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Abstract

Climate change, nutrition pollution, and land use alterations influence the

primary production of lakes. While light-microscopy counting remains the

standard for estimating phytoplankton community composition, its expense

and time-consuming nature necessitate cost-effective alternatives for seston analy-

sis. Furthermore, estimating the contribution of seston constituents other than

primary producers, or non-algal particles, is not possible with light-microscopy

counting. Biotracer approach using computational methods and chemotaxonomic

biomarkers such as carotenoid pigments and fatty acids have been used as an

alternative in seston analysis when species-level taxonomy is not required.

However, a comprehensive testing of how well carotenoid and fatty acids can

be used in estimating a wide range of seston phytoplankton communities

using different estimation methods is lacking. To assess the accuracy of a suite

of state-of-the-art biotracer-based computational methods, namely CHEMTAX,

FASTAR (Fatty Acid Source-Tracking Algorithm in R), MixSIAR, and QFASA

(Quantitative Fatty Acid Signature Analysis), lake water samples were collected in

2016, 2018, 2019, 2020, and 2021 for seston composition analysis in a boreal eutro-

phic lake with light-microscopy counting serving as the reference for seston

composition. Absolute errors between the biotracer-based estimates were cal-

culated to evaluate method performance. A small laboratory experiment to

assess the reliability of estimating the contribution of non-algal particles using

the computational methods with fatty acids was also conducted. The closest

alignment to light-microscopy counting in terms of absolute error was

achieved when both carotenoids and fatty acids were used together in the

QFASA method. For CHEMTAX, FASTAR, and MixSIAR, using carotenoids

alone produced the closest results. Additionally, the estimation methods accu-

rately assessed the proportion of non-algal particles in the seston when using

fatty acid profiles, a capability not possible with light-microscopy counting.

Our findings demonstrate that the biotracer approach provides a viable and

cost-effective alternative to light-microscopy counting when group-level
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information of phytoplankton community composition suffices. Furthermore,

we show that non-algal particles can be effectively estimated together with

phytoplankton when using fatty acids.

KEYWORD S
CHEMTAX, FASTAR, freshwater, mixing model, MixSIAR, phytoplankton, QFASA,
terrestrial organic matter

INTRODUCTION

Primary production by autotrophic microbes in seston
forms the basis for the functioning of aquatic food webs
(Underwood & Kromkamp, 1999). Seston consists of phy-
toplankton that encompasses prokaryotic cyanobacteria
and various groups of eukaryotic phytoplankton. In addi-
tion to phytoplankton, seston contains heterotrophic pro-
tozoa and bacteria, as well as detritus from aquatic and
terrestrial origins. The assessment of phytoplankton com-
munity and, more widely, seston composition is impor-
tant in understanding the changes happening in aquatic
ecosystems in response to environmental changes (Domis
et al., 2014; Reynolds, 2006; Senar et al., 2021; Taipale,
Vuorio, et al., 2016).

The predominant method for estimating phytoplankton
communities involves using a light microscope to identify
different species based on their morphological characteris-
tics (Utermöhl, 1958). While species-level accuracy is
achieved with morphology-based counting, estimates can
vary significantly between analysts (Abad et al., 2016;
Vuorio et al., 2007), and moreover, the method is time con-
suming (Culverhouse et al., 2003). Furthermore, there is
evidence suggesting that the preservation method and dura-
tion can have significant effects on estimates obtained
through light-microscopy counting as species-specific cell
swelling, shrinking, or breakage has been observed
(Bergkemper & Weisse, 2017; Menden-Deuer et al., 2001;
Zarauz & Irigoien, 2008). Additionally, seston contains
nano- and picoplankton (Callieri, 2008), microorganisms
such as bacteria (Seymour et al., 2017), and organic detritus
(Pace et al., 2004), all contributing to the basal aquatic food
web. These constituents are not usually included in the
monitoring efforts as their morphological identification
and quantification are cumbersome (Havskum et al.,
2004; McManus & Katz, 2009). Due to the time-
intensiveness and shortcomings of light-microscopy
counting, alternative methods have been developed for
phytoplankton community estimation with biomarker
and molecular approaches (Hering et al., 2018; Mackey
et al., 1996; Strandberg et al., 2015; Vuorio et al., 2020).

Biomolecules used as chemotaxonomic biomarkers
(hereafter biotracers) offer a cost-effective approach for

the high-throughput estimation of phytoplankton com-
munity composition of water samples with the help of
computational methods (Mackey et al., 1996; Strandberg
et al., 2015). The approach is based on biotracer profiles
that are unique to phytoplankton phyla or class (i.e.,
phytoplankton groups). Photosynthetic pigments (i.e.,
chlorophylls and carotenoids) that are produced by
autotrophic phytoplankton can be analyzed from
seston samples with high-performance liquid chroma-
tography (HPLC) and can be used as biotracers due to
many pigments being phytoplankton group-specific
(Mackey et al., 1996). Fatty acids (FAs) of seston sam-
ples analyzed with gas chromatogram–mass spectrome-
try (GC–MS) can also serve as biotracers for estimating
the proportions of phytoplankton groups. Similar to
pigments, FA profiles are unique to phytoplankton
groups (Taipale et al., 2013). Importantly, FAs also
enable the estimation of additional seston constituents
such as bacteria (Carvalho et al., 2014; Dijkman
et al., 2010; Dijkman & Kromkamp, 2006; Strandberg
et al., 2015). Iso- and anteiso-branched FAs are effective
biomarkers for bacteria (Dijkman & Kromkamp, 2006;
Taipale et al., 2015), whereas heterotrophic bacteria do
not contain pigments. Furthermore, allochthonous par-
ticulate organic matter such as reed and deciduous tree
leaf litter can be characterized with long-chain saturated
fatty acids (LSAFA) (Taipale et al., 2015). The viability of
FAs as biotracers in the estimation phytoplankton
community composition of seston samples has been
shown to align with both pigment-based estimation
and light-microscopy counting estimates (Dijkman &
Kromkamp, 2006; Strandberg et al., 2015). Peltomaa et al.
(2023) found that simultaneous use of FAs, carotenoids,
and sterols produced the highest possible chemotaxo-
nomic resolution achievable with biotracers, and
suggested that phytoplankton composition estimates
could be improved with including all three biomole-
cules compared with only carotenoids or FAs. Using
multiple classes of biotracers simultaneously helped to
avoid overlapping biotracer profiles, as only few
biotracers are group-specific. While sestonic sterol con-
centration is usually relatively low (Taipale, Vuorio,
et al., 2019), carotenoids and FAs are present at higher
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concentrations, and are thus practical for seston phyto-
plankton community estimation.

A common computational biotracer approach to esti-
mate phytoplankton community composition is using
pigment data in CHEMTAX, a program for estimating
class abundances from chemical markers (Mackey
et al., 1996). This method is based on pigment-to-chlorophyll
a ratios that are unique to phytoplankton groups, and it
gives quantitative estimates of biomass at phytoplankton
group level, also accounting for nano- and picoplankton
(Wright et al., 2009). While CHEMTAX is commonly
employed in marine contexts, its applicability in freshwa-
ter settings has been demonstrated, producing estimates
aligning with estimates derived from light-microscopy
counting (e.g., Descy et al., 2000; Lauridsen et al., 2011;
Sarmento & Descy, 2008). CHEMTAX has also been used
as an estimation method with FAs (e.g., Cañavate et al.,
2019; Carvalho et al., 2014; Dijkman et al., 2010;
Dijkman & Kromkamp, 2006). Recently, computational
methods created specifically for FA-based estimation
have been employed for estimating proportional
phytoplankton community compositions. Fatty Acid
Source-Tracking Algorithm in R (FASTAR) (Galloway
et al., 2015), a Bayesian estimation method, has been
effectively used to estimate the phytoplankton community
composition in freshwater (Strandberg et al., 2015) and
estuary (Cañavate et al., 2019) systems. Likewise, a numeri-
cal optimization method Quantitative Fatty Acid Signature
Analysis (QFASA) (Iverson et al., 2004) has been used to
estimate freshwater seston community composition (Keva
et al., 2023). R package MixSIAR (Stock et al., 2018) is the
current state-of-the-art framework of Bayesian estimation
methods for stable isotope-based estimation and claims
an improvement over the algorithm used in FASTAR.
MixSIAR has been previously employed using FAs as
biotracers (e.g., Guerrero & Rogers, 2020; Litmanen
et al., 2020) but it has not yet been applied in seston com-
munity composition analysis.

Although the biotracer approach lacks the taxonomic
resolution of light-microscopy counting, group level
information of phytoplankton community composition
can be sufficient in many studies. For example, consider-
ing the effects of eutrophication or browning in lakes
from the perspective of nutritional quality of phytoplank-
ton to consumers it is often enough to distinguishing the
prevalence of the phytoplankton groups that synthesize
important biomolecules such as long-chain polyunsatu-
rated fatty acids (LC-PUFA) (e.g., cryptophytes, diatoms,
dinoflagellates, and golden algae) opposed to other phyto-
plankton groups that can be deficient in them (e.g.,
cyanobacteria and green algae) (Taipale et al., 2013).
Generally, eutrophication increases the total biomass of
phytoplankton, but cyanobacteria often dominate under

eutrophic conditions (Ptacnik et al., 2008), at the expense
of high-quality phytoplankton groups (Taipale, Vuorio,
et al., 2019). Conversely, browning leads to changes in
the light and chemical conditions that may reduce pri-
mary production and nutritional quality of lake seston by
favoring heterotrophic production (Blomqvist et al., 2001;
Forsström et al., 2013; Karlsson et al., 2015; Taipale,
Vuorio, et al., 2016).

Currently, systematic testing of how well carotenoids
and FAs can estimate a wide range of seston phytoplank-
ton communities using different estimation methods is
lacking. Thus, we set out to evaluate the effectiveness of
the biotracer approach in estimating the phytoplankton
composition of seston on a group level. To achieve this, we
monitored the seston composition of a boreal eutrophic
lake with occasional cyanobacterial blooms (Lake Vesijärvi,
southern Finland), and conducted light-microscopy
counting and biomolecule analyses from the same lake
water samples. We used two types of biotracers, namely
carotenoids and FAs, to estimate the phytoplankton com-
munity composition of seston using four different contem-
porary computational estimation methods (CHEMTAX,
FASTAR, MixSIAR, and QFASA) and compared the
results with light-microscopy counting estimates. To our
knowledge, the present study is the first to simultaneously
employ these two biotracers, aiming to enhance phyto-
plankton composition estimates. Our distinct focus was on
detecting cyanobacteria blooms and identifying nutrition-
ally high-quality phytoplankton taxa in the lake water
samples. Additionally, we investigated how FAs could be
used as biotracers to estimate the proportion of terrestrial
and aquatic detritus as well as bacteria in seston, a task
not achievable with light-microscopy counting.

MATERIALS AND METHODS

Field sampling

We collected lake water and seston samples in 2016,
2018, 2019, 2020, and 2021 from eutrophic Lake
Vesijärvi, Lahti, southern Finland, between June and
October. Lake Vesijärvi has been extensively studied,
and was also a subject of many different restoration
efforts in recent decades (Salonen et al., 2020, 2023).
Integrated samples were collected with a 1-m-long water
sampler (Limnos, 7 L) from the surface down to a depth
of 10 m (0–10 m). The water was collected into an 80-L
plastic bucket. The phytoplankton samples for light
microscopy analyses were placed in 100 mL clear poly-
ethylene terephthalate bottles or 100 mL dark brown
glass bottles and preserved immediately with acid Lugol’s
iodine solution (0.5 mL per 100 mL), and then stored in a
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refrigerator. The water samples for FA and carotenoid
analysis were pre-sieved through a 250-μm mesh to
remove larger zooplankton and stored in ice in 1 or 3 L
covered polyethene bottles before further processing. FA
samples were collected in all five sampling years with a
total of 21 sampling dates matching light-microscopy
counting, whereas carotenoids were collected only in
2018 and 2021 with a total of 9 sampling dates.

Lipid extraction

For FA analysis, from each sample 100–250 mL of lake
water was filtered onto a water filter (Whatman Cellulose
Nitrate Membrane, 0.2 μm nominal pore size, 47 mm
diameter) and for carotenoid analysis, 500–1500 mL of
lake water was filtered onto a glass fiber filter (Whatman
GF/C, 1 μm nominal pore size, 47 mm diameter) in the
dark. Visible zooplankton was removed from the filters
with tweezers under a stereo microscope. The filters were
kept at −80�C before freeze-drying and stored in
Kimax-tubes in 2:1 chloroform:methanol solution at
−20�C before extraction. Lipids from the freeze-dried
seston (~1 mg) were extracted with chloroform:methanol:
water in a 8:4:3 ratio (Folch et al., 1957). The samples were
sonicated for 10 min and centrifuged, after which the
lower phase was transferred into a new tube and evapo-
rated to dryness under nitrogen flow. The FAs were
redissolved into 1 mL of toluene, while the carotenoids
were redissolved in 200 μL of acetone.

FA analysis

FAs were methylated using mild sulfuric acid in metha-
nol (Taipale, Hiltunen, et al., 2016). Methyl esterified
samples were analyzed on a Shimadzu GC–MS-QP2010
Ultra (Shimadzu, Kyoto, Japan) with helium as a carrier
gas. The samples from 2016 were run with the instru-
ment equipped with an Agilent DB-23 (Santa Clara, CA,
USA) column (30 m × 0.25 mm × 0.25 μm) using the
same temperature program as Taipale, Hiltunen, et al.
(2016). The samples from 2018 and 2019 were run with
the instrument equipped with a Zebron ZB-FAME
(Torrance, CA, USA) column (30 m × 0.25 mm × 0.20 μm)
using the same temperature program as Peltomaa et al.
(2019). The samples from 2020 and 2021 were run with
the instrument equipped with an Agilent DB-23 (Santa
Clara, CA, USA) column (60 m × 0.25 mm × 0.25 μm)
using the same temperature program as Taipale et al.
(2021). Each column had a 5-m guard column attached.
FAs from all different runs were identified by the retention
times, and specific ions, which were also used for

quantification (Taipale, Hiltunen, et al., 2016). FA concen-
trations were calculated using calibration curves based on
known standard solutions (15, 50, 100, and 250 ng) of a
fatty acid methyl ester (FAME) standard mixture (GLC
standard mixture 566c, Nu-Chek Prep, Elysian, MI, USA).
The Pearson correlation coefficient was >0.99 for each FA
calibration curve. The FA concentrations were then nor-
malized to create FA profiles for each sample.

Carotenoid analysis

Carotenoids were analyzed by reversed-phase liquid
chromatography using Shimadzu 30-series HPLC system
(Shimadzu, Kyoto, Japan) consisting of an LC-30 AD
pump, an autosampler (SIL-30 AC), an online degasser, a
column oven (CTO-20 AC), and a photodiode array
detector (PDA; SPD-M20A). A final volume of 10 μL for
2018 samples and 20 μL for 2021 samples was used
for injection into HPLC. Carotenoids were separated on a
YMC Carotenoid column (250 × 4.6 mm C30, 5 μm)
coupled to a 10 × 4 mm C30 guard column (YMC Co.,
Kyoto, Japan) using mobile phases of MeOH and MTBE.
The samples were run using the same chromatographic
method as Peltomaa et al. (2023). Carotenoids were iden-
tified by the retention times and absorption spectra, and
quantified by internal standard (Trans-β-Apo-80-carotenal
[Sigma Aldrich]) calibration based on response factors as
described by Peltomaa et al. (2023). The carotenoid con-
centrations were then normalized to create carotenoid
profiles for each sample.

Light-microscopy counting

Phytoplankton light microscopy analyses were performed
according to Utermöhl technique (Utermöhl, 1958) using
an inverted light microscope following the EN 15204
standard (2006) Phytoplankton were identified to species
level by morphology where possible. Phytoplankton
abundances were converted to biomass by applying geo-
metric formulas, assuming a phytoplankton density
equivalent to water (1 g cm−3). Carbon content was
determined using the Menden-Deuer et al. (2001) method
and from that data the relative contribution of each phy-
toplankton group was calculated. It is important to note
that the determination of non-algal particle (NAP) propor-
tions is not possible through light-microscopy counting.
For the purpose of our study, light-microscopy counting
estimates serve as the reference against which the other
computational methods are evaluated. For some sampling
days we used light-microscopy counting estimates
from the same week derived from an open-source
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phytoplankton database of the Finnish Environment
Institute. Notably, the aforementioned samples were
collected at depths of 0–4 m or 0–6 m on the basis of
secchi disk visibility, in contrast to the sampling depth
of 0–10 m in the samples that we processed.

Biotracer-based estimation methods

All four biotracer-based estimation methods that we used
in this study follow the principle of a mixing model,
where the composition of seston in a sample (mixture) is
computationally estimated based on all possible con-
stituents in the seston (sources). The seston sample is
presented as a biotracer profile. The source library
is formed by grouping (to phylum or class level) the seston
constituents that are represented by species-specific
biotracer profiles derived from laboratory analysis of mul-
tiple samples, embracing the inherent variability within
each phytoplankton group. All biotracer-based estimations
were conducted using the R statistical software (R Core
Team, 2023; version 4.3.1).

We constructed five different versions of the seston
source library to study the performance of different
biotracers in phytoplankton and seston composition esti-
mation. Three versions were created on the basis of a pre-
vious study (Peltomaa et al., 2023): one using only
carotenoids (CAR), another using only FAs, and a third
incorporating both simultaneously (CAR + FA). All ver-
sions of the source library consisted of six phytoplankton
groups, namely, cryptophytes (crypto), cyanobacteria
(cyano), diatoms (diatom), dinoflagellates (dino), golden
algae (golden), and green algae (green). As seston con-
sists of more than just phytoplankton, we created two
more versions of the source library that included three
NAP groups in it, namely, reed (reed powder), tPOM (ter-
restrial particulate organic matter, including deciduous
tree litter), and tPOMb (terrestrial particulate organic
matter through bacterial loop, i.e., leaf litter incubated
with aquatic bacteria). These groups were assumed to
contain negligible amounts of carotenoids compared with
FAs, thus creating the last two versions where NAPs were
included when either FAs or carotenoids and FAs
were used (FA/NAP and CAR + FA/NAP). FAs 14:0 and
18:0 were excluded from the source library due to con-
tamination in many of the samples. Overall, a total of
38 FAs and 18 carotenoids were included in the source
library (Appendix S1: Table S1). Raphidophytes were
omitted from our source library due to their infrequency
in eutrophic lakes such as Lake Vesijärvi (Strandberg
et al., 2020). This decision is supported by light-
microscopy counting, which revealed only minor
amounts of raphidophytes in five out of our 21 samples.

To visually illustrate the distinct characteristics of
each constituent in the source library, we conducted a
principal components analysis (PCA) using the prcomp
function from the stats package in R.

We employed CHEMTAX (Mackey et al., 1996), a
program for estimating class abundances from chemical
markers, implemented in R as part of the limSolve pack-
age (Soetaert et al., 2009). Specifically, we used the
xsample function (Van den Meersche et al., 2009),
employing Markov chain Monte Carlo (MCMC) algo-
rithms to uniformly sample the feasible region of
constrained linear problems. The use of CHEMTAX is
typically associated with carotenoids and other pigments,
and we included it in our study due to its widespread use
in the scientific community. However, it is important to
note that CHEMTAX does not take the variability in the
source library into account. While it uses mean values for
each constituent group based on the available data, it
does not consider the range or diversity within each
group. Although CHEMTAX has the capability to provide
quantitative estimates with the help of chlorophyll
a concentrations, we standardized all chlorophyll a:
biotracer ratios to 1 to ensure compatibility with other
methods. In our estimation process, a random sample
from the posterior probability distribution of the model
parameters, with a sample size of 3000, was saved for
subsequent analysis.

The Fatty Acid Source Tracing Algorithm for R
FASTAR (Galloway et al., 2015) has been used in phyto-
plankton community composition estimation before
(Strandberg et al., 2015). Given its established utility, we
incorporated FASTAR into our study. This method uses
Bayesian inference, and for approximation of the poste-
rior probability distribution of the model parameters, we
used the Stable Isotope Analysis in R (SIAR) algorithm
developed by Parnell et al. (2010), producing a posterior
sample of sample size 3000.

MixSIAR (Stock et al., 2018) is the current pinnacle of
Bayesian estimation methods for stable isotope-based
estimation and claims an improvement over the SIAR
algorithm used in FASTAR. We used the MixSIAR frame-
work to run the model with both residual error and pro-
cess error (“model 4”; Stock & Semmens, 2016) to
generate a posterior sample of sample size 3000.

QFASA is a numerical optimization-based method
designed for estimating the diets of marine mammals
(Iverson et al., 2004). QFASA has been found to excel in
zooplankton diet estimation (Litmanen et al., 2020) and
it has been used in seston composition estimation in a
previous study (Keva et al., 2023), so we included it in
the study. We used an R implementation, QFASAR
(Bromaghin, 2017), where the chi-squared metric
(Stewart, 2017) was used as the objective function. It is
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important to note that QFASA, in contrast to Bayesian
methods, provides a point estimate minimizing the objec-
tive function. To facilitate comparability with the Bayesian
methods, we modified the QFASAR code. Specifically, we
generated a bootstrapping sample of size 3000, treating it
as a posterior-like probability distribution. This approach
allows us to simulate a form of uncertainty estimate for
the QFASA solution and enhances the comparability
between the methods, despite the inherent differences in
their output structures.

Comparison and statistics

In our comparative analysis of various estimation
methods (CHEMTAX, FASTAR, MixSIAR, and QFASA)
and different combinations of biotracers and seston con-
stituents included (FA, FA/NAP, CAR, CAR + FA, and
CAR + FA/NAP), the primary evaluation metric was the
absolute error, representing the absolute difference
between the reference proportions and the median of
each posterior sample generated by the various estimation
methods for each seston constituent. For comparability
between the reference proportions obtained through
light-microscopy counting and estimated proportions from
the estimation methods, the three NAP groups were not
included in the comparisons. This exclusion was necessary
because light-microscopy counting cannot determine the
amount of NAP, which are a part of the seston composi-
tion. Instead, the NAP proportions were removed from the
estimates and the proportions of phytoplankton groups
were normalized to facilitate a meaningful comparison
with the reference proportions.

We calculated mean absolute errors (MAEs) for each
phytoplankton group individually, but also for all phyto-
plankton groups collectively, providing an assessment of
overall estimation accuracy. Additionally, we examined
MAEs for high-quality phytoplankton groups, including
cryptophytes, diatoms, dinoflagellates, and golden algae,
to evaluate the effectiveness of the methods in assessing
nutritionally high-quality phytoplankton. A threshold of
0.1 was established as an acceptable level of MAE. We also
compared the performance of the estimation methods in
terms of MAE with the versions of the source library
with or without NAP (FA compared with FA/NAP, and
CAR + FA compared with CAR + FA/NAP).

We assessed whether the estimation methods consis-
tently identified the dominant phytoplankton group,
which we refer to as the dominant constituent identifica-
tion frequency (DCIF). In essence, we aimed to deter-
mine whether the estimation methods reliably detected
the most abundant phytoplankton group in the reference
proportions, irrespective of the specific proportion, by

calculating the frequency of highest proportion attributed
to the same phytoplankton group as in the reference pro-
portions. These tests were specifically conducted for
cyanobacteria, and the high-quality algae group treated
as a single entity in our analysis.

In our analysis, we also assessed the consistency of
the estimation methods by calculating the frequency
with which the reference proportions fell within the
estimated range at both the 68% (median ± 1σ) and
95% (median ± 2σ) credible intervals of the estimation
method. Furthermore, we calculated the frequency of
under- or overestimation for both credible intervals.
This evaluation of consistency is paramount because it
provides insights into the reliability and robustness of the
estimation methods in quantifying uncertainty. It serves as
a critical aspect of the assessment, ensuring that the
methods consistently provide results that not only estimate
proportions but also convey the associated level of confi-
dence or uncertainty. This comprehensive approach allows
for a more informed understanding of the methods’ perfor-
mance, addressing the essential aspect of quantifying and
correctly characterizing uncertainty in the estimation
process.

All statistical analyses and figure generation were
executed using the R statistical software (R Core
Team, 2023; version 4.3.1).

Assessing NAP estimation performance

In addition to evaluating the performance of different
computational methods against the reference proportions
obtained by light-microscopy counting, we conducted a
small laboratory study to test how accurately the estimation
methods could estimate the proportion of NAPs when uti-
lizing the version of the source library with only FAs and
including NAP (FA/NAP). A gradient was created with
10%, 30%, 50%, 70%, and 90% of alder leaf extract (incubated
in natural lake water) of sample carbon, representing tPOM
and tPOMb, with the remaining part being green algae
Chlamydomonas reinhardtii P.A. Dangeard. The correct
carbon contribution of components was determined with
a turbidity meter. Subsequently, FA analysis was con-
ducted similar to section 0 and the contributions were esti-
mated with each estimation method utilizing FA/NAP.
The estimate medians were then compared to the
known proportions to calculate absolute errors.

RESULTS

The estimation accuracy of the proportions of the differ-
ent constituents in the seston samples varied greatly with
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the MAE averaged across all groups ranging from 0.065
to 0.180 depending on the used method and biotracers,
and if NAP were included (Figure 1a; Appendix S1:
Table S2). The estimation was most accurate when using
QFASA which utilized carotenoids alone (CAR) or both
carotenoids and FAs and included CAR + FA/NAP in
the estimation (MAE of 0.065). Overall, QFASA
performed most accurately with all of the five different
biotracer combinations and NAP inclusion in terms
of MAE (FA: MAE = 0.127, FA/NAP: MAE = 0.132,
CAR: MAE = 0.065, CAR + FA: MAE = 0.071, and
CAR + FA/NAP: MAE = 0.065). Thus, we chose to visu-
ally differentiate between the different biotracer and con-
stituent combinations using QFASA illustrated in
Figure 2 while the other methods can be found in the
supplementary materials (Appendix S1: Figure S1)
Carotenoids produced the most accurate results for

CHEMTAX (MAE = 0.079), FASTAR (MAE = 0.076),
and MixSIAR (MAE = 0.070). The estimation of phyto-
plankton proportions was found to be particularly chal-
lenging when relying solely on FAs and FA/NAP, with
the average MAE ranging from 0.127 to 0.180, staying
above the set threshold of 0.1 (Figure 1a). The highest
errors with FAs alone (FA and FA/NAP) ranged from
0.623 to 0.941 while with carotenoids (CAR, CAR + FA,
and CAR + FA/NAP) the highest errors ranged from
0.258 to 0.648 (Figure 3; Appendix S1: Table S3).

Despite QFASA producing the most accurate results
in terms of MAE, it was found to have the least estimate
consistency with only 0.09–0.30 of proportions obtained
from light-microscopy counting falling within the
estimated 68% CI and 0.22–0.57 within the 95% CI
(Figure 4). On the other hand, FASTAR using FAs and
including NAP (FA/NAP) produced the most consistent

F I GURE 1 Mean absolute errors (MAEs) for (a) all algae groups, (b) cyanobacteria, and (c) high-quality algae, and dominant

constituent identification frequency (DCIF) for (d) cyanobacteria, and (e) high-quality algae, for each biotracer and non-algal particles (NAP)

combination (represented by color) and estimation method. The dotted line indicates the threshold for good performance set at 0.1 in MAE

figures (a–c). High-quality algae refers to the nutritionally high-quality phytoplankton groups (cryptophytes, diatoms, dinoflagellates, and

golden algae) for herbivorous consumers. Numeric values can be found in Appendix S1: Table S2. CAR, carotenoids; FA, fatty acid;

FASTAR, Fatty Acid Source-Tracking Algorithm in R; QFASA, Quantitative Fatty Acid Signature Analysis.

ECOSPHERE 7 of 20

 21508925, 2024, 8, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4971 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [14/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



estimates, with 0.41 of light-microscopy-counting propor-
tions found within the 68% CI and 0.79 found within the
95% CI. The most consistent estimates were achieved for
both CI ranges with FAs and NAP included (FA/NAP)
with FASTAR (0.41 and 0.79), and QFASA (0.30 and
0.57), but without NAP (FA) for MixSIAR (0.29 and 0.57).
For CHEMTAX using both carotenoids and CAR + FAs
lead to most consistent estimates (0.33 and 0.69).
FA-based estimation resulted in least consistency for
CHEMTAX (0.29 and 0.56), and utilizing carotenoids and
FAs together (CAR + FA) resulted in least consistency
for FASTAR (0.26 and 0.54), and the 95% CI for QFASA
(0.22). Carotenoid-based estimation (CAR) provided the
least consistency for both CI’s for MixSIAR (0.13 and
0.35), and for the 68% CI for QFASA (0.09).When the
light-microscopy counting estimate did not fall within
the CI’s, the estimate was an overestimation rather than
underestimation with the exception of FASTAR using
FAs and NAP included (FA/NAP).

Cyanobacteria and green algae

The estimation of the cyanobacteria proportion in the
seston samples proved difficult for most methods with
the MAE ranging between 0.080 and 0.367 (Figure 1b;
Appendix S1: Table S2). The most accurate estimates of
cyanobacteria proportion were achieved with QFASA
when both carotenoids and FAs were used, and NAP was
included (CAR + FA/NAP; MAE = 0.080). The perfor-
mance was more dependent on the biotracers than the
method, as MAE ranged for CHEMTAX between 0.151
and 0.257, for FASTAR between 0.131 and 0.280, for
MixSIAR between 0.126 and 0.367, and for QFASA
between 0.080 and 0.236. Using FAs alone in the estima-
tion of the cyanobacteria proportion the estimates were
always less accurate (MAE for all methods ranging from
0.224 to 0.367) compared with the same method’s esti-
mate that included carotenoids (MAE for all methods
ranging from 0.080 to 0.271). Only QFASA using

F I GURE 2 Relationship between Quantitative Fatty Acid Signature Analysis (QFASA) estimates and reference proportions

obtained through light-microscopy counting for all phytoplankton groups using (a, b) the fatty acids (FAs), (c) carotenoids (CAR), and

(d, e) CAR + FA biotracers, nine field samples (a, c, d) with phytoplankton alone in the estimation and (b, e) with the inclusion of

non-algal particles (NAPs) in the estimation. Each phytoplankton group is represented by a distinct color. The mean absolute error

(MAE) for each combination of biotracer and NAP is indicated at the top of each graph. The diagonal light gray line represents the

ideal one-to-one mapping between estimates and reference proportions. See Appendix S1: Figure S1 for results obtained using other

estimation methods.
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carotenoids with or without FAs achieved the desired
performance with a level below the 0.1 threshold
(Figure 1b). The most accurate estimates of green algae
proportion were achieved for all methods when caroten-
oids were used (CAR; MAE ranging between 0.030 and
0.049, CAR + FA; MAE ranging from 0.041 to 0.117, and
CAR + FA/NAP; MAE ranging from 0.031 to 0.087) com-
pared with using FAs alone (FA; MAE ranging from
0.086 to 0.231, and FA/NAP; MAE ranging from 0.060
to 0.233).

The estimated consistencies for cyanobacteria propor-
tion ranged between 0.095 and 0.444 for the 68% CI, and
between 0.222 and 0.571 for the 95% CI (Appendix S1:

Table S4). In the 68% CI over half of the estimates were
underestimated with the exception of CHEMTAX using
FAs with NAP included (FA/NAP) (0.476). Contrarily,
the proportion of green algae was mostly overestimated
when NAP is included in the estimation but much less
overestimated when NAP was not included. For example,
the estimated consistency of 68% CI QFASA using FAs
overestimated 71.4% of green algae proportion when
NAP was included (FA/NAP) but overestimated only
23.8% when NAP was not included.

When “cyanobacteria” was the primary component,
CHEMTAX, FASTAR, and QFASA could identify the pri-
mary component regularly with the dominant

F I GURE 3 The absolute errors compared with reference proportions obtained through light-microscopy counting visualized using

violins plots for different methods using fatty acids (FAs), fatty acids with the inclusion of non-algal particles (NAPs) in the estimation

(FA/NAP), carotenoids (CAR), carotenoids and fatty acids simultaneously (CAR + FA) and carotenoids and fatty acids simultaneously with

the inclusion of NAP in the estimation (CAR + FA/NAP). The vertical axis shows the absolute errors of the estimated source proportions in

seston. The black and red horizontal lines, the box, and the whiskers inside the violin represents the median, the mean, the interquartile

range (IQR), and the median ± 1.5 × IQR, respectively. The white dots represent outliers. Distribution statistics are presented in

Appendix S1: Table S3.
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component identification frequency (DCIF) ranging from
0.20 to 1.00 (Figure 1d). MixSIAR could not estimate the
primary component correctly when relying solely on FAs
(FA/NAP; DCIF = 0.00, and FA; DCIF = 0.10), but when
carotenoids were included in the estimation DCIF
ranged between 0.60 and 1.00 for all methods. The
inclusion of NAP in the FA-based estimation
(FA compared with FA/NAP) improved all the other
methods (from DCIF = 0.50 to DCIF = 0.80 for
CHEMTAX, from DCIF = 0.20 to DCIF = 0.60 for
FASTAR, and from 0.70 to 1.00 for QFASA) except
MixSIAR. The inclusion of NAP to the carotenoid and
FA-based estimation (CAR + FA compared with CAR
+ FA/NAP) did not affect the method’s performance
(DCIF = 1.00 for CHEMTAX and QFASA, DCIF = 0.80

for FASTAR) other than decreasing MixSIAR’s perfor-
mance (DCIF = 0.80 to DCIF = 0.60).

High-quality phytoplankton

Estimation of the proportions of “high-quality phyto-
plankton” group (cryptophytes, dinoflagellates, diatoms,
and golden algae) was generally easier for the methods
than cyanobacteria proportion estimation evidenced with
the MAEs ranging between 0.071 and 0.170 (Figure 1c;
Appendix S1: Table S2). The best results for estimating
high-quality phytoplankton group proportions were
achieved using QFASA using carotenoids and FAs with
NAP included in the estimation (CAR + FA/NAP;

F I GURE 4 Estimate consistencies for 68% and 95% CI. The figure shows the frequencies of finding the reference proportions in the

indicated CI (“within range”), and for the reference proportion falling under the CI thus being overestimated by the estimation method

(“overestimated”), or the reference proportion falling above the CI thus being underestimated by the estimation method (“underestimated”).
CAR, carotenoids; FA, fatty acid; FASTAR, Fatty Acid Source-Tracking Algorithm in R; NAP, non-algal particle; QFASA, Quantitative Fatty

Acid Signature Analysis.
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MAE = 0.071). The most accurate estimates with other
methods were produced with carotenoids alone (CAR;
CHEMTAX: MAE = 0.085, FASTAR: MAE = 0.085, and
MixSIAR: MAE = 0.077). Contrarily, the least accurate
estimates were produced with only FAs (FA; CHEMTAX:
MAE = 0.139, MixSIAR: MAE = 0.170, QFASA: MAE =

0.134, FA/NAP; FASTAR: MAE = 0.160). When using
carotenoids and FAs the estimates were more accurate
with NAP included (CAR + FA/NAP) for CHEMTAX
(MAE = 0.097), FASTAR (MAE = 0.095), and QFASA
(MAE = 0.071) but without NAP (CAR + FA) for MixSIAR
(MAE = 0.099). The high-quality phytoplankton estimates
met the 0.1 threshold only when carotenoids were used
in the estimation (Figure 1c).

Cryptophyte proportion estimates generally had an
error less than 0.1 with some exceptions, as MAE ranged
from 0.055 to 0.119. The best estimates of cryptophyte
proportions were produced with CHEMTAX, MixSIAR,
and QFASA using carotenoids alone (CAR; MAE = 0.063,
0.062, 0.055, respectively) and FASTAR using the caroten-
oids and FAs (CAR + FA; MAE = 0.064). Relying solely
on FAs in the estimation of the cryptophyte proportions
the estimates were always less accurate (MAE for all
methods ranging from 0.084 to 0.119) compared with the
same method’s estimate that included carotenoids (MAE
for all methods ranging from 0.055 to 0.107). When the
estimation included carotenoids, the proportion of
cryptophytes was often overestimated in contrast to much
less overestimation when using FAs alone (Appendix S1:
Table S4).

The least errors across the estimation of the
high-quality phytoplankton groups were in dinoflagellate
proportions with MAEs ranging from 0.037 to 0.138. The
poor performance of MixSIAR using FAs alone and includ-
ing NAP (FA/NAP; MAE = 0.138) was an outlier and all
other combinations had MAE of 0.087 or less. The propor-
tion of dinoflagellates was often estimated within the 95%
CI of CHEMTAX and FASTAR regardless of biotracers
used, whereas with MixSIAR and QFASA the proportion
was often overestimated with FAs alone (FA and FA/NAP)
but underestimated when carotenoids were used.

Contrarily, diatom proportion estimates had the most
MAE out of the high-quality phytoplankton groups
(MAEs ranging from 0.045 to 0.183). Specifically, the esti-
mation using FAs alone posed challenges as evidenced by
MAEs ranging from 0.139 to 0.183. When carotenoids
were included in the estimation the MAEs were consider-
ably smaller (MAE ranging from 0.045 to 0.127). The
proportion of diatoms was often estimated within the
95% CI of CHEMTAX, FASTAR, and QFASA, whereas
with MixSIAR the proportion was often underestimated
with FAs alone but overestimated when carotenoids
were used.

The most accurate golden algae proportion estimates
were achieved using carotenoids alone (CAR; MAE
ranging from 0.056 to 0.087) with the exception of
MixSIAR using the carotenoids and FAs (CAR + FA;
MAE = 0.040). Contrarily to most phytoplankton groups,
golden algae proportion estimates were more accurate
when estimated using FAs alone compared with caroten-
oid and FA-based estimations with CHEMTAX and
QFASA. The proportion of golden algae in the seston sam-
ple was often overestimated.

When the dominant component was among the
“high-quality algae” group, most methods could not iden-
tify that regularly. The best performer was MixSIAR
when carotenoids and FAs were used (CAR + FA;
DCIF = 0.75; Figure 1e). For CHEMTAX, FASTAR, and
QFASA the best performance was obtained using carot-
enoids alone (CAR; DCIF = 0.50). The poorest perfor-
mance for CHEMTAX, FASTAR, and QFASA was
obtained when using both carotenoids and FAs
(CAR + FA and CAR + FA/NAP; DCIF = 0.25). For
MixSIAR the poorest performance was obtained with FAs
alone (FA; DCIF = 0.36). When carotenoids and FAs were
used, there was no difference in performance whether NAP
was included or not for CHEMTAX, FASTAR and QFASA
(DCIF = 0.25), but the performance of MixSIAR decreased
with NAP (CAR + FA; DCIF = 0.75, CAR + FA/NAP;
DCIF = 0.50).

Assessing NAP estimation performance

The methods had differing success in estimating NAP
and tPOM of the alder leaf extract test, with MAEs rang-
ing from 0.107 to 0.385 for NAP. FASTAR performed best
in terms of MAE (NAP MAE = 0.107). CHEMTAX NAP
median estimates were overestimated for true value of
0.1, 0.3, and 0.5 and underestimated of true proportions
0.9 (MAE = 0.118) with absolute error ranging from
0.059 to 0.258 (Figure 5; Appendix S1: Table S5).
CHEMTAX estimated that 46%–60% of NAP would be
tPOM. FASTAR overestimated NAP for all true proportions
but 0.9 with absolute error ranging from 0.010 to 0.166
(MAE = 0.107). FASTAR estimated that 83%–88% of
NAP would be tPOM. MixSIAR consistently overes-
timated the proportion of NAP, resulting in the highest
MAE (MAE = 0.385) with a range from 0.097 to 0.628.
For example, the lowest median estimate for true propor-
tion of 0.1 was 0.728 for NAP resulting in absolute error of
over 0.6. MixSIAR estimated consistently that about 92%
of NAP would be tPOM. QFASA overestimated the pro-
portion of all true NAP proportions with absolute errors
ranging between 0.026 and 0.201 (MAE = 0.128). QFASA
estimated that, for the true proportion of 0.1, 86% of NAP
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would be tPOM, while for the remaining true proportions,
it estimated that approximately 57% of NAP would
be tPOM.

The proportion of NAP was also estimated in the
seston samples. See supplementary material for analysis
(Appendix S1: Section S1).

PCA of source libraries

When solely utilizing FAs, some overlap among phyto-
plankton groups was observed (Figure 6). Notably,
improved separation, especially between cyanobacteria
and cryptophytes, was achieved when carotenoids (CAR)
were used. The most distinct separation between different
phytoplankton groups was achieved when both caroten-
oids and FAs were used (CAR + FA). Furthermore, the
inclusion of NAP in the source library (FA/NAP and
CAR + FA/NAP) resulted in a clear separation between
detritus (tPOM and reed) and tPOM of bacterial origin
from both phytoplankton and each other. However,
tPOM and reed exhibited some overlap. Detailed loadings
for the PCA can be found in the supplementary materials
(Appendix S1: Figure S2, Table S6).

DISCUSSION

The combination of FAs and carotenoids allows for
phytoplankton community composition estimates on
group level that are close to light-microscopy counting
estimates with computational estimation methods while
simultaneously estimating the proportion of NAPin
seston. In terms of MAE compared with light-microscopy
counting, QFASA was the most accurate estimation
method for estimating the composition of phytoplankton
community when carotenoids and FAs were USED.
When using carotenoids alone, CHEMTAX, FASTAR,
and MixSIAR gave the most accurate estimates for each
method with MAEs close to QFASAs.

Using solely FAs, contrary to a previous study
(Strandberg et al., 2015), proved to be suboptimal for
predicting phytoplankton composition in our samples
due to considerable issues in correctly estimating high
proportions of cyanobacteria and diatoms. This differ-
ence in performance could be due to the fact that
cyanobacteria or diatom blooms were not observed in
the study samples of Strandberg et al. (2015) while
many of our samples contained more than 90% of
cyanobacteria and up to 84% of diatoms. Our results

F I GURE 5 The performance of each estimation method to estimate the correct proportion of non-algal particle (NAP) and terrestrial

particulate organic matter (tPOM). Notably tPOM is a fraction of NAP. Side by side are the estimated distributions of NAP and tPOM with

different shades of the same color for each estimation method. The vertical axis shows the estimated source proportions in seston. The

dotted horizontal lines represent the true proportion of NAP that the estimates are compared against. For each boxplot the horizontal line,

the box, and the whiskers represents the median, the interquartile range (IQR), and the median ± 1.5 × IQR, respectively. Outliers are not

shown for clarity. Distribution statistics are presented in Appendix S1: Table S5. FASTAR, Fatty Acid Source-Tracking Algorithm in R;

QFASA, Quantitative Fatty Acid Signature Analysis.
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suggest that accurately estimating these phytoplank-
ton blooms is not estimation method dependent, but
instead the challenge lies in the overlapping of certain
FA biotracer profiles, hindering the clear separation
between cyanobacteria, diatoms, and green algae. Los
and Mironov (2015) have noted that cyanobacteria can
be grouped to four different FA groups, one which
lacks any PUFAs, and three other groups that differ in
their 16 carbon monounsaturated FAs and 18 carbon
PUFAs resulting in overlapping FA profiles with green
algae and diatoms (Peltomaa et al., 2023). A possible
explanation for the issue with diatoms lies in the
dynamic nature of diatom FA profiles during blooms.
As diatoms multiply rapidly, their FA content is differ-
ent compared with the stationary phase of growth,
thus leading to changes in the FA profiles (Leu
et al., 2006; Taipale et al., 2020). Furthermore, there is
evidence of changes in the FA profiles of diatoms
caused by nutrient or light deficiency (Mekhalfi
et al., 2014; Wacker et al., 2016).

Our results show that carotenoids separate the prob-
lematic groups much more clearly, and thus, the estima-
tion methods produced more accurate estimates. This can
be explained by many carotenoids being unique to phyto-
plankton groups. For example, echinenone, and myxo and
aphanizophyll are dominant carotenoids in cyanobacteria
while also being unique to cyanobacteria. However, not all
phytoplankton groups have as distinct carotenoid profiles
as cyanobacteria and, therefore, using FAs at the same
time can improve estimates. Interestingly, during
cyanobacteria blooms the estimates were most accurate
when carotenoids and FAs were usedd simultaneously.
Furthermore, using carotenoids and FAs with NAP
included in the estimation allows the estimation of pro-
portions of NAP in seston.

All of the studied biotracer-based estimation methods
produced their results as distributions, therefore allowing
us to investigate whether the reference proportions
obtained through light-microscopy counting would be
found within the range of the estimated distributions,

F I GURE 6 Principal components analysis (PCA) depicting the separation of phytoplankton groups and other constituents in the source

library for each biotracer source library version: Fatty acids (FAs), carotenoids (CAR) or both (CAR + FA), along with versions including

non-algal particles (FA/NAP and CAR + FA/NAP). The percentage of the variability explained by each principal component (PC) is

indicated next to the respective PC. Loading arrows and detailed loading values for the PCA can be found in Appendix S1: Figure S2,

Table S6.
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i.e., their estimate consistency. None of the methods
would consistently align with the reference proportions
in their estimated distributions when the 68% credible
interval (median ± 1σ) was considered. However, when
the credible interval was extended to 95% (median ± 2σ),
CHEMTAX and FASTAR consistently aligned with the
light-microscopy counting estimates regardless of
the biotracers used, while for MixSIAR and QFASA this
was true only when FAs were used. While the absolute
errors with MixSIAR were high, explaining the poor esti-
mate consistency, QFASA did not excel in estimate con-
sistency despite the high point-estimate accuracy. The
estimation distributions produced by QFASA are derived
from bootstrapping by contrast with Markov Chain
Monte Carlo algorithms employed by the other methods,
resulting in narrower distributions. Whether the narrow
distributions are a problem as opposed to accurate esti-
mates is something that should be considered when
choosing the estimation method for a study.

When high point estimate accuracy is a primary con-
cern, the results presented in this study further confirms
the advantage of QFASA over other methods observed in
our previous work with herbivorous zooplankton diet com-
position estimation (Litmanen et al., 2020). CHEMTAX and
FASTAR seemed to perform quite evenly on phytoplankton
composition estimation in terms of MAEs with FASTAR
being usually slightly more accurate. FASTAR perfor-
med best if estimate consistency, that is, finding the
light-microscopy counting result in the estimate distribu-
tion, is the primary concern. MixSIAR seemed reliable
only when using carotenoids in terms of point estimate
accuracy, but simultaneously, estimated consistency was
the lowest for the method. Contrary to other methods
tested here, the MAEs of MixSIAR estimates were higher
if NAP were included in the estimation. Furthermore,
significant issues arose due to the computational
demands of MixSIAR when using carotenoids and FAs
and including NAP in the estimations; the computation
of these estimates required over a week to complete, in
stark contrast to estimates produced with carotenoids
alone, which were processed typically within just a few
hours. Notably, MixSIAR estimated the proportion of
NAP in seston to be exceedingly high compared to the
other methods.

Light-microscopy counting is often perceived as a reli-
able method for determining the proportions of various
phytoplankton groups, such as cyanobacteria, in the
seston sample. However, it is essential to recognize that
light microscopy-based estimates rely on size-based
criteria and biomass calculations involving volumetric
coefficients (Hillebrand et al., 1999) and species-specific
cell swelling, shrinking, or breakage has been observed
as a result of the preservation (Bergkemper & Weisse,

2017; Menden-Deuer et al., 2001; Zarauz & Irigoien,
2008). Thus, light-microscopy counting might under- or
overestimate the concentrations of the different phytoplank-
ton groups (Cermeño et al., 2014). Consequently, uncer-
tainties arise regarding whether either light-microscopy
counting or the biotracer approach aligns more closely with
an accurate representation of the true phytoplankton pro-
portions. Hence, a comprehensive assessment considering
the uncertainties associated with both light-microscopy
counting, and biotracer-based estimation is essential for
meaningful comparisons.

Eutrophication, the estimation of
cyanobacteria abundance

Generally, the biotracer-based estimation methods could
detect cyanobacteria blooms. Solely using FAs in estima-
tion for the intensity of the bloom was underestimated
compared with the reference proportions obtained
through light-microscopy counting. When the reference
proportion of cyanobacteria exceeded 75% the methods
often underestimated the proportion by tens of percent-
age points. We assessed that this challenge primarily
stemmed from the limitations of the estimation methods
in differentiating between cyanobacteria and green algae,
but also to a lesser extent dinoflagellates and golden
algae. With all methods except MixSIAR including NAP
in the estimation with FAs improved the detection of
cyanobacteria blooms and decreased the overestimation
of cyanobacteria proportions in lower concentrations
while not having a large effect on underestimation of
high abundances. Notably, the overestimation of green
algae proportions was also greatly reduced when NAP
was included. This highlights that seston samples are
partly composed of FA-containing material other than
phytoplankton and thus, the estimates are improved
when the source library contains all feasible components
in the field sample (Iverson et al., 2004).

The biotracer-based estimation method estimates
aligned much closer to the light-microscopy counting
estimates when carotenoids were used, although the
contribution of cyanobacteria was still underestimated
to a slighter degree. The most accurate estimates for
the contribution of cyanobacteria were achieved with
QFASA when both carotenoids and FAs were used,
and NAP were included in the estimation. Based on
our systematic testing, almost equally good results
could be achieved when using carotenoids alone with
any of the estimation methods, although only QFASA
with both carotenoids and FAs could pass under the
0.1 threshold when estimating the proportion of
cyanobacteria.
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The estimation of nutritionally
high-quality algae abundance

All employed estimation methods estimated the overall
proportion of high nutritional-quality phytoplankton rel-
atively well, yet they encountered notable challenges in
differentiating between the various high-quality phy-
toplankton groups, namely cryptophytes, diatoms, dino-
flagellates, and golden algae. When a high-quality
phytoplankton group was observed as the most abun-
dant phytoplankton taxa by light-microscopy counting,
the methods faced challenges accurately identifying the
dominant group, although the estimates as a whole usu-
ally indicated that high-quality phytoplankton groups
dominated the sample.

Much like cyanobacteria, estimating large diatom
proportions resulted in significant discrepancies with
the FA-based estimations. For example, when the ref-
erence proportion was around 78%, the closest
FA-based estimate was less than 21%. In instances of high
diatom reference proportions, the methods allocated the dif-
ference between the estimated and reference proportions of
diatoms to the three other high-quality phytoplankton
groups, and surprisingly, to cyanobacteria. This could pose
a potential issue since in boreal setting, as diatoms are char-
acteristic of oligotrophic lakes, whereas cryptophytes and
dinoflagellates are characteristic of dystrophic lakes, and
cyanobacteria and diatoms of eutrophic lakes (Lepistö &
Rosenström, 1998; Taipale, Vuorio, et al., 2019).
Unfortunately, we did not acquire carotenoids samples in
the summer of 2019 when Lake Vesijärvi was mostly domi-
nated by diatoms. However, based on the samples from
summer of 2021, another time diatoms were dominant,
when carotenoids were used the estimation methods were
able to account for the substantial diatom presence in the
samples aligning much more closely with the
light-microscopy counting estimates although the FA-based
estimates were also more closely aligned compared
with 2019.

Cryptophytes, dinoflagellates, and golden algae were
not dominant in many samples unlike diatoms.
Estimation of these three high-quality phytoplankton
groups resulted in overestimation of small proportions
and underestimation of large proportions with all esti-
mation methods. Notably, the estimates of golden algae
were the only ones that aligned more closely with the
light-microscopy counting results when using FAs alone
compared with simultaneous usage of carotenoids and
FAs. We cannot explain this since according to the PCA,
golden algae is one of the most clearly separated phyto-
plankton groups when both biotracers are used as
opposed to slight overlapping of groups when relying
solely on FAs.

While the carotenoid and FA profiles of freshwater
phytoplankton have been shown to follow more
phylogenetical groups than physical–chemical parame-
ters (Galloway & Winder, 2015; Tamm et al., 2015), slight
variations in FA or carotenoid profiles may be caused by
changes in the physical and chemical parameters, such as
temperature and phosphorus content, and growth stage
(Calderini et al., 2023; Juneja et al., 2013; Latasa, 1995;
Taipale et al., 2020). Furthermore, we did not have com-
prehensive estimates of nano- or picoplankton abun-
dances in the seston samples while they contribute to the
biomolecule content of seston samples (Wright et al.,
2009). Many of the high-quality phytoplankton taxa are
mixotrophic and there is evidence that the FA profile of a
mixotrophic green algae might change based on the
energy acquiring mode (Wacker & Weithoff, 2009).
However, recent studies have shown that mixotrophy has
only a minor impact on the FA profiles of high-quality
phytoplankton (Calderini et al., 2022; Liu et al., 2011;
Peltomaa & Taipale, 2020).

Another possible cause for difficulties with especially
FA-based estimation could be ciliates and other hetero-
trophic protozoans that are not included in the seston
source library but are present in the field samples and
can have an effect on the seston FA profiles
(Galloway & Winder, 2015). The contribution of hetero-
trophic protozoans to the carbon pool in boreal lakes
can be up to 20% (Strandberg et al., 2015, 2020) and they
can significantly contribute to the highly unsaturated
fatty acid (HUFA) contents of seston (Bec, Perga,
et al., 2010) also being capable of producing HUFA de
novo (Bec, Martin-Creuzburg, et al., 2010).

The estimation of non-algal particles in
seston

Using FAs in the estimation allows for estimation of
other components of seston NAP, namely macrophyte
detritus (reed), tPOM, and microbes on tPOM (tPOMb).
We investigated the methods’ ability to accurately esti-
mate the proportion and composition of NAP within our
samples through a small-scale laboratory experiment.
This assessment aimed to evaluate the methods’ perfor-
mance in this specific context. Notably, at low propor-
tions of NAP in the samples, all methods, except
MixSIAR, demonstrated a high level of accuracy.
Although the majority of the samples were composed of
tPOM, tPOMb was also present. Unfortunately, we can-
not confirm the proportional contribution of tPOMb in
the samples. However, our results indicate that the
methods successfully distinguished between tPOM and
tPOMb. This aligns with our previous study, where we
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demonstrated that QFASA and FASTAR can effectively
differentiate between phytoplankton, tPOM, and tPOMb
when assimilated to Daphnia (Litmanen et al., 2020).

When estimating the proportions of phytoplankton
and different NAP components in the seston samples the
estimates of seston composition varied widely between
the four estimation methods. This raises doubts about the
reliability of the estimates in terms of total proportion of
NAP and composition of NAP. With CHEMTAX and
QFASA, the proportion of NAP in seston were estimated
to be under 20% with a few exceptions, and most of NAP
was determined to consist of tPOM. Contrarily, FASTAR
estimated NAP to account for 20% to 60% in most sam-
ples and the bulk of NAP consisted of tPOMb. MixSIAR
estimated the NAP to account for mostly over 50%, and
the bulk of NAP consisted of tPOM. In a previous study
on the same lake (Lake Vesijärvi) the proportion of NAP
was determined to be over 50% (<3% of bacteria and 54%
of detritus and terrestrial particles) based on mass calcu-
lations (Taipale, Aalto, et al., 2019).

Outlook

We strive to have a robust and cost-effective method for
estimating seston composition. In future studies, adding
more phytoplankton species to the source library to rep-
resent the phytoplankton community more fully could
enhance the accuracy of estimations. While it requires
prior knowledge of phytoplankton community composi-
tion obtained by light-microscopy counting or molecular
methods, customizing the source library to reflect the
specific taxa of phytoplankton within each studied sys-
tem can help achieve a more precise representation of
the community and thus lead to more accurate estimates.
Furthermore, the difference between laboratory-derived
biotracer profiles and natural samples in different sys-
tems should be more thoroughly studied. The addition of
a third biotracer type, namely sterols, could also improve
the estimates (Peltomaa et al., 2023) provided the sterol
content of seston samples are sufficiently high. Also, the
introduction of compound-specific isotope data to these
estimation methods could help improve accuracy espe-
cially with the differentiation of phytoplankton and NAP
(Taipale et al., 2015), which would, however, require the
construction of a completely new source library. Another
step further would also be the quantification of the esti-
mates, that is, estimating the biomass of the phytoplank-
ton groups. Chlorophyll a, a pigment whose concentration
can be determined simultaneously with carotenoid analy-
sis, could be used to quantify the carotenoid results and,
thus, the estimates of this study’s approach (Mackey et al.,
1996; Tamm et al., 2015). With the aforementioned

development, the biotracer approach could prove to be
efficient in fulfilling the three of the most important
European Union Water Framework Directive (WFD;
European Parliament, 2000) metrics for phytoplankton
monitoring; chlorophyll a concentration, phytoplankton
trophic index, and cyanobacterial biovolume (Carvalho
et al., 2013). Furthermore, in the realm of lake biochemi-
cal state assessment, where prior studies have primar-
ily focused on FAs and sterols (e.g., Peltomaa
et al., 2017; Taipale, Hiltunen, et al., 2016), the incor-
poration of carotenoid analysis not only enriches the
scope of evaluation but also offers an additional benefit in
the form of robust community composition estimation.
Moreover, species-level composition estimates could be
achieved by having a simultaneous molecular primer-free
measurement of seston composition (Vuorio et al., 2020).

Conclusions

In conclusion, our study highlights the successful appli-
cation of the biotracer approach for accurately estimating
freshwater phytoplankton community composition pro-
portions at the group level. Using carotenoid and FA data
through computational estimation methods, we can
effectively identify specific phytoplankton groups serving
as indicators for eutrophication or other ecological pro-
cesses that affect the composition of phytoplankton com-
munity. The approach can be helpful in long-term
studies to assess the response to environmental change,
particularly when taxonomic expertise is lacking, or
group-level information suffices. Moreover, the approach
allows for the assessment of lake restoration efforts by
evaluating seston quality. Additionally, we demonstrate
the methods’ utility in estimating the proportion and
composition of NAPs in seston. Careful selection of the
estimation method is crucial to ensure precise
biotracer-based assessments of phytoplankton composi-
tion and avoid misleading conclusions. The biotracer
approach emerges as a valuable alternative to
light-microscopy counting, particularly when adequate
information on phytoplankton group levels is available
in community composition studies.
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