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Abstract
1.	 Environmental variation can shape the gut microbiome, but broad/large-scale 

data on among and within-population heterogeneity in the gut microbiome and 
the associated environmental factors of wild populations is lacking. Furthermore, 
previous studies have limited taxonomical coverage, and knowledge about wild 
avian gut microbiomes is still scarce.

2.	 We investigated large-scale environmental variation in the gut microbiome of 
wild adult great tits across the species' European distribution range. We collected 
fecal samples to represent the gut microbiome and used the 16S rRNA gene 
sequencing to characterize the bacterial gut microbiome.

3.	 Our results show that gut microbiome diversity is higher during winter and 
that there are compositional differences between winter and summer gut 
microbiomes. During winter, individuals inhabiting mixed forest habitat show 
higher gut microbiome diversity, whereas there was no similar association during 
summer. Also, temperature was found to be a small contributor to compositional 
differences in the gut microbiome. We did not find significant differences in the 
gut microbiome among populations, nor any association between latitude, rainfall 
and the gut microbiome.

4.	 The results suggest that there is a seasonal change in wild avian gut microbiomes, 
but that there are still many unknown factors that shape the gut microbiome of 
wild bird populations.

K E Y W O R D S
avian microbiome, ecological adaptation, environmental variation, gut microbiome, Parus major, 
seasonal adaptation, the 16S rRNA gene
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1  |  INTRODUC TION

The role of the gut microbiome on host traits has been of interest to 
many researchers, and it has been connected to issues such as host 
obesity (Tilg & Kaser,  2011), allergies (McKenzie et  al.,  2017) and 
mental health (Du Toit,  2019; Lucas,  2018). Additionally, the impor-
tance of gut microbiome in evolutionary biology, including its role in 
metabolism, pathogen susceptibility and adaptation has been dis-
cussed (Alberdi et al., 2016; Hird, 2017; Kopac & Klassen, 2016) and 
the biological mechanisms of host–microbiome interactions have been 
debated (Rosenberg & Zilber-Rosenberg,  2018; Zilber-Rosenberg 
& Rosenberg, 2008). However, many of the studies are focusing on 
captive-bred species such as birds (e.g., van Veelen et al., 2020; Xie 
et al., 2016; Zhu et al., 2021), mammals (e.g., Antwis et al., 2019; Beli 
et al., 2018; Grond et al., 2021) and invertebrates (e.g., Morimoto et al., 
2017; Walters et al., 2020), or small-scale variation within or among 
closely located populations (birds e.g., Berlow et  al., 2021; Gadau 
et  al.,  2019; Davidson et  al.,  2021; Drobniak et  al.,  2022; Phillips 
et al., 2018; Worsley et al., 2021; and mammals e.g., Baniel et al., 2021; 
Murillo et al., 2022; Ren et al., 2017; Roche et al., 2023). To our knowl-
edge, there are no studies investigating the large-scale variation in 
the gut microbiome of wild sedentary birds. Understanding the role 
of the gut microbiome in eco-evolutionary research requires studying 
associations between host microbiome and environmental variation in 
natural environmental conditions, across large biogeographical scales 
among and within populations and across taxa.

Interestingly, previous studies have found that there is large-
scale intraspecific variation in gut microbiome across populations 
(Rothschild et  al.,  2018; Sullam et  al.,  2012). Population-level dif-
ferences in gut microbiome have been demonstrated in various 
taxa, including humans (Gilbert et al., 2018), wild red squirrels (Ren 
et al., 2017), brown frogs (Tong et al., 2020) and several insect (Sabree 
& Moran, 2014) and fish species (Liu et al., 2016; Sullam et al., 2012, 
2015). However, the environmental drivers behind the population 
differences are not always well understood. Furthermore, whereas 
mammalian gut microbiomes are largely defined by phylogeny, many 
studies have highlighted that environmental variation is likely more 
important for explaining gut microbiome variation in other taxa, es-
pecially birds (Grond et al., 2019; Loo et al., 2019).

Historically, birds have been largely neglected in microbiome 
research and only the recent years have shown an increasing in-
terest in gut microbiome studies with (wild) birds (Bodawatta, Hird, 
et al., 2022; Waite & Taylor, 2014). Birds are a good model species 
for gut microbiome studies because (1) they inhabit every continent 
on Earth and their varying ecology and species diversity enables us 
to study host life history and environmental effects simultaneously 
(Bibby, 1999; Pereira & Cooper, 2006; Pigot et al., 2020; Rahbek & 
Graves, 2001; Winkler et al., 2002). As a result of bird species' dis-
persal across the Earth and the biannual migration for some species, 
birds have developed ways to adapt to a wide range of environmen-
tal conditions (Gregory et  al.,  2005; Koskimies,  1989). This makes 
them an interesting taxon for studying different mechanisms, such 
as patterns in the gut microbiome, associated with environmental 

variation (Grond et al., 2018). (2) Within a species, populations are 
known to differ in phenotype (Charmantier et  al.,  2008; Husby 
et al., 2010), and the gut microbiome may contribute to this pheno-
typic variation among populations. (3) Due to life-history traits such 
as egg laying, powered flight and migration, the avian gut microbi-
ome may be different from that of, for example, mammals (Grond 
et al., 2018). Distinct morphological characteristics and the ability to 
fly have resulted in a high-energy requirement and fast metabolism 
both of which are influenced by the gut microbiome (Kohl, 2012). 
Yet, surprisingly, large-scale studies focusing on among-population 
variation, and the environmental variables explaining variation in the 
gut microbiome of wild birds among and within populations are still 
poorly studied (Capunitan et al., 2020; Hird et al., 2015).

Population-level differences in avian gut microbiomes could be 
a result of a specific habitat (Drobniak et al., 2022; Loo et al., 2019; 
Wu et al., 2018), or a set of environmental factors such as diet (Singh 
et al., 2017), temperature (Sepulveda & Moeller, 2020) and humidity 
(Tajima et al., 2007). For example, there is a strong seasonal change 
in the gut microbiome composition of wild mice, which has been sus-
pected to be a result of the transition from an insect to a seed-based 
diet (Maurice et al., 2015). In thick-billed murres, Uria lomvia variation in 
the gut microbiome across the breeding season was explained by prey 
specialization and differences in diet and sex during the breeding sea-
son (Góngora et al., 2021). Similar effect was found in barn swallows 
Hirundo rustica: The swallow diet varied across the breeding season 
and was correlated with gut microbiome (Schmiedová et al., 2022). In 
birds, the associations between habitat characteristics and gut micro-
biome have been studied to some extent. In blue tits, Cyanistes caeru-
leus a population living in dense deciduous forests had a higher gut 
microbiome diversity than a population inhabiting open areas and hay 
meadows. This may be explained by dense forests having higher over-
all species abundance and therefore, food item diversity (i.e., diet) and 
abundance (Drobniak et al., 2022). Diet is also shown to have a positive 
effect on eastern bluebirds' Sialia sialis nestling gut microbiome; food 
supplementation increased the relative abundance of Clostridium spp. 
and was positively correlated with antibody response and lower para-
site abundance, thus increasing nestling survival (Knutie, 2020).

Among the abiotic environmental factors, the association between 
temperature and humidity and the gut microbiome have also been stud-
ied, but mostly in other taxa than birds. This study focuses on endo-
thermic species (for ectothermic species see e.g., Bestion et al., 2017; 
Fontaine et al., 2018; Kohl & Yahn, 2016; Moeller et al., 2020), which 
maintain their body temperature by generating heat via metabolism 
(Chevalier et al., 2015; Rosenberg & Zilber-Rosenberg, 2016). Part of 
this temperature maintenance has been connected to the gut micro-
biome; the gut microbiome composition of cold-exposed laboratory-
bred mice Mus musculus changed to so-called cold microbiota, 
potentially helping the host to tolerate periods of higher energy de-
mand (Chevalier et al., 2015). In another study with laboratory-bred 
mice a change in temperature and humidity together with the expo-
sure to wild environment led to different gut microbiome composition 
than their wild and laboratory-bred counterparts that resided in lower 
temperature and humidity (Bär et al., 2020). These changes in the gut 
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    |  3LIUKKONEN et al.

microbiome can mediate changes at molecular level and thus, enable 
adaptation to varying environmental conditions. Temperature has 
also been shown to have effects on poultry gut microbiomes. Higher 
temperature can lead to increased gut microbiome species richness 
and significantly different gut microbiome composition (Wang, Chen, 
et al., 2018), and lower temperatures correlate with changes in bacte-
rial composition and muscle amino acid deposition (Yang et al., 2021). 
In domestic Shaoxing ducks, Anas platyrhynchos exposure to higher 
temperatures increased gut microbial abundance and changed the 
metabolic and transcription-related pathways, which suggests that 
gut microbiome may have enabled host adaptation to a new thermal 
environment (Tian et al., 2020). Recent work with wild birds has also 
shown associations between temperature, host gut microbiome and 
host health, although the results are not conclusive (Dietz et al., 2022; 
Ingala et al., 2021).

The overall aim of this study was to characterize variation in the 
gut microbiome of wild adult great tit Parus major populations across 
the species' distribution range in Europe. The great tit is a well-known 
study species in the fields of ecology and evolution (Krebs, 1971) and 
provides an attractive study system as this species inhabits vast geo-
graphical areas and lives in highly seasonal environments thus, offering 
the possibility to study the drivers that affect seasonal and population-
level variation in the gut microbiome. Here, we investigated how (1) 
population and season contribute to the variation in the gut microbi-
ome, and (2) how environmental factors associated with population and 
season, such as latitude, habitat, average rainfall, average temperature 
and supplementary feeding during winter shape the gut microbiome. 
We expected to see larger seasonal differences in populations living 
at higher latitudes because abiotic environmental conditions such as 
snow coverage, rainfall and temperature vary more towards the polar 
regions (Anderson & Jetz, 2005; Williams et al., 2015). We predicted 
that summer season would result in higher gut microbiome diversity, 
because food abundance, diversity and time for food foraging is gen-
erally higher during summer than winter (Cody,  1981; Karr,  1976). 
Moreover, we predicted that individual and population-specific factors 
such as habitat, average temperature and rainfall significantly con-
tribute to variation in the gut microbiome (Lewis et al., 2017; Murray 
et al., 2020). For example, a more biodiverse habitat may offer more 
diverse and abundant prey items and warmer temperatures and mod-
erate rainfall a higher insect abundance, which could lead to higher 
microbiome diversity and differences in composition (Cox et al., 2019). 
To our knowledge, this is the first study to characterize how environ-
mental variation at a biogeographical scale shapes the variation of the 
gut microbiome in a wild bird.

2  |  METHODS

2.1  |  Study area

Faecal samples were collected from wild adult great tits across 
Europe during winter (January and February) and summer (May 
and June, breeding season) in 2021 from eight different locations 

(Figure 1; Data S1). The aim was to collect samples from ca. 20 to 25 
individuals from winter and 20 to 25 from summer from each location. 
All winter samples were collected from a specific mist netting area 
located at the supplementary feeding (supplement: sunflower seeds 
or sunflower seeds + peanuts) site. Due to difficult winter conditions 
such as colder temperatures and deeper snow coverage, we failed 
in collecting winter samples from the Westerheide and La Hiruela 
populations. During summer, samples were collected from breeding 
adult great tits that were caught at the nest box during chick-rearing 
stage, that is, all the birds in our study had started reproduction. In 
total, we collected 285 samples, of which 124 samples from winter 
and 161 samples from summer.

2.2  |  Faecal sample collection

To capture wild great tits, we used mist nets and feeding traps dur-
ing winter, and nest box traps during summer. Sample collection fol-
lowed a protocol by Knutie and Gotanda (2018): adult great tits were 
captured and put inside a paper bag until defecation, which usually 
took between 5 and 15 min. Faecal samples were then placed straight 
into 1.5 mL Eppendorf tubes and kept on ice until they were placed 
in long-term storage in a −80°C freezer. Each bird was also ringed 
for identification, sexed, weighed (~0.1 g) and their wing length was 
measured with a metal ruler (~1 mm). Habitat characteristics and lati-
tude were recorded at each population (population level), and tem-
perature (average ambient temperature) and rainfall (average mm per 
day) data from 2 weeks prior to sampling of each individual bird (indi-
vidual level) were collected from the European Climate Assessment 
and Dataset (Winkler et al., 2002), using the nearest weather station 
to the sampling location. We chose this 2-week time window based 
on our own gut microbiome studies conducted in the laboratory en-
vironment where temperature caused changes in the gut microbiome 
after 2 weeks of exposure to a new temperature regime (Davies, 
Ruuskanen et  al., in preparation). Moreover, Davidson et  al.  (2020) 
noticed similar diet-induced changes under a 2-week period. During 
winter, birds of this study very likely used supplementary winter 
feeding as the birds were caught near the feeding station (Data S1). 
Because the type of supplementary feeding (sunflower seeds or 
peanuts) could influence the birds' gut microbiome, all of our winter 
analyses included the type of supplementary feed (population level). 
We acknowledge that other types of supplementary feeding have 
likely occurred as it is common practice by the general public. We did 
not record summer diet because birds were caught straight from the 
nest boxes during summer and summer supplementary feeding is not 
that common. Permits for capturing birds and sample collection were 
acquired by collaborators at each population.

2.3  |  DNA extraction and sequencing

We extracted DNA from the collected faecal samples using the 
Qiagen PowerFecal Pro Kit and followed the manufacturers 
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protocol with minor adjustments: we added a 10-min incubation 
step at 65°C prior to lysis step and used a double elution (eluent 
was put through the filter twice) to improve DNA yield. To control 
for contamination and bias during DNA extraction, we included one 
negative control to each extraction batch and distributed samples 
from different populations to each extraction batch equally. After 
extraction, the V4 region of the 16S rRNA gene (approx. length 
254 bp) was amplified using the following primers: 515F_Parada 
(5′-GTGYCAGCMGCCGCGGTAA-3′) (Parada et al., 2016) and 806R_
Apprill (5′-GGACTACNVGGGTWTCTAAT-3′) (Apprill et  al.,  2015). 
A total volume of 12 μL was used in PCR reactions with MyTaq 
RedMix DNA polymerase (Meridian Bioscience, Cincinnati, OH, 
USA). We used the following PCR protocol: (1) an initial denaturation 
at 95°C for 3 min; (2) 30 cycles of 95°C for 45 s, 55°C for 60 s and 
72°C for 90 s and (3) a 10-min extension at 72°C at the end. After 
the first round of PCR, a second round was conducted to apply 
barcodes for sample identification. For this, the protocol was (1) 
initial denaturation at 95°C for 3 min; (2) 18 cycles of 98°C for 20 s, 
60°C for 15 s and 72°C for 30 s and (3) final extension at 72°C for 
3 min. Each PCR plate also contained a negative control to control 
for contamination and a ZymoBIOMICS community standard (Zymo 

Research Corp., Irvine, CA, USA) to ensure successful amplification. 
PCR products' DNA concentration was measured with Quant-IT 
PicoGreen dsDNA Assay Kit (ThermoFischer Scientific, Waltham, 
MA, USA) and quality was checked with gel electrophoresis (1.5% 
TAE agarose gel). PCR products were then pooled equimolarly 
and purified using NucleoMag NGS Clean-up and Size Select 
beads (Macherey-Nagel, Düren, Germany). Finally, the pools were 
sequenced with Illumina Novaseq 6000 2 × 250 bp (San Diego, CA, 
USA) at the Finnish Functional Genomic Center at the University of 
Turku (Turku, Finland).

2.4  |  Bioinformatics

The de-multiplexed sequence data was processed with QIIME2 
version 2021.11 (Bolyen et al., 2018) following the 16S rRNA gene 
V4 region sequence processing protocol. Adapters were removed 
using the Cutadapt plugin version 4.4 (Martin, 2011) and quality 
scores were visually inspected. We used the DADA2 plugin version 
2021.4.0 (Callahan et  al.,  2016) to truncate reads at 220 bp and 
to generate amplicon sequence variants (hereafter ASVs), which 

F I G U R E  1  Locations, sample sizes (winter and summer) and habitat types of the eight different great tit populations across the species' 
distribution range.

 13652656, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.14153 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [05/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5LIUKKONEN et al.

stand for each individual bacterial sequence (Eren et  al.,  2013). 
We used the SILVA v132 database with the sk-learn classifier 
to assign taxonomy (Quast et  al.,  2013; Yilmaz et  al.,  2014). We 
used the phylogeny plugin to construct a rooted phylogenetic 
tree, and removed singletons, eukaryotes, mitochondria, archaea, 
chloroplasts and unassigned taxa in QIIME2 before further 
analysis. We then combined the resulting ASV table with metadata, 
taxonomy table and phylogenetic tree using the phyloseq package 
version 1.44.0 (McMurdie & Holmes, 2013) in R program version 
4.3.0 (R Core Team). Contaminants (N = 61 ASVs) were removed 
using the decontam package version 1.20.0 (Davis et al., 2018). We 
also filtered samples that had less than 100 reads as they were 
likely a result of an error in amplification. The resulting data set 
had 15,288 ASVs in 284 samples (total number of reads in the 
whole data set 16,629,323, average number of reads per sample 
57,740, median number of reads 17,189) (Data S2).

For downstream analyses of gut microbiome diversity (i.e., alpha 
diversity), the data set was rarified at 1000 reads based on the level 
at which the rarefaction curves plateaued. This was conducted to ac-
count for uneven sequencing depth between samples to normalize 
the data and to avoid the bias that rare taxa may have in the analyses 
(Cameron et al., 2020; Schloss, 2023; Weinroth et al., 2022). Seven 
samples were excluded from the data set in rarefying resulting in a 
total of 277 samples and 6883 ASVs, which divided into 121 win-
ter samples and 156 summer samples. We tested both the rarefied 
and unrarefied data sets for consistency in gut microbiome diversity 
(Data S7). For analyses of gut microbiome composition (i.e., beta di-
versity), we used the unrarefied data set. For both gut microbiome 
diversity and composition analyses, we checked that the results 
were consistent between the unrarefied and rarefied data sets.

2.5  |  Data analysis

2.5.1  |  Gut microbiome diversity

We used Shannon Diversity Index and Chao1 Richness (Chao, 2006) 
as the gut microbiome diversity (i.e., alpha diversity) metrics using 
the phyloseq package version 1.44.0 (McMurdie & Holmes, 2013). 
In each model, we first ran the model with Shannon Diversity Index 
as the response variable and then with Chao1 Richness. We use 
these two metrics because Shannon Diversity Index considers 
both taxa abundance and evenness and Chao1 Richness measures 
the observed number of taxa. Chao1 Richness is more sensitive 
to rare taxa, whereas Shannon Diversity Index is more robust as 
it is not easily affected by the presence of rare taxa (Haegeman 
et al., 2013). For all gut microbiome diversity analyses, we use the 
rarefied dataset (N = 277). Additionally, we use both body condition 
(linear regression residual of weigh ~ wing) and weight as proxies for 
individual condition: We ran each model first with body condition 
and then with weight replacing body condition. Because some birds 
escaped prior to measurements, and in one population wing length 
was not recorded, we do not have a weight and wing measurement 

for every bird in this study (total of 46 birds from three different 
populations).

All statistical analyses were conducted in R program version 
4.3.0 (R Core Team). Normality and homoscedasticity of the resid-
uals were visually assessed. Variance inflation factors (VIFs) were 
assessed for each model with the package DHARMa version 0.4.6 
(Hartig & Hartig,  2017). Linear mixed effects models were con-
ducted using the packages lme4 version 1.1-33 (Bates et al., 2014) 
and car version 3.1.2 (Fox et al., 2012).

First, we used a linear model to test if season (categories: win-
ter and summer) and population (six categories) contribute to the 
gut microbiome diversity across all samples. We used gut microbi-
ome diversity as the response variable and population and season 
as the predicting variables. VIF values suggest that there was no 
multicollinearity between factors (VIFs < 4). We also ran this same 
model with an interaction between season and population to test 
for population differences across seasons (Data S5). In these models, 
the Westerheide and La Hiruela populations were excluded as those 
populations were only measured during summer and including them 
may bias the results. Oulu was set as the population reference level 
because it was the northernmost of our study populations.

Second, we tested in more detail, which environmental fac-
tors across and within populations and seasons associated with 
the variation in gut microbiome diversity. We ran a linear mixed 
effects model with gut microbiome diversity as the response vari-
able and the following fixed factors: latitude (continuous variable), 
habitat (categories: mixed and deciduous), rainfall (continuous 
variable) and temperature (continuous variable) using data across 
both seasons. Sex (category variable) and body condition/weight 
(continuous variable) were also included in the model as fixed fac-
tors to control for individual differences within population because 
physiological factors may contribute to variation in the gut micro-
biome (Amato et al., 2019; Corl et al., 2020; Góngora et al., 2021; 
Jašarević et al., 2016; Ley et al., 2008; Zhao et al., 2013). Population 
was included as a random effect as multiple individuals were sam-
pled within each population. In these models, we excluded the 
Westerheide and La Hiruela populations as those populations were 
only recorded during summer. VIF values suggest that there was no 
multicollinearity between factors (VIFs < 4).

Third, because of the uneven sample sizes for winter and summer 
observations and because diet was only monitored during winter, we 
analysed gut microbiome diversity separately by season. For winter 
data (Nsamples = 121), we ran a linear mixed effects model to analyse 
whether latitude, habitat, temperature, rainfall and supplementary 
feeding (categories: sunflower seeds and sunflower seeds + pea-
nuts) contribute to gut microbiome diversity in populations during 
winter. Again, body condition/weight and sex were also included in 
the model and fixed factors and population as a random effect. The 
type of winter model supplementary feeding (categories: sunflower 
seeds and sunflower seeds + peanuts) as an explanatory variable as 
we sampled individuals at the supplementary winter-feeding site and 
the birds frequently visited the feeding site. VIF values suggest that 
there was no multicollinearity between factors (VIFs < 4).
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6  |    LIUKKONEN et al.

For summer data (Nsamples = 156), we ran a similar model as we 
did for the winter data. We used gut microbiome diversity as the re-
sponse variable and latitude, habitat, rainfall, temperature and body 
condition/weight and sex as explanatory variables. Population was 
included as a random effect in this model as well. VIF values suggest 
that there was no multicollinearity between factors (VIFs < 4). For 
each model, we tested the significance factors using F-test ratios in 
analysis of variance (ANOVA, Sattertwaithe's method for calculating 
degrees of freedom).

2.5.2  |  Gut microbiome composition

For gut microbiome composition (i.e., beta diversity), we used the 
microbiome package version 1.22.0 (Lahti & Shetty,  2018). We 
visualized the gut microbiome compositions between popula-
tions and seasons with non-metric multidimensional scaling. For 
these visualizations, we used the Bray–Curtis dissimilarity metric 
that examines the dissimilarity of microbes among samples (Bray 
& Curtis, 1957). To analyse variation in gut microbiome communi-
ties among populations, we used permutational analysis of variance 
(PERMANOVA; vegan package, version 2.6-4, Oksanen et al., 2013) 
with the adonis2 function and 9999 permutations. We constructed 
these PERMANOVA models the same way as we did the multiple 
linear regression models for the gut microbiome diversity measure-
ments. First, we analysed whether season and population contrib-
ute to the variation in gut microbiome composition. Second, we 
analysed whether latitude, body condition/weight, habitat, rainfall 
and temperature and sex contribute to the variation in gut micro-
biome composition across both seasons. Third, we used the win-
ter and summer data subsets to analyse associations between the 
gut microbiome composition and environmental variables within 
season. We tested the homogeneity of variance (beta dispersion), 
which showed similar dispersion for populations (BETADISPER9999, 

F5 = 1.104, p = 0.374) and seasons (BETADISPER9999, F1 = 1.417, 
p = 0.235), thus affirming that PERMANOVA is appropriate for com-
paring community compositions.

We also ran a differential abundance analysis (DESeq2) to see 
whether there are differences in bacterial taxa abundance within 
populations between winter and summer. For this analysis, we 
only used the populations that have both winter and summer data 
(N = 6 populations) because the aim of this analysis was to com-
pare within-population differences in taxa abundance between 
seasons. All taxa are identified at least to family level and some to 
genus level. Unfortunately, many of these observed taxa are less 
studied and their functions in the gastrointestinal tract, especially 
beyond humans, are not known. Furthermore, changes in func-
tionality may not change gut microbiome diversity or composition 
(Moya & Ferrer, 2016). Here, we focus on the taxa that are more 
studied in gut microbiome research. For visualizing the DESeq2 re-
sults, we used order level to make the plot readable. We used the 
package DESeq2 version 1.40.1 (Love et al., 2014) for the differen-
tial abundance analysis.

3  |  RESULTS

3.1  |  Gut microbiome diversity among populations 
and across both seasons

There were 27 bacterial phyla detected across all samples, and 
the most abundant phyla were Proteobacteria, Actinobacteria and 
Firmicutes. While there was variation in gut microbiome between 
populations, population did not significantly influence gut micro-
biome diversity (Figure  2a; Table  1; Data  S4). Season significantly 
influenced gut microbiome diversity when Shannon Diversity Index 
was used as the response variable (p = 0.011, Figure  2b; Table  1; 
Data S4): diversity was higher in winter than in summer. We found no 

F I G U R E  2  (a) Gut microbiome diversity (Shannon Diversity Index) among populations and between seasons ordered by latitude (south to 
north) and (b) season controlling for among-population gut microbiome diversity (mean and standard error).

(a) (b)
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    |  7LIUKKONEN et al.

significant interaction between season and population (p all >0.05, 
Data S5). Furthermore, latitude, habitat, average rainfall and body 
condition did not associate with gut microbiome diversity when the 
model included populations from both seasons (Table 1; Data S4). 
However, temperature negatively associated with gut microbiome 
diversity: lower temperatures correlated with higher Shannon diver-
sity (p = 0.042, Table 1; Data S4 and S8). When Chao1 Richness was 
used as the response variable, none of the explanatory factors sig-
nificantly contributed to gut microbiome diversity (Table 1; Data S4). 
Population as a random effect did not contribute to gut microbiome 
diversity (var. < 0.000, SD < 0.000).

3.2  |  Winter subset

In winter, gut microbiome diversity was higher in individuals inhab-
iting mixed forests than deciduous forests when measured with 

Shannon Diversity Index (p = 0.025, Figure 3; Table 1; Data S4), but 
not when measured with Chao1 Richness (Table 1; Data S4). The re-
sult was the same for habitat when body condition was replaced with 
weight in the model (Shannon p = 0.033, Data S9; Chao1 p = 0.218, 
Data S4). Latitude, temperature, rainfall and supplementary feeding 
(p all >0.05) did not contribute to gut microbiome diversity in any 
of the models (Table 1, see Data S4) and neither did population as a 
random effect (var. < 0.000, SD < 0.000).

3.3  |  Summer subset

Neither latitude, habitat, temperature and rainfall nor body condi-
tion/weight and sex contributed to gut microbiome diversity during 
summer (p all >0.05, Table 1; see Data S4). Population as a random 
effect did not contribute to gut microbiome diversity (var. < 0.000, 
SD < 0.000).

TA B L E  1  Association between gut microbiome diversity (Shannon and Chao1) and (A) population and season, (B) latitude, habitat, 
temperature, rainfall, body condition and sex between seasons, (C) latitude, habitat, temperature, rainfall, type of supplementary feeding, 
body condition and sex during winter and (D) latitude, habitat, temperature, rainfall, body condition and sex during summer.

Shannon R2/R adj. df F p Chao1 R2/R adj. df F p

(A) Both seasons 0.034/0.010 N = 239 0.015/−0.010 N = 239

Population 5 0.541 0.745 5 0.491 0.783

Season 1 6.630 0.011* 1 1.618 0.205

R2/R adj. df χ2 p Chao1 R2/R adj. df χ2 p

(B) Both seasons N = 225 N = 225

Latitude 1 2.994 0.084 1 1.128 0.288

Habitat 1 2.304 0.129 1 0.674 0.412

Temperature 1 4.121 0.042* 1 2.030 0.154

Rainfall 1 0.291 0.590 1 0.151 0.698

Body condition 1 2.102 0.147 1 0.082 0.774

Sex 1 0.059 0.809 1 1.930 0.165

(C) Winter N = 102 N = 102

Latitude 1 0.069 0.792 1 1.342 0.247

Habitat 1 5.030 0.025* 1 0.594 0.441

Temperature 1 0.689 0.406 1 0.003 0.960

Rainfall 1 0.201 0.654 1 0.011 0.918

Suppl. feed. type 1 1.278 0.258 1 1.023 0.312

Body condition 1 2.627 0.105 1 1.179 0.278

Sex 1 0.258 0.612 1 1.023 0.312

(D) Summer N = 129 N = 129

Latitude 1 2.103 0.147 1 0.162 0.688

Habitat 1 0.428 0.513 1 1.960 0.162

Temperature 1 0.011 0.917 1 2.055 0.152

Rainfall 1 0.060 0.807 1 0.641 0.424

Body condition 1 1.819 0.177 1 0.137 0.712

Sex 1 2.007 0.157 1 0.003 0.959

Note: Linear model was used in (A) and linear mixed effects models in (B–D). The ANOVA output with Satterthwaite's method is reported in the table. 
Statistically significant values (p < 0.05) are indicated with a *.
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8  |    LIUKKONEN et al.

3.4  |  Gut microbiome composition

As with gut microbiome diversity, visual observation of the gut 
microbiome composition showed that there was population-level 
variation in composition (Figure 4). However, PERMANOVA showed 
that population did not significantly contribute to differences in gut 
microbiome composition among populations (R2 = 0.021, p = 0.397, 
Figure 4; Data S6).

PERMANOVA showed that there were significant differences in 
composition between seasons, but season only explained 0.5% of 

these differences (R2 = 0.005, p = 0.034, Data  S6). Of the environ-
mental factors, temperature explained 0.6% of differences in gut 
microbiome composition in all data across both seasons (R2 = 0.006, 
p = 0.012, Figure 5; Data S6). When looking at the winter and sum-
mer subsets of data, none of the measured factors explained the 
differences in gut microbiome composition (p all >0.05, Data S6).

Seasonal differences in bacterial taxa abundance were detected 
in each population (Figure 6; Data S7), and some of these taxa were 
of interest to us due to their known beneficial or pathogenic effects. 
Of the well-known taxa, the order Bacillales were more abundant 
in Pilis-Visegrád Mountains, Turku and Jyväskylä during summer 
than winter, and more abundant in Oulu during winter than sum-
mer. The order Bifidobacteriales were more abundant in Turku 
during winter than summer. The order Chlamydiales were more 
abundant in Turku and Jyväskylä during summer than winter. The 
order Enterobacteriales were more abundant in Oulu during summer 
than winter. The order Lactobacillales were more abundant in Pilis-
Visegrád Mountains during summer than winter and in Turku during 
winter than summer. The order Micrococcales were more abundant 
in Tartu, Lund, Pilis-Visegrád Mountains, Oulu and Turku during win-
ter than summer.

4  |  DISCUSSION

The goal of this study was to characterize large-scale variation 
in wild adult great tit gut microbiomes and analyse whether 
environmental factors associated with population and season 
associate with the gut microbiome. Most of bacterial taxa in our 
samples belonged to the phyla Proteobacteria, Firmicutes and 
Actinobacteria, which was expected as they are the key phyla of 

F I G U R E  3  Gut microbiome diversity (mean and standard error) 
in two different habitats during winter. Populations inhabiting 
deciduous habitats are Oulu, Lund and Pilis-Visegrád Mountains 
and populations inhabiting mixed habitat are Jyväskylä, Turku and 
Tartu.
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F I G U R E  4  Among-population comparison of gut microbiome relative abundance on phylum level between seasons. Less abundant phyla 
are summed up as ‘<20% abundance’ to improve plot readability.
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    |  9LIUKKONEN et al.

great tit gut microbiome (as described in Bodawatta, Freiberga, 
et  al.,  2021; Teyssier, Lens, et  al.,  2018). We did not find large-
scale among population variation in the gut microbiome diversity 
or composition. Instead, we found the gut microbiome diversity 
(Shannon) and composition to be dependent on seasons and 

diversity (Shannon) to be dependent on habitats during the 
winter season. Variation in Chao1 Richness was not significantly 
explained by the predictors we investigated. This most likely 
means that there was no significant association between the 
number of bacterial taxa and our predictors. We found a slight 

F I G U R E  5  Non-metric 
multidimensional scaling (NMDS) 
measured with Bray–Curtis dissimilarity 
representing the microbial composition 
dissimilarity among populations between 
winter and summer. Points are coloured 
according to population. Ellipses represent 
95% confidence intervals.

F I G U R E  6  Visualization of the differential abundance analysis comparing six great tit populations between winter (positive 
log2FoldChange) and summer (negative log2FoldChange). Each dot represents one taxon within a bacterial order. All taxa are identified at 
least to Family level (Data S7), but for figure readability they are plotted on order level.
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10  |    LIUKKONEN et al.

negative association between average temperature and Shannon 
diversity and average temperature was little associated with gut 
microbiome composition. We did not find evidence for the effects 
of latitude or average rainfall conditions, and much of the variation 
was left unexplained suggesting unknown sources of variation.

4.1  |  No major differences among populations in 
microbiome diversity or composition

We found no evidence for population differences in the gut 
microbiome diversity or composition. This is surprising in light 
of apparent differences in environmental factors and given that 
great tits also show population-level differences in physiology 
(Saulnier et al., 2023) phenotypes (Dingemanse et al., 2012; Gamero 
et al., 2015) and minor genetic differentiation (Lemoine et al., 2016; 
Noordwijk et  al.,  2002), which have been shown to contribute to 
among-population variation in the gut microbiome of various taxa 
(Gadau et al., 2019; Meng et al., 2014; Spor et al., 2011; Wang, Chen, 
et al., 2018; Wen et al., 2021). We observed high within-population 
variation in gut microbiome diversity, which was expected because 
especially in smaller bird species individual variation in gut 
microbiome diversity has been found to be very high (as mentioned 
in Bodawatta, Koane, et  al.,  2021). In our study, all populations 
were in forested habitats with high plant species diversity, which 
could explain why large among-population differences in the gut 
microbiome were not observed [compared with e.g., the observed 
microbiome differences between urban and rural habitats (Phillips 
et al., 2018; Teyssier et al., 2020)].

4.2  |  Gut microbiome diversity and composition 
differ across seasons

We found that gut microbiome diversity (Shannon) is higher in great 
tit populations during winter than summer and that gut microbiome 
composition varies between seasons. This is in line with many studies 
reporting seasonal variation in the gut microbiome (Baniel et al., 2021; 
Davenport et al., 2014; Góngora et al., 2021; Ren et al., 2017; Xiao 
et al., 2019). However, we expected that the gut microbiome diver-
sity and composition would be lower during winter due to limited 
foraging times and the breadth of available dietary items for great 
tits (Grubb, 1978; McNamara et al., 1994; Vel'ký et al., 2011). During 
winter, great tits can use both insects (lepidopterans, coleopterans 
and dipterans), plant material (seeds and buds) and human provided 
food, compared to mostly insectivorous diet during summer (Vel'ký 
et al., 2011). The birds in our study populations were able to use sup-
plementary feeding during winter. This supplementary feeding could 
reflect to their gut microbiome and possibly explain the higher gut 
microbiome diversity during winter: we did not provide any sup-
plementary food during summer and therefore, part of the seasonal 
differences could be a result of the supplemented diet. The specula-
tion would also follow some previous studies in which diet diversity 

has been connected to gut microbiome diversity (Jones et al., 2023; 
Knutie et al., 2019; Teyssier, Rouffaer, et al., 2018). Higher gut micro-
biome diversity during winter could also relate to bacterial functions 
in the gut. Cold exposure can increase gut microbiome diversity and 
enhance digestion (Fontaine et al., 2018). It can also increase energy 
intake and gut absorption and thus, improve the host's ability to 
tolerate cold (Chevalier et al., 2015; Zhang et al., 2018). Moreover, 
bacterial taxa such as Firmicutes that produce short-chain fatty acids 
and are responsible for carbohydrate and energy metabolic path-
ways could be more active during winter months when birds need 
to maintain their body temperature (Den Besten et al., 2013; Grond 
et al., 2018; Sun et al., 2016).

We observed within-population seasonal shifts in taxa abun-
dances that could potentially associate with the variation between 
winter and summer diets. However, we can only speculate what the 
functions of these differentially abundant taxa are within the great 
tit gut microbiome, as there is a major lack of data regarding bac-
terial taxonomic functionality in wild animals (Worsley et al., 2024). 
Of the populations we sampled Oulu, Jyväskylä and Turku were the 
most northern and experienced the widest range of environmental 
changes between winter and summer and are therefore expected 
to show the largest changes. The rest of the populations were lo-
cated more to the south and west of Europe, which can mean milder 
seasonal changes in environment and less snow cover (Baker, 1939). 
Of the six populations compared here, Jyväskylä showed the most 
differences in between-season taxa abundance and Oulu the least 
differences, which was opposite to what we expected. The order 
Enterobacteriales was more abundant in Lund, Pilis-Visegrád 
Mountains and Oulu during summer than winter. Many bacterial 
taxa belonging to the order Enterobacteriales such as Salmonella 
enterica and Escherichia coli are known pathogens in birds (Cheville 
& Arp, 1978; Tizard, 2004). The order Chlamydiales was more abun-
dant in Jyväskylä and Turku during summer than winter. These 
pathogens are likely to be more abundant during summer, because 
individual birds can pass them on to other individuals during copu-
lation (Escallón et al., 2019; Grond et al., 2018). The order Bacillales 
(not to be mixed with Lactobacillales), which contains several patho-
genic genera such as Staphylococcus, Bacillus and Listeria, was also 
more abundant in Pilis-Visegrád Mountains, Jyväskylä and Turku 
during summer than winter and more abundant in Oulu during win-
ter than summer.

Of the beneficial taxa, the order Lactobacillales abundance var-
ied between populations: they were more abundant during winter 
than summer in Turku and more abundant during summer than win-
ter in Pilis-Visegrád Mountains and Jyväskylä. Especially the genus 
Lactobacillus of the order Lactobacillales is known for its impor-
tance digestive health (Reid & Burton, 2002), and these beneficial 
health effects are also known from poultry (Al-Khalaifah,  2018). 
Lactobacillus species are found in the gut microbiome of many spe-
cies, and they are known for their beneficial functions in the gut. 
Lactobacilli are involved in host metabolism via, for example, car-
bohydrate transport and metabolism, amino acid metabolism and 
protein synthesis and thus, influence the main metabolic pathways 
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    |  11LIUKKONEN et al.

of the host individual (De Angelis et al., 2016). Lactobacilli can pro-
tect the host against incoming potentially pathogenic microbes, and 
they influence host gene expression in, for example, immune and ep-
ithelial cells (Tappenden & Deutsch, 2007). Furthermore, it has been 
suggested that beneficial gut microbes such as Lactobacilli have co-
evolved with the host because of they improve host health (Backhed 
et al., 2005; Ley et al., 2006; Walter, 2008).

4.3  |  Habitat associates with gut microbiome 
diversity, but not composition, during winter

Mixed forest associated with higher gut microbiome diversity than 
deciduous forest during winter, but not during summer. There 
were no differences in microbiome composition between habitats. 
Habitats with mixed tree and other plant species promote diversity 
in forest-associated taxa (Ampoorter et al., 2020; Tinya et al., 2021), 
resulting in a wider range of dietary items for the great tits. A more 
diverse diet has been found to associate with higher gut microbiome 
diversity (Bodawatta, Klečková, et al., 2022) and could also explain 
why great tits inhabiting mixed forest had more diverse gut 
microbiomes during winter. Higher gut microbiome diversity can 
potentially improve the stability of the gut microbiome and benefit 
the host. Generally, a more diverse gut microbiome is more stable 
because functionally similar taxa can potentially replace one another 
and therefore, the host is more tolerant to changes in the gut 
microbiome (Lozupone et al., 2012). Also, as the gut microbiome is 
involved in, for example, host metabolism and digestion by breaking 
down dietary items into compounds that can be used by the host, 
a diverse gut microbiome can influence host nutritional uptake and 
physiology (Grond et al., 2018).

Furthermore, breeding greatly influences physiology (Norte 
et  al.,  2010) and gut microbiome diversity (Escallón et  al.,  2019; 
Góngora et al., 2021; Zheng et al., 2020). Such physiological changes 
could overrun effects of the environment, such as the habitat, in 
the samples collected during the breeding season (but see Drobniak 
et al., 2022). It also leaves us questioning whether the differences 
in gut microbiome diversity between habitats would appear later 
during summer. As breeding comes with a great physiological cost 
(Norte et al., 2010), the gut microbiome may change prior, during and 
after the breeding season (Escallón et al., 2019).

4.4  |  Weak associations between abiotic and 
intrinsic biotic factors on the gut microbiome 
variation

We found no association between latitude, rainfall, winter supple-
mentary feeding and gut microbiome diversity or body condition/
weight, sex and gut microbiome diversity. However, we did find that 
lower average temperature was associated with higher gut microbi-
ome diversity (Shannon, but not Chao1) and that temperature was 
also weakly linked to gut microbiome composition.

The result regarding gut microbiome diversity was opposite to 
our prediction that lower temperature would lead to lower gut mi-
crobiome diversity. However, as expected temperature associated 
with microbiome composition, which follows previous studies with 
bird gut microbiomes (Dietz et  al.,  2022; Ingala et  al.,  2021; Tian 
et al., 2020; Wang, Chen, et al., 2018; Yang et al., 2021) and mammal 
studies (e.g., Worthmann et al., 2017; Zhang et al., 2018). Great tits 
are an endothermic species, which most likely means that ambient 
temperatures may not have major effects in the gut microbiome di-
versity/composition (Ingala et al., 2021) even though in mice studies 
effects between temperature and gut microbiome have been found 
(Chevalier et al., 2015). However, many of the previous studies were 
conducted with extreme temperatures and in captive conditions. For 
example, in egg laying hens spells of extreme hot temperatures lead 
to a decrease in Firmicutes abundance, a taxon that is known for its 
importance in short-chain fatty acid metabolism (Zhu et al., 2019). 
It is likely that the slight association between temperature and the 
gut microbiome is a result of the populations being in different parts 
of Europe and thus, they experience a varying range of tempera-
tures throughout the year. Furthermore, this negative association 
between temperature and gut microbiome diversity was only signif-
icant in the analysis with both seasons included. It is likely that this 
result is connected to the result in which winter was associated with 
higher gut microbiome diversity.

Furthermore, both rainfall and snowfall can affect food item di-
versity and abundance and reflect on the gut microbiome diversity 
(Baniel et al., 2021; Schmiedová et al., 2023). For example, rainfall 
can influence insect abundances during summer, which are signifi-
cant dietary items for great tits (Schöll et al., 2016). Severe weather 
can also limit foraging time leading to temporary depletion in food 
intake (Brittingham & Temple,  1988). This can result in increased 
physiological stress that has been shown to impact the gut microbi-
ome diversity (Noguera et al., 2018). However, this limited foraging 
time may be more reflected on the nestlings (Radford et al., 2001) 
as the gut microbiome is established at the nestling stage (Davidson 
et al., 2021; Teyssier, Lens, et al., 2018).

We found no association between the type of supplementary 
food during winter and the gut microbiome. We provided sunflower 
seeds or peanuts or the mix of those two, which may not signifi-
cantly change the gut microbiome, and most importantly, great tits 
will additionally use a wide variety of other food items within and 
across all populations. Finding associations between supplemented 
food quantity or quality/diet and the gut microbiome requires more 
fine-tuned experiments such as captive experiments in which di-
etary items and food intake are carefully monitored (such as Teyssier 
et al., 2020). Also, sampling the same individuals at multiple time-
points could be used to see possible longitudinal changes the gut 
microbiome (as suggested in Davidson et al., 2021).

Our results concerning body condition/weight are in line with 
recent studies that have not found a single conclusion between the 
gut microbiome diversity/composition and body condition. Here, 
gut microbiome diversity was not associated with individual body 
condition/weight. Generally, a higher body condition has been 
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12  |    LIUKKONEN et al.

connected to a higher gut microbiome diversity as it improves host 
gut stability (Lozupone et al., 2012) and this diversity is especially 
important in adult individuals as it can improve their overall fitness 
(Jones et al., 2023). Previous studies investigating the relationship 
between body condition and the gut microbiome with birds how-
ever show mixed results (Davidson et  al.,  2021; Kohl et  al.,  2018; 
Phillips et al., 2018; Teyssier, Lens, et al., 2018; Worsley et al., 2021). 
In nestling great tits, one study found that better body condition 
connected to higher gut microbiome diversity (Teyssier, Lens, 
et al., 2018), whereas in another study there was no association be-
tween the two factors (Liukkonen et al., 2023). In adult birds, there 
was no association between body condition and the gut microbiome 
diversity in Seychelles' warblers Acrocephalus sechellensis (Worsley 
et  al.,  2021) or in white-crowned sparrows Zonotricia leucophrys 
(Phillips et  al.,  2018). Yet, similarly to our results, in adult female 
steppe buzzards Buteo buteo vulpinus body condition associated with 
higher gut microbiome diversity, but no effect was found in male 
birds (Thie et al., 2022). It may be beneficial to sample birds at mul-
tiple timepoints throughout the year to detect possible longitudinal 
changes in gut microbiome and body condition. Furthermore, the 
association between sex and gut microbiome diversity has proven 
to be inconclusive in previous avian gut microbiome studies. In blue 
tits, sex did not associate with gut microbiome diversity or compo-
sition (Drobniak et  al.,  2022) and similar result was found in barn 
swallows (Kreisinger et al., 2015). During the breeding season, bird 
species that have multiple sexual partners pass cloacal microbiota 
during copulation, which could result in more similar gut microbi-
ome samples between sexes (Grond et  al.,  2018). Also, sex-based 
differences in bird gut microbiomes may be difficult to detect with 
restricted sample sizes (Capunitan et al., 2020).

5  |  CONCLUSIONS

This study is among the first to characterize the large-scale 
variation in the gut microbiome of wild adult great tits. It adds to 
the knowledge about the causes of variation in wild avian gut 
microbiomes. Our key finding is that season significantly associates 
with both gut microbiome diversity and composition and factors 
such as habitat and temperature, which are largely influenced 
by season, also associate with the gut microbiome. Our results 
indicate that changes in environmental conditions can alter the 
gut microbiome, thus highlighting the importance of studying the 
effects of environmental change on gut microbiomes. Future studies 
should try and incorporate omics methods to detect possible 
changes in gut microbiome functions between seasons and habitats. 
This would help us understand how variation in gut microbiome 
diversity and composition may influence host metabolism and, for 
example, reproduction. More work is needed to understand the 
origins of the observed within and among-population variation 
in great tit gut microbiomes and how this variation connects to 
population performance and the functionality of the gut microbiome 
in changing environmental conditions.
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