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Abstract
In this paper we continue the study on intrinsic Harnack inequality for non-
homogeneous parabolic equations in non-divergence form initiated by the first author
in Arya (Calc Var Partial Differ Equ 61:30–31, 2022). We establish a forward-in-time
intrinsic Harnack inequality, which in particular implies the Hölder continuity of the
solutions. We also provide a Harnack type estimate on global scale which quantifies
the strongminimum principle. In the time-independent setting, this together with Arya
(2022) provides an alternative proof of the generalized Harnack inequality proven by
the second author in Julin (Arch Ration Mech Anal 216:673–702, 2015).

Mathematics Subject Classification 35K55 · 35B45

1 Introduction and the statement of themain results

In this paper we consider parabolic equation of the type

F(D2u, Du, x, t) − ut = 0, (1.1)

where F is uniformly elliptic w.r.t. the Hessian and has a nonlinear growth w.r.t. the
gradient. More precisely, we assume that there exist constants 0 < λ ≤ � such that

λTr(N ) ≤ F(M + N , p, x, t) − F(M, p, x, t) ≤ �Tr(N )

for all symmetricmatricesM, N with N ≥ 0 and for every (p, x, t) ∈ R
n×Qr (x0, t0).

Here Qr (x0, t0) is a cube centered at (x0, t0) ∈ R
n+1. We assume further that F has
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the following growth in the gradient variable,

|F(0, p, x, t)| ≤ φ(|p|) (1.2)

for every (p, x, t) ∈ R
n × Qr (x0, t0), where φ : [0,∞) → [0,∞) is of the form

φ(s) = η(s)s and satisfies the following conditions:

(P1) φ : [0,∞) → [0,∞) is increasing, locally Lipschitz continuous in (0,∞) and
φ(s) ≥ s for every s ≥ 0. Moreover, η : (0,∞) → [1,∞) is nonincreasing on
(0, 1) and nondecreasing on [1,∞);

(P2) η satisfies

lim
s→∞

sη
′
(s)

η(s)
log(η(s)) = 0; (1.3)

(P3) There is a constant �0 such that

η(s1s2) ≤ �0η(s1)η(s2); (1.4)

for every s1, s2 ∈ (0,∞).

One example of F is

F(D2u, Du, x, t) = Tr(A(x)D2u) + log(|Du|)〈Dp(x), Du〉

where A(x) is a symmetric matrix with eigenvalues between λ > 0 and �, and
p ∈ C1(Rn). This operator is similar to the normalized p(x)-Laplacian, see [9].

The elliptic case is studied by the second author in [9], and there the main problem
is to find a Harnack type estimate which quantifies the strong minimum principle
whenever it is true and generalizes the Harnack inequality from the homogeneous
setting [4, 10]. The related boundary problem is studied in [2, 12, 13]. In this paper
we first discuss the assumptions (P1)-(P3). In particular, the condition (P2) in (1.3)
might first seem rather resctrictive. We note that (P2) roughly states that the function
η is slowly varying1 in a quantitative way and, in particular, it implies the slow growth
estimate on η, i.e., for every ε > 0 there is Cε such that η(s) ≤ Cεsε for s ≥ 1 [3,
Proposition 1.3.6]. Our first result (Theorem 1.1) justifies the assumption (P2) in the
sense that we show that the Harnack estimate in [9] is false if the non-linearity is of
the form η(s) = max{sε, 1} for any ε > 0.

The parabolic case is studied by the first author in [1], where the main result is the
backward-in-time intrinsic Harnack inequality. The parabolic case is the main focus
of this paper and we first provide the analogous forward-in-time intrinsic Harnack
inequality (Theorem 1.2), and show then that this intrinsic Harnack inequality implies
the Hölder continuity of the solutions (Theorem 1.3). The problem has some simi-
larities to the p-parabolic equation which is also non-nomogeneous, and where the

1 A positive function η is slowly varying if for all λ > 0 it holds lims→∞ η(λs)
η(s) = 1.
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concept of intrinsic Harnack inequality is developed [6, 7] (see also [11]). The differ-
ence is that in the p-parabolic equation the elliptic operator has a different scaling than
the time derivative term, while in (1.1) it is the elliptic operator that does not have any
homogeneity properties. Therefore, from the point of view of the scaling, the Eq. (1.1)
is more similar to the reaction diffusion equation than to the p-parabolic. However, to
the best our knowledge these results are not known for equations of type

ut = F(D2u) + f (u).

The intrinsic Harnack inequality is a result on intrinsic scale and it is a relevant
question if one can have a generalized Harnack inequality for non-negative solutions
of (1.1) similar to the elliptic one in [9]. In our last result (Theorem 1.4) we provide
a Harnack type estimate for non-negative solutions of (1.1) on global scale which
quantifies the strong minimum principle.

1.1 Statement of themain results

In order to state our main result we first simplify the setting and, following the ideas
of Caffarelli [4, 5], replace the Eq. (1.1) by two extremal inequalities which take into
account the ellipticity assumption and the growth condition of the drift term. To be
more precise, we assume that u ∈ C(Q2(x0, t0)) is a viscosity supersolution of

P−
λ,�(D2u) − ut ≤ φ(|Du|) (1.5)

and a viscosity subsolution of

P+
λ,�(D2u) − ut ≥ −φ(|Du|), (1.6)

where P±
λ,� denotes the extremal Pucci operators defined later in (2.1). We refer

to Sect. 2 for the precise notion of viscosity sub- and supersolutions. The elliptic
counterpart to (1.5) and (1.6) is defined analogously.

Throughout the paper we say that a constant C is universal if it depends only on
the ellipticity constants, the nonlinearity φ and on the dimension n.

We recall that in [9] it is proven that in the elliptic case if u ∈ C(B2) is a non-
negative viscosity supersolution of P−

λ,�(D2u) ≤ φ(|Du|) and a viscosity subsolution
P+

λ,�(D2u) ≥ −φ(|Du|) in B2, then there is a universal constant C such that for
m = infB1 u and M = supB1 u it holds

∫ M

m

ds

φ(s)
≤ C . (1.7)

It is not difficult to see that if u is as above, then it satisfies the strong minimum
principle when φ satisfies the so called Osgood condition [9]

∫ 1

0

ds

φ(s)
= ∞. (1.8)
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Therefore it is clear that (1.7) quantifies the strong minimum principle when (1.8)
holds.

Our first result justifies the assumption (P2) in (1.3).

Theorem 1.1 Assume n ≥ 3 and fix any ε0 > 0. Then there exist λ,� > 0 and a
sequence of positive functions uk ∈ C2(B2) such that

∣∣P−
λ,�(D2uk)

∣∣ ≤ |Duk |1+ε0 point-wise in B2,

while mk = infB1 uk → 0 as k → ∞ and Mk = supB1 uk ≥ 1 for all k ∈ N. In
particular, it holds

∫ Mk

mk

ds

s1+ε0 + s
→ ∞ as k → ∞.

We note that the condition (P2) in (1.3) is an assumption only on the asymptotic
behavior of the nonlinearity φ and plays no role whether the Osgood condition (1.8)
holds or not. The point of Theorem 1.1 is that too weak information on the asymptotic
growth of φ is the reason for the Harnack estimate to fail, even if the Harnack estimate
means to quantify only the strong minimum principle.

Next we turn our attention to the parabolic setting (1.1), which is the main focus of
this paper. We recall the following parabolic Harnack type inequality proven in [1] for
solutions to (1.1) in a suitable intrinsic geometry corresponding to the nonlinearity.
Let u ∈ C(Q2(x0, t0)) be a positive viscosity supersolution of (1.5) and viscosity
subsolution of (1.6). There is a universal constant C > 0 such that

sup
A−

ρ (x0,t0)

u(x, t) ≤ Cu(x0, t0) for ρ ≤ a0 := u(x0, t0)

C(φ(u(x0, t0)) + u(x0, t0))
,

(1.9)

where A−
ρ (x0, t0) =

{
(x, t) : |x−x0|∞ ≤ ρcn

2 ,−ρ2+ (ρcn)2

4 ≤ t−t0 ≤ −ρ2+ (ρcn)2

2

}
and | · |∞ is the l∞-norm. Here cn ≤ 1 depends only on n. The estimate (1.9) is an
intrinsic Harnack estimate as the scaling on the LHS depends on the value of the
solution at the base point which is similar to [7].

Our next result is the forward-in-time counterpart of (1.9) and thus we obtain the
complete intrinsic Harnack estimate for (1.1). To this aim we denote

A+
ρ (x0, t0) :=

{
(x, t) : |x − x0|∞ <

ρcn
2

, ρ2 − (ρcn)2

2
< t − t0 ≤ ρ2 − (ρcn)2

4

}
,

(1.10)

where cn ≤ 1 is as above.

Theorem 1.2 Let u ∈ C(Q2) be a non-negative viscosity supersolution of (1.5) and
viscosity subsolution of (1.6). There is a universal constant C > 0 such that if
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u(x0, t0) > 0 and Q2ρ(x0, t0) ∪ A+
ρ (x0, t0) ⊂ Q2 for

ρ ≤ α0 := u(x0, t0)

C(φ(u(x0, t0)) + u(x0, t0))

then it holds

u(x0, t0) ≤ C inf
A+

ρ (x0,t0)
u(x, t). (1.11)

The proof of Theorem 1.2 relies on (1.9) and a careful continuity-type argument.
As in the p-parabolic case [6, 7], using the estimate (1.11) we obtain the Hölder

continuity of the solutions of (1.1).

Theorem 1.3 Let u ∈ C(Q2) be a viscosity supersolution of (1.5) and viscosity subso-
lution of (1.6). Then, there exists a universal constant α ∈ (0, 1) such that u is locally
α-Hölder continuous. More precisely, there is a universal constant C > 1, such that
for all (x, t), (y, s) ∈ Q1, we have

|u(x, t) − u(y, s)| ≤ Cφ(‖u‖L∞(Q2))(|x − y| + |t − s|)α. (1.12)

We note that in (1.12) the exponent α ∈ (0, 1) is universal, but the Hölder norm
depends on the solution u in a nonlinear way. This is necessary already in the elliptic
case [14]. Our proof for Theorem 1.3 draws inspiration from the p-parabolic case [7].
However, since the elliptic operator in the equation (1.1) does not have any degree
of homogeneity, the intrinsic cylinders in Theorem 1.2 may not be quantitatively
monotone in size. This causes challenges which we need to overcome in order to
obtain a uniform α > 0.

Finally, we study whether we may obtain a Harnack type estimate on global scale,
which quantifies the strong minimum principle similar to (1.7). Recall that the strong
minimum principle is related to the Osgood condition (1.8).

Theorem 1.4 Let u ∈ C(Q4(0, 1)) be a non-negative viscosity supersolution of (1.5)
and viscosity subsolution of (1.6) in Q4(0, 1). There exist a universal constant C > 1
and time levels t1, t2 ≥ 0, depending on the value u(0, 0) such that 1

C(η(u(0,0))+1)2
≤

t1, t2 ≤ 1, so that it holds

∫ supB1 u(·,−t2)

infB1 u(·,t1)
ds

φ(s)
≤ C . (1.13)

The parabolic Harnack estimate (1.13) takes the same form as the elliptic one (1.7),
with the difference that here we have the waiting times t1, t2 as usual with parabolic
equations [8, 15]. Since the scaling of the Eq. (1.1) does not have any monotonicity
properties, we can only give an estimate for the waiting times. However, the proof of
Theorem 1.4 implies that, under the Osgood-condition (1.8), if u(0, 0) = 0 then the
waiting time t2 can be chosen zero. We state this in the following corollary, which is
a quantification of the strong minimum principle at the time level t = 0.
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Corollary 1.5 Let u ∈ C(Q4) be as in Theorem 1.4 and assume that φ satisfies (1.8).
If u(0, 0) = 0 then

u(x, 0) = 0 for all x ∈ B1.

In the next section we introduce some basic notations and in Sect. 3 we prove our
main results.

2 Notations and preliminaries

We denote a point in space by x ∈ R
n and in space-time by (x, t) ∈ R

n × R.
We denote the Euclidean norm of x in R

n by |x | and the l∞-norm by |x |∞ =
max{|x1|, |x2|, . . . , |xn|}. We denote Df the gradient of f in x , ft with respect to
time t and D2 f denotes the Hessian matrix of f with respect to x . We denote the ball
of radius r centered at x0 by Br (x0) and its closure by Br (x0). A cube of radius ρ

centered at (x0, t0) is defined as

Qρ(x0, t0) = {x ∈ R
n : |x − x0|∞ < ρ} × (t0 − ρ2, t0].

We denote Br and Qr if the ball and the cube are centered at the origin.
Let S be the space of real n × n symmetric matrices. We recall the definition of

Pucci’s extremal operators (for more detail see [5]). For M ∈ S, Pucci’s extremal
operators with ellipticity constant 0 < λ ≤ � are defined as

P−
λ,�(M) = λ

∑
ei>0

ei + �
∑
ei<0

ei ,

P+
λ,�(M) = �

∑
ei>0

ei + λ
∑
ei<0

ei , (2.1)

where ei ’s are the eigenvalues of M .
We recall the definition of a viscosity supersolution of (1.5) and viscosity

subsolution of (1.6).

Definition 2.1 A lower semicontinuous function u : Qr (x0, t0) → R is a viscosity
supersolution of (1.5) in Qr (x0, t0) if the following holds: if (x, t) ∈ Qr (x0, t0) and
ϕ ∈ C2(Qr (x0, t0)) are such that ϕ ≤ u and ϕ(x, t) = u(x, t) then

P−
λ,�(D2ϕ(x, t)) − ϕt (x, t) ≤ φ(|Dϕ(x, t)|).

An upper semicontinuous function u : Qr (x0, t0) → R is a viscosity subsolution of
(1.6) inQr (x0, t0) if the followingholds: if (x, t) ∈ Qr (x0, t0) andϕ ∈ C2(Qr (x0, t0))
are such that ϕ ≥ u and ϕ(x, t) = u(x, t) then

P+
λ,�(D2ϕ(x, t)) − ϕt (x, t) ≥ −φ(|Dϕ(x, t)|).
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Note that the inequalities (1.5) and (1.6) are not homogeneous. We thus need the
following rescaling lemma from [1, Lemma 2.4] and [9, Lemma 4.4].

Lemma 2.2 Let u ∈ C(Qr (x0, t0)) be a viscosity supersolution of (1.5) (subsolution of
(1.6)) in Qr (x0, t0). There exists a universal constant L2 ≥ �0 such that if A ∈ (0,∞)

then for every r ≤ rA, where

rA = A

L2(φ(A) + A)
= 1

L2(η(A) + 1)
(2.2)

the rescaled function

ur (x, t) := u(r x, r2t)

A
,

is a supersolution of (1.5) (subsolution of (1.6)) in its domain.

3 Proofs of themain results

In this section we give the proofs of the four theorems.

Proof of Theorem 1.1 Without loss of generality we assume that n = 3. The case n > 3
then follows by adding dummy variables. In the following we write (x, z) ∈ R

2 × R

for a point in R3.
Fix a small ε0 > 0 and choose q = 4

ε0
. For k ≥ k0(ε0) denote r = k−ε0 . We first

define the functions uk in (R2 \ Br ) × R as

uk(x, z) = 1

k
|x |−q for (x, z) ∈ (R2 \ Br ) × R.

By direct calculation we have

∂2xi x j uk(x, z) = q(q + 2)

k
|x |−q−4xi x j − q

k
|x |−q−2δi j .

The matrix D2uk(x, z) has eigenvalues − q
k |x |−q−2, q(q+1)

k |x |−q−2 and zero. There-
fore, by choosing λ = 1 and � = q + 1, we have

P−
λ,�(D2uk) = −(q + 1)

q

k
|x |−q−2 + q(q + 1)

k
|x |−q−2 = 0.

We proceed by defining uk in Br × R as

uk(x, z) = A − B|x |2 + C|x |4 + D(z + 2)ρ(|x |),
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where ρ ∈ C∞
c ([0, r)) is a cut-off function with ρ ≡ 1 in [0, r/2], ρ′ ≤ 0 in [0, r) and

|ρ′| ≤ 4
r . Here, the coefficientsA,B,C are chosen so that uk is a twice differentiable

function. By a direct calculations this leads to

A = 8 + 6q + q2

8k
r−q , B = q

4k
(q + 4)r−q−2, and C = q

8k
(q + 2)r−q−4.

(3.1)

We then choose

D = r−q

k
. (3.2)

This choice will be clear later in the argument. By direct calculation we immediately
verify that in Br × (−2, 2) it holds

|P−
λ,�(D2uk)| ≤ C(ε0)

r−q−2

k
. (3.3)

Notice that in Br/2 × (−2, 2), using ρ ≡ 1, we have |Duk | ≥ |∂zuk | = D.

Hence, we find that |Duk |1+ε0 ≥ kε0 r
−q−2

k . Here, we used r = k−ε0 and q = 4
ε0
.

Consequently, for k large enough, we conclude that by (3.3) in Br/2× (−2, 2) it holds

|P−
λ,�(D2uk)| ≤ |Duk |1+ε0 ,

when k is large enough.
We are left to find a lower bound for |Duk | in (Br\Br/2) × (−2, 2). Trivially, we

have

|Duk |2 ≥ |Dxuk |2 = |x |2
(

−2B + 4C|x |2 + D(z + 2)
ρ′

|x |
)2

.

By the choices of B and C in (3.1) it holds

−2B + 4C|x |2 ≤ −2B + 4Cr2 = −q

k
r−q−2,

in Br × (−2, 2). Moreover, since ρ′ ≤ 0 and r
2 ≤ |x | ≤ r in (Br\Br/2)× (−2, 2), we

obtain

|Duk |2 ≥ |x |2
(
−2B + 4C|x |2

)2 ≥ q2

4

r−2q−2

k2

in (Br \ Br/2)× (−2, 2). Finally, we recall that q = 4
ε0

and r = k−ε0 to conclude that

|Duk |1+ε0 ≥ k2ε0+ε20
r−q−2

k
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in (Br \ Br/2) × (−2, 2). Therefore, by (3.3) we have for k large enough

|P−
λ,�(D2uk)| ≤ |Duk |1+ε0

in (Br \ Br/2) × (−2, 2) as well. Thus, we have established that, in B2,

|P−
λ,�(D2uk)| ≤ |Duk |1+ε0 .

Finally we notice that infB1 uk = 1
k and supB1 uk > 1. Thus

∫ supB1 uk

infB1 uk

ds

s1+ε0 + s
≥ 1

2

∫ 1

1/k

ds

s
= 1

2
log(k) → ∞

as k → ∞. This completes the proof. ��
Proof of Theorem 1.2 Without loss of generality we may assume that u > 0. (Other-
wise, we define u+ε and let ε → 0.) Let (x0, t0) ∈ Q2 with Q2ρ0 ∪ A+

ρ0
(x0, t0) ⊂ Q2

and fix ρ0 ≤ α0, where

α0 = a0
L2(η( 1

2C ) + 1)
. (3.4)

Here A+
ρ0

(x0, t0) is defined in (1.10), a0 = 1
C(η(u(x0,t0))+1) and C, L2 > 1 are from

(1.9) and from Lemma 2.2 respectively. Since u is continuous there exists ρ > 0 such
that

u(x0, t0) < 2C inf
A+
a0ρ(x0,t0)

u(x, t),

where C and a0 are as above. In order to shorten the notation we denote A+
a0ρ(x0, t0)

by A+
a0ρ . We choose the smallest ρ, denoted by ρs , such that a0ρs ≤ ρ0 and

u(x0, t0) = 2C inf
A+
a0ρs

u(x, t). (3.5)

If such a ρs does not exist or if a0ρs = ρ0, then the claim of the theorem is trivially
true. Let us then assume that a0ρs < ρ0. From (3.5) we deduce that there exists a point
(xs, ts) in the closure of A+

a0ρs such that

u(x0, t0) = 2Cu(xs, ts).

We define

v(x, t) = 2Cu(ρs x + xs, ρ
2
s t + ts).
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Next we recall the definition of α0 in (3.4). Then a0ρs ≤ ρ0 ≤ α0 implies ρs ≤
1

L2(η( 1
2C )+1)

. Therefore Lemma 2.2 implies that v is a positive viscosity supersolution

of (1.5) and viscosity subsolution of (1.6) in Q2 with v(0, 0) = u(x0, t0). Thus, we
may apply (1.9) to find

sup
A−
a0

v(x, t) ≤ Cv(0, 0).

Recall that A−
a0 =

{
(x, t) : |x |∞ ≤ a0cn

2 ,−a20 + (a0cn)2

4 ≤ t ≤ −a20 + (a0cn)2

2

}
. It is

easy to see that
(
x0−xs

ρs
, t0−ts

ρ2
s

)
∈ A−

a0 . Thus, in particular, we have

2Cu(x0, t0) ≤ Cu(x0, t0),

which is a contradiction as u(x0, t0) > 0. Hence, we have a0ρs = ρ0 and

u(x0, t0) ≤ 2C inf
A+

ρ0

u(x, t).

This completes the proof of the theorem. ��
Let us then prove Theorem 1.3. As usual we use the above Harnack estimate to

deduce that the oscillation has an algebraic decay as we reduce the size of the cubes.
The difficulty is that we need to match the decay estimate to the size of the associated
cubes in order to apply the intrinsic Harnack inequality.

Proof of Theorem 1.3 Let C be from Theorem 1.2. We let δ = 1 − 1
4C , ρ0 = 1 and

ω0 := supQ1
u − infQ1 u. Note that since C > 1 then δ > 1

2 . We also recall the
notation rA := 1

L2(η(A)+1) for a number A > 0 from Lemma 2.2. For k ≥ 1 we define

ρk =
(

rδcn
4Cη(4)

)k

rω0/4.

We claim that for every k ≥ 0 it holds

oscQρk
u ≤ δkω0, (3.6)

where oscQρu := supQρ
u − infQρ u.

We argue by contradiction. Note that (3.6) is trivially true for k = 0 and therefore
the contradiction assumption implies that there is k ≥ 0 such that

oscQρk
u ≤ δkω0 (3.7)

and

oscQρk+1
u > δk+1ω0. (3.8)
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We denote Mk = supQρk
u, mk = infQρk

u and define also tk =
(
1 − c2n

4

) (
rδρk

2Cη(4)

)2
.

We claim that one of the following holds

(i) Mk − u(0,−tk) ≥ δkω0
4

(ii) u(0,−tk) − mk ≥ δkω0
4 .

Indeed, if both are false then oscQρk
u ≤ δkω0/2. Note that from (3.8), we have

δk+1ω0 < oscQρk
u.Hence, we obtain δ < 1/2,which is a contradiction. Hence either

(i) or (ii) holds.
Assume first that the condition (i) above holds. We define a function v : Q2 → R

as

v(x, t) = Mk − u(rδρk x, (rδρk)2t − tk)

δkω0/4
. (3.9)

Let us denote b0 := 1
2Cη(4) . We note that by the choices of ρk, tk and b0 it holds

A+
b0rδρk

(0,−tk) = Qρk+1 ⊂ Q2, (3.10)

where A+
ρ is defined in (1.10). Let us show that v is a supersolution of (1.5) and

subsolution of (1.6) in Q2.
Indeed, by the definition of ρk it holds

rδρk ≤ rk+1
δ rω0/4 = 1

Lk+2
2

1

(η(δ) + 1)k+1

1

η(ω0/4) + 1

On the other hand, by the condition (P3) in (1.4) on η it holds

η(δkω0/4) + 1 ≤ �k+1
0 (η(δ) + 1)k(η(ω0/4) + 1).

Therefore, since �0 ≤ L2 it holds

rδρk ≤ 1

L2(η(δkω0/4) + 1)
= rδkω0/4

and by Lemma 2.2, v defined in (3.9) is a supersolution of (1.5) and subsolution of
(1.6).

Since Mk = supQρk
u, we conclude that v is non-negative in Q2, by possibly

enlarging the constant L2 if necessary. Moreover, the condition (i) and (3.7) imply
1 ≤ v(0, 0) ≤ 4. Therefore since η is increasing in [1,∞) and η ≥ 1, we have
b0 = 1

2Cη(4) ≤ α0 = 1
C(η(v(0,0))+1) . Therefore by Theorem 1.2, we have

1

C
v(0, 0) ≤ inf

A+
b0

v(x, t).
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Using v(0, 0) ≥ 1, we have

δkω0

4C
≤ Mk − sup

A+
b0

u(rδρk x, (rδρk)
2t − tk).

Recalling (3.10) the above yields

sup
Qρk+1

u − mk ≤ Mk − mk − δkω0

4C
= oscQρk

u − δkω0

4C
≤ δkω0 − δkω0

4C
= δk+1ω0.

Hence, we obtain

oscQρk+1
u ≤ δk+1ω0

which contradicts (3.8).
If the condition (ii) holds, we define

v(x, t) = u(rδρk x, (rδρk)2t − tk) − mk

δkω0/4
.

By repeating the above argument leads again to a contradiction. (We leave the details
for the reader). Therefore we finally have the estimate (3.6).

Let us now prove the Hölder continuity. Given r ≤ 1, choose k such that

(
rδcn

4Cη(4)

)k+1

≤ r ≤
(

rδcn
4Cη(4)

)k

and use (3.6) to conclude

oscQr u
(
rω0/4x, r

2
ω0/4t

)
≤ 1

δ
rαω0,

where α = min

{
1
2 ,

log δ

log
(

rδcn
4Cη(4)

)
}

is a universal constant. Therefore, we have for all

(x, t) ∈ Q1

∣∣u (
rω0/4x, r

2
ω0/4t

)
− u(0, 0)

∣∣ ≤ 1

δ
(|x | + |t |1/2)αω0.

Thus, for (x, t) ∈ Qrω0/4 we have

|u (x, t) − u(0, 0)| ≤ 1

rα
ω0/4

δ
(|x | + |t |1/2)αω0 ≤ C̃φ(ω0)(|x | + |t |1/2)α,
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where in the second inequality we have used the fact that φ(s) = η(s)s for η ≥ 1 and
α < 1. Here C̃ > 1 is a universal constant. On the other hand, it is easy to see that for
all (x, t) ∈ Q1 \ Qrω0/4 it holds

|u (x, t) − u(0, 0)| ≤ ω0
rα
ω0/4

rα
ω0/4

≤ C̃φ(ω0)(|x | + |t |1/2)α.

Therefore, we conclude that for all (x, t) ∈ Q1, it holds

|u (x, t) − u(0, 0)| ≤ C̃φ(||u||∞)(|x | + |t |1/2)α.

This implies the claim by using the fact that the equations (1.5) and (1.6) are translation
invariant together with a standard covering argument. ��
Proof of Theorem 1.4 Without loss of generality we may assume that u > 0.
(Otherwise, we define u + ε and let ε → 0.)

We define a sequence of radii ri > 0 and time levels ti < 0 as follows. Set first
M0 = u(0, 0), ρ1 = 1

C(η(M0)+1) and choose the radius r1 = ρ1cn
2 and the time

t1 =
(
−1 + c2n

4

)
ρ2
1 . Here C > 1 and cn ≤ 1 are from (1.9). We proceed by defining

ri iteratively such that if ri is defined, we let

M̃i = sup
x∈Bri

u(x, ti ) and Mi = max{Mi−1, M̃i }, (3.11)

set ρi+1 = 1
C(η(Mi )+1) and define

ri+1 = ri + ρi+1cn
2

and ti+1 = ti +
(

−1 + c2n
4

)
ρ2
i+1.

We first observe that there exists K ∈ N such that rK ≥ 1. Indeed, if ri < 1 for all
i ∈ N then the definition of ri yields

cn
2C

∞∑
i=0

1

η(Mi ) + 1
≤ 1

and ti ≥ −1 for all i . But then necessarily ρi → 0 as i → ∞, which means that
η(Mi ) → ∞ as i → ∞. This in turn implies Mi → ∞, which is a contradiction
since u is continuous. We define K to be the first index for which rK ≥ 1 and note
that rK ≤ 2.

We proceed by claiming that for all i = 0, 1, . . . , K − 1 it holds

Mi+1 ≤ CMi . (3.12)

If Mi+1 = Mi then (3.12) is trivially true. Let us then assume that Mi+1 > Mi . We
choose xi+1 ∈ Bri+1 such that Mi+1 = u(xi+1, ti+1) and let yi be the closest point to
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xi+1 in Bri . Then it holds u(yi , ti ) ≤ Mi . We define

f (r) := u

(
xi+1 + r

ρi+1
(yi − xi+1), ti+1 +

(
1 − c2n

4

)
r2

)

and notice that f (0) = u(xi+1, ti+1) = Mi+1 > Mi ≥ u(yi , ti ) = f (ρi+1). By
continuity of u there exists 0 < ρ0 ≤ ρi+1 such that f (ρ0) = Mi . We set

(x0, t0) =
(
xi+1 + ρ0

ρi+1
(yi − xi+1), ti+1 −

(
−1 + c2n

4

)
ρ2
0

)

and apply (1.9) to have

sup
A−

ρ0 (x0,t0)

u(x, t) ≤ CMi .

Notice that (xi+1, ti+1) ∈ A−
ρ0

(x0, t0) and therefore it holds u(xi+1, ti+1) = Mi+1 ≤
CMi , which proves (3.12).

We use (3.12) to estimate

∫ MK

M0

ds

φ(s) + s
≤

K−1∑
i=0

∫ Mi+1

Mi

ds

φ(s) + s
≤

K−1∑
i=0

∫ CMi

Mi

ds

φ(s) + s
.

Since φ is increasing and of the form φ(s) = η(s)s we obtain

K−1∑
i=0

∫ CMi

Mi

ds

φ(s) + s
≤

K−1∑
i=0

∫ CMi

Mi

ds

φ(Mi ) + Mi

=
K−1∑
i=0

(C − 1)Mi

φ(Mi ) + Mi
= (C − 1)

K−1∑
i=0

1

η(Mi ) + 1

= C(C − 1)
K−1∑
i=0

ρi+1 ≤ 2C2

cn
rK .

Since rK ≤ 2 and φ(s) ≥ s, we conclude

∫ MK

M0

ds

φ(s)
≤ C̃, (3.13)

for a universal constant C̃ .
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Note that in (3.13) we have M0 = u(0, 0) and MK ≥ supx∈B1 u(x, tK ). We let
t2 = −tK and need yet to estimate |tK |. By the definition of tK and ρi it holds

|tK | =
(
1 − c2n

4

) K∑
i=1

ρ2
i ≤

K∑
i=1

ρ2
i . (3.14)

Then by increasingC if necessary such thatC−1 ≤ cn
4 , we haveρi = 1

C(η(Mi )+1) ≤ cn
4 .

Then since rK ≤ 2 we have

|tK | ≤
K∑
i=1

ρ2
i ≤ cn

4

K∑
i=1

ρi = rK
2

≤ 1.

On the other hand, trivially it holds

|tK | ≥ |t1| ≥ 1

2C2(η(u(0, 0)) + 1)2
.

Consequently, we obtain

1

C̃(η(u(0, 0)) + 1)2
≤ t2 ≤ 1,

for a universal constant C̃ .
Similarly, we prove

∫ u(0,0)

infB1 u(·,t1)
ds

φ(s)
≤ C̃

for a universal constant C̃ and a time level t1 > 0 with

1

C̃(η(u(0, 0)) + 1)2
≤ t1 ≤ 1.

This completes the proof. ��
Corollary 1.5 follows fromTheorem1.4 butwe include the argument for the reader’s

convenience.

Proof of Corollary 1.5 Let u ∈ C(Q4(0, 1)) be as in the statement and define uε =
u + ε. We adopt the notation from the proof of Theorem 1.4 and denote Mi (ε) as in
(3.11) for uε and ρi+1 = 1

C(η(Mi (ε))+1) . Since uε(0, 0) = ε we have by Theorem 1.4
that

∫ MK (ε)

ε

ds

φ(s)
≤ C
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for MK (ε) ≥ supx∈B1 uε(x, tK (ε)). Here tK (ε) = −t2. But since φ satisfies (1.8) then
MK (ε) → 0 as ε → 0. We need yet to prove that we may choose tK (ε) such that
tK (ε) → 0 as ε → 0.

We divide the proof in two cases. Assume first

lim
s→0

η(s) < ∞.

Then there is C̃ such that 1 ≤ η(s) ≤ C̃ for all s ∈ (0, 1]. Therefore the equations
(1.5) and (1.6) reduce to the linear case and we have the classical Harnack inequality
by [8, 15] and the claim follows.

Assume then

lim
s→0

η(s) = ∞.

The definition (3.11) of Mi (ε) implies Mi (ε) ≤ MK (ε). Since MK (ε) → 0 as ε → 0,
then for every δ > 0 it holds ρi+1 = 1

C(η(Mi (ε))+1) < δ for all i ≤ K (ε) − 1 when ε

is small. By the definition of rK (ε) it holds

K (ε)∑
i=1

ρi = 2

cn
rK (ε) ≤ 4

cn
.

Therefore by (3.14) we have

|tK (ε)| ≤
K (ε)∑
i=1

ρ2
i ≤ δ

K (ε)∑
i=1

ρi ≤ 4δ

cn
.

The claim follows by letting first ε → 0 and then δ → 0 . ��
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