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Abstract

Overfishing not only drastically reduces the number of fish in an exploited population

but is also often selective for body size by removing the largest individuals from a

population. Here, we study experimentally the evolutionary effects of size-selective

harvesting using whole-genome sequencing on a model organism, the zebrafish

(Danio rerio). We demonstrate genomic shifts in the populations exposed to size-

selective harvesting for five generations and show reduced genetic diversity in all

harvested lines, including the control line (non-size-selected). We also determine dif-

ferences in groups of genes related to certain gene ontology annotations between

size-selectively harvested lines, with enrichment in nervous system related genes in

the large-selected lines. Our results illuminate the biological processes underlying

fisheries-induced genetic changes and hence contribute toward the understanding of

the changes potentially associated with the vulnerability of an exploited population

to future stressors.

K E YWORD S

fisheries-induced evolution, genetic variation, population genomics, size-selection, whole-
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1 | INTRODUCTION

Harvesting of animals frequently exceeds natural mortality rates and

can cause drastic demographic changes in a population (Festa-Bian-

chet et al., 2011; Jørgensen et al., 2007). Overfishing is a particularly

severe example of harvesting, as adult fish are removed from popula-

tions at an unprecedented rate, often exceeding fishing mortality rates

of 75% (Lewin et al., 2006). Such rapid population decline can lead to

loss of genetic (Marty et al., 2015; Pinsky & Palumbi, 2014; Therkild-

sen et al., 2019) and phenotypic (Olsen et al., 2009) variation. Along-

side decreased population sizes, many fisheries also exert directional

selection on body size, often removing the largest individuals from the

population (Jørgensen et al., 2007; Law, 2007; Lewin et al., 2006).

Such directional selection on body size can drive changes in pheno-

typic traits, including faster juvenile growth rate, earlier maturation,

and altered behavior (Mollet et al., 2007; Olsen et al., 2004; Reid

et al., 2023; Uusi-Heikkilä et al., 2015; van Wijk et al., 2013). Though

demographic and phenotypic changes are often clearly visible over

time in an exploited population, size-selective harvesting can also

cause genetic changes underlying the phenotypic ones (Therkildsen

et al., 2019; Uusi-Heikkilä et al., 2015, 2017; van Wijk et al., 2013).

Identifying genetic changes caused by fishing is important as they are

slow to reverse, if indeed can be reversed at all (Conover et al., 2009;

Lacy, 1987). Now that we are in the age of genomics, we can look fur-

ther into the mechanisms and associated functions induced by size-

selective fisheries using next-generation sequencing technology.
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Size-selective fishing can result in decreased genetic diversity

(Marty et al., 2015; Pinsky & Palumbi, 2014; Poulsen et al., 2006;

Therkildsen et al., 2010). A reduction in genetic diversity can be prob-

lematic in rapidly changing environments because it can lead to a loss

of adaptive potential (Allendorf et al., 2008; Fisher, 1958). Evidence

for erosion of genetic diversity in exploited fish stocks is accumulat-

ing, showing increases in inbreeding coefficient or reductions in effec-

tive population size (Ne) (Hauser et al., 2002; Hoarau et al., 2005;

Hare et al., 2011; see Pinsky & Palumbi, 2014 for meta-analysis).

Despite growing evidence of decreased genetic diversity, some stud-

ies show no declines in genetic diversity caused by fishing (Hutchin-

son et al., 2003; Poulsen et al., 2006; Ruzzante et al., 2001;

Therkildsen et al., 2010; reviewed by Sadler et al., 2023), potentially

because many fish populations are so large that even collapsed popu-

lations are resistant to the loss of genetic diversity (Andersen &

Brander, 2009; Beverton, 1990).

Alongside demographic changes (i.e., decreased density), size-

selective fisheries also exert directional selection, which could mag-

nify the loss of genetic diversity compared to population loss per se

(Frankham, 2012). Experimental studies have demonstrated signifi-

cant genetic changes in artificially harvested fish populations after

only three (van Wijk et al., 2013), four (Therkildsen et al., 2019), or

five generations (Uusi-Heikkilä et al., 2015, 2017) of size-selective

harvesting. The cause of these changes can be challenging to mani-

fest in natural populations because fishing occurs in a constantly

changing environment where biotic and abiotic conditions can create

simultaneous selection pressures to fish populations. In an experi-

mental system, confounding factors such as these environmental

changes can be removed to isolate the effects of size-selection alone;

however, even in experimental studies these changes can be difficult

to replicate. Therkildsen et al. (2019) demonstrated genomic changes

in different size-selected experimental populations of Atlantic silver-

side (Menidia menidia L.). Each experimental population had two repli-

cates, which showed both parallel and idiosyncratic effects on the

genome but no phenotypic responses to the exact same selection

pressure. These results highlight how different evolutionary trajecto-

ries from different islands of genomic architecture can lead to the

same phenotypes and potentially complicate the predictions of the

outcomes of fisheries-induced evolution due to the added stochasti-

city of genomic changes. It is therefore fundamental that we assess

whether this stochasticity is repeatable across other systems, if so

then it will make genomic shifts more difficult to comprehend for

fisheries management.

Gene ontology describes functions of genes and gene products

(Ashburner et al., 2000), and thus it can help to interpret fisheries-

induced genetic changes. Moreover, gene ontology can be used to link

genetic changes to potential phenotypic changes, including growth,

metabolic rate, and behavior. However, this is possible only when

using a model organism such as the zebrafish, Danio rerio (Hamil-

ton, 1822), which has a high-quality, high-resolution reference

genome (Howe et al., 2013). As such, although an earlier size-selective

harvesting experiment has described large-scale genomic changes

(Therkildsen et al., 2019), no study has utilized this framework within

a model system. By assessing gene ontology, we are able to estimate

the underlying functionality of hitchhiker genes that could be associ-

ated with the selection of body size that are unclear when assessing

phenotypic changes alone. Thus, we are able to expand on previous

studies and identify key differences in gene functions and molecular

processes, further allowing us to predict the pathways associated with

enriched genes.

In the present study we assessed how D. rerio that had experi-

enced size selection differed in their genomic architecture after five

generations of simulated harvesting. Selection lines consisted of

(1) small-selected (simulating typical fisheries selection), (2) large-

selected (to understand the full range of responses caused by size

selection), and (3) random-selected (no size selection). We assessed

the large-scale genomic changes caused by intensive size-selective

harvesting at the whole-genome level. We hypothesized that (1) size-

selective harvesting will cause a shift in genomic architecture over a

contemporary time scale, (2) directional selection (large- and small-

selected lines) will have a greater loss of genetic diversity and corre-

sponding shift in genomic architecture after five generations of har-

vesting than population reduction alone (random selection), and

(3) associated gene ontology terms will relate to growth-associated

functions and be more enriched in populations exposed to directional

selection.

2 | MATERIALS AND METHODS

2.1 | Experimental design

We used wild-caught D. rerio originating from West Bengal, India, as

the F0-generation (founder population) in this size-selective harvesting

experiment (Uusi-Heikkilä et al., 2010). In this experiment, we used

three selection lines, each with 450 individuals per line replicate hav-

ing experienced 75% fishing mortality rate (Uusi-Heikkilä et al., 2015):

(1) small-selected (75% of the smallest fish were harvested), (2) large-

selected (75% of the largest fish were harvested), and (3) random-

selected (75% randomly chosen fish were harvested, acting as the

control no size-selection treatment) over five generations. Fish were

harvested when 50% of the fish reached maturity. Each selection line

contained two replicate populations, and is henceforth called SS1

(small-selected), SS2, LS1 (large-selected), LS2, RS1 (random-selected),

and RS2. Full details of the experimental design can be found in Uusi-

Heikkilä et al. (2015).

2.2 | Ethics statement

All methods were performed in accordance with the relevant guide-

lines and regulations. All experimental protocols were approved by

the Finnish Project Authorisation Board, license number: ESAVI/

24875/2018.
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2.3 | DNA extraction and sequencing

We extracted DNA altogether from 267 individuals (Table S1). We

used a modified salt extraction protocol to extract the genomic DNA

(Aljanabi & Martinez, 1997). Library construction and sequencing were

conducted at Novogene Biotech Co. (Beijing, China). The random frag-

mentation of the genomic DNA was skipped because the DNA was

fragmented during the storage period. The DNA fragments were end-

polished, A-tailed, and ligated with the full-length Illumina adapters, fol-

lowed by further PCR amplification with P5 and indexed P7 oligos. The

PCR products were purified with an AMPure XP system. The size distri-

bution of the finished libraries was inspected by an Agilent 2100 bioa-

nalyser (Agilent Technologies, CA, USA) and quantified using real-time

PCR. The quality-controlled libraries were pooled and sequenced using

the Illumina NovaSeq 6000 platform to sequence 150-base paired end

reads producing the average of 7.7 gigabases of data per sample.

2.4 | Data assembly

We filtered the raw sequence for adapters and poor-quality bases

using fastp v. 0.20.0 (parameters-g-q 5-u 50-n 15-l 30–overlap_diff_li-

mit 1–overlap_diff_percent_limit 10). During trimming, we removed

bases from read ends when they represented adapter sequence, or

when they were of low quality. All assembly tools utilized htslib 1.10.

We mapped the trimmed sequences against reference genome with

bwa mem v. 1.10. We used the primary assembly sequences of D.

rerio GRCz11 obtained from Ensembl (Howe et al., 2021) as a refer-

ence. We excluded the potential PCR duplicate reads using samtools

markdup 1.10. Single-nucleotide polymorphism (SNP) calling was done

using bcftools mpileup v. 1.10 (with parameter-a “FORMAT/DP”). To
extract the per-sample sequencing depths, we used bcftools call

v. 1.10 (parameters–m-f GQ). The SNPs were filtered and average

coverages of >3 and <10 bases included using bcftools filter v. 1.10

(�i Qual>20 && AVG [FMT/DP] >3 && AVG [FMT/DP] <10). Finally,

we required that each SNP was genotyped in >70% of the samples

and had minor allele frequency (MAF) >0.05. We further excluded loci

with more than two alleles or alleles other than 0 or 1. The sequencing

resulted in the median of 7.5 and 7.3 gigabases of raw and filtered

sequence data per sample, respectively. We excluded 14 individuals

from further analysis due to low mapping back rate and low coverage.

After being filtered, 3.5 million SNPs were called.

2.5 | SNP annotation

The functional associations between D. rerio genes and each SNP

were predicted using snpEff software v. 5.0 (default parameters; Cin-

golani et al., 2012) and the GRCz11 genome annotation of the D. rerio.

The gene annotation with the most severe effect was selected for

each SNP. If the SNP did not associate with any gene, it was anno-

tated as intergenic.

2.6 | Assessing genomic shifts

To visualize the genomic differences among the selection lines and

the founder population, we used 1 million randomly sampled SNPs in

a principal component analysis. To this end, we imputed the missing

genotypes with the median allele for each SNP. We required that the

subsets had MAF >0.05. Based on Cattell's graphical rule and the bro-

ken stick method (Figure S1), we determined the principal compo-

nents that contained the relevant relatedness information and

population structure for further analyses utilizing principal compo-

nents with PCAdapt v. 4.3.3 (Luu et al., 2017). Moreover, to disentan-

gle the effect of genetic drift from selection on genetic differentiation

(FST), we compared the FST between ancestral and F6 replicate popula-

tions to a simulated FST estimate under a drift-only scenario. The

drift-only FST was obtained by simulating six generations of individuals

and quantifying the level of FST in the absence of selection. We

imputed missing genotypes using Beagle software v. 5.4 and then

used SLiM 4 software (Haller & Messer, 2023) for simulations. We set

recombination rate to 1e-8 and population size to 125 individuals. We

repeated the simulations for 50 times per each chromosome and aver-

aged over the FST distribution to get an estimate.

2.7 | Parallel effects

To quantify the level of parallel differentiation between the replicates

of small- and large-selected lines, when compared against the ran-

dom-selected lines, we used diffstat statistic (Turner et al., 2011). We

extracted the minimum absolute difference between the allele fre-

quencies of each comparison between an F6 selection line replicate

population and the ancestral population to explore if the differences

were consistent (i.e., the direction of allele frequency change was the

same among the selection-line replicates) among both comparisons.

We set the diffstat of the loci with non-consistent allele frequency

changes to zero. CIs were estimated parametrically using single-sam-

ple t-test function.

2.8 | Differentiation-based outlier detection

To identify diverged loci among all selection-line replicates and the

founder population, we used two different outlier approaches. First,

to detect variation that was causing divergence between the individ-

uals regardless of the selection-line assignment or relatedness

between individuals, we used PCAdapt (Luu et al., 2017) with K based

on Cattells rule (Figure S1; K indicates principal component level). We

used the component-wise analysis, which uses principal component

loadings as a test statistic as the two most explanatory components

clearly separate the selection lines and time (F0–F6). The resulting

p-values were corrected for multiple comparisons using the Benja-

mini–Hochberg approach (Benjamini & Hochberg, 1995). Second, to

screen the genomes for signatures of response to harvesting while
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simultaneously controlling for random effects due to factors such as

variability in population structure, relatedness of the individuals, and

selection-line replicates, we used latent factor mixed model (LFMM),

implemented in the lfmm R package v. 1.0 (Frichot et al., 2013), which

controls for random effects, including drift, and distinguishes them

from selection. The model includes the SNP matrix as a response and

selection line as a predictor, with the selection line coded as 0 or

1 per comparison. Additionally, latent factors, which are inferred from

the data using the software, are used to correct the model for con-

founding effects of unobserved variables. Based on principal compo-

nent significance, which may be used to detect the number of latent

factors to consider, we used K = 3, which corresponds to the number

of latent factors evaluated (i.e., selection lines) and is the number of

expected genetic clusters. We required the final set of candidate out-

lier loci to be identified using both the outlier analyses (PCAdapt

and LFMM).

2.9 | Gene ontology analysis

We sought gene ontology enrichments among the genes associated

with candidate outlier SNPs related to the differentiation between

large- and random-selected lines, between small- and random-

selected lines, and between line replicates. We compared the lists of

all genes associated with the final sets of candidate outlier SNPs (large

vs. random and small vs. random) to a background list of all genes

associated with SNPs. We used the standard hypergeometric statis-

tics, as implemented in the gene ontology enrichment analysis and

visualization tool (GOrilla; Eden et al., 2009).

2.10 | Genetic diversity

Effective population size (Ne) was calculated for each population using

the linkage disequilibrium method (Waples & Do, 2010) with NeEsti-

mator v. 2.1 using random mating (Do et al., 2014). NeEstimator was

used on a subset of 100,000 SNPs. VCFtools (v0.1.16) was used to

calculate nucleotide diversity (π) and heterozygosity across all SNPs.

The abundance of polymorphic loci (in percentages) was also calcu-

lated using a subset of 100,000 SNPs. See expanded methodology in

Supplementary Materials for further details.

3 | RESULTS

3.1 | SNP annotation

Most of the SNPs were found in the introns and intergenic regions

followed by up- and downstream regions of genes (Figure S2). Synon-

ymous SNPs and 50 UTR variants showed higher divergence

(Figure S2), suggesting that directional selection has targeted func-

tionally relevant SNPs regulating gene expression levels.

3.2 | Genetic changes caused by size-selective
harvesting

Fish experiencing directional selection (small- and large-selected) and

random selection formed distinct clusters in the principal component

analysis, indicating a genomic differentiation between selection

regimes. Selection lines were significantly separated from each other

in both PC1 (F6,260 = 199.38, p < 0.001) and PC2 (F6,260 = 95.62,

p < 0.001). PC1 separated the small-selected line from the other two

selection lines (large- and random-selected; Tukey's honest

significance test [HSD], p < 0.001; Figure 1; Table S2), whereas PC2

separated the random-selected line from the founder population (F0-

generation; Tukey's HSD, p < 0.001; Figure 1; Table S3) from the lines

experiencing directional selection. Furthermore, lines experiencing

directional selection diverged more from the founder population than

random-selected line as evidenced by the diffstat values (Figure S3).

Moreover, the lines experiencing directional selection more diverged

from each other than either line from the random-selected line. The

simulated FST values were significantly lower (F6,121 = 281.60,

p < 0.001) than the FST values of the actual F6 selection lines, demon-

strating the genomic difference among the selection lines after five

generations of harvesting. This suggests that the genomic differences

F IGURE 1 Principal component analysis based on random subset
of single nucleotide polymorphisms (SNPs) among small-selected
replicates (SS1, SS2), large-selected replicates (LS1, LS2), random-
selected replicates (RS1, RS2), and founder population. PC1 and PC2
explain 3.5% and 2.5% of the variation, respectively. Points indicate
individuals. Ellipses are 95% CIs around the mean eigenvalue of each
replicate and highlight selection-line replicates and the founder
population.
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among the selection lines were caused not only by size-selective har-

vesting and but also by genetic drift (Figure S4; Table S4).

3.3 | Outlier detection

PCAdapt approach resulted in 93,397 and 15,635 candidate outlier

SNPs for the first two principal components, respectively (false dis-

covery rate [FDR] <0.01; Figure 2). Of those, 2990 were common

to both PC1 and PC2 outlier sets. When small- and random-

selected lines were compared, 13,022 candidate outlier SNPs (asso-

ciated with 5092 genes) were identified in both the LFMM and

PCAdapt analysis. When large- and random-selected lines were

compared, 7108 candidate outliers were significant (associated

with 2908 genes). When populations after five generations of

harvesting were compared to the founder population, 16,090 can-

didate outlier SNPs were identified in the small-selected lines, 6972

between the large-selected lines, and 5838 between the random-

selected lines.

3.4 | Genetic diversity

Genetic diversity, measured as % nucleotide polymorphism, effective

population size (Ne), and expected heterozygosity (Hexp), was higher in

the founder population compared to small-, large-, and random-

selected lines, suggesting that the 75% harvesting regime reduced

genetic diversity (Table S5; Figure S4). However, this pattern was not

evident in nucleotide diversity (Table S5), but we did show consider-

able divergence in a subset of genes and some functional regions

F IGURE 2 Genome-wide distribution of p-values, false discovery rate (FDR)-corrected and �log10-transformed, for candidate outlier loci of
comparisons between the selection-line replicates against the founder population, identified in the latent factor mixed model (LFMM) analysis
across the 25 chromosomes. (a, b) Small-selected replicates (SS1 and SS2); (c, d) large-selected replicates (LS1 and LS2); and (e, f) random-selected
replicates (RS1 and RS2).
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(Figure S2). Despite differences in selection regimes, genetic diversity

measures did not differ between the selection lines (Table S5).

3.5 | Gene ontology

We found that 212, 76, and 65 gene ontology terms were significantly

enriched among the candidate outlier associated genes in small-, large-,

and random-selected lines, respectively (Figure S5). After being filtered

for genes with the highest enrichment (>1), 25, 14, and 11 genes were

enriched in small-, large-, and random selected lines, respectively (Fig-

ure 3). Large-selected fish had several enriched terms related to phos-

phorylation and nervous system development, whereas small-selected

fish showed enrichment in structural morphogenesis and locomotion

(Figure 3). Despite having fewer enriched terms, the random-selected

line had the highest individual enrichments associated with anion

transport, morphogenesis, and molecular regulation (Figure 3).

4 | DISCUSSION

Size-selective harvesting can lead to substantial shifts in genomic

architecture (Therkildsen et al., 2019; Uusi-Heikkilä et al., 2017). Fur-

thermore, size-selective harvesting has been shown to reduce genetic

diversity (Marty et al., 2015; Pinsky & Palumbi, 2014; Poulsen

et al., 2006; Therkildsen et al., 2010). Here, we show that experimen-

tal size-selective harvesting led to large-scale genomic shifts, which

were responsible for different gene enrichments among selection

lines. Indeed, we discovered a large amount of gene ontology terms

associated with nervous system in large-selected fish. Genetic diver-

sity decreased during the experiment (i.e., all selection lines had lower

genetic diversity than the founder population); however, in contrast

to our predictions, there were no clear differences in genetic diversity

between the size-selected (small- and large-selected) and random-

selected lines (no directional selection).

Our results follow a suite of previous studies that demonstrate a

reduction in genetic diversity after overharvesting (Marty et al., 2015;

Pinsky & Palumbi, 2014; Poulsen et al., 2006; Therkildsen

et al., 2010). Though it seems evident that genetic diversity should

decrease following large reductions in population size and selective

sweeps, some studies show no loss of genetic diversity following

overexploitation (e.g., Pinsky et al., 2021). Indeed, we show clear loss

in overall genetic diversity but no loss in nucleotide diversity, though

we do show divergence in functional regions likely targeted by selec-

tion. Interestingly, here we show that genetic diversity did not differ

between populations exposed to directional selection (small- and

large-selected) and those exposed to random selection. This is con-

trary to Therkildsen et al. (2019) who showed that size-selected lines

had lower genetic diversity compared to random-selected lines after

four generations of harvesting with a harvesting rate of 90%. Such
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F IGURE 3 Outlier gene ontology (GO) terms with significant enrichment (false discovery rate [FDR] <0.05) from the size-selected lines: large-
selected (LS), small-selected (SS), and random-selected (RS) clustered by descriptor terms. The clusters of GO terms are indicated with color
changes in the term list based on term category.
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contrasts in results may be expected due to differences in methodol-

ogy (e.g., high vs. low coverage), life history, and ecology of studied

species (M. menidia vs. D. rerio) (Sadler et al., 2023). Though genetic

loss can be indicative of reduced adaptive potential (Allendorf

et al., 2008), it is important to investigate what allele variations are

being selected against and how genomic architecture changes

depending on the harvesting protocol (i.e., directional selection or ran-

dom selection).

Although the phenotypic effects of size-selective harvesting

(reduced body size, earlier maturation, and reduced reproductive out-

put) have been demonstrated earlier (Conover & Munch, 2002; Uusi-

Heikkilä, 2015; van Wijk et al., 2013), it has remained less clear what

is the magnitude of genetic changes caused by harvesting. Previous

studies have demonstrated this by utilizing relatively a small number

of genetic markers (Marty et al., 2015; Uusi-Heikkilä et al., 2015; van

Wijk et al., 2013), whereas whole-genome approaches have been less

common (but see Therkildsen et al., 2019; Pinsky et al., 2021). Here,

we show that size-selection shifts genomic architecture (Figure 1),

with directional selection (large- and small-selected populations) hav-

ing different evolutionary trajectories compared to random selection.

Directional selection can cause, over time, genetic changes through

genetic hitchhiking and selective sweeps (Frankham, 2012; Ste-

phan, 2019; Therkildsen et al., 2019). Genetic hitchhiking is a process

where allele frequency is changed because the locus is linked to

another gene that is under selection. This can reduce the amount of

genetic variation in a population, especially near the selected site. A

selective sweep, on the contrary, is a process where the frequency of

beneficial alleles is increased, and in the most extreme case, the allele

becomes fixed (Stephan, 2019). Here, selective sweeps could be driv-

ing differences in genomic architecture of the large-selected, small-

selected, and random-selected lines, though due to the polygenic

nature of body size, it is difficult to pin down specific alleles. Small-

selected lines were most different from other selection lines as shown

by PC1 (Figure 1); this follows the pattern of phenotypic differences

previously shown among the selection lines (increased fecundity,

smaller body size, and decrease in boldness) (Uusi-Heikkilä

et al., 2015). We also show that directional selection (small- and large-

selected line) drove genomic shifts in a different direction compared

to reductions in population size alone (random-selected line). Further-

more, the change in genomic architecture and genetic diversity means

intensive harvesting could lead to severe loss in adaptive potential

(Hollins et al., 2018), which may act in tandem with phenotypic

changes to erode population resilience to environmental change (Mor-

rongiello et al., 2021; Sadler et al., 2024; Wootton et al., 2021).

Despite experiencing the same selective pressure, genomic changes

differed between population replicates (see also Therkildsen

et al., 2019), suggesting different evolutionary trajectories toward dif-

ferent genomic architecture. Though differences in genomic architec-

ture occur despite experiencing the same selective pressure, the

genetic variation is likely to be high enough to maintain genetic redun-

dancy, with different genes producing the same phenotype with dif-

ferent pathways to the same function (Barghi et al., 2019).

Due to the extensive D. rerio reference genome annotations, we

were able to produce high-quality, accurate gene ontology

associations to the outlier SNPs (Howe et al., 2013). The high-quality

reference genome allowed us to predict the functions being selected

for as a result of size selection. We showed large clusters of enriched

genes associated with nervous system function in large-selected lines,

which could be indicative of, for example, changes in behavior or cog-

nition. It was demonstrated earlier that the large-selected fish were

more explorative and bolder than small-selected individuals (Uusi-

Heikkilä et al., 2015), and they have also been shown to differ in their

personalities and cognitive functions even after harvesting had been

halted for generations (Roy et al., 2023; Sbragaglia et al., 2019). In

contrast to the large-selected lines, lowered activity and increased

cautiousness of small-selected individuals have been evident in other

studies (Walsh et al., 2005), and this can lead to increased vulnerabil-

ity to fishing gear (Alós et al., 2012; Diaz Pauli et al., 2015; Härkönen

et al., 2014). Here, we may provide evidence of supporting genetic

changes to behavior via nervous system developmental changes,

though we can only show inference with gene ontology terms without

gene expression data. Furthermore, we see more gene enrichment in

lines exposed to directional selection (small- and large-selection lines)

than to random selection. Indeed, differentiation of gene ontology

could allow us to predict which genes are being hitchhiked along with

size-related genes during size selection. Moreover, we show that the

different line replicates differ in their gene ontology despite undergo-

ing the same selective pressure (Figure S5), further supporting the

theory that size selection can drive different evolutionary trajectories

resulting in differing genomic architecture.

We show that harvesting, whether being directional for body size

or not, decreases genetic diversity and causes divergence in genomic

architecture, with directional selection favoring small fish causing

greater genomic shifts than random selection. Although this may

imply that size-selective harvesting removing the largest individuals

from the population causes greater genomic changes than balanced

harvesting (i.e., no size selection, random selection), it is noteworthy

that it did not cause greater losses in genetic diversity. However, type

of selection should be considered in fisheries management, as changes

in genomic architecture can potentially lead to shifts in population

vulnerability through changes in functions and loss of adaptive alleles.

Here, we show a detailed gene ontology from genomic data to under-

stand associated genes that have been selected for alongside size-

related phenotypes. However, future studies should consider other

approaches, such as metabolomics, to get an in-depth picture of dif-

ferentiation of pathways leading to phenotypic change. Furthermore,

as we provide further evidence of divergence of genomic architecture

following the same size-selection regime (Therkildsen et al., 2019), it

would be plausible to see if this is a consistent effect over multiple

selection lines and whether the effects are truly stochastic. Overall,

reductions in genetic diversity and changes in genomic architecture

can lead to the loss of adaptive alleles in populations, making them

more prone to future environmental stressors and fisheries events.
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