service Python client as of December
2023 https://github.com/ebi-wp/webservice-clients-generator.
It is important to note that each sequence generally
corresponds to several PFAM numbers. Then we used the
hold-out validation, where given a PFAM number, all
sequences corresponding to this number are assigned to the
validation set and the remaining sequences are assigned to the
train set. In total, we composed 1,363, 2,556, and 1,403
holdout splits for two Brenda-Enzymes data sets and the mean
growth pH data set, respectively.
EC Split. All enzymes are classified based on the chemical

reactions they catalyze using a four-number code, that is the
EC (Enzyme Commission) code.30 For example, coniferyl
alcohol dehydrogenase has a 1.1.1.194 EC code, where the first
number shows that the protein belongs to one of the following
classes: Oxidoreductases (1), Transferases (2), Hydrolases (3),
Lyases (4), Isomerases (5), Ligases (6), and Translocases (7),
and the other three numbers reflect the classification into
smaller and more specific subclasses. For the optimal enzyme
pH data sets, we retrieved the corresponding EC numbers
from the Brenda-Enzymes database. As for the mean growth
pH data set, we used Swiss-Prot38 and ECDomainMiner39 to
classify protein sequences into seven groups corresponding to
the top-level EC numbers, and we discarded sequences with
unknown EC numbers. We observed that most of the
sequences belong to the non-Hydrolase family; therefore, we
put all such sequences in the training set and Hydrolase
sequences in the validation set. Note that we discarded
proteins with both hydrolase and nonhydrolase functions from
consideration. In total, we obtained 1,165 hydrolase sequences
with known optimal enzyme pH. Next, we trained the
hydrolase-specific and nonhydrolase-specific models as follows.
First, we prepared five folds from 1,165 of hydrolase sequences.
For the hydrolase-specific model, we used these folds for the
cross-validation. As for the nonhydrolase-specific models, we
used each fold as a validation fold, while taking 1,675
nonhydrolase sequences as the training set. Note that in
contrast to the PFAM-based and homology-based splits, the

EC-based split does not rely on the sequence or structural
information on a protein. Indeed, proteins with different 3D
structures can catalyze the same reaction and have the same
EC number; for example, human and bovine peptidyl-proline
cis−trans isomerases have different folds (PDB IDs: 1PIN and
1IHG). Noteworthy, one protein may catalyze different types
of chemical reactions, for example, the folD protein from E. coli
(Uniprot ID: P24186) is bifunctional and acts as both
hydrolase and oxidoreductase. Therefore, the EC-based split
represents a complementary way to split protein sequences.

Enrichment. To demonstrate the potential of OphPred to
improve with the accumulation of new biophysical data, we
extended the training set using a newer version of the Brenda-
Enzymes data set (version March 2023). For the random split,
we simply added new sequences to the training set, and for the
homology split, we added new sequences considering the
homology with respect to the test set to ensure the absence of
similar sequences between the training and test sets. For the
EC split, we enriched the training set with the nonhydrolase
sequences for the nonhydrolase-specific model, while the test
set consisting of the hydrolase sequences was the same; and for
the hydrolase-specific model, we performed 5-fold cross-
validation using the enriched training set. As for the PFAM
split, we used the same strategy to compose the hold-out splits
as for the Brenda-Enzymes data set (version November 2021).

The Baseline Approach. As the baseline, we used a two-
step approach, that outperformed all the methods in
Novozymes (https://www.novozymes.com/en) challenge of
Predict optimal pH for enzyme activity https://biohackathon.
biolib.com/event/2021-protein-edition. The first step is to
calculate the property values of short sequence fragments, and
the second step is to predict the property value of the entire
sequence from the property values of its fragments. More
precisely, we represent each protein sequence in the training
set as a set of k-mers, which are subsequences of length k, and
associate each k-mer with the pH value of the protein
sequence. Generally, a particular k-mer can have more than
one associated pH value because it can be observed in more
than one sequence. Thus, each k-mer corresponds to the list of
pH values, so we calculated the mean, maximum, and
minimum pH values for it. Note that the first step is done
only once for the given training set.
To predict optimal pH of the input protein sequence on the

second step let us denote T a 20k-vector of the pH values of all
k-mers listed in the lexicographical order, and assign Ti = 0, if
the corresponding k-mer is absent in the k-mer table. Let us
also denote P as a 20k-vector for a given protein sequence,
where Pi is the number of occurrences of the i-th k-mer in the
protein. Then we calculate the optimal pH of the protein
sequence as

=
P

pH(sequence)
(P, T)

T i0i (2)

In practice T is sparse (the number of nonzero elements is
≪20k); therefore, it is much more efficient to directly iterate
over the vocabulary of k-mers and calculate the pH value as

=
N

pH(sequence)
1

pH
k

N

k
mer

mer
(3)

where N is the number of k-mers in a protein sequence.
Similarly, one can estimate the optimal pH range for an
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enzyme by calculating the minimal and maximal pH value as
the lower and upper bound of the pH range, respectively.

The OphPred Approach. To encode protein sequences as
numerical vectors we used the Evolutionary Scale Model
(ESM-2) which is one of the largest transformer-like language
models specifically trained for protein sequences�it com-
prised 33 neural network layers and 650 million trainable
parameters.40 Note that we cut 13 protein sequences to the
first 5000 amino acids due to the limitations of the GPU
memory (NVIDIA GeForce GTX 1080 Ti 12GB). The ESM-2
model takes protein sequence as the input and yields a 1280-
size vector in the output, reflecting the structural and
functional properties of the protein. We used a pretrained
ESM-2 model from the fair-esm (v 2.0.0 as of December 2023)
python package https://github.com/facebookresearch/esm.40

Given the numerical representations of the protein sequences,
we then used k-nearest neighbor (KNN) and XGBoost as the
regression models for the optimal pH prediction tasks. We
determined the optimal parameters of the regressors using the
grid search (Tables S2 and S3). Therefore, we obtained end-
to-end models, named the OphPred models, which take a
protein sequence as the input and output its optimal pH value.

Embeddings. With the advances in deep learning language
models, it becomes possible to efficiently represent protein
sequences as high-dimensional vectors or embeddings. While
we mainly focused on the ESM-2 model to obtain the
embeddings, we also considered the following methods for
comparison:

• Averaged one-hot encoded vectors over amino acid
positions in a protein sequence.

• A Recurrent Neural Network (RNN) model by Bepler,41

which was trained on ∼21M sequences from the PFAM
database. The model is a stack of 3 bidirectional Long
Short-Term Memory (LSTM) layers followed by a
linear layer, that gives embeddings for each position.
The embeddings are then averaged to obtain the protein
embedding.

• The CPCPProt model,42 which was trained on ∼32M
sequences from the PFAM database.37 The model
comprises a 1d-Convolutional Neural Network that
converts sequence patches of length 11 into numerical
vectors fed into a Recurrent Neural Network model to
obtain the position embeddings. The embeddings are
then averaged to obtain the protein embedding.

• The RNN-based SeqVec model,43 trained on the
UniRef50 data set (∼45M sequences).38 The model
consists of two stacked bidirectional LSTM layers, that
output embeddings for each position. The position
embeddings are then averaged to obtain the protein
embedding.

• The RNN-based PLUS model,44 which was trained on
∼14M sequences from the PFAM database.37 The
model is a stack of 3 bidirectional RNNs followed by a
linear layer, that gives position-wise embeddings. The
embeddings are then averaged to obtain the protein
embedding.

• The transformer-based ProtTrans_BERT/Albert/T5
models.45 We considered three variants of Prot-
Trans_T5 models, which were trained on sequences
from BFD (https://bfd.mmseqscom.), UniRef50,38 or
both databases. Models ProtTrans_BERT and Prot-
Trans_Albert were trained on protein sequences from

the BFD database. The models comprise different
variations of the stacked transformer blocks to obtain
position-wise embeddings, which are then averaged,
resulting in protein embedding.

• The transformer-based ESM-1 and ESM-1b46 models,
trained on the UniRef50 data set.38 The models consist
of 33 and 34 transformer blocks, respectively. Similarly,
the models’ output is position embeddings, which are
averaged to obtain the protein embedding.

To compute embeddings for the ESM family models, we
used the fair-esm python package (https://github.com/
facebookresearch/esm, v 2.0.0 as of December 2023). For
the other embeddings, we used the bio_embeddings (v 0.2.2)
python package.47

Performance Metrics. To assess the performance of the
methods, we used Spearman’s Rank Correlation Coefficient
and Mean Absolute Error:

=r
d

n n
1

6

( 1)s
i
n

i
2

2 (4)

= | |y y
n

y yMAE( , )
1

i

n

i i
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where di is the difference between the true and the predicted
ranks for sample i and n is the total number of samples.
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