
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Issues and Their Causes in WebAssembly Applications : An Empirical Study

© 2024 the Authors

Published version

Waseem, Muhammad; Das, Teerath; Ahmad, Aakash; Liang, Peng; Mikkonen,
Tommi

Waseem, M., Das, T., Ahmad, A., Liang, P., & Mikkonen, T. (2024). Issues and Their Causes in
WebAssembly Applications : An Empirical Study.  In Proceedings of 2024 28th International
Conference on Evaluation and Assessment in Software Engineering (EASE 2024) (pp. 170-180).
ACM. https://doi.org/10.1145/3661167.3661227

2024



Issues and Their Causes in WebAssembly Applications: An
Empirical Study

Muhammad Waseem

Faculty of Information Technology

University of Jyväskylä

Jyväskylä, Finland

muhammad.m.waseem@jyu.fi

Teerath Das

Faculty of Information Technology

University of Jyväskylä

Jyväskylä, Finland

teerath.t.das@jyu.fi

Aakash Ahmad

School of Computing and

Communications

Lancaster University Leipzig

Leipzig, Germany

a.ahmad13@lancaster.ac.uk

Peng Liang

School of Computer Science

Wuhan University

Wuhan, China

liangp@whu.edu.cn

Tommi Mikkonen

Faculty of Information Technology

University of Jyväskylä

Jyväskylä, Finland

tommi.j.mikkonen@jyu.fi

ABSTRACT
WebAssembly (Wasm) is a binary instruction format designed for

secure and efficient execution within sandboxed environments -

predominantly web apps and browsers - to facilitate performance,

security, and flexibility of web programming languages. In recent

years, Wasm has gained significant attention from the academic re-

search community and industrial development projects to engineer

high-performance web applications. Despite the offered benefits,

developers encounter a multitude of issues rooted in Wasm (e.g.,

faults, errors, failures) and are often unaware of their root causes

that impact the development of web applications. To this end, we

conducted an empirical study that mines and documents practition-

ers’ knowledge expressed as 385 issues from 12 open-source Wasm

projects deployed on GitHub and 354 question-answer posts via

Stack Overflow. Overall, we identified 120 types of issues, which

were categorized into 19 subcategories and 9 categories to create

a taxonomical classification of issues encountered in Wasm-based

applications. Furthermore, root cause analysis of the issues helped

us identify 278 types of causes, which have been categorized into 29

subcategories and 10 categories as a taxonomy of causes. Our study

led to first-of-its-kind taxonomies of the issues faced by develop-

ers and their underlying causes in Wasm-based applications. The

issue-cause taxonomies - identified from GitHub and SO, offering

empirically derived guidelines - can guide researchers and practi-

tioners to design, develop, and refactor Wasm-based applications.

CCS CONCEPTS
• Software and its engineering → Designing software; • Gen-
eral and reference→ Empirical studies.

This work is licensed under a Creative Commons Attribution International

4.0 License.

EASE 2024, June 18–21, 2024, Salerno, Italy
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1701-7/24/06

https://doi.org/10.1145/3661167.3661227

KEYWORDS
WebAssembly, Wasm, Issues, Causes, Mining Software Repositories

ACM Reference Format:
Muhammad Waseem, Teerath Das, Aakash Ahmad, Peng Liang, and Tommi

Mikkonen. 2024. Issues and Their Causes in WebAssembly Applications:

An Empirical Study. In 28th International Conference on Evaluation and
Assessment in Software Engineering (EASE 2024), June 18–21, 2024, Salerno,
Italy. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3661167.

3661227

1 INTRODUCTION
WebAssembly (Wasm) as a binary instruction format enhances the

performance and security of applications in web-based execution

environments [16]. It serves as a potential compilation target for

a variety of programming languages including C, C++, and Rust,

marking a significant milestone in web development [8]. Wasm

enables developers to employ their chosen programming languages

and execute them swiftly in browsers, elevating the overall web

experience that can range from gaming to multimedia and scientific

simulations [12]. One of the key features of Wasm is its sandboxed

execution environment - a compelling alternative to JavaScript, gen-

erally regarded as default language for web applications - offering

an efficient and secure web interactions [7].

Recent research (e.g., [14][13]) has shown a significant rise in

the utilization of Wasm beyond web browsers. This entails adapting

code from various programming languages to operate on a range

of devices via the Wasm Interpreter, aiming to establish a unified

software architecture for web systems, softwares, and services.

Despite these advantages, a thorough understanding of the chal-

lenges encountered by developers working with Wasm applications

is yet to be fully explored. Wasm is a promising technology, how-

ever; its ecosystem and associated tools are in a phase of continuous

evolution and often regarded as unstable that can impede the devel-

opment practices for web applications [9]. Wasm applications may

have an additional or specific set of issues. Borrowing the idea from
[31] [30], we define issues in this study as errors, faults, failures,

and bugs that occur in Wasm applications and consequently impact

their quality and functionality.

170

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3661167.3661227
https://doi.org/10.1145/3661167.3661227
https://doi.org/10.1145/3661167.3661227
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3661167.3661227&domain=pdf&date_stamp=2024-06-18


EASE 2024, June 18–21, 2024, Salerno, Italy Waseem et al.

To address this knowledge gap, we conducted an empirical study

of developer interactions on GitHub and Stack Overflow (SO) con-

cerning Wasm applications. By scrutinizing the information within

these exchanges, we aim to identify the common problems faced by

developers and the underlying causes of these issues. This initiative

will help identify the common issues and their causes, which can

also highlight areas requiring further research.

Motivating Scenario: To contextualise the issues and causes

in Wasm, we have provided a representative example in Figure 1.

The particular example is taken from the Assemblyscript project,

an open-source Wasm based project hosted on GitHub (see Table

1). Figure 1 provides essential information about Assemblyscript,

including its project description, the number of stars it has re-

ceived, and its contributor count. As demonstrated in the example,

a contributor not only writes code but may also provide additional

explanations through comments. Once the code has been compiled,

if issues arise, any contributor can report an issue, such as “How to
support function callback and Polymorphism”. It is also possible that

the same or another contributor may identify the cause of the issue,
for instance, stating that “Class inheritance features are not complete.
Operation not supported error when using super() keyword”.

A TypeScript-like language for WebAssembly

16

Stars Issues Contributors ForksBranches

16K 6616153

Name

Assembly
Script

https://github.com/AssemblyScript/assemblyscript

How to support function callback and Polymorphism #113

@MaxGraey Thanks for your reply. I tested that function callback supported.
...

export function say():void{
  saySomething(new Base());
  saySomething(new Concrete());
}
...

That's my code, I compile it to wast and run on wasm
vm. I got the result "Base sayBase say". It seem that
it's not supporting Polymorphism.

1
Id

en
tif

ie
s 

Is
su

e

"Class inheritance features are not complete. Operation not
supported error when using super() keyword"

caused by
2

Issue

Cause

Figure 1: Example: Github based Issue and its Cause inWasm

Objectives and key Findings: This work aims to analyse de-
velopers’ knowledge (available GitHub projects and SO posts) to sys-
tematically and comprehensively classify the issues and root causes
associated with Wasm-based applications. To this end, we conducted
an empirical investigation on 385 issues from projects hosted on

GitHub and 354 issue releated questions and answers posts from

SOF.

The key findings of the study are structured as taxonomies of

issues and their causes indicating (1) the issues inWasm application

are classified into 9 categories, of which Infrastructure and Com-

patibility Issues (28.16%), Language Features and Documentation

Issues (18.00%), and Code Implementation and Build Issues (13.83%)

are the most frequently reported; and (2) the leading causes behind

these issues are Syntactic and Semantic Errors (25.77%), Config-

uration and Compatibility Constraints (20.1%), and Operational

Limitations (12.98%). Primary contributions of this research are:

• Mining GitHub (social coding platform) and SO (Q&A forum)

to collect and analyze practitioners’ perspectives, such as

code snippets, comments, scripts, queries, and responses, on

predominant issues and their most frequent causes.

• Taxonomic classification of issue-cause types, synthesizing

available evidence (Figure 3, Figure 4), to categorize, visualize,

and understand the nature of issues and causes.

• Providing publicly available data [29] and outlining research

implications as recommended guidelines for researching, de-

signing, developing, and refactoring WebAssembly-based

applications. The issue-cause taxonomies lay the founda-

tion for discovering and documenting recurring solutions as

patterns to address these issues (ongoing future work).

The taxonomies of issues and causes derived from our study offer

a structured framework that can guide developers in diagnosing

and addressing several types of problems in Wasm applications.

Furthermore, these findings provide an empirical foundation for re-

searchers to target specific areas for tool and language improvement,

enhancing the overall robustness and usability of the WebAssembly

ecosystem.

2 RESEARCH METHOD
The methodology employed for this study is divided into three

phases, elaborated below and illustrated in Figure 2.

RQ1 
Issues Faced by

Developers

RQ2 
Causes of
the Issues

issues have causes

Phase I - Research Questions

GitHub

Stack
Overflow

"WebAssembly"
"Wasm"

 - Stars
 - Forks
 - Contributors
 - Language

Search Terms

Search Filters

Projects

Retrieved

Issues
12

SO Posts

3400 (385)

Selected
8713 354

Phase II - Data Collection

Extraction and
Synthesis

GitHub
Projects

SO
Posts

 - General data
 - Enhancement proposal
 - Duplicates
 - ... Exclusion Criteria

Extraction Synthesis
 - Index
 - Title
 - Link
 - Issue
 - Cause

 - Data Familiarization
 - Initial Codes
 - Search Issues/Causes
 - Review Issues/Causes
 - Naming and Category

385 354

Phase III - Data

Figure 2: Overview of the research method

2.1 Phase I - Research Questions (RQs)
• RQ1:What issues do developers face when working with We-
bAssembly applications? The objective of this RQ is to sys-

tematically identify and categorize the issues faced by devel-

opers in working with WebAssembly applications.

• RQ2:What are the causes of issues that occur in WebAssembly
applications? The objective of this RQ is to systematically

investigate the root causes of the identified issues in We-

bAssembly applications.

2.2 Phase II - Data Collection
Data for this study was gathered from two primary platforms.

171



Issues and Their Causes in WebAssembly Applications: An Empirical Study EASE 2024, June 18–21, 2024, Salerno, Italy

GitHub: We collected data from a diverse range of open-source

Wasm applications hosted on GitHub (see Table 1). To explore

Wasm projects as in 1, we executed the search with the terms “We-
bAssembly” and “Wasm” in the GitHub search bar, yielding 11,366

repository results as of March 26, 2023. We then filtered these re-

sults based on “languages” using the GitHub sidebar, resulting in

392 repositories. We discovered that several projects were aimed

at developing Wasm applications but utilized other programming

languages (e.g., Go, Java). To exclude such projects, we manually

examined the 392 repositories, selecting only those that (i) utilized

the Wasm language for over 50% of the project, and (ii) had more

than 100 closed issues. Ultimately, we identified 12 projects (see Ta-

ble 1). Our selected projects range from Runtime Environments like
Wasmer, which serves as a critical platform for executing Wasm

code, to Specifications and Proposals such as WebAssembly/spec
and WebAssembly/simd that guide the platform’s evolution. We

also explored Toolchains and Compilers, exemplified by projects like

WebAssembly/binaryen and AssemblyScript/assemblyscript,
which facilitate the development and optimization of Wasm mod-

ules. Our study also investigates Applications related to Wasm like

torch2424/wasmboy, a Game Boy emulator that showcasesWasm’s

performance capabilities, as well as Blockchain and Smart Contract
systems like near/nearcore, which demonstrate Wasm’s versatil-

ity. Similarly, we also found UI and Frontend frameworks for Wasm

like unoplatform/Uno.Wasm.Bootstrap, which leverageWasm to

extend traditional web development boundaries.We extracted the

developer discussions with the help of issue tracking systems of

the identified 12 projects, encompassing on closed issues, in order

to enhance the likelihood of discovering Wasm-related discussions.

In total, we obtained 6,448 closed issues.

Stack Overflow: We also collected Question and Answer (Q&A)

pairs related to Wasm from SO. We initiated our data collection pro-

cess by conducting an automated search on SO using two terms (i.e.,

“WebAssembly”, “Wasm”) aligning with our GitHub search criteria.

We then implemented a custom script to extract the relevant Q&A

posts retrieved from SO and store the information in data extraction

sheets [29]. This encompassed posts where the terms appeared in

the post title, body of questions, and contents of answers. Initially,

this search yielded 4,518 posts as of April 12, 2023.

Random Sampling: To conduct a comprehensive analysis of

the 6,448 issue discussions from GitHub and 4,518 Q&As from SO,

we employed a random sampling formula:

𝑛 =
𝑁 · 𝑋

𝑋 + 𝑁 − 1

, with 𝑋 =
𝑍 2 · 𝑃 · (1 − 𝑃)

𝐸2

In this formula, 𝑁 is the population size, which is 6,448 and

4,518 , 𝑍 is the Z-score, which is 1.96, 𝑃 is the assumed population

proportion, which is 0.5, and 𝐸 is the margin of error, which is

0.05. This approach facilitated a balanced subset selection from our

dataset, thereby mitigating bias and ensuring the generalizability

of our findings. Additionally, it allowed for equitable comparisons

among various groups within the dataset, all while optimizing

resource utilization. Our selection procedure involved the random

sampling of 385 issues from a pool of 6,448 issue discussions and 354

Q&As posts from SO. These samples were drawn while maintaining

a 95% confidence level and a 5% margin of error [10].

Table 1: List of Identified WebAssembly Applications

# Project Name Closed Issues Fork Star

1 Wasmerio/wasmer 917 631 14.7K

2 WebAssembly/spec 517 438 2.9K

3 WebAssembly/binaryen 693 640 6.3K

4 AssemblyScript/assemblyscript 1169 636 15.3K

5 Torch2424/wasmboy 120 55 1.3K

6 WebAssembly/simd 120 46 503

7 WebAssembly/gc 258 51 700

8 WebAssembly/exception-handling 89 33 115

9 Near/nearcore 2201 436 2K

10 PollRobots/scheme 283 5 141

11 Unoplatform/Uno.Wasm.Bootstrap 91 49 312

12 Brson/wasm-opt-rs 13 6 22

Table 2: Data items extracted

# Data item Description
D1 Index ID of the GitHub discussion and SO post

D2 Title Title of the discussion and SO post

D3 Link Weblink of the the discussion and SO post

D4 Issue Key point(s) of the issue from discussion and posts

D5 Cause Key point(s) for the cause from discussion and posts

2.3 Phase III - Extract and Synthesize Data
Issues and Causes Extraction: After selecting 12 projects, 385

developer discussions from GitHub, and 354 Q&A posts from SO,

the first and second authors manually retrieved the background

information (e.g., issue label, URL) about the developer discussions

and Q&A posts from SO. In the case of GitHub, we only selected

closed issues that could potentially provide answers to our research

questions. During this step, the first and second authors thoroughly

analyzed each of the 385 issues and 354 Q&A, and excluded all

those that consisted of (i) general questions, opinions, feedback,

and ideas; (ii) enhancement proposals; (iii) general announcements;

(iv) duplicated issues or repeated questions; and (v) issues and Q&A

posts without detailed descriptions. During the data extraction,

there were several discussions fromGitHub and Q&A posts from SO

where the first and second authors were not able to decide whether

to include them for further analysis. In such situations, the first and

second authors discussed those issues with all authors to gather

their opinions about inclusion or exclusion. Any disagreements

about the results of the screening process were discussed among

all the authors to reach a consensus.

Data Extraction: We defined a set of data items (see Table 2)

to answer the RQs formulated in Section 2.1. The first and second

authors of the study conducted a pilot data extraction involving

30 GitHub discussions and 30 SO Q&A posts, and the remaining

authors evaluated the extracted data. Subsequently, the first and

second authors employed a revised set of data items for formal data

extraction from the selected issues. Data items (D1-D3) provide

basic information, while data items (D4, D5) used to extract data to

answer RQ1 and RQ2.

Data Synthesis: We employed the thematic analysis approach

[5] to analyze and classify issues and causes which is consists of

five key steps: (i)Familiarizing with data: The first and second au-

thors thoroughly reviewed the GitHub discussion and SO pots and

documented the key points related to issues and causes. (ii) Prepar-
ing initial codes: After familiarizing, the same authors compiled

an initial list of codes for the identified issues and causes (refer to

172



EASE 2024, June 18–21, 2024, Salerno, Italy Waseem et al.

the Initial Codes sheet in [29]). (iii) Searching for the types of issues
and causes: Following the preparation of the initial codes, both the

first and second authors analyzed them and categorized them into

specific types of issues and causes. (iv) Reviewing types of issues
and causes: All authors collaboratively reviewed and refined the

coding results, organizing them under the relevant types of issues

and causes. During this process, we engaged in discussions, separat-

ing, merging, or discarding several issues and causes. (v) Defining
and naming categories: We precisely defined and further refined

all types of issues and causes by creating clear subcategories and

categories. By following these steps, we established three levels of

categories for effectively managing the identified issues and causes

for Wasm applications.

3 RESULTS – ISSUES AND CAUSES IN WASM
This section presents the study results, addressing the two RQs

outlined in Section 2.1. The results are organized into categories,

subcategories, and types. Categories are presented in boldface,
subcategories in italic, and types in small capitals. At the end of

each section, based on the study results, a ‘Takeaways’ box provides

the key messages for Wasm researchers and practitioners.

3.1 Types of Issues (RQ1)
The taxonomy of Wasm application issues is shown in Figure 3.

Developed from analyzing GitHub developer discussions and SO

Q&As, it categorizes 739 issues into 9 main categories with 19

subcategories, totaling 120 types. Descriptions of each category are

provided below, with detailed data in our replication package [29].

1. Infrastructure and Compatibility Issues: This category
broadly covers issues related to system architecture, integration of

various components, and compatibility issues inWasm applications.

It is composed of three subcategories: Infrastructure Management
Issues, which collect concerns in setting up and maintaining the

infrastructure necessary for Wasm; Application Integration Issues,
which gather problems in the integration of Wasm with various

programming languages and platforms; and Compatibility and Con-
figuration Issues, which amass issues related to the compatibility of

Wasm across different systems. In total, there are 169 issues, consti-

tuting 28.16% of all identified issues. Examples of issues within these

subcategories include testing issues, tooling issues, and inte-

gration issues, which are related to compromising the reliability

and efficiency of the infrastructure. Additionally, compatibility is-

sues and symbol renaming issues, are crucial to ensure that Wasm

modules operate correctly across different environments. Tackling

these issues is critical for the robust deployment and functioning

of Wasm applications.

2. Language Features and Documentation Issues: This cat-
egory encompasses concerns related to the features of the pro-

gramming languages that are available in Wasm, along with is-

sues pertaining to the associated documentation. It consists of two

subcategories: Language Feature Issues, which collects challenges

related to language use, specifications, and the introduction of new

features, and Documentation Issues, which aggregates problems

involving existing documentation, licensing, intellectual property

rights, and queries regarding pricing. Altogether, there are 108 is-

sues noted, which constitute 18.00% of all issues identified. Within

these subcategories, examples of issues such as language usage

issues, language specification issues, and language feature

reqests are significant, as they directly influence the efficacy with

which developers can leverage Wasm. In parallel, documentation

issues and license/intellectual property issues underscore the

importance of having clear, accessible, and legally robust support

materials to facilitate the adoption and effective use of Wasm. Ad-

dressing these issues is essential for fostering a comprehensive

understanding and application of Wasm within the developer com-

munity.

3. Code Implementation and Build Issue: This category is

concerned with challenges encountered during the coding and build

phases in software development, which are especially pertinent

for Wasm given its need for compilation. It includes two main sub-

categories: Code Implementation Issues, representing the range of
problems that can arise during the actual coding process, and Build
Issues, that pertain to complications that occur during the software

build process, such as dependency management. This category has

a total of 83 issues, representing 13.83% of all the issues identified.

Issues within these subcategories, such as code qality issues,

code analysis issues, and code review and feedback issues, are

crucial as they directly impact the efficacy and maintainability of

Wasm modules. The compilation process and associated challenges,

including build issues and dependency management, are impor-

tant to address because they affect the performance, reliability, and

the smooth deployment of Wasm applications, thus influencing

their stability and the cycle of updates.

4. User Interface and Performance Issue: This category en-

capsulates concerns with the user-facing aspects and the efficiency

of Wasm applications. It is divided into User Interface Issues, which
pertains to the design and interactivity components, including el-

ements like button functionality and UI customization, and Per-
formance Issue, which deals with the speed and responsiveness of

the application, including performance optimization and graphics

rendering. In total, this category includes 68 issues, constituting

11.33% of all issues identified. Within these subcategories, specific

challenges like ui rendering issues and ui design issues are cru-

cial as they directly influence user engagement and satisfaction.

Performance concerns, such as performance optimization issues

and timing and synchronization issues, are fundamental to the

functionality of Wasm applications, affecting their operational ca-

pability and the user experience. Addressing these issues is critical

to enhancing both the interface and the performance of Wasm

applications for end users.

5. Error Management and Debugging Issues: This category
addresses the crucial aspects of identifying, handling, and resolv-

ing errors in Wasm applications. It is categorized into Debugging
Issues, which includes problems like bug regressions, debugging

intricacies, and bug fuzzing, and Error Management Issue, which
covers the systematic approach to error and exception handling,

and issues arising from unexpected behavior or integrity errors.

There are 65 issues in total, accounting for 10.83% of all issues

documented. Specifically, within these subcategories, challenges

such as execution errors, error/exception handling, and un-

expected behavior are pivotal, as they impact the stability and

reliability of Wasm applications. Issues like function signature

mismatch error, type mismatch error, and value assignment

173



Issues and Their Causes in WebAssembly Applications: An Empirical Study EASE 2024, June 18–21, 2024, Salerno, Italy

error underscore the complexities of ensuring accurate execution

and data integrity. Effective management and resolution of these

issues are essential for the development of robust, error-resistant

Wasm applications.

6. Network and Operational Issues: This category pertains to

challenges associated with networking and the day-to-day opera-

tional aspects of Wasm applications. It is subdivided into Functional
& Operational Issues, which comprise problems affecting applica-

tion functionality and operations such as event handling, module

imports, and system integrations, and Network and Communica-
tion Issues, which deal with data transmission, protocol adherence,

and network requests. There are 40 documented issues in total,

which account for 6.66% of all issues reported. In these subcate-

gories, specific concerns like functionality issues, prerendering

issues, and socket integration issues are significant as they di-

rectly influence the operational effectiveness of Wasm applications.

Network-related issues such asnetwork/protocol issues andnet-

work communication issues are critical for maintaining robust

communication channels within and across Wasm applications.

7. Security Issues: This category encompasses the various as-

pects of security within Wasm applications. It includes Authen-
tication Issues, which cover problems related to user verification,

assertion checks, certificate integration, cryptographic operations,

and role-based authorization. Another critical area is Compliance
Issues, comprising 13 issues related to adherence to platform stan-

dards, browser compatibility, and environmental regulations, as

well as the challenges in porting applications while maintaining

compliance. There are 29 documented issues in total, which account

for 4.83% of all issues reported. Specific challenges within these sub-

categories, such as authentication issues and cryptographic

operations, are fundamental to the secure operation of Wasm

applications. Compliance concerns, including platform compat-

ibility issues and advertising compliance, are crucial for the

applications to operate within the legal and technical frameworks

of various environments. Effectively managing these security and

compliance issues is paramount for the integrity and reliability of

Wasm applications.

8. Concurrency andMemoryManagement Errors: This cate-
gory addresses critical issues related to the simultaneous operation

of multiple processes and the efficient management of memory

in Wasm applications. It accounts for 20 issues in total, compris-

ing 3.33% of all recorded problems. Within this category, there are

Concurrency Issues, which include challenges like managing asyn-

chronous execution and synchronization, andMemory Management
Errors, which involve a variety of concerns ranging from memory

access and allocation issues to questions about memory usage and

the limitations inherent in dynamic loading. There are 20 issues in

total, comprising 3.33% of all recorded problems.

9. State and Data Management: This category is concerned

with issues related to maintaining the state of applications and the

management of data within Wasm applications, accounting for 18

issues and representing 3% of all issues. It is divided into State Man-
agement Issues, which includes problems like state serialization and

general state management concerns, and Data Management Issues,
which covers a broader range of data-related challenges such as

database integration, caching strategies, asset management, cookie

handling, and file management issues. Within these subcategories,

issues such as state serialization issues and serialization is-

sues are critical because they affect how application state is main-

tained and restored, which is vital for the user experience. On the

data management side, issues like database issues, caching is-

sues, and file management issues are essential for the efficient

operation and scalability of Wasm applications.

Takeaways

1 Infrastructure and Compatibility: Leading issues include system architecture and

API complexities, affecting Wasm’s seamless integration with existing systems.

2 Operational Issues: Networking and communication issues notably impact the stability

and reliability of Wasm applications.

3 Code and Build Issues: Implementation, optimization, and dependency management

are key areas needing attention for quality Wasm application development.

3.2 Causes of Wasm Issues (RQ2)
The taxonomy of causes of Wasm issues is detailed in Figure 4. The

cause taxonomy is based on data mined from developer discussions

on GitHub and SO. It is important to note that not all discussions

on these platforms provide cause information. Therefore, we iden-

tified only 516 cause instances from both sources. This analysis

identified 278 cause types, categorized into 10 main categories and

29 subcategories. Detailed information is available in the dataset

[29].

1. Syntactic and Semantic Errors: This cause category en-

compasses causes that originate from syntactic and semantic in-

consistencies within Wasm code, often leading to compilation and

runtime issues , or unexpected behavior. It includes a total of 133 re-

ported causes. Subcategories within this category are Syntax Errors
and Inconsistencies, Initialization and File Handling Anomalies, Type
Mismatches and Inconsistencies, and Logic Errors and Bugs. Some

of the leading key types of causes such as bug in the code, in-

ternal error, and syntax unfamiliarity within Syntax Errors
and Inconsistencies are critical as they directly affect the correct

interpretation and execution of Wasm code. In Initialization and File
Handling Anomalies, causes like mismanagement of data buffers

and segmentation fault issues are significant, as they can lead

to crashes and unpredictable behavior. Type Mismatches and Incon-
sistencies include crucial causes such as missing identifiers and

functions, which can prevent code from compiling or running

correctly, while Logic Errors and Bugs, with causes like branching

logic in transactions and component initialization issues,

can result in flawed application logic and runtime errors.

2. Configuration and Compatibility: This cause category is

central to issues that arise from the setup and interoperability of

Wasm systems, featuring 104 reported causes. Within this cate-

gory, we have three subcategories: Compatibility and Specification
Issues, Build and Configuration Conflicts, and Environment & Setup
Issues. Notable causes within Compatibility and Specification Issues
include interoperability challenges and library compatibil-

ity issues, which are critical for ensuring that Wasm modules

work across different platforms and with various libraries. In Build
and Configuration Conflicts, causes such as environment variable

issues and ssl configuration issues can lead to significant deploy-

ment problems. Moreover, Environment & Setup Issues like logging
configuration conflicts affect the operational aspect of Wasm

174



EASE 2024, June 18–21, 2024, Salerno, Italy Waseem et al.

Error Management and Debugging Issues

Error/Exception Handling

Exception Handling Issue

Bug/Regression

Debugging Issues

Bug/Fuzzing Issue

Security Issues

Authentication Issues

Certificate Integration

Assertion Failure

Role-Based
Authorization Issue

Cryptographic Operations

Platform Compatibility
Issues
Security Errors

Compatibility Issues

Functionality Issue

Import Function Error

Socket Integration Issue

Event Handling Issue

Implementation Issue

Module Import Issue

Prerendering Issue

Network and Operational Issues

Network/Protocol Issue

Network Communication
Issues

Networking Issue

Network Request Issue

Game Development Issue

Logging Issue

Limitation Issues

Audio Processing

Infrastructure and Compatibility Issues

Infrastructure Management
Issues (138)

Application Integration Issues
(24)

API IssuesIntegration Errors

Development
Environment Issues Language Integration Issue

Language Interoperability
Issue

Blazor Application Setup Issue

JavaScript Integration Issue

External Library Integration
Issue

Language Features and Documentation Issues

Language Usage Issue

Language Specification
issue

Language Feature Request

Language Proposal

Language Selection Issue

Documentation Issues

License/Intellectual
Property Issue

Pricing Inquiry

Known Issue

User Interface and  Performance Issue

Code Implementation and Build Issue

Build Issues Dependency
Injection

Compilation
Issues

Code
Refactoring
Issue

Code
Optimization
Issue

Code
Quality
Issue

Code
Analysis

Styling and Scripting 

Customization Issue

Button Functionality

State and Data Management Issues

Concurrency and Memory Management Errors

§§

Category

Taxonomy Legend

Type of Issues

Taxonomy

65 (10.83%)
20 (3.33%) 40 (6.66%)

169 (28.16%) 108 (18%)

Taxonomy of Issues in WebAssembly-based Systems
68 (11.33%)18 (3%)

Number of Issues
(Percentage)

Python Integration Issue

29 (4.83%)

(Number of Issues)
Subcategory

Deployment Issues

Testing Issues
Tooling Issues

Continuous Integration

Installation Issue

Project Setup and
Launch 

Project Structure 

Technology Selection

Loading Order  Issue

Project
Configuration 

Rust API and Dependency
Issue

Rust Language Integration
Issue

Compatibility and
Configuration Issues (7)

Compatibility Issue

Library Compatibility Issue

MIME Type Compatibility Issue

Renaming and IntelliSense Issue

Symbol Renaming Issue

83 (13.83%)

Code Implementation and
Optimization (72)

Build  and Dependency
Management (11)

Release
Management Issue

Code
Review 

Code
Behavior
Issue

Code
Modification
Issue

Code
Organization
and Structure
Issue

Language Features Issue
(91) Documentation Issue  (17)

Language Issues

Performance Issue (36)

User Interface Issues

UI Rendering Issue

Theme Change Error

UI Blocking Issue

Performance Comparison
Issue

Performance Optimization
Issue

Graphics Rendering
Optimization

Timing and Synchronization
Issue

User Interface Issue (32)

UI Design Issue

UI Event Handling Issue

UI Framework Integration

UI Integration Issue

UI Styling Issue

Error Management Issue (43) Debugging Issue (22)

Unexpected Behavior

Upgrade and Integrity
Error

Function Signature
Mismatch Error

Type Mismatch Error

Value Assignment Error

Execution Error

Functional & Operational Issues
(28)

Network and Communication
(12)

Monitoring Requirement

Virtualization Error

WebAssembly Detection Issue

WebAssembly Library Distribution

Authentication Issues (16) Compliance Issue (13)

Browser Compatibility

Advertising Compliance

Environment Compatibility
Issue

Porting and Compatibility
Issue

 Concurrency Issues (4) Concurrency Issues (16)

Memory Management Issue

Memory Access Failure

Memory Exhaustion Issue

Memory Access Issue

Memory Management
Limitation

Memory Allocation
Limitations
Memory and Safety
Mechanism Queries

Dynamic Loading and
Memory Access issue

Memory Limitations

Memory Usage Question

Concurrency Issues
Asynchronous
Execution
Synchronization
Issue

Data Management
Issue (14)

Data Issues

Asset Management

Database Issues

Caching Issues

Cookie Management

File Management Issue

State Serialization
Issue

State Management
Issue
Serialization Issue

State Management
Issue (4)

Swift Integration Issue

Application Integration Issue

Cross-Platform Integration Issue

Figure 3: A Taxonomy of Issues in Wasm Applications

applications, highlighting the need for meticulous configuration

management. Addressing these configuration and compatibility

causes is essential to prevent disruptions in Wasm application de-

velopment and deployment.

3. Operational Limitations: This cause category deals with

constraints that impact the functionality and security of Wasm

applications during their operation, totaling 62 reported causes.

Within this category, we have two subcategories: Performance defi-
ciencies, Technical Limitations, and Security Constraints. Key types

of causes within Performance deficiencies, such as performance

limitation and performance regression, are critical as they can

significantly degrade user experience and application responsive-

ness. Within Technical Limitations, causes like lack of support

for global variables and absence of specification tests pose

challenges for developers by restricting the functionality and veri-

fiability of Wasm modules. Security Constraints involve issues like
authentication/token issues and security/browser policy

issues, which are essential for maintaining the integrity and trust-

worthiness of applications. Effectively addressing these operational

limitations is crucial for the advancement and secure deployment

of Wasm applications.

4. Infrastructure Limitations: This cause category encom-

passes foundational concerns that impact the operation ofWasm ap-

plications. It includes two subcategories: Network and Platform lim-
itation, I/O Handling limitation and Synchronization Limitation. Sig-
nificant causes within Network and Platform limitation involve chal-
lenges like network connection issues and platform-specific

compatibility issues, which can severely restrict an application’s

functional scope and connectivity. I/O Handling limitation is vital

for the application’s interface with the user and the system, where

issues such as HTTP response handling and CORS issues are key

operational concerns. In the realm of Synchronization Limitation,
causes such as single-threading constraints and deadlocks

highlight the complexities of managing concurrent operations in

Wasm. Effectively tackling these infrastructure limitations is essen-

tial for the seamless operation and scalability of Wasm applications.

5. LowCodeQuality: Gathers the causes related to inadequately
maintained and poor-quality codebases in JavaScript and Wasm in-

teractions, along with a deficiency in essential supportive elements

such as libraries and documentation. It includes Poor Code Quality
and Maintenance and Poor Dependency and Integration Limitations
subcategories. Key causes such as script path issues and ineffi-

ciencies in original coding design from the Poor Code Quality
and Maintenance subcategory are pivotal, as they can directly im-

pact the functionality and extendibility of the code. Additionally,

Poor Dependency and Integration Limitations present significant

175



Issues and Their Causes in WebAssembly Applications: An Empirical Study EASE 2024, June 18–21, 2024, Salerno, Italy

causes like authentication integration shortcomings and

service container dependency misconfigurations, which can

complicate the integration process and affect the stability of the

application. Addressing these causes is essential for the develop-

ment of high-quality, maintainable Wasm applications that are

well-integrated within their respective ecosystems.

6. Language and Library Constraints:Consolidates the causes
related to the limitations within programming languages and their

associated libraries in the context of Wasm. This category combines

causes into three subcategories API and Functionality Constraints,
Language & Library Limitations, and Web Platform Limitations sub-
categories. For example, API and Functionality Constraints involve
critical causes such as API limitations that can significantly ham-

per the integration and operational capabilities of Wasm modules.

Language & Library Limitations highlight causes like language
interoperability issues, which affect the seamless integration of

Wasm with other programming environments. Furthermore,Web
Platform Limitations bring attention to causes such as tooling

limitations, emphasizing the need for up-to-date and compatible

tools to support the evolving landscape of Wasm. Navigating these

causes is key to enhancing Wasm’s adaptability and ensuring its

effective deployment across various platforms.

7. Documentation and Technologies Causes: This category
identifies causes related to informational discrepancies and tech-

nical limitations that affect the use and development of Wasm.

This category combines causes into two subcategories: Documen-
tation Inaccuracy and Technological and Licensing Constraints. For
instance, Documentation inaccuracy covers causes such as lack of

clear definition and errors in document, which can create

barriers to correctly implementing and leveraging Wasm’s func-

tionalities. Technological and Licensing Constraints highlight issues
like rust segmentation fault and rust/wasm interoperability

mismatch, pinpointing the technical hurdles that can arise due

to language-specific features or the integration of different tech-

nologies. These constraints underscore the importance of accurate

documentation and adaptable technology solutions to support the

evolving needs of Wasm applications and their users. Addressing

these causes is essential to foster a clear understanding and effective

utilization of Wasm across various domains.

8. Data Handling and Design Anomalies: This category cap-

tures causes concerning the integrity and structure of data within

Wasm applications. It category combines causes into three subcate-

gories: Data inconsistency, Database Anomalies, File Access and Han-
dling Anomalies, and Serialization Anomalies. For example, causes

such as anomalies in atomic type implementation and state manage-
ment issues within the Data inconsistency subcategory can directly

affect the accuracy and reliability of data processes. Causes in Data-
base Anomalies, like data conversion errors and missing database
files, are pivotal as they influence the robustness of database op-

erations. Within File Access and Handling Anomalies, causes such
as I/O constraints and file system access restrictions can severely

limit application functionality. Causes in Serialization Anomalies,
including discrepancies in serialization of memory operations offset,
can lead to data integrity concerns.

9. Memory and Storage Anomalies: This category collects

causes associated with the mismanagement and technical chal-

lenges of memory and storage within Wasm applications. It com-

bines causes into two subcategories Memory and Storage Anomalies
and Block and Caching Anomalies. Causes like mismanagement of
memory resources and issues with garbage collectionwithin theMem-
ory and Storage Anomalies subcategory are critical as they directly

influence the application’s stability and resource optimization. In

the Block and Caching Anomalies subcategory, causes such as block
download failures and cache problems highlight the importance of

reliable data storage and efficient retrieval mechanisms. Addressing

these memory and storage causes is fundamental to ensuring that

Wasm applications maintain their integrity and provide a respon-

sive user experience.

10. User Interaction Anomalies: This category encompasses

causes that negatively impact the user’s ability to interact with

Wasm applications effectively. It includes UI Control Inconsistencies,
UI Rendering Anomalies, and Browser-Specific Limitations subcate-
gories. For instance, within UI Control Inconsistencies, causes such
as compatibility issues with UI controls and confusion due to for-
matting can disrupt the user’s navigation and interaction with the

application. UI Rendering Anomalies highlight causes like animation
and timing flaws, which are crucial for a seamless and intuitive user

interface. Browser-Specific Limitations bring to light causes such as

security constraints in browser, which can limit functionality and

affect the overall accessibility of Wasm applications.

Takeaways

4 Diversity in Language Compilation: The diversity of source languages compilable to

Wasm causes inconsistencies and errors in resultant applications.

5 Security Vulnerabilities due to Wasm’s Structure and Execution Model: Wasm’s

structure and execution model are inherent causes of new security vulnerabilities in applica-

tions.

6 Complexities inOptimizingCompiledCode: The inherent complexities in optimizing

Wasm code cause performance bottlenecks affecting user experience.

4 DISCUSSION AND IMPLICATIONS
This section presents the discussion on the key takeaways along

with implications for researchers and practitioners based on the

study results. Section 4.1 outlines the potential implications associ-

ated with WebAssembly issues, while section 4.2 discusses into the

various WebAssembly causes.

4.1 Wasm Issues
1 Infrastructure and Compatibility Issues: Among the key

insights gained from mining GitHub and SO discussions is the

recurring theme of infrastructure and compatibility issues with

Wasm. The consistent mention of these challenges among develop-

ers suggests that integrating Wasm into existing systems remains

a significant obstacle. This aligns with existing studies (e.g., [18])

highlight the difficulty in adopting new technologies due to sys-

tem architecture complexities [18] and API-related issues [17]. The

online developer discussions illuminate a gap between academic

understanding and real-world practice. Although the academic liter-

ature may describe the theoretical benefits of Wasm [6], the actual

176



EASE 2024, June 18–21, 2024, Salerno, Italy Waseem et al.

Documentation and Technologies Causes

Ambiguity in WebAssembly
Documentation
Documentation/Compatibility
Mismatch

Problem with ASP.NET
Zipping of Published
Files

Problem with near
package's testnet
functionality

Problem with OCaml's
x87 Arithmetic

Memory and Storage Anomalies

Mismanagement of
Memory Resources

Unaddressed Host-
Created Memory

Programming Errors
Affecting Memory
Storage

Leakage in Memory

Problems with Garbage
Collection

Block Download
Failures
Retrieval Anomalies in
Block Headers

Issues in Retrieving
Blocks

Performance limitation
(Animation, Caching,
etc.)

Suboptimal Performance

Exceeding RPC
Performance Limit

Optimization Problem

Lack of Performance
Data

Uncertain efficiency

Division Optimization

Operational limitations

Coverage Failure
during CI Process

Crash with -g Option

Future of the Platform
is Uncertain

Authentication/Token
problem
Security restriction

Security/Browser
policy problem
Security/Content Security
Policy (CSP) problem

Syntactic and Semantic Errors

Syntax Errors and
Inconsistencies (61)

Initialization and File Handling
Anomalies (14)

Mismanagement of Data
Buffers

Internal Error

Bug in the Code Inaccessibility of Locals with
Large Indices

Erroneous Calculation of
Percentages

Incorrect File Paths

Short Transaction Validity
Periods
Incorrect Configuration of
table.grow Size

Configuration and Compatibility

Build Configuration Conflicts

Compilation Compatibility
Problems

Interoperability Challenges

Multiple Compatibility
Issues During Compilation

System and Tool
Incompatibility Problems

General Environment
Concerns

Logging Configuration
Conflicts

Localization/Resource
File Challenges

User Interaction Anomalies

Data Handling and Design Anomalies

Custom Sections
Misaligned with AST
Design

Contradiction in
Field Access and
Ordering

Errors in
File Format
or Content

I/O
Constraints

Failure in File
Opening in
Rust to Wasm
Compilation

File System
Access
Restrictions

Low Code Quality

§§

Category

Taxonomy Legend

Type of Issues

Taxonomy

27 (5.13%)
39 (7.41%) 62 (11.78%)

133 (25.28%) 104 (19.77%)

Taxonomy of Causes of WebAssembly Issues
20 (3.80%)

Number of Issues
(Percentage)

Insufficient Type Inference
Mechanisms

29 (5.51%)

(Number of Causes)
Subcategory

Duplicate Identifier

Array Export Error

AssertionError

Unknown Causes

Comparison problem

Linking problems
During Compilation

Duplicated Expressions

Form/Binding/API
problem

Dispose method problem

Circular reference

Function Invocation

Re-rendering issue

Async issue
Control flow issue

Infinite Loop

Validation Failure in Module

Too Many Open Files

Version Mismatch in WebAssembly
Instantiation

28 (5.32%)

File Access and Handling
Anomalies (5)

Serialization Anomalies (3)

Disagreement in
Serialization of
Memory
Operations Offset

File Upload or
Progress
Inconsistencies

Compatibility and
Specification Issues (54)

Environment & Setup
Problems (3)

Library Compatibility
Problems

UI Rendering Anomalies (8)

Difficulty Handling
Interactions of Different
Types

Difficulty Identifying Selected
Seat Price in EpochManager

Compatibility Issues
with UI Controls

Virtualization Issues in
UI Controls

Rendering Inconsistencies

Canvas Initialization Failures

Paint Rendering Issues

UI Compatibility Concerns

UI Control Inconsistencies (8)

State Management Issues
in UI Controls

Validation Problems in UI
Forms

Confusing Local Network
Commands

Confusion Due to Formatting

Documentation inaccuracy (9) Technological and  Licensing
Constraints (18)

Documentation/Contradictory
information 
Documentation/Implementation
Flaw

Lack of Clear Definition
and Errors in Document

Lack of Clarity in Proposal

Lack of Understanding of
Interface and C APIs

Problem with Wasmer's
WasmPtr & Memory
Accesses

Security & Policy
Constraints (19)Technical Limitations (9)Performance deficiencies

(34)

Security/Platform-specific
problem

Security/Same-Origin
Policy problem

Security/Secure storage
limitation problem

DoS Workaround

Memory and Storage
Anomalies (15)

Block and Caching
Anomalies (5)

Absence of Effective
Caching

Cache problem

Poor Dependency and
Integration Limitations (19)

Poor Code Quality and
Maintenance (20)

Interop problem

JavaScript limitation

Inefficiencies in Original
Coding Design and
Assembly Script

Script path problem

WebAssembly
interaction problem

Lack of library support

Wrapping up and
Implementing New API

Need for Better ES6
Module Building and Tree
Shaking
Lack of Duplicate
Transaction Check

Lack of Reference Docs

ABP Framework
Integration Lacks

ASP Classic Integration
Inefficiency
Authentication Integration
Shortcoming

Logic Errors and
Bugs (23)

Component
initialization issue

Branching Logic in
Transactions

JS.md and Handling of
funcidx limitation
call_indirect and
function pointers issue

GlobalI64 Absence

Bikeshed Dev issue

Bit and Type Errors

Function and Value
Misuse

Missing identifiers
and Functions

Type Mismatches and
Inconsistencies (35)

Syntax/configuration issue

Import-related flaw

Code correctness problem

Code organization problem

Syntax Unfamiliarity

Code Generation for Each
Assertion

Expression Collapse
problem

Function Blocks in Binaryen
AST

Enum Value Return Error

Compiler Errors in Arrow
Expressions

Import Path Error

Code File Type Mismatch

TypeScript Syntax Limitations

Initialization issue

Pointer issue

Segmentation fault issue

Concerns about Start
Function Failure

Lack of knowledge

Code structure issue

Naming conflict

Non-idiomatic Bindings

Inconsistent Functions

Misunderstanding of
Specified Limit

Erroneous Parameter
Enclosure

Non-UTF-8 Characters
in Log Message

Inherit/Dispatch Confusion

Double Rounding Issue in
OCaml Implementation

Lack of Validation and
Evaluation Support
Refactoring and Code
Quality Problem

DCE Optimization and
Tree-Shaking

Excessive Log Addition

Inefficient Handling of Strings

Lack of Code Comments and
Outdated Code

Negative Focus on GC

Lack of Configuration

Optimization Limitations

Symbol Not Found

Connection String Handling
Flaw
React Native
Compatibility Mismatch

Integration Decision With
Project Maintainers
Dependency Injection
Misuse
Dependency Library
Import Misuse

Dependency Compatibility
Mismatch
Dependency Execution
Order Problem

Dependency Configuration
Oversight

Service Container
Dependency Misconfig

Deployment Config Deficit

Lack of Understanding on
Making Host-Created
Memory Accessible

Licensing Constraints

Limitations of Technology

Limited Support for
Dynamic Field Access

Rust API Handling Fault

Rust Segmentation Fault 

Rust Segmentation Fault 

Rust Std Library or GitHub
Actions Configuration
Problems

Rust/Wasm Interoperability
mismatch
Unavailability Guarantee
for State-Based Accounts

Unreachable Code in Rust

Wrapping Bindings on Guest
and Host Side

Performance
Regression
Slow Response Time

Ambiguities in Data Tag
Definitions

Inadequate Type
Structure

Absence of
Specification Tests
Lack of Support for
Global Variables

Unimplemented
Functions s2wasm Error with LLVM

syntax

Design Constraints
Limiting Memory
Unauthorized or
Incorrect Memory
Access
Lack of Sufficient
Memory

Early Validation and
Memory Cost Anomalies

Buffer Overflow in wasm-
binary.cpp

Differences in mem init
file generation
Uncontrolled Memory
Growth

Mismatch in Memory
Models

Control State Instability in UI

Virtualization Limitations in UI

UI Form Validation Problems

Animation and Timing Flaws

Browser-Specific Limitations (4)

Privacy Settings Issues in
Browser
Security Constraints in
Browser
Font Blocking and Display
Problems in Browser

Data
Conversion
Errors

Issues in Data
Initialization or
Navigation

Visibility Issues
During Data
Loading

Data
Transfer
Limitations

Database Anomalies (9)

Inadequate
Handling of
Queries

Missing
Database
Files

Concurrency
Anomalies in
Database

Anomalies in
Atomic Type
Implementation

Upcasting
Issues Breaking
Opacity

Anomalies with
Immediates for
Lane Indices

Excessive
Shift Count
for Lane
Bits

Data inconsistency (11)

Sign-
Extending
Variants in
Packed Loads

Issues in
Handling
Historical
Data
Requests

Insufficient
Epoch Time

State
management
issue

State
management/
Programming
error

State
Splitting
Delay

Rent_paid
Field in
Block and
Chunk
Headers
Always 0

Contract Cost Dependency

Cross-Contract
Compatibility and RPC
Modifications

Compatibility Challenges
in Compilation

Platform-Specific
Compatibility Problems

Specification Limitations
Affecting Compilation

General Configuration
Problems

Configuration Conflicts
During Build

Dependency
Configuration Problems

Environment Variable
Problems

Build and Configuration
Conflicts (47)

Unsupported Features
Causing Compilation Problems

Continuous Addition of New
Operations Hindering
Standardization

Backward Compatibility
Problems

Conflicts When Setting LTO
and Codegen-Units

Versioning Problems in Build
Process

SSL Configuration Problems

Lack of Proper Configuration

Validation and Evaluation Support
Absence

Duplicate Transaction Check
Absence

Lack of Library Support

Language and Library Constraints

38 (7.22%) DOM
Manipulation
Limitations

WebAssembly-
Language Tooling
LimitationsWeb Platform Limitations (5)

Language-
Specific
Limitations

Language
Interoperability
Problems

Language/Runtime
Limitations

Unsupported
Language
Features

Language & Library
Limitations (13)

Library
Compatibility
Conflicts

Feature/Library
Limitations

Absence of
ucontext_t in
libc Crate for
powerpc64-
linux-gnu

C Library Not
Found in
Hyperledger
Fabric Peer

Compression
Configuration
Problems

Deprecated
Functionality &
Wasmer Clarity
Problems

Deprecated
Trait Object &
Default Trait
Absence

Deprecation
Risks

Authentication
and Token
Problems

Asynchronous
Handling
Problems

Import/Export
Function
Limitations

API and Functionality
Constraints (20)

Export
Function
Errors

Audio
Processing
Deficiencies

API
Limitations

Infrastructure Limitations

55 (10.45%)

Image
Format/Processing
Problems
Audio Processing
Problems

HTTP Response
Handling Problems

Platform-specific Sub-
issues (Compatibility,
Dependency, etc.)

Networking/Various
Sub-issues (Event loop,
HTTP, Routing, etc.)

Network Capability
Limitations
Network Connection
Issues Causing Sentry
Failures

Network and Platform
limitation  (44) I/O Handling limitation (4)

Network/File size issue

Network/Port conflict
issue
Ethereum's Web3 API
Endpoints

I/O-Related Problems

First Block/Chunk
Requested for Given
Height

Forks and State
Computation Result
Dependence

Handling Epoch Switches
in Finality Gadget

Gas Deduction for Host
Operations

Genesis Records in
Memory

Incorrect Validator Count

Server Constraints (4)

CORS/HttpClient
problem

Server/Restart problem

Congestion in WASM
Runner or Runtime
Components

Server Constraints (3)

Lack of
Synchronization

Single-Threading
Constraints

Deadlocks

Figure 4: A Taxonomy of Causes of Issues in Wasm Applications

integration into existing architectures proves to be a complex is-

sue not fully addressed [2]. Implications : The persistent nature of
these issues highlights the need for academic research that bridges

theory and practice, focusing on creating more robust integration

methods or frameworks for Wasm. Practitioners can benefit from

more actionable guidance, possibly in the form of best practice

documents.

2 Operational Issues: A critical aspect uncovered pertains to

operational challenges in networking and communication, as high-

lighted in discussions across platforms like GitHub and SO. Devel-

opers have raised concerns about the reliability of these aspects in

Wasm [8], echoing literature that points to new technologies often

grappling with underdeveloped networking protocols (e.g.,[23]).

There is a discernible lack of literature focusing specifically on

Wasm’s operational capabilities in these areas. Insights from real-

world scenarios, as seen in the aforementioned platforms, are crucial

in bridging this knowledge gap [25]. Implications : This presents
a fertile ground for researchers to delve into Wasm’s networking

functionalities and suggest improvements. Similarly, practitioners

are advised to examine the operational elements of Wasm meticu-

lously, potentially utilizing external libraries or modules as interim

solutions.

3 Code Implementation and Optimization Issues: Data
mined from developer conversations also highlight challenges in

code implementation and optimization, including build and de-

pendency management. The online discussions complement the

literature (e.g., [8, 27]) which often talks about the lack of mature

toolsets for new technologies, emphasizing thatWasm development

is still in its infancy stage [19, 25]. Although academic discourse

may emphasize the computational efficiency of Wasm, it seems to

overlook the practical aspects of code implementation and optimiza-

tion, an area clearly fraught with challenges according to GitHub

and SO data. Implications : Researchers could aim to develop bet-

ter tools for Wasm development, possibly in collaboration with

industry stakeholders, to address the implementation challenges.

Practitioners could consider incorporating emerging best practices

and tools as they become available, staying up-to-date through both

academic and community channels.

4.2 Causes of Wasm Issues
4 Diversity in Language Compilation: We find the diversity in

language compilation to Wasm is causing significant discrepancies

and anomalies in the resultant applications, creating inconsistencies

in application behavior and functionality. This issue is consistent

177



Issues and Their Causes in WebAssembly Applications: An Empirical Study EASE 2024, June 18–21, 2024, Salerno, Italy

with existing studies (e.g., [15]) and practitioner perspective (e.g.,

[15, 20, 21]), highlighting the challenges and irregularities arising

due to compiling a variety of languages like C, C++, and Rust to

Wasm. It reaffirms the prevailing knowledge base, emphasizing

the problems in maintaining consistency during compilation pro-

cesses. The diverse origin of source languages necessitates a more

universal and standardized compilation strategy to prevent the re-

sultant inconsistencies and anomalies in Wasm-based applications.

Implications : There is a need to develop more comprehensive and

robust compilation methods to accommodate the diversity in source

languages. Developers should be aware of the complications arising

from language diversity and consider the compatibility of origin

languages with Wasm during the development phase.

5 Security Vulnerabilities due to Wasm’s Structure and
Execution Model: Our research identifies that the unique struc-

ture and execution model of Wasm are introducing new security

vulnerabilities and expanding the application’s attack surface. This

finding align with some of the earlier studies (e.g., [16, 26]) that de-

pictedWasm as amore secure alternative to JavaScript. The findings

also reveals potential gaps in our understanding of Wasm’s security

model and necessitates further exploration into its unique vulner-

abilities. The alignment between our results and previous studies

highlights the evolving and dynamic nature of Wasm, suggesting

continuous emergence and evolution of potential security threats

and vulnerabilities. Implications : This contradiction prompts a

deeper examination of Wasm’s security framework, urging fur-

ther exploration and research into its vulnerabilities and mitigation

strategies. Developers need to implement rigorous security proto-

cols and continuously monitor and update the security features

of applications to mitigate the risks associated with the unique

vulnerabilities of Wasm.

6 Complexities in Optimizing Compiled Code: The re-

search indicates that the complexities involved in optimizing the

compiled code are creating substantial performance bottlenecks,

affecting the user experience and application response times ad-

versely. The findings align well with existing literature (e.g., [3, 11,

27]), emphasizing the critical need to address these performance

bottlenecks by developing advanced optimization techniques to

improve the efficiency and response time of Wasm applications.

Implications : The recurring issues related to performance bottle-

necks in our findings indicate the need of optimization techniques

and methodologies to enhance the user experience and application

efficiency. Developers and IT professionals should prioritize resolv-

ing these performance bottlenecks by exploring and implementing

new optimization solutions and techniques to enhance application

performance and user experience.

5 RELATEDWORK
This section overviews the most relevant existing research, classi-

fying and analyzing empirically-based studies focused on (i) bugs

and security issues along with (ii) performance challenges in Wasm

applications. A conclusive summary highlights the scope and con-

tributions of the proposed research in the context of related work.

5.1 Bugs and Security Issues in Wasm
Bugs in Wasm applications are among the prevailing challenges

including issues that relate to not the bugs, errors, and security risks

during application compilation [4, 22, 34]. Specifically, Romano et

al. [24] conducted an empirical study to analyze 1,054 bugs inWasm

compilers The study investigated ‘lifecycle’, ‘impact’, and ‘sizes’

of bug-inducing inputs and bug fixes and highlighted the need

for further research on principles and practices to debug Wasm

applications.

Security-critical issues inWasm have gained significant attention

of researchers with web application development for blockchain

solutions [28, 33]. Lehmann et al. [16] examined security vulnera-

bilities to analyze the extent vulnerabilities are exploitable in We-

bAssembly binaries, and how this compares to native code in Wasm

and proposed solutions. Similar studies such as [4, 22, 34] address

the security of Wasm-based smart contracts for blockchain sys-

tems. Compared to conventional Ethereum smart contracts, Wasm

smart contracts have shown growing popularity for web-based

blockchains, however, they suffer from various attacks exploiting

their vulnerabilities [22].

5.2 Performance Issues
Performance issues in Wasm applications can jeopardise time-

critical transactions and user experience in web systems. The re-

search by Jangda et al. [11] empirically compares native and Wasm

code to identify the bottlenecks that slow down application ex-

ecution. A similar study by Yan et al. [32] compared Wasm and

JavaScript performance to guide developers in identifying opti-

mization opportunities in web development. Furthermore, Andre

et al. [1] investigate Wasm-related discussions on Stack Overflow,

revealing security concerns and frequent requests for bug-fixing

corresponding to the performance of Wasm-based web applications.

Conclusive Summary: Based on the review above, we conclude

that the proposed research is closely aligned and complements the

existing body of knowledge on empirical studies on identifying bugs

[28] and experimental analysis of security-critical issues in Wasm

application development [1]. The proposed research has investi-

gated data from social coding and discussion platforms (GitHub, SO)

in an attempt to identify, classify, and conceptualize the issues faced

by developers and their causes in Wasm application development

cycle.

6 THREATS TO VALIDITY
External validity refers to how generalizable the study’s findings

are to other contexts or settings related to Wasm issues and causes.

One of the possible threat could bemissing out someWasm issues or

getting different results from various other platforms/data sources

such as GitLab and Bitbucket. In order to minimize this potential

biases, we gathered data from two widely-used and popular plat-

forms, namely GitHub and Stack Overflow. These two platforms

contains the millions of developers user base. Another potential

threat may be not considering all data points for our analysis. To

ensure a well-rounded representation of the data, we followed a

standard random sampling technique with 95% confidence level

and 5% margin of error [10].

178



EASE 2024, June 18–21, 2024, Salerno, Italy Waseem et al.

Internal validity relates to how well a study minimizes bias

collection. One of the possible risks includes the qualitative analysis

and taxonomy synthesis from the discussions of GitHub and Q&A

posts on Stack Overflow. More specially, the annotation phase could

inject subjective bias among the annotators. To mitigate this risk,

we conducted a pilot study to establish a shared comprehension of

the attributes of Wasm issues. This initial phase also aided in the

creation of a robust coding schema for the subsequent annotation

process. Furthermore, two authors construct the taxonomies, with

a third author conducting a comprehensive validation of the results

and resolving any discrepancies through ongoing consensus discus-

sions. Additionally, we calculated Cohen Kappa values to assess the

agreement among all authors. Another potential threat to internal

validity concerns the selection of open-source GitHub projects.

7 CONCLUSIONS
In this research, we developed the first-of-its-kind taxonomies for

Wasm issues and their causes. Implications: This study provides

researchers and practitioners with valuable insights into the chal-

lenges and complexities involved in the development and deploy-

ment of Wasm application. The taxonomy and empirical findings

contribute as an evidence-based understanding that is essential for

advancing the research in Wasm, which has seen rising attention

but still lacks comprehensive issue-related research.

Needs for future research: We have three main objectives: (i) To

propose a taxonomy of solutions, mapping the relationships among

issues, causes, and potential solutions. (ii) To validate the proposed

taxonomy of issues, causes, and solutions through an industrial

survey, seeking insights from the practitioners’ perspective. (iii)

To investigate the difficulty and priority levels associated with the

identified issues in practical settings.

ACKNOWLEDGMENTS
This research is funded by Business Finland through the LiquidAI

(8542/31/2022) and 6G Soft (8541/31/2022) projects, and by the NSFC

China under Grant No. 62172311.

REFERENCES
[1] Pascal Marc André, Quentin Stiévenart, and Mohammad Ghafari. 2022. Devel-

opers Struggle with Authentication in Blazor WebAssembly. In Proceedings of
the 38th IEEE Int. Conf. on Software Maintenance and Evolution (ICSME). IEEE,
389–393.

[2] Bill Bosshard. 2020. On the use of web assembly in a serverless context. In

Proceedings of the 21st Int. Conf. on Agile Software Development (XP) Workshops.
Springer, 141–145.

[3] Javier Cabrera Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas Satabin,

Benoit Baudry, and Martin Monperrus. 2020. Superoptimization of WebAssembly

bytecode. In Proceedings of the 4th Int. Conf. on Art, Science, and Engineering of
Programming (PROGRAMMING): Companion. ACM, 36–40.

[4] Weimin Chen, Zihan Sun, Haoyu Wang, Xiapu Luo, Haipeng Cai, and Lei Wu.

2022. WASAI: uncovering vulnerabilities in Wasm smart contracts. In Proceedings
of the 31st ACM SIGSOFT Int. Symposium on Software Testing and Analysis (ISSTA).
ACM, 703–715.

[5] D. S. Cruzes and T. Dyba. 2011. Recommended steps for thematic synthesis in

software engineering. In Proceedings of the 5th ACM/IEEE Int. Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 275–284.

[6] Denis Eleskovic. 2020. A closer look at WebAssembly. Bachelor’s Thesis.
[7] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza. 2019.

Acctee: AWebAssembly-based two-way sandbox for trusted resource accounting.

In Proceedings of the 20th Int. Middleware Conf. (Middleware). ACM, 123–135.

[8] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the web

up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI). ACM, 185–200.

[9] David Herrera, Hangfen Chen, Erick Lavoie, and Laurie Hendren. 2018. We-

bAssembly and JavaScript Challenge: Numerical program performance using

modern browser technologies and devices. University of McGill, Montreal: QC,
Technical report SABLE-TR-2018-2 (2018).

[10] Glenn D. Israel. 1992. Determining Sample Size. Fact Sheet PEOD-6. Florida Coop-
erative Extension Service, Institute of Food and Agricultural Sciences, University

of Florida, Florida, U.S.A.

[11] Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha. 2019. Not so

fast: Analyzing the performance of WebAssembly vs. native code. In Proceedings
of the USENIX Annual Technical Conf. (ATC). USENIX, 107–120.

[12] Teemu Ketonen. 2022. Examining performance benefits of real-world WebAssembly
applications: a quantitative multiple-case study. Bachelor’s Thesis.

[13] Pyry Kotilainen, TeemuAutto, Viljami Järvinen, Teerath Das, and Juho Tarkkanen.

2022. Proposing isomorphic microservices based architecture for heterogeneous

IoT environments. In Proceedings of the 23rd Int. Conf. on Product-Focused Software
Process Improvement (PROFES). Springer, 621–627.

[14] Pyry Kotilainen, Viljami Järvinen, Juho Tarkkanen, Teemu Autto, Teerath Das,

Muhammad Waseem, and Tommi Mikkonen. 2023. WebAssembly in IoT: Beyond

Toy Examples. In Proceedings of the 23rd Int. Conf. on Web Engineering (ICWE).
Springer, 93–100.

[15] Paul Krill. 2023. Direct WebAssembly compilation comes to Rust language. https:

//www.infoworld.com

[16] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything old is

new again: Binary security of WebAssembly. In Proceedings of the 29th USENIX
Security Symposium (USS). USENIX, 217–234.

[17] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid:

Automating the detection of api-related compatibility issues in android apps. In

Proceedings of the 27th ACM SIGSOFT Int. Symposium on Software Testing and
Analysis (ISSTA). ACM, 153–163.

[18] Ruiyin Li, Peng Liang, and Paris Avgeriou. 2023. Warnings: Violation symptoms

indicating architecture erosion. Information and Software Technology 164 (2023),

107319.

[19] Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B Kent. 2020. Insights

into WebAssembly: compilation performance and shared code caching in node.js.

In Proceedings of the 30th Annual Int. Conf. on Computer Science and Software
Engineering (CASCON). ACM, 163–172.

[20] Harsh Patel. 2023. WebAssembly: Unlocking Performance and Portability for Web
Applications. https://javascript.plainenglish.io

[21] Carmen Popoviciu. 2023. Use the language of your choice with Pages Functions via
WebAssembly. https://blog.cloudflare.com

[22] Lijin Quan, Lei Wu, and Haoyu Wang. 2019. EVulHunter: Detecting fake transfer

vulnerabilities for EOSIO’s smart contracts at WebAssembly-level. arXiv preprint
arXiv:1906.10362 (2019).

[23] Partha Pratim Ray. 2023. An Overview of WebAssembly for IoT: Background,

Tools, State-of-the-Art, Challenges, and Future Directions. Future Internet 15, 8
(2023), 275.

[24] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An Em-

pirical Study of Bugs in WebAssembly Compilers. In Proceedings of the 36th
IEEE/ACM Int. Conf. on Automated Software Engineering (ASE). IEEE, 42–54.

[25] M Šipek, D Muharemagić, B Mihaljević, and Aleksander Radovan. 2021. Next-

generationWeb Applications withWebAssembly and TruffleWasm. In Proceedings
of the 44th Int. Convention on Information, Communication and Electronic Technol-
ogy (MIPRO). IEEE, 1695–1700.

[26] Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. 2021. The security

risk of lacking compiler protection in WebAssembly. In Proceedings of the 21st
IEEE Int. Conf. on Software Quality, Reliability and Security (QRS). IEEE, 132–139.

[27] Weihang Wang. 2021. Empowering web applications with WebAssembly: are we

there yet?. In Proceedings of the 36th IEEE/ACM Int. Conf. on Automated Software
Engineering (ASE). IEEE, 1301–1305.

[28] Yue Wang, Zhide Zhou, Zhilei Ren, Dong Liu, and He Jiang. 2023. A Comprehen-

sive Study of WebAssembly Runtime Bugs. In Proceedings of the 30th IEEE Int.
Conf. on Software Analysis, Evolution and Reengineering (SANER). IEEE, 355–366.

[29] Muhammad Waseem, Teerath Das, Aakash Ahmad, Peng Liang, and Tommi

Mikkonen. 2024. Dataset for the Paper: Issues and Their Causes in WebAssembly

Applications: An Empirical Study. https://zenodo.org/record/10528608. https:

//doi.org/10.5281/zenodo.10528608

[30] MuhammadWaseem, Peng Liang, Aakash Ahmad, Arif Ali Khan, Mojtaba Shahin,

Pekka Abrahamsson, Ali Rezaei Nasab, and Tommi Mikkonen. 2023. Understand-

ing the Issues, Their Causes and Solutions inMicroservices Systems: An Empirical

Study. arXiv preprint arXiv:2302.01894 (2023).
[31] MuhammadWaseem, Peng Liang,Mojtaba Shahin, Aakash Ahmad, and Ali Rezaei

Nassab. 2021. On the nature of issues in five open source microservices sys-

tems: An empirical study. In Proceedings of the 25th Int. Conf. on Evaluation and
Assessment in Software Engineering (EASE). ACM, 201–210.

[32] Yutian Yan, Tengfei Tu, Lijian Zhao, Yuchen Zhou, and Weihang Wang. 2021.

Understanding the performance of WebAssembly applications. In Proceedings of
the 21st ACM Internet Measurement Conf. (IMC). ACM, 533–549.

179

https://www.infoworld.com
https://www.infoworld.com
https://javascript.plainenglish.io
https://blog.cloudflare.com
https://zenodo.org/record/10528608
https://doi.org/10.5281/zenodo.10528608
https://doi.org/10.5281/zenodo.10528608


Issues and Their Causes in WebAssembly Applications: An Empirical Study EASE 2024, June 18–21, 2024, Salerno, Italy

[33] Yixuan Zhang, Shangtong Cao, Haoyu Wang, Zhenpeng Chen, Xiapu Luo,

Dongliang Mu, Yun Ma, Gang Huang, and Xuanzhe Liu. 2023. Characteriz-

ing and Detecting WebAssembly Runtime Bugs. ACM Transactions on Software

Engineering and Methodology (2023).

[34] Jianfei Zhou and Ting Chen. 2023. WASMOD: Detecting vulnerabilities in Wasm

smart contracts. IET Blockchain (2023).

180


	Abstract
	1 Introduction
	2 Research Method
	2.1 Phase I - Research Questions (RQs)
	2.2 Phase II - Data Collection
	2.3 Phase III - Extract and Synthesize Data 

	3 Results – Issues and Causes in Wasm 
	3.1 Types of Issues (RQ1)
	3.2 Causes of Wasm Issues (RQ2)

	4 Discussion and Implications
	4.1 Wasm Issues
	4.2 Causes of Wasm Issues

	5 Related Work
	5.1 Bugs and Security Issues in Wasm
	5.2 Performance Issues

	6 Threats to Validity
	7 Conclusions
	Acknowledgments
	References

