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Significance

 Traits of wild animals can change 
over contemporary timescales, 
but concluding that evolution 
played a role requires 
demonstrating that trait change 
is linked to genetic change. This 
is because while selection acts on 
organisms’ traits, evolution in the 
strict sense is a process resulting 
in changes to the genome. But 
natural selection operating in 
natural ecosystems rarely acts  
in a single direction, and many 
factors that cause selection vary 
through time. We study wild 
stickleback in a well-studied lake 
to characterize how the genetics 
of correlated traits respond to 
different types of selection (e.g., 
directional or fluctuating). Our 
study clearly demonstrates how 
evolutionary processes cause 
trait change in the wild on a 
contemporary timescale.
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EVOLUTION

Microevolutionary change in wild stickleback: Using integrative 
time-series data to infer responses to selection
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A central goal in evolutionary biology is to understand how different evolutionary pro-
cesses cause trait change in wild populations. However, quantifying evolutionary change 
in the wild requires linking trait change to shifts in allele frequencies at causal loci. 
Nevertheless, datasets that allow for such tests are extremely rare and existing theoretical 
approaches poorly account for the evolutionary dynamics that likely occur in ecological 
settings. Using a decade-long integrative phenome-to-genome time-series dataset on 
wild threespine stickleback (Gasterosteus aculeatus), we identified how different modes 
of selection (directional, episodic, and balancing) drive microevolutionary change in 
correlated traits over time. Most strikingly, we show that feeding traits changed by as 
much 25% across 10 generations which was driven by changes in the genetic architecture 
(i.e., in both genomic breeding values and allele frequencies at genetic loci for feeding 
traits). Importantly, allele frequencies at genetic loci related to feeding traits changed 
at a rate greater than expected under drift, suggesting that the observed change was a 
result of directional selection. Allele frequency dynamics of loci related to swimming 
traits appeared to be under fluctuating selection evident in periodic population crashes 
in this system. Our results show that microevolutionary change in a wild population is 
characterized by different modes of selection acting simultaneously on different traits, 
which likely has important consequences for the evolution of correlated traits. Our 
study provides one of the most thorough descriptions to date of how microevolutionary 
processes result in trait change in a natural population.

Mývatn | natural selection | whole genome resequencing | quantitative genetics | population genomics

 Identifying microevolutionary processes underlying phenotypic change in wild populations 
remains a fundamental challenge for evolutionary biologists. Existing theoretical models 
typically have limited power to predict the observed dynamics of trait change in nature 
( 1   – 3 ). For example, short-term change predicted by estimates of selection and trait her-
itability are often not realized in wild populations, giving rise to the “paradox of stasis” 
( 4 ). There are several possible explanations for this. First, although wild populations live 
in variable environments and likely experience shifts among agents and modes of selection, 
most microevolutionary studies focus on a single mode of selection (most commonly 
directional) ( 5     – 8 ). Second, while selection acts on the entire phenotype, components of 
the multivariate phenotype can differ in their evolutionary potential, expected mode of 
selection ( 9 ,  10 ), and degree of plasticity ( 11 ), all of which can interactively shape evolu-
tionary responses. Third, covariances among traits can both accelerate and constrain evo-
lutionary responses and can complicate the detection of responses to selection ( 12 ). 
Collectively, the inherent difficulties in detecting microevolutionary change in wild pop-
ulations, together with the complexity of the biological processes governing evolutionary 
responses, make it challenging to study evolution in the wild. Here, we use theory from 
quantitative genetics and molecular genomics together with an integrative phenome-genome 
time-series to connect trait change with natural selection in a wild population of threespine 
stickleback (Gasterosteus aculeatus ).

 Robustly determining whether phenotypic change is caused by microevolutionary pro-
cesses in natural populations requires determining whether observed phenotypic trends 
are caused by allele frequency changes at causal loci ( 13 ). This can be extended to describe 
how different modes of selection act simultaneously in a single population by linking 
observed phenotypic trends to analogous patterns in changes to allele frequencies. 
Quantitative genetics approaches enable the use of individual-level data to characterize 
microevolution as change to a population’s mean breeding value (i.e., the expected trait 
value for an individual given their genes) ( 13 ,  14 ). Population genomics methods, on the 
other hand, can track allele frequency dynamics across generations to identify loci that 
are diverging beyond neutral expectations ( 15       – 19 ). Integration of these methods helps to D
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alleviate key limitations involved with using either in isolation 
( 20 ,  21 ). Specifically, by integrating quantitative genetic and pop-
ulation genomic approaches in longitudinal data, one can avoid 
the decoupling of genome-phenotype linkages that is often asso-
ciated with inferences from allele frequency dynamics alone, while 
retaining the ability to identify change at the molecular level and 
allow for alternative genetic architectures by relaxing the assump-
tions of the infinitesimal model. We apply this approach to a 10-y 
time-series (ca. 10 stickleback generations) of whole-genome 
sequencing and phenotypic measures of functional traits (trophic 
and defense traits) from the threespine stickleback of Lake Mývatn, 
NE Iceland, allowing us to assess the extent to which temporal 
change in multiple trait types reflects different modes of selection 
(directional, episodic, and balancing).

 Mývatn is a highly dynamic ecosystem in which multiple eco-
logical agents of selection, including vertebrate and invertebrate 
abundances, are known to fluctuate through time ( 22     – 25 ), likely 
generating strong natural selection. In particular, stickleback den-
sity fluctuates periodically [ Fig. 1C  , ( 24 )] which is expected to 
cause fluctuating density-dependent selection, and abundance of 
stickleback predators and prey fluctuate through time ( Fig. 1 D  
and E  ), generating predator- or prey-mediated natural selection. 
The stickleback population is panmictic ( 26 ) with high levels of 
standing genetic variation (H﻿e  = 0.26 ± 0.02, FIS   = −0.032 ± 0.08), 
despite relatively low effective population size (N﻿e  = 1,752 ± 249) 

and regular population bottlenecks ( 24 ). Similar to other freshwa-
ter populations of stickleback around the Atlantic ( 27 ), genomic 
principal component analyses (PCA) suggest that Mývatn stickle-
back are polymorphic for several inversion haplotypes ( Fig. 1B  ) 
which are rich in quantitative trait loci (QTL) and have been asso-
ciated with both marine-freshwater and lake-stream divergence 
( 28 ). Together, these data suggest that fluctuating selection may 
contribute to the maintenance of genetic and phenotypic variation 
in this population ( 29   – 31 ), although fluctuating selection could 
also deplete genetic variation ( 32 ,  33 ). Mývatn stickleback were 
sampled every 2 y from 2010 to 2020 as part of a long-term study 
of lake Mývatn ( 22 ,  24 ) (approximately 10 stickleback generations) 
which included an extreme population crash in the years 2014 to 
2016 ( 24 ) ( Fig. 1C  ) that likely reflects a strong episode of selection. 
We phenotyped 861 individuals and sequenced the genomes for 
515 (SI Appendix, Table S1 ). After quality control of raw sequence 
data, genotyping, and filtering, we had just over 1.7 million bial-
lelic single nucleotide polymorphisms (SNPs) located on auto-
somes that were used for all downstream analyses. We tested for 
evidence of directional, fluctuating, and balancing selection at both 
the phenotypic and genomic levels, aiming to determine whether 
different modes of selection act simultaneously in this highly 
dynamic ecosystem. While our tests for fluctuating selection follow 
a single episode of nonlinear selection that very likely scales to 
result in fluctuating selection given evidence for strong ecological 
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Fig. 1.   Key aspects of Mývatn stickleback system. (A) photo and map of lake Mývatn with sampling locations named (location from which photo taken indicated 
on map as blue star) (B) summary figure of the first two axes from genome-wide clustering using genomic PCA analyses where axis labels describe genomic 
location of SNPs that segregate across each axis. Each of the genomic locations described on axis labels are a known inversion polymorphism in stickleback; 
(C) stickleback population dynamics across the duration of the study plotted as catch-per-unit-effort (CPUE) on the log-scale (see ref. 24 for further details); (D) 
population dynamics for key stickleback predators: sum total of piscivorous birds present at Mývatn [blue; Red-breasted merganser (Mergus serrator), red-throated 
diver (Gavia stellata), goosander (Mergus merganser), great northern diver (Gavia immer) and Slavonian grebe (Podiceps auritus)], and CPUE of Arctic charr (orange; 
Salvelinus alpinus, for further details, see ref. 25) both plotted on the log-scale; (E) population dynamics for Tanytarsus gracilentus (green) reflecting variation in 
chironomid midge abundance (key stickleback prey) plotted as CPUE on the log-scale.D
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fluctuations in this system ( 23 ,  24 ), due to our study spanning a 
single episode, we hereafter refer instead to an “episode of selection” 
to better reflect the nature of the selection we studied.         

Results

Genetic Contribution to Observed Phenotypic Change. We 
focused on functionally important traits that fall into two general 
categories: the defense traits number of armor plates, thought to 
defend against bird predation, and length of pelvic and dorsal 
spines, thought to defend against gape-limited predators (34); the 
trophic traits gill-raker length, gill-raker gap width, and number, 
which in stickleback typically vary in relation to invertebrate prey 
communities, in particular, chironomid midges and cladocerans, 
and gut length which is correlated with the digestibility of diet (35). 
We also measured total length as a standard measure of body size 
and is also an approximate measure of age given that stickleback 
have indeterminate growth (36, 37). To identify whether traits 
changed through time, we ran a suite of mixed effects models to 
identify temporal trends in the phenotypic mean of the population 
after accounting for sexual dimorphism, length (and therefore 
age), and spatial divergence (Materials and Methods). We did not 
test whether length changed over time because while length is 
an important life history trait often under natural and sexual 
selection, we were not able to age individuals and were therefore 
not able to distinguish changes in length that were independent 
of age. The temporal trajectory of each trait was identified by 
comparing a model without year included to one which fit the 
year of capture as a linear term (as expected under directional 
selection) and one which further included a quadratic term (as 
expected under episodic selection) (38). Phenotypic covariances 
between all traits (after correcting for sexual dimorphism, age, 
and allometry) were estimated from the residual covariance matrix 
from a multivariate model. Note that because all analyses included 

length and sex, all results presented hereafter refer to traits relative 
to these measures.

 Including a year term in the models improved model fit for all 
traits except pelvic spine (PS) length, and the means of all but one 
trait (PS length) changed over the 10-y time span ( Table 1 ). The 
defense phenotype shifted toward fewer plates and longer dorsal 
spines over time ( Fig. 2B   and  Table 1 ), suggesting adaptation as a 
response to predator-induced selection ( 34 ,  39 ). The trophic phe-
notype shifted toward fewer and longer gill-rakers with narrower 
gaps between them, and relatively longer guts ( Fig. 2B   and  Table 1 ), 
suggesting adaptation to changes in diet. Most of the phenotypic 
trends were linear and directional, but there was nonlinearity in 
the effect of year on lengths of dorsal spines and the gut ( Table 1 ). 
For traits that changed linearly, our analyses suggested that over the 
10-y of the study, the number of plates decreased by 0.28 (mean = 
5 plates) equating to a 6% decrease, the length of gill-rakers 
increased by 0.09 mm equating to a 8% increase, the number of 
gill-rakers decreased by 3.44 (mean = 14 rakers) equating to a 25% 
decrease, and gill raker gap width decreased by 0.03 mm (mean = 
0.18 mm) equating to a 17% decrease across the duration of the 
study (all estimated for a female stickleback of average length, 
 Table 1 ). Trait covariances generally reflected the directionality of 
overall phenotypic change ( Fig. 2A  ): the lengths of the spines and 
of both gill-rakers were positively correlated with each other, as 
were the lengths of the dorsal spine and gut; gut length and 
gill-raker gap width were both negatively correlated with the num-
ber of gill-rakers; gill-raker gap width was positively correlated with 
the length of gill rakers.        

 Phenotypic change through time can result from phenotypic 
plasticity and/or changes to the genomic component of a trait ( 13 ). 
To identify whether observed trait change was caused by changes 
to the genetic architecture, which would suggest that trait change 
is caused by microevolutionary processes ( 13 ), we first estimated 
genomic estimated breeding values (GEBV) for each trait from 

Table 1.   Summary of results from linear models estimating phenotypic change through time. Summary data for 
raw data include overall mean (“Trait mean”), SD, variance among annual means (“Variance annual means”), and 
average SE of annual means (“Average SE annual means”)

Trait (units)

Summary data WAIC β
Trait 

mean SD
Variance 

annual means
Average SE 

annual means No year Year
Year + 
Year2 Year Year2 ﻿r2﻿﻿

 GRL2 (mm) 1.09 0.26 0.02 0.0004 1066.1 1047 1046.1 0.03 (0.02 to 
0.05)

- 0.66 (0.63 to 
0.68)

 GRL3 (mm) 1.12 0.26 0.02 0.0005 1054.5 1024.3 1024.6 0.04 (0.03 to 
0.05)

- 0.68 (0.65 to 
0.70)

 GRN (n) 14.12 2.87 4.38 0.03 1580.4 1474.4 1472.5 −0.12 (−0.14 to 
−0.09)

- 0.25 (0.19 to 
0.30)

 GRW (mm) 0.18 0.05 0.001 0.00002 1309.7 1252.2 1252.3 −0.06 ( −0.08 to 
−0.05)

- 0.52 (0.48 to 
0.56)

 Gut length 
(mm)

28.39 10.13 27.09 0.79 1122.9 1014.9 998 −13.77 (−22.65 
to −4.85)

0.003 (0.002 
to 0.005)

0.73 (0.70 to 
0.74)

 Plates (n) 4.97 0.92 0.02 0.01 1918.4 1912 1912.1 −0.03 (−0.05 to 
-0.01)

- 0.07 (0.04 to 
0.10)

 PS (mm) 5.12 1.06 0.24 0.007 1336.1 1337.6 1337.9 0.01 (−0.01 to 
0.02)

- 0.59 (0.56 to 
0.62)

 SP1 (mm) 3.16 0.66 0.12 0.003 1264.2 1237.9 1223.2 −13.22 (−22.16 
to −4.18)

0.003 (0.001 
to 0.005)

0.65 (0.62 to 
0.67)

 SP2 (mm) 3.38 0.7 0.13 0.003 1304.8 1287.4 1274.2 −12.51 (−21.57 
to −3.52)

0.003 (0.001 
to 0.005)

0.63 (0.59 to 
0.65)

WAIC for models with no effect of year (“No year”), a linear effect of time (“Year”) or a linear and quadratic effect of time (“Year2”) are shown, with the optimal model (based on ΔWAIC) shown 
in bold. Regression coefficients (β) shown for the best fitting model (i.e., quadratic term shown only when model supports inclusion) with statistical support (i.e., posterior distribution 
does not overlap with zero) in bold. In cases where ΔWAIC between linear and quadratic model was within two (suggesting little difference to model fit) we assessed the statistical support 
for the quadratic term, and if not different from zero, we present results from the linear model. All β coefficients shown are posterior means with 95% CIs of posterior in parentheses. r2 
estimated for the best fitting model.
Traits included were GRL2 – length of 2nd gill-raker, GRL3 – length of 3rd gill-raker, GRN – gill-raker number, GRW – gill-raker gap width, gut length, Plates – number of armor plates, 
PS – pelvic spine length, SP1 – length of 1st dorsal spine, SP2 – length of 2nd dorsal spine. All traits were standardized to have mean of zero and SD of one before being fit in models.D
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genome-wide SNPs. We used models implemented in the hibayes  
R package ( 40 ), correcting for total length (and therefore age), sex, 
year, and site of capture in each model (Materials and Methods ). 
All traits had nonzero additive genetic variance (SI Appendix, 
Table S5 ) and were moderately to highly heritable (h﻿2  = 0.18 to 
0.62,  Table 2 ). Next, we ran linear regressions to model GEBVs as 
a function of year, which was fit as either a linear or quadratic term 
(Materials and Methods ). GEBVs for the number of armor plates, 
and the lengths of dorsal and pelvic spines did not change through 

time ( Fig. 2C   and  Table 2 ), suggesting that observed phenotypic 
trends in these traits may have occurred as a result of phenotypic 
plasticity. In contrast, GEBVs for number of gill-rakers, length of 
gill-rakers, gill-raker gap width, and gut length all changed between 
2010 and 2020 ( Fig. 2C   and  Table 2 ). Moreover, the shape and 
direction of the effect of year on GEBVs for these traits mirrored 
the observed phenotypic trends ( Fig. 2 ), suggesting that phenotypic 
trends in these trophic traits were caused by microevolutionary 
processes causing changes to the genetic architecture. ﻿
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Allele Frequency Dynamics Identify the Modality of Selection. 
While tracking temporal change in GEBVs can inform whether 
observed trait change has occurred as a result of changes to the 
underlying genetic architecture (13), it does not provide insight 
into changes on the genome nor directly infer whether that change 
has occurred as a result of selection (21). Molecular population 
genomics can therefore complement quantitative genetics by 
identifying genomic regions that are changing as a response to 
selection and, if QTL mapping has been achieved previously [as 
is the case for threespine stickleback (28, 41)], provide important 
clues as to which unmeasured phenotypic traits may be under 
selection. To identify genomic regions that were responding to 
selection, we compared allele frequency trajectories of all SNP loci 
to those expected under a Wright–Fisher model of neutrality (42, 
43). Specifically, this model was used to predict allele frequency 
change caused by drift (or subsampling of the population) and 
was generated by randomly mating individuals at time t0 to 
generate a population of size observed at time t1 (repeated 10 
times assuming a generation time of 1 y to replicate the full time-
series). At each sampling point (n = 6), the simulated population 
was subsampled to match our observed sample sizes. This model 
was repeated 100 times to generate a distribution of expected 
allele frequency trajectories (Materials and Methods). A locus was 
then characterized as under: directional selection when its allele 
frequency trajectory changed linearly from 2010 to 2020 and 
deviated from that expected under the Wright–Fisher model; 
episodic selection if its allele frequency diverged from an expected 
trajectory during the crash years (2014 to 2016), but returned to 
an expected trajectory after this period, or; balancing selection if its 
allele frequency changed less than expected (Fig. 3A).

 We identified 104 SNPs under directional selection ( Fig. 3  and 
﻿SI Appendix, Table S7 ). Of these, 81% (N = 83) fell on a known 
QTL in stickleback ( 41 ): 71% (N = 74) on a QTL for a feeding 

trait, 53% (N = 55) on a QTL for a defense trait, 25% (N = 26) 
on a QTL for a locomotion-related trait (e.g., vertebrae number, 
pterygiophore, and fin rays), 22% (N = 23) on a QTL for a res-
piration trait (e.g., operculum morphology) and <%1 (N = 1) on 
a QTL for pigmentation. Many regions of the stickleback genome 
have been linked to multiple phenotypes ( 41 ,  44 ,  45 ), and so we 
next identified whether there were trait categories that were over-
represented in the regions of the genome identified as being under 
directional selection. We used Fisher’s exact tests to identify 
whether the probability that a QTL identified as being under 
directional selection (i.e., on which a SNP under selection fell) 
was more likely to be associated with different functional trait 
categories than expected relative to the proportion of previously 
mapped QTL associated with that trait ( 41 ) (Materials and 
Methods ). We found that QTL for feeding traits were significantly 
overrepresented in genomic regions under directional selection 
(odds ratio = 1.22, P  = 0.04). The remaining trait categories were 
not significantly overrepresented in genomic regions under direc-
tional selection (SI Appendix, Table S8 ). The 104 SNPs under 
directional selection fell on 37 genes (SI Appendix, Table S9 ). Gene 
ontology (GO) analyses identified five enriched terms (SI Appendix, 
Table S10 ), all of which were associated with development of 
morphology, including one term associated with digestive tract 
development and one with development of head morphology.

 We identified 818 SNPs to be under episodic selection ( Fig. 3C   
and SI Appendix, Fig. S5 and Table S7 ). 701 of these SNPs (86.2%) 
fell on a known QTL in stickleback ( 41 ). 81% (N = 663) on a QTL 
for a feeding trait, 53% (N = 436) on a QTL for a defense trait, 
30% (N = 242) on a QTL for a locomotion-related trait, 22%  
(N = 180) on a QTL for a respiration trait and 4% (N = 29) on a 
QTL for pigmentation. None of these trait types were significantly 
overrepresented when compared to the overall proportion of QTLs 
on the stickleback genome associated with each trait type, suggest-
ing that observed associations with QTL could have occurred due 
to chance (SI Appendix, Table S8 ). The 818 SNPs under episodic 
selection fell on 280 genes (SI Appendix, Table S9 ), and GO anal-
yses identified 14 enriched terms (SI Appendix, Table S10 ), seven 
of which were associated with anatomical structural development 
and two with processes involved in locomotory behavior. No SNPs 
were found to be under balancing selection.

 Intriguingly, loci that were under either directional or episodic 
selection were located on QTL-rich regions of the genome. Feeding 
traits were highly overrepresented in genomic regions under direc-
tional selection, which aligns with analyses of GEBVs which sug-
gested the genomic component of gill-raker number, length, and 
gap width changed linearly over time. Furthermore, one of the top 
GO terms associated with loci under directional selection was asso-
ciated with digestive tract development, corroborating that dietary 
traits were under directional selection in this population during 
this 10-y period. The phenotypes implicated as under episodic 
selection may be linked to swimming physiology and behavior 
given that loci under episodic selection mapped to swimming-related 
traits, albeit at a rate expected by chance, and terms linked to 
locomotory behavior were overrepresented in GO analysis. This is 
a clear demonstration that while we were able to generate a large 
dataset consisting of individual-level measurements for many func-
tionally relevant components of the stickleback phenotype, it 
remains unrealistic to be able to measure all components of wild 
organisms’ phenotype. That is, it is likely that other, unmeasured 
aspects of the multivariate phenotype may have been responding 
to selection over the course of the study. This is where the integra-
tion with population genomics can be helpful as our GO analyses 
suggested that by far the most overrepresented gene functions 
under both directional and episodic selection were associated with 

Table  2.   Summary of results from linear models on 
changes in GEBVs through time. h2 shows narrow-sense 
heritability for all traits based on analyses across all 
years

Trait

β

Year Year2 ﻿h2﻿﻿

 GRL2 (mm) 0.02 (0.01 to 0.03) - 0.62 (0.50 to 
0.76)

 GRL3 (mm) 0.02 (0.01 to 0.03) - 0.49 (0.35 to 
0.70)

 GRN (n) −0.11 (−0.12 to 
−0.10)

- 0.57 (0.48 to 
0.66)

 GRW (mm) −0.02 (−0.03 to 
−0.01)

- 0.40 (0.30 to 
0.49)

 Gut length 
(mm)

−58.34 (−78.58 to 
−43.14)

0.01 (0.01 to 
0.02)

0.60 (0.50 to 
0.73)

 Plates (n) −0.005 (−0.01 to 
0.004)

- 0.18 (0.14 to 
0.24)

 PS (mm) 0.004 (−0.004 to 
0.01)

- 0.34 (0.24 to 
0.45)

 SP1 (mm) −20.64 (−50.87 to 
−7.51)

0.005 (−0.0009 
to 0.009)

0.37 (0.26 to 
0.49)

 SP2 (mm) −26.71 (−60.36 to 
−10.96)

0.007 (−0.0003 
to 0.01)

0.46 (0.32 to 
0.69)

The regression coefficients (β) effects of year on GEBVs are shown, and the quadratic 
effect of year (“Year2”) was only fit where there was statistical support for the effect in 
phenotypic analyses (Table 1). All coefficients shown are posterior means with 95% CIs 
of posterior in parentheses. Regression coefficients where 95% CI of posterior does not 
overlap with zero shown in bold.
Traits included were GRL2 – length of 2nd gill-raker, GRL3 – length of 3rd gill-raker, GRN – 
gill-raker number, GRW – gill-raker gap width, gut length, Plates – number of armor plates, 
PS – pelvic spine length, SP1 – length of 1st dorsal spine, SP2 – length of 2nd dorsal spine. 
All traits were standardized to have mean of zero and SD of one before analysis.
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structural development, indicating that other aspects of morpho-
logical phenotypes or their development are under selection. Taken 
together, these results clearly demonstrate how different modes of 
selection can act simultaneously on different components of the 
phenotype to shape trait evolution in a wild population.   

Discussion

 Integrating analytical approaches from quantitative genetics and 
molecular genomics with a decade of temporal sampling in a 
dynamic natural environment provided rich detail on patterns of 
microevolutionary change occurring in a wild population. The 
concurrent use of approaches proved especially powerful in reveal-
ing that dietary traits were under directional selection, as we were 
able to link changes in genomic breeding values for trophic traits 
with specific loci under directional selection that fell on QTL for 
trophic traits. Importantly, this result provides a unique empirical 
example which tests the assumptions used in each field: Although 
genomic estimated breeding values should sum the additive effects 
of causal loci affecting traits ( 46 ), and are derived directly from 
allelic variation ( 47 ), datasets that allow for an empirical examina-
tion of how predictions derived from breeding values correspond 
to allele frequency dynamics are extremely rare. Directional 

selection on trophic traits may have been driven by changes in 
available prey types over the studied time period ( 23 ,  48 ). However, 
ecological dynamics which generate the selective pressures acting 
on the phenotype are rarely linear ( 49 ), and fluctuating selection is 
thought to be a dominant mode of selection in natural populations 
( 50 ). In concordance, we show that genes responding to an episode 
of selection during the stickleback population crash years were 
enriched for locomotory behavior, although this was not reflected 
in QTL-overlap analysis. Such selection on locomotion could have 
been caused by, for instance, negative density-dependent selection 
on dispersal ( 51 ), whereby in the low-density years, selection may 
have been favoring philopatry over dispersal due to reduced com-
petition ( 52 ). However, linking ecological agents of selection to 
patterns of temporal change is challenging given that multiple eco-
logical axes combine to generate the selective landscape organisms 
experience ( 53 ). This is further compounded by the role of pheno-
typic plasticity and habitat choice when organisms experience spa-
tiotemporally variable environments ( 54 ), making genome- or 
phenotype-environment associations tricky to interpret.

 Mývatn stickleback likely experience strong fluctuating 
density-dependent selection associated with the cyclic population 
dynamics of the population [approximately 6-y cycles ( 24 )]. 
However, the episode of selection investigated here occurred over 
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Fig. 3.   Patterns of allele frequency change. (A) A schematic demonstrating how SNPs were identified as being under different modes of selection. For a single 
SNP, each solid gray line is a predicted allele frequency trajectory from a single run of a Wright-Fisher (WF) model, solid black line is a (hypothetical) observed 
allele frequency trajectory for a locus under directional selection, dotted line for a SNP under balancing selection, and dot-dashed line under episodic selection. 
Allele frequency trajectories for SNPs identified as (B) under directional selection (split across the 20 autosomes) and (C) under episodic selection in 2014 to 
2016 (loci on chr XIII are shown for illustrative purposes; see SI Appendix, Fig. S5 for all loci).
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a relatively short time-frame (approx. 10 generations) and it is hard 
to predict how these patterns scale to long-term change. Repeated 
episodes of selection may not always culminate into fluctuating 
selection per se because they may reflect long-term balancing selec-
tion, which would ultimately favor the maintenance of multiple 
alleles over time ( 55 ,  56 ). Investigating how short-term change 
shapes long-term patterns would require extensive sampling over 
multiple decades, and the rarity of empirical datasets such as the 
one generated in this study demonstrates the difficulty in achieving 
such a sampling design in natural populations. Indeed, while we 
were able to generate a large and powerful dataset that combined 
phenotype and genotypes at the individual level, this was achieved 
over relatively few sampling points, which clearly demonstrates the 
value of continued long-term studies of wild populations ( 57 ).

 We have shown that correlated traits can differ in both the 
magnitude and shape of temporal change in response to selection, 
indicating that different modes of selection interact with different 
components of the phenotype within a single population. This 
could be important for understanding why changes that evolu-
tionary models predict are often not observed ( 4 ). If we consider 
that selection acts on individual fitness, which is an emergent 
property of the effect of all the components of an organism’s 
phenotype ( 58 ,  59 ), the simultaneity of different modes and direc-
tions of selection that act on correlated traits may explain a lack 
of an overall response. By working on a wild population of a 
model organism with exceptionally well-mapped trait architec-
tures ( 28 ,  41 ), we were further able to gain insight into both 
measured and unmeasured traits under different modes of selec-
tion. By doing so, our study demonstrates how understanding 
the detailed evolutionary mechanisms affecting different parts of 
an individual’s phenotype and genome can improve predictions 
about responses to selection in wild populations.  

Materials and Methods

Study System and Sampling. Lake Mývatn is an environmentally heterogeneous 
ecosystem in North-East Iceland, and its ecological dynamics across multiple trophic 
levels, as well as patterns of spatial divergence, have been studied extensively (22, 
24, 26, 60). For instance, chironomid midge, threespine stickleback, piscivorous 
birds, and Arctic charr population abundances vary strongly through time (23–25). 
The habitat of stickleback can be classified into five main types (60), and there is 
evidence for subtle phenotypic and genetic spatial divergence in Mývatn stickleback 
(26, 60, 61). Furthermore, there is spatial variation in water temperature (22), avian 
predators (26) as well as invertebrate prey communities (48). Stickleback have been 
surveyed since 1991 at eight lake sites across the two basins of the lake (North and 
South) as part of an ongoing long-term monitoring of population demographics 
(22, 24), with five shorelines sites added in 2009 (60) (Fig. 1). The sampling is done 
twice each year, in June and in August, by laying five unbaited minnow traps at pre-
determined locations (hereafter “sites”) over two 12 h periods (night and day catch) 
(60). Stickleback from all traps are counted to estimate CPUE (24) and frozen for 
later analyses. Since 2009, a random subset of individuals (ca. N = 100 per site for 
each day and night catch) has been stored to allow phenotyping and/or genotyping.

Phenotyping. We randomly selected 20 individuals (of minimum total length 35 
mm) from the June samples from 11 study sites (Fig. 1) every other year between 
2010 and 2020 (N = 793, SI Appendix, Table S1). Where there were less than 
20 individuals available (for instance in years where the stickleback population 
crashed), we used all the fish caught at that site in June of that year. Individuals were 
thawed, weighed on an electronic balance (wet mass, to the nearest mg) and their 
total length measured using a ruler (to the nearest mm). The right pectoral fin was 
cut and stored in 96% ethanol for DNA analyses. We measured traits that are known 
to be functionally relevant, typically under selection in stickleback and previously 
studied for spatial divergence (26): defense traits (armor plate number and length 
of spines) and trophic traits (gill raker morphology and gut length) (35, 62, 63).

On each individual, we measured the following 10 traits: total length, number 
of lateral armor plates (plate number, excluding the keel plates), length of the 

first dorsal spine (DS1), length of the second dorsal spine (DS2), length of the 
PS, length of the second gill raker on the first gill arch (GRL2), length of third 
gill raker on the first gill arch (GRL3), gap width between second and third gill 
rakers (GRW), number of long gill rakers on the first gill arch (GRN), and gut 
length. Note that we measured GRL2 and GRL3, rather than the length of the 
first gill raker (which is usually used in studies of stickleback trophic phenotype), 
because in some cases gill arches broke during dissection. After measurement of 
total length, each individual was dissected to remove the stomach and the gut, 
and any tapeworm (Schistocephalus solidus) parasites. Gut length was measured 
from the sphincter at the end of the esophagus to the nearest mm using a ruler. 
Unfortunately, the guts from fish caught in 2016 had been dissected prior to the 
commencement of the present study and they had not been measured at the time 
of dissection. As such, we did not have gut length measurements for fish caught in 
2016. To aid morphological measurements, ethanol preserved fish were stained 
with alizarin red using standard protocols (26, 60). Fish were bleached using a 
1:1 ratio of 3% H2O2 and 1% KOH and then stained in a solution of alizarin red 
and 1% KOH (64). After staining, digital images were taken of the left side of 
the fish with a digital camera (Canon EOS 600D), with mm paper for scale. From 
these images, plate number was counted and the length of DS1, DS2, and PS 
measured (in mm) to the nearest hundredth of a millimeter. After imaging, we 
dissected the first gill arch and, where necessary, restained it before mounting 
between two glass plates and photographing with a digital camera (Leica IC80 
HD) mounted to a stereomicroscope (Leica M165-C), with mm paper for scale. 
We used the digital images of gill arches to measure GRL2, GRL3, and GRW (in 
mm) and counted GRN. All measurements from the digital images were taken 
using the segmented tool in ImageJ (65).

Whole Genome Resequencing and Bioinformatics. For genomic analyses, 
we randomly selected 10 of the 20 individuals that had been phenotyped from 
10 of the 11 sites/y combination (N = 515, SI Appendix, Table S1). Where there 
were less than 10 individuals available, we used all fish from the June sampling. 
Genomic DNA was isolated and purified from the ethanol-stored fin clips using 
the Macherey-Nagel nucleomag tissue kit, following the manufacturer’s proto-
col. Paired-end, PCR-free 150-bp insert libraries were then prepared for whole 
genome sequencing using the DNBSeq™ platform by BGI-Hong Kong to an 
average of 10× depth of coverage (26). All samples were mapped to v5 of the 
stickleback reference genome (66) and genotyped using the genome analysis 
tool kit (GATK) best practices pipeline (67). Only genotype calls with depth greater 
than six and less than 100 were retained, and autosomal SNPs with minor allele 
counts less than four were subsequently removed. The sex of individuals was 
confirmed using the proportion of reads with depth greater than eight mapped to 
the X vs. Y chromosome (68). For all analyses, we removed mitochondrial variants, 
indels, multiallelic variants, as well as variants identified on either of the sex 
chromosomes. SNPs with more than 50% genotype calls missing were removed, 
resulting in a total of 1,700,436 loci used for all downstream analyses.

Statistical Analyses.
Phenotypic trends. Our first aim was to characterize the covariance structure 
between pairs of all measured traits, as well as test for temporal change in the 
measured traits. To do this, we initially aimed to fit a single multivariate mixed 
model with all traits as a multivariate response as a function of sex, length, and 
year and including sampling site as a random effect. However, this full multivar-
iate model had convergence issues, likely caused by the high level of complexity 
of the model for which current sample size was insufficient. Instead, we selected 
to run 1) a multivariate model to identify phenotypic covariances, and 2) a series 
of univariate models to test for temporal change in any of the measured traits. 
All models were fit with a Gaussian distribution, and traits were all standardized 
to have a mean of 0 and SD of 1 to ensure Gaussian errors were appropriate. All 
models were fit with sex and length as fixed effects to account for sexual dimor-
phism, allometry and age (because stickleback have indeterminate growth). All 
results presented therefore reflect trait measures relative to sex and length. While 
length is an important life history trait often under natural and sexual selec-
tion, given we were not able to age individuals, we were not able to distinguish 
between changes in length that were independent of individuals’ age. Therefore, 
we selected to not analyze length as a quantitative trait. All models were fit using 
Stan via the brms package in R statistical environment (version 4.1.2) (69). All 
models were run with 6,000 iterations across four chains and a warm-up period D
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of 2,000 iterations, which was sufficient in all cases to achieve model convergence 
which was assessed by visually assessing mixing of chains and with R̂  . Fixed 
effects were given normal priors with 0 mean and SD of 5. Random effects were 
given half-Cauchy priors with two degrees of freedom.

Pairwise phenotypic correlations between all traits were estimated using a 
multivariate mixed effects model. To estimate the full phenotypic covariance 
matrix, this model fitted all standardized traits as a multivariate response as a 
function of length and sex, and included year of capture as a random effect. 
Phenotypic correlations were then estimated from the residual covariance matrix.

To test whether any of the measured traits changed either linearly or nonline-
arly across the study period, we compared three univariate mixed effects models 
for each trait. The first of these did not fit year as a fixed effect. The second fit year 
as a continuous linear effect to test whether the population mean of the trait 
changed linearly across time (as expected under directional selection). The third 
model was fit with an identical structure, except with an additional quadratic 
term for year in order to test whether the population mean of the trait changed 
quadratically following the population crash in the middle of the study period 
(as expected under episodic selection). In all models, intercepts were allowed to 
vary between sampling sites by fitting sampling site as a random effect. The three 
models were compared using WAIC to assess support either for a model with the 
linear term for year, or for a model with both the linear and quadratic term for 
year. In cases where ΔWAIC between the linear and quadratic models was ≤2, we 
then examined whether the quadratic term was different from zero. In cases where 
it was not, we present results from the linear model only. We present the 95% 
credible intervals of the posterior distribution for the effect of year on trait values 
and considered effect sizes to have statistical support when the credible intervals 
did not overlap zero. Note also that accounting for temporal autocorrelation in the 
residuals was not relevant here as individual fish were not repeatedly sampled 
through time. We modeled the mean trait change using linear and quadratic 
terms, and we acknowledge that the underlying evolutionary process might more 
closely resemble some autocorrelated stochastic process such as a random walk. 
However, it is difficult to statistically distinguish between these alternatives and 
the distinction also raises some conceptual issues about the deterministic vs. 
stochastic nature of the selection process that are beyond the scope of this paper.
Genetic contribution to phenotypic change through time. To test whether 
microevolutionary change was responsible for any observed trait change, we 
tested whether genomic estimated breeding values (GEBV) (13) for traits changed 
as a function of sampling year. To do this, GEBV for each trait were estimated for 
all individuals that were genotyped and phenotyped (N = 515, SI Appendix, 
Table S1). We used Bayesian regression models implemented in the hibayes R 
package (40, 70), which implements the “Bayes alphabet” models commonly 
used for genomic prediction (explained in detail in refs. 47 and 71–74). Breeding 
values are often estimated via analyses of pedigrees or genomic relatedness 
matrices under an infinitesimal model assuming a genomic architecture whereby 
all loci have an equally small effect on the trait (46). Although many traits are 
highly polygenic, estimating genomic breeding values directly from genomic 
variants using Bayes alphabet models allows for more appropriate mapping of 
genomic architectures, and should therefore improve our predictions of micro-
evolutionary change (47). In addition, the prior for the distribution of marker 
effects can be flexibly implemented according to known, or predicted, genetic 
architectures of traits. We ran one model per trait with sex, length (and therefore 
also age), and year as fixed effects and sampling site as a multilevel random effect. 
Year was fit as a linear effect unless phenotypic analyses suggested there was a 
quadratic effect, in which case we fit year as both a linear and quadratic term. We 
ran all models using a BayesBpi model, which assumes that most markers have 
zero variance and a small proportion of markers (π) have nonzero variance, and 
the distribution of variances of these markers follows an inverse-chi-squared 
distribution. While it is possible to fit these models under a number of different 
assumed genetic architectures (70, 72–74), we selected the BayesBpi models 
because 1) this allows a flexible number of markers to be assigned as having 
nonzero variance, which is estimated within the model using variation in the 
empirical data, and 2) given genetic architectures are well mapped in stickleback, 
the prior distribution for marker variances used is a realistic assumed genetic 
architecture of our measured traits (41). Models were fit with 15,000 iterations, 
a burn-in set of 5,000 iterations, and a thinning interval of 10 (which was suffi-
cient to achieve model convergence and an effective sample size of 1,000 for all 
traits) generating a posterior distribution for GEBVs for each trait. Convergence 

of models was assessed by visualizing the trace-plots of posterior distribution 
for all parameters estimated. SNP-based heritability (h2) for each trait was as the 
proportion of total phenotypic variance (estimated as the sum of all variance 
components) attributed to additive genetic variance (VA).

We then fit a linear model of GEBVs as a function of sampling year, and we 
repeated this for each draw of the posterior distribution to generate a posterior 
distribution of linear coefficient estimates for the relationship between GEBVs 
and sampling year. Year was fit as a linear effect effect unless phenotypic anal-
yses suggested there was a quadratic effect, in which case we fit year as both a 
linear and quadratic term. Note that for the trait GRN the year 2012 appeared to 
be a rather extreme outlier as most individuals had more gill rakers than in all 
other years and there was greater phenotypic variance in this year than in other 
years. The linear effect of year was found to be the most appropriate model to fit 
temporal change in this trait over time (Results), but it may be that the quadratic 
term did not capture a true phenotypic trend that emerged in 2012 as it did not 
allow for the enough nonlinearity in the data. However, to ensure that this single 
year was not influencing our inferences regarding directional change we reran 
analyses of genomic breeding values without data from 2012. This further allowed 
us to ensure that anything that may have caused some stochastic change in this 
year was not influencing our conclusions. Removing 2012 did not change the 
overall trend we found when using the full dataset (SI Appendix, Fig. S4), and so 
we report results that include data from this year.
Allele frequency dynamics. To analyze changes in allele frequencies through 
time, we calculated allele frequencies per SNP per year (2010, 2012, 2014, 2016, 
2018, 2020) for individuals in the North basin (24) (see SI Appendix, Table S1 
for sample sizes). We investigated allele frequency dynamics using samples col-
lected from the North basin only to avoid biases caused by variation in sample 
sizes between years in the South basin. Specifically, the majority of samples were 
collected in the North basin (SI Appendix, Table S1) and the sample sizes from the 
South basin were very variable. We do not believe this should affect downstream 
inferences because 1) stickleback density is much higher in the North and likely 
subsidizes the South basin via source-sink dynamics (24), and 2) although there 
is some evidence that allele frequencies and population densities vary between 
basins (24, 26), population genetic analyses suggest that the population is pan-
mictic across the whole lake (26). To investigate allele frequency dynamics, we 
also subset the SNPs to retain those with a call rate of 50% within each year and 
a minor allele frequency in 2010 of at least 0.001 (SI Appendix, Fig. S2). This 
resulted in a total of 1,558,025 SNP loci used for this analysis.

We aimed to identify whether allele frequencies changed via directional 
selection, episodic selection, or balancing selection. The term episodic selection 
is used here rather than fluctuating selection because we tracked change over a 
single episode of selection (during a population crash), and detecting fluctuating 
selection would require tracking change across repeated episodes of selection. 
To isolate allele frequencies that changed due to selection as opposed to due to 
drift or sampling regimes, observed allele frequency trajectories of each SNP 
were compared to an allele frequency trajectory that would be expected under 
a Wright–Fisher model which predicted allele frequency change caused by drift 
(or other neutral processes). This model started with each SNP’s observed allele 
frequency in 2010 and predicted the expected trajectory for each SNP accounting 
for changes in population size and variable sample sizes in the observed dataset. 
Specifically, this model started with a population of individuals of size Ne_t0 
(observed effective population size, Ne, at time t0, 2010, SI Appendix, Table S4) 
in which the allele frequency for a SNP at t0 (2010) was the observed allele fre-
quency in the empirical dataset. The population was then assumed to mate at 
random for two generations to generate a population of size Ne_ t1 (observed 
effective population size at t1 = 2012), assuming a generation time of 1 y. The 
population at t1 was then sampled at N_t1 (observed sample size at time t1 = 
2012) before an allele frequency for that time point was calculated. This process 
was then replicated for another four steps, resulting in a total of 10 generations 
and 6 sampling points (biannually between 2010 and 2020) to replicate the 
sampling process in the observed time-series dataset. The model was run for 
100 iterations, generating a range of expected allele frequency trajectories, and 
the model was repeated for each SNP to generate an expected trajectory for each 
locus. Wright–Fisher models were run using custom R scripts which adapt the 
methods outlined in the poolseq R package (75).

The Wright–Fisher model we used accounted for differences in allele frequency 
because they started with the observed allele frequency for each locus at time t0. D
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They also accounted for the variable populations sizes and sample sizes observed 
across the time-series by incorporating those observed parameters into the model 
(see above, SI Appendix, Tables S1 and S4). It should be noted, however, that it is 
likely that the strength of selection acting on loci of different starting frequencies is 
probably not even. That is, loci that start with a relatively low allele frequency and are 
identified as under selection are likely under stronger selection than one at inter-
mediate frequency. This is because alleles that are at low frequency are much more 
likely to be lost due to drift over this time period that those that are at intermediate 
frequency. The Wright–Fisher model of drift is likely the most frequently used model 
of drift (42, 43, 76), especially in cases where a pedigree is not available [in which 
case alternative null models are available, e.g., gene-dropping (19)]. Nevertheless, 
the assumptions of the Wright-Fisher model (i.e., discrete generations, constant 
population size, no selection or mutation, and random mating) may be unlikely to 
occur in wild populations (77). In our analyses, we have dealt with most of these 
assumptions explicitly: our model incorporates variable population sizes observed 
through the time-series (see above), and our goal was to generate a null model 
in which allele frequency changes were not caused by selection (including sexual 
selection which would cause nonrandom mating). Furthermore, it is unlikely that 
mutation rates in this population are high enough to be exacting a significant 
influence on allele frequencies during our time-series (78). We acknowledge that 
the remaining assumption of discrete generations may not hold in this population, 
as individuals are thought to start breeding in their first year with some surviving 
and breeding in their second (or more rarely third) year. The consequence of this 
is that 1) the generation time is likely longer than we have modeled in our null 
model (i.e., somewhere between 1 and 2 y), and 2) observed allele frequencies 
calculated at each time point are calculated from a population that includes some 
individuals from previous cohorts. Although we recognize that such structure may 
cause issues in drawing inference from Wright–Fisher models in certain scenarios, in 
our study, given the presumed age-structure and generation time in the population, 
we believe that our implementation of the Wright–Fisher model represents quite 
a conservative approach as we are likely overestimating the rate of drift in the null 
model. This is because in our null model we include a faster generation time and 
population turnover (resulting in higher rates of neutral genetic change) than are 
probably occurring in the population. As such, while we may miss some signatures 
of selection in our approach (i.e., there may be false negatives in our results), we 
believe that the signatures that we do isolate are more likely to be accurate.

A given SNP was characterized as under directional selection if its allele fre-
quency trajectory was linear and different from that expected under the Wright–
Fisher model (i.e., does not fall within the expected AF distribution) in all sampling 
time points after t0. Mývatn stickleback likely experience strong fluctuating density-
dependent selection associated with the cyclic population dynamics of the pop-
ulation [approximately 6-y cycles (24)]. Our time series overlapped with one of 
these cycles, with a strong population crash in 2014 to 2016. As such, SNPs were 
characterized as responding to an episode of selection if allele frequency was dif-
ferent to the model during the years (2014, 2016) that the stickleback population 
crashed, but not at any other time point. That is, their allele frequency diverged 
when the population crashed but returned to a trajectory expected under the 
Wright–Fisher model afterward. Both of these approaches to determining whether 
a SNPs allele frequency trajectory deviates from a Wright–Fisher model represent 
a highly conservative method; for a SNP to be determined as being under either 
mode of selection, the probability (P) that its allele frequency trajectory occurred 
as a result of neutral processes must be as close to 0 as statistically possible (i.e., it 
does not fall anywhere in the range of expected trajectories from a Wright–Fisher 
model). As such, this approach avoids the need for extensive correcting for multiple 
testing as all SNPs identified as under selection would eventually have a P-value 
of = 1/100. SNPs were considered to be under balancing selection if their allele 
frequency changed less than expected under a Wright–Fisher model. To do this, we 
calculated the absolute difference in allele frequency between subsequent time 
points (ΔAF) and compared this to the distribution of allele frequency change in 
the Wright–Fisher model to generate a P-value for each SNP as the proportion 
of times that the expected ΔAF was less than the observed. All p-values were 

corrected for multiple testing by converting them to q-values using an FDR rate 
of 5%. SNPs were then considered as putatively under balancing selection if they 
were significantly different from expectations in each time point. This method for 
identifying balancing selection was designed to identify short-term balancing 
selection, and while it may be a relatively conservative approach, this definition has 
been used in previous research aiming to identify short-term balancing selection 
(79). Note that our definition of episodic selection here may scale over time to 
reflect a process of long-term balancing selection whereby relatively short-term 
episodes of selection repeated over time act as long-term balancing selection that 
maintains phenotypic and allelic variation in a population (55, 56).

For each set of SNPs identified to be putatively under a given type of selection, 
we identified the QTL these SNPs fell (exactly) on using a previously compiled list 
of all mapped QTL in threespine stickleback (41). To do this, genome locations for 
loci used in our analyses that were mapped to v5 of the reference genome were 
converted to genome positions on the Glazer genome assembly using LiftOver 
to facilitate overlap analyses with QTL locations referenced on other versions of 
the reference assembly (26). Then, using trait categories described in ref. 41 
(i.e., feeding, defense, swimming/locomotion, pigmentation, and respiration), 
we used Fishers exact tests to compare the proportion of QTL putatively under 
selection (i.e., on which a SNP under selection fell) that were associated with 
the different trait categories to the proportion of all QTL previously mapped in 
stickleback that fall into that trait category.

Finally, we identified the protein-coding genes on which these SNPs were 
located (i.e., within the transcribed regions, hereafter “candidate genes”) and ran 
GO analyses to explore whether any molecular functions were overrepresented 
in sets of genes associated with selection in our data. To do this, we compared 
candidate genes with the reference set of 20 805 genes across the stickleback 
genome (“gene universe”). GO information was obtained from the stickleback 
reference genome on ENSEMBL using the R package BIOMART (80), and func-
tional enrichment was investigated using the package TOPGO 2.42 (81) and the 
Fisher’s exact test (at P < 0.01). To reduce false positives, we pruned the GO 
hierarchy by requiring that each GO term had at least 10 annotated genes in our 
reference list (“nodeSize = 10”).

Data, Materials, and Software Availability. Whole genome sequencing data 
generated and analysed in this project are available in the European nucleo-
tide archive (ENA) accession numbers PRJEB79151 (82) and PRJEB58765 (83). 
Phenotypic data generated in this project and meta data associated with the 
genomic data are available at https://github.com/kashastrickland/stickleback-
PhenoGenome (84).
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