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ABSTRACT

Shakespeare, Cliona
Seeing the Light: Towards Optical Readout of Donor Spins in Silicon

Quantum computation is a rapidly growing field with multiple functional proof
of concept devices. As none of them have shown a provable advantage over clas-
sical systems, however, there is ample room for investigation of alternate plat-
forms. One such possible platform is a donor spin in Si, which has been demon-
strated to have long coherence times and high control fidelities, as well as having
a large pre-existing manufacturing base. Its chief drawback is a lack of a conve-
nient readout and coupling mechanism. We aim to solve this by introducing opti-
cal coupling via an optomechanical quantum bus, where the spin state is coupled
to an optomechanical resonator, the mechanical resonance frequency of which is
affected by the spin state and is also optically observable.

To accomplish this, we have investigated how our optomechanical system
of choice is affected by a number of factors necessary for the functioning of the
system. We investigated the effect of amorphisation caused by ion implantation
on the optical and mechanical resonances and confirmed that a post-implantation
anneal will recover the desired behavior. We also confirmed that the optical reso-
nance will survive in presence of a micromagnet, in place for improved coupling
of spins to mechanics. As the readout involves incident illumination and thus
absorption, we additionally investigated the magnitude of photothermal effects
as a function of incident power.

In this thesis, I also present the necessary theoretical background on op-
tomechanics, both radiation pressure and photothermal, and the spin picture,
from the basics of a two-level system to the dressing required to couple our spins
to the mechanics. Finally, I discuss the design of the optomechanical device and
its fabrication, including common failure states and steps I took to avoid them.

This dissertation is composed of an introductory text and three publications
— one of which has been published, one of which is submitted for publication,
and one of which is a manuscript that will soon be submitted.

Keywords: optomechanics, quantum computing, optics, nanoscale physics, quan-
tum physics



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Shakespeare, Cliona
Valoa näkyvissä: Kohti donorispinien optista uloslukua piissä

Kvanttilaskenta on nopeasti kasvava ala, jolla on useita toimivia pieniä kvant-
titietokoneita. Koska yksikään niistä ei ole kuitenkaan osoittanut pystyvänsä
johonkin, mihin klassinen tietokone ei pysty, on tilaa tarkastella vaihtoehtoisia
toteutusmalleja. Eräs sellainen on donorispini piissä, jolla on tutkitusti pitkä ko-
herenssiaika ja korkea kontrollifideliteetti, sekä valmiiksi löytyvä suuri valmis-
tuskapasiteetti. Sen huonoin puoli on kätevien luenta- ja kytkentämekanismien
puute. Pyrimme ratkaisemaan tämän toteuttamallä optisen kytkennän optomekaanisen
kvanttiväylän kautta, jossa spinin tila on kytketty optomekaaniseen resonaat-
toriin, jonka mekaaninen resonanssitaajuus riippuu spinin tilasta ja on optisesti
mitattavissa.

Saadaksemme tämän aikaan olemme tutkineet, miten jotkin koko systeemimme
toimivuudelle välttämättömät tekijät vaikuttavat valitsemamme optomekaaniseen
systeemiin. Tutkimme ioni-implantaation aiheuttaman amorfisaation vaikutuk-
sia optiseen ja mekaaniseen resonanssiin ja varmistimme, että implantaation jälkeinen
hehkutus palauttaa toivotun käytöksen. Varmistimme myös, että optinen reso-
nanssi säilyy paremman spini-mekaniikka -kytkennän tuovan mikromagneetinkin
kanssa. Koska ulosluku vaatii sisääntulevaa säteilyä ja siten absorptiota, tutkimme
lisäksi, miten fototermisen voiman suuruus riippui sisääntulevasta tehosta.

Tässä väitöskirjassa esittelen myös tarvittavan teoreettisen taustan sekä sä-
teilypaine- että fototermisestä optomekaniikasta ja spinikuvasta kaksitilasysteemin
perusteista spinit mekaniikkaan kytkevään dressaukseen. Viimeiseksi käsittelen
optomekaanisen resonaattorimme (design) ja valmistusta, mukaanlukien yleisiä
epäonnistumisia ja mitä tein välttääkseni ne.

Tämä väitöskirja koostuu johdanto-osiosta ja kolmesta julkaisusta, joista
yksi on jo julkaistu, yksi on lähetetty, ja yksi on manuskripti, joka lähetetään ko-
hta lehteen.

Avainsanat: optomekaniikka, kvanttilaskenta, optiikka, nanofysiikka, kvanttify-
siikka



Author Cliona Shakespeare
Department of Physics and Nanoscience Center
University of Jyväskylä
Finland

Supervisors Prof. Juha Muhonen
Department of Physics and Nanoscience Center
University of Jyväskylä
Finland

Reviewers Assist. Prof. Bas Hensen
Leiden Institute of Physics
Leiden University
Netherlands

Prof. Mika Sillanpää
Centre of Excellence in Quantum Technology
Department of Applied Physics
Aalto University
Finland

Opponent Prof. Ralf Riedinger
Institute for Quangum Physics
University of Hamburg
Germany



PREFACE

I wish to thank my supervisor, professor Juha Muhonen and my esteemed oppo-
nent, prof. Ralf Riedinger, as well as the pre-examiners of the thesis, prof. Bas
Hensen and prof. Mika Sillanpää.

When I moved to Jyväskylä in January 2019 and started at the Nanoscience
Center the month after, all that greeted me in the lab was a PI, an empty optical
table, and various RF components inherited from the depths of the past. Even
the cryostat only arrived in June. Now, five years later, I shall leave behind me
a group with multiple members and a lab with three optical table setups, two
associated with a cryostat and one with a vacuum chamber. During this time I
have also acquired a black belt in Shorinji Kempo and lost all my grandparents
and also my father. Unrelatedly, there was also a global pandemic.

Nonetheless, I have enjoyed my time in Jyväskylä, filled with uninvited
events global and personal though it has been. The city is nice and compact,
very friendly to biking, and the one city in Finland that has a lighting designer,
leading to beautifully mood-lit roads and bicycle paths. Many a night have I sat
entranced, watching the blue and orange lights of the Kuokkala bridge reflected
on the black water.

My stay in the NSC has also been excellent, bifurcated by the pandemic
though it has been. For that, I have to thank my group mates past and present,
Henri, Charles, Arvind, Teemu, Harsh, Milla, Antti, and Simeoni, as well as my
other colleagues at the NSC current and former, amongst them Johanna, Henna,
Amar, Laura, Kalle, and Lars. On the academic side, I wish to thank our col-
laborators in the Netherlands and Australia: prof. Ewold Verhagen’s group at
AMOLF, especially Jesse Slim, and prof. Andrea Morello and prof. Jarryd Pla’s
groups at UNSW, especially James Slack-Smith.

Jyväskylä, June 2024

Cliona Shakespeare



LIST OF INCLUDED ARTICLES

PI Cliona Shakespeare, Teemu Loippo, Henri Lyyra and Juha T Muhonen The
effects of ion implantation damage to photonic crystal optomechanical resonators
in silicon. Materials for Quantum Technology 1 045003 2021.

PII Cliona Shakespeare, Arvind S. Kumar and Juha T Muhonen Thermal relax-
ation time and photothermal optomechanical force in sliced photonic crystal silicon
nanobeams. Manuscript (2024).

PIII Henri Lyyra, Cliona Shakespeare, Simeoni Ahopelto, Teemu Loippo, Reetu
Inkilä, Pyry Runko, and Juha Muhonen Optomechanical quantum bus for
donor spins in silicon. Manuscript (2024).

Author’s contribution

I performed the data analysis and half of the measurements for [PI], all the mea-
surements and the simulations for [PII], and the magnet sample fabrication and
data analysis for the optomechanical measurements for Section V of [PIII]. I par-
ticipated in the writing of the text for all publications.



LIST OF FIGURES

FIGURE 1 A schematic view of an optomechanical resonator. ................... 5
FIGURE 2 A schematic of a Michelson-type homodyne interferometer. A

laser beam is split into two branches, one of which reflects off
the sample before being reunited with the reference branch.
The interference between these two branches can reveal char-
acteristics of the sample. Image from [PI], reproduced under
the license CC BY 4.0. ............................................................ 16

FIGURE 3 An example noise power spectral density spectrum of a weakly
damped resonator and the optical spriing fitted from the data... 18

FIGURE 4 An example sliced nanobeam photonic crystal cavity. Note the
strain relief structures (indicated by white arrows) surround-
ing the nanobeam on either side and the balcony (black arrow)
for introduction of a micromagnet, the purpose of which shall
be elaborated upon in Section 3.4.2. ........................................ 19

FIGURE 5 The y-axis component of the electrical field of the optical cav-
ity mode of a similar type of structure to that of Figure 4, albeit
one with shorter mirror segments and thus a higher mechan-
ical resonance frequency. Note the confinement to the center
of the beam as well as the fact the intensity maximum of the
field is in the air, rather than in the silicon. From [PI] sup-
plementary information, reproduced under the license CC BY
4.0. ...................................................................................... 20

FIGURE 6 A schematic of the mechanical displacement of the breathing
mode. The largest displacement is in the middle, the region of
the highest optical intensity. ................................................... 21

FIGURE 7 A schematic of the differences between a classical bit, a prob-
abilistic bit, and a qubit.......................................................... 23

FIGURE 8 Effects of a post-fabrication anneal on the mechanical reso-
nance frequency and linewidth of two example resonators at
room temperature and 6K, showing a decrease in linewidth
and increase in resonance frequency, consistent with a reduc-
tion in lattice disorder. From [PI], reproduced under the li-
cense CC BY 4.0. ................................................................... 24

FIGURE 9 The effect of an external magnetic field along the z-axis on the
energy levels of the electron and nuclear spins for a 31P in Si
system. ................................................................................ 25

FIGURE 10 Left: A schematic of an electron in a static magnetic field B0
experiencing Rabi oscillations due to an oscillating magnetic
field B1, with the frequency of the Rabi oscillations determined
by the RF drive input to the antenna. Right: A diagram of how
the energy levels change in the dressed picture, after Laucht
et al. [19]............................................................................... 26



FIGURE 11 A schematic view of strain coupling that depicts how the move-
ment of the lattice causes changes to the electron wave func-
tion. The grey circles are Si atoms, the circle in the center with
an arrow through it (representing nuclear spin) is a donor
atom, and the red cloud is the electron wave function. Note
that in reality, the wave function stretches over four lattice
constants rather than just one. ................................................ 30

FIGURE 12 An example COMSOL strain simulation by Simeoni Ahopelto
for a strain engineered structure. The beam has a mechani-
cal resonance frequency of 5.4 MHz and maximum strain per
xZPF of 5.46 × 10−9. Inset: a close-up of the high-strain region
at the end. To appear in [54]. .................................................. 31

FIGURE 13 A black box model of the spin state measurement. ................... 33
FIGURE 14 A photograph of the RF cavity with a test chip within it. The

directions of the external magnetic field B0 and cavity mag-
netic field B1 have been drawn. Photograph taken by James
Slack-Smith at UNSW. ........................................................... 34

FIGURE 15 A SEM image of a split photonic crystal nanobeam with a
magnet, as used in [PIII]........................................................ 37

FIGURE 16 a) The magnetic field gradient at select magnet thicknesses for
three magnet geometries: rectangle, circle, and triangle (apex
pointing toward increasing distance). b) The magnetic field
gradient as a distance from the edge of a square 500 nm by
500 nm Ni magnet for three representative thicknesses of mag-
net. For both figures, the gradient is taken at the bottom plane
of the magnet/top plane of the Si. .......................................... 38

FIGURE 17 Stepwise schematic of the full magnet sample fabrication pro-
cedure.................................................................................. 39

FIGURE 18 A false color tilted HIM image of a failed fabrication run with
multiple issues...................................................................... 41

FIGURE 19 A color adjusted optical microscope image of an exposed and
developed resist from step 7 in Figure 17. The beams are prop-
erly aligned with respect to the magnets, which are visible as
dark smudges. ...................................................................... 43



CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
PREFACE
LIST OF INCLUDED ARTICLES
CONTENTS

1 INTRODUCTION ............................................................................ 1

2 CAVITY OPTOMECHANICS ............................................................ 4
2.1 Radiation pressure force ............................................................ 4

2.1.1 The Hamiltonian ........................................................... 5
2.1.2 Equations of motion....................................................... 7
2.1.3 Linearization ................................................................. 7
2.1.4 Optomechanical spring equations ................................... 11

2.2 Photothermal force ................................................................... 12
2.2.1 Linearization ................................................................. 13
2.2.2 Spring equations............................................................ 13

2.3 Interferometer .......................................................................... 15
2.4 Power spectral density .............................................................. 17
2.5 Sliced nanobeam optomechancal resonator ................................. 19

3 SPIN MEASUREMENTS ................................................................... 22
3.1 The two-level system ................................................................ 22
3.2 Donor spin qubits ..................................................................... 23

3.2.1 Ion implantation ............................................................ 23
3.2.2 Spin states..................................................................... 25

3.3 Dressing the qubit .................................................................... 26
3.4 Coupling spin to mechanics....................................................... 29

3.4.1 Strain coupling .............................................................. 30
3.4.2 Magnetic field gradient coupling..................................... 33

3.5 Experimental concerns .............................................................. 33

4 FABRICATION ................................................................................ 36
4.1 Device design........................................................................... 36
4.2 Micromagnet fabrication ........................................................... 40
4.3 Nanobeam fabrication............................................................... 42

5 CONCLUSION ................................................................................ 44

REFERENCES.......................................................................................... 46
INCLUDED ARTICLES



1 INTRODUCTION

The first quantum revolution was born of the realization that a wave is also a
particle and a particle a wave, and heralded the advent of technologies that un-
derpin present-day civilization [1]. Realizing that an electron is also a wave gave
us tunneling and thus both a limit to current transistor geometry and a new tran-
sistor paradigm [2]; realizing that light is also a particle gave us the laser [3, 4]
and thus a plethora of applications from telecommunications [5] to dentistry [6].
This, however, was merely the vanguard of a new physics. The quantum regime
contains ground that is yet to be conquered [7].

The network of information technology that encircles the globe and enables
a plethora of things — such as the writing of this very thesis — is based on the
humble bit. It is a binary system that is on or off, up or down, and by manip-
ulation of collections of those bits, humankind has touched the Moon [8] and
simulated the interactions of subatomic particles [9]. Yet while these classical bits
are excellent for many sorts of algorithm, they have their limitations. Humankind
has been placing more and more bits on each square millimeter of silicon chip, but
eventually, the size of the electron and its propensity to tunnel out of its desired
bounds will draw this development to a halt [2].

Enter the quantum architecture. A quantum bit, or qubit, is not merely an
on/off signal one can think of as an arrow that points up or down, depending on
whether the signal is on or off. Instead, it is an arrow that can point not only up
or down, but in all possible directions, including directly to the side, as a super-
position of up and down. With this new medium of computation, certain things
become algorithmically easier: simulations of the quantum world, of course [10],
but also the factorization of large numbers [11] and searching databases [12] or
linked trees [13].

As of 2024, quantum computing is in its infancy. Several proof of concept
systems have been built, but none so far have unambiguously demonstrated an
advantage over extant classical systems. One of the limitations is geometric: cur-
rent classical systems use the presence or absence of an electrical signal as the
states of their bit. These electrical signals can then easily be routed towards and
away from each other, making interactions between any two bits easy to arrange.
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Transporting quantum data, on the other hand, is significantly harder, so cur-
rently only qubits physically adjacent to each other can interact, limiting system
scalability. Current frontrunners for qubit architecture also involve millikelvin
temperatures or fabrication processes with low yields.

The ideal qubit, then, would be something that piggybacks off the ready-
made fabrication solutions of yesteryear as far as possible to enable rapid scale-up
and quick integration with extant technology. Our proposal is to take advantage
of the honed fabrication technologies of the semiconductor and chip industries
and make a qubit out of doped silicon. One of the common dopants in the semi-
conductor industry is phosphorus, whose surplus electron acts as a donor spin
with an excellent coherence time when embedded in a Si lattice [14]. Alas, P
and other V-group donors do not have any optical transitions in Si, which means
non-contact readout and optical manipulation are not available, unlike for e.g.
the competing platform of nitrogen vacancy centers in diamond [15, 16], which
can be controlled wholly through optics [17, 18]. Extant readout methods for
donor spins in Si are limited to single electron transistors [19, 20], which require
precision microfabrication that has yet to be replicated by other research groups.
Other extant platforms for spin state detection are the Auger decay signal from
excitons [21, 22] and single lead quantum dots [23]. All of these are electrically
based detection schemes that require electrical (or galvanic) contact between the
sample and the outside world.

Our proposal is to leave out the electrical cables to the sample and instead
manufacture an optical readout. We sidestep the lack of intrinsic optical coupling
by coupling the spin state coherently to something that does couple to light. This
chain-style coupling additionally enables us to set our optical readout frequency
at the telecom wavelength of 1550 nm to readily transport information across
the globe. The means of coupling chosen herein is optomechanics, where we
couple the mechanical system to the spin state, through which the information is
transmitted to the optical system and thence to the wider world.

Stated above is the motivation behind the work presented herein. While the
end goal is still unachieved, I present several articles published on the pathway
towards our quantum bit. The first, [PI], is on the effects of ion implantation dam-
age on the optomechanical resonator. The second, [PII], deals with photothermal
forces that come from the absorption of photons in the optical cavity, and connects
experimental observations with Monte Carlo simulations of phonon exit times in
an effort to quantify the photothermal effect on our optomechanical resonators.
The third, [PIII], focuses on the coupling of donor spin qubits to the mechanical
motion of an optomechanical resonator, including two different means of doing
so, strain and micromagnets, and how the micromagnets affect the optical cavity
mode.

Before the articles at the end, I expand upon the theoretical background of
the work. The first chapter is on cavity optomechanics, which is what allows us
optical readout of a mechanical state. For thoroughness and greater clarity, I have
chosen to include intermediate steps in the derivation of formulae. The second
chapter begins with a brief introduction to two-level systems before talking of
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the preparation of the spin state and coupling it to mechanics. Finally, as the path
from idea to industry requires the creation of a functional device, I conclude with
a section on fabrication so as to document some of the potential pitfalls an exper-
imentalist might encounter. I also talk about the design process of the magnets
and nanobeams and the tradeoffs we have chosen to make in the design of our
devices.



2 CAVITY OPTOMECHANICS

That light could exert a force on matter was first postulated by Kepler in the 17th
century [24]. Five centuries of scientific progress later, optomechanics is a thriv-
ing field and the principle of coupling an optical cavity to a mechanical resonator
— cavity optomechanics — is what underlies all three articles included in this
thesis. An optomechanical device is the bridge with which we connect the state
of the spin qubit with the optical readout. Article [PI] is concerned with the ef-
fects of ion implantation, necessary for introduction of spin qubits, on this bridge,
while article [PII] discusses the effects of heating due to photon absorption. Ar-
ticle [PIII] includes a brief investigation of the effects of a micromagnet, another
aspect necessary for our readout, on the optomechanical device. Here I introduce
the principles behind the bond of mechanical motion and light that defines any
optomechanical device, as well as briefly discussing the device type of our choice.

2.1 Radiation pressure force

Light, massless though it may be, carries momentum [25]. The transferrance of
this momentum to an illuminated object is known as the radiation pressure force.

Let us begin with an optical cavity consisting of two semipermeable mirrors
at distance L from each other. As the momentum of a photon is h/λ, when it re-
flects off a mirror, it gives the mirror a momentum of 2h/λ [26]. For a fixed mirror,
that is that; for a freely moving mirror like a solar sail [27], the mirror will slowly
head off into the void between the stars. If, however, the mirror is on the surface
of a mechanical oscillator (e.g. a diaphragm) or otherwise spring coupled to an
unperturbed location, the initial displacement will make it oscillate. A schematic
of this can be seen in Figure 1. One can think of this as a cavity that changes its
own length. For an unperturbed optical cavity, the resonance frequency directly
depends on the cavity length L, so that the resonance wavelength λ = 2L for the
fundamental mode. A periodic change in the length of the cavity will thus also
change the resonance frequency. This will show up as phase noise in the optical
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resonance frequency [28].

c m m,,

FIGURE 1 A schematic view of an optomechanical resonator.

2.1.1 The Hamiltonian

Now let us consider the Hamiltonian of an optomechanical cavity. This consists
of three parts: the term for the optical cavity, the term for the mechanical cavity,
and the term for the interaction between them. The optical term is simply the
number of photons in the optical cavity n times the energy per photon h̄ωc:

HL = h̄ωcn (1)

The subscript c will be used throughout to describe the optical cavity, as o would
be confused with 0 and L will henceforth be reserved for the incident field. ωc is
thus the resonance frequency of the optical cavity.

On the mechanical side, we can imagine our system as a mass m spring cou-
pled to a location with a spring constant k. A displacement causes an increase in
potential energy due to the deformation of the spring, which is then transformed
into kinetic energy as the mass returns towards its neutral position. This energy
is then again transformed into kinetic energy as the mass overshoots, leading to
oscillations at a frequency of ωm =

√
k/m. In the absence of an optomechanical

coupling, the Hamiltonian for this mechanical system is

HM =
p2

2m
+

mω2
m

2
x2 (2)

where p, m, and x are the mechanical resonator’s momentum, mass, and dis-
placement, respectively, and ωm is the resonance frequency of the mechanical res-
onator. The subscript m will be dedicated for the mechanical resonator through-
out.

The optomechanical coupling term comes from the change in potential en-
ergy of the mechanical resonator caused by the optical field. Each photon exerts
a force of F = h̄ dωc

dx . The interaction Hamiltonian is thus

HOM = h̄Gxn (3)

where we have defined the optical frequency shift per displacement G = dωc
dx .

Moving to the quantum picture, we introduce the raising and lowering
operators for the optical field, â† and â, and mechanical field, b̂† and b̂. As
a reminder, b̂†b̂ is the number operator for the field, the position operator is
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x̂ = xZPF(b̂ + b̂†), and the momentum operator is p̂ = −imωmxZPF(b̂ − b̂†),

where xZPF =
√

h̄
2mωm

is the zero-point fluctuation amplitude of the mechani-
cal resonator. It is also the spread of the coordinate in the ground state. With the
mechanical vacuum state denoted by |0⟩, ⟨0| x̂2 |0⟩ = x2

ZPF. Using the number
operator for the optical field, we get the Hamiltonian of the photon ensemble:

HL = h̄ωc â† â (4)

We can thus write our combined Hamiltonian HL + HM + HOM as

Ĥ = h̄ωc â† â +
−m2ω2

mx2
ZPF(b̂ − b̂†)2

2m
+

mω2
m

2
x2

ZPF(b̂ + b̂†)2

+ h̄GxZPF(b̂ + b̂†)â† â (5)

Let us begin by simplifying the mechanical term:

−m2ω2
mx2

ZPF(b̂ − b̂†)2

2m
+

mω2
m

2
x2

ZPF(b̂ + b̂†)2

=
1
2

mω2
mx2

ZPF

(
−(b̂ − b̂†)2 + (b̂ + b̂†)

)

=
1
2

mω2
m

h̄
2mωm

(
−(b̂ − b̂†)2 + (b̂ + b̂†)

)

=
1
4

h̄ωm

(
−(b̂ − b̂†)2 + (b̂ + b̂†)

)

=
1
4

h̄ωm

(
−b̂2 − (b̂†)2 + b̂†b̂ + b̂b̂† + b̂2 + (b̂†)2 + b̂†b̂ + b̂b̂†

)

=
1
4

h̄ωm

(
2b̂†b̂ + 2b̂b̂†

)

=
1
4

h̄ωm

(
2b̂†b̂ + 2(b̂†b̂ + 1)

)

=h̄ωmb̂†b̂ +
1
2

h̄ωm

where we use first the definition of xZPF, then simple arithmetic, and finally the
commutation property [b̂, b̂†] = 1 of the creation and annihilation operators to
achieve the desired result. The term 1

2 h̄ωm at the end is an offset from the vacuum
energy and will be disregarded for the rest of our treatment. By additionally
defining the single-photon optomechanical coupling strength g0 = GxZPF, we
find that

Ĥ = h̄ωc â† â + h̄ωmb̂†b̂ + h̄g0 â† â(b̂ + b̂†) (6)

The final step of our treatment of the Hamiltonian shall be switching to
a frame rotating at the laser frequency ωL. The unitary transformation Û =
exp

(
iωL â† ât

)
is applied to the Hamiltonian to generate a new Hamiltonian Ĥ =
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ÛĤoldÛ† + ih̄ ∂Û
∂t . As Û commutes with all terms of Equation 6 [26], the transfor-

mation is simple:

Ĥ = −h̄∆â† â + h̄ωmb̂†b̂ − h̄g0 â† â(b̂ + b̂†) (7)

where â is now in the rotating frame, i.e. âhere = eiωLt âorig, and

∆ = ωL − ωc (8)

is the detuning of the laser from the cavity resonance. Note that there are two
different sign conventions for the detuning; I follow the convention Aspelmeyer
et al. [28] use in all cases where there are competing standards.

2.1.2 Equations of motion

As in our case, we are using the optomechanical cavity as an optical probe of the
mechanics and thus are most interested in the emitted field, I shall now turn to
input-output theory. This has the additional benefit of being able to deal with
noise and a coherent laser drive [29]. Let us first cover the optical field amplitude
â. We choose our definition of optical decay rate κ so that â experiences decay at
a rate of κ/2. The decay can be decomposed into a contribution from the input
coupling κex and other processes κ0 so that κ = κex + κ0. (Later, we shall separate
out absorption as κa from κ0.) In the rotating frame, we can thus write

˙̂a = −κ

2
â + (i∆ + Gx̂)â +

√
κex âin +

√
κ0 f̂in (9)

where âin is the field incident to the cavity, for instance a coherent laser drive,
and f̂in is a noise term. The equation is presented in the rotating frame. The
equivalent equation for the mechanical field is

˙̂b =

(
−iωm − Γm

2

)
b̂ + ig0 â† â +

√
Γmb̂in (10)

where Γm is the damping term for the mechanical motion and b̂in is the field
incident from the mechanical bath. If the resonator is not weakly damped, i.e. the
assumption ωm ≫ Γm is not valid, then the treatment in Equation 10 does not
apply and the mechanical field will have to be treated through the displacement
x̂ [28].

2.1.3 Linearization

In our applications, the number of photons in the cavity is sufficiently large that
the cavity cannot distinguish between them. In such cases, it is possible to sim-
plify the equations of motion by splitting the cavity field â into an average am-
plitude α = ⟨â⟩ =

√
n̄cav and a fluctuating term δâ so that â = α + δâ. The

optomechanical part of the Hamiltonian in Equation 7 then becomes

ĤOM = −h̄g0(α + δâ)†(α + δâ)(b̂ + b̂†) (11)
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where the product of the optical terms can be expanded to

ĤOM =− h̄g0|α|2(b̂ + b̂†)

− h̄g0(α
∗δâ + αδâ†)(b̂ + b̂†)

− h̄g0δâ†δâ(b̂ + b̂†)

where the first term describes the contribution of an average radiation pressure
force and can be discarded with an appropriate shift to the origin of the dis-
placement coordinate and the final term can be omitted, as the fluctuations are
assumed to be small. This leaves us with the middle term. As the number of
photons in the cavity n̄cav is real, so is its square root; i.e. α∗ = α =

√
n̄cav. We can

thus write

H̄OM = −h̄g0
√

n̄cav(δâ + δâ†)(b̂ + b̂†) (12)

as the linearized Hamiltonian for the optomechanical interaction.
We can additionally linearize the optomechanical equations of motion. We

first linearize the optical field operator:

˙̂a(t) =− κ

2
a(t) + i∆0a(t) + iGx(t)a(t) +

√
κeain(t) +

√
κ0 f̂in

α̇ + δ̇â(t) =− κ

2
(α + δâ(t)) + i∆0(α + δâ(t)) + iG(x̄ + δx̂(t))(α + δâ(t))

+
√

κe(αin + δâ′in(t)) +
√

κ0 f̂in

We remove α̇, as α by definition does not have a time dependence and its time
derivative is zero:

δ̇â(t) =− κ

2
α − κ

2
δâ(t) + i∆0α + i∆0δâ(t) + iGx̄α + iGαδx̂(t)

+ iGx̄δâ(t) + iGδâ(t)δx̂(t) +
√

κe(αin + δâ′in(t)) +
√

κ0 f̂in

We remove the second-order fluctuation term δx̂(t)δâ(t):

δ̇â(t) =− κ

2
α − κ

2
δâ(t) + i∆0α + i∆0δâ(t) + iGx̄α + iGαδx̂(t) + iGx̄δâ(t)

+
√

κe(αin + δâ′in(t)) +
√

κ0 f̂in

Rearrangement of terms:

δ̇â(t) =
[
−κ

2
+ i∆0 + iGx̄

]
(α + δâ(t)) + iGαδx̂(t)

+
√

κeαin +
√

κeδâ′in(t) +
√

κ0 f̂in
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We now go to the modified drive detuning ∆ = ∆0 + Gx̄:

δ̇â(t) =
[
−κ

2
+ i∆

]
(α + δâ(t)) + iGαδx̂(t) +

√
κeαin +

√
κeδâ′in(t) +

√
κ0 f̂in

If one solves Equation 9 for the steady state amplitude under monochromatic
laser illumination, where ⟨âin⟩ is the amplitude of the incident laser and f̂in =

0, one discovers a value of α =
√

κeαin
κ
2−i∆ . This can be inserted into the previous

equation to yield:

δ̇â(t) =
[
−κ

2
+ i∆

] √κeαin
κ
2 − i∆

+
[
−κ

2
+ i∆

]
δâ(t) + iGαδx̂(t) +

√
κeαin +

√
κeδâ′in(t) +

√
κ0 f̂in

=−√
κeαin +

[
−κ

2
+ i∆

]
δâ(t) + iGαδx̂(t) +

√
κeαin +

√
κeδâ′in(t) +

√
κ0 f̂in

We notice that
√

κeαin cancels itself out. We additionally notice that as α =
√

n̄cav
and thus as g = g0

√
n̄cav, α = g0

g0

√
n̄cav = g

g0
. Likewise, g0 = GxZPF and thus

G = g0
xZPF

, so that Gα = g
xZPF

, leading to iGαδx̂(t) = i g
xZPF

δx̂(t).
Finally, we redefine the origin so that the time-average position x̄ = 0 and

thus δx̂(t) = x̂(t). As x̂ = xZPF(b̂ + b̂†), this lets us write i g
xZPF

δx̂(t) = ig(b̂ + b̂†).
Thus we arrive at the final form:

δ̇â(t) =
[
−κ

2
+ i∆

]
δâ(t) + ig(b̂ + b̂†) +

√
κeδâ′in(t) +

√
κ0 f̂in (13)

For the mechanical portion, we shall treat it in terms of displacement x =

2xZPF Re
{〈

b̂
〉}

.

ẍ + Γm ẋ + ω2
mx =

1
me f f

Ftot(t), (14)

where Ftot(t) is the sum of all forces acting on the displacement. Ignoring thermal
fluctuations, we can say that Ftot(t) = Frp = h̄G|α|2. To linearize, we write x(t) as
x̄ + δx(t). The left side thus becomes

ẍ(t) + Γm ẋ(t) + ω2
mx(t)

= ¨̄x + δ̈x(t) + Γm
(

˙̄x + δ̇x(t)
)
+ ω2

m (x̄ + δx(t))

=δ̈x(t) + Γmδ̇x(t) + ω2
m (x̄ + δx(t))

Again, we choose our coordinates so that the time-average position x̄ is zero:

δ̈x(t) + Γmδ̇x(t) + ω2
mδx(t) =

1
me f f

Frp(t)

The right side contains a prefactor of 1
me f f

and the radiation pressure force Frp(t) =

h̄G|α|2, which we can also linearize:
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Frp(t) =h̄G(α + δâ(t))†(α + δâ(t))

=h̄G(α∗α + α∗δâ(t) + δâ†(t)α + δâ†(t)δâ(t))

Discarding the second-order fluctuations and knowing that α∗α = |α|2:

Frp(t) =h̄G|α|2 + h̄G(α∗δâ(t) + δâ†(t)α).

The full form of the linearized mechanical displacement is thus

δ̈x(t) + Γmδ̇x(t) + ω2
m (x̄ + δx(t)) =

1
me f f

[
h̄G(α∗δâ(t) + δâ†(t)α)

]
. (15)

Let us now present these in frequency space. For that, we will perform a
Fourier transformation, first on the optical field:

F{δ̇â(t)} =F
{[

−κ

2
+ i∆

]
δâ(t) + iGαδx̂(t) +

√
κeδâ′in(t) +

√
κ0 f̂in

}
(16)

−iωδâ(ω) =
(

i∆ − κ

2

)
δâ(ω) + iGαx(ω) (17)

and then on the mechanical position:

F
{

δẍ(t) + Γmδẋ(t) + ω2
m (x̄ + δx(t))

}
=F

{
1

me f f

[
h̄G(α∗δâ(t) + δâ†(t)α)

]}

(18)

−ω2x(ω) + ω2
mx(ω)− iωΓmx(ω) =

1
m

h̄G(α∗δâ(ω) + α(δâ(ω)∗)(ω)) (19)

m
[
−ω2 + ω2

m − iωΓm

]
x(ω) =h̄G(α∗δâ(ω) + αδâ(ω)(−ω)∗) (20)

From this, we can express δâ(ω) in terms of x(ω):

δâ(ω) =
−iGα

i(ω + ∆) + κ
2

x(ω)

=
Gα

(ω + ∆) + i κ
2

x(ω)

and then insert this into the equation for x(ω) to receive:

m
[
−ω2 + ω2

m − iωΓm

]
x(ω) =h̄G(α∗

Gα

∆ + ω + i κ
2
+ α

Gα∗

∆ − ω − i κ
2

=h̄G2|α|2
(

1
∆ + ω + i κ

2
+

1
∆ − ω − i κ

2

)

Armed with this result, we can now move on to the next step.
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2.1.4 Optomechanical spring equations

What we measure is not the position of the mechanics, but rather the resonance
frequencies optical and mechanical, as well as their dampings. The detection of
the output signal is discussed in Section 2.4; here, I shall look at the generated
signal at the mechanical resonator.

Let us begin with the mechanical susceptibility χm(ω), where x = χm(ω)F.
In the absence of optomechanical coupling, it is of the form χm(ω) = 1

m(ω2
m−ω2−iωΓm)

.
With the optomechanical contribution, the original susceptibility is modified so
that χ−1

e f f (ω) = χ−1
m (ω) + Σ(ω). Σ(ω) can be directly taken from the formula for

x(ω), where knowing that h̄G2|α|2 = 2mωmg2, we get:

Σ(ω) = 2mωmg2
(

1
∆ + ω + i κ

2
+

1
∆ − ω − i κ

2

)
. (21)

We can also define Σ(ω) in a form along the lines of the original susceptibil-
ity:

Σ(ω) ≡ mω[2δωm(ω)− iδΓm(ω)], (22)

so that the optically induced shift in the mechanical frequency is δωm(ω) =
Re{Σ(ω)}

2mω and the shift in the mechanical damping is δΓm(ω) = − Im{Σ(ω)}
mω . Us-

ing the definition of Σ(ω) from Equation 21, we then receive the forms for δωm
and δΓm:

δωm(ω) = g2 ωm

ω

[
∆ + ω

(∆ + ω)2 + κ2/4
+

∆ − ω

(∆ − ω)2 + κ2/4

]
(23)

δΓm(ω) = g2 ωm

ω

[
κ

(∆ + ω)2 + κ2/4
− κ

(∆ − ω)2 + κ2/4

]
, (24)

where δωm and δΓm describe the changes to the mechanical resonance frequency
and mechanical damping, respectively, caused by the radiation pressure. This
phenomenon is also known as the optical spring, shown in Figure 3.

The above equations are valid for all regimes where the linear approxima-
tion is applicable. We can, however, simplify them further by making certain as-
sumptions about the cavity. If the incident illumination is small enough (g ≪ κ),
then one can assume that the perturbation caused by the optomechanical force is
small, i.e. that ω = ωm, and thus

δωm = n̄cavg2
0

[
∆ + ωm

(∆ + ωm)2 + κ2/4
+

∆ − ωm

(∆ − ωm)2 + κ2/4

]
(25)

δΓm = n̄cavg2
0

[
κ

(∆ + ωm)2 + κ2/4
− κ

(∆ − ωm)2 + κ2/4

]
, (26)

where we have also used the knowledge that g =
√

n̄cavg0.
We can further simplify these equations if κ ≫ ωm. A large κ means that the

probing of the cavity must be done over a larger range of ωL and therefore ∆, so
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that ∆ ± ω ≈ ∆. This is known as the bad cavity limit or Doppler regime. In this
regime, Equation 25 can be further simplified to

δωm(∆) = n̄cavg2
0

2∆
∆2 + κ2/4

. (27)

Performing the substitution for Equation 25 reveals that, at the bad cavity limit,
δΓm = 0.

2.2 Photothermal force

Though radiation pressure is the most widely known force of light acting upon
matter, illumination is the genesis of other forces as well. While the optical gra-
dient force [30] and Doppler force [31] can be used for optomechanics, besides
the aforementioned radiation pressure force, the force of greatest concern for our
samples is the photothermal force, due to the high laser intensities used for read-
out. The characterization and quantification of the photothermal effect in our
samples is the focus of article [PII].

The photothermal force arises from heating caused by cavity photon ab-
sorption. It is thus a dissipative force. It can nonetheless be used to enhance
optomechanical coupling [32] and even, paradoxically, for feedback cooling of an
optomechanical resonator to its mechanical ground state [32, 33]. Its mechanism
of action is the thermal strain caused by heating from the absorbed photons. This
strain causes deflection that affects the mechanical mode. The strength and phase
difference from the radiation pressure force depend on the geometry and thermal
properties of the sample.

While it is possible to do a full treatment of the thermal modes surface
and volume [34], for the purposes of optomechanics, deriving an optomechanical
equation of motion for a time-delayed force allows one to fit one’s optomechan-
ical data with parameters describing the thermal response [35]. Let us begin by
writing the equation for the photothermal force:

Fpt(t) =
h̄Gβ

κaτ

∫ t

−∞
e−

t−t′
τ â†

abs(t
′)âabs(t′) dt′, (28)

where we separate out the optical decay channel κa for photons lost to absorption,
with âabs(t) =

√
κa â(t) − â′abs(t) the field operator characterizing the photons

absorbed into the mechanical resonator, where â′abs(t) is the field operator for the
vacuum noise introduced to the system through photon absorption. The other
parameters are β, which describes the relative strength of the photothermal and
radiation pressure forces Fpt = βFrp, and the thermal decay rate τ. It is possible
for the photothermal force to act in direct opposition to the radiation pressure
force, in which case β will be negative [35, 36].

We shall now derive the photothermal equations equivalent to Equations
23. As many portions of the derivation are identical, for the sake of space, I shall



13

only treat the photothermal force itself before deriving the equations from the
mechanical susceptibility.

2.2.1 Linearization

The first step is linearization of the photothermal force. We again write â = α +
δâ, so that âabs(t) =

√
κaα +

√
κaδâ − â′abs(t) and insert this into Equation 28 to

yield

Fpt(t) =
h̄Gβ

κaτ

∫ t

−∞
e−

t−t′
τ

[(√
κaα∗ +

√
κaδâ†(t)− δâ′†abs(t)

)

(√
κaα +

√
κaδâ(t)− δâ′abs(t)

)]
dt′ (29)

Let us take an excursion into simplifying the integrand:
(√

κaα∗ +
√

κaδâ†(t)− δâ′†abs(t)
) (√

κaα +
√

κaδâ(t)− δâ′abs(t)
)

=κa

[
α∗α + α∗δâ(t) + δâ†(t)α + δâ†(t)δâ

]

+
√

κa

[
−α∗δâ′abs(t)− αδâ′†abs(t)− δâ†(t)δâ′abs(t)− δâ(t)δâ′†abs(t)

]

+ δâ′†abs(t)δâ′abs(t)

We ignore all second-order fluctuations and rearrange to receive:

κa

[
α∗α + α∗δâ(t) + δâ†(t)α

]
+
√

κa

[
−α∗δâ′abs(t)− αδâ′†abs(t)

]

=κa|α|2 + κa

[
α∗δâ(t) + δâ†(t)α

]
−√

κa

[
α∗δâ′abs(t) + αδâ′†abs(t)

]

The first term of κa|α|2 is a constant representing a constant photothermal force
and can be discarded with an appropriate shift to the origin of the displacement
coordinate. We re-insert the above integrand (save for κa|α|2) into the integral
and take κa out of the integrand:

Fpt(t) =
h̄Gβ

κaτ

∫ t

−∞
e−

t−t′
τ

[
κa

[
α∗δâ(t) + δâ†(t)α

]
−√

κa

[
α∗δâ′abs(t) + αδâ′†abs(t)

]]
dt′

Fpt(t) =
h̄Gβ

τ

∫ t

−∞
e−

t−t′
τ

[
α∗δâ(t) + δâ†(t)α − 1√

κa

[
α∗δâ′abs(t) + αδâ′†abs(t)

]]
dt′.

2.2.2 Spring equations

Again we begin with the mechanical susceptibility to derive the optomechanical
spring equations. As before, χ−1

e f f (ω) = χ−1
m (ω) +Σ′(ω); this time, though, Σ′(ω)

includes both a radiation pressure and photothermal contribution. Σ′(ω) can be
written as

(
1 + β

1−iωmτ

)
Σ(ω), so that, ignoring the noise terms,

Σ′(ω) =

(
1 +

β

1 − iωmτ

)
2mωmg2

(
1

∆ + ω + i κ
2
+

1
∆ − ω − i κ

2

)
.
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As before, the shift in the mechanical resonance frequency is δωm(ω) = Re{Σ′(ω)}
2mω

and the shift in the mechanical damping is δΓm(ω) = − Im{Σ′(ω)}
mω . We begin by

opening out Σ′(ω) so that we may sort by power of i:

Σ′(ω) =

(
1 +

β

1 − iωmτ

)
2mωmg2

(
1

∆ + ω + i κ
2
+

1
∆ − ω − i κ

2

)
(30)

= 2mωmg2
(

1 + β
1 + iωmτ

1 + ω2
mτ2

)(
∆ + ω − i κ

2

(∆ + ω)2 + κ2

4

+
∆ − ω + i κ

2

(∆ − ω)2 + κ2

4

)
(31)

We can partition the real and imaginary parts of the photothermal force and write

β
1 + iωmτ

1 + ω2
mτ2 =

β

1 + ω2
mτ2 +

iβωmτ

1 + ω2
mτ2 .

Now we shall pick out Re{Σ′(ω)} and Im{Σ′(ω)}. We shall for the moment
ignore the prefactor 2mωmg2, as that is a real number which can be reapplied later,
and simply open up the product and classify based on power of i:

(
1 +

β

1 + ω2
mτ2 +

iβωmτ

1 + ω2
mτ2

)(
∆ + ω − i κ

2

(∆ + ω)2 + κ2

4

+
∆ − ω + i κ

2

(∆ − ω)2 + κ2

4

)

=

(
1 +

β

1 + ω2
mτ2

)(
∆ + ω

(∆ + ω)2 + κ2

4

+
∆ − ω

(∆ − ω)2 + κ2

4

)

+ i
(

1 +
β

1 + ω2
mτ2

)( − κ
2

(∆ + ω)2 + κ2

4

+
κ
2

(∆ − ω)2 + κ2

4

)

+ i
(

βωmτ

1 + ω2
mτ2

)(
∆ + ω

(∆ + ω)2 + κ2

4

+
∆ − ω

(∆ − ω)2 + κ2

4

)

+ i2
(

βωmτ

1 + ω2
mτ2

)( − κ
2

(∆ + ω)2 + κ2

4

+
κ
2

(∆ − ω)2 + κ2

4

)

As i2 = −1, we arrive at the following form for δωm = Re{Σ′(ω)}
2mω :

δωm =
ωm

ω
g2

[(
1 +

β

1 + ω2
mτ2

)(
∆ + ω

(∆ + ω)2 + κ2

4

+
∆ − ω

(∆ − ω)2 + κ2

4

)

−
(

βωmτ

1 + ω2
mτ2

)( κ
2

(∆ − ω)2 + κ2

4

−
κ
2

(∆ + ω)2 + κ2

4

)]
(32)

We can likewise find δΓm(ω) = − Im{Σ′(ω)}
mω :

δΓm = −2
ωm

ω
g2

[(
1 +

β

1 + ω2
mτ2

)( κ
2

(∆ − ω)2 + κ2

4

−
κ
2

(∆ + ω)2 + κ2

4

)

+

(
βωmτ

1 + ω2
mτ2

)(
∆ + ω

(∆ + ω)2 + κ2

4

+
∆ − ω

(∆ − ω)2 + κ2

4

)]
(33)
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Both Equation 32 and Equation 33 differ from their pure radiation pressure
equivalents in Equation 23 and Equation 24. One can think of it as the photother-
mal force affecting not only the magnitude of the shifts in the mechanical reso-
nance frequency and damping, but also the phase.

If we again investigate the situation where the laser drive is weak enough
that we can restrict our analysis to the original oscillation frequency (ω = ωm),
we can simplify Equations 32 and 33 into

δωm = g2

[(
1 +

β

1 + ω2
mτ2

)(
∆ + ωm

(∆ + ωm)2 + κ2

4

+
∆ − ωm

(∆ − ωm)2 + κ2

4

)

−
(

βωmτ

1 + ω2
mτ2

)( κ
2

(∆ − ωm)2 + κ2

4

−
κ
2

(∆ + ωm)2 + κ2

4

)]
(34)

and

δΓm = −2g2

[(
1 +

β

1 + ω2
mτ2

)( κ
2

(∆ − ωm)2 + κ2

4

−
κ
2

(∆ + ωm)2 + κ2

4

)

+

(
βωmτ

1 + ω2
mτ2

)(
∆ + ωm

(∆ + ωm)2 + κ2

4

+
∆ − ωm

(∆ − ωm)2 + κ2

4

)]
. (35)

At the bad cavity limit (∆ ± ω ≈ ∆), a cavity with photothermal forces will
have both δωm and δΓm be nonzero:

δωm = g2
(

1 +
β

1 + ω2
mτ2

)
2∆

∆2 + κ2

4

(36)

δΓm = −2g2
(

βωmτ

1 + ω2
mτ2

)
2∆

∆2 + κ2

4

. (37)

A key thing to note with all photothermal effects is that the magnitude of
the photothermal force depends on the incident power via the absorption rate.
It is thus possible to observe drastically different optomechanical responses in a
single resonator at different powers. Observed changes could come solely from
the change in radiation pressure effects caused by the increase in cavity photons;
however, true elimination of photothermal effects from consideration requires
quantitative analysis. One such case and using Monte Carlo phonon ray tracing
simulations to fix a value for τ are the focus of article [PII].

2.3 Interferometer

Now let us take a step out of the realm of theory and consider an experimentalist’s
concerns. The optomechanical system described above is all fine and dandy, yet
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that which cannot be measured cannot be proven to exist. How, then, does one
measure an optomechanical cavity?

If one’s application does not require information about the phase, one may
simply shine a laser on the resonator and measure the reflected power. If one does
desire phase referencing, like we do for reasons that will become clear in Section
2.4, this requires building an interferometer. At its most basic, homodyne inter-
ferometry involves shining light on a sample and then interfering the reflected
light with light which is phase coherent and of identical frequency with the sam-
ple branch in a 50/50 beam splitter. The outputs of the beam splitter are then
gathered, and from the intensity difference between them, information about the
phase difference can be gleaned. For a Michelson or Mach-Zehnder interferome-
ter, both the sample and reference beams come from the same light source, split
by a 50/50 beam splitter into a sample branch and a reference branch, usually
referred to as the local oscillator. This sort of setup is visualized in Figure 2.

HWP

QWP

Piezo-
controlled
mirror

Cryostat

RSA

FIGURE 2 A schematic of a Michelson-type homodyne interferometer. A laser beam
is split into two branches, one of which reflects off the sample before be-
ing reunited with the reference branch. The interference between these two
branches can reveal characteristics of the sample. Image from [PI], repro-
duced under the license CC BY 4.0.

Mathemathically, we shall start with the beam splitter. The incident fields
are the field reflected from the sample, âs, and the reference field âLO, where LO
stands for local oscillator. The outgoing fields are designated â+ and â−, so that

â± =
1√
2
(âLO ± âs) . (38)

The Hamiltonian of the beam splitter is

H = |â+|2 − |â−|2 = i(â∗s âLO − â∗LO âs) (39)

Let us now look at âs and âLO in more detail. The signal branch optical inten-
sity âs depends on the cavity optical field â and the cavity outcoupling efficiency
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κout so that âs =
√

κout â. We return again to the linearized version of Equation 9
and its steady state solution of α =

√
κeαin

κ
2−i∆ , giving us αs =

√
κout

√
κeαin

κ
2−i∆ .

α =

√
κinαin

−i∆(t) + κ
2
=

√
κinαin(i∆ + κ

2)

∆2 + κ2

4

(40)

For âLO, we write separately the intensity αLO ≡ |âLO| and the phase eiϕ, so that
âLO = αLOeiϕ. We additionally declare the phase ϕ to be the phase difference
between âLO and âs, which is what enables us to write αin instead of âin. We then
substitute âLO = αLOeiϕ and Equation 40 into Equation 39, giving us

H =i(â∗s âLO − â∗LO âs)

=iαLO

(√
κeκoutαin(−i∆ + κ/2)

∆2 + κ2/4
eiϕ −

√
κeκoutαin(i∆ + κ/2)

∆2 + κ2/4
e−iϕ

)

=
√

κeκoutαinαLOi
(

κ/2 − i∆
κ2/4 + ∆2 eiϕ − κ/2 + i∆

κ2/4 + ∆2 e−iϕ
)

=
√

κeκoutαinαLO
1

κ2/4 + ∆2

(
∆(eiϕ + e−iϕ) +

κ

2
i(eiϕ − e−iϕ)

)

=
√

κeκoutαinαLO
1

κ2/4 + ∆2

(
2∆ cos ϕ + 2

κ

2
sin ϕ

)

=
√

κeκoutαinαLO
1

κ2/4 + ∆2

(
2∆ cos ϕ + 2

κ

2
sin ϕ

)

=
√

κeκoutαinαLO

(
2

∆
κ2/4 + ∆2 cos ϕ + 2

κ/2
κ2/4 + ∆2 sin ϕ

)

=
√

κeκoutαinαLO

(
2

1
κ2/4∆ + ∆

cos ϕ + 2
1

κ/2 + 2∆2/κ
sin ϕ

)

=
√

κeκout
αLOαin

1 + (2∆/κ)2

(
2∆
κ

cos ϕ + sin ϕ

)
,

whence we can see that, given the correct phase difference ϕ between the signal
and local oscillator branches, the detuning ∆ is explicitly detected.

2.4 Power spectral density

An interested reader’s attention might now turn to the question of what, exactly,
it is that we have measured with our interferometer. We have performed a Fourier
transform on the difference of the two signals outgoing from the second beam
splitter. The result is the power spectral density (PSD) S∆∆(ω) of the signal emit-
ted by the resonator, where ∆ is the modified drive detuning ∆0 + Gx̄. We thus
see that ∆ ∝ x, allowing us to approximate that S∆∆(ω) ≈ Sxx(ω); i.e. that the
PSD we measure shows the frequency components of the mechanical motion of
the optomechanical resonator, visible as increases in PSD intensity with width
Γm, as shown in Figure 3.
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FIGURE 3 a) An example noise power spectral density spectrum of a weakly damped
resonator, measured interferometrically. b) The extracted mechanical reso-
nance frequency as a function of incident optical frequency (blue) and the
pure radiation pressure optical spring (orange) fit according to Equation 23.

Let us now go over the mathematics. First, we shall begin with how me-
chanical motion can be detected through Sxx(ω). If we measure the position x(t)
over a time period t′, then the gated Fourier transform over a finite time interval
t′ is

F (x(t)) =
1
t′

∫ t′

0
x(t)eiωtdt (41)

Next, we apply the Wiener-Khinchin theorem. For physicists, it says that a
function’s autocorrelation is given by the Fourier transform of the absolute square
of the function, and that the spectral decomposition of the autocorrelation func-
tion comes from the spectral decomposition of the process generating the func-
tion. (Mathematicians, of course, have to worry about convergence and other
such minor issues.) In other words,

Sxx(ω) =
〈
|x(ω)|2

〉
, (42)

with Sxx(ω) defined as

Sxx(ω) =
∫ ∞

−∞
⟨x(t)x(0)⟩eiωtdt, (43)

and thus

∫ ∞

−∞

1
2π

Sxx(ω)dω = ⟨x2⟩, (44)

i.e. the variance of the mechanical displacement ⟨x2⟩ is given by the area under
the noise spectrum.

There is more, however. As per the fluctuation-dissipation theorem, the
thermodynamical fluctuations of a system depend on its susceptibility [37]. In
the classical case, for the Brownian motion of a mechanical system in thermal
equilibrium, this can be written as
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Sxx(ω) = 2
kBT
ω

Im{χxx(ω)}, (45)

where χxx(ω) is the mechanical susceptibility. For weakly damped resonators
(Γm ≪ ωm), such as those treated in papers [PI], [PII], and [PIII], this yields
Lorentzian peaks of width Γm and area ⟨x2⟩ ∼ T at the frequency ω = ωm in the
noise power spectral density, which we detect interferometrically.

2.5 Sliced nanobeam optomechancal resonator

Let us now end our look at optomechanics with a final excursion from theory to
reality. If we wish to measure something, it must first exist. This means creating
an optical cavity whose resonance frequency depends on mechanical motion. For
this, we use suspended thin layers of Si, whereon we create an optical cavity,
using a photonic crystal structure, and a mechanical resonator, using a nanobeam.
More details on the fabrication and design are given in Chapter 4. The device type
discussed herein and measured in Figure 3 is shown in Figure 4.

FIGURE 4 An example sliced nanobeam photonic crystal cavity. Note the strain relief
structures (indicated by white arrows) surrounding the nanobeam on either
side and the balcony (black arrow) for introduction of a micromagnet, the
purpose of which shall be elaborated upon in Section 3.4.2.

The device is a photonic crystal fabricated out of silicon. The periodic al-
teration in refractive index between air (n=1) and Si (n=3.98) creates an optical
cavity that only supports one mode. By grading the periodicity or other param-
eters, the ends have a different supported mode than the center, functioning as
Bragg mirrors that confine the desired optical mode to the center of the beam, a
simulation of which is shown in Figure 5.
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FIGURE 5 The y-axis component of the electrical field of the optical cavity mode of a
similar type of structure to that of Figure 4, albeit one with shorter mirror
segments and thus a higher mechanical resonance frequency. Note the con-
finement to the center of the beam as well as the fact the intensity maximum
of the field is in the air, rather than in the silicon. From [PI] supplementary
information, reproduced under the license CC BY 4.0.

The beam is also split lengthwise through the middle. As a result, the op-
tical field is strongest in the gap, and we have an extremely floppy in-plane an-
tisymmetric breathing mode with a large xZPF, as shown in Figure 6. Thus, as
the optical mode is confined to the region with the largest displacement, we have
strong optomechanical coupling.
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FIGURE 6 A schematic of the mechanical displacement of the breathing mode. The
largest displacement is in the middle, the region of the highest optical inten-
sity.



3 SPIN MEASUREMENTS

In this chapter, I speak of the end goal of our avenue of inquiry. While none of
the papers included include a spin measurement, they all build towards one: In
[PI], we examine how implanting our donors — our qubits — affects the mech-
anism we’ll use for readout. In [PIII], we describe the readout mechanism and
examine potential means of coupling to it. Here I go over the chain of coupling
from the spin state to the mechanics and introduce the required theoretical back-
ground, before finally describing the full spin measurement and the experimental
considerations with which one must concern oneself.

3.1 The two-level system

The two-level system is the simplest non-trivial quantum system and also all that
is necessary for quantum computation. While a classical bit has two possible
states, |0⟩ or |1⟩ and no other, a two-level system can be in |0⟩ or |1⟩ — or any
superposition of the two: α |0⟩+ β |1⟩, where α and β are complex numbers that
describe the probability of finding the system in each state, so that e.g. |α|2 is
the probability amplitude of finding the system in the state |0⟩ (and thus 0 ≤
|α|2 ≤ 1). A graphical representation of this difference is presented in Figure 7. In
essence, instead of only pointing up or down, the state vector can point towards
any point on the surface of a sphere.

Here it must be noted that, while the state vector can exist in a superposition
of |0⟩ and |1⟩, the outcome of a measurement can only be either |0⟩ or |1⟩, not a
mix of the two. Proper characterization of the state vector thus involves multiple
measurements for statistical analysis. State initialization, on the other hand, is
made easy: all one needs to do is measure the state. If the result is the desired
state of |0⟩ and |1⟩, nothing more needs to be done; if not, a bit-flip operation can
be performed and the qubit is ready for computation.

This general treatment applies for any system with two non-degenerate
states, whether it be photon polarization, electron spin, or something more exotic.
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FIGURE 7 A schematic of the differences between a classical bit, a probabilistic bit, and
a qubit.

Through manipulation and readout of the state by suitable means, any two-level
system can be used for quantum computation. The precise system we shall turn
our attention to is the spin state of a donor electron in Si, e.g. that from a dopant
like P.

3.2 Donor spin qubits

The silicon semiconductor industry is a vast behemoth with experience purifying
Si down to an impurity concentration of less than 0.1 parts per million and pre-
cisely controlling the concentration of various acceptors (e.g. B, Ga) and donors
(e.g. P, As) [38]. The band structure of this doped Si is well known as well, with
for e.g. P, when it substitutes a Si atom in the lattice, four of the P atom’s five
valence electrons bond with the valence electrons of neighboring Si atoms, while
the fifth is raised to the conduction band. There it joins with its brethren from
other P donors to increase the conductivity of the doped Si.

While the above treatment is valid at room temperature, at low tempera-
tures, the excess electron provided by the donor is not delocalized into the con-
duction band, but rather localizes so that it is pinned to the donor atom with a
wave function that has a radius of only a few lattice constants, allowing the treat-
ment of the electron as a discrete system rather than a band element. In fact, at
low temperatures, the P+-e−–system is analogous to a H atom in vacuum, with a
loosely bound electron with a Bohr radius of around 2 nm [39, 40].

3.2.1 Ion implantation

Of course, while economies of scale are excellent for mass manufacture, in the re-
search and development stage, we want something smaller and more flexible. We
thus use ion implantation, where Si is bombarded with ions of the desired species
so that they embed themselves in the Si lattice. Annealing will then heal the lat-
tice damage sustained during the ion bombardment and have the donor ions be
incorporated in the lattice as substitutional donors. After the anneal, devices can
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be fabricated on the now-doped Si.
While the full single-donor post-fabrication implantation procedure has yet

to be performed, article [PI] deals with the effects of implantation damage on
the optomechanical resonator device we use. The effects of implantation damage
on the Si lattice are noticeable, but they can be healed with a post-fabrication an-
neal so that the optomechanical resonator works as intended afterwards. Figure 8
shows the changes induced by annealing on the mechanical resonance frequency
and linewidth for two resonators at room temperature and 6K, showing the lattice
healing effect. The donor species dealt with in article [PI] is 31P, which is compar-
atively light; the lattice damage and thus effects of implantation will likely be
more prominent with heavier donor species.
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FIGURE 8 Effects of a post-fabrication anneal on the mechanical resonance frequency
and linewidth of two example resonators at room temperature and 6K,
showing a decrease in linewidth and increase in resonance frequency, con-
sistent with a reduction in lattice disorder. From [PI], reproduced under the
license CC BY 4.0.

Pre-fabrication implantation is suitable for ensemble doping, where we probe
the spin state of an ensemble of spins, rather than using a single spin as a qubit.
For single spin doping, though, it is impractical to first dope the Si layer at such
sparse concentrations that a resonator would on average have one donor, and
then hope against hope that the fabricated resonators will by random chance
happen to include a donor in a useful position. Instead, one must either implant
donors in known locations and fabricate the devices, or first fabricate the devices
and then implant them with a donor. The techniques to control the amount and
placement of ions fall under the umbrella of deterministic ion implantation. Ion
placement can be controlled by coating the ion-less regions with a mask of e.g.
SiO2 [41] or PMMA [42], or masklessly by implanting ions with an extremely
precise focused ion beam [43]. Single ion implantation requires small enough ion
emission probabilities that often a pulse has no ions in it. The presence of an
ion in a pulse can be detected through electrodes on the target [44] or secondary
electron emission [45], the precision of which can be further improved through
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statistical analysis of the detector [46].

3.2.2 Spin states

To form a qubit out of an electron bound to a P donor, we need two states at differ-
ent energies. At zero magnetic field, the combined electron (|↓⟩, |↑⟩) and 31P nu-
clear (|⇓⟩, |⇑⟩) spin system is split into two states: the singlet |↓⇑⟩ and the triplet
consisting of the degenerate states |↑⇑⟩, |↑⇓⟩, and |↓⇓⟩ [47]. The magnitude of
this split is the hyperfine interaction constant A. Breaking the triplet degeneracy
requires the addition of a static magnetic field B0, which induces Zeeman split-
ting and gives all four spin states energy levels which are tunable by adjusting
the strength of B0, as shown in Figure 9. This leads to all five spin transitions —
both electron spin flip transitions, |↓⇓⟩ ⇔ |↑⇓⟩ and |↓⇑⟩ ⇔ |↑⇑⟩, both nuclear
spin flip transitions, |↓⇓⟩ ⇔ |↓⇑⟩ and |↑⇓⟩ ⇔ |↑⇑⟩, and the flip-flop transition,
|↓⇑⟩ ⇔ |↑⇓⟩ — all having unique energy splits associated with them.

As P in Si does not have optically active transitions and we wish to have an
optical readout, we must somehow couple one of these transitions to something
that does have an optical readout — for instance, optomechanics, as discussed
in Chapter 2. If we wish to resonantly couple the mechanical motion and the
spin, we must choose a B0 where the resulting energy splitting gives an energy
splitting E that matches the mechanical resonance frequency of the device ωm, as
E = h̄ωm.
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FIGURE 9 The effect of an external magnetic field along the z-axis on the energy levels
of the electron and nuclear spins for a 31P in Si system.

However, things aren’t quite that simple. Changing the energy levels of
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the states involves a σz coupling, which means the states are not coupled to each
other. Coherent exitation transfer between the spin and mechanics, on the other
hand, would require the orthogonal σx coupling. How, then, to create one?

3.3 Dressing the qubit

Nudity is generally frowned upon in polite company. There are, however, addi-
tional benefits to dressing one’s qubit.

First, let us define dressing. The average qubit is unable to wear clothes.
It is, however, subject to noise, as a result of which the theoretical ideal qubit
SI is unachievable: we are always dealing with the actual qubit SA ̸= SI [48].
We can do our best to eliminate all noise sources, so that SA approaches SI — or
we can "dress" the qubit by performing a controlled transformation on it so that
the resulting SA is sensitive to different frequencies of noise to the original qubit
and also a usable qubit in itself [19]. Dressing, in effect, is an introduction of a
controlled noise that lets one choose one’s SA [48]. Due to the change in noise
sensitivity, dressed qubits can be made more resilient against the dominant noise
in the system [49].
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FIGURE 10 Left: A schematic of an electron in a static magnetic field B0 experiencing
Rabi oscillations due to an oscillating magnetic field B1, with the frequency
of the Rabi oscillations determined by the RF drive input to the antenna.
Right: A diagram of how the energy levels change in the dressed picture,
after Laucht et al. [19].

How, then, does dressing a qubit work in practice? While the methods de-
pend on the platform, for a two-level system consisting of the bound electron of
a P donor in Si, dressing can be done e.g. through a microwave drive [19]. As
a microwave drive is also an excellent means of controlling a donor spin qubit,
this in effect lets us kill two birds with one stone, using the same system for
both dressing the spins and controlling them. A schematic of the system and its
energy levels is presented in Figure 10: The energy states of |↑⟩ and |↓⟩ have
been separated by a static magnetic field B0, and the electron is made to oscil-
late between them at a frequency of ΩR by an oscillating magnetic field B1, in-
troduced via a microwave antenna and controlled through the power PRF and
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frequency ωRF of the radio frequency signal incident to the antenna. As for the
energy levels, in the absence of coupling to the dressing field, they are the degen-
erate |N + 1⟩ = |↓, n + 1⟩ , |↑, n⟩ and |N⟩ = |↓, n⟩ , |↑, n − 1⟩ states, where n is the
number of resonant photons in the dressing field and N the total number of ex-
citations. Rabi oscillations break this degeneracy to form the states |+, N + 1⟩ =

1√
2
(|↓, n + 1⟩+ |↑, n⟩) and |−, N + 1⟩ = 1√

2
(|↓, n + 1⟩ − |↑, n⟩) from |N + 1⟩, and

likewise |+, N⟩ = 1√
2
(|↓, n⟩+ |↑, n − 1⟩) and |−, N⟩ = 1√

2
(|↓, n⟩ − |↑, n − 1⟩)

from |N⟩. Due to the large quantity of photons in the dressing field, n is very
large, and thus its value, as well as that of N, is unimportant. We are thus left
with the states |+⟩ and |−⟩, separated by the energy h̄ΩR.

Let us now take an excursion to look at the Hamiltonian of the initial sys-
tem and how dressing changes it. We begin with the Hamiltonian of an electron
experiencing Zeeman splitting:

H =
1
2

h̄γeB0σz, (46)

where γe is the electron gyromagnetic ratio, B0 is the magnitude of the magnetic
field, and σz is the Pauli matrix for the z axis. We have assumed that

−→
B0 ∥ ẑ.

When we add the dressing field B1, the Hamiltonian in the laboratory coor-
dinates becomes

H =
1
2

h̄γe[B0σz + B1 cos (ωRFt)σx], (47)

where ωRF is the frequency of the RF drive and σx the Pauli matrix for the x axis.
For convenience, we shall henceforth denote α = 1

2 ωRFt.

Next, we go to the rotating frame with Û = eiασz . The new Hamiltonian
becomes Ĥ = ÛĤoldÛ† + ih̄ ∂Û

∂t Û†. Let us consider ih̄ ∂Û
∂t Û† first:

ih̄
∂Û
∂t

Û† = ih̄
iασz

t
ÛÛ† (48)

= −h̄
α

t
σz (49)

= −h̄
ωRF

2
σz (50)

We next consider ÛĤÛ†. Û = eiασz can, based on Euler’s formula, also be
written as cos αI + i sin ασz, from which we can see that [Û, σz] = 0, as I is the
identity matrix. Thus for ÛĤÛ† = 1

2 h̄γeU[B0σz + B1 cos (2α)σx]U†, the product
for the first term in square brackets is Û[B0σz]Û† = B0σz. The second term is
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ÛB1 cos (2α)σxÛ† =B1 cos (2α)Û[σx]Û†

=B1 cos (2α)[(cos αI + i sin ασz)σx(cos αI + i sin ασz)
†]

=B1 cos (2α)[cos2 ασx + sin2 ασzσxσz

− i cos α sin ασxσz + i cos α sin ασzσx]

=B1 cos (2α)[(cos2 α − sin2 α)σx − 2 cos α sin ασy]

=B1 cos (2α)[cos 2ασx − sin 2ασy]

where σy is the Pauli matrix for the y axis. As the Pauli matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

we can thus write B1 cos (2α)Û[σx]Û† as

B1 cos (2α)Û[σx]Û† = B1 cos (2α)

[(
0 cos (2α)

cos (2α) 0

)
+

(
0 i sin (2α)

−i sin (2α) 0

)]

(51)

= B1 cos (2α)

(
0 ei2α

e−i2α 0

)
(52)

= B1

(
0 ei4α+1

2
e−i4α+1

2 0

)
(53)

As α = 1
2 ωRFt, limt→∞ e±i4α = 0, and thus we get

B1 cos (2α)Û[σx]Û† −→B1

(
0 1

2
1
2 0

)
(54)

=
B1

2
σx (55)

The full Hamiltonian in the rotating frame, Ĥ = ÛĤoldÛ† + ih̄ ∂Û
∂t Û†, is thus

Ĥ = ÛĤoldÛ† + ih̄
∂Û
∂t

Û† (56)

=
1
2

h̄γe

[
B0σz +

B0

2
σx

]
− h̄

ωRF

2
σz (57)

=
1
2

h̄γe

[(
B0 −

ωRF

h̄γe

)
σz +

B1

2
σx

]
(58)

=
1
2

h̄ [(γeB0 − ωRF) σz + ΩRσx] , (59)

where we have designated the Rabi frequency as ΩR = 1
2 γeB1. We then finally

change our computational basis with a second unitary transformation with Û =

e−i π
4 σy . As Û has no time dependence, ih̄ ∂Û

∂t Û† = 0. This leaves us with ÛĤoldÛ†:
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ÛĤoldÛ† =
1
2

h̄e−i π
4 σy [(γeB0 − ωRF) σz + ΩRσx] (e−i π

4 σy)†

=
1
2

h̄
[
(γeB0 − ωRF) e−i π

4 σy σz(e−i π
4 σy)† + ΩRe−i π

4 σy σx(e−i π
4 σy)†

]

=
1
2

h̄ [(γeB0 − ωRF) σx + ΩR(−σz)]

Here we have made the eigenstates of the driven system, |+⟩ and |−⟩, the basis
states of the new Hamiltonian [19, 50], so that the Hamiltonian in the dressed
basis is

H =
1
2

h̄ [(γeB0 − ωRF) σx − ΩRσz] (60)

We now have a two-level system whose energy level splitting is easily tun-
able. This is our qubit. A variety of quantum algorithms can be performed on it
through e.g. microwave pulses [19]. But once we have completed our calculation,
how do we extract the result?

3.4 Coupling spin to mechanics

A single donor spin in an infinite slab of silicon might have its spin state forever
shrouded from knowledge, but our spin need not live in such an isolated neigh-
borhood. While several readout mechanisms have been proposed and demon-
strated, such as a single electron transistor [19], we shall choose a mechanical
system.

Let us begin by seeing how this coupling affects the Hamiltonian. Equation
3.3 shows the pure spin Hamiltonian; if we couple the spin to the mechanics,
two new terms will appear: one for the mechanics alone and one for the spin-
mechanics coupling. The mechanical term is h̄ωmb̂†b̂ familiar from Chapter 2.
Later it will be shown that the spin-mechanics coupling term is h̄λ

2

(
b̂† + b̂

)
σz,

where λ describes the strength of the coupling. In the rotating frame this then
becomes − h̄λ

2

(
b̂† + b̂

)
σx, so that the full Hamiltonian is

H =
h̄
2

[
ΩRσz + ∆νσx + 2ωmb̂†b̂ − λ

(
b̂† + b̂

)
σx

]
, (61)

where ∆ν is the microwave detuning between the frequency of the RF drive and
the bare qubit ∆ = ωRF − γeB0.

Now it is time for a brief excursion on what the Pauli matrices mean in
context. Coherent coupling involves σx, not σz. Consequently, for us to be able
to transfer spin information to the mechanics and thence to the optics, our spin
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must couple through σx. As discussed for Equation 3.3, this requires a change in
computational basis from |↑⟩ and |↓⟩ to |+⟩ and |−⟩.

Let us now review the possibilities of dressing. The static B0 parts the ener-
gies of |↑⟩ and |↓⟩ and the oscillating B1 causes the electron to nutate at the Rabi
frequency ΩR. The system is tunable: B1 and therefore ΩR can be changed by
changing the power incident to the RF antenna.

The aforementioned tunability lets us alter ΩR to bring it in and out of res-
onance with the resonance frequency of the mechanical resonator ωm. When
ΩR = ωm, excitations can coherently transfer between the spin state and the
mechanical state. With a mechanical resonator in the ground state (i.e. with no
excess excitations present), this could be used for excitation transfer between two
spins via phonons [51]. At the dispersive limit, where ∆ = |ωm − ΩR| >

√
nthλ,

there is no coherent excitation transfer, but the spin state affects the mechanical
resonance frequency so that there is a shift ∆ωm, the direction of which depends
on the spin state.

Of course, this picture is agnostic to the method used to couple the spins to
the mechanics. We have experimentally investigated two means of achieving this
coupling: strain and magnetic field gradient.

3.4.1 Strain coupling

Mechanical motion of a structure with respect to itself, such as an oscillating beam
or the breathing mode of a levitating particle, involves deformation of the lattice
to allow for deformation of the structure. Motion-induced strain is thus an in-
trinsic part of any clamped mechanical resonator. On the atomic level, the de-
formation of the lattice will also deform the wave function of the donor electron,
as shown schematically in Figure 11. This allows us to couple the state of the
electron to the mechanical motion.

ε

FIGURE 11 A schematic view of strain coupling that depicts how the movement of the
lattice causes changes to the electron wave function. The grey circles are Si
atoms, the circle in the center with an arrow through it (representing nu-
clear spin) is a donor atom, and the red cloud is the electron wave function.
Note that in reality, the wave function stretches over four lattice constants
rather than just one.
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What actually happens to the electron wave function has been traditionally
explained via the valley repopulation model. Si has six degenerate conduction
band valleys. Under uniaxial strain, this degeneracy is lifted, so that the val-
leys have different energy levels and thus electron populations [52]. As a result,
the doublet excited state is admixed into the singlet ground state (a change in
the hyperfine constant A), which affects the resonance frequency of the electron
[52]. The magnitude of this shift is dependent on the strain, and under the val-
ley repopulation model, the shift per strain Ξ for small strains has been consid-
ered quadratically dependent on the strain, meaning that small strains lead to ex-
tremely small shifts. However, recent experimental results show that, contra the
valley repopulation model, the shift for small strains is linear due to a hydrostatic
strain contribution, leading to coupling strengths of up to Ξ = 23 GHz/strain for
31P and up to Ξ = 150 GHz/strain for 209Bi [53].

Let us now look at the coupling strengths achievable in a representative
system. COMSOL simulations by Simeoni Ahopelto show that our devices, as
introduced in Section 2.5, can be engineered to have strains of up to ϵ ≈ 5× 10−9,
leading to coupling rates λ = Ξϵ of around 750 Hz per 209Bi donor in high-strain
regions [54]. An example of such a strain engineered device can be seen in Figure
12.

FIGURE 12 An example COMSOL strain simulation by Simeoni Ahopelto for a strain
engineered structure. The beam has a mechanical resonance frequency of
5.4 MHz and maximum strain per xZPF of 5.46 × 10−9. Inset: a close-up of
the high-strain region at the end. To appear in [54].

Now let us think about the shift in mechanical resonance frequency ∆ωm.
Unfortunately, ∆ωm ̸= λ; instead, the frequency shift at the dispersive limit is
∆ωm = λ2/4∆ [55]. If the frequency detuning ∆ ≫ √

nthλ, where nth is the
number of thermal phonons, then
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∆ωm ∝
λ√
nth

. (62)

At the few-Kelvin temperatures we operate at,
√

nth ≈ 80. One spin would thus
cause a shift of c. 9 Hz for 209Bi and c. 1 Hz for 31P. For a shift to be visible, how-
ever, it must be larger than the intrinsic spread of the frequency Γm as well as the
resolution of our instrumentation; for us, the minimum detectable frequency shift
∆ωm is c. 500 Hz, so a single donor will not produce a signal we can detect. With
a sufficient amount of donors in the high strain region, however, we could see the
ensemble signal. For ensemble signals, the magnitude of the shift in the mechan-
ical resonance frequency ∆ωm depends on the size of the ensemble N and the
spin polarization level ⟨σz⟩, which depends on the temperature and the magnetic
field, so that if e.g. |↑⟩ causes a shift of λ2

∆ , an ensemble of N spins would cause a
shift of ∆ωm = Nλ2

∆ ⟨σz⟩, as per the Tavis-Cummings model. The spin polarization
level ⟨σz⟩ depends on the temperature T and the energy levels E of the spin, so
that if the probability of finding the spin in state pi = e−EikBT/σje−Ej/kBT, where
kB is the Boltzmann constant, then the spin polarization level for an electron is

(
p|↑⇓⟩ + p|↑⇑⟩

)
−
(

p|↓⇓⟩ + p|↓⇑⟩
)

=
(e−E|↑⇓⟩/kBT + e−E|↑⇑⟩/kBT)− (e−E|↓⇓⟩/kBT + e−E|↓⇑⟩/kBT)

e−E|↑⇓⟩/kBT + e−E|↑⇑⟩/kBT + e−E|↓⇓⟩/kBT + e−E|↓⇑⟩/kBT (63)

At a temperature of 3 K and a magnetic field of 0.7 T, ⟨σz⟩ = −0.16, i.e. there are
more electron spins in |↓⟩ than |↑⟩. Our region of highest strain is of the order of
10−15 cm3; a high doping level of 1018 Bi ions/cm3 would give us N = 103 donor
spins in this region and thus, for the strain-engineered device above, a frequency
shift ∆ωm = Nλ√

nth
⟨σz⟩ = 103×750

80 × (−0.16) Hz = −1.5 kHz. Our current resonator
designs have a strain ϵ and thus coupling λ an order of magnitude smaller, which
would still lead to a potentially observable frequency shift of ∆ωm = −150 Hz.

However, after two years of measurements on a variety of samples, we have
yet to see a shift in the mechanical resonance frequency caused by the spin state.
We cannot fully rule out experimental limitations, e.g. line losses or fabrication
issues in the RF cavity, discussed more in detail in Section 3.5. It is also possible
that, as we are working with ensemble doped samples, we are running into the
spin dephasing rate, where the presence of a large quantity of spins causes in-
homogenous broadening, where their coherence time is reduced by the spins all
experiencing slightly different environments, leading to them all having slightly
different resonance frequencies and thus the ensemble having a large linewidth.
In addition, increasing the number of spins increases the influence of other broad-
ening mechanisms, e.g. dipole-dipole interactions between the spins [56], so that
the coherence time becomes so much less than the measurement time that we do
not see the signal.
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3.4.2 Magnetic field gradient coupling

We thus turned our sights on another coupling method: magnetic field gradient
coupling. This time, the coupling comes from the physical motion of the res-
onator, rather than the strain this motion causes. A micromagnet is placed on a
balcony next to the center of the resonator so that spins there will be in a region
of strong magnetic field gradient. As the resonator moves, the spins within it will
experience a magnetic field that depends on x̂, thus coupling the spin state to the
mechanical motion.

The strength of this coupling depends on the zero point fluctuation ampli-
tude xZPF of the resonator (i.e. the amplitude generated by a single mechanical
exitation) and the magnetic field gradient, so that λ = γe∇

−→
B xZPF. The maxi-

mization of both ∇−→
B and xZPF through device design to improve the coupling

is discussed more in Chapter 4. For now, it suffices to say that with values cur-
rently achievable through fabrication, we get coupling strengths of up to 1 kHz,
on the boundary of being sufficient for single spin readout, but definitely ade-
quate for readout of an ensemble small enough not to suffer from inhomogenous
broadening, unlike with strain coupling.

3.5 Experimental concerns

It is all well and good to perform a gedankenexperiment in the cradle of one’s
mind, free of noise sources and with no limitations to equipment or funding save
for the bounds of one’s imagination. Reality, however, is rarely that simple or
straightforward. Thus the experiment must overcome a number of stumbling
blocks as it matures from thought to practice.

𝐵0

𝜔𝑅𝐹

𝑃𝑅𝐹

𝛥𝜔𝑚system

FIGURE 13 A black box model of the spin state measurement.

At its simplest, the spin measurement of ours can be thought of as a black
box system, as described in Figure 13. The input parameters are the static mag-
netic field B0 and the frequency ωRF and power PRF of the microwave drive used
to drive the Rabi oscillations. The correct combination of these will yield a shift
in the mechanical resonance frequency ωm. The parameter field is thankfully not
wholly open: ωRF is determined by the resonance frequency of the RF antenna
— it is useless to input off-resonance signal, as it will simply be reflected back —
and ideal scenario values for B0 and PRF can be calculated.

The static magnetic field B0 induces Zeeman splitting that separates the en-
ergy levels of |↑⟩ and |↓⟩. This is comparatively simple to validate experimentally.
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By introducing a reference material, such as DPPH [57], to our sample space and
then doing an electron paramagnetic resonance (EPR) measurement, it is possi-
ble to calibrate the value of the magnetic field. The required value of the field
can be calculated from the electron gyromagnetic ratio γe ≈ 28 GHz/T so that
if the resonance frequency of the antenna is e.g. 14 GHz, then the value of B0
that will lead to the microwave field being able to induce Rabi oscillations is
B0 = γe

fRF
= 28

14 = 0.5 T. A more easily achievable 0.3 T would correspond to a
frequency of 8.4 GHz.

The necessary value for the power of the RF drive PRF, on the other hand,
requires more thought. The purpose of the RF drive is to induce an oscillat-
ing magnetic field B1 which drives the spins at a frequency ΩR dependent on
the amplitude of B1 and thus the value of PRF. The key figure of merit is the
power-to-field conversion factor Cp of the RF delivery mechanism, defined as
Cp = B1/

√
PRF [58]. The resulting Rabi frequency can be calculated with ΩR =

1√
2
γeB1 = 1√

2
γeCp

√
PRF, where γe is the electron gyromagnetic ratio [59]. The

Rabi frequency thus depends linearly on B1, which depends on the square root of
PRF with a scaling constant Cp; to double the Rabi frequency, one must increase
the power incident in the antenna fourfold.

FIGURE 14 A photograph of the RF cavity with a test chip within it. The directions
of the external magnetic field B0 and cavity magnetic field B1 have been
drawn. Photograph taken by James Slack-Smith at UNSW.

So far, so good. However, we now encounter practical issues: depending
on the RF cavity’s Cp and the mechanical frequency ωm we wish to match, the RF
power PRF required to achieve ΩR ≈ ωm might be prohibitively large. Changing
this on the one end — lowering ωm or increasing Cp — would require fabricating
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an entirely new sample or RF cavity. On the other end, unless one wishes to invest
dearly in a high power RF source, one could buy a power amplifier in addition to
ensuring that line losses from source to sample are minimal.

In addition to limitations in device specifications, there is also the matter
of inhomogenity. For instance, a B1 field inhomogenous over the sample space
would give the donor spins different Rabi frequencies. This would mean that
all the spins are constantly going in and out of phase with each other, causing
dephasing noise. We suspect that this is currently the main noise source in our
measurements and possibly the reason we have yet to see a signal from the spins.



4 FABRICATION

Anything that wishes to become reality must first pass the proof of concept stage
with a prototype, and all prototypes must first be made. While not all the sam-
ples presented in the articles have been fabricated by me or even in Jyväskylä, our
research, especially article [PIII], has been towards creating a sample for demon-
strating magnetic field gradient mediated optomechanical readout of the spin
state. I have thus chosen to dedicate a chapter to device fabrication, including
as much detail and as many numbers as reasonable so as to aid the work of any
future experimentalist struggling on the same path.

4.1 Device design

While there are many forms of optomechanical structure, we use a sliced nano-
beam photonic cavity, as shown in Figure 15. The antisymmetric "breathing"
mode of the two halves of the beam has a large optomechanical coupling of up
to 53 MHz in simulations [60], with experimental realizations of 25 MHz [61, 62].
These beams can be made extremely floppy with a large xZPF of the range of 43 fm
[61]. As the magnetic field gradient coupling explained in Chapter 3.3 depends
upon the xZPF, this is an extremely useful property to have.

Our target optical resonance is at 1550 nm (193.4 THz) for ease of integrat-
ing the final devices with telecom networks, enabling long-distance data transfer.
This central cavity is bounded by two Bragg mirrors, to which there is a smooth
transition. The mechanical frequency of the resonator can be controlled by choos-
ing the length of the beam.

The structures are fabricated on a silicon on insulator (SOI) wafer, which
consists of, top to bottom, a Si device layer, for us typically 220 nm thick, a 3 µm
buried layer of SiO2 (the titular insulator), and a handle layer of Si some hun-
dreds of µm thick. Due to the lattice mismatch between Si and SiO2, the device
layer is under constant strain [63, 64]. This strain is not useful for the aforemen-
tioned strain coupling method, as the strain we desire there is localized strain
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FIGURE 15 A SEM image of a split photonic crystal nanobeam with a magnet, as used
in [PIII].

that depends on the phase of the nanobeam’s mechanical motion, not homoge-
nous constant strain that is liable to cause buckling in the nanobeams. As a re-
sult, to mitigate the effects of this undesired strain, we must utilize soft clamping,
where the ends of the beam are not attached directly to the support, but rather
to a branching binary tree, each end of which eventually attaches to the support
[65]. Our realization of such a structure can be seen in Figures 4 and 15.

Of course, this is not the end of the story. In addition to the strain relief
structure, our structures have several parts we can adjust. The core is a one-
dimensional photonic crystal structure, whose geometric properties (such as pe-
riodicity) affect the optical resonance frequency of the cavity. On each end is a
Bragg mirror, which is a photonic crystal with a band gap sufficiently offset from
that of the central cavity so that light of the resonance frequency of the central
cavity is reflected back to the center. To minimize losses, the transition in cavity
characteristics between core and mirror is not abrupt, but gradual. The grading
from cavity to mirror is currently done by grading the periodicity of the photonic
crystal, when one can receive better optical quality factors Q = ωc

κ through keep-
ing the phase velocity v = ω

k = ω
πa and thus the periodicity a constant by grading

e.g. the width of the beam instead [66]. This, as well as methods for increasing
xZPF, will be dealt with more in depth in the upcoming Master’s thesis of Simeoni
Ahopelto [54].

For the magnetic field gradient coupling, we obviously also need a magnetic
field source near the beam. Micromagnets are a convenient way of introducing
an on-chip source of magnetic field. As the magnet cannot levitate, we need to
include a Si balcony in our designs to bring it close to the beam.

In Figure 16 I show COMSOL simulations (performed by Teemu Loippo)
on the effects of the magnet geometry and thickness on the magnetic field gradi-
ent. The geometry with the highest magnetic field gradient was the humble and
easy to fabricate rectangle. Values of the gradient for select thicknesses of square
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magnet are shown in Figure 16b. As there was no major change to the magnetic
field gradient between a thickness of 210 nm and 310 nm, a target thickness of
c. 250 nm was chosen to solidly land in the intermediate range.
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FIGURE 16 a) The magnetic field gradient at select magnet thicknesses for three magnet
geometries: rectangle, circle, and triangle (apex pointing toward increasing
distance). b) The magnetic field gradient as a distance from the edge of a
square 500 nm by 500 nm Ni magnet for three representative thicknesses of
magnet. For both figures, the gradient is taken at the bottom plane of the
magnet/top plane of the Si.

As the beam needs to move with respect to the magnet, there are limitations
to how close to the magnet the beam can be placed. A realistic minimum distance
of 150 nm would give a gradient ∇−→

B of 1 mT/nm for a magnet in our target
thickness range. Coupled with an xZPF of 80 fm [60], this would give us couplings
λ = γe∇

−→
B xZPF of up to 2.23 kHz per spin, an order of magnitude higher than

for strain coupling. This coupling would give a change in mechanical resonance
frequency ∆ωm = λ/

√
nth of 28 Hz.

For the magnet itself, we obviously needed a magnetic material. We chose
nickel due to its availability and nontoxic nature, though other ferromagnetic
substances would also work for the purpose. Had we known how long it would
take to fabricate working samples, we probably would have ordered something
with a higher magnetic permeability to begin with, e.g. permalloy. Geometry-
wise, there is little improvement available; future increases in the magnetic field
gradient will have to come from magnet material choice and placing the magnet
closer to the nanobeam.
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FIGURE 17 Stepwise schematic of the full magnet sample fabrication procedure. 1. Re-

sist spinning for the magnet patterning (Electra not shown). 2. EBL pattern-
ing of magnets. 3. Development. 4. Metal deposition. 5. Liftoff. 6. Resist
spinning for the beam patterning (Electra not shown). 7. EBL patterning
of beams. 8. Development. 9. Si etch. 10. Structure release by HF etch of
buried SiO2.
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4.2 Micromagnet fabrication

Any multi-phase fabrication procedure must think about optimizing not just each
step of each phase, but the order of phases. Here we have two phases of fabrica-
tion: the nanobeam and the micromagnet. If we fabricate the magnets first, then
the issue will be protecting the metal from the HF we use to suspend the beams.
If we fabricate the beams first, then the issue becomes depositing the resist nec-
essary for magnet fabrication. While there is a method to backfill resist beneath
suspended structures [67], we chose not to use it due to concerns that our beams
might not survive the spinning necessary for acquiring an even layer of resist. We
thus unusually for the field fabricate the magnets first and only then pattern the
Si. The schematic of the full fabrication procedure can be found in Figure 17. The
magnet fabrication consists of steps 1 through 5.

The fabrication thus begins with spinning resist on the silicon chip (step 1)
and patterning the magnets (step 2). As the magnet will be thick, we want a thick
layer of layer of resist for ease of lift-off. We use a c. 200 nm layer of EL6 copoly-
mer on the bottom, followed by a c. 220 nm layer of 950k PMMA A4. As the
magnets are relatively large in feature size, this is sufficient for patterning; how-
ever, the thick layer of polymer means that the electron beam used for patterning
causes a great deal of charging effects, making focusing and stigmating the elec-
tron beam incredibly annoying. As a result, we also spin a thin layer of Allresist
Electra 92 on top to help with charge carrier mobility.

We then use the SEM for electron beam lithography (EBL) and draw align-
ment markers and magnets on the chip. In addition to a large central alignment
marker and a square marker to the side to clearly break mirror symmetry, each
array of beams (each block) has its own, smaller alignment markers. All of these
are then drawn with a dose of 180 µC/cm2, though this process is not terribly
dose-sensitive.

After exposure, the Electra is rinsed off with deionized water and the resist
stack developed (step 3) first with 20 s in a MIBK:IPA solution to develop the
PMMA and then 10 s in developer 2, with developement stopped with 1 min in
an IPA bath after each stage.

Next comes the metal deposition (step 4). An issue we had early on was that
all our Ni, magnets included, would float off during the liftoff rather than leave
or remain as desired. Currently, we have solved this by beginning our metal
deposition by depositing a c. 5 nm layer of Ti to promote adhesion, so that the
Ni is not grown directly on the Si. Before the deposition, we also place the chip
in a reactive ion etcher (RIE) and exposing it to O2 plasma for 30 s to remove
residual PMMA and EL6 from the bottom of the mask so that the Ti is deposited
directly on the Si substrate. We investigated a number of other means to promote
adhesion in cooperation with the Ti adhesion layer, such as increasing the dosage
or development time, or stripping the Si of its native oxide with a HF bath before
spinning the resists on it, but none of them improved liftoff selectivity.

Then we deposit our actual magnets, a c. 250 nm thick Ni layer. Because we
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FIGURE 18 A false color tilted HIM image of a failed fabrication run with multiple is-
sues. The nanobeam (blue) is misaligned and partially beneath the magnet,
the nanobeam is overexposed and would not be able to support itself if
suspended, the ICP-RIE etch process has not etched through the Si layer,
meaning that the HF did not access the SiO2 layer and the beams are not
suspended, and the Ni micromagnet (green), here without an Au passiva-
tion layer on top, has become porous and shrunk dramatically, as seen in
the gap between it and the balcony structure (red).

fabricate our magnets first and only then our nanobeams, the release of which
involves immersing the chip in HF, we must passivate our magnets lest they be
etched away or turn porous, as demonstrated in Figure 18. To do this, we cap
our metal deposition with c. 25 nm of Au. The chip is then removed from the
metal evaporator and left to sit. The liftoff procedure (step 5) to remove the resist
and all the excess metal atop it is performed the following morning. The chip
is immersed in warm acetone until the metal layer begins to flake off. At that
point, a syringe may be used to squirt warm acetone from the side of the chip to
speed up the process, though following the overnight rest, liftoff is usually quite
painless.

All chips were checked with an optical microscope following liftoff to check
for e.g. missing magnets or alignment markers, excess retained metal, or other
defects, like the metal leaving a comet-like tail, as seen in Figure 15. There would
usually be some excess metal in the corners of the chip and possibly strips at-
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tached to the alignment markers, but on the whole nothing interfering with beam
fabrication.

4.3 Nanobeam fabrication

With the magnets done, we move on to fabricating the suspended nanobeams
with EBL. This is shown in Figure 17, steps 6 through 10.

Again we begin by spin coating our chip, this time with a single layer of
c. 220 nm of 950k PMMA A4 (step 6). As the beams involve small-scale details,
ameliorating charging effects and the electron displacement they would cause is
a must. For that, we spin on a thin layer of Allresist Electra 92 on top of the
PMMA. We then do the EBL patterning (step 7). Depending on the mood of
the SEM, doses between 135 and 150 µC/cm2 proved successful in creating the
beams. At 135 µC/cm2 the edges of the large areas retained some residual Si,
visible as ragged dark intrusions in Figures 4 and 15, but the shape of the beams
best matched the design.

The introduction of the magnet generates some additional concerns for the
beam patterning. For one, the presence of the balcony means there is less overall
area dose in the center of the structure, necessitating the addition of an invisible
box of double dosage opposite to the balcony so as to ensure that the beam is not
shut in the center. Additionally, as the metal not only guards the Si beneath it
from the RIE process but also Si in a small halo around it, an extra strip of double
dosage is required to detach the balcony and thus the magnet from the nanobeam.

The EBL step is easily reproducible when the SEM works, but for the beams,
the next step is an annoying piece of handicrafts — the development (step 8). We
rinse off the Electra with deionized water and develop the resist in a MIBK:IPA
solution for 30 s, after which development is stopped by a 1 min immersion in
IPA. However, the beams are very sensitive to dose and development time, and
while the vial of MIBK:IPA mixture has a lid on it, the IPA evaporates preferen-
tially, increasing the concentration of the MIBK in the solution and thus making
it more and more potent. As a result, the beams become overdeveloped. (With
the magnets, this is less of an issue, as they have no fiddly details and are conse-
quently less sensitive to the dose.) The times and values given above are valid for
a fresh MIBK:IPA solution. For older solutions, I had to lower the development
time first to 25 s and then 20 s.

At this point I would check the developed resist with an optical microscope
to see whether there was anything obviously wrong. If the alignment and dosage
were appropriate, the optical microscope image would look like Figure 19. While
moderate overdevelopment was not visible with any of the objectives, it was pos-
sible to see if the beams were drawn adjacent to the magnets, or partially on top
of them, resulting in a situation like that shown in Figure 18. The split between
the beam halves is not visible, but the trapezoids between the teeth of the beam
can be faintly observed on the highest magnification, as seen in Figure 19.
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FIGURE 19 A color adjusted optical microscope image of an exposed and developed
resist from step 7 in Figure 17. The beams are properly aligned with respect
to the magnets, which are visible as dark smudges.

After development and checking, the Si from the exposed areas is etched
with an inductively couple plasma reactive ion etcher (ICP-RIE) (step 9). The
ICP-RIE is cooled down to −100◦C with the aid of liquid nitrogen so that we can
use a cryogenic SF6 etch, which has good vertical selectivity and smooth edges.
Before etching the chip, we would first condition the chamber and carrier wafer
with a 5 min etch, after which the chip would be brought into the chamber on the
carrier wafer and etched for 10 min.

The last step (step 10) is the release. The chip is immersed in 48% liquid HF
for 3 min to etch away the 3 µm of SiO2 beneath the Si device layer and release
the nanobeams from the substrate so that they are suspended. After the HF im-
mersion, the chip was cleaned with four baths of deionized water before being
placed in an ethanol bath for transport to a critcal point dryer. The critical point
dryer is necessary lest the beam glue itself shut due to the interfacial forces gen-
erated by the drying liquid [68]. While my predecessor in fabrication managed
to fabricate some devices in the ωm ≈ 8 MHz range just by blowing the chip dry
with a nitrogen gun, I found that without the critical point dryer, the fabrication
yield for the longer, floppier 1 MHz devices was zero due to the aforementioned
stiction.



5 CONCLUSION

Experimental science is, at its heart, a collection of people raising the seabed of
the ocean of the unknown. We have the maps of the mountains raised behind us
and the notes of our colleagues at the forefront of knowledge. Each patch of land
exposed to the light of humanity’s gaze might be either exactly as predicted or
something revolutionary. I do not know if the ocean can ever be wholly dried —
certainly not in my lifetime — but the siren call of the seabed to be raised to the
surface is something I have no desire to resist.

The land reclamation project presented herein is very much a work in pro-
gress. I have charted the paths to the section targeted, but have yet to be able
to lay my hands on it. Depending on how the next rounds of device design and
fabrication go, the hands that first touch it might not include mine, but rather
those of my successor in the group, while I abscond to different shores. Nonethe-
less, I hope you have found this tale of a goal that just evades the fingertips a
worthwhile read and are ready to read the publications on the path towards it,
presented after the references. It would be a lie to say I enjoyed every moment of
walking it — I could certainly have done without any of the equipment malfunc-
tions — but the successes have been satisfying, and there is something viscerally
thrilling about rooting around in unknown territory.

To step out of the realm of metaphor, this introductory text describes a vision
for a novel type of qubit optical readout mechanism and the scientific principles
upon which it is based. Each paper examines a complication from the ideal.

Ion implantation, the means by which we introduce our qubits to the Si
matrix, is inherently a destructive process, introducing lattice defects. Article
[PI] deals with the effects of this deformed lattice on the optomechanical res-
onator design we hope to use for spin state readout. For bulk doping, this can be
bypassed by having the implantation and implantation damage healing happen
before fabrication, but for eventual deterministically implanted single-spin sam-
ples, implantation and thus healing the implantation damage will have to happen
after fabrication.

Another intrinsic part of our system is the means by which we couple our
spin state to mechanical motion. Article [PIII] discusses two methods, strain and
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magnetic field gradient, by which this can be achieved. We considered methods
of optimising the coupling for both methods separately and for the micromagnets
we use to create a magnetic field gradient, we investigated how much of an issue
their presence would cause for the optical part of the optomechanical cavity.

Finally, article [PII] deals with something encountered along the way: pho-
tothermal effects. As we will be operating at high optical powers for ease of read-
out, absorption will occur, potentially enough to create confounding photother-
mal effects. While our example resonators do not have significant photothermal
effects, it would be possible to design a resonator where the photothermal and
radiation pressure forces exactly counteract each other, eliminating the shape of
the optical spring. As this should still be responsive to spin-induced shifts of
mechanical resonance frequency, this would provide an avenue for removing the
confounding effect of shifts in the mechanical resonance frequency originating in
the optical spring effect, caused by potential drifts in the optical resonance fre-
quency.

Now I shall leave you to the articles, reproduced after the references. I hope
you enjoy this journey of detours.
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Abstract: Optomechanical devices based on sliced silicon photonic crystal nanobeams could9

have several use cases in future quantum technologies, especially as quantum transducers between10

different quantum systems. To create the required pure mechanical states at low temperatures,11

understanding of photon absorption, thermal relaxation, and the associated photothermal force is12

crucial. Here, we characterize the strength of the photothermal force in a sliced silicon nanobeam13

resonators. Novelly, we extract the thermal relaxation time separately from phonon ray tracing14

simulations, allowing us to study the strength of the photothermal optomechanical effect without15

the uncertainty from the thermal relaxation time. With this information we can put strict upper16

bounds to the photothermal force and photon absorption (𝛽 parameter) in the devices, without17

knowledge of the cavity photon population. The methods we employ can easily be adapted to18

other geometries and devices for the study of the photothermal effects.19

1. Introduction20

Cavity optomechanics [1] is a mature field studying the interaction between mechanical motion21

and optical cavity fields. Major milestones of the field include ground state cooling [2–4] and22

entanglement generation [5, 6]. In the near future, the field is expected to contribute significantly23

especially to precision metrology [7] and to quantum transduction between different quantum24

states [8, 9], such as between microwave and optical photons [10] or between defect qubits and25

optical light [11].26

While the optomechanical interaction is typically described through the radiation pressure27

force, there are also other forces at play. The photothermal (or bolometric) force, caused by28

absorbed photons inducing temperature gradients and thus thermal strain in the structure, can29

cause optomechanical effects similar to those caused by the radiation pressure force [12, 13].30

The photothermal effect is usually modeled as a time-lagged force proportional to the number31

of photons in the cavity, similarly to the radiation pressure force from a detuned laser. All32

the phenomena caused by the radiation pressure induced "dynamical backaction" are thus also33

present in photothermal dominant optomechanics. Perhaps the most striking example of this is34

the fact that this "heating" can be used to cool down the mode of interest [12,14,15]. The crucial35

difference is that the lag is offset compared to the usual radiation pressure detuning dependence,36

and hence can work to either increase or suppress the radiation pressure effects.37

In most cases the photothermal force can be hard to control and thus introduces an element to38

the system that is not necessarily consistent across devices. Hence even though it can in some39

cases be used to one’s advantage [16,17], it is generally an unwanted effect when moving towards40

applications. One increasing application area for optomechanical systems is as a transducing41

element between different quantum systems, such as microwave and optical photons, or spins in42

solid state and optical photons. These applications will increasingly depend on both low bath43

temperatures and relatively high optical powers to achieve high quantum cooperativities, placing44

stringent requirements to the tolerated heating effects. This gives topicality to the study of the45



thermal effects in optomechanical devices which show promise for the quantum transduction46

purposes.47

Most of the milestones of optomechanics mentioned above have been achieved with systems48

operating at the resolved sideband regime, where the mechanical resonance frequency 𝜔0 is49

greater than the optical cavity linewidth 𝜅, and the energy exchange between the two subsystems50

can be modeled as Stokes and anti-Stokes scattering events. The opposite regime where 𝜔0 ≪ 𝜅,51

on the other hand, allows for instantaneous measurements of the mechanical motion, enabling52

taking advantage of differing phenomena such as measurement based feedback control [18, 19]53

and pulsed measurements [20–22], for controlling and creating non-classical mechanical states.54

A promising geometry working in this ’bad cavity’ regime are the sliced silicon nanobeam55

resonators [23] which have been demonstrated to have exceptionally large optomechanical56

coupling rates and single-photon cooperativities [24], but so far no literature exists on their57

photothermal characteristics. Here, we study the photon absorption and the induced photothermal58

effect in these structures at cryogenic temperatures.59

Specifically, we model and experimentally measure the photothermal force from photon60

absorption in a sliced silicon photonic crystal device, shown in Fig. 1a. Several treatments of61

the photothermal force exist in the literature, and analysis of the effects has been done through62

both the equations of motion [25] and thermal modal analysis [26]. Generally the effects are63

hard to model from first principles, and the photothermal force is instead modeled via two64

phenomenological parameters. The first one is the the magnitude of photon absorption (and65

its transduction into excitations of the mechanical mode of interest), characterized with the66

so-called 𝛽-parameter, which can be both positive or negative [27,28], depending on whether the67

thermal force increases or suppresses the radiation pressure force. In addition, the photothermal68

phenomena depend strongly on the thermal relaxation time of the structures 𝜏. Both of these69

parameters, but especially the latter, vary according to the exact geometry of the device [29–31],70

and analytical solutions for calculation of the thermal decay only exist for simple geometries.71

Here, we solve this problem by using phonon ray tracing simulations to simulate the expected72

thermal decay time of the structures.73

Using the simulated thermal relaxation time and simple formulae derived for the photothermal74

effect at the bad cavity limit we can put strict upper bounds on 𝛽 by simply looking at the ratio75

of changes in the mechanical damping and the mechanical frequency as a function of laser76

detuning. Notably, our method does not need any calibration of the input optical power, making77

it a straightforward method for characterization of the photothermal effect.78

2. Photothermal force at the linear response regime79

A detailed treatment of the optomechanical effects caused by photothermal forces has been done80

in previous literature, and we will not repeat that extensively here. We refer the reader especially81

to Refs. [25, 28]. For the analysis below, we need to only consider the classical limit of the82

optomechanical equations of motion with both the radiation pressure and the photothermal force83

𝑚 ¥𝑥(𝑡) + 𝑚𝛾 ¤𝑥(𝑡) + 𝑚𝜔2
0𝑥(𝑡) = 𝐹0 (𝑡) + ℏ𝐺 |𝛼(𝑡) |2 + 𝐹𝑝𝑡 (𝛼(𝑡)) (1)

¤𝛼(𝑡) = − 𝜅

2
𝛼(𝑡) + 𝑖(Δ + 𝐺𝑥(𝑡))𝛼(𝑡) + √

𝜅𝑒𝑥𝛼𝑖𝑛 (𝑡). (2)

Here, 𝛼 is the amplitude of the cavity field, 𝑥 is the displacement of the mechanical oscillator, 𝛾84

is the mechanical damping rate, 𝑚 is the mechanical resonator mass, 𝐹0 is the stochastic thermal85

driving force, 𝐺 is the optomechanical coupling rate, Δ is the detuning between the optical cavity86

resonance frequency and the laser frequency, and √
𝜅𝑒𝑥𝛼𝑖𝑛 (𝑡) is the input laser field. For the87

photothermal force, we follow previous literature, setting88

𝐹𝑝𝑡 (𝛼(𝑡)) = ℏ𝐺𝛽

𝜏

∫ 𝑡

−∞
𝑒−

𝑡−𝑡′
𝜏 |𝛼(𝑡′) |2𝑑𝑡′. (3)
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Fig. 1. a) A scanning electron microscope (SEM) image of a nanobeam similar to
the device measured in this paper. The light gray areas are suspended silicon and
the dark gray is the substrate 3 μm below. The holes in the silicon nanobeam form a
photonic cavity in the middle of the beam, while the mechanical mode is the asymmetric
("breathing") mode of the two beam halves moving in-plance. More details in the text,
and previous work on similar devices is presented in Refs. [22, 24]. b) A schematic
of the interferometer used to measure the device. QWP refers to a quarter wave plate,
HWP to a half wave plate, and RSA to a realtime spectrum analyzer.

This equation describes a force with a time delay controlled by the thermal relaxation rate 𝜏 and89

strength 𝛽. Note that if 𝛼(𝑡) would be a constant in time, 𝐹𝑝𝑡 = 𝛽𝐹𝑟𝑎𝑑 , where 𝐹𝑟𝑎𝑑 = ℏ𝐺 |𝛼 |2.90

One can solve these equations in frequency space after a Fourier transform. However, this91

cannot be done directly due to the nonlinear terms 𝑥(𝑡)𝛼(𝑡) and |𝛼(𝑡) |2. As usual, we linearize92

these equations by writing 𝛼 = �̄� + 𝛿𝛼 describing the average value of the optical cavity93

amplitude and its fluctuations, respectively, and neglect all terms proportional to fluctuations94

squared. Inputting these and Fourier transforming we recover optomechanical equations with the95

photothermal component96

𝑥(𝜔) =
𝐹0 +

[
ℏ𝐺

(
1 + 𝛽

1−𝑖𝜔𝜏

)]
(�̄�★𝛿𝑎(𝜔) + �̄�𝛿𝑎★(𝜔))

𝑚(𝜔2
0 − 𝜔2 + 𝑖𝛾𝜔) (4)

𝛿𝑎(𝜔) = 𝑖𝐺�̄�𝑥(𝜔)
𝜅
2 + 𝑖(𝜔 − Δ) , (5)

where �̄� =
√
𝜅𝑒𝑥𝛼𝑖𝑛

𝜅/2−𝑖Δ , and below we define 𝜒𝑚 = [𝑚(𝜔2
0 − 𝜔2 + 𝑖𝛾𝜔)]−1.97

Substituting Eq. (5) to Eq. (4), and using 𝛿𝑎★(𝜔) = [𝛿𝑎(−𝜔)]★ and the fact that 𝑥 is a98

hermitian, the equation for 𝑥 reads [1, 28]99

𝑥(𝜔) = 𝜒𝑚𝐹0 + 𝜒𝑚

(
1 + 𝛽

1 − 𝑖𝜔𝜏

)
Σ(𝜔)𝑥(𝜔) (6)

Σ(𝜔) = ℏ𝐺2 |�̄� |2
(

1
(𝜔 − Δ) − 𝑖𝜅/2

− 1
(𝜔 + Δ) − 𝑖𝜅/2

)
. (7)

Solving for 𝑥(𝜔) this result can then be conviently expressed as an effective susceptibility100

𝑥(𝜔) = 𝐹0

𝜒−1
𝑚 −

(
1 + 𝛽

1−𝑖𝜔𝜏

)
Σ(𝜔)

≡ 𝜒eff𝐹0. (8)



Below, we fit the change of the mechanical resonance frequency as a function of the laser101

detuning, i.e., optical spring. For this we define that 𝜒eff ≡ [𝑚(𝜔′2
0 − 𝜔2 + 𝑖𝛾

′
𝜔)]−1, where102

𝜔
′
0 = 𝜔0 + 𝛿𝜔0 and 𝛾

′
= 𝛾 + 𝛿𝛾. Assuming a high-Q resonator we write103

𝛿𝜔0 =
ℜ

[(
1 + 𝛽

1−𝑖𝜔0𝜏

)
Σ(𝜔0)

]
2𝑚𝜔0

= 𝑔2
[ (

1 + 𝛽

1 + 𝜔2
0𝜏

2

) (
𝜔0 − Δ

𝜅2

4 + (𝜔0 − Δ)2
+ 𝜔0 + Δ

𝜅2

4 + (𝜔0 + Δ)2

)

−
(

𝛽𝜔0𝜏

1 + 𝜔2
0𝜏

2

) (
𝜅
2

𝜅2

4 + (𝜔0 − Δ)2
−

𝜅
2

𝜅2

4 + (𝜔0 + Δ)2

)]
, (9)

where we have used the relation ℏ𝐺2 |�̄� |2 = 2𝑚𝜔0𝑔
2, and 𝑔2 = |�̄� |2𝑔2

0. This formula is used in104

fits below. Note that we made the approximation that 𝛿𝜔0 ≪ 𝜔0.105

The above formula gets an especially simple form if we assume the bad cavity limit so that106

basically at all points we can approximate Δ ± 𝜔 ≈ Δ. Then in Eq. (9) the latter term cancels out107

and the first term reads108

𝛿𝜔0 ≈ 𝑔2

(
1 + 𝛽

1 + 𝜔2
0𝜏

2

) (
−2Δ

𝜅2

4 + Δ2

)
. (10)

This is the usual term for the optical spring at the bad cavity limit [1], but with the addtion of the109

𝛽-term. We note especially, that as 𝛽 can be negative, there exists a value 𝛽 = −1 − 𝜔2
0𝜏

2, where110

the optical spring gets completely cancelled out (for a high-Q mechanical oscillator). This could111

be an interesting regime for e.g. sensing applications.112

The other parameter of interest is the change in the mechanical damping rate due to optome-113

chanical forces 𝛾′
= 𝛾 + 𝛿𝛾114

𝛿𝛾 =
ℑ

[(
1 + 𝛽

1−𝑖𝜔0𝜏

)
Σ(𝜔0)

]
𝑚𝜔0

= 2𝑔2
[ (

1 + 𝛽

1 + 𝜔2
0𝜏

2

) (
𝜅/2

𝜅2

4 + (𝜔0 − Δ)2
− 𝜅/2

𝜅2

4 + (𝜔0 + Δ)2

)

+
(

𝛽𝜔0𝜏

1 + 𝜔2
0𝜏

2

) (
𝜔0 − Δ

𝜅2

4 + (𝜔0 − Δ)2
− 𝜔0 + Δ

𝜅2

4 + (𝜔0 + Δ)2

)]
, (11)

which then again in the bad cavity limit simplifies to115

𝛿𝛾 ≈ 2𝑔2

(
𝛽𝜔0𝜏

1 + 𝜔2
0𝜏

2

) (
−2Δ

𝜅2

4 + Δ2

)
. (12)

Hence, if 𝛽 = 0, one expects no changes in the mechanical damping rate.116

For the analysis below, we will crucially note that as we are deep in the bad cavity limit, we can117

write down the ratio of the expected changes in the damping rate and the mechanical frequency118

𝛿𝛾

𝛿𝜔0
=

2𝛽𝜔0𝜏

1 + 𝜔2
0𝜏

2 + 𝛽
. (13)

As we will extract 𝜏 below separately, this ratio allows us to put bounds on 𝛽 based solely on the119

magnitude of the two changes we see, without any uncertainty in calibration of 𝑔0 or number of120

photons in the cavity.121



3. The thermal decay rate122

From the above equations, it is clear that an important parameter for the photothermal effect is123

the thermal relaxation rate 𝜏, and especially it’s relation to the mechanical resonance frequency124

𝜔0𝜏. Here we will model 𝜏 quantitatively, allowing us to make more solid conclusions on the125

magnitude of 𝛽 based on our data.126

The dominant thermal transport channel at low temperatures in silicon is phonon transport, the127

efficiency of which can be characterized by the mean free path of phonons before any scattering128

event. At room temperature the mean free path is limited by phonon-phonon scattering and is129

diffusive but at low temperatures the bulk phonon transport becomes ballistic, and the dominant130

phonon scattering in nanoscale structures is the scattering from the device boundaries. At this131

regime, the phonon mean free path Λ is determined by the structure’s dimensions [32] and the132

specularity of the surface scattering, i.e., the roughness of the surfaces. The regime where133

scattering is fully dominated by surface scattering and is completely non-specular is known as134

the Casimir ballistic transport (CBT) regime [33, 34]. When the phonon wavelengths start to be135

comparable to the surface roughness, the specularity of the scattering will increase leading to136

an increase in the effective free mean path of the phonons. This regime is known as the Ziman137

regime [34].138

Analytical solutions for 𝜏 exist for simple geometries at the Casimir and Ziman regime. In139

the Casimir regime (non-specular scattering), the phonon mean free path for rectangular beams140

depends on the cross sectional area of the beam 𝐴, so that the mean free bath Λcas = 1.12
√
𝐴 [35].141

From this, one can calculate the thermal relaxation time 𝜏 for ballistic transport [28]142

𝜏 =
3𝑙2

𝜋2𝑐𝑠Λcas
, (14)

where 𝑐𝑠 is the average speed of sound in the material and 𝑙 the length of the beam. A possible143

increase in the specularity of the scattering 𝑠 can the be modelled with the Ziman equation [34].144

The increase in specularity will increase the effective mean path as Λzim = 1+𝑠
1−𝑠Λcas, hence145

decreasing 𝜏.146

In more complicated geometries such as our "toothed" beam, an exact analytical calculation is147

not possible. We can still do estimates based on the formulae above. The devices are 220 nm148

thick and have a width of 123 nm (gaps) to 318 nm (teeth), with an average width of 227 nm, as149

shown schematically in Fig. 2a. This would, using the narrower dimension for the width, give150

us a casimir mean free path of c. 180 nm and a value for 𝜏 of 17.9 ns. The average width, on151

the other hand, would give a mean free path of c. 250 nm and a 𝜏 of 13.2 ns. Interestingly, this152

would mean our 𝜔0𝜏 ratio is below but comparable to one. However, as we show below the more153

detailed simulated values for 𝜏 differ from these predictions by up to a factor of 2, and the effects154

of specularity do not follow the naive Ziman prediction.155

To get a more realistic value for 𝜏 we use a ray tracing model to simulate the phonon transport156

and therefore heat conduction through the structure. Specifically, we use an open source Monte157

Carlo phonon ray tracing simulator [36] to trace the phonon paths. To get enough statistics, we158

simulate a total of 400 000 phonon paths. As we are working in cryogenic temperatures (4 K)159

and with structures where both transverse dimensions are of the order of 10−7 m, we can safely160

assume the scattering will be dominated by the surfaces and we use an effectively infinite bulk161

mean free path. (Other values are considered in the Supplement.) The surface specularity, which162

describes the probability of specular reflection at a given surface, can be set individually for163

each surface in the code. A value of 1 means that the surface behaves in a mirror-like fashion,164

whereas a value of 0 means that when encountering the surface, a phonon scatters randomly to165
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Fig. 2. An example of how we extract the 𝜏 value from the Monte Carlo simulations. a)
The path of an example phonon, which enters from the inlet, where the optical intensity
is at its maximum (bottom left, yellow circle), and exits through the outlet (right) where
the part connects to the bulk silicon. As the beam is symmetrical, we only need to
simulate one half of it and can do so by setting 𝑠 = 1 for the surface over which the
structure is mirrored. We show here a 2D projection from the 3D simulation. The
travel time for all of these phonons is then compiled into a histogram (b) from which
we calculate the number of phonons still in the structure at a given time (c) and fit this
with an exponential decay curve 𝑒−𝑡/𝜏 ).

any direction (the Casimir regime). We used a single value for all surfaces, calculated as [37]166

𝑠(𝜆) = exp

[
−16𝜋2

(
𝑅

𝜆

)2
]
, (15)

where 𝑅 is the RMS surface roughness and 𝜆 is the wavelength of normally incident scattered167

phonons. For our samples, we measured a surface roughness of 0.81 nm for the top surface168

with atomic force microscope. We use this value for all the surfaces. When using Eq. (15), we169

approximate the phonon wavelength to be the dominant phonon wavelength 𝜆𝑑𝑜𝑚 = 𝑐𝑠/𝜈𝑑𝑜𝑚,170

where 𝜈𝑑𝑜𝑚 = 4.25𝑘𝐵𝑇/ℎ [38] is the temperature-dependent dominant phonon frequency. For171

the lowest temperature of 4 K, this gives 𝜆𝑑𝑜𝑚 ≈ 17 nm and a specularity of 𝑠 ≈ 0.7. For higher172

temperatures, 𝜆𝑑𝑜𝑚 decreases, as does specularity. The next-lowest temperature in our dataset173

is 7 K, for which 𝑠 ≈ 0.3. For higher temperatures, scattering off the walls of the structure is174

wholly non-specular, i.e. 𝑠 = 0 for all surfaces.175

To model the photon absorption heating of our beams, we assume a local heating point at176

the maximum of the electrical field of the optical cavity, and that phonons enter at a (uniformly177

distributed) random angle through a defined surface in the structure. They are then followed178

in a ray tracing manner, with the behavior at boundary reflections defined by the specularity,179

until they exit the structure through a surface that connects our device to the bulk of the silicon.180

The simulation gives the time each phonon spends in the structure. From this, we can calculate181

how many phonons are still in the structure at any given time after a heating pulse (assumed to182

happen at 𝑡 = 0). This will be an exponential decay, with the decay constant given by 𝜏. This183

process is illustrated in Fig. 2. We receive a value of 21.4 ns for 𝜏 with a surface specularity184

of 0.7 (corresponding to a temperature of 4 K), 32.3 ns with 0.3 (7 K), and 38.9 ns for wholly185

diffusive scattering (15 K, 30 K, and 70 K). All simulation results are plotted in Fig. 3.186
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Fig. 3. A plot of the 𝜏 values simulated for a range of specularities. The points show
the actual simulation results, while the dashed line is a guide for the eye. The top axis
shows the corresponding temperature using the surface roughness mentioned in the text.
Note that for 𝑠 = 0, the corresponding temperature asymptotically approaches infinity
and is thus not labeled.

4. Experimental results187

A SEM image of a sliced photonic crystal nanobeam similar to the measured is shown in Fig. 1a.188

The devices have an optical cavity defined by the 1D photonic crystal structure with resonance189

frequencies around the telecom band of 1550 nm and typically have mechanical resonance190

frequencies between 5 and 10 MHz. The mechanical mode is the in-plane vibrational mode of the191

two beam halves moving with respect to each other. The optical cavity linewidth in these devices192

is of the order 100 GHz, placing them deep in the non-resolved sideband regime. Optomechanical193

measurements were done using a homodyne interferometer setup, whose schematic is shown in194

Fig. 1b, and the mechanical displacement spectrum and cavity linewidth were extracted through195

quadrature-averaged measurements [39] that were performed by tuning the laser wavelengths196

across the cavity resonance. At each laser detuning we extract the mechanical spectrum and fit197

it to a lorentzian lineshape, extracting the mechanical resonance frequency and linewidth. We198

report data on 2 devices at several different temperatures.199

Figure 4 shows the measurement results from one of the resonators at bath temperature of200

4 K. In order to extract quantitatively the photothermal effects one needs to be able to separate201

between them and the radiation pressure induced effects. As the two can be qualitatively similar202

(as shown in Fig. 4a), this can require a precise determination of the optomechanical parameters203

in order to model the radiation pressure effects and pinpoint the discrepancies. In our case,204

however, we see that there is a clear optical spring effect in the resonance frequency of the device205

(Fig. 4a) , whereas the mechanical damping rate shows no clear detuning dependance (Fig. 4b).206

As noted above in Eq. (12), this is consistent with having no photothermal force, and allows us to207

put strict upper limits to the value of 𝛽 in these structures.208

Specifically we take conservative estimates on the maximum value of 𝛿𝛾, as shown with lines209

in Fig. 4b, and use these together with the extracted values for 𝛿𝜔 to calculate a bound for beta210

based on Eq. (13) without any uncertainty in determining cavity parameters like 𝑔0 or number211

of photons in cavity. As we have also extracted 𝜏 from the ray tracing simulations, we have no212

free parameters. This value is shown at different temperatures for the two different resonators in213

Fig. 5b. In Fig. 5a we also plot the extracted beta from Eq. (13) point-by-point as a function of214

detuning, limiting the data to the points where 𝛿𝜔 > 1 kHz. This shows that our general limits,215
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Fig. 4. (a) The mechanical frequency of the resonator extracted from experiment (blue
line), plotted as a function of optical frequency of the laser, at bath temperature of 4 K.
The dashed lines show fits to optical spring with different 𝛽 values, demonstrating how
beta can be hard to extract from the optical spring data alone. (b) Mechanical linewidth
of the resonator extracted from the same experiment (blue line), plotted as a function of
the optical frequency. The dashed lines show the optical damping fit with different 𝛽
values. Solid black lines show limits of 𝛿𝛾 used to extract bounds for 𝛽.

shown by lines, include well all these data points.216

From Fig. 5b, we see that throughout the temperature range, |𝛽 | ≲ 0.3, indicating that the217

photothermal effects are small for these structures, with the input powers used here. Although we218

do not have a precise knowledge of the input coupling efficiency and so cannot estimate the cavity219

photon number reliably, we are using large enough powers to give a significant signal-to-noise220

ratio for the optomechanical experiments. Hence, the small 𝛽 is promising news for the usage of221

these structures in quantum applications.222

5. Conclusions223

In conclusion, we have demonstrated a method to quantify the photothermal 𝛽 parameter with224

aid of thermal transport simulations. The method should be easily applicable to other geometries.225

Our example resonator works deep in the non-resolved sideband limit, which allows us to place226

strict bounds on 𝛽 just by comparing the ratio of changes in the mechanical damping rate and227

mechanical frequency. We demonstrate that the sliced photonic crystal nanobeams show no signs228

of photothermal effects, even at 4 K temperatures and with optical powers large enough to give a229

very clear optomechanical signal.230
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PHONON SIMULATIONS

In our plot of τ versus specularity (main article), we set a maximum specularity of 0.99. This

is because at higher specularities, the fundamental assumption we make when fitting for τ — that

the number of phonons still in the structure decays exponentially — breaks down, as shown in

Figure S1. This is potentially due to the diameter mismatch and angling of the teeth ”trapping”

the phonons in a tooth, or, once they have left the tooth through which they enter, preventing them

from entering other teeth due to geometrical limitations and thus reducing the effective volume

of the structure. (Imagine an arrowhead where the phonons arrive from the arrow shaft and exit

through the point of the arrow. If the slopes of the arrowhead are at such an angle that phonons

can only specularly reflect towards the point, then at s = 1 the phonons will never be found in the

sections of the arrowhead ”behind” the entry point. On the other hand, diffuse reflection off the

side walls at s < 1 will enable the phonons to reach the full volume of the arrowhead.)

Ziman relation

In addition to investigating the effect of the surface specularity on τ , we compared these results

to the trend given the Ziman formula. To do that, we first converted each simulated τ value to an

effective mean free path Λ, according to Equation S1

Λ =
3l2

π2csτ
(S1)

We then declare that the value of Λ for s = 0 is the Casimir mean free path Λcas and use Equation

S2 [1] to acquire the Ziman projection for the effect of small increases in specularity on Λ.

Λzim =
1 + s

1− s
Λcas (S2)
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FIG. S1. The number of phonons still in the structure as a function of time for the specularities 0 and 1,

plotted on a logarithmic y-axis. Notice the sharper than exponential decay when s = 1.
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FIG. S2. A comparison of the back-calculated Λ (from τ via Equation S1) and the Ziman projection of the

growth in Λ at small increases of specularity.

However, as we can see in Figure S2, the Ziman prediction is not a very good match for our

simulated data. This is probably due to the shape of our structure, with dramatic changes in

cross-sectional area, retarding the rate of growth in Λ.
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FIG. S3. The effect of the bulk mean free path ΛB on τ at two different specularities. The horizontal dashed

lines represent the infinite bulk mean free path values.

Effects of bulk mean free path

We additionally investigated the effect of the bulk mean free path ΛB (average distance between

scattering events not associated with boundary collisions) on the thermal decay rate τ at two

different specularities: 0 (wholly diffusive) and 0.9 (mostly specular). The higher specularity was

chosen as 0.9, rather than 1, due to the aforementioned issues associated with wholly specular

reflection meaning that an infinite bulk MFP τ value was not available for a specularity of 1.

The bulk MFP value depends on the presence of scatterers in the material. Potential scatterers

present in our samples include impurity atoms, dislocations, and other phonons; as the temperature

increases, the amount of phonon-phonon scattering increases, so that a decrease in bulk MFP

corresponds to an increase in temperature.

As seen in Figure S3, the effect of internal scattering is to increase the time phonons spend

in the structure. As expected, once the bulk scattering begins to dominate over the boundary

collision scattering (or lack thereof), the two curves converge. Surface roughness thus matters less

when phonon transport begins to shift from ballistic to diffusive.

However, while the phonon bulk mean free path ΛB decreases with temperature, it is not a single
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FIG. S4. The optical spring data (blue) and the β = 0 fit (orange) for both samples at temperatures of T

≤ 70K.

value, but rather a density distribution that can be calculated from first principles [2]. At 100 K,

50% of thermal conduction comes from phonons with a bulk mean free path above 4 µm; for for

200 K, the value is 500 nm and for 300K, 200 nm [2]. Using these 50% values as an approximation

and approximating the 150 K MFP as the average of 100 K and 200 K (MFP 2 µm, for which τ

is 43.1 ns) and 275 K and 295 K as 300 K (70.5 ns).

These values could be used to perform an equivalent fit for β. At higher temperatures, however,

the optomechanical nonlinearity of this type of resonator increases [3], so that the linearization we

have performed to receive the equations for δωm and δγ is not necessarily valid. As such, the shape

of the fits is more uncertain and we are unable to give a confident estimate for β.

OPTOMECHANICAL MEASUREMENTS

For the sake of completeness, we present in Figures S4 and S5 the extracted optical spring and

optomechanical damping for both samples at the temperatures used in the main article.
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FIG. S5. The optical damping data (blue) and the β = 0 fit (orange) for both samples at temperatures of

T ≤ 70K.
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