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Abstract 

Determining an appropriate sample size is a critical planning decision in quantitative empirical research. In recent 
years, there has been a growing concern that researchers have excessively focused on statistical significance in 
large sample studies to the detriment of effect sizes. This research focuses on a related concern at the other end 
of the spectrum. We argue that a combination of bias in significant estimates obtained from small samples 
(compared to their population values) and an editorial preference for the publication of significant results compound 
to produce marked bias in published small sample studies. We then present a simulation study covering a variety 
of statistical techniques commonly used to examine structural equation models with latent variables. Our results 
support our contention that significant results obtained from small samples are likely biased and should be 
considered with skepticism. We also argue for the need to provide a priori power analyses to understand the 
behavior of parameter estimates under the small sample conditions we examine. 

Keywords: Statistical Significance; Small Samples; Partial Least Squares (PLS); Regression; Structural Equation 
Modeling; Simulation; Estimation Bias; Publication Bias. 

Introduction 

In recent years, there has been a renewed interest in sample size in Information Systems. On one end of the sample 
size spectrum, Lin, Lucas, and Shmueli (2013) cautioned that relying solely on significance tests (i.e., p values) 
when interpreting findings from large samples is inadvisable because even trivially small effects with no practical 
relevance whatsoever will be statistically significant. Instead, Lin et al. (2013) strongly recommended that results 
be interpreted based on effect size measures, confidence intervals, and effect plots. Similar calls for interpreting 
effect sizes have recently been made elsewhere in IS (Aguirre-Urreta & Rönkkö, 2018) and other disciplines (Bettis 
et al., 2016; Cumming, 2014; Kelley & Preacher, 2012). 

On the other end of the spectrum, research focusing on small sample scenarios has compared various statistical 
techniques to determine which is best suited – or whether there are any noticeable differences – when the sample 
size is small, in the order of 100 observations or less. However, the more foundational issue of whether statistical 
techniques should be used when sample sizes are small has received less attention. Within the IS field, the use of 
small samples has primarily been studied in the context of structural equation models with latent variables, which 
are very common models in the discipline (Goodhue et al., 2012; Ringle et al., 2012). For these types of models, 
the Partial Least Squares (PLS) (Wold, 1982) has been traditionally used to address small sample scenarios in IS 
research (Goodhue et al., 2012)1 because it is believed to be more suitable with small samples than other common 
estimators  (e.g., maximum-likelihood estimators; Chin & Newsted, 1999; Gefen et al., 2011; Hair et al., 2019, 
Chapter 13, 2021; Peng & Lai, 2012; Reinartz et al., 2009). Goodhue et al. (2012) challenged this status quo by 
pointing out that the claims about small sample advantages lacked specificity. They then demonstrated that PLS 
was, in fact, more biased than structural equation modeling with maximum likelihood estimation (SEM) when the 
same model was estimated with both techniques. Consequently, some recent articles have started to argue against 
using a small sample size to justify using PLS (Benitez et al., 2020; Henseler et al., 2016; Rigdon, 2016; Rönkkö, 
McIntosh, Antonakis, et al., 2016)2. 

We contribute to this discussion by stepping back and asking a more fundamental research question: Can any valid 
inferences be made when very small samples are employed? Small samples lead to two different problems. First, 
estimates from small samples are highly imprecise (Brand & Bradley, 2016; Marszalek et al., 2011) and thus make 
the results of an individual study less trustworthy – and less publishable. Second, and perhaps more problematically, 
the fact that p values influence which studies are published results in a positive bias in published research 
(Antonakis, 2017b; Gerber & Malhotra, 2008). In turn, the magnitude of this bias, in terms of estimates compared 
to the population values of the parameters under consideration, is exacerbated in small sample studies (Gerber et 
al., 2001). Taken together, our research is concerned with the accuracy of the subset of significant estimates, which 
are the ones most likely to be published, obtained from research studies conducted with small samples. In particular, 
we focus on research that tests structural models and on the techniques which could be used to estimate those 
models. With this work, we seek to understand the performance of these techniques when applied to small-sample 
scenarios, inform authors, reviewers, and editors about the consequences of conducting research with 
underpowered designs, and provide recommendations to improve the quality of research practice moving forward. 

We start our article by explaining why these two mechanisms lead to severe bias in published results obtained from 
small samples. After that, we present a series of simulations that provide evidence for this effect's existence using 
the statistical techniques commonly employed in IS research. We conclude our work with recommendations for 



individual researchers, reviewers, and editors in our discipline. 

Significant Results from Small Samples 

Our main argument is that significant estimates obtained from small samples are likely to be biased when compared 
to their population values. In this section, we present the three key components of this argument. First, we explain 
the logic of null hypothesis significance testing (NHST). Second, we review multidisciplinary evidence for a strong 
editorial preference for the publication of significant results, which leads to the “file drawer” problem, also known as 
publication bias, the active suppression of non-significant findings (Franco et al., 2014). This, in turn, has been 
shown to lead to questionable research practices where researchers optimize their research designs and analyses 
to be as likely as possible to produce statistically significant support for the hypotheses (Banks et al., 2016). Third, 
we explain how these two mechanisms lead to bias in published results and how this bias is magnified in small 
samples.  

The Logic of Null Hypothesis Significance Testing 

NHST is the dominant approach for statistical inference in IS and the social sciences more broadly. The starting 
point of NHST is that we are interested in a well-defined population (e.g., “large corporations” or “employees in large 
business organizations”) but, for practical reasons, we cannot observe the full population; instead, we use only a 
sample to calculate a statistic of interest (e.g., a path coefficient, a difference between groups, or a correlation). In 
a well-designed study with a sufficient sample size, the sample estimate should be close to the population value in 
which the researcher is interested. However, in small samples it is more likely to get a large estimate solely by 
chance, even if the effect was non-existent in the population. The purpose of NHST is to rule out chance as an 
explanation for the finding, and thus allow researchers to make claims about effects in the population.  

The process of NHST starts with a null hypothesis (H0). In the case of comparing means between groups or 
differences between the treatment and control conditions in experimental studies, the null hypothesis is typically 
that of no difference between the groups in the population (e.g., H0: m1 – m2 = 0). In regression or correlational 
analyses, the typical null hypothesis is that a regression or correlation coefficient between two variables is zero in 
the population (e.g., H0: β = 0). If the null hypothesis is true in the population, observing a large effect in the sample 
would still be possible, but highly unlikely. NHST quantifies this probability with the p value. The p value is calculated 
by first calculating a test statistic – for example, the ratio of a parameter estimate to its standard error referred to as 
t or z statistic depending on the content – that reflects how far the estimate is from zero on a standardized metric. 
Subsequently, the p value is calculated as the probability of obtaining the value of the test statistic, or a more 
extreme value of it, given the null hypothesis is true. If the p value falls below a pre-specified significance level, 
typically 5%, we conclude the sample estimate is statistically significantly different from zero, which in turn is 
interpreted as taken to signify rejection of the null hypothesis. The rejection of the null hypothesis is then interpreted 
as evidence for the existence of the effect in the population (for further details on NHST and p values, see Nickerson, 
2000).  

The formula of the commonly used t statistic reveals two important general features of NHST that are important for 
our argument. First, because the test statistic is proportional to the magnitude of the estimate, larger estimates are 
more likely to be statistically significant than smaller estimates. Second, because the standard error that is used as 
the denominator depends on sample size, reaching statistical significance is more common with larger samples. 
These two features interact so that when sample size becomes smaller, the estimates must be larger to reach 
statistical significance. This in itself would not be a major problem, unless statistical significance was also a factor 
when making publication decisions. 

Publication of Significant Results 

As explained above, the use of NHST with small samples does not, in itself, lead to bias in published results; the 
latter also requires a strong preference for significant results in editorial decisions about which research results are 
published. Two streams of literature provide clear evidence of the existence of this phenomenon. First, throughout 
the years, several studies have chronicled the existence of editorial preferences related to the significance of 
reported findings in a variety of fields (Dickersin, 1990; Dwan et al., 2008; Egger & Smith, 1998; Ferguson & Heene, 
2012; Greenwald, 1975; Hubbard & Armstrong, 1997; Kepes et al., 2012; Kühberger et al., 2014; Rothstein et al., 
2005; Sterling et al., 1995; Thornton & Lee, 2000). One particularly relevant piece of evidence for our argument is 
that studies with small samples and nonsignificant results are largely missing from the published literature (Chan et 
al., 2004; Dickersin, 2005; Greenwald, 1975; Ioannidis, 2005; McDaniel et al., 2006; Song, 2010); that is, only small 
sample studies which have a pattern of significant results make it through the publication process, or are written up 
and submitted in the first place, or a combination of both effects. The issue of the selectively publishing of studies 



– only writing up and reporting studies producing significant findings – has also been addressed under the label of 
‘file drawer problem’ in meta-analytical research (Adams et al., 2017; Bellefontaine & Lee, 2014). While we are not 
aware of any direct evidence of this problem in IS research, the fact that unpublished studies are routinely sought 
for in meta-analyses (e.g., Joseph et al., 2007; Sharma & Yetton, 2007; Wu & Lederer, 2009) suggests that there 
are at least some concerns about this in the field as well. 

Second, there is evidence that authors of research studies may use questionable means to ensure that their articles 
contain small p values for their proposed hypotheses. This happens in two ways: The practice of  p-hacking, which 
refers to trying out multiple different data manipulations and/or types of statistical analyses, and then only reporting 
those that yielded significant results (Head et al., 2015; Simonsohn et al., 2014), and the practice of ‘HARKing’3, or 
‘Hypothesizing After the Results are Known’ (Kerr, 1998), which refers to “presenting a post hoc hypothesis in the 
introduction of the research report as if it were an a priori hypothesis” (p. 197). Examples of mechanisms by which 
p-hacking occurs include conducting analyses midway through a research study to decide whether to continue 
collecting data, recoding response variables and selectively reporting only some of those, making decisions on the 
inclusion or exclusion of outliers based on their impact on the findings, excluding, combining, or splitting 
experimental groups after experimental data have been collected, including or excluding covariates in regression 
models, or prematurely stopping data exploration upon reaching significant findings (Head et al., 2015). In practice, 
this means that authors first analyze the data and then develop hypotheses to match the relationships or differences 
that were found to be statistically significant. The practice of HARKing is a form of outcome reporting bias, where 
researchers report a subset of statistically significant outcomes, but omit non-significant ones (Copas & Shi, 2001; 
Hutton & Williamson, 2000; O’Boyle et al., 2017; Williamson et al., 2005). 

In his discussion of the incentives behind HARKing, Kerr (1998) emphasizes the primacy of the publication process. 
In particular, research that both presents a priori hypotheses and then provides confirming evidence regarding those 
is most likely to fit with the ideal model of a well-conducted research study, and thus more likely to find its way into 
the published literature. The practice of HARKing can deliver on both counts: by knowing the pattern of results first 
and then tailoring the writing of the submission to deliver confirming evidence of hypotheses based on that pattern 
of results, prospective authors are able to produce a submission that improves their chances of being published. 
As noted by Kerr (1998, p. 205): “evaluative preferences by editors, reviewers and (ultimately) readers implicitly 
reward HARKing. Furthermore, professional authorities sometimes sanction or even insist upon HARKing. Editors 
and reviewers will sometime direct authors to HARK”. There is also, unfortunately, a body of evidence indicating 
that researchers are vulnerable to these demands (Bedeian et al., 2010; Fanelli, 2010; Ferguson & Brannick, 2012; 
Kepes & McDaniel, 2013; Nosek et al., 2012) For similar discussions, see Leamer (1983), Selvin and Stuart (1966), 
Turner et al (2008), Starbuck (2016), Banks et al (2016), or Bosco et al., (2016). 

Significance and Estimation Bias 

We will now explain why the logic of null hypothesis significance testing and the preference for publishing significant 
results, together, lead to severely biased results, and why this problem is even more serious when small samples 
are employed. We start by considering the simple example of a correlation between two variables using simulated 
datasets where the population correlation ranges from 0 to .50 and sample sizes from 10 to 70, to focus on the 
range of what would be commonly considered small samples. Table 1 shows the mean correlation over 10,000 
simulated samples for each combination of sample size and population correlation, the share of statistically 
significant correlation at α = .05, and the mean of only those correlations that were significant. Given the known 
sampling distribution of the correlation coefficient, it is possible to calculate, for a given sample size, the minimum 
sample correlation that would need to be observed in order for the estimate to be considered significant4. For the 
sample size range employed here, and a significance level of 5%, these are (in absolute magnitude): .632 (N = 
10), .444 (N = 20), .361 (N = 30), .312 (N = 40), .279 (N = 50), .254 (N = 60) and .235 (N = 70). 

- - - Insert Table 1 about here - - - 

The means of the correlations differ strikingly depending on whether all or just statistically significant correlations 
were considered. For example, when N = 10 and the population correlation is .10, the mean correlation is .102 – a 
virtually unbiased estimate – when all replications from the simulation are considered but is .396 (a 296% relative 
bias5) when only significant correlations are tallied6.  While finding a significant correlation with such small sample 
is unlikely to happen statistical power is just 6%, it is nonetheless possible if researchers prioritize the reporting of 
significant findings; that is, when we only see published in the literature that small subset of studies where the 
results turned out to be significant. In addition, when we consider the possibility that researchers may either adjust 
their procedures to fish for smaller p values (p-hack) or run a larger set of correlations and then develop hypotheses 
for those that are significant (HARK), in practice the probability of publishing significant findings from such a small 



sample is likely to be larger. Note that this demonstration effectively mimics the consequences of selective reporting 
or “cherry-picking” significant findings in real applications using small samples – out of a larger pool of conducted 
studies, one ends up with only a published subset of studies which, when combined for a meta-analysis, would yield 
a grossly distorted picture of the true effect size7. In addition, the simulation also speaks to the replicability crisis in 
psychology and other social sciences, as one cannot realistically expect to reproduce significant but unlikely results 
emerging from small samples in subsequent investigations (Stanley & Spence, 2014). 

The selection process that leads to bias is demonstrated in Figure 1, which shows the distribution of significant 
correlations for four extreme conditions. The figure reveals that by only choosing to report significant correlations, 
we essentially censor all values that are close to zero. The figure reveals that the reason why the bias depends on 
sample size and population correlation is because the former makes the region of “unpublishable” correlations close 
to zero narrower and the latter moves the distribution further from this region.  The magnitude of the relative bias is 
thus a function of statistical power. From Table 1, we can see that, as statistical power increases with increasing 
population correlation and sample size, the relative bias of the significant correlations decreases accordingly. In 
particular, as simulation conditions improve (that is, larger samples and stronger values for the population 
correlation), the mean of significant estimates becomes essentially identical to all estimates (e.g., in the case of a 
correlation of .50 and N = 70, 99.6% of all replications were significant, and therefore essentially no replications 
would have been omitted from reporting, resulting in an overall unbiased estimate of the true value of the parameter 
across all research studies in this domain).  

- - - Insert Figure 1 about here - - - 

As this simple example shows, the significance of an estimate is a function of both the population effect size and 
the inherent variability in the estimate, which is in turn dependent on sample size. Although the parameter is fixed 
but typically unknown in the population of interest, the sample size is, at least to some degree, under the control of 
the researcher. In this research, we are largely concerned with the presence of relative bias in significant estimates 
that have been obtained from small samples, specifically in the context of structural equation models with latent 
variables, which are one of the most common modeling approaches in the IS discipline. In particular, we examine 
here five different statistical approaches – Ordinary Least Squares (OLS, based on sum scores) regression, 
Disattenuated regression (DR), Partial Least Squares (PLS), Consistent Partial Least Squares (PLSc), and 
Maximum Likelihood Estimation for Latent Variable Models (SEM8) – that could be used to estimate such models. 
Our choice of modeling approaches was intended to cover the gamut of possible approaches of interest for the 
estimation of structural models with latent variables. First, we included both OLS regression and PLS, which differ 
in their approaches to weighting the items which measure each construct in the research model. Whereas equal-
weight sum scores are used in OLS regression, in PLS each item is given a different weight in the creation of the 
composites used to represent the constructs. However, both of these approaches lead to biased estimates for the 
paths of interest due to the presence of measurement error in the items (Dijkstra & Henseler, 2015; Evermann & 
Rönkkö, 2021). As a result of this bias, approaches which seek to correct for the effects of attenuation due to 
measurement error have been developed; for example, Consistent PLS (PLSc) (Dijkstra & Henseler, 2015). With 
the goal of providing a counterpart to PLSc based on equal weights, we also included a disattenuated version of 
OLS regression in the group of approaches examined here. Finally, we included SEM as an estimation approach 
which can model each individual item (and its measurement error) separately and does not rely on a disattenuation 
(bias-correction) step as part of the process. Taken together, we believe these approaches capture the range of 
possibilities which may be of interest to IS researchers when seeking to estimate structural equation models with 
latent variables. 

Simulation Design 

We conducted a simulation study to examine the accuracy of significant estimates obtained from small samples 
under a variety of conditions and data analysis techniques. In particular, we employed the base model by Qureshi 
and Compeau (2009) with the correlation between the two exogenous latent variables set to a medium value of .3 
(see Figure 2 for the structural portion of the model).  

- - - Insert Figure 2 about here - - - 

We otherwise designed the simulation conditions following previously published research. First, the number of 
indicators measuring each latent variable in the model was either 3, 6 or 9. Second, the loadings relating each 
indicator to its latent variable were either all 0.70, 0.80, 0.90 or mixed where one third of the loadings at 0.70, one 
third at 0.80, and the remaining third of the loadings in each condition at 0.90. Finally, sample sizes were 20, 40, 
60, 80 or 100. All these were combined in a full factorial design, for a total of 60 different conditions. For each 



combination of these conditions, 1,000 replications were generated; for a given replication, when an estimator failed 
to converge, the data were discarded, and a new random sample was drawn. Therefore, all results presented here 
are based on 1,000 replications where the estimator for a given technique successfully converged.  Where 
bootstrapping was needed, 1,000 bootstrap resamples were generated for each replication. All data were drawn 
from a multivariate normal distribution.  

All data generation and analyses were conducted in the R Statistical Environment (R Core Team, 2021, v. 4.1.0)9. 
The five techniques compared here were implemented as follows. OLS regression, PLS and PLSc were 
implemented with the matrixpls (Rönkkö, 2021, v. 1.0.11) package. Disattenuated regression (DR) was also 
implemented with the matrixpls package; in particular, the minres estimator was used to obtain the factor loadings 
used in the disattenuation of the correlation matrix10. Finally, all SEM analyses were conducted with the lavaan 
(Rosseel, 2012, v. 0.6-8) package. 

For OLS and DR statistical significance was assessed based on t tests by taking the ratio of the estimate to its 
standard error and considering an estimate significantly different from zero when the absolute value of the ratio was 
larger than a critical value from the t distribution11; in both cases, the standard errors were calculated using the 
closed-form equations12. For PLS and PLSc, an estimate was considered significant when zero was not included in 
a 95% percentile confidence interval, following existing recommendations in this regard (Aguirre-Urreta & Rönkkö, 
2018; Dijkstra & Henseler, 2015). The SEM estimates were tested with z tests. In all cases, data generation was 
done with the simsem (Pornprasertmanit et al., 2020, v. 0.5-15) package13. 

Results 

Statistical Power 

As would be expected, it is very unlikely to obtain significant results with small samples14 (sample size being one of 
the key determinants of the likelihood to reach significance, the size of the effect under consideration being the 
other). Given that there are four non-zero effects in our population model, we first consider the percentage of 
replications, for each statistical approach and simulation condition, which resulted in the estimate of all four 
parameters being found significant. We then do the same with a more relaxed rule of any three out of a total of four 
effects being found significant (see Appendix A for the results of all analyses where all estimates where significant, 
and Appendix B for the same results where three or more estimates were significant). We should note that, since 
all four effects are non-zero in the population, a finding of four significant effects would be an ideal outcome for an 
empirical researcher, as any other outcome would result in an inference error (e.g., concluding an effect is not 
significantly different from zero when the true value of the effect is non-zero in the population, a Type II error). 

As our results show, the likelihood of all four estimates being found significant is, overall, quite small, which in itself 
should be a major concern for researchers; that is, the overall statistical power of studies under these conditions is 
very low. Given that a major portion of the time and resources invested in conducting empirical research are 
allocated to the design and validation of the data collection instrument, collecting only a small amount of data makes 
it very unlikely that anything publishable will be obtained. The overall significance rate (all four effects significant) 
was 1.13% for OLS, 2.95% for DR, 1.96% for PLS, 2.19% for SEM, and 1.74% for PLSc (note that, for the cases 
of SEM and PLSc, the conditions were no replications converged have been removed from the base for the purpose 
of these calculations; these results, and those discussed next, are based solely on the number of conditions in 
which 1,000 replications were successfully obtained). These results, however, vary markedly based on levels of 
each of the simulation design conditions included in this research (see Table 2). 

- - - Insert Table 2 about here - - - 

Even so, statistical power rates were very low throughout all statistical approaches and conditions (and certainly 
much lower than the commonly recommended .8 level) (e.g., Cohen, 1988, 1992). Considering every particular 
combination of conditions in our simulation, the highest power for OLS was 2.9% (sample size of 100, 9 indicators, .9 
loadings), for DR was 8.3% (sample size of 100, 3 indicators, .7 loadings), for PLS was 6.5% (sample size of 100, 
6 indicators, mixed loadings), for SEM was 4.2% (sample size of 100, 6 indicators, mixed loadings), and for PLSc 
was 4.5% (sample size of 100, 9 indicators, .7 loadings). In summary, statistical power levels were very low for all 
approaches and simulation conditions, making it very unlikely that a researcher would reach the correct conclusion 
that all four effects were different from zero. In the small number of replications where that was the case, however, 
the resulting estimates were severely biased, which is the main result of interest in this research. We discuss these 
findings next. 

Bias from Significant Results 



We now turn to the main focus of this research, the extent to which significant results obtained from small samples 
are biased, when compared to the true population values of the parameters under consideration. To provide a more 
comprehensive picture of the issue, we also report on additional analyses that showcase the degree of relative bias 
as a function of number of indicators and strength of loadings. All the following results and discussions refer only to 
those replications where all four path estimates were considered significant, as described above, which is the main 
issue under consideration here. 

- - - Insert Figure 3 about here - - - 

Figure 3 shows average relative bias, compared to the true population values of each parameter, by statistical 
approach and over different levels of sample size. Estimation bias is clearly dependent on the population magnitude 
of the parameter under consideration. For the strongest of the paths examined here, the C → D relationship 
(population value .6), relative bias is small, but not negligible. For this path, relative bias is in the -10% to 20% range, 
depending on the particular combination of sample size and statistical approach under consideration. Bias is more 
noticeable for the second strongest path, capturing the A → D relationship (population value .35). As the 
corresponding panel in Figure 3 shows, particularly for the smaller sample sizes considered here, there is a marked 
positive relative bias. For the condition with N = 20, this relative bias is 54.5% for OLS, 29.7% for PLS, 40.74% for 
PLSc, 53.56% for DR, and 59.3% for SEM. Though estimates improve with increasing sample size, there is still 
noticeable bias with N = 40. 

For the path B → C (population value .2), Figure 3 shows major positive relative bias, which does improve with 
increasing sample size, but remains very marked even at N = 100. For this path, relative bias is in the 85% to 180% 
range for the case of N = 20 (155.0% for OLS, 85.8% for PLS, 133.1% for PLSc, 175.6% for DR, and 169.0% for 
SEM). For the case of N = 100, relative bias remains in the 20% to 50% range (39.0% for OLS, 20.6% for PLS, 
35.3% for PLSc, 50.8% for DR, and 53.2% for SEM), which would still be considered unacceptable for publication. 

Finally, the weakest of the paths considered here (for the A → C relationship, population value .05) shows some 
interesting results (see the leftmost panel of Figure 3). In this case, the population value of the path is close to zero. 
Coupled with our focus on small samples, there is sufficient variability in the sampled data for it to be possible to 
obtain negative estimates for this parameter. Our results show that some of the statistical approaches considered 
here were only able to flag as significant estimates that were very negatively biased, whereas other approaches 
only did so when the estimates were very positively biased. In either case, for the sample size range considered 
here, none of the examined techniques produced even remotely accurate estimates of this parameter. More 
precisely, for the case of N = 20 average relative bias was -895.0% for OLS, 502.9% for PLS, 163.5% for PLSc, -
910.4% for DR, and -746.6% for SEM. To put these results into context, consider that a path with a population value 
of .05, as is the case here, would appear to be significant and with an estimate of -.45 when the relative bias is of 
the order discussed here (e.g., -900%). This is clearly an unacceptable outcome. 

- - - Insert Figure 4 about here - - - 

Figure 4 shows the same results over the number of indicators used to measure each of the four latent variables in 
the research model. The results are similar to those previously discussed. The degree of average relative bias 
worsens with increasingly weaker paths in the research model. For the weakest of the paths examined here, we 
also see a similar effect of either markedly positive or markedly negative bias estimates. In this case, the magnitudes 
appear smaller (though still unacceptably large) as the extreme results observed in the preceding discussion are 
collapsed over levels of indicators. These results also show that the number of indicators used to measure the latent 
variables does not have a noticeable effect on whether extreme (i.e., biased) and significant estimates are obtained. 

- - - Insert Figure 5 about here - - - 

Finally, Figure 5 shows the results over different loading patterns. These are either homogenous (all loadings at .7, .8, 
or .9) or mixed (as noted above, one third at .7, one third at .8, and one third at .9). Whereas the base levels of 
relative bias for each regression path are as previously discussed, Figure 5 also shows that measurement quality, 
in terms of the strengths of the loadings relating each indicator to its latent variable, have a noticeable effect on 
estimation accuracy when only significant paths are considered. In all cases, relative bias is most pronounced when 
the loadings are weakest, in the condition of homogenous loadings at .7. Estimation accuracy improves as loading 
strength increases; the condition with mixed loadings is in between homogenous loadings of .8 and .9 in terms of 
estimate accuracy. Whereas the number of indicators used to measure each latent variable had a limited impact on 
estimation accuracy, measurement quality in the form of more reliable indicators does affect the accuracy of the 
resulting estimates. Even so, marked bias remains throughout our simulation results even when loadings are very 
strong, at .9 in the population. 



Discussion and Conclusion 

The conduct of quantitative empirical research requires several important planning and design decisions to ensure 
the quality and validity of the findings. These include the choice of sampling frame and methodology, the items to 
be used to measure the included constructs, the research design to be used (e.g., survey, experiment, etc.), 
statistical analysis approach, and the necessary sample size, to name a few.  The latter – sample size – is a key 
component of statistical power analyses, and the only one which is, at least to some extent, under the control of the 
researchers conducting a study (the other two components of a power analysis being the choice of threshold for 
statistical significance and the effect size of the relationship of interest).  

The seminal work with regards to statistical power in the discipline was conducted by Baroudi and Orlikowski (1989). 
In this research, the authors first reviewed the fundamentals of statistical power, its calculation, and 
recommendations to be followed by researchers, and then examined the status quo of power in the discipline at the 
time. They concluded that, at the time, not only were discussions of power and power analysis not common in the 
discipline, but also that a large proportion of the research conducted in the field at the time was severely 
underpowered. The authors saw this as a negative in terms of allocating research resources to studies unlikely to 
yield significant findings, which may also lead researchers to prematurely abandon what could be potentially 
interesting areas of research. Baroudi and Orlikowkski (1989) concluded their research with a discussion of different 
ways in which power analyses could be improved including, but not limited to, increasing sample size. However, 
what was not recognized at the time, is that significant results resulting from severely underpowered studies – which 
are the main issue of concern in our research, and which Baroudi and Orlikowski (1989) noted were common in the 
discipline – could lead to markedly biased estimates for the relationships of interest, as we show with our work. 

Subsequent work by Goodhue et al (2012) focused specifically on the issue of whether PLS, as has been frequently 
been argued, had any particular advantages over other techniques in small sample scenarios (or, less relevant to 
our research, when data are sampled from non-normal distributions). Their interest was in comparing the 
performance of PLS and a maximum likelihood estimator for latent variable models for the estimation of structural 
equation models with latent variables, and the extent to which there was evidence supporting the purported 
advantages of PLS when applied to small samples. Their results indicated no particular advantage of PLS over 
other techniques when sample size was small, with the caveat (observed in our research as well) that covariance-
based estimators may have a harder time converging with very small samples. Although the authors specifically 
discussed the implications of their results for published research which found significant results, using PLS, from 
small samples, their concern was solely on whether PLS or other techniques would be more or less likely to reach 
the same conclusion – finding significance – under the same conditions (that is, whether PLS or other techniques 
were more or less powerful to detect those) and on whether false positives, above the 5% threshold, would be more 
or less common for the different techniques they examined under small sample scenarios. Goodhue et al (2012), 
however, did not consider the accuracy of the estimates in their research, as their main focus was on statistical 
power levels. Our work therefore expands on this research by examining not only a larger number of statistical 
techniques under a variety of conditions, but more importantly considering the accuracy of significant estimates 
obtained from small samples. As we argue throughout this research, and support with evidence from our simulations, 
this should be a major issue of concern for quantitative researchers, reviewers, and editors. 

Lin et al (2013) cautioned researchers about the interpretation of significant effects arising from the use of very 
large samples, which have recently been made possible with the new availability of extensive datasets, such as 
those involving online transactional data. Their concern was that, when very large samples are employed, even 
minor or trivial effects are likely to be significant, and thus interpretation should shift from merely stating that an 
effect is significantly different from zero to considering the magnitude or practical relevance of such an effect, i.e., 
the effect size. In this research, our concern is with the other end of the continuum of sample sizes employed in IS 
research. Whereas the focus of past research in this area has been which of the many available techniques is more 
or less appropriate for the study of small samples (e.g, Chin & Newsted, 1999; Goodhue et al., 2012), limited 
consideration has been placed on the outcome of those studies. Given strong institutional and normative pressures 
favoring the publication of research containing exclusively or mostly significant findings, it is therefore important to 
examine the subset of outcomes obtained from small samples which are likely to successfully navigate the review 
process, as those are representative of what can be found in our journals. As a result, we focus here on the accuracy 
of estimates obtained from small samples when those estimates conform to patterns of significance that make them 
more likely to lead to publication.  

In this research, we defined a population model with a variety of effect sizes, in terms of both patterns and magnitude. 
We then generated data for those for several different measurement conditions, varying in terms of the number of 
indicators with which each latent variable was measured, their strength, and sample size (which is the focus of this 



research). For each of these conditions we generated many replications and subjected those to analysis with five 
different statistical techniques. Of those, we only focused on the replications that conformed to a pattern of results 
that would be consistent with the true nature of the underlying relationships – that is, significant results for the non-
zero paths in the population, and non-significant results for the zero path in the population. These are the 
replications that would produce results in line with theoretical expectations, and thus more likely to eventually appear 
in published form.  

As our results show, these are a relatively small subset of all possible replications, particularly at the smaller end of 
the sample size range. This is in line with expectations given the known workings of statistical power such that, 
everything else being equal, more replications will be significant with larger samples than with smaller samples. 
However, when we only consider that subset of publishable replications, the results are quite discouraging. When 
significant estimates are obtained from small samples, even if those conform to the true pattern of relationships in 
the population, the estimates of those relationships are likely to be markedly biased when compared to their true 
population values. Whereas the magnitude of the bias is dependent on the statistical technique employed and the 
true pattern and magnitude of the relationships in the population, such that stronger effects are less affected than 
weaker effects, it is quite evident from our results that none of the commonly used statistical techniques are immune 
from the bias discussed here.  

The results presented here are subject to the limitations shared by any research that employs simulations; in 
particular, the choice of population models and research conditions examined in the study. Whereas the structure 
of the population model employed here is relatively simple, it is not unlike many research models in the IS discipline, 
which include only a few incoming paths (only one in many cases) on any given portion of a research model 
(Goodhue et al., 2012). The strength of the loadings relating indicators to their latent variables as well as the number 
of indicators used to measure each latent variable are well within what would be considered acceptable or better in 
light of commonly used validation guidelines in effect in IS research. Taken together, while our results could certainly 
be replicated and extended by focusing on different model, different magnitudes for the relationships involved, 
different measurement conditions, etc. (and we encourage researchers to undertake these expansions to further 
refine our findings), it is clear from our results that there is reason to be concerned about the interpretation of 
research findings obtained from underpowered studies. 

Does power analysis address these issues? 

Given that the underlying cause of the bias that occurs when only studies with statistically significant results are 
published is that studies using small samples are underpowered, it would be ideal to state that power analyses 
could be used to address the problem presented here. Unfortunately, this is not the case. While power analyses 
are useful when planning the required sample size for the study, they are less informative after a study has been 
conducted (Hoenig & Heisey, 2001). There are two problems with post-hoc power analysis in this case. First, if a 
researcher first estimates a model, and then specifies a power analysis based on the estimated effect size, the 
estimated (observed) power provides no additional information over that provided by the p value. Second, the 
problem that we address here is that non-significant findings from small samples are not publishable in IS research. 
There is no reason to believe that adding a power analysis to a study demonstrating that a study is underpowered 
would make a non-significant study more publishable; in fact, it may very well have the opposite effect (as non-
significant findings from underpowered studies may be deemed not informative). 

Nevertheless, in order to avoid conducting underpowered studies in the first place, we recommend that, if data are 
difficult to obtain, or there is some other reason making a small sample study the only feasible alternative, a power 
analysis should be used to determine an appropriate sample size for the study when assuming effect sizes for the 
true population parameters that are consistent with those of theory or past research. Under these conditions, 
significant results obtained from severely underpowered studies should be met with a strong dose of skepticism. 
Doing the same for the particular research model and relationships of interest, and under measurement conditions 
similar to those in the focal research study, would provide evidence of the degree to which the issues observed here 
should be a concern. There are approaches that are appropriate for each of the techniques discussed here (for 
example, Aguirre-Urreta & Rönkkö, 2015 for PLS and PLSc; or Muthén & Muthén, 2002 for SEM) and therefore the 
conduct of such analyses should not prove to be overly complex, and would anyways be recommended in the 
design and conduct of any quantitative study.  

We would argue that conducting a power analysis as part of research design and planning should be considered a 
standard practice when conducting quantitative research, and we are of course not the first, in the IS discipline, to 
note this should be the case (Baroudi & Orlikowski, 1989; Carte & Russell, 2003; Goodhue et al., 2007; Straub, 
1989). Earlier in the development of the discipline, the concern regarding statistical power had to do with designing 



studies with sufficient power so to both maximize the chances of detecting an effect of interest and also aiding in its 
interpretation. For example, Straub (1989, p. 152) notes “non-significant  results from tests with low power, i.e., a 
probability of less than 80 percent that the null hypothesis has been correctly rejected […] are inconclusive and do 
not indicate that the effect is truly not present”, and we discuss this issue (interpretation and reporting of non-
significant results) in the next section.  

In this research, however, we are concerned about the scenario where a study is underpowered, yet significant 
results are obtained, and with the accuracy (or bias) of those results. While, as noted above, there is a history in 
the discipline of advising power analyses should be conducted and reported, it is nonetheless the case that studies 
continue to be published with small samples, well within the range of sample sizes examined here, and which we 
show will result in possible markedly biased estimates of the relationships of interest. For example, Goodhue et al 
(2012) noted that 13% of the studies which employed some form of path analysis, published in the premier journals 
of the discipline in the 2006-2010 period, had sample sizes smaller than 80 which they argued, as do we here as 
well, are insufficient15 ; yet these studies successfully navigated a review process where the conduct of power 
analyses, which would have flagged those as being markedly underpowered, has been strongly recommended for 
decades. One possible explanation is that the negative consequences, in terms of accuracy and bias, of significant 
results obtained from underpowered studies are not well understood. With our research, we hope to contribute to 
this discourse to show there is reason to be concerned about these findings.  

What can be done about the issue? 

Based on our research and findings, we recommend that editors, reviewers, and readers be more skeptical of 
significant results obtained from small samples than has been the case in the past. But what should be done in the 
future? Generally, outside of the IS discipline, there is an increasing understanding that p values are not a good 
metric for assessing the quality of a research study or the importance of its findings (Wasserstein et al., 2019). To 
this end, many journals outside IS have started to emphasize criteria other than p values. For example, Strategic 
Management Journal, a leading journal in management, has an explicit policy of also publishing non-significant 
results (Bettis et al., 2016). Nevertheless, there may still be a long road ahead to educate reviewers to not only pay 
attention to p values when evaluating studies. As another example, there is an initiative where some journals are 
sending studies to review with the results blinded so that the reviewers must judge the importance of the research 
question, quality of the theory, and strength of the research design instead of looking at a particular set of results 
that could have been occurred only by chance in underpowered studies (e.g., Antonakis, 2017a). We hope that our 
article can raise awareness of the bias due to small samples and of the possible remedies applied in other adjacent 
fields to address the issue at the journal level. 

While many of the most impactful decisions to address the small-sample problem are done at the level of the journal, 
which decides whether a study is publishable, we argue that there are also actions that individual researchers can 
take to address this issue. Designing studies for sufficient statistical power and spending more resources on data 
collection to ensure sufficient power is an obvious solution. However, we recognize that this is not always possible, 
particularly when studying organizations or teams within organizations, where the target population may be small. 
Thus, non-significant results from underpowered studies are sometimes inevitable. However, even in these 
scenarios, a focus on accurate parameter estimation and the presentation of descriptive information, absent 
significance testing, may still be warranted (Valentine et al., 2015).  

To make small-sample studies publishable – and consequently decrease the bias caused by publishing only those 
underpowered studies which are statistically significant – we suggest that these studies de-emphasize p values or 
even leave them out. For example, instead of reporting b = 0.2 (p = .11) and declaring a hypothesis not supported, 
a researcher could report b = 0.2 (95% CI:[-0.4, 0.44]) explaining that the best estimate of the effect is 0.2 and that 
there is great uncertainty in the result, given the width of the confidence interval surrounding the estimate. This 
approach would thus involve shifting the focus from a yes/no decision based on p values to the assessment of the 
effect size and its uncertainty (Cumming, 2011; Wasserstein et al., 2019). Confidence intervals can also be 
graphically represented with error bars around an estimate, which visually conveys the degree of uncertainty in that 
estimate in a way that p values cannot replicate, thus lending additional interpretation power to the use of confidence 
intervals over and above a binary significant/non-significant decision (Fidler & Loftus, 2009). While such tactics may 
not convince all reviewers, it is consistent with calls to focus more on assessing the magnitude of the effects in IS 
(Aguirre-Urreta & Rönkkö, 2018) and in other disciplines as well (Bettis et al., 2016; Cumming, 2014; Kelley & 
Preacher, 2012). For example, as noted above, Strategic Management Journal recently revised its editorial policies 
to 1) publish and welcome submissions of replication studies, 2) publish and welcome submissions which include 
non-significant results, 3) no longer accept for publication submissions which refer to cutoff values for statistical 
significance, now requiring standard errors or exact p values (or both) as well as their interpretation, and 4) require 



that accepted submissions explicitly discuss and interpret effect sizes for the estimated coefficients (Bettis et al., 
2016). Other journals, such as Basic and Applied Social Psychology (Trafimow & Marks, 2015), Epidemiology 
(Fidler et al., 2004), or Political Analysis (Gill, 2018), have outright banned the use of p values in their publications.  

More generally, while our discussion here centers on significant results obtained from small samples (which, as 
shown in this research, are likely to be very biased), our results also show that in most instances, small samples 
will lead to non-significant results, as a result of limited statistical power to detect effects when those are indeed 
present. The vast majority of these results, in turn, will not make it into a publication (Franco et al., 2014). As a 
result, it is worth considering what options are available for researchers faced with non-significant findings (see 
Mehler et al., 2019 for a more detailed discussion of these). 

Most notably, researchers should refrain from interpreting a non-significant result as evidence of the absence of an 
effect (e.g., the null hypothesis of no effect being true), particularly in small sample scenarios, which are severely 
underpowered. In these scenarios, a non-significant result is compatible with a non-zero effect which was 
overlooked due to lack of statistical power. To distinguish between a meaningful but overlooked effect, and one that 
is either negligible or absent we should first determine, based on prior research, theory, and the goals of the study, 
what is the minimum effect size that would be considered meaningful for the research. Then, equivalence tests 
(Lakens et al., 2018) can be used to determine whether there is enough evidence to determine whether the 
observed effect could be considered negligible, and thus treated, for all practical purposes, as being absent. Ideally, 
the expectation of possibly conducting an equivalence test, and thus determining minimum meaningful effect sizes, 
etc. should be part of the research design and planning (and sample size determination) process. Alternative 
approaches, based on Bayesian statistics, are also possible, such as the use of regions of practical equivalence 
(ROPE, Kruschke, 2011) or hypothesis testing based on Bayes factors (Lakens et al., 2020). 

Final words 

It would be possible to argue that there are particular research settings or populations of interest where obtaining 
large enough samples is not possible practical, or economically feasible, and we would concede that to be the case 
in some very specific research scenarios. At the same time, however, researchers should then be mindful of seeking 
to apply statistical techniques developed on the assumption of large samples to obtain stable and accurate results 
to populations that do not conform to those requirements. In the past it has been argued that PLS can be a technique 
that would be particularly applicable to those research scenarios (e.g, Chin & Newsted, 1999; Majchrzak et al., 
2005); there is, however, mounting evidence (e.g., Evermann & Rönkkö, 2021; Goodhue et al., 2012, p. 998; 
Rönkkö et al., 2015, p. 81; Rönkkö & Evermann, 2013, Myth 5, pp. 440-442), including our own research findings, 
showing that is not the case. For example, Goodhue et al (2012, p. 998) noted the belief among MIS researchers 
that PLS has special powers at small sample size or with non-normal distributions is strongly and widely held in the 
MIS research community. Our study, however, found no advantage of PLS over the other techniques for non-normal 
data or for small sample size”. Similarly, Rönkkö and Evermann (2013) listed a number of studies expressing the 
belief that PLS does not require a large sample size, and categorized those as one of the myths about PLS 
highlighted in their research (“Myth 5: PLS Has Minimal Requirements on Sample Size”). Going one step forward, 
however, our research highlights that none of the commonly used techniques in IS research are appropriate for 
application in these scenarios, and thus calls for a rethinking of our research designs and analytical approaches 
when faced with small samples, and where larger samples cannot be feasibly obtained. 

 

 

 

 

Notes 
1 In particular, Goodhue et al (2012) note that out of 188 studies in the premier journals of the IS discipline in the 2006-2010 
period that employed some form of path analysis, 49% of those chose PLS, 35% of those referred to advantages of PLS when 
applied to small samples, and 14% analyzed samples with less than 80 participants. Some extreme examples of these include 
Kahai and Cooper (2003, N = 31), Malhotra, Gosain and El Sawy (2007, N = 41) and Majchrzak et al. (2005, N = 17) 
2 Some of the authors who otherwise argue that PLS has advantages when it comes to working with small samples have also 
acknowledged that those presumed advantages have been abused in the past and that is a valid criticism of some extant 
applications of PLS. At the same time, for scenarios where populations may be small (e.g., under 100), they still argue that 
PLS is the only structural approach which can yield meaningful results (Hair et al, 2019, p. 771). Our concern in this research 
is whether these techniques should be employed at all under those circumstances. 



 
3 We note that there may be scenarios where HARKing can produce valid and important research findings, but the fact that a 
hypothesis was developed after the results were known must be reported transparently (Hollenbeck & Wright, 2017). 

4 This can be done by solving for the critical value of a two-tailed t-test, where the statistic would be 𝑡 = 𝑟√
𝑁−2

1−𝑟2
. This can be 

rewritten as follows (where df = N – 2) to solve for r: 𝑟 = √

𝑡2

𝑑𝑓

𝑡2

𝑑𝑓
+1

. For a given sample size (and associated degrees of 

freedom), the critical value of the t-distribution can be obtained and then used to calculate the critical value of the correlation 
coefficient. For the case of N = 10 and alpha = 5%, the critical value for a t-distribution with 8 degrees of freedom is 2.3066. 
Using this critical value, we can solve for the critical value of r of 0.632 for N = 10 and alpha 5%. Other critical values can be 
similarly calculated. 
5 All percentage bias reported in this research are calculated on a relative basis, comparing the average of the sample 
estimates against the population value of the parameter, divided by the latter; specifically: 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =

 
(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠−𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒)

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
 for a given condition. 

6 The bias of an estimate is a measure of over- and underestimation in the long run, over many replications. Selective 
reporting of only significant results leads to a tally of the estimates with the largest estimation errors (as only those would 

reach significance). When considered over multiple replications, this leads to overall biased estimates (that is, 𝐸[�̂�𝑠𝑖𝑔] ≠ 𝛽,, 

where 𝛽 is the population parameter and �̂�𝑠𝑖𝑔 those estimates that have been found significant). In other words, the average of 

only significant estimates will be biased when compared to the true population value of a given parameter. 
7 There is a growing concern in the psychology discipline about the ability, or lack thereof, to replicate past findings. Since 
unsuccessful replications – those that exhibit negative findings, where the original relationship of interest is not significant in 
the replication – face an uphill battle in getting published, this compounds the problem (Yong, 2012). 
8 Throughout this research, the SEM label refers to the statistical approach of using maximum likelihood estimation for latent 
variable models. In the IS literature, this has also been referred to as CBSEM (Covariance-Based SEM) to distinguish it from 
PLS-based approaches for the estimation of structural equation models with latent variables. 
9 All data generation and analysis code is available for download at a repository accessible through the Open Science 
Framework (https://osf.io/93azp). 
10 Disattenuated regression was specified in the matrixpls package as follows. First, composites with unit weights were created 
as aggregates of all items measuring a construct (this is unlike PLS, where weighted aggregates are created). Second, 
reliabilities for those composites were obtained for each composite. This was done by estimating loadings for each item, one 
block of items at a time, using the minres estimator for the loadings. The estimates of the loadings were then used to calculate 
the reliabilities for each composite. Third, the correlation matrix of the original composites was disattenuated using these 
composite reliabilities. Finally, from the disattenuated correlation matrix, estimates of the paths in the research model were 
calculated. 
11 The degree of freedom for the t test in OLS and DR is n – k – 1, where n is the sample size and k is the number of 
predictors. The PLS literature provides various different recommendations for number of degrees of freedom (Rönkkö, 
McIntosh, Antonakis, et al., 2016). To keep the results comparable across techniques, we used the same degrees of freedom 
for all techniques. 
12 In their research on hypothesis testing using factor score regression, Devlieger et al (2016) noted that the common formula 
for the standard error may not be accurate when bias correction is used. We examined the degree to which bias may be 
introduced in this case, as well as reran our simulation using a bootstrapping approach, similar to the one employed with PLS 
and PLSc. Our results regarding the presence of bias on significant estimates obtained from small samples, which is the main 
issue of interest here, are not qualitatively different. All these results are reported in Appendix D. While we believe the 
development and validation of an accurate standard error measure for the approach is a worthwhile endeavor, it is beyond the 
scope of our current research (but would be an integral step in the development of disattenuated regression as a complete 
alternative for the estimation and testing of structural models). We thank an anonymous reviewer for alerting us to the work of 
Devlieger et al (2016). 
13 We used two-tailed tests for significance throughout all our research. For the same level of statistical significance (e.g., the 
same alpha), the only difference between these and one-tailed tests lies in the distribution of the critical area of rejection on 
one or both ends of the distribution of the test statistic. Though two-tailed tests do not involve a specific direction for an effect 
to be considered significant, it is often the case that there is an expected direction which was hypothesized a prior (e.g., a path 
is expected to be positive or negative), which would point to the use of a one-tailed test for establishing significance. However, 
two-tailed tests are used in most applications, whether there is an expected direction for an effect, and they are the default 
(and, in many cases, the only option) in most statistical software packages. The use of one-tailed tests is controversial and 
sometimes considered cheating (Abelson, 1995, p. 55). 
14 Researchers working with small samples should also be mindful of convergence and admissibility issues. All results 
presented here come from 1,000 samples that converged to admissible solutions. When a particular replication did not 
successfully converge for a given technique, we discarded it and drew a new one. Convergence rates, however, are 
informative for researchers. Both OLS and DR had perfect convergence, whereas PLS had a 99.2% effectiveness for a single 
condition and 100% otherwise. SEM had trouble converging with small samples (e.g., N = 20) with an average convergence of 
40.3% in those conditions; convergence rates improved markedly as sample size increased. Finally, PLSc suffered from 
severe admissibility issues in some conditions. For example, the condition with a sample size of 20, 9 indicators, and mixed 
loadings required 49,047 replications to obtain 1,000 acceptable ones. Similarly, the condition with a sample size of 20, 3 



 
indicators, and loadings at .9 required 46,603 replications. The lowest number of replications required to obtain a set of 1,000 
acceptable ones was 1,514 (sample size of 100, 3 indicators, .7 loadings), for a convergence effectiveness of 66%. Similar 
results were published by Huang (2013), who reported that 39% of her PLSc replications of her small model were inadmissible 
at N=200, and by Rönkkö, McIntosh, and Aguirre-Urreta (2016). While it is always possible to draw a new sample in a 
simulation, researchers have only a single sample of data, and are thus advised to consider how likely it is that a given 
statistical approach would result in at least acceptable – from a convergence and admissibility standpoint – estimates. 
15 Future research could focus on conducting a formal review of research practices in the IS discipline with regards to 
statistical power analyses, sample size determination, and related research practices, thus updating the work of Goodhue et al 
(2012) for the case of structural models, but also considering other quantitative research designs as well. In the conduct of our 
research, we came across two additional exemplars from recently published work. Jenkin et al (2019) conducted a model test, 
using regression analysis, with a sample size of 13, which the authors acknowledged resulted in low statistical power, yet 
results were significant nonetheless. In another study, Serrano and Karahanna (2016) noted that low statistical power was a 
likely cause of lack of significance in their testing of moderation hypotheses, which goes against the recommendations that 
power analyses be conducted and reported as standard practice in the discipline. 
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Appendix A. Full Results with All Effects Significant 

The following tables present full results for all conditions and statistical approaches where all four paths were found 
to be significant. Empty rows indicate not a single replication (out of the 1,000 generated for each condition) in that 
condition had all four effects flagged as significant. Rows with NA are those where analyses would either not 
converge at all (for the case of PLSc) or were not run due to model identification issues (for the case of SEM).  

Table A1. OLS Results 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed -1155% 69% 141% -8% 2 

20 3 .7 -1272% 65% 159% 18% 3 

20 3 .8 -1310% 63% 155% 23% 4 

20 3 .9 -1072% 83% 134% -10% 1 

20 6 Mixed -1234% 20% 220% 19% 1 

20 6 .7      

20 6 .8      

20 6 .9 -1036% 5% 212% 24% 1 

20 9 Mixed      

20 9 .7 -332% 47% 145% 9% 2 

20 9 .8      

20 9 .9 52% 47% 133% -1% 3 

40 3 Mixed -135% 21% 82% -18% 4 

40 3 .7 -840% 7% 180% -26% 3 

40 3 .8 -490% 10% 93% -17% 7 

40 3 .9 -179% 35% 26% -10% 6 

40 6 Mixed 77% 0% 31% -18% 5 

40 6 .7 -878% 5% 127% -15% 5 

40 6 .8 -669% 4% 123% -4% 7 

40 6 .9 -583% 4% 120% -3% 10 

40 9 Mixed -729% 3% 126% -2% 9 

40 9 .7 -438% 11% 140% -4% 7 

40 9 .8 -875% 6% 128% -1% 8 

40 9 .9 -242% 12% 131% 3% 7 

60 3 Mixed -156% -10% 76% -10% 7 

60 3 .7 -228% 2% 52% -19% 8 

60 3 .8 -243% 6% 57% -17% 13 

60 3 .9 -37% -14% 75% 0% 11 

60 6 Mixed -297% -3% 72% -7% 12 

60 6 .7 -153% -6% 80% -13% 7 

60 6 .8 -326% -8% 82% -5% 10 

60 6 .9 -259% -6% 84% 1% 11 

60 9 Mixed -255% -7% 83% -1% 11 

60 9 .7 -134% -11% 84% -8% 9 

60 9 .8 -328% -5% 85% -2% 10 

60 9 .9 -186% -9% 84% 1% 12 

80 3 Mixed 319% -21% 44% -18% 12 

80 3 .7 -131% -14% 38% -24% 16 

80 3 .8 -25% -8% 44% -15% 20 

80 3 .9 263% -14% 42% -11% 14 

80 6 Mixed 141% 2% 19% -9% 19 

80 6 .7 89% -10% 39% -10% 13 

80 6 .8 128% -5% 40% -5% 15 

80 6 .9 174% 1% 39% -3% 18 

80 9 Mixed 175% -4% 37% -4% 18 

80 9 .7 281% -4% 51% -13% 9 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

80 9 .8 129% -7% 43% -2% 15 

80 9 .9 162% -2% 62% -4% 12 

100 3 Mixed 290% -8% 29% -19% 19 

100 3 .7 213% -18% 33% -22% 16 

100 3 .8 284% -17% 34% -11% 21 

100 3 .9 230% 0% 32% -11% 25 

100 6 Mixed 115% -3% 39% -10% 25 

100 6 .7 82% -11% 43% -14% 22 

100 6 .8 130% -9% 44% -10% 23 

100 6 .9 130% -5% 45% -6% 27 

100 9 Mixed 103% -5% 45% -8% 24 

100 9 .7 168% -4% 36% -9% 24 

100 9 .8 116% -6% 43% -8% 25 

100 9 .9 137% 3% 41% -3% 29 

 

Table A2. DR Results 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed -869% 44% 158% 25% 12 

20 3 .7 -871% 62% 165% 28% 24 

20 3 .8 -1269% 77% 250% 23% 23 

20 3 .9 -1215% 44% 149% 35% 5 

20 6 Mixed -895% 41% 180% 14% 8 

20 6 .7 -821% 34% 181% 11% 23 

20 6 .8 -1108% 64% 184% 14% 8 

20 6 .9 -1171% 55% 194% -2% 3 

20 9 Mixed -1112% 60% 168% 4% 4 

20 9 .7 -351% 43% 85% 17% 14 

20 9 .8 -1080% 57% 179% 6% 8 

20 9 .9 42% 51% 139% 1% 3 

40 3 Mixed -336% 24% 107% 5% 32 

40 3 .7 -404% 30% 119% 2% 68 

40 3 .8 -337% 19% 121% 3% 37 

40 3 .9 -62% 19% 82% 2% 12 

40 6 Mixed -321% 8% 74% 1% 17 

40 6 .7 -381% 24% 120% -1% 29 

40 6 .8 -479% 10% 126% 1% 21 

40 6 .9 -513% -1% 126% 3% 19 

40 9 Mixed -544% 3% 136% 3% 20 

40 9 .7 -406% 22% 139% 4% 24 

40 9 .8 -546% 3% 137% 3% 20 

40 9 .9 -315% 16% 127% 0% 13 

60 3 Mixed -154% 1% 87% 3% 38 

60 3 .7 -379% 19% 97% 4% 67 

60 3 .8 -327% 13% 95% 1% 44 

60 3 .9 -101% -1% 73% 0% 26 

60 6 Mixed -288% 6% 73% 0% 24 

60 6 .7 -240% 7% 64% 5% 33 

60 6 .8 -227% 5% 68% 2% 21 

60 6 .9 -329% -4% 88% 6% 13 

60 9 Mixed -286% 0% 88% 5% 17 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

60 9 .7 -295% 8% 71% 8% 30 

60 9 .8 -286% 0% 87% 5% 17 

60 9 .9 -281% 1% 88% 6% 15 

80 3 Mixed 132% -3% 60% -3% 40 

80 3 .7 -111% 7% 77% 1% 74 

80 3 .8 -50% 3% 53% -1% 46 

80 3 .9 225% -7% 56% -3% 29 

80 6 Mixed -29% 8% 46% 0% 37 

80 6 .7 6% 6% 66% -5% 46 

80 6 .8 86% 2% 50% -3% 34 

80 6 .9 151% -1% 43% -1% 23 

80 9 Mixed 119% -1% 48% -2% 28 

80 9 .7 93% 2% 65% -3% 26 

80 9 .8 130% 1% 49% -2% 25 

80 9 .9 109% 0% 69% 0% 13 

100 3 Mixed 56% 10% 51% -2% 55 

100 3 .7 -110% 7% 66% 8% 83 

100 3 .8 23% -2% 54% 6% 55 

100 3 .9 210% 3% 40% -4% 36 

100 6 Mixed 57% 1% 38% -1% 47 

100 6 .7 80% 1% 49% -1% 52 

100 6 .8 85% -2% 51% -1% 43 

100 6 .9 142% -3% 50% -1% 34 

100 9 Mixed 95% 0% 49% -2% 38 

100 9 .7 22% 9% 48% 0% 46 

100 9 .8 100% -1% 51% -2% 39 

100 9 .9 144% 4% 44% 0% 30 

 

Table A3. PLS Results 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed 601% 38% 177% -32% 1 

20 3 .7      

20 3 .8 928% 41% 78% -33% 1 

20 3 .9 -902% 32% 252% 11% 2 

20 6 Mixed 505% 28% 17% -7% 7 

20 6 .7 760% 41% -151% -25% 2 

20 6 .8 662% 13% 74% -12% 7 

20 6 .9      

20 9 Mixed 598% 57% 151% -30% 3 

20 9 .7 583% 37% 167% -7% 3 

20 9 .8 544% 23% 146% 5% 3 

20 9 .9      

40 3 Mixed 501% 0% 69% -11% 6 

40 3 .7 636% 7% 51% -15% 2 

40 3 .8 365% 7% 62% -17% 8 

40 3 .9 164% 11% 57% -11% 13 

40 6 Mixed 496% 9% 89% -18% 15 

40 6 .7 506% -4% 66% -5% 11 

40 6 .8 260% 5% 98% -11% 14 

40 6 .9      



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

40 9 Mixed 559% 9% 69% -13% 18 

40 9 .7 535% -7% 72% -8% 18 

40 9 .8 433% 10% 81% -16% 15 

40 9 .9      

60 3 Mixed 447% -11% 35% -17% 17 

60 3 .7 366% 3% 55% -31% 17 

60 3 .8 379% -3% 60% -20% 18 

60 3 .9 397% -10% 33% -14% 18 

60 6 Mixed 375% -3% 31% -8% 31 

60 6 .7 388% -7% 63% -16% 27 

60 6 .8 439% -11% 37% -10% 21 

60 6 .9      

60 9 Mixed 392% -11% 50% -6% 21 

60 9 .7 441% -4% 56% -12% 31 

60 9 .8 405% 5% 22% -10% 28 

60 9 .9      

80 3 Mixed 417% -8% 23% -18% 26 

80 3 .7 322% -3% 25% -28% 16 

80 3 .8 314% -12% 33% -17% 40 

80 3 .9 168% -6% 48% -11% 18 

80 6 Mixed 290% -4% 39% -8% 36 

80 6 .7 339% -12% 33% -14% 43 

80 6 .8 375% -14% 26% -5% 42 

80 6 .9      

80 9 Mixed 242% -9% 35% -4% 40 

80 9 .7 369% -13% 34% -10% 46 

80 9 .8 320% -8% 32% -5% 48 

80 9 .9      

100 3 Mixed 293% -12% 21% -15% 40 

100 3 .7 287% -21% 20% -25% 29 

100 3 .8 147% -12% 22% -15% 21 

100 3 .9 170% -7% 24% -5% 40 

100 6 Mixed 311% -8% 17% -9% 65 

100 6 .7 346% -11% 19% -16% 45 

100 6 .8 328% -10% 12% -10% 42 

100 6 .9 65% 7% 24% -7% 9 

100 9 Mixed 239% -5% 21% -6% 53 

100 9 .7 278% -13% 22% -11% 55 

100 9 .8 318% -9% 29% -7% 43 

100 9 .9      

 

Table A4. SEM Results 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed -713% 52% 192% 21% 20 

20 3 .7 -761% 82% 139% 15% 19 

20 3 .8 -874% 65% 166% 11% 15 

20 3 .9 -658% 38% 178% 18% 17 

20 6 Mixed NA NA NA NA NA 

20 6 .7 NA NA NA NA NA 

20 6 .8 NA NA NA NA NA 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 6 .9 NA NA NA NA NA 

20 9 Mixed NA NA NA NA NA 

20 9 .7 NA NA NA NA NA 

20 9 .8 NA NA NA NA NA 

20 9 .9 NA NA NA NA NA 

40 3 Mixed -504% 31% 97% 8% 22 

40 3 .7 -607% 55% 166% 0% 18 

40 3 .8 -570% 34% 148% 2% 19 

40 3 .9 -306% 24% 52% 2% 15 

40 6 Mixed -224% 18% 127% 2% 15 

40 6 .7 -699% 26% 161% 6% 19 

40 6 .8 -651% 17% 124% 5% 21 

40 6 .9 -404% 5% 106% 0% 23 

40 9 Mixed -355% 7% 126% 0% 22 

40 9 .7 -361% 19% 130% 5% 22 

40 9 .8 -480% 16% 110% 4% 21 

40 9 .9 -252% 11% 112% 3% 19 

60 3 Mixed -109% 5% 75% 1% 26 

60 3 .7 -672% 38% 129% 10% 24 

60 3 .8 -537% 26% 109% 5% 20 

60 3 .9 -173% 8% 73% -2% 20 

60 6 Mixed -314% 4% 79% 0% 16 

60 6 .7 -590% 4% 106% 10% 13 

60 6 .8 -447% 4% 92% 9% 14 

60 6 .9 -260% 0% 86% 4% 16 

60 9 Mixed -202% 2% 60% 5% 16 

60 9 .7 -490% 18% 83% 9% 16 

60 9 .8 -333% 6% 90% 6% 16 

60 9 .9 -196% -1% 89% 4% 17 

80 3 Mixed 32% 2% 62% 1% 21 

80 3 .7 -371% 17% 98% 2% 24 

80 3 .8 -231% 9% 76% 0% 24 

80 3 .9 229% -8% 59% -3% 22 

80 6 Mixed -95% 5% 46% 0% 25 

80 6 .7 -105% 7% 69% -1% 16 

80 6 .8 57% 0% 54% -1% 23 

80 6 .9 106% 3% 45% -2% 27 

80 9 Mixed 62% 6% 47% -2% 26 

80 9 .7 -5% 1% 79% 1% 17 

80 9 .8 91% 4% 45% -2% 21 

80 9 .9 108% 0% 60% -2% 17 

100 3 Mixed 91% 8% 50% -1% 27 

100 3 .7 -178% 15% 89% 7% 19 

100 3 .8 90% 5% 66% 2% 22 

100 3 .9 218% 7% 42% -5% 26 

100 6 Mixed 95% 0% 44% 0% 42 

100 6 .7 -124% 2% 75% 1% 25 

100 6 .8 47% -2% 56% -1% 28 

100 6 .9 107% -2% 44% -1% 36 

100 9 Mixed 159% -6% 48% -1% 30 

100 9 .7 -45% 10% 55% 3% 32 

100 9 .8 64% -4% 56% -1% 33 

100 9 .9 139% 5% 40% -2% 34 



 

Table A5. PLSc Results 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed      

20 3 .7      

20 3 .8      

20 3 .9 -147% 13% 204% 22% 2 

20 6 Mixed 3% 52% 221% -1% 3 

20 6 .7      

20 6 .8      

20 6 .9 NA NA NA NA NA 

20 9 Mixed 439% 46% 31% 3% 4 

20 9 .7      

20 9 .8      

20 9 .9 NA NA NA NA NA 

40 3 Mixed 465% 10% 107% 7% 5 

40 3 .7 814% 25% 77% -15% 1 

40 3 .8 238% 55% 107% -7% 8 

40 3 .9 276% 13% 121% 3% 6 

40 6 Mixed 702% -2% 97% 3% 4 

40 6 .7 504% 16% 132% -2% 2 

40 6 .8 395% 13% 117% -3% 14 

40 6 .9 NA NA NA NA NA 

40 9 Mixed 398% 5% 99% -2% 11 

40 9 .7 611% -5% 100% -4% 6 

40 9 .8 276% 15% 62% -2% 13 

40 9 .9 NA NA NA NA NA 

60 3 Mixed 191% 18% 81% -5% 4 

60 3 .7 449% 19% 91% -23% 1 

60 3 .8 508% 19% 60% -10% 7 

60 3 .9 115% 6% 90% -3% 20 

60 6 Mixed 333% 7% 78% -5% 20 

60 6 .7 525% 13% 28% -6% 7 

60 6 .8 448% 5% 59% -5% 16 

60 6 .9 NA NA NA NA NA 

60 9 Mixed 296% 4% 62% -12% 16 

60 9 .7 512% -4% 81% -7% 12 

60 9 .8 432% -3% 56% -7% 30 

60 9 .9 NA NA NA NA NA 

80 3 Mixed 60% 8% 82% -4% 17 

80 3 .7 -18% 35% 107% -8% 7 

80 3 .8 101% -2% 82% 3% 12 

80 3 .9 360% -12% 43% 4% 23 

80 6 Mixed 408% -5% 44% -1% 27 

80 6 .7 404% 5% 71% -4% 21 

80 6 .8 301% -4% 60% -1% 34 

80 6 .9 NA NA NA NA NA 

80 9 Mixed 324% -2% 49% -4% 37 

80 9 .7 376% -2% 63% -5% 30 

80 9 .8 428% -8% 29% -3% 41 

80 9 .9 NA NA NA NA NA 

100 3 Mixed 274% -1% 45% -4% 21 

100 3 .7 488% -2% 43% -7% 7 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

100 3 .8 338% -1% 44% -4% 17 

100 3 .9 206% -2% 34% -2% 31 

100 6 Mixed 254% -2% 33% -1% 38 

100 6 .7 396% -1% 42% -5% 23 

100 6 .8 393% -7% 23% -2% 31 

100 6 .9 NA NA NA NA NA 

100 9 Mixed 354% -6% 26% 0% 43 

100 9 .7 305% 0% 48% -2% 45 

100 9 .8 330% -3% 29% -2% 42 

100 9 .9 NA NA NA NA NA 

 

  



Appendix B. Full Results with 3 or More Effects Significant 

The following tables present full results for all conditions and statistical approaches where three of more paths were 
found to be significant. Empty rows indicate not a single replication (out of the 1,000 generated for each condition) 
in that condition had all four effects flagged as significant. Rows with NA are those where analyses would either not 
converge at all (for the case of PLSc) or were not run due to model identification issues (for the case of SEM). 

 

Table B.1. OLS Results 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed -129% 19% 125% -5% 26 

20 3 .7 -410% 31% 117% -8% 18 

20 3 .8 -211% 31% 112% -11% 35 

20 3 .9 -75% 15% 116% -4% 43 

20 6 Mixed -251% 27% 132% 1% 43 

20 6 .7 -251% 30% 98% 3% 26 

20 6 .8 -359% 26% 119% 8% 42 

20 6 .9 -333% 24% 133% 8% 47 

20 9 Mixed -338% 23% 127% 8% 50 

20 9 .7 -164% 36% 104% -6% 46 

20 9 .8 -380% 25% 125% 8% 48 

20 9 .9 -72% 26% 95% -3% 70 

40 3 Mixed -38% 6% 70% -13% 121 

40 3 .7 -56% 4% 67% -23% 93 

40 3 .8 -16% 5% 67% -14% 146 

40 3 .9 -44% 3% 75% -6% 184 

40 6 Mixed 6% 8% 70% -13% 158 

40 6 .7 -27% 6% 64% -17% 156 

40 6 .8 -17% 8% 66% -12% 189 

40 6 .9 -19% 8% 70% -7% 221 

40 9 Mixed -13% 9% 69% -9% 199 

40 9 .7 -7% 2% 69% -8% 161 

40 9 .8 -18% 9% 67% -9% 207 

40 9 .9 -25% 3% 76% -1% 215 

60 3 Mixed -17% -10% 50% -15% 214 

60 3 .7 -2% -8% 35% -25% 152 

60 3 .8 -26% -6% 46% -15% 225 

60 3 .9 -23% -7% 55% -6% 264 

60 6 Mixed -3% 0% 47% -10% 262 

60 6 .7 -16% -4% 48% -16% 226 

60 6 .8 -21% -2% 53% -10% 272 

60 6 .9 -31% -1% 57% -4% 307 

60 9 Mixed -24% -2% 58% -6% 281 

60 9 .7 -14% -5% 49% -10% 261 

60 9 .8 -22% -1% 57% -7% 283 

60 9 .9 -18% -1% 54% -3% 315 

80 3 Mixed -6% -10% 34% -15% 356 

80 3 .7 2% -15% 28% -24% 256 

80 3 .8 -1% -11% 33% -15% 337 

80 3 .9 -4% -5% 39% -8% 417 

80 6 Mixed 7% -5% 36% -9% 397 

80 6 .7 -3% -10% 35% -15% 326 

80 6 .8 -5% -6% 38% -9% 377 

80 6 .9 -3% -3% 40% -5% 409 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

80 9 Mixed -1% -4% 39% -7% 397 

80 9 .7 12% -6% 37% -10% 347 

80 9 .8 -3% -4% 39% -7% 396 

80 9 .9 11% 0% 40% -3% 401 

100 3 Mixed -13% -11% 25% -15% 437 

100 3 .7 -1% -18% 18% -24% 348 

100 3 .8 -9% -11% 25% -14% 423 

100 3 .9 -17% -5% 29% -6% 507 

100 6 Mixed 2% -6% 26% -9% 478 

100 6 .7 -6% -13% 25% -14% 425 

100 6 .8 -9% -8% 29% -8% 476 

100 6 .9 -11% -4% 31% -4% 514 

100 9 Mixed -11% -6% 30% -6% 498 

100 9 .7 -4% -8% 27% -10% 442 

100 9 .8 -10% -6% 29% -6% 499 

100 9 .9 -5% -2% 31% -2% 504 

 
 

Table B2. DR Results 

 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed -173% 19% 126% 9% 120 

20 3 .7 -55% 23% 57% 7% 137 

20 3 .8 -265% 32% 106% 9% 116 

20 3 .9 -143% 24% 122% 3% 88 

20 6 Mixed -181% 25% 123% 5% 104 

20 6 .7 -228% 27% 99% 8% 152 

20 6 .8 -255% 27% 120% 6% 113 

20 6 .9 -313% 27% 133% 7% 86 

20 9 Mixed -297% 28% 128% 7% 95 

20 9 .7 -149% 26% 99% 4% 122 

20 9 .8 -311% 27% 128% 7% 93 

20 9 .9 -83% 29% 98% 0% 83 

40 3 Mixed -52% 11% 78% 3% 286 

40 3 .7 -114% 17% 83% 1% 312 

40 3 .8 -75% 14% 78% 0% 288 

40 3 .9 -33% 9% 78% 0% 248 

40 6 Mixed -22% 11% 73% -4% 246 

40 6 .7 -47% 17% 72% -2% 293 

40 6 .8 -43% 14% 71% -3% 269 

40 6 .9 -25% 10% 70% -3% 257 

40 9 Mixed -33% 12% 69% -3% 264 

40 9 .7 -41% 7% 72% 3% 268 

40 9 .8 -36% 12% 74% -3% 262 

40 9 .9 -38% 5% 78% 2% 234 

60 3 Mixed -30% -1% 56% 1% 369 

60 3 .7 -71% 9% 53% 0% 397 

60 3 .8 -40% 5% 53% -1% 366 

60 3 .9 -19% -2% 52% 0% 352 

60 6 Mixed -17% 4% 54% -2% 333 

60 6 .7 -35% 5% 55% -1% 364 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

60 6 .8 -31% 4% 57% -2% 355 

60 6 .9 -31% 2% 57% -1% 342 

60 9 Mixed -37% 2% 57% -1% 346 

60 9 .7 -15% 2% 52% 0% 364 

60 9 .8 -36% 2% 58% -1% 348 

60 9 .9 -27% 0% 57% 0% 338 

80 3 Mixed -16% 3% 47% -1% 499 

80 3 .7 -12% 1% 44% 0% 551 

80 3 .8 -13% 0% 43% 1% 519 

80 3 .9 -20% 1% 45% -1% 484 

80 6 Mixed 1% 2% 43% -1% 478 

80 6 .7 6% 2% 39% -1% 494 

80 6 .8 2% 1% 40% -1% 473 

80 6 .9 -1% 0% 40% -1% 453 

80 9 Mixed 1% 1% 40% -1% 457 

80 9 .7 8% 2% 42% -1% 453 

80 9 .8 2% 0% 40% -1% 465 

80 9 .9 6% 2% 41% -1% 430 

100 3 Mixed -22% 2% 34% 1% 608 

100 3 .7 -18% 4% 38% 1% 588 

100 3 .8 -18% 2% 36% 1% 574 

100 3 .9 -21% 1% 33% 1% 587 

100 6 Mixed 3% 0% 32% -1% 549 

100 6 .7 -2% 0% 33% 0% 569 

100 6 .8 -3% -1% 33% 0% 564 

100 6 .9 -7% -1% 33% 0% 544 

100 9 Mixed -6% 0% 33% 0% 553 

100 9 .7 -10% 0% 35% 0% 537 

100 9 .8 -8% 0% 33% 0% 552 

100 9 .9 -8% -1% 33% 0% 528 
 
 

Table B3. PLS Results 

 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed 144% 29% 100% -9% 26 

20 3 .7 265% 44% 84% -19% 19 

20 3 .8 215% 31% 124% -12% 32 

20 3 .9 -71% 30% 108% -6% 62 

20 6 Mixed 215% 31% 74% -9% 66 

20 6 .7 388% 26% 123% -13% 36 

20 6 .8 365% 17% 90% -2% 63 

20 6 .9      

20 9 Mixed 276% 31% 124% -9% 55 

20 9 .7 389% 22% 109% -6% 55 

20 9 .8 204% 26% 130% -6% 74 

20 9 .9      

40 3 Mixed 132% 9% 60% -16% 180 

40 3 .7 179% 9% 51% -20% 76 

40 3 .8 140% 8% 58% -15% 155 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

40 3 .9 72% 7% 60% -8% 202 

40 6 Mixed 136% 9% 74% -9% 221 

40 6 .7 274% 9% 47% -15% 172 

40 6 .8 152% 5% 63% -8% 225 

40 6 .9      

40 9 Mixed 157% 10% 65% -8% 237 

40 9 .7 198% 7% 70% -11% 206 

40 9 .8 142% 9% 68% -10% 243 

40 9 .9      

60 3 Mixed 61% -3% 49% -15% 275 

60 3 .7 115% -2% 48% -24% 167 

60 3 .8 48% -3% 45% -14% 285 

60 3 .9 49% -2% 44% -9% 336 

60 6 Mixed 91% -1% 46% -8% 333 

60 6 .7 130% -1% 52% -14% 303 

60 6 .8 86% -2% 50% -8% 349 

60 6 .9      

60 9 Mixed 51% 2% 55% -6% 378 

60 9 .7 115% -2% 54% -9% 357 

60 9 .8 83% 2% 45% -8% 389 

60 9 .9      

80 3 Mixed 57% -6% 33% -14% 373 

80 3 .7 93% -7% 25% -24% 263 

80 3 .8 77% -8% 30% -16% 414 

80 3 .9 23% -3% 35% -8% 437 

80 6 Mixed 34% -3% 41% -7% 471 

80 6 .7 118% -5% 30% -15% 423 

80 6 .8 76% -4% 38% -8% 427 

80 6 .9      

80 9 Mixed 47% -2% 39% -6% 482 

80 9 .7 102% -5% 38% -9% 431 

80 9 .8 55% 0% 40% -6% 518 

80 9 .9      

100 3 Mixed 32% -8% 23% -14% 476 

100 3 .7 64% -16% 23% -24% 369 

100 3 .8 27% -10% 23% -15% 438 

100 3 .9 -4% -7% 29% -6% 547 

100 6 Mixed 47% -4% 29% -8% 571 

100 6 .7 76% -8% 27% -14% 466 

100 6 .8 31% -5% 25% -8% 555 

100 6 .9 13% 0% 30% -4% 101 

100 9 Mixed 18% -4% 32% -5% 586 

100 9 .7 48% -6% 36% -9% 527 

100 9 .8 29% -2% 32% -6% 568 

100 9 .9      
 
 

Table B4. SEM Results 



 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed -291% 37% 148% 8% 156 

20 3 .7 -240% 46% 129% 6% 114 

20 3 .8 -189% 33% 128% 7% 139 

20 3 .9 -129% 27% 104% 3% 155 

20 6 Mixed NA NA NA NA NA 

20 6 .7 NA NA NA NA NA 

20 6 .8 NA NA NA NA NA 

20 6 .9 NA NA NA NA NA 

20 9 Mixed NA NA NA NA NA 

20 9 .7 NA NA NA NA NA 

20 9 .8 NA NA NA NA NA 

20 9 .9 NA NA NA NA NA 

40 3 Mixed -70% 18% 84% 1% 250 

40 3 .7 -150% 33% 102% 0% 181 

40 3 .8 -93% 21% 90% 1% 222 

40 3 .9 -40% 10% 75% 1% 263 

40 6 Mixed 10% 7% 65% 1% 271 

40 6 .7 -89% 18% 80% -2% 246 

40 6 .8 -50% 16% 72% -2% 260 

40 6 .9 -11% 11% 64% -3% 310 

40 9 Mixed -23% 12% 62% -3% 303 

40 9 .7 -82% 13% 74% 2% 245 

40 9 .8 -27% 13% 65% -4% 294 

40 9 .9 -4% 4% 64% 1% 291 

60 3 Mixed -65% 4% 59% 1% 317 

60 3 .7 -111% 18% 73% 2% 195 

60 3 .8 -89% 10% 63% 0% 280 

60 3 .9 -18% 0% 54% 0% 343 

60 6 Mixed -10% 6% 55% -2% 314 

60 6 .7 -55% 9% 63% -2% 273 

60 6 .8 -36% 5% 58% -2% 326 

60 6 .9 -28% 2% 53% -1% 366 

60 9 Mixed -21% 2% 54% -1% 353 

60 9 .7 -41% 4% 57% 0% 324 

60 9 .8 -34% 3% 57% -1% 336 

60 9 .9 -18% 0% 50% 0% 380 

80 3 Mixed -23% 1% 48% 0% 414 

80 3 .7 -53% 11% 66% -1% 306 

80 3 .8 -32% 3% 56% -1% 382 

80 3 .9 -17% 1% 48% -1% 447 

80 6 Mixed -8% 1% 43% -1% 463 

80 6 .7 -20% 4% 52% -1% 366 

80 6 .8 -9% 2% 45% -2% 431 

80 6 .9 -5% 1% 39% -1% 469 

80 9 Mixed -3% 0% 39% -1% 462 

80 9 .7 -1% 3% 48% -1% 400 

80 9 .8 -8% 1% 43% -1% 448 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

80 9 .9 6% 1% 39% 0% 462 

100 3 Mixed -18% 3% 39% 0% 499 

100 3 .7 -55% 9% 56% 1% 354 

100 3 .8 -28% 4% 45% 1% 451 

100 3 .9 -26% 2% 36% 1% 547 

100 6 Mixed -2% 1% 33% 0% 526 

100 6 .7 -25% 0% 43% 0% 459 

100 6 .8 -12% 0% 36% 0% 515 

100 6 .9 -5% 0% 32% 0% 554 

100 9 Mixed -9% 0% 33% 0% 548 

100 9 .7 -13% 1% 39% 0% 482 

100 9 .8 -8% 0% 34% 0% 530 

100 9 .9 -6% -1% 32% 0% 541 
 
 

Table B5. PLSc Results 

 

Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

20 3 Mixed -268% 78% 130% 25% 13 

20 3 .7      

20 3 .8 -217% 42% 242% 7% 12 

20 3 .9 -170% 39% 177% 3% 42 

20 6 Mixed 163% 30% 166% 4% 16 

20 6 .7 -389% 85% 260% -6% 3 

20 6 .8 84% 46% 196% -5% 34 

20 6 .9 NA NA NA NA NA 

20 9 Mixed -44% 55% 141% -3% 33 

20 9 .7 129% 49% 206% 0% 10 

20 9 .8 12% 45% 183% -4% 26 

20 9 .9 NA NA NA NA NA 

40 3 Mixed 44% 22% 112% -4% 90 

40 3 .7 -47% 45% 157% 7% 24 

40 3 .8 76% 29% 108% -3% 85 

40 3 .9 31% 13% 84% -3% 184 

40 6 Mixed 47% 17% 107% -4% 148 

40 6 .7 50% 29% 143% -4% 62 

40 6 .8 120% 18% 102% -3% 145 

40 6 .9 NA NA NA NA NA 

40 9 Mixed 91% 13% 100% -4% 166 

40 9 .7 39% 28% 132% -4% 99 

40 9 .8 60% 18% 100% -3% 155 

40 9 .9 NA NA NA NA NA 

60 3 Mixed 14% 10% 85% -1% 187 

60 3 .7 24% 24% 118% -2% 76 

60 3 .8 18% 15% 88% -3% 187 

60 3 .9 40% 2% 64% 1% 292 

60 6 Mixed 61% 5% 76% -1% 285 

60 6 .7 59% 18% 93% -3% 169 

60 6 .8 46% 8% 73% -2% 252 

60 6 .9 NA NA NA NA NA 



Sample 
Size 

Indics. Loadings % Bias 
A → C 

% Bias 
A → D 

% Bias 
B → C 

% Bias 
C → D 

Count 

60 9 Mixed 29% 5% 79% -2% 317 

60 9 .7 44% 13% 97% -2% 209 

60 9 .8 48% 7% 77% -3% 301 

60 9 .9 NA NA NA NA NA 

80 3 Mixed 1% 5% 65% -1% 298 

80 3 .7 45% 17% 85% -2% 142 

80 3 .8 36% 5% 62% 1% 295 

80 3 .9 29% 1% 44% 1% 412 

80 6 Mixed 25% 2% 56% 0% 402 

80 6 .7 63% 10% 76% -2% 250 

80 6 .8 45% 3% 59% -1% 376 

80 6 .9 NA NA NA NA NA 

80 9 Mixed 9% 3% 61% -1% 458 

80 9 .7 24% 5% 78% 0% 352 

80 9 .8 42% 1% 54% 0% 417 

80 9 .9 NA NA NA NA NA 

100 3 Mixed 27% 2% 50% -1% 380 

100 3 .7 4% 13% 77% -2% 234 

100 3 .8 27% 2% 47% -1% 403 

100 3 .9 5% 0% 37% 0% 509 

100 6 Mixed 26% 0% 45% 0% 501 

100 6 .7 45% 5% 58% 0% 388 

100 6 .8 19% 2% 43% 0% 494 

100 6 .9 NA NA NA NA NA 

100 9 Mixed 21% 2% 45% 0% 493 

100 9 .7 33% 4% 59% 0% 459 

100 9 .8 8% 1% 46% 0% 523 

100 9 .9 NA NA NA NA NA 
 

  



Appendix C. R Code for Correlation Significance Example 

The code below produces the correlation significance example (see Table 1 and Figure 1). 
library(MASS) 

library(dplyr) 

 

### Simulation Parameters 

SAMPLE_SIZE <- c(10, 20, 30, 40, 50, 60, 70) 

POP_CORRELATION <- c(0, .1, .2, .3, .4, .5) 

REP <- 10000 

ALPHA <- .05 

 

### Accumulate results over replications 

out <- matrix(NA, nrow = length(SAMPLE_SIZE) * length(POP_CORRELATION) * REP, ncol = 6) 

colnames(out) <- c('replication', 'sample_size', 'pop_correlation', 'estimate', 'pvalue', 'is_sig') 

 

### Loop over the various combinations of conditions 

### Generate data and calculate correlations and p values 

### Store in the output matrix 

ro <- 0 

for(ss in 1:length(SAMPLE_SIZE)){ 

   

  for(pc in 1:length(POP_CORRELATION)){ 

     

    for(r in 1:REP){ 

       

      dataset <- mvrnorm(n = SAMPLE_SIZE[ss], mu = c(0,0), Sigma = matrix(c(1, POP_CORRELATION[pc], 

POP_CORRELATION[pc], 1), nrow = 2)) 

      res <- cor.test(x = dataset[,1], y = dataset[,2], method = 'pearson') 

      ro <- ro + 1 

      out[ro,'replication'] <- r 

      out[ro,'sample_size'] <- SAMPLE_SIZE[ss] 

      out[ro,'pop_correlation'] <- POP_CORRELATION[pc] 

      out[ro,'estimate'] <- res$estimate 

      out[ro,'pvalue'] <- res$p.value 

      out[ro,'is_sig'] <- res$p.value < ALPHA 

       

    } 

     

  } 

   

} 

 

### Summarized output by population correlation and sample size 

### Results can be used to build Table 1 in the research 

grouped <- group_by(as.data.frame(out), sample_size, pop_correlation) 

filtered <- filter(grouped, is_sig == 1) 

table_output_all <- summarise(grouped, .groups = 'keep', mean_all = mean(estimate), 

                                                         percentage_sig = mean(is_sig)) 

table_output_sig <- summarise(filtered, .groups = 'keep', mean_only_sig = mean(estimate)) 

 

### Histograms shown in Figure 1 in the research 

hist(out[which(out[,'is_sig'] == 1 & out[,'sample_size'] == 10 & out[,'pop_correlation'] == 

0.10),'estimate'], 

     main = 'Correlation = 0.10, Sample Size = 10', 

     xlab = 'Significant Correlations', 

     col = 'red', breaks = seq(from = -1, to = 1, by = .05)) 

hist(out[which(out[,'is_sig'] == 1 & out[,'sample_size'] == 70 & out[,'pop_correlation'] == 

0.10),'estimate'], 

     main = 'Correlation = 0.10, Sample Size = 70', 

     xlab = 'Significant Correlations', 

     col = 'red', breaks = seq(from = -1, to = 1, by = .05)) 

hist(out[which(out[,'is_sig'] == 1 & out[,'sample_size'] == 10 & out[,'pop_correlation'] == 

0.50),'estimate'], 

     main = 'Correlation = 0.50, Sample Size = 10', 

     xlab = 'Significant Correlations', 

     col = 'red', breaks = seq(from = -1, to = 1, by = .05)) 

hist(out[which(out[,'is_sig'] == 1 & out[,'sample_size'] == 70 & out[,'pop_correlation'] == 

0.50),'estimate'], 

     main = 'Correlation = 0.50, Sample Size = 70', 

     xlab = 'Significant Correlations', 

     col = 'red', breaks = seq(from = -1, to = 1, by = .05)) 



Appendix D. Standard Errors and Disattenuated Regression 

Devlieger et al (2016) examined four different alternatives for conducting hypothesis testing using factor score 
regression: a regression factor score approach, which uses the regression predictor to compute factor scores, a 
second approach which uses the Bartlett predictor to do the same, a bias avoiding method which uses the 
regression predictor for the independent variable and the Bartlett predictor for the dependent variable, and a bias 
correcting method which uses either of these predictors and then uses the variances and covariances of the factor 
scores to compute those of the true latent variable scores, which are then used to calculate the regression 
coefficients. The first three approaches perform a linear regression, for which the standard error formula is well-
known; however, this is not the case for the bias correcting method. Specifically, the standard error formula refers 
to the uncorrected regression coefficient and employing it with the corrected regression coefficient could introduce 
bias and result in an incorrect t value. Our disattenuated regression approach is similar to the bias correcting method 
employed by Devlieger et al (2016) and, therefore, it is worth considering the impact of the issue for our research. 

We first consider the difference between the standard deviation of the regression coefficients in our research, within 
a given condition, with the average standard error from those, which was computed using the standard formula 
(following Devlieger et al, 2016, the standard deviation of the coefficients within a given condition is their empirical 
standard deviation, while the average standard error of those is their mean standard error; see Table 3 in their 
work). The results shown in Table D1 indicate the presence of differences between the two when the measurement 
conditions are the poorest in our research design (smallest sample size, fewest and weakest indicators). However, 
as those improve, there is no noticeable difference between the two quantities.  

Second, we examined an alternative approach to establishing the significance of the regression coefficients for the 
case of disattenuated regression. Instead of computing the standard error using the standard formula, we 
bootstrapped each replication 1,000 times. From those bootstrapped replicates, we computed both a standard error 
as well as 95% confidence intervals, using the percentile approach, the same process recommended for 
significance testing in PLSc (e.g., Aguirre-Urreta & Rönkkö, 2018). Table D2 compares the standard deviation of 
the regression coefficients within a given condition, as shown in Table D1, with the average standard error from the 
bootstrap replicates. From the results it is clear that, under the weakest of measurement conditions, there are very 
marked differences between the two quantities, with the average standard error from the bootstrap replicates being 
a multiple of standard deviation of the regression coefficients, which we attribute to the presence of extreme values 
in small samples due to the disattenuation process. However, for sample sizes of 80 and above, there are no 
noticeable differences.  

In addition, we calculated the average relative bias (as a percentage of the original value) for each relationship in 
the research model, for the case when all four regression coefficients were significant (as was done in the main 
body of our research). These results, obtained from a 95% percentile confidence interval using bootstrap replicates, 
are not qualitatively different from those shown in Table A2, highlighting that the marked bias due to only considering 
significant results when sample sizes are small is not solely due to the approach used to establish statistical 
significance, but rather it is a systematic issue resulting from the combination of a preference for significant results 
with obtaining those from small samples. Average coefficient estimates and relative bias for each one of those, by 
simulation condition, are reported in Table D3. 

 

Table D1. Standard Error Bias in Disattenuated Regression 

Sample 
Size 

Indics. Loadings SE Diff. 
A → C 

SE Diff. 
A → D 

SE Diff. 
B → C 

SE Diff. 
C → D 

20 3 0.7  0.15   0.46   0.13   0.44  

40 3 0.7  0.09   0.07   0.09   0.05  

60 3 0.7  0.07   0.06   0.06   0.05  

80 3 0.7  0.05   0.05   0.04   0.04  

100 3 0.7  0.05   0.05   0.04   0.03  

20 6 0.7  0.08   0.07   0.07   0.04  

40 6 0.7  0.04   0.03   0.03   0.03  

60 6 0.7  0.03   0.04   0.03   0.02  

80 6 0.7  0.03   0.03   0.02   0.01  

100 6 0.7  0.03   0.02   0.02   0.01  

20 9 0.7  0.04   0.04   0.04   0.02  



Sample 
Size 

Indics. Loadings SE Diff. 
A → C 

SE Diff. 
A → D 

SE Diff. 
B → C 

SE Diff. 
C → D 

40 9 0.7  0.03   0.03   0.02   0.01  

60 9 0.7  0.02   0.02   0.02   0.01  

80 9 0.7  0.02   0.02   0.01   0.00  

100 9 0.7  0.02   0.01   0.01   0.00  

20 3 0.8  0.08   0.07   0.06   0.05  

40 3 0.8  0.05   0.04   0.05   0.02  

60 3 0.8  0.04   0.03   0.03   0.02  

80 3 0.8  0.03   0.02   0.02   0.02  

100 3 0.8  0.03   0.03   0.02   0.01  

20 6 0.8  0.04   0.04   0.02   0.01  

40 6 0.8  0.02   0.02   0.02   0.01  

60 6 0.8  0.02   0.02   0.02   0.00  

80 6 0.8  0.02   0.01   0.01   (0.00) 

100 6 0.8  0.01   0.01   0.01   0.00  

20 9 0.8  0.03   0.03   0.01   0.00  

40 9 0.8  0.02   0.01   0.01   (0.00) 

60 9 0.8  0.01   0.01   0.01   (0.00) 

80 9 0.8  0.01   0.01   0.01   (0.00) 

100 9 0.8  0.01   0.01   0.01   (0.00) 

20 3 0.9  0.02   0.03   0.02   0.01  

40 3 0.9  0.01   0.02   0.01   (0.00) 

60 3 0.9  0.01   0.01   0.01   0.00  

80 3 0.9  0.01   0.01   0.01   (0.00) 

100 3 0.9  0.01   0.01   0.01   (0.00) 

20 6 0.9  0.02   0.02   0.00   (0.01) 

40 6 0.9  0.01   0.00   0.00   (0.01) 

60 6 0.9  0.01   0.01   0.01   (0.00) 

80 6 0.9  0.01   0.01   0.00   (0.01) 

100 6 0.9  0.01   0.00   0.00   (0.01) 

20 9 0.9  0.01   0.00   0.00   (0.02) 

40 9 0.9  0.01   0.01   0.00   (0.01) 

60 9 0.9  0.00   0.00   0.00   (0.01) 

80 9 0.9  0.00   0.00   0.00   (0.01) 

100 9 0.9  0.00   0.00   0.00   (0.01) 

20 3 Mixed  0.07   0.06   0.07   0.04  

40 3 Mixed  0.03   0.04   0.03   0.02  

60 3 Mixed  0.03   0.03   0.03   0.02  

80 3 Mixed  0.02   0.03   0.02   0.01  

100 3 Mixed  0.02   0.03   0.02   0.01  

20 6 Mixed  0.03   0.03   0.03   0.01  

40 6 Mixed  0.02   0.03   0.01   0.01  

60 6 Mixed  0.02   0.02   0.01   0.00  

80 6 Mixed  0.01   0.01   0.01   0.00  

100 6 Mixed  0.01   0.01   0.01   0.00  

20 9 Mixed  0.03   0.03   0.01   0.00  

40 9 Mixed  0.02   0.01   0.01   (0.00) 

60 9 Mixed  0.01   0.01   0.01   (0.00) 

80 9 Mixed  0.01   0.01   0.01   (0.00) 

100 9 Mixed  0.01   0.01   0.01   (0.00) 
Note: Reported values are the difference between the standard deviation of coefficient estimates for a given condition and the 
average of the standard errors for that coefficient, within the same condition. 
 

 



Table D2. SE Bias from Bootstrapping 

 

Sample 
Size 

Indics. Loadings A → C A → D B → C C → D 

StDev Mean StDev Mean StDev Mean StDev Mean 

20 3 Mixed  0.294   2.127   0.208   0.623   0.293   2.126   0.186   0.603  

20 3 0.7  0.322   3.062   0.229   1.623   0.321   3.060   0.198   1.607  

20 3 0.8  0.340   2.197   0.207   5.443   0.332   2.194   0.186   5.427  

20 3 0.9  0.260   0.461   0.185   0.231   0.262   0.459   0.161   0.216  

20 6 Mixed  0.268   1.171   0.193   0.343   0.267   1.168   0.167   0.328  

20 6 0.7  0.308   2.106   0.212   1.343   0.301   2.098   0.186   1.398  

20 6 0.8  0.272   0.957   0.191   0.338   0.263   0.949   0.174   0.322  

20 6 0.9  0.257   0.515   0.178   0.184   0.243   0.513   0.154   0.166  

20 9 Mixed  0.273   0.456   0.182   0.237   0.257   0.453   0.165   0.215  

20 9 0.7  0.279   3.436   0.201   0.621   0.271   3.198   0.169   0.643  

20 9 0.8  0.264   0.421   0.179   0.255   0.255   0.415   0.163   0.252  

20 9 0.9  0.248   0.252   0.169   0.192   0.243   0.249   0.149   0.176  

40 3 Mixed  0.197   0.228   0.150   0.154   0.199   0.226   0.130   0.139  

40 3 0.7  0.239   1.216   0.180   0.323   0.238   1.215   0.158   0.308  

40 3 0.8  0.209   0.220   0.149   0.159   0.213   0.217   0.130   0.143  

40 3 0.9  0.177   0.180   0.130   0.127   0.177   0.177   0.110   0.113  

40 6 Mixed  0.186   0.180   0.138   0.129   0.177   0.178   0.119   0.114  

40 6 0.7  0.204   0.228   0.143   0.154   0.197   0.226   0.130   0.139  

40 6 0.8  0.188   0.182   0.126   0.132   0.182   0.179   0.117   0.116  

40 6 0.9  0.177   0.169   0.115   0.118   0.169   0.166   0.107   0.104  

40 9 Mixed  0.182   0.173   0.120   0.123   0.174   0.170   0.112   0.109  

40 9 0.7  0.195   0.186   0.139   0.135   0.190   0.186   0.122   0.120  

40 9 0.8  0.182   0.173   0.119   0.123   0.176   0.171   0.112   0.109  

40 9 0.9  0.174   0.164   0.118   0.113   0.170   0.164   0.104   0.100  

60 3 Mixed  0.166   0.164   0.122   0.123   0.159   0.164   0.112   0.109  

60 3 0.7  0.196   0.218   0.146   0.156   0.184   0.217   0.128   0.143  

60 3 0.8  0.170   0.165   0.122   0.123   0.161   0.164   0.109   0.111  

60 3 0.9  0.149   0.144   0.105   0.103   0.142   0.143   0.095   0.091  

60 6 Mixed  0.151   0.146   0.108   0.104   0.148   0.145   0.095   0.093  

60 6 0.7  0.164   0.162   0.127   0.121   0.167   0.160   0.108   0.107  

60 6 0.8  0.151   0.146   0.113   0.106   0.152   0.145   0.096   0.093  

60 6 0.9  0.142   0.137   0.102   0.096   0.143   0.135   0.087   0.084  

60 9 Mixed  0.145   0.140   0.106   0.100   0.146   0.139   0.091   0.087  

60 9 0.7  0.153   0.151   0.110   0.109   0.153   0.148   0.097   0.096  

60 9 0.8  0.146   0.140   0.107   0.100   0.147   0.139   0.091   0.087  

60 9 0.9  0.138   0.135   0.095   0.093   0.138   0.133   0.083   0.081  

80 3 Mixed  0.138   0.139   0.106   0.104   0.137   0.137   0.092   0.093  

80 3 0.7  0.168   0.167   0.125   0.131   0.161   0.164   0.116   0.119  

80 3 0.8  0.145   0.140   0.103   0.105   0.136   0.138   0.095   0.093  

80 3 0.9  0.123   0.123   0.090   0.088   0.122   0.122   0.078   0.078  

80 6 Mixed  0.130   0.125   0.093   0.090   0.127   0.124   0.080   0.079  

80 6 0.7  0.143   0.137   0.105   0.103   0.138   0.136   0.089   0.091  

80 6 0.8  0.132   0.125   0.093   0.091   0.127   0.124   0.078   0.080  

80 6 0.9  0.124   0.117   0.084   0.082   0.120   0.116   0.071   0.072  

80 9 Mixed  0.127   0.120   0.088   0.086   0.123   0.119   0.074   0.075  

80 9 0.7  0.132   0.129   0.094   0.093   0.130   0.126   0.083   0.083  

80 9 0.8  0.128   0.120   0.088   0.086   0.123   0.119   0.074   0.075  

80 9 0.9  0.120   0.116   0.080   0.080   0.117   0.114   0.072   0.071  

100 3 Mixed  0.127   0.123   0.096   0.093   0.124   0.122   0.082   0.081  

100 3 0.7  0.150   0.147   0.118   0.116   0.147   0.145   0.101   0.105  



Sample 
Size 

Indics. Loadings A → C A → D B → C C → D 

StDev Mean StDev Mean StDev Mean StDev Mean 

100 3 0.8  0.129   0.124   0.095   0.093   0.125   0.122   0.080   0.083  

100 3 0.9  0.114   0.110   0.081   0.079   0.111   0.109   0.069   0.068  

100 6 Mixed  0.115   0.112   0.080   0.080   0.112   0.111   0.071   0.070  

100 6 0.7  0.128   0.123   0.090   0.091   0.125   0.120   0.080   0.080  

100 6 0.8  0.118   0.112   0.079   0.080   0.115   0.110   0.070   0.070  

100 6 0.9  0.111   0.106   0.072   0.073   0.108   0.104   0.064   0.064  

100 9 Mixed  0.114   0.108   0.075   0.076   0.110   0.106   0.066   0.066  

100 9 0.7  0.118   0.115   0.083   0.083   0.114   0.113   0.072   0.073  

100 9 0.8  0.114   0.108   0.075   0.076   0.111   0.106   0.067   0.067  

100 9 0.9  0.107   0.104   0.071   0.072   0.103   0.102   0.061   0.062  
Note: Reported values are the standard deviation of coefficient estimates for a given condition and the average of the standard 
errors for that coefficient, within the same condition. The standard errors were calculated from bootstrap resamples.  

 

Table D3. Significant Estimation Bias (Bootstrapping) 

Sample 
Size 

Indics. Loadings A → C A → D B → C C → D 

Mean Bias Mean Bias Mean Bias Mean Bias 

20 3 Mixed         

20 3 0.7         

20 3 0.8         

20 3 0.9  (0.456) -
1012% 

 0.484  38%  0.479  139%  0.779  30% 

20 6 Mixed  (0.511) -
1121% 

 0.605  73%  0.411  106%  0.810  35% 

20 6 0.7         

20 6 0.8  0.296  493%  0.309  -12%  (0.093) -147%  0.414  -31% 

20 6 0.9  (0.453) -
1006% 

 0.508  45%  0.622  211%  0.646  8% 

20 9 Mixed         

20 9 0.7  0.167  235%  0.350  0%  0.280  40%  0.598  0% 

20 9 0.8         

20 9 0.9  (0.218) -535%  0.544  55%  0.520  160%  0.722  20% 

40 3 Mixed  (0.488) -
1076% 

 0.488  39%  0.593  196%  0.627  4% 

40 3 0.7  0.230  360%  0.368  5%  0.133  -33%  0.607  1% 

40 3 0.8  (0.321) -742%  0.511  46%  0.609  204%  0.635  6% 

40 3 0.9  (0.183) -466%  0.480  37%  0.352  76%  0.619  3% 

40 6 Mixed  (0.071) -243%  0.413  18%  0.313  57%  0.546  -9% 

40 6 0.7  (0.447) -995%  0.490  40%  0.616  208%  0.633  5% 

40 6 0.8  (0.254) -608%  0.417  19%  0.480  140%  0.598  0% 

40 6 0.9  (0.174) -448%  0.404  15%  0.451  126%  0.582  -3% 

40 9 Mixed  (0.159) -418%  0.404  15%  0.448  124%  0.596  -1% 

40 9 0.7  (0.246) -591%  0.447  28%  0.500  150%  0.647  8% 

40 9 0.8  (0.180) -460%  0.408  17%  0.455  128%  0.592  -1% 

40 9 0.9  (0.164) -429%  0.422  21%  0.440  120%  0.608  1% 

60 3 Mixed  (0.211) -521%  0.412  18%  0.411  105%  0.650  8% 

60 3 0.7  0.066  33%  0.358  2%  0.132  -34%  0.582  -3% 

60 3 0.8  (0.174) -448%  0.435  24%  0.437  119%  0.622  4% 

60 3 0.9  (0.103) -306%  0.384  10%  0.362  81%  0.632  5% 

60 6 Mixed  (0.126) -353%  0.376  7%  0.392  96%  0.609  1% 

60 6 0.7  (0.127) -354%  0.443  27%  0.343  72%  0.627  4% 

60 6 0.8  (0.099) -298%  0.389  11%  0.341  70%  0.631  5% 

60 6 0.9  (0.112) -323%  0.360  3%  0.366  83%  0.636  6% 



Sample 
Size 

Indics. Loadings A → C A → D B → C C → D 

Mean Bias Mean Bias Mean Bias Mean Bias 

60 9 Mixed  (0.117) -333%  0.363  4%  0.373  87%  0.637  6% 

60 9 0.7  (0.208) -515%  0.404  16%  0.422  111%  0.656  9% 

60 9 0.8  (0.144) -388%  0.368  5%  0.375  87%  0.638  6% 

60 9 0.9  (0.030) -159%  0.343  -2%  0.391  95%  0.620  3% 

80 3 Mixed  0.038  -23%  0.359  2%  0.367  84%  0.603  0% 

80 3 0.7  (0.293) -686%  0.443  27%  0.453  127%  0.643  7% 

80 3 0.8  (0.072) -244%  0.404  15%  0.358  79%  0.582  -3% 

80 3 0.9  0.118  136%  0.318  -9%  0.340  70%  0.605  1% 

80 6 Mixed  (0.002) -105%  0.396  13%  0.276  38%  0.600  0% 

80 6 0.7  (0.073) -246%  0.358  2%  0.347  73%  0.613  2% 

80 6 0.8  (0.027) -155%  0.337  -4%  0.312  56%  0.606  1% 

80 6 0.9  (0.001) -103%  0.328  -6%  0.291  46%  0.592  -1% 

80 9 Mixed  (0.003) -106%  0.341  -3%  0.292  46%  0.598  0% 

80 9 0.7  (0.045) -190%  0.378  8%  0.369  84%  0.585  -2% 

80 9 0.8  0.011  -78%  0.352  1%  0.312  56%  0.599  0% 

80 9 0.9  0.052  4%  0.356  2%  0.327  64%  0.582  -3% 

100 3 Mixed  0.060  20%  0.380  9%  0.316  58%  0.589  -2% 

100 3 0.7  (0.144) -388%  0.431  23%  0.380  90%  0.696  16% 

100 3 0.8  0.006  -88%  0.398  14%  0.336  68%  0.622  4% 

100 3 0.9  0.120  140%  0.366  4%  0.291  45%  0.580  -3% 

100 6 Mixed  0.091  83%  0.358  2%  0.298  49%  0.594  -1% 

100 6 0.7  0.072  45%  0.355  2%  0.307  54%  0.610  2% 

100 6 0.8  0.066  32%  0.337  -4%  0.316  58%  0.618  3% 

100 6 0.9  0.077  55%  0.343  -2%  0.297  49%  0.602  0% 

100 9 Mixed  0.070  41%  0.340  -3%  0.305  52%  0.605  1% 

100 9 0.7  0.079  57%  0.368  5%  0.301  50%  0.604  1% 

100 9 0.8  0.095  89%  0.341  -3%  0.303  51%  0.598  0% 

100 9 0.9  0.131  162%  0.355  2%  0.264  32%  0.594  -1% 
Note: Reported values, for each relationship in the research model, are the average estimate and the relative bias over all 
replications within a given condition where all coefficients were significant. An estimate was deemed significant when zero was 
not included in a 95% percentile confidence interval. 

  



  

 

 

Figure 1. Significant Correlations Distribution (Sample Cases) 

  



  

Figure 2. Population Model (Structural Portion) 

  



 

Figure 3. Estimation Bias by Path and Statistical Approach over Sample Size 

  



 

Figure 4. Estimation Bias by Path and Statistical Approach over Number of Indicators 

 

 
 

  



 

Figure 5. Estimation Bias by Path and Statistical Approach over Loading Pattern   



Table 1. Average Sample Correlation, Relative Frequency of Significant Correlations, and Average of 
Significant Sample Correlation 

Sample size Population Correlation 

0 .1 .2 

Mean 
(All) 

% Sig. Mean 
(Sig.) 

Mean 
 (All) 

% Sig. Mean 
 (Sig.) 

Mean 
 (All) 

% Sig. Mean 
 (Sig.) 

10 0.007 5.0 % 0.044 0.102 6.0 % 0.396 0.191 8.3 % 0.619 

20 0.002 5.2 % 0.015 0.095 6.9 % 0.387 0.196 13.7 % 0.517 

30 0.000 4.8 % -0.030 0.097 7.4 % 0.356 0.197 19.0 % 0.440 

40 -0.001 5.0 % -0.012 0.100 9.6 % 0.347 0.197 24.4 % 0.393 

50 0.002 5.3 % 0.006 0.102 10.7 % 0.311 0.196 28.2 % 0.358 

60 0.000 5.2 % -0.005 0.099 11.9 % 0.291 0.201 34.7 % 0.333 

70 0.002 5.1 % 0.012 0.100 13.0 % 0.282 0.199 38.6 % 0.313 

Sample size Population Correlation 

.3 .4 .5 

Mean 
(All) 

% Sig. Mean 
(Sig.) 

Mean 
 (All) 

% Sig. Mean 
 (Sig.) 

Mean 
 (All) 

% Sig. Mean 
 (Sig.) 

10 0.282 12.8 % 0.696 0.385 21.0 % 0.734 0.482 32.8 % 0.741 

20 0.290 24.1 % 0.546 0.390 42.9 % 0.565 0.491 64.7 % 0.598 

30 0.295 36.8 % 0.465 0.391 59.9 % 0.496 0.493 83.0 % 0.540 

40 0.297 47.8 % 0.417 0.395 74.4 % 0.456 0.496 92.7 % 0.516 

50 0.298 57.7 % 0.388 0.398 83.5 % 0.436 0.496 96.8 % 0.505 

60 0.297 65.4 % 0.366 0.400 90.2 % 0.422 0.497 98.7 % 0.501 

70 0.299 72.7 % 0.351 0.396 93.7 % 0.410 0.497 99.6 % 0.498 

Note: Correlation over 10,000 simulated samples. Mean of all correlations and only significant (Sig.) correlations. % Sig refers 
to either Type I Error (for those conditions where the true correlation is 0) and statistical power otherwise. 
  



 

Table 2. Statistical Power by Simulation Condition 

 

Condition OLS DR PLS PLSc SEM 

(a) Sample Size 
     20 
     40 
     60 
     80 
   100 

 
0.14% 
0.65% 
1.01% 
1.51% 
2.33% 

 
1.13% 
2.60% 
2.88% 
3.51% 
4.65% 

 
0.24% 
1.00% 
1.91% 
2.96% 
3.68% 

 
0.09% 
0.70% 
1.33% 
2.49% 
3.05% 

 
0.59% 
1.97% 
1.78% 
2.19% 
2.95% 

(b) Number of Indicators 
     3 
     6 
     9 

 
1.06% 
1.12% 
1.17% 

 
4.03% 
2.68% 
2.15% 

 
1.67% 
2.09% 
2.13% 

 
0.95% 
1.65% 
2.20% 

 
2.10% 
2.24% 
2.24% 

(c) Loadings 
     .7 
     .8 
     .9 
     Mixed 

 
0.96% 
1.19% 
1.25% 
1.12% 

 
4.26% 
2.94% 
1.83% 
2.78% 

 
2.30% 
2.34% 
0.67% 
2.53% 

 
1.08% 
1.77% 
1.78% 
1.67% 

 
2.03% 
2.13% 
2.22% 
2.37% 

Note: Percentages shown are the number of replications where all four estimates were significant divided 
by the total number of replications in each level for a given simulation condition. 
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