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ABSTRACT 

Sievänen, Tero 
The associations of circulating microRNAs and lifestyle habits with cancer risk 
in Lynch syndrome 
Jyväskylä: University of Jyväskylä, 2024, 102 p. + original articles 
(JYU Dissertations 
ISSN 2489-9003; 821) 
ISBN 978-952-86-0284-2 (PDF) 

Lynch syndrome (LS) is the most common hereditary cancer syndrome. This 
thesis explored the associations between circulating microRNAs (c-miRs), 
lifestyle habits, and the incidence of LS cancer. By utilizing high-throughput 
sequencing and bioinformatic approaches, the aims of this thesis were to 
characterize the serum-based c-miR landscape of cancer-free LS carriers to 
inspect whether any of those c-miRs are potential indicators of upcoming 
colorectal cancer (CRC), and to determine whether they are associated with 
modifiable CRC risk factors, such as body mass index and physical activity. 
Furthermore, this thesis applied retrospective lifestyle questionnaire data to 
investigate whether longitudinal body weight gain and physical activity are 
associated with LS cancer risk. It was observed that cancer-free LS carriers (n = 
101) displayed aberrant serum c-miR expression compared to the control group
(n = 37), but not when compared to sporadic CRC patients (n = 24). A panel
composed of these aberrantly expressed c-miRs, including hsa-miR-10b-5p, hsa-
miR-19b-3p, hsa-miR-27b-3p, hsa-miR-200a-3p, and hsa-miR-3615, predicted
CRC incidence in a prospective analysis. These findings indicated that c-miR
profile mirrors early-stage carcinogenesis and may have risk stratification
potential during surveillance. The CRC predictive c-miRs did not correlate with
either body mass index or physical activity, suggesting that they are associated
with LS CRC risk independently of lifestyle habits. However, in the retrospective
analysis (n = 465), adulthood weight gain was seen as a cancer risk factor for
males, whereas near-term weight was a protective factor for females.
Longitudinal physical activity was associated with a decreased overall cancer
risk in male LS carriers. Further research is required to validate these findings
and to elucidate the complex factors underlying lifestyle and LS cancer.
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TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Sievänen, Tero 
Verenkierron mikro-RNA:n, elämäntapojen ja syöpäriskin yhteydet Lynchin 
oireyhtymässä 
Jyväskylä: Jyväskylän yliopisto, 2024, 102 s. + alkuperäiset artikkelit 
(JYU Dissertations 
ISSN 2489-9003; 821) 
ISBN 978-952-86-0284-2 (PDF) 

Lynchin oireyhtymä (LS) on perinnöllinen syöpäalttiusoireyhtymä, joka altistaa 
yksilön useille syöville. Tämä väitöskirjatutkimus seuloi 
sekvensointimenetelmien sekä bioinformatiikan avulla syöpävapaiden 
suomalaisten LS-kantajien (n = 101) verenkierron mikro-RNA (c-miR) profiileita 
vertaamalla niitä ei-perinnöllisten suolistosyöpäpotilaiden (n = 24) sekä 
terveiden verrokkien (n = 37) vastaaviin profiileihin. Pitkittäisasetelmassa 
tutkittiin, voitiinko tunnistettujen c-miR:n avulla ennustaa suolistosyöpään 
sairastumista, ja ovatko c-miR:t yhteydessä kehon painoon ja fyysiseen 
aktiivisuuteen. Lisäksi tehtiin retrospektiivinen elämäntapakysely (n = 465), jolla 
selvitettiin, olivatko kehon paino tai fyysinen aktiivisuus yhteydessä 
syöpäriskiin. Syöpävapaiden LS-kantajien c-miR-profiilien havaittiin 
poikkeavan merkittävästi terveistä verrokeista, mutta ei suolistosyöpäpotilaista. 
Näistä viisi miR:ta, hsa-miR-10b-5p, hsa-miR-19b-3p, hsa-miR-27b-3p, hsa-miR-
200a-3p ja hsa-miR-3615, muodostivat riskiennustepaneelin, joka ennusti 
suolistosyöpään sairastumista neljän vuoden seurannan aikana, mutta ei ollut 
yhteydessä elämäntapatekijöihin. Retrospektiivinen analyysi osoitti, että 
aikuisiän painonnousu lisää syöpäriskiä miehillä, kun taas lyhyen aikavälin 
painonnousun huomattiin alentavan naisten suolistosyöpäriskiä. Lisäksi 
havaittiin, että fyysinen aktiivisuus voi suojata erityisesti miespuolisia LS-
kantajia syöviltä. Saadut tulokset osoittivat, että terveiden LS-kantajien c-miR-
profiilin muutokset kuvastavat aikaisen vaiheen suolistosyövän kehittymistä ja 
ennustavat siihen sairastumista. Näin ollen c-miR-profiilit voivat olla 
potentiaalisia merkkiaineita, jotka voitaisiin yhdistää olemassa oleviin 
seulontatyökaluihin korkean syöpäriskin potilaiden ohjaamiseksi 
intensiivisempään seurantaan. Tutkimuksessa havaittiin myös, että 
painonhallinta ja fyysinen aktiivisuus voivat suojata erityisesti LS-kantajamiehiä 
syöviltä. Lisätutkimusta aiheesta tarvitaan saatujen tulosten vahvistamiseksi. 

Asiasanat: elämäntavat, Lynchin oireyhtymä, mikro-RNA, suolistosyöpä 
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1 INTRODUCTION 

“No disease to which the human species is subject carries with it so formidable 
an appearance, or is productive of such dreadful consequences, as that which is 
called cancer. It has ever been the reproach of the medical art, and the most 
learned and experienced of the profession have employed their time and 
attention to but little purpose towards perfecting its cure.”  

Still, almost two and a half centuries after this description by Dr. Robert 
White—whose work in the late 1700s represents one of the earliest scientific 
reports on cancer (White, 1784)—cancer remains one of the most daunting 
medical challenges of the modern era. While the 19th century witnessed a surge 
in surgical interventions, the subsequent century ushered in a transformative era 
in cancer research by demonstrating the link between tobacco use and lung 
cancer, as well as the development of chemotherapy and radiation therapy as 
viable cancer treatments (Greenivald & Dunn, 2009). However, despite progress 
and improved understanding, the global burden of cancer continues to increase, 
placing substantial strain on individuals, families, communities, and health 
systems, both physically and financially.  

Cancer is a general term for a large group of diseases whose causes, 
characteristics, and occurrences can vary greatly. To date, cancer is one of the 
leading causes of death globally (Sung et al., 2021). Regarding the global cancer 
burden, colorectal cancer (CRC) accounts for approximately 10% of global cancer 
cases and deaths annually, with rising incidence rates (Siegel et al., 2021; Sung et 
al., 2021). In Finland, 17% of diagnosed females and 27% of diagnosed males died 
of CRC in 2021 (Seppä et al., 2023). The majority of CRCs stem from polyps, 
evolving over an estimated 10 to 15 years from aberrant crypts to neoplastic 
polyps and eventually to CRC (Dekker et al., 2019). As with all cancers, the 
prognosis of CRC is better when the carcinoma is detected early (Seppä et al., 
2023). Environmental factors, such as obesity and increased sedentary behavior, 
are known risk factors for several cancers (Sung et al., 2019). This growing 
inactivity manifests as an increased number of incident cancers (Siegel et al., 2021; 
Sung et al., 2019), although enhanced diagnostics via nationwide screening 
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initiatives, as well as the fact that the average human lifespan has risen drastically 
over the last century, also contribute to the number of detected cancers. 

Lynch syndrome (LS) is the most common hereditary cancer syndrome, 
with an estimated prevalence of 1:279 (Haraldsdottir et al., 2017). LS is caused by 
pathogenic variants in the DNA mismatch repair genes MLH1, MSH2, MSH6, 
and PMS2, causing mutation accumulation and an increased risk of multiple 
cancers, especially CRC (Lynch et al., 2015). Therefore, LS carriers are offered 
lifelong surveillance and frequent cancer screening via colonoscopy with 
polypectomy as the standard of care. However, all pathogenic gene variants 
possess different clinical presentations, risk estimates, and molecular features, 
and thus LS presents a collection of diseases that should be treated exclusively 
(Møller et al., 2023). For example, CRC risk estimates for MLH1 carriers are 
substantially higher than those of PMS2 carriers (Dominguez-Valentin et al., 
2020), and pathogenic MLH1-driven CRC displays several unique features, from 
natural history to clinical presentation, making screening and prevention 
procedures unevenly effective (Ahadova et al., 2021; Seppälä et al., 2023). Thus, 
there is an unmet need for more enhanced risk stratification to find patients who 
are at enhanced risk of developing CRC and who would most benefit from the 
screenings. 

Recently, there has been a growing emphasis on personalized medicine and 
targeted therapies that seek to enhance treatment efficacy and improve outcomes 
by tailoring interventions to the unique and individualized factors inherent in 
each cancer patient (Ignatiadis et al., 2021; Mauri et al., 2022). MicroRNAs (miRs) 
are small non-coding RNAs that orchestrate several core processes of 
carcinogenesis and physiological responses through the regulation of gene 
expression (Mori et al., 2019). MiRs are stable in circulation and easily collected, 
thus showing considerable potential as minimally invasive cancer biomarkers 
(Francavilla et al., 2020; Jung et al., 2020; Sapp et al., 2017). Importantly, miRs 
have been shown to predict CRC incidence several years prior to diagnosis (Raut 
et al., 2021; Wikberg et al., 2018). Therefore, they might possess risk stratification 
potential that could be applied to identify LS carriers who are at increased risk of 
developing CRC in the near future. To date, the association between miRs and 
LS has not been extensively studied. 

Although the practice of medicine is progressing toward more personalized 
treatment approaches, the avoidance of excess body weight and increased 
physical activity have been recurrently proven to be an effective “one-size-fits-
all” approach for cancer prevention (de Rezende et al., 2018; Dixon, 2010; 
Friedenreich et al., 2010; Kitahara et al., 2013; Lee et al., 2012; Mctiernan et al., 
2019; Papadimitriou et al., 2020; Sung et al., 2019). Excess body weight increases 
cancer risk through several biological mechanisms, including steroid hormone 
signaling, chronic inflammation, and insulin resistance (Bull et al., 2020). On the 
contrary, physical activity has been suggested to lower cancer risk by reducing 
body adiposity and improving the immune system and insulin sensitivity 
(Friedenreich et al., 2021). Interestingly, these factors represent modifiable 
lifestyle behaviors that influence the expression of several miRs, which are also 
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altered in CRC (Dufresne et al., 2018; Mullany & Slattery, 2019; Sapp et al., 2017; 
Slattery, Herrick, et al., 2017). Therefore, the exploration of the extent to which 
lifestyle factors are associated with miR expression could provide valuable 
insights into the mechanisms through which exercise exerts beneficial effects on 
health and may prevent cancer. 

This thesis took an innovative and exploratory approach to studying 
cancer-free LS carriers, their miR profiles, and their lifestyle habits by combining 
an extensive literature review with three original peer-reviewed articles that 
cover various features of LS cancers, circulating miRs, and lifestyle habits. 
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2 LITERATURE REVIEW 

2.1 Cancer overview 

Cancer is the general term for a large group of diseases whose causes, 
characteristics, and occurrences can vary greatly. It is one of the primary causes 
of death in both developed and developing countries around the world (Sung et 
al., 2019). The most prevalent cancers include breast cancer, lung cancer, and 
CRC, and when combined, these malignancies account for more than 30% of 
global cancer mortality (Sung et al., 2019). Of these, CRC especially shows 
increasing annual incidence rates in Western populations, thus highlighting the 
need for improvement in all areas related to cancer medicine, such as screening, 
detection, treatment, and prevention. The Finnish Cancer Foundation reported 
31,543 newly diagnosed cancer cases and 13,355 cancer-related deaths in Finland 
in 2021 (Seppä et al., 2023). Among these numbers, the most common cancer 
among females was breast cancer, followed by CRC and lung cancer. In males, 
prostate cancer, CRC, and lung cancer were the leading cancer types. Breast and 
prostate cancers exhibited five-year survival rates of over 90%, whereas CRC had 
a five-year survival rate exceeding 70% for both sexes. Among females, breast 
and lung cancer had the highest mortality rates, while lung and prostate cancer 
were the most fatal in males. The number of all cancer incidences has risen 
annually by approximately 0.8% in both sexes since 1990. In contrast, mortality 
rates have decreased annually by approximately 0.5% in females and by 
approximately 1.1% in males in Finland (Seppä et al., 2023). 

In their groundbreaking publication in 2000, Douglas Hanahan and Robert 
Weinberg proposed six essential hallmarks of cancer that serve as a 
comprehensive framework for understanding the complex nature of cancer 
development and progression (Hanahan & Weinberg, 2000). Since then, their 
framework has been extended to cover several other hallmark properties that 
describe the fundamental characteristics that distinguish cancer cells from 
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normal cells and highlight the various cellular and molecular mechanisms that 
contribute to tumor formation and growth (Hanahan, 2022; Hanahan & 
Weinberg, 2011). These hallmark traits enable cancer cells to sustain proliferative 
signaling (which drives uncontrolled proliferation), evade growth suppressors 
that would otherwise inhibit such proliferation, and resist cell death that 
promotes their survival (Glaviano et al., 2023; Harris & Levine, 2005). In addition, 
cancer cells maintain replicative immortality, which is a pivotal factor that 
provides them with an evolutionary growth advantage through increased fitness. 
The rapid proliferation of cancer cells results in genomic instability, which is 
characterized by numerous mutations in their genome. Furthermore, cancer cells 
sustain tumor-promoting inflammation, which attracts bioactive molecules vital 
for growth signaling and evasion of cell death by apoptosis or the immune 
system (Hanahan & Weinberg, 2011; Taniguchi & Karin, 2018; H.Q. Wang et al., 
2022). In addition to these enabling hallmarks, cancer cells induce angiogenesis 
to secure a steady supply of nutrients and oxygen and to support rapid growth. 
They also undergo metabolic reprogramming through the deregulation of 
cellular energetics to further augment tumor formation. By avoiding immune 
destruction, cancer cells persist and grow despite the body’s defense mechanisms. 
After tumor formation, cancer cells may acquire the ability to invade 
surrounding tissues and metastasize to distant organs, facilitating the 
dissemination of the disease to secondary sites in the body (Hanahan & Weinberg, 
2011). 

Most sporadic cancers may take between several years and decades to 
develop depending on the cancer type (Hanahan & Weinberg, 2000), but all 
cancers are thought to share a common general pathogenesis despite the origin 
of emergence (Stratton et al., 2009). Cancer development (carcinogenesis) 
characterizes the genetic and epigenetic changes within normal cells that drive 
uncontrolled cell proliferation. This transformation results in the emergence of 
malignant cancer cells, which have the capacity to infiltrate tissue boundaries and 
metastasize to distant tissues and organs (Hanahan & Weinberg, 2000). Because 
this process is intricately associated with the regenerative capability of 
multicellular organisms, where cellular growth manifests as the ability to 
multiply through division—an indicator of biological fitness—carcinogenesis 
follows the principles of Darwinian evolution through natural selection (Campisi, 
2013; Stratton et al., 2009). Carcinogenesis involves two basic mechanisms: the 
ongoing accumulation of heritable genetic changes in individual cells caused by 
random mutations, followed by natural selection operating on the resulting 
diversity of traits (Stratton et al., 2009). The selection process either eliminates 
cells carrying deleterious mutations or fosters those bearing alterations that 
confer enhanced proliferative and survival capacities, enabling them to 
outcompete their neighboring cells (Stratton et al., 2009). Cells that escape from 
regular cell growth control and acquire evolutionary advantage are removed by 
genes that repair DNA damage and mutations during replication, or by apoptosis 
(Hanahan & Weinberg, 2000). However, occasionally these cellular defense 
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mechanisms fail, which then drives the malignant transformation of normal cells, 
resulting in cancer. 

Mutations in the genome that drive carcinogenesis accumulate over the life 
course, and most of them are acquired at the pre-cancerous stage (Stratton et al., 
2009; Vogelstein et al., 2013). Throughout life, DNA is under a consecutive 
mutagenic burden that is caused either by external factors, such as lifestyle, 
dietary habits, and ultraviolet radiation, or by intrinsic factors, such as radical 
oxygen species and deficient DNA mismatch repair (dMMR) machinery (Stratton 
et al., 2009). These acquired somatic mutations are categorized as driver and 
passenger mutations based on their roles in carcinogenesis (Gerstung et al., 2020; 
Vogelstein et al., 2013; Vogelstein & Kinzler, 2004). Driver mutations occur in 
proto-oncogenes, which are normal genes that regulate cell growth and 
differentiation, and thus provide an evolutionary growth advantage for the cells. 
These cells are positively selected during cancer evolution (Stratton et al., 2009). 
Passenger mutations do not promote cancer directly. They occur randomly and 
have neutral effects on gene function. They likely exist in a cancer cell’s ancestor 
by chance when the cell acquires a driver mutation, without actively contributing 
to carcinogenesis (Vogelstein et al., 2013). 

The Catalogue of Somatic Mutations in Cancer (Tate et al., 2019) is a curated 
database that categorizes genes involved in carcinogenesis. Typically, these 
genes fall into two main categories: oncogenes and tumor suppressor genes 
(TSG). Oncogenes, originally proto-oncogenes, undergo gain-of-function 
mutations, which lead to overexpression and uncontrolled cell proliferation, thus 
promoting cancer development (Vogelstein et al., 2013). In contrast, TSGs 
regulate and limit cell growth, division, DNA repair, and apoptosis. Loss-of-
function mutations inactivate TSGs, which further promote cancer (Vogelstein et 
al., 2013). Mutations in oncogenes are typically dominant, whereas in TSGs, they 
are commonly recessive and require a second hit for inactivation, following the 
model introduced by Knudson in 1971 (Knudson, 1971; Stratton et al., 2009). In 
addition, mutations in the MMR genes cause the accumulation of single 
nucleotide changes and small insertions and deletions in the genome that result 
in microsatellite instability (MSI). MSI promotes cancer by altering TSG function 
(Jeggo et al., 2016). A list of common oncogenes and TSGs, as well as MMR genes 
relevant to this thesis, is provided in Table 1. 
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TABLE 1  Genes commonly associated with cancers. 

Gene* Type Pathway* 

CREB Oncogene NF-kB, cell proliferation 
NRAS Oncogene RAS/MAPK, cell proliferation 
EGFR Oncogene EGFR-signaling, cell proliferation 
BRAF Oncogene MAPK/ERK, cell proliferation 
STAT3 Oncogene MAPK, cell proliferation 
FOXO Tumor suppressor gene PIK3/AKT/, cell fate 
PIK3 Tumor suppressor gene PIK3/AKT/mTOR, cell growth 
APC Tumor suppressor gene WNT-signaling, cell proliferation 
TP53 Tumor suppressor gene p53 pathway, cell cycle  

SMAD Tumor suppressor gene TGF-B-signaling, cell growth 
TGF Tumor suppressor gene TGF-B-signaling, cell growth 

CDKN1A Tumor suppressor gene p53 pathway, cell cycle 
CDKN2A Tumor suppressor gene p53 pathway, cell cycle 

MLH1 DNA mismatch repair DNA damage control 
MSH2 DNA mismatch repair DNA damage control 
MSH6 DNA mismatch repair DNA damage control 
PMS2 DNA mismatch repair DNA damage control 

*Gene and pathway names are detailed in the abbreviations section. 

2.2 Lynch syndrome 

American pathologist Aldred S. Warthin first recognized the hereditary 
predisposition to gastrointestinal cancers in his studies of “Family G” in the late 
19th century (Lynch et al., 2015). Based on the groundwork of Warthin, later 
research conducted by Henry T. Lynch, also an American physician, on “Family 
N” in the mid-1900s established that this condition follows an autosomal 
dominant inheritance pattern and includes cancers of the endometrium. Lynch 
and his colleagues then denoted the condition as “Cancer Family Syndrome” in 
1971 to describe the familial cluster of the cancers they observed. However, again 
in 1984, Lynch et al. transformed “Cancer Family Syndrome” to “Hereditary 
Non-Polyposis Colorectal Cancer” (HNPCC) to distinguish it from other familial 
CRC syndromes. As the understanding of HNPCC broadened to encompass 
extraintestinal cancers, and after the discovery of the link between HNPCC and 
the four MMR genes (MLH1, MSH2, MSH6, and PMS2) in the 1990s, HNPCC was 
subsequently renamed “Lynch Syndrome” in 2003 after Henry T. Lynch 
(Aaltonen et al., 1993; Lynch et al., 2015; Peltomaki et al., 1993). 

2.2.1 Pathogenesis, cancer risk, and identification of Lynch syndrome 

LS is caused by inherited pathogenic germline variants in one of the four MMR 
genes, MLH1, MSH2, MSH6, and PMS2 (Lynch et al., 2015). MMR genes are 
largely responsible for repairing DNA mismatch errors, such as erroneous single-
base substitutions, insertions, deletions, and certain forms of DNA damage that 
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result from environmental factors, cellular processes, and/or processes that 
occur naturally during DNA replication (Peltomäki et al., 2023). Of the MMR 
proteins, MSH2 (or MSH3) and MSH6 form a complex (hMutSa) that is 
responsible for the single-base mismatch and/or insertion—deletion recognition 
(Peltomäki et al., 2023). MLH1 and PMS2 are needed to form the MMR protein 
complex (hMutL), which coordinates the interplay between the mismatch 
recognition complex and other proteins necessary for MMR (Peltomäki et al., 
2023).  

Along with normally functioning wild-type MMR allele, LS carriers carry 
an inherited deficient MMR allele that is present in every cell. LS cancers arise 
from the somatic loss of function in the remaining wild-type allele of the affected 
MMR gene, in accordance with Knudson’s “two-hit hypothesis” (Knudson, 1971). 
When a defective allele is inherited in the germline, a single somatic mutation 
leads to inactivation. Consequently, carriers tend to develop the disease at a 
younger age. The loss of wild-type allele then results in the dMMR genotype that 
is incapable of producing functional MMR proteins, and thus unable to recognize 
or repair mismatches during DNA replication and/or recombination (Lynch et 
al., 2015; Peltomäki et al., 2023; Seppälä et al., 2023). As a consequence, mismatch 
mutations accumulate and are passed on to subsequent cell populations. Thus, 
the accumulation of these mismatches along the cell genome predisposes LS 
carriers to an excessive mutational burden that may result in vast amounts of 
genetic length changes within microsatellites (Aaltonen et al., 1993), which are 
short repetitive sequences of DNA found in the non-coding regions of DNA. 
Eventually, when MSI mutations hit the protein-coding regions residing in proto-
oncogenes or TSGs, they may possess severe deleterious effects that ultimately 
initiate carcinogenesis and often result in hypermutated tumor genotypes 
(Ahadova et al., 2018). 

LS is identified as the most common hereditary cancer predisposition 
syndrome, with a global prevalence estimate ranging from 1:125 to 1:279 
(Haraldsdottir et al., 2017; Win et al., 2017). Due to the dMMR genotype, LS 
carriers are predisposed to an increased lifetime risk of multiple gastrointestinal 
and extraintestinal cancers (Dominguez-Valentin et al., 2020; Møller et al., 2017a). 
The most common clinical manifestations of LS cancer risk are CRC and 
endometrial cancer, which are detected in all pathogenic variant carriers 
(Dominguez-Valentin et al., 2020). In addition, the LS cancer spectrum includes 
cancers of the ovaries, duodenum and small bowel, biliary tract, pancreas, gastric, 
upper urothelial, bladder, prostate, skin, and brain (Dominguez-Valentin et al., 
2020). Pathogenic MLH1 and MSH2 are high-penetrance genes for CRC 
occurrence, as well as for endometrial and ovarian cancer, whereas pathogenic 
MSH6 is of moderate penetrance and pathogenic PMS2 is of low penetrance 
(Dominguez-Valentin et al., 2020). Pathogenic MLH1 and MSH2 carriers are 
associated with early-onset CRCs with a median age of 45–50 years (Dominguez-
Valentin et al., 2020, 2023). Commonly, CRC is not detected in pathogenic MSH6 
carriers before the age of 35, while in pathogenic PMS2 carriers, the risk of CRC 
before the age of 50 is very low (Dominguez-Valentin et al., 2020). LS CRCs are 
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also more commonly located in the proximal colon (Ahadova et al., 2018; 
Fitzgibbons et al., 1987). Pathogenic MSH6 variants predominantly elevate 
endometrial cancer risk (Dominguez-Valentin et al., 2020). Prostate and urinary 
tract cancers predominantly occur in pathogenic MSH2 carriers, whereas upper 
gastrointestinal tract cancers predominantly occur in pathogenic MLH1 carriers 
(Møller et al., 2018). 

However, the risk of LS cancers varies substantially not only based on gene 
variant but also the cancer history, age, and sex of an individual. Therefore, LS is 
nowadays warranted not to be treated as one general entity but as four distinct 
conditions (Møller et al., 2023). The lifetime risk of LS cancer types, according to 
the Prospective Lynch Syndrome Database (PLSD, http://www.plsd.eu/, 
visited 10/2023 (Møller, 2020)), from age 25 to age 75 is presented in Table 2. 
PLSD was established as an international collaborative effort to pool registry data 
from specialized LS centers from 25 countries around the world. Currently, PLSD 
consists of prospective and clinical data from 8,500 LS carriers with 71,713 follow-
up years (Møller et al., 2023), thus making it the largest database of identified LS 
carriers. According to PLSD, pathogenic MLH1 and MSH2 showed the highest 
overall cancer risk when compared to pathogenic MSH6 and PMS2 variant 
carriers. 

TABLE 2  Cumulative cancer risk with Lynch syndrome up to age 75. 

Organ path_MLH1 path_MSH2 path_MSH6 path_PMS2 

 Male Female Male Female Male Female Both 
        

Any cancer 
71.4%a 

[13.9-
81.3]b 

81.0% 
[11.1-
88.4] 

75.2% 
[7.7-
85.7] 

84.3% 
[9.7-
91.0] 

41.7% 
[1.7-
67.1] 

61.8% 
[0.5-
78.7] 

34.1% 
[0-59.6] 

Colorectal cancer 
57.1% 
[22.8-
67.9] 

48.3% 
[8.2-
57.4] 

51.4% 
[5.8-
65.0] 

46.6% 
[3.8-
55.4] 

18.2% 
[1.7-
43.2] 

20.3% 
[0.4-
40.5] 

10.4% 
[0-40.8] 

a The average risk % at age 75. 
b The risk % from ages 40 to 75. 
Path = pathogenic. 

 
International clinical guidelines have been developed to aid in the identification 
of individuals and families with LS (Table 3). The first standardized clinical 
criteria for this purpose were the Amsterdam I criteria, which were established 
by the International Collaborative Group of HNPCC in Amsterdam in 1990 
(Vasen et al., 1991). These criteria focused on a strong family history of CRC at a 
young age of onset but were later updated to Amsterdam II criteria in 1999 
(Vasen et al., 1999) and revised Bethesda guidelines in 2004 (Umar et al., 2004) to 
also account for extra-colonic cancers and molecular testing, respectively. 
Currently, the definitive diagnosis of LS requires molecular genetic testing of a 
pathogenic or likely pathogenic heterozygous variant in any of the four MMR 
genes (Peltomäki et al., 2023; Seppälä et al., 2023). Universal tumor screening is 
conducted with immunohistochemical staining by antigens of the four MMR 

http://www.plsd.eu/
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proteins to identify the lack of expression of these proteins. PCR-based or 
sequencing-based tests are used to detect MSI in LS tumors. In Finland, 
immunohistochemical staining is performed on all CRC and endometrial cancer 
cases to identify genes for subsequent mutational analysis (Kansikas et al., 2011; 
Peltomäki et al., 2023). 

TABLE 3  Clinical guidelines for Lynch syndrome identification. 

Amsterdam I criteria (Vasen et al., 1991) 

1. At least three relatives with histologically verified CRC 
2. One is a first-degree relative of the other two 
3. At least two successive generations are affected 
4. At least one of the relatives with CRC is diagnosed at <50 years of age 
5. Familial adenomatous polyposis has been excluded 

Amsterdam II criteria (Vasen et al., 1999) 

1. At least three relatives with an LS-associated cancer (CRC and cancers of the 
endometrium, stomach, ovary, ureter or renal pelvis, brain, small bowel, 
hepatobiliary tract, and skin) 

2. One is a first-degree relative of the other two 
3. At least two successive generations are affected 
4. At least one of the LS-associated cancers should be diagnosed at <50 years of age 
5. Familial adenomatous polyposis should be excluded in any CRC cases 
6. Tumors should be verified by pathology whenever possible 

Revised Bethesda guidelines (Umar et al., 2004) 

1. CRC diagnosed in a patient who is <50 years of age 
2. Presence of synchronous or metachronous CRCs or other LS-associated tumor, 

regardless of age 
3. CRC with high MSI histology diagnosed <60 years of age 
4. CRC diagnosed in one or more first-degree relatives with LS-associated tumor, one of 

the cancers diagnosed <50 years of age 
5. CRC diagnosed in two or more first- or second-degree relatives with LS-associated 

tumors, regardless of age 
CRC = colorectal cancer; LS = Lynch syndrome; MSI = microsatellite instability. 

2.2.2 Colorectal cancer and colonoscopy screening in Lynch syndrome 

CRC is the hallmark cancer of LS. The suggested pathway models of LS CRC 
development are presented in Figure 1. According to the first pathway model, LS 
CRC may develop through pre-formed polyps or adenomas that are MMR 
proficient and become dMMR by a secondary inactivation of MMR. As LS tumor 
formation is commonly initiated by dMMR, it has been proposed that dMMR 
may not increase the adenoma initiation rate, but rather accelerate the 
progression of these pre-formed MMR-proficient adenomas into carcinoma 
(Ahadova et al., 2018). This pathway is commonly associated with MSH6 and 
PMS2 carriers who have been shown to display microsatellite stability (MSS) in 
low-grade adenomas (Ahadova et al., 2018, 2021). In support of this, Engel et al. 
reported that MSH6 mutation carriers are associated with low frequencies of 
CTNNB1 mutations and high frequencies of APC mutations, suggesting that the 
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onset of MMR deficiency occurs only after adenoma formation in these carriers 
(Engel et al., 2020). In addition, in PMS2-deficient cancers and adenomas, it has 
been shown that KRAS mutations take place earlier during development than 
dMMR, which may indicate that MMR deficiency does not drive carcinogenesis 
in PMS2-associated CRC (Seppälä et al., 2023; ten Broeke et al., 2015; ten Broeke, 
van Bavel et al., 2018). 

Regarding the second and third pathways, normal-looking colorectal 
mucosa of LS carriers has been reported to contain dMMR niches, which may 
give rise to cancers that develop through adenomas or polyps following APC 
inactivation or without preexisting lesions via the activation of CTNNB1 
(Ahadova et al., 2016, 2018, 2021; Engel et al., 2020). Adenomas and polyps are 
more frequently detected in MSH2-deficient CRCs, which almost always include 
somatic APC variants (Engel et al., 2020), and thus follow the second pathway 
model. Bohaumilitzky et al. reported that the normal mucosa of cancer-free LS 
carriers contains higher amounts of CD3 and CD8 immune cells compared with 
LS cancer patients and MMR-proficient cancer patients (Bohaumilitzky et al., 
2022). In the same article, they also reported a correlation between the time to 
CRC development and the relative abundance of immune cells (Bohaumilitzky 
et al., 2022). In contrast, MLH1-deficient CRCs are commonly CTNNB1-mutated 
but not APC-mutated, and thus display far fewer adenomas, as suggested by the 
third pathway model (Ahadova et al., 2018; Engel et al., 2020). Interestingly, these 
CTNNB1-mutated CRCs may develop through flat precursor lesions, making 
them difficult to detect in regular colonoscopies, even with short screening 
intervals (Ahadova et al., 2021). In general, dMMR-driven CRC can develop at 
an accelerated rate, often taking only one to three years, whereas sporadic CRC 
often takes 10 to 15 years to develop. This rapid CRC development is also 
commonly associated with the third pathway model associated with MLH1-
carriers (Ahadova et al., 2018), thus suggesting that the MLH1 variant is the most 
dangerous of the four pathogenic variants. 
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FIGURE 1  The three-pathway model of Lynch syndrome colorectal cancer 
carcinogenesis adapted from Peltomäki et al. (Peltomäki et al., 2023). APC = 
Adenomatous polyposis coli; CTNNB1 = Catenin beta 1; dMMR = deficient 
mismatch repair. 

As most CRCs develop from polyps that can be detected and removed during 
colonoscopy, colonoscopy screening may prevent CRC. Regular endoscopic 
surveillance by colonoscopy with polypectomy is the standard of care for 
detecting incident CRCs in cancer-free LS carriers. In LS, surveillance is initiated 
at age 25 for carriers of MLH1 and MSH2, and at age 35 for carriers of MSH6 and 
PMS2 (Dominguez-Valentin et al., 2020; Seppälä et al., 2023; ten Broeke, van der 
Klift, et al., 2018). However, recent epidemiological studies have shown that the 
incidence of CRC remains high even under colonoscopic surveillance (Ahadova 
et al., 2018), but the overall survival after prospectively observed incident CRCs 
is very good, reaching 90% after 10 years (Dominguez-Valentin et al., 2019, 2020; 
Engel et al., 2020; Seppälä et al., 2023). 

Optimal colonoscopy screening intervals are under debate. The intervals 
vary widely, ranging from one year in Germany to one to two years in the 
Netherlands and three years in Finland (Engel et al., 2018; Järvinen et al., 2000; 
Vasen et al., 2010). Despite the observed rapid adenoma-to-carcinoma 
progression in LS-associated CRCs, colonoscopy intervals shorter than three 
years have not proven effective in decreasing CRC incidence (Dominguez-
Valentin et al., 2019, 2020, 2023; Møller et al., 2017b, 2018, 2023; Seppälä et al., 
2021). Regarding MLH1 carriers, carcinomas that develop through pathway 
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model 3 (Figure 1), where precursor lesions might be flat or skipped totally, 
rapidly developed carcinomas might not even be detectable by colonoscopy 
(Ahadova et al., 2018, 2021). In addition, the early age of onset and proximal 
location of LS CRCs might partly explain the low efficacy of CRC prevention by 
colonoscopy (Ahadova et al., 2021). This is supported by studies from the general 
population that have reported a higher risk reduction for distal CRCs (71%–75%) 
than for proximal CRCs (42%–65%) and that the preventive effect of colonoscopy 
on proximal CRC was effective only for patients with a later age of onset (older 
than 60) (Brenner et al., 2014; Doubeni et al., 2018; Samadder et al., 2016). A risk 
reduction of over 60% on average has been reported for incident sporadic CRCs 
after a 10-year follow-up, although the numbers show high variation, ranging 
from 18%–77% (Brenner et al., 2014; Bretthauer et al., 2022; Samadder et al., 2016). 

Although CRC mortality rates are generally 20%–30% lower in locations 
where national screening programs exist (Hull et al., 2020), it appears rather 
explicit that the implementation of intense colonoscopy screening programs is 
not uniformly effective among cancer-free LS carriers. Despite the success of 
current programs, CRC causes a million deaths annually, thus highlighting that 
this “one-size-fits-all” approach is not effective nowadays (Francavilla et al., 2020; 
Mauri et al., 2022; Pardini et al., 2023; Sur et al., 2022). Therefore, there is a need 
to develop methods that could enhance the accuracy of patient selection criteria 
for risk-based screening programs. By identifying the patients who would mostly 
benefit from the screenings, the discomfort perceived by the patients, as well as 
the monetary burden of colonoscopies due to the number of examinations, could 
be significantly reduced. 

2.3 Lifestyle habits and cancer risk 

2.3.1 Body weight and physical activity as cancer risk modifiers 

Excessive body weight, which may result in developing obesity (body mass index 
(BMI) > 30 kg/m2), originates from an imbalance between energy intake and 
energy expenditure (Friedenreich et al., 2021). Obesity stands as a significant 
global public health concern, with its prevalence rising steeply over the past four 
decades (Di Cesare et al., 2016). Among females, it has more than doubled, while 
among males, it has tripled (Stevens et al., 2012). The combined number of 
overweight and obese individuals surged from around 800 million in 1980 to two 
billion in 2013 (M. Ng et al., 2014), showing no decreasing trends (Clinton et al., 
2020). Strong evidence indicates that lifestyle habits, such as reduced body 
adiposity and increased physical activity, are associated with decreased cancer 
risk (de Rezende et al., 2018; Kyrgiou et al., 2017; Moore et al., 2016). Excess body 
weight has been suggested to increase cancer risk by several biological 
mechanisms, including obesity-induced effects on steroid hormone signaling and 
metabolic activity that promotes inflammation and insulin resistance (Bull et al., 
2020). On the contrary, physical activity has been reported to mitigate cancer risk 
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and progression through multiple biological mechanisms, such as reductions in 
chronic inflammation, regulation of metabolic factors, changes in insulin 
resistance, enhanced immune system function, and altering the levels of 
adipokines (Friedenreich et al., 2010, 2021; Mctiernan et al., 2019). 

By pooling data from 204 meta-analyses, Kyrgiou et al. reported that an 
increase in BMI was associated with a higher risk of developing colon and rectal 
cancer in males, endometrial cancer in premenopausal female, and esophageal 
adenocarcinoma, biliary tract system, and pancreatic cancer in both sexes 
(Kyrgiou et al., 2017). Weight gain and waist-to-hip circumference ratio were 
associated with higher risks of postmenopausal breast cancer in females who had 
never used hormone replacement therapy and endometrial cancer, respectively 
(Kyrgiou et al., 2017). The same study also reported that every 5 kg/m2 increase 
during adulthood increased CRC risk by 9% in males, whereas the same amount 
of increment in weight was seen to be associated with 11% increase in post-
menopausal breast cancer risk and 56% increase in biliary track system cancer 
risk in females (Kyrgiou et al., 2017). Similar results were seen in a systematic 
review by Renehan et al. that reported men to have a higher risk for CRCs than 
females, and postmenopausal females to have an increased risk of breast cancer 
per 5 kg/m2 increase in BMI (Renehan et al., 2015). The insulin signaling pathway 
could potentially explain the link between obesity and CRC in men (Friedenreich 
et al., 2021; Renehan et al., 2008). Higher levels of circulating insulin, triggered 
by excess adiposity, are more pronounced in men due to their greater tendency 
toward abdominal fat accumulation compared to females (Geer & Shen, 2009). 
Additionally, both endogenous and exogenous estrogens have been linked to 
protective effects against CRC in females, possibly contributing to the stronger 
association between adiposity and CRC in men (Murphy et al., 2015). 

Most studies assessing the associations between body weight and cancer 
risk in LS have focused on CRC and endometrial cancer. These studies suggest 
that like sporadic CRC, LS CRC risk is also modified by body weight (Coletta et 
al., 2019), although the quality of evidence and the parametrization of outcome 
variables vary. Campbell et al. reported that obesity is associated with an 
increased risk of CRC of over 90% in males who met the revised Bethesda or 
Amsterdam criteria for LS (Campbell, Cotterchio, et al., 2007). They also 
suggested that insulin resistance, which has been reported to have a mechanistic 
link to dMMR (Duval & Hamelin, 2002), could underlie these observations 
(Campbell, Cotterchio, et al., 2007). Similarly, Botma et al. showed that every 5 
kg increase in body weight was associated with an eightfold increased risk of 
developing incident adenomatous polyps in overweight LS males without cancer 
history but not in males who had had cancers previously (Botma et al., 2010). 
Furthermore, Win et al. reported a 30% increment in CRC risk for every 5 kg/m2 

in early adulthood but found no difference between sexes (Win et al., 2011). In 
MMR-variant stratified analysis, this risk was increased by 36% in MLH1/PMS2 
carriers and 26% in MSH2/MSH6 carriers (Win et al., 2011). The authors 
suggested that the observed inter-variant variation in CRC risk could be 
explained by differences in MMR complex structures. The same group found no 
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associations between early adulthood BMI and endometrial cancer risk (Win et 
al., 2011). Movahedi et al. reported a twice as high CRC and overall cancer risk 
for obese LS carriers, especially in pathogenic MLH1 carriers, although the risk 
was abrogated in those taking aspirin (Movahedi et al., 2015). Furthermore, 
Lazzeroni et al. found a twofold increase in CRC risk for every 5 kg/m2 increase 
in obese males compared to non-obese males, as well as a 49% CRC risk increase 
in MLH1 carriers, but no associations were found in females (Lazzeroni et al., 
2021). Similar findings were made in a recent meta-analysis that reported an 
association with obesity and an over twofold increase in CRC risk, but no 
association with endometrial cancer was seen (Power et al., 2024), as previously 
suggested (Coletta et al., 2019). 

Physical activity, defined as any bodily movement generated by skeletal 
muscles that consumes energy, is commonly measured as the summation of the 
type of activity, the volume of activity, and the timeframe in which the activity 
occurred (Friedenreich et al., 2021). Moore et al. pooled questionnaire data from 
10 prospective studies and reported that a higher level of leisure-time physical 
activity (over six metabolic equivalent tasks (MET) hours per week) compared to 
a lower-level activity (over three MET hours per week) (90th vs. 10th percentiles) 
could decrease the risk of CRC by 13%–16%, esophageal cancer by 42%, 
endometrial cancer by 21%, and breast cancer by 10% (Moore et al., 2016). 
Similarly, an umbrella review of systematic reviews and meta-analyses 
composed of 22 anatomical sites and over 700,000 cancer cases concluded that 
physical activity was associated with a lower risk of several cancers, including 
CRC, breast, endometrial, esophageal, and pancreatic cancers, but supported 
strong evidence only for CRC and breast cancer (de Rezende et al., 2018). Similar 
findings were also reported by the US Physical Activity Guidelines Advisory 
Committee (DiPietro et al., 2019; Mctiernan et al., 2019). 

At the onset of this thesis, it was found that few studies assessed the role of 
physical activity in LS CRC prevention. Kamiza et al. were the first to assess 
whether regular physical activity is associated with LS CRC risk (Kamiza et al., 
2015). Their analysis showed that conducting physical activity (jogging more 
than 16 km/week, swimming more than 3.2 km/week, or participating in other 
activities for more than 5 h/week) reduced the risk of CRC by 38% in MLH1 and 
MSH2 carriers (Kamiza et al., 2015). Dashti et al. reported that vigorous leisure-
time physical activity (> 35 MET-h/week) compared to low levels of physical 
activity (< 3.5 MET-h/week) decreased LS CRC risk by 23% when assessed with 
self-reported questionnaires (Dashti et al., 2018). However, they did not stratify 
for sex or MMR variant, although 56% of the study participants were females, 
and most of the participants were MSH2 carriers (49.1%) (Dashti et al., 2018). The 
authors of both studies suggested that the same biological mechanisms could be 
postulated to play a role in modifying LS cancer risk, as suggested in studies with 
the general population (Dashti et al., 2018; Kamiza et al., 2015). A recent study by 
Deng et al. suggested that exercise training may be beneficial in CRC prevention 
through a reduction in colonic inflammation (Deng et al., 2023). Hence, lifestyle 
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recommendations concerning weight management and physical activity could 
also be relevant for cancer prevention among LS carriers. 

2.3.2 Other lifestyle factors as cancer risk modifiers 

There is convincing evidence derived from the general population that dietary 
factors, alcohol consumption, and tobacco use modify the risk of several cancers 
(Clinton et al., 2020; Key et al., 2020; Veettil et al., 2021; Zhao et al., 2023). For 
example, an umbrella review of 45 meta-analyses reported that alcohol intake (4 
drinks/day) and high intake of red meat were associated with higher CRC risk, 
whereas higher intake of dietary fiber, dietary calcium, and yogurt were 
associated with a lower risk of CRC (Veettil et al., 2021). Similar findings have 
been reported by the World Cancer Research Fund and the American Institute 
for Cancer Research, which recommend eating a diet rich in whole grains, 
vegetables, fruit, and beans, and limited consumption of alcohol, processed red 
meats, and sugar-sweetened drinks (Clinton et al., 2020). 

Of the dietary factors, resistant starch in particular has been studied in LS 
(Burn et al., 2008, 2011; Mathers et al., 2012, 2022; Movahedi et al., 2015). Burn et 
al. reported that a daily dose of 30 g of resistant starch had no effect on LS CRC 
or advanced adenomas (Burn et al., 2008). The latest study by Mathers et al. 
reported a daily dose of 30 g of resistant starch to reduce the risk of non-colorectal 
cancers by almost 50%, but they did not observe any effect on CRC (Mathers et 
al., 2022). Calcium and multivitamin supplements have been shown to reduce LS 
CRC risk (Coletta et al., 2019), but smoking and alcohol intake were not 
associated with increased CRC risk in a recent meta-analysis (Power et al., 2024). 
In contrast, Dashti et al. reported that alcohol consumption was associated with 
increased CRC risk (Dashti et al., 2017). 

Additionally, in a randomized placebo-controlled study, acetylsalicylic acid 
(aspirin, an anti-inflammatory drug) of 600 mg per day for two to four years was 
shown to reduce the incidence of CRC in LS carriers by half, reflecting the trends 
observed in general population-based studies (Burn et al., 2020). The preventive 
effect of aspirin on CRC was observed four years after the therapy, and the 
incidence reduction was maintained for 10 to 20 years in follow-up (Yurgelun & 
Chan, 2020). The significant variation in the cancer risk between sexes and 
different pathogenic MMR-variant carriers highlights the potential role of 
lifestyle habits as LS cancer risk modifiers (Win et al., 2021). The identification of 
potentially protective or harmful and avoidable risk factors creates opportunities 
for LS carriers to reduce their life-long risks of multiple malignancies (Win et al., 
2012). In general, the modifying effect of risk factors could be useful for cancer 
risk prediction and individual treatment plans.  
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2.4 MicroRNAs 

2.4.1 MicroRNA biogenesis and gene regulation 

Unlike genetic changes that result in permanent changes in the DNA sequence, 
epigenetic changes affect gene expression (Jung et al., 2020). Epigenetic changes, 
such as DNA methylation, histone modification, and gene regulation of non-
coding RNAs, possess central pathophysiological roles in the initiation and 
progression of several cancers (Esteller, 2011; Hanahan, 2022; Jung et al., 2020). 
Of the non-coding RNAs, miRs are the most studied in cancers. MiRs are small 
(typically ~22 nt in size) regulatory non-coding RNA molecules that exhibit a 
high degree of conservation across evolutionary scales, and their diversity and 
abundance correlate with organismal complexity (Mori et al., 2019). Illustratively, 
the human genome encompasses approximately 2,600 distinct miR species, 
whereas, for example, the mouse (Mus musculus) repertoire comprises around 
1,500 different miRs (miRbase, v. 22) (Griffiths-Jones et al., 2006). The genomic 
encoding of miRs occurs within inter- and intra-genic regions and is often 
characterized by clustering and co-transcription, thereby augmenting their 
regulatory impact (Bracken et al., 2016; Roush & Slack, 2008). Generally, miR 
regulation occurs at the post-transcriptional level, overseeing the translation of 
over 60% of protein-coding genes (Jung et al., 2020), either by messenger-RNA 
(mRNA) cleavage, mRNA destabilization, or inhibition of translation (He & 
Hannon, 2004). While many miRNAs exhibit ubiquitous expression, others 
display high tissue specificity (Lagos-Quintana et al., 2002; Ludwig et al., 2016). 
Similar to mRNAs, miR expression profiles can serve as distinctive signatures 
indicating cell identity or state (Mori et al., 2019). 

The synthesis of miRs is a complex process that is regulated at multiple 
levels (Ha & Kim, 2014). This biogenesis is initiated in the nucleus and further 
processed in the cytoplasm (Ha & Kim, 2014). Briefly, within the nucleus, miR 
genes are transcribed into ~1 kb stem-loop pri-miR transcripts by RNA 
polymerase II and III in association with several transcription factors, and 
subsequently cleaved by enzyme Drosha (RNase III) into a pre-miR hairpin 
structure of ~65 bp (Cai et al., 2004). The pre-miR hairpins are further processed 
by the microprocessor complex composed of RNase III endonuclease Drosha, as 
well as its cofactor DGCR8 (Lee et al., 2003). After being processed by Drosha and 
DGCR8, the pre-miRs are transported from the nucleus into the cytosol by the 
Exportin-5-RanGTP-binding complex (Lund et al., 2004). Within the cytosol, pre-
miRs are further processed by type III endoribonuclease Dicer in association with 
RNA-binding proteins TRBP and PACT, producing double-stranded miR 
duplexes consisting of guide and passenger strands (Bernstein et al., 2001). These 
duplexes are loaded into the RNA-induced pre-silencing complex (pre-RISC) 
(Winter & Diederichs, 2011). The guide miR strand (~22 nt) and argonaute 
proteins (1–4) form the mature RISC after separation from the less abundant 
passenger miR strand, which is commonly discarded (Ha & Kim, 2014; 
Huntzinger & Izaurralde, 2011). The guide miR in the RISC includes a “seed 
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region” at its 5′ tail (residues 2–7), which leads the RISC to occupy the right 
position on the target mRNA (Doench & Sharp, 2004). 

Typically, miRs negatively regulate gene expression by accelerating the 
deadenylation and degradation of target mRNAs (Mori et al., 2019; O’Brien et al., 
2018). The argonaute proteins bind different classes of small non-coding RNAs 
and function as effectors that recruit other factors essential for translational 
repression and mRNA decay (Ha & Kim, 2014). The mature miR can 
complementarily bind to 3′ untranslated region of the target mRNA transcript 
via seed sequence, defined as the first 2–8 nucleotides of the 5′ end of miRs, and 
thus initiate degradation by guiding the miR silencing complex to its target (Ha 
& Kim, 2014). However, complementary binding can be partly imperfect, which 
leads to silencing of the mRNA transcript instead of degradation. Imperfect 
binding also establishes a comprehensive regulatory machinery that enables 
individual miRs to regulate up to several hundred mRNA transcripts and share 
multiple mRNA targets (Esquela-Kerscher & Slack, 2006). The binding of only a 
single type of miR to a target mRNA results in a relatively modest reduction in 
target expression. However, in instances where several miRs target multiple 
components of a regulatory system, the net effect may be substantial (Bracken et 
al., 2016). 

2.4.2 Circulating microRNAs 

MiRs are produced by every cell type in the body and thus can be found in a 
stable form in virtually all body fluids, including blood (Chen et al., 2008; Mori 
et al., 2019; Weber et al., 2010). They play a pivotal role in cell and tissue 
communication, which is facilitated by their export and import via extracellular 
vesicle trafficking and protein carriers like argonaute proteins (Valadi et al., 2007). 
These miRs are referred to as circulating miRs (c-miRs), which can prompt 
downstream effects upon uptake by target recipient cells by regulating the 
translation of complementary mRNAs (Figure 2). Several extracellular miR 
transport routes are identified: active transport via extracellular vesicles and 
transportation within protein–miR complexes, such as argonaute proteins and 
lipoproteins. Additionally, miR release can occur from damaged or senescent 
cells (Mori et al., 2019). The intercellular transport of miRs and subsequent 
functional regulation of gene expression in recipient cells is a well-supported 
mechanism of cell-to-cell communication involving a variety of cell types and 
transport methods (Sapp et al., 2017). However, the precise mechanisms by 
which the packaging occurs are not known, although a proportion of c-miRs are 
suggested to be derived from leukocytes and endothelial cells, as well as from 
organs exposed to high blood flow (Aoi, 2015; Pritchard et al., 2012).  

Changes in miR expression in different tissues are potentially reflected in 
blood circulation (Skog et al., 2008; Waters et al., 2012). Thus, there has been 
extensive exploration of miRs as promising candidates for the development of 
less invasive biomarkers. A robust biomarker exhibits several characteristics 
associated with miRs, such as specificity, sensitivity, and stability, and is coupled 
with the advantage of being obtainable in a relatively non-invasive manner (Mori 
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et al., 2019). The collection of biomarkers from non-solid biological tissues is 
called a liquid biopsy. In contrast to traditional tissue biopsy, liquid biopsy 
techniques are generally non-invasive or minimally invasive, thus offering a 
means to assess the health or disease status of organs and sites that are 
challenging to access directly (Toden & Goel, 2022). Liquid biopsy also facilitates 
easier and more frequent sampling over the course of the disease, offering an 
opportunity to use c-miRs for real-time monitoring of cancer treatment responses 
and disease progression. Nowadays, profiling of global c-miR expression has 
become prevalent, and miR expression can be correlated with cancer type, stage, 
and other clinical variables (Francavilla et al., 2020). Therefore, aberrantly 
expressed miRs have been linked with diagnostic, predictive, and prognostic 
potential in the molecular profiling and early detection of cancers. 

 

 

FIGURE 2  Circulating microRNAs.  

2.4.3 MicroRNAs in sporadic and hereditary cancer 

Numerous studies have revealed distinct miR expression patterns between 
cancer tissues and adjacent normal tissues (Ma et al., 2012). Consequently, miRs 
can exhibit upregulation or downregulation in tumor tissues, with a higher 
prevalence of overexpression observed in cancer (Goodall & Wickramasinghe, 
2021; Jung et al., 2020). In general, miRs in cancer can be categorized into 
oncogenic and tumor-suppressive miRs, although their role may be altered based 
on cancer type and disease stage. MiRs located in genomic regions amplified in 
cancers (such as miR-10b, miR-17-92 cluster, miR-20a, and miR-155) function as 
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oncogenes, whereas miRs located in portions of chromosomes deleted in cancers 
(such as the miR-15a–miR-16-1 cluster, let-7, miR-34, and miR-200 families) 
function as tumor suppressors (Calin & Croce, 2006; Otmani & Lewalle, 2021). 
Thus, miRs that focus on inhibiting the negative regulators of oncogenic 
pathways may exhibit oncogenic characteristics when their regulation is 
disrupted and, conversely, may demonstrate tumor-suppressive properties 
when targeting positive regulators. 

The primary factor contributing to alterations in miR functionality within 
cancer cells is abnormal gene expression. This abnormality is defined by atypical 
expression levels of miR sequences in contrast to the corresponding normal 
tissues (Peng & Croce, 2016). As an example, miRs such as miR-34 and miR-200 
are upregulated by the TSG TP53, which is frequently deleted, mutated, and/or 
inactivated in many cancer types (He et al., 2007; Kim et al., 2011). Therefore, the 
suppression of these tumor-suppressive miRs by TP53 inactivation promotes 
cancer development. Conversely, miR-17 and miR-20a, among others, are 
induced by MYC, an oncogene that undergoes hyperactivation and/or 
overexpression in various types of cancer (O’Donnell et al., 2005). As miRs have 
the capacity to target multiple mRNAs concurrently, the oncogenic impact of 
each miR probably arises from the suppression of various targets. This intricate 
regulation encompasses the targeting of numerous genes by individual miRs, the 
mutual targeting of specific genes by multiple miRs, and the subsequent 
downstream effects facilitated by the miR-induced regulation of transcription 
factors (Barabási et al., 2011; Bracken et al., 2016; Ooi et al., 2011). These complex 
interactions give rise to intricate networks of miRs and their target genes, where 
nodes (Bracken et al., 2016)—particularly those with unusually high connections 
(hubs)—emerge as pivotal sites of signaling convergence. Identifying such hubs 
is valuable and provides explanatory insights into network behavior and 
potential clinical applications (Barabási et al., 2011). 

A plethora of miRs have been linked to various facets of cancer, including 
diagnosis, prognosis, therapeutic response, and prediction (Dhawan et al., 2018; 
Mullany & Slattery, 2019). For instance, elevated expression of miR-10b correlates 
with larger tumor size, increased invasion, metastasis, advanced stage, and 
poorer survival (Sheedy & Medarova, 2018). On the other hand, reduced 
expression of the miR-200 family, such as miR-200a and miR-141-3p, is associated 
with diminished survival, exerting its influence through the regulation of genes 
related to the epithelial-to-mesenchymal transition (Høye et al., 2022; Pichler et 
al., 2014). Moreover, the discrimination of patients with early colorectal 
neoplasms from healthy controls is possible through serum-based miR-21, miR-
29a, and miR-125b (Yamada et al., 2015). In most of these prior studies, the 
analysis of miR signatures has been limited to patients who have already 
received a cancer diagnosis, making it challenging to ascertain their potential 
utility in risk stratification. Wikberg et al. observed that major changes in miR 
patterns occur mainly three years prior to sporadic CRC diagnosis by showing a 
temporal pattern of increase in miR-21-5p expression using pre- and post-
diagnostic plasma samples (Wikberg et al., 2018). Interestingly, a study by Raut 
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et al. showed that altered expression of let-7g, miR-19a, miR-23a, miR-92a, miR-
144, miR-21, and miR-27a could predict sporadic CRC incidence several years 
prior to diagnosis (Raut et al., 2021). They reported that a risk sum score of these 
seven c-miRs was highly predictive for sporadic CRC risk in a prospective cohort 
with a follow-up time of up to 14 years and a median follow-up of 6.8 years. 

Although various studies have shown that c-miR expression patterns 
change with carcinogenesis in various sporadic cancers, the role of miRs in LS 
has remained understudied. MiRs can be used to distinguish cancer tissues from 
normal tissues, and they are suitable for risk prediction purposes. In 2011, 
Balaguer et al. showed that miRs can be used in tumor classification and the 
discrimination of sporadic and hereditary tumors with MSI (Balaguer et al., 2011), 
thus highlighting the potential role of miRs as LS biomarkers. Valeri et al., 
Liccardo et al., and Zhou et al. postulated that miRs could have functional roles 
in LS carcinogenesis, for example, by targeting MMR genes (Liccardo et al., 2021; 
Valeri et al., 2010) and various tumor-suppressor genes (Zhou et al., 2016). 
However, these studies, along with other reports, have assessed miR functions in 
the colorectum and CRC tissues and cells, as well as with microarray data 
(Balaguer et al., 2010; Pavicic et al., 2011) but not in circulation, which possesses 
the highest potential for liquid biopsy-based early diagnostics. Thus, given the 
potential of miRs in CRC risk stratification as a minimally invasive screening tool, 
the characterization of the LS miR landscape could help establish a risk 
prediction signature that complements current screening strategies and early 
diagnostics of LS CRCs. MiRs that have been associated with LS and are relevant 
to this thesis are listed in Table 4. 

TABLE 4  MicroRNAs associated with Lynch syndrome.  

microRNA Expression Reference 

hsa-miR-21 Upregulated Valeri et al. 2010 
hsa-miR-23b Upregulated Moreno et al. 2019 
hsa-miR-24 Upregulated Moreno et al. 2019 
hsa-miR-27b Upregulated Moreno et al. 2019 
hsa-miR-125b Upregulated Balaguer et al. 2011 
hsa-miR-137 Up-/ downregulated Balaguer et al. 2010 
hsa-miR-155 Upregulated Valeri et al. 2010 
hsa-miR-192 Upregulated Balaguer et al. 2011 
hsa-miR-320 Downregulated Moreno et al. 2019 
hsa-miR-362 Upregulated Balaguer et al. 2011 
hsa-miR-486 Upregulated Balaguer et al. 2011 
hsa-miR-520e Downregulated Zhou et al. 2016 
hsa-miR-590 Upregulated Zhou et al. 2016 
hsa-miR-622 Downregulated Balaguer et al. 2011 
hsa-miR-1238 Downregulated Balaguer et al. 2011 
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2.4.4 MicroRNAs, cancer, and lifestyle habits 

There is a growing interest in studying how exercise benefits health and prevents 
disease at the molecular level. It is well established that miRs play a critical role 
in the regulation of the core mechanisms of carcinogenesis and stress responses 
and are involved in most physiological processes (Mori et al., 2019; Sapp et al., 
2017). Thus, understanding how lifestyle habits influence miR expression could 
provide valuable insights into the mechanisms through which exercise has 
beneficial effects on health and may prevent cancer. 

Studies that have shown an association between body adiposity and/or 
physical activity and c-miRs have been extensively reviewed by Iacomino & Siani 
(2017) and Dufresne et al (2018). Many of the reviewed c-miRs, such as the miRs 
of the let-7 family (Esquela-Kerscher & Slack, 2006; Roush & Slack, 2008), miR-
17/19 cluster (Gits et al., 2013), miR-21 (Yamada et al., 2015), miR-125b (Ortega 
et al., 2013; Yamada et al., 2015), miR-126 (Yamaguchi et al., 2014), miR-206 
(Parasramka et al., 2012), and miR-221/miR-222 cluster (Gits et al., 2013), have 
been shown to be associated with the risk of developing various types of cancer. 
Ortega et al. found that morbidly obese patients had elevated levels of circulating 
miR-140, miR-142, and miR-222, while levels of miR-532, miR-125b, miR-130b, 
miR-221, miR-15a, miR-423, and miR-520c were reduced (Ortega et al., 2013). 
They also reported a significant decrease in circulating miR-140, miR-122, miR-
193a, and miR-16-1, and an increase in miR-221 and miR-199a after weight-loss 
surgery (Ortega et al., 2013). Alterations in circulating miR-23a, miR-27a, miR-
130, miR-195, miR-197, miR-320a, and miR-509-5p have been associated with 
metabolic syndrome (Deiuliis, 2016; Karolina et al., 2012). Furthermore, miR-10b 
and miR-200a are associated with elevated plasma total cholesterol levels, 
disrupted lipid metabolism, and obesity, and their expression levels are altered 
in cancer (Mens et al., 2020; Ortega et al., 2013; Ruiz-Roso et al., 2020). In general, 
miRs have been shown not only to play a role in elevated plasma total cholesterol 
levels, but their dysregulation also contributes to disrupted metabolism, which 
is a hallmark of obesity and cancer (Abozaid et al., 2022; Chadid et al., 2018; 
Hanahan & Weinberg, 2011; Heyn et al., 2020; Iacomino & Siani, 2017; Otsuka et 
al., 2023; Renehan et al., 2008). 

Acute and chronic physical activity represents a lifestyle behavior that 
influences the expression of several c-miRs (Baggish et al., 2011; Bye et al., 2013; 
Nielsen et al., 2014; Sapp et al., 2017), including some of which have also been 
associated with cancer (Dufresne et al., 2018). For example, miR-221 and miR-222 
may function as either tumor-suppressive or oncogenic c-miRs. In 
gastrointestinal stromal tumors, they act prophylactically by suppressing the KIT 
receptor, which activates cancer-promoting pathways, such as STAT3, PI3K, and 
the MAPK cascade (Gits et al., 2013). Thus, the modulation of these miRs through 
physical activity may reduce the risk of cancer by inhibiting KIT activation and 
downstream pathways. Physical activity has also been shown to affect the 
expression of miR-133 (Nielsen et al., 2014), which has been recognized as a 
tumor suppressor through targeting of oncogene EGFR in CRC (Dong et al., 2013) 
and breast cancer (Cui et al., 2013), among others (Dufresne et al., 2018). 
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Moreover, let-7 is a tumor suppressor miR whose expression is decreased in 
cancers (Roush & Slack, 2008), and reported to be modulated by exercise (Bye et 
al., 2013; Nielsen et al., 2014).  

Interestingly, studies that have looked at the interaction between physical 
activity and BMI show the two to interact, with people at greatest risk of cancer 
being those with a large BMI who do not participate in vigorous physical activity 
(Shaw et al., 2018). Thus, identifying c-miRs that function at the intersection of 
physical activity, BMI, and cancer could serve as potential therapeutic targets in 
the future as well as potential candidates for real-time monitoring of, for example, 
exercise interventions. 
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3 AIMS OF THE STUDY 

The aims of this thesis were to characterize the serum-based c-miR landscape of 
cancer-free LS carriers, to inspect whether any of those c-miRs are potential 
indicators of upcoming CRC, and to determine whether they are associated with 
modifiable cancer risk factors, such as body weight and physical activity. 
Furthermore, this thesis applied retrospective lifestyle questionnaire data to 
investigate whether longitudinal body weight gain and physical activity are 
associated with LS cancer risk. To address these critical aspects, the following 
questions were answered: 

 
1. Do cancer-free LS carriers display differential systemic c-miR 

expression compared to the healthy non-carrier group and sporadic 
CRC patients? (Study I) 

2. Can systemic c-miRs predict LS cancer incidence during a four-year 
prospective surveillance period? (Study II) 

3. Are lifestyle habits, such as body weight gain and physical activity, 
associated with c-miRs and LS cancer risk? (Study II & III) 
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4 MATERIALS AND METHODS 

4.1 Study designs and participants 

This thesis was based on cross-sectional and longitudinal human study designs 
(Table 5).  

The LS miR study (Study I, https://doi.org/10.17011/jyx/dataset/93204) 
characterized cross-sectionally the systemic serum c-miR profiles of LS carriers, 
sporadic CRC patients, and healthy non-carrier controls (controls) who were 
assigned to independent discovery and cancer cohorts. The discovery cohort (n 
= 118) was composed of 81 cancer-free LS carriers and 37 controls whose c-miR 
profiles were sequenced. The cancer cohort (n = 37) was composed of 13 LS 
carriers who had cancer and 24 sporadic CRC patients whose c-miR profiles were 
sequenced.  

The LS biomarker study (Study II) investigated longitudinally whether 
pre-diagnostic c-miR profiles can predict cancer incidence during a prospective 
surveillance period of approximately four years (2018–2022) and whether the 
predictive signature is associated with BMI and physical activity. The study 
cohort (n = 138) consisted of 77 cancer-free LS carriers and 37 controls derived 
from the LS miR study, as well as 24 newly collected cancer-free LS samples.  

The LS lifestyle study (Study III) retrospectively examined whether 
longitudinal physical activity and body weight gain of LS carriers during 
adulthood from the age of 20 until 2016 or 2020 was associated with cancer 
incidence. Questionnaires for anthropometric, socioeconomic, and life style habit 
data collection were sent to 1038 adult LS carriers whose addresses were 
available in the Finnish Lynch Syndrome Research Registry (LSRFi) in December 
2016 and July 2020. Of them, 480 (response rate 46.2%) returned the questionnaire. 
However, 15 participants did not carry the pathogenic MMR variant; therefore, 
they did not fulfill the eligibility criteria and were excluded from the study. Thus, 
the final study cohort consisted of 465 LS carriers. 

https://doi.org/10.17011/jyx/dataset/93204
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All LS carriers in this study were registered with the LSRFi and provided 
consent for research-related contacts. Age, sex, MMR-variant status, family 
cancer history, and all cancer diagnoses with the cancer type and date of each 
diagnosis were confirmed from hospital medical records and national cancer 
registries upon recording in the LSRFi. The LSRFi is a nationwide research 
registry (est. 1982), operating in Jyväskylä and Helsinki, which organizes 
surveillance and cancer prevention for LS families. The registry consists of 
clinical and family history data of over 400 LS families and over 1800 LS carriers 
under frequent surveillance. Individuals were identified in the registry before 
genetic testing became available, based on Amsterdam and Bethesda clinical 
criteria (Umar et al., 2004; Vasen et al., 1999), and subsequently through cascade 
testing of the families and universal testing of tumors. Adult members of the 
LSRFi with confirmed pathogenic MMR variants (classes 4 and 5, according to 
InSIGHT criteria (Spier et al., 2023) were eligible for the study. 

Sporadic CRC patients were enrolled at the time of their initial appointment 
for surgery at the surgical clinic of the local tertiary center responsible for the 
management of rectal cancer in Helsinki University Central Hospital, Unit of 
Rectal Surgery, Helsinki, Finland. 

Control samples were acquired from the Biobank of Eastern Finland, 
Kuopio, Finland (n = 27), in 2020, or from the Estrogenic Regulation of Muscle 
Apoptosis (ERMA) study (n = 10) consisting of healthy females ages 47 to 55. 
Persons with no cancers, blood disorders, acute or chronic infectious diseases, 
rheumatoid arthritis, or known BRCA or MMR gene germline mutations were 
eligible for the control group.  

TABLE 5  Study designs. 

 Study I Study II Study III 

Design Cross-sectional Longitudinal, prospec-
tive 

Longitudinal, retrospec-
tive 

    
N 155 138 465 
Lynch syndrome 94 101 465 
   Cancer-free 81 101 242 
   Cancer 13 - 223 
Sporadic CRC 24 - - 
Control 37 37 - 
    

Data collection Small RNA seq Small RNA seq, ques-
tionnaire Questionnaire 

    
Data type Measured Measured, self-reported Self-reported 
    

Main methods DESeq2(Love et 
al., 2014) 

DESeq2, Lasso-Cox(Tib-
shirani, 1997) 

Cox regression(Therneau 
& Grambsch, 2000) 

CRC = colorectal cancer; Lasso = least absolute shrinkage and selection operator. 
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4.2 Ethics 

All the studies in this thesis were conducted in accordance with the guidelines of 
the Declaration of Helsinki and approved by the Central Finland Healthcare 
District Ethics Committee (KSSHP D# 1U/2018 and 1/2019 and KSSHP 3/2016) 
and the Helsinki and Uusimaa Healthcare District Ethics Committee 
(HUS/155/2021). Written informed consent and permission to use and publish 
data for scientific purposes were obtained from all study participants. 

4.3 Measurements 

4.3.1 Serum sample collection and small RNA extraction 

Blood sampling of LS carriers was performed at their regular colonoscopy 
surveillance appointments at Helsinki University Central Hospital in Helsinki 
and Central Finland Central Hospital in Jyväskylä, Finland. Blood sampling of 
sporadic CRC patients was performed at the time of their initial appointment for 
surgery at the surgical clinic of the local tertiary center responsible for the 
management of rectal cancer in Helsinki University Central Hospital, Unit of 
Rectal Surgery, Helsinki, Finland. ERMA samples were collected at the 
University of Jyväskylä in Jyväskylä, Finland. Venous blood samples of LS 
carriers, sporadic CRC patients, and ERMA controls were drawn at a fasted state. 
The duration of fasting was not reported for the samples obtained from the 
Biobank of Eastern Finland. Samples were taken from the antecubital vein into 
standard serum tubes (Greiner). To separate serum, the whole blood samples 
were allowed to clot for 30 minutes at room temperature, centrifuged at 1,800 g 
for 10 minutes, and aliquoted and stored at -80°C whenever necessary.  

All c-miR isolations from blood serum were carried out using an affinity 
column-based miRNeasy Serum/Plasma Advanced Kit (Qiagen) according to 
the manufacturer’s instructions. Briefly, 0.5 mL of thawed serum was used to 
isolate all c-miRs. Cel-miR-39 miR mimic (Qiagen) was added to each sample to 
serve as a spike-in control for monitoring miR purification and amplification. 
Phase separation centrifugation was executed at 12,000 g for 3 minutes at room 
temperature (Heraeus, Biofuge Pico, and Fresco 17, ThermoFisher), and the rest 
of the centrifugations were performed at 16,000 g whenever a range of 8,000–
20,000 g was recommended. Circulating miRs were eluted to nuclease-free water 
and stored at -80°C whenever necessary. 

RNA quality and recovery of spike-in Cel-miR-39 were checked by RT-
qPCR (CFX96 and 384™ Real-Time PCR Detection System, Bio-Rad) prior to 
library preparation according to the manufacturer’s protocol. After small RNA 
isolation, cDNA was synthetized using a miRCURYLNA RT kit (Qiagen). 
cDNA synthesis was done from 12 µl of non-diluted template RNA, and the PCR 
protocol was carried out in a standard thermocycler (Eppendorf). Transcript 



 

44 

levels were measured using miRCURY LNA miRNA PCR assays (Qiagen) and 
miRCURY LNA SYBR Green kit (Qiagen). One μl of 1:2 diluted cDNA was used 
per well, and the samples were run as triplicates. The RT-qPCR protocol was as 
follows: 95°C (2 min, activation), 95°C (10 s), 56°C (60 s) with 40 cycles. Fold 
expression was calculated using the formula 2(-∆∆Ct), where ∆Ct(sample)-∆Ct 
(mean Ct from all samples), ∆Ct is Ct (c-miR of interest)-Ct (mean Ct from the 
group) and Ct is the cycle at which the detection threshold is crossed. Samples 
with Ct values of over 35 were excluded from the analysis.  

4.3.2 Library preparation and small RNA sequencing 

Small RNA sequencing libraries were prepared with a QIAseq miRNA Library 
Preparation Kit (Qiagen) according to the manufacturer’s instructions using 
multiplexing adapters. Briefly, the small RNA fractions were first ligated to 
sequencing adapters from both 5′ and 3′ ends, reverse transcribed into cDNA 
using UMI-assigning primers, and purified using magnetic beads. A universal 
indexing sequence was also added in the reverse transcription step to allow the 
samples to be distinguished from each other. The libraries were then amplified 
with a standard thermocycler (Eppendorf), purified, and eluted into nuclease-
free water. The libraries were stored at -20°C if used within two weeks and at  
-80°C otherwise. 

The sequencing library concentrations were measured with a Qubit 
fluorometer (Invitrogen), and quantified, diluted, and pooled into a single 
mixture in equal amounts (1.8 pM per sample) prior to sequencing. Sequencing 
of the small RNA libraries was done with NextSeq 500 (Illumina) using the 
NextSeq 500/550 High Output Kit v. 2.5 with 75 cycles (Illumina) to produce 75-
base pair single-end reads with aimed mean sequencing depth of > 5 M reads per 
sample, as recommended by the manufacturer (Qiagen). The samples used in this 
thesis were sequenced in four distinct batches. Quality assessment of the small 
RNA libraries prior to sequencing was completed with TapeStation 4200 
(Agilent). 

4.3.3 Body anthropometrics 

Body anthropometrics were self-reported. The participants were asked to report 
their height and to measure their body weight before breakfast and without 
clothes. If weight could not be measured, participants were asked to fill in their 
weight history and the last known weight measurement. BMI was calculated as 
weight in kilograms divided by the squared height in meters (kg/m2). Weight 
was measured by a clinician during the participant’s regular colonoscopy 
surveillance visit. Whether the participant did not report or recall their weight, 
and if the weight was not measured by a clinician, the missing weight data was 
imputed by using multiple imputation (van Buuren & Groothuis-Oudshoorn, 
2011). To measure body weight history during adulthood, participants recalled 
their body weight in kilograms at ages 20, 30, 40, 50, 60, and up to 70+ years.  
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4.3.4 Physical activity assessment 

Physical activity was assessed using a self-reported questionnaire. The 
questionnaire included seven questions about the frequency, intensity, and 
duration of leisure-time physical activity and commuting activity. Based on the 
responses, the MET hours per day for leisure-time physical activity were 
calculated. Missing data were handled using multiple imputation (van Buuren & 
Groothuis-Oudshoorn, 2011). 

Physical activity during adulthood was assessed via four-option scale 
questions through which participants recalled the level of regular physical 
activity they had at different adult age ranges throughout their lives. Participants 
reported their past physical activity at age ranges of 20–29, 30–39, 40–49, 50–59, 
60–75, and 75+ years up to their current age period at the time of measurement. 
The four response options for each age period were as follows: (1) no regular 
physical activity, (2) regular independent leisure-time physical activity (all non-
organized occupational or leisure-time physical activity, i.e., commuting, 
school/work activities), (3) regular goal-oriented competitive sport and training 
related to that sport, and (4) other regular supervised physical activity (physical 
activity that was organized in a sport club, etc., but was not related to competitive 
sports participation). These four categories were re-categorized into low activity 
(options 1 and 2) and high activity (options 3 and 4) used for modeling. The same 
re-categorization was applied to each age range.  

4.4 Statistical analyses 

Means and standard deviations were used as descriptive statistics for continuous 
measurements, frequencies, and percentages of categorical data. Pearson and 
Spearman methods were used to inspect correlations between parametric and 
non-parametric continuous variables, respectively. Levene’s test was used to 
inspect homoscedasticity, while the Shapiro–Wilk test was used for testing 
normality. P-values and/or false discovery rate (FDR) < 0.05 were considered 
significant in all analyses. All statistical analyses and data visualizations were 
performed in the R-programming environment (R Core Team, 2022) (v.4.2.2) 
using RStudio and in-house R-scripts. 

4.4.1 Longitudinal and near-term cancer risk 

Cox’s proportional hazards model with time-dependent covariates was used to 
examine the association between body weight, physical activity, and cancer 
incidence in longitudinal and near-term settings. Age served as the time variable, 
capturing cancer status at follow-up completion. The follow-up period spanned 
from study entry at age 20 until cancer diagnosis (event) or remaining cancer-
free (censored). To account for time-dependent weight and physical activity 
measurements, a counting process approach was employed to analyze the 
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relative risk of cancer associated with these exposures. The data were divided 
into 10-year intervals, with each interval characterized by corresponding weight 
and physical activity measurements. Separate models were constructed for males 
and females, as well as for any type of cancer or CRC. Nested random effects 
were incorporated to address the family structure. Hazard ratio (HR) and 95% 
confidence interval (CI) were reported from both unadjusted and adjusted 
models, accounting for relevant factors, such as affected MMR gene variant, 
height, education, smoking, alcohol use, and non-steroidal anti-inflammatory 
medication. 

4.4.2 Construction and validation of cancer risk prediction model 

Least absolute shrinkage and selection operator (Lasso) regularized Cox 
regression was used to find predictor c-miRs from the pool of identified LS-
associated differentially expressed c-miRs using the entire study sample. The 
optimal value for the Lasso regularization parameter lambda was chosen with 
10-fold cross-validation. The expression levels of the Lasso-obtained c-miRs were 
used to compute an individual risk sum score (linear predictor) for all 
participants using the following formula: 

Risk sum score = Expr(miRA) ∗ β(miRA) + Expr(miRB) ∗ β(miRB) …, 

Expr(miR) represents the normalized and variance stabilized c-miR expression 
and β(miR) indicates the regression coefficient in the Lasso Cox regression model. 
By using univariate and multivariate Cox regression models, the c-miR risk sum 
score was then applied to predict the risk of cancer incidence. The entire study 
sample (n = 101) was used to fit the risk prediction model. The predictive 
performance of the risk prediction model was validated with fivefold cross-
validation, and the model concordance was evaluated with Harrel’s C-index 
(Harrell et al., 1982) (scale 0.5–1.0), where 0.5 indicates poor performance and 1.0 
indicates excellent performance. 

The surveillance time used for risk prediction was determined from the 
time-point of initial serum sampling (2018–2020) until the latest update of the 
LSRFi (11/2022). The response variable in the risk prediction model was the age 
at the time of cancer diagnosis (event) or the age at the final update of the LSRFi 
(censoring). HR and 95% CI of the c-miR risk sum score were estimated for the 
unadjusted model as well as for the sex-adjusted model. The proportional 
hazards assumption was tested using Schoenfeld residuals. The “glmnet” R-
package (Friedman et al., 2010) was used for the cross-validation procedure, as 
well as for the Lasso-regularized Cox regression. The “survival” R-package 
(Therneau & Grambsch, 2000) was used for Cox regression modeling.  

4.4.3 Missing data 

There were no missing c-miR data. Regarding Study II, missing lifestyle data 
(physical activity: 30.9% and BMI: 4.5%) occurred due to incomplete 
questionnaire responses. Missing data were assumed to occur at random, and 
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multiple imputation with 50 iterations was used to create and analyze 50 
multiply imputed datasets using the “mice” R-package (van Buuren & 
Groothuis-Oudshoorn, 2011) with default settings. All lifestyle variables, as well 
as sex, age, pathogenic MMR variant, cancer status, and c-miR expression, were 
used for imputation of each lifestyle variable, and results were pooled using the 
“pool” function in mice. 

4.5 Bioinformatic analyses 

4.5.1 Sequencing data preprocessing 

Sequencing output data were converted to FASTQ format using bcl2fastq 
software (v.2.20, Illumina). The QIAseq sequencing adapters were trimmed from 
the 3′ end of the reads with FastX-toolkit  (http://hannonlab.cshl.edu/fastx_toolkit/) 
using default parameters with minimum alignment length -M 19. Only clipped 
reads >20 bp in length were selected for downstream analysis. After adapter 
clipping, the reads were trimmed to 22 bp to enrich miR-sequences and then 
quality filtered with FastX-toolkit. Only high-quality reads (Phred score > 25) 
were selected for alignment to the reference genome. Before alignment, all four 
sample lanes were merged to obtain the overall sample read count and to ensure 
better mapping quality. Samples that had < 1 M reads were excluded from the 
analyses. Subsequently, the preprocessed reads were mapped to human mature 
miRnome (miRbase v.22) (Griffiths-Jones et al., 2006) with the Bowtie (Langmead 
et al., 2009) alignment tool for single-end data with v-mode and best strata 
parameters. Only uniquely mapped miR reads were selected for differential 
expression analysis. All the steps in the preprocess pipeline were conducted with 
the Puhti supercomputer cluster (CSC, Finland) using in-house shell-scripts and 
algorithms. FastQC was used for quality controls  
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

4.5.2 Differential gene expression analysis 

Differential expression analyses from raw c-miR counts were based on statistical 
procedures of EdgeR (Robinson et al., 2009) and DESeq2 (Love et al., 2014) 
packages and conducted in R-studio (v. 4.1.2) (R Core Team, 2022). Briefly, the 
analyses were performed on c-miR raw read count matrices after the low 
expressed genes were filtered out, normalized with the median of ratios method, 
and variance stabilized in DESeq2. Circulating miRs that had more than 1 count 
per million in 70% of the samples in a group analysis were selected for the 
analysis. Filtered and normalized c-miR counts were used to set up a design 
matrix in DESeq2 that was adjusted for sex and batch. The Benjamini–Hochberg 
procedure (Benjamini & Hochberg, 1995) in DESeq2 was used to correct for 
multiple testing. 

http://hannonlab.cshl.edu/fastx_toolkit/)
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)


 

48 

4.5.3 Target gene prediction and pathway analysis 

Putative c-miR-target gene prediction was performed using the mirWalk (Sticht 
et al., 2018) tool, which utilizes a random forest-based approach, an ensemble 
learning method based on multiple decision trees, to predict target genes. Only 
the predicted c-miR-target genes targeting 3′ untranslated region with 
experimental validation from miRTarBase (Hsu et al., 2011), which were included 
and verified in mirDB (X. Wang, 2008) and TargetScan (Agarwal et al., 2015) 

databases, were selected for downstream over-presentation analysis. Over-
presentation of gene ontology (Ashburner et al., 2000), biological processes, 
Kyoto Encyclopedia of Genes and Genomes (Kanehisa & Goto, 2000), and 
Reactome pathways were conducted with miRWalk, Reactome (Fabregat et al., 
2016; Joshi-Tope et al., 2005), and Search Tool for Retrieval of Interacting 
Genes/Proteins (Snel et al., 2000; Szklarczyk et al., 2021). These tools provide a 
standard over-presentation analysis based on hypergeometric tests. The 
Catalogue of Somatic Mutations in Cancer (Tate et al., 2019) project database was 
used for the predicted target gene investigation. 
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5 RESULTS 

5.1 Participant characteristics 

Study participant characteristics are described in Table 6. Most of the LS carriers 
in all the studies had the pathogenic MLH1 variant (> 60%), followed by MSH2, 
MSH6, and PMS2. The mean ages of the participants across all three studies were 
53.5 years and 55.5 years for the cancer-free LS carriers and 62.0 years for those 
who had or developed CRC, including sporadic CRC and LS CRC. Regarding 
Studies II and III, those who developed cancer had pathogenic MLH1 variants, a 
history of previous cancers, and a higher BMI compared to their cancer-free 
counterparts. In Study II, the mean surveillance time was 1.5 years for those who 
developed CRC and 3.5 years for those who remained cancer-free. In Study II, 
those LS carriers who developed cancer had higher physical activity levels than 
those whose remained cancer-free, whereas in Study III cancer-free LS carriers 
reported higher physical activity. In Study III, the average surveillance times 
were 27.4 years for those who developed cancer, and 29.6 for those who did not. 
No loss to follow-up occurred in either Studies II or III. 
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TABLE 6  The study participants’ characteristics. 

Variable Study I Study II Study III 

 Cancer-
free LS 

Sporadic 
CRC Control Cancer-

free LS LS CRC Cancer-
free LS LS cancer 

        
N 81 24 37 92 9 242 223 
        
Age, years (SD) 59.5 (10.7) 69.8 (9.9) 54.9 (10.7) 57.5 (11.4) 51.4 (10.9) 49.6 (14.0) 64.8 (10.4) 
        
Sex, N (%)        
Male 40 (49.4) 10 (41.6) 18 (48.6) 44 6 (66.7) 114 (47.1) 101 (45.3) 
Female 41 (50.6) 14 (58.4) 19 (51.4) 48 3 (33.3) 128 (52.9) 122 (54.7) 
        
MMR status, N (%)        
MLH1 50 (61.7) - - 60 (65.2) 8 (88.9) 168 (69.4) 149 (66.8) 
MSH2 17 (21.0) - - 17 (18.5) 1 (11.1) 38 (15.7) 43 (19.3) 
MSH6 12 (14.8) - - 13 (14.1) - 36 (14.9) 29 (13.0) 
PMS2 2 (2.5) - - 2 (2.2) - - 2 (0.9) 
        
Cancer history, N (%)        
Yes 42 (51.9) - - 44 6 (66.7) 0 (0) 134 (60.1) 
No 39 (48.1) - - 48 3 (33.3) 242 (100) 89 (39.9) 
        
BMI, kg/m2 (SD)A 27.3 (5.7) 27.6 (6.3) 28.0 (6.2) 27.7 (6.1) 30.4 (3.3) 26.6 (4.8) 27.2 (5.9) 
        
Physical activity, 
MET-h/day (SD)B - - - 3.7 (3.6) 7.4 (4.5) 4.8 (4.3) 3.7 (4.0) 

        
Surveillance time, 
years (SD) - - - 3.5 (0.6) 1.5 (1.2) 29.6 (14.0) 27.4 (10.4) 
A Missing BMI data of LS carriers: Study I = 12; Study II = 5; Study III = 1. 
B Missing physical activity data of LS carriers: Study II = 34; Study III = 3. 
BMI = body mass index; CRC = colorectal cancer; LS = Lynch syndrome; MET = metabolic equivalent task; MMR = 
mismatch repair; SD = standard deviation. 

 

5.2 The systemic circulating microRNA landscape of cancer-free 
Lynch syndrome carriers 

A small RNA sequencing experiment was performed to inspect the systemic c-
miR signatures in the study cohorts and to characterize global expression 
patterns. In total, four separate sequencing runs were performed that resulted in 
1349 c-miRs common to cancer-free LS carriers, sporadic CRC patients, and 
controls with an average depth of 3.2 M reads per sample and over 70% 
alignment rate. After the removal of c-miRs with low and/or zero raw reads 
count, 228 c-miRs were identified and used in the downstream analyses.  

Hsa-miR-206 was observed as downregulated in male LS carriers and thus 
the models were adjusted with sex. Even though no difference in c-miR 
expression among the different MMR variants or among those with or without 
previous cancers was observed, models were adjusted with the MMR variant as 
recommended by PLSD studies (Møller et al., 2023). It was discovered that 37 out 
of 228 c-miRs displayed differential expression in cancer-free LS carriers when 
compared to the controls (Figure 3A). However, no differential expression was 
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observed when the c-miR profiles of cancer-free LS carriers were compared to 
sporadic CRC patients (Figure 3B).  

Of the differentially expressed c-miRs, 14 were upregulated and 23 were 
downregulated in cancer-free LS carriers with log2 fold changes varying between 
-1.56 and 0.94. Hsa-miR-155-5p, hsa-let-7c-5p, and hsa-let-7e-5p had the most 
significant upregulation within cancer-free LS carriers, whereas hsa-miR-320a-3p 
was the most significantly downregulated, followed by hsa-miR-15a-5p, hsa-
miR-186-5p, and hsa-miR-3615, respectively (Table 7). Regarding the cancer-free 
LS carriers and sporadic CRC patients, hsa-miR-10a-5p was the most 
significantly differentially expressed c-miR between the groups, although it did 
not reach the FDR < 0.05 level. 

 

 

FIGURE 3  Differentially expressed circulating microRNAs (c-miRs) between cancer-free 
Lynch syndrome (LS) carriers and controls (A) and cancer-free LS carriers 
and sporadic colorectal cancer patients (B). Red = downregulated c-miRs, 
blue = upregulated c-miRs, and gray = not differentially expressed c-miRs. 
Red dashed line = log2 fold change of 1, blue dashed line = log2 fold change 
of -1, and gray dashed line = -log10 false discovery rate (FDR) significant at 
<0.05 level. 
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TABLE 7  Differentially expressed circulating microRNAs between the study groups. 

Cancer-free LS vs. Controls  Cancer-free LS vs. Sporadic CRC patients 

c-miR log2FC FDR  c-miR log2FC FDR 
       
hsa-miR-155-5p 0.886 <0.001  hsa-miR-10a-5p 0.689 0.098 
hsa-let-7c-5p 0.698 <0.001  hsa-miR-1180-3p 1.156 0.151 
hsa-let-7e-5p 0.938 <0.001  hsa-miR-126-3p -0.391 0.151 
hsa-miR-320a-3p -0.747 0.001  hsa-miR-148b-3p -0.339 0.151 
hsa-miR-15a-5p -0.666 0.001  hsa-miR-196a-5p 1.410 0.151 
hsa-miR-186-5p -0.560 0.001  hsa-miR-320a-3p 0.556 0.151 
hsa-let-7a-5p 0.540 0.002  hsa-miR-320b 0.839 0.151 
hsa-miR-185-5p -0.474 0.002  hsa-miR-486-5p 0.544 0.233 
hsa-miR-3615 -1.562 0.002  hsa-miR-200b-3p 1.402 0.259 
hsa-miR-3613-5p -0.876 0.004  hsa-miR-223-3p 0.415 0.259 
hsa-miR-22-3p -0.536 0.004  hsa-miR-320c 1.080 0.259 
hsa-miR-339-5p -0.879 0.004  hsa-miR-185-5p 0.344 0.268 
hsa-miR-19b-3p -0.482 0.006  hsa-miR-483-5p 0.776 0.285 
hsa-miR-15b-5p -0.540 0.006  hsa-miR-222-3p 0.752 0.310 
hsa-miR-451a -0.727 0.006  hsa-miR-2110 1.197 0.323 
hsa-miR-484 -0.798 0.009  hsa-let-7d-3p 0.460 0.451 
hsa-let-7f-5p 0.338 0.012  hsa-miR-11400 -0.827 0.451 
hsa-miR-10b-5p 0.446 0.012  hsa-miR-134-5p -0.679 0.451 
hsa-miR-25-3p -0.406 0.012  hsa-miR-193a-5p 0.534 0.451 
hsa-miR-141-3p 0.914 0.012  hsa-miR-25-3p 0.323 0.451 
hsa-miR-27a-3p -0.386 0.014     
hsa-miR-32-5p -0.534 0.019     
hsa-miR-107 -0.431 0.020     
hsa-miR-23a-3p -0.492 0.024     
hsa-miR-125a-5p 0.405 0.026     
hsa-miR-221-3p -0.339 0.031     
hsa-miR-486-5p -0.499 0.031     
hsa-miR-126-3p 0.322 0.031     
hsa-miR-424-5p -0.693 0.031     
hsa-miR-92a-3p -0.409 0.036     
hsa-let-7i-5p 0.278 0.038     
hsa-miR-200a-3p 0.835 0.038     
hsa-miR-222-3p -0.676 0.047     
hsa-miR-125b-5p 0.474 0.047     
hsa-miR-27b-3p 0.417 0.047     
hsa-miR-15b-3p -0.823 0.047     
hsa-miR-206 0.869 0.049     
N cancer-free LS = 101; N controls = 37; N sporadic CRC patients = 24. c-miR = circulating 
microRNA; CRC = colorectal cancer; FDR = false discovery rate; log2FC = log base 2 fold 
change; LS = Lynch syndrome. FDR significant at <0.05 level. 
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5.3 Pre-diagnostic circulating microRNA signature in Lynch syn-
drome colorectal cancer risk stratification 

During the four years of prospective surveillance, nine out of 101 cancer-free LS 
carriers developed CRC within a mean surveillance time of 1.5 years (0.1–3.3 
years) (Table 6). Out of the 37 c-miRs, Lasso selected hsa-miR-10b-5p, hsa-miR-
19b-3p, hsa-miR-200a-3p, hsa-miR-27b-3p, and hsa-miR-3615 as the best 
predictors that separated LS carriers who developed CRC from those who 
remained cancer-free during the surveillance. It was observed that the baseline 
expression of all these c-miRs, except for hsa-miR-27b-3p, was higher in those LS 
carriers who developed cancer than in those who did not, although it did not 
reach statistical significance at the p < 0.05 level (Figure 4A–E). Of the five c-miRs, 
hsa-miR-10b-5p, hsa-miR-200a-3p and hsa-miR-3615 were independently 
associated with an increased cancer risk, and the model showed excellent 
concordance (C-index = 0.94) (Table 8). Furthermore, hsa-miR-10b-5p, hsa-miR-
27b-3p, and hsa-miR-200a-3p were upregulated in cancer-free LS carriers when 
compared to controls, whereas hsa-miR-19b-3p and hsa-miR-3615 were 
downregulated in cancer-free LS carriers compared to controls (bolded in Table 
7). 

 

 

FIGURE 4 Expression differences of hsa-miR-10b-5p (A), hsa-miR-19b-3p (B), hsa-miR-
200a-3p (C), hsa-miR-27b-3p (D), and hsa-miR-3615 (E) between Lynch 
syndrome carriers who got colorectal cancer and cancer-free Lynch 
syndrome carriers. The expression values on the Y-axis are presented as 
normalized and variance stabilized circulating microRNA counts. P-value 
significant at <0.05 level. 
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TABLE 8  Cox regression model fits of circulating microRNAs in the full sample. 

c-miR HR 95% CI β P-value 

hsa-miR-10b-5p 22.78 2.672-194.220 3.130 0.004 
hsa-miR-19b-3p 7.29 0.663-80.136 1.996 0.104 
hsa-miR-200a-3p 6.69 1.216-36.792 1.901 0.029 
hsa-miR-27b-3p 0.22 0.034-1.411 -1.521 0.102 
hsa-miR-3615 21.29 1.007-449.880 3.058 0.049 
C-index= 0.936 (se = 0.02) 
Likelihood ratio test = 22.91 on 5 df, p = 4e-04 
Wald test = 16.32 on 5 df, p = 0.006 
Score (log rank) test = 22.42 on 5 df, p = 4e-04 
β = regression coefficient; HR = hazard ratio; 95% CI = 95% confidence interval; C-index = 
Harrel’s concordance (C) index. P-value significant at <0.05 level.  

 
It was observed that a risk sum score composed of the five Lasso-obtained c-miRs 
was significantly associated with an increased risk of cancer incidence (HR 2.72; 
95% CI 1.67–4.42; β = 1.00; C-index = 0.94) also after adjusting for sex and MMR 
variant (HR 2.54; 95% CI 1.57–4.13; β = 9.34; C-index = 0.92) (Table 9). The mean 
c-miR risk sum score was higher in those LS carriers who developed cancer 
compared to those who did not (p < 0.001) (Table 9). An internal validation with 
fivefold cross-validation of this risk prediction model resulted in an average C-
index of 0.84 (0.60–1.00), thus presenting good concordance (Table 9).  

TABLE 9  The association of circulating microRNA risk sum score and colorectal cancer 
incidence. 

Model 
Mean 

(cancer-
free) 

Mean 
(CRC) 

P-
value HR 95% CI β 

P-
value C-index 

Risk sum 
score 
(unadjusted) 

54.99 57.73 <0.001 2.72 1.67-4.42 1.000 <0.001 0.94 (se 
0.022) 

Risk sum 
score 
(adjusted) 

- - - 2.54 1.57-4.13 0.934 <0.001 0.92 (se 
0.021) 

5-fold cross-validation mean C-index = 0.84 (0.6-1.0). 
β = regression coefficient; C-index = Harrel’s concordance index; CRC = colorectal cancer; HR 
= hazard ratio; 95% CI = 95% confidence interval; se = standard error. P-value significant at 
<0.05 level. 

 
Hsa-miR-200a-3p correlated with hsa-miR-10b-5p (rho = 0.29; p < 0.01) and hsa-
miR-27b-3p (rho = 0.23; p < 0.01) whereas hsa-miR-27b-3p correlated negatively 
with hsa-miR-19b-3p (rho = -0.20, p < 0.05) and hsa-miR-3615 (rho = -0.43, p < 
0.001) thus displaying correlation and expression concordance (Figure 5A). It was 
discovered that these five c-miRs targeted 180 distinct genes with experimental 
validation (Studies I and II). These genes were observed to form high confident 
interacting gene hubs (p < 0.01) around common oncogenes and TSGs such as 
TP53, CDKN1A, CDKN2A, SMAD2, FOXO1, EGFR, and CREB1 genes (Figure 5B 
and Table 1). A pathway analysis conducted on those experimentally confirmed 
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target genes showed that these genes were significantly enriched (p < 0.05) in 
several cancer-associated pathways and hallmark properties, including 
regulation of apoptosis, p53-/FOXO-/AKT-/TGFB-signaling and cellular 
senescence, among others (Figure 5C).  
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FIGURE 5 Correlation heatmap of hsa-miR-10b-5p, hsa-miR-19b-3p, hsa-miR-200a-3p, 
hsa-miR-27b-3p, and hsa-miR-3615 (A), and the most important gene nodes 
(B) and pathway analysis (C) of their target genes. FDR = false discovery rate; 
GO:BP = Gene ontology: Biological process; KEGG = Kyoto encyclopedia of 
Genes and Genomes. P-value significant at <0.05 level (*). 
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5.4 Lifestyle habits and Lynch syndrome cancer risk 

The c-miR risk sum score did not show any correlation to physical activity (r = 
0.173; p = 0.121) or BMI (r = 0.167; p = 0.101) (Table 10). 

TABLE 10  Correlations between circulating microRNAs, body mass index, and physical 
activity. 

Variable r 95% CI P-value 

Physical activity 0.173 [-0.05, 0.39] 0.121 
    

BMI 0.167 [-0.03, 0.36] 0.101 
BMI = body mass index; r = Pearson correlation coefficient;  95% CI = 95% confidence interval. 
P-value significant at <0.05 level. 
 

 
The associations between adult life body weight and risk of cancer are presented 
in Table 11. For consistency, all results in the text regarding body weight and 
cancer risk are presented only from models adjusted for height, MMR gene, 
education, alcohol consumption, smoking status, and the use of anti-
inflammatory drugs. Longitudinal weight gain increased CRC risk by 3% in 
males (HR 1.03; 95% CI 1.01–1.05) but not in females. Regarding overall cancer 
risk, longitudinal weight gain increased cancer risk by 2% in males (HR 1.02, 95% 
CI 1.00–1.04) but no associations were observed in females. Among females, near-
term weight gain within the 10-year interval before CRC diagnosis was 
associated with a 4% decreased risk of CRC (HR 0.96; 95% CI 0.92–0.99). No 
associations between near-term weight gain and CRC risk were observed in 
males.  

The associations between physical activity and cancer risks are presented in 
Table 12. Longitudinal physical activity was observed to lower the overall cancer 
risk by 63% (HR 0.37; 95% CI 0.15–0.98) in males. No longitudinal associations 
between physical activity and cancer risk was observed in females. In the near 
term, physical activity was not associated with overall cancer risk in either males 
or females. There was no significant association between physical activity and 
the risk of CRC. 
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TABLE 11  Associations of longitudinal and near-term body weight change and Lynch 
syndrome cancer risk. 

 Unadjusted model Adjusted model 

Males Events Observations 
HR 

(95% 
CI) 

P Events Observations 
HR 

(95% 
CI) 

P 

CRC         

Longitudinal 
change 60 610 

1.02 
(1.00–
1.03) 

0.023 57 579 
1.03 

(1.01–
1.05) 

0.004 

Near-term 
change 60 185 

1.00 
(0.98–
1.01) 

0.695 57 174 
1.00 

(0.98–
1.02) 

0.861 

All cancers         

Longitudinal 
change 77 610 

1.02 
(1.00–
1.03) 

0.048 74 579 
1.02 

(1.00–
1.04) 

0.022 

Near-term 
change 77 185 

0.99 
(0.97–
1.00) 

0.345 74 174 
0.99 

(0.97–
1.01) 

0.424 

Females         
        

CRC         

Longitudinal 
change 50 758 

0.99 
(0.96–
1.01) 

0.258 48 720 
0.99 

(0.96–
1.02) 

0.454 

Near-term 
change 50 221 

0.98 
(0.95–
1.00) 

0.106 48 209 
0.96 

(0.92–
0.99) 

0.015 

All cancers         

Longitudinal 
change 95 758 

0.99 
(0.97–
1.00)  

0.290 91 720 
1.00 

(0.98–
1.02)  

0.887 

Near-term 
change 95 221 

0.98 
(0.97–
1.00)  

0.059 91 209 
0.98 

(0.96–
1.00)  

0.059 

Model adjusted with mismatch repair gene variant, height, education, smoking, alcohol use, and non-steroidal anti-
inflammatory medication. HR = hazard ratio; 95% CI = 95% confidence interval; CRC = colorectal cancer. P-value 
significant at <0.05 level. 
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TABLE 12  Associations of longitudinal and near-term physical activity change and 
Lynch syndrome cancer risk.  

 Unadjusted model Adjusted model 

Males Events Observations HR (95% 
CI) P Events Observations HR (95% 

CI) P 

CRC         

Longitudinal 
change 73 683 

0.57 
(0.25-
1.33) 

0.194 68 648 
0.52 

(0.20–
1.36) 

0.181 

Near-term 
change 73 205 

0.93 
(0.39–
2.24) 

0.874 68 192 
0.99 

(0.36–
2.73) 

0.938 

All cancers         

Longitudinal 
change 91 683 

0.44 
(0.19–
1.04) 

0.063 86 648 
0.37 

(0.15–
0.98)  

0.044 

Near-term 
change 91 205 

0.69 
(0.29–
1.64) 

0.403 86 192 
0.74 

(0.27–
2.01) 

0.557 

Females         
        

CRC         

Longitudinal 
change 59 823 

1.16 
(0.65–
2.10) 

0.612 57 789 
1.28 

(0.65–
2.52) 

0.471 

Near-term 
change 59 238 

0.92 
(0.49–
1.72) 

0.797 57 227 
0.99 

(0.48–
2.02) 

0.973 

All cancers         

Longitudinal 
change 110 823 

1.31 
(0.86–
1.97) 

0.206 107 789 
1.26 

(0.79–
2.00)  

0.341 

Near-term 
change 110 238 

1.42 
(0.89–
2.25) 

0.138 107 227 
1.34 

(0.80–
2.23)  

0.268 

Model adjusted with mismatch repair gene variant, height, education, smoking, alcohol use, and non-steroidal anti-
inflammatory medication. HR = hazard ratio; 95% CI = 95% confidence interval; CRC = colorectal cancer. P-value 
significant at <0.05 level. 
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6 DISCUSSION 

This thesis explored the associations between c-miRs, lifestyle habits and LS CRC 
incidence. The aims were to characterize the serum-based c-miR landscape of 
cancer-free LS carriers, to inspect whether any of those c-miRs are potential 
indications of upcoming CRC, and to determine whether they are associated with 
modifiable cancer risk factors, such as BMI and physical activity. Furthermore, 
this thesis retrospectively examined whether weight gain and physical activity 
are associated with cancer risk in the Finnish LS population. 

It was observed that cancer-free LS carriers displayed aberrant serum c-miR 
expression compared to the healthy non-carriers, but no differential expression 
was seen between the cancer-free LS carriers and sporadic CRC patients. A panel 
composed of these differentially expressed c-miRs, including hsa-miR-10b-5p, 
hsa-miR-19b-3p, hsa-miR-27b-3p, hsa-miR-200a-3p, and hsa-miR-3615, was 
associated with an increased risk of developing CRC in the near future, thus 
indicating risk stratification potential during surveillance. The CRC risk 
predictive c-miR panel did not correlate either with BMI or physical activity, thus 
suggesting that they are associated with LS CRC risk independently of lifestyle 
within this population. However, longitudinal weight gain was seen as a cancer 
risk factor for males and, in the near term, as a protective factor for females in the 
retrospective analysis. Moreover, longitudinal physical activity was associated 
with a significant reduction in LS cancer risk in males.  

6.1 Circulating microRNAs and Lynch syndrome 

In recent years, the expanded accessibility of gene expression data and 
advancements in methodologies that profile miR targets en masse have 
significantly enriched the comprehension of miR functions, as well as the origins 
and repercussions of miR dysregulation. Consequently, there is growing interest 
in applying c-miRs as cancer biomarkers due to their stability and easy 
collectability, which allows continuous and minimally invasive testing of an 
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individual. The LS cohort provides an ideal population for such biomarker 
harvesting due to the well-predicted cancer risk of persons with strong genetic 
predisposition who are under frequent surveillance and are most likely to 
develop cancers within short intervals. This thesis presents the first serum-based 
c-miRs characterized in the Finnish LS population that have cancer biomarker 
potential. 

Balaguer et al. studied miRs extracted from tumors of LS carriers and 
sporadic CRC patients with verified MSI and normal tissue samples (Balaguer et 
al., 2010, 2011). They used a set of more than 700 miR-probes with microarray 
analysis and detected hundreds of differentially expressed miRs among the 
tissue samples, showing that LS tumors can be separated from sporadic tumors 
with MSI, as well as that suspected LS samples discern from confirmed LS 
samples. They detected several differentially expressed miRs with diagnostic 
potential in LS, including hsa-miR-125b-5p, hsa-miR-137, hsa-miR-622, hsa-miR-
192, and hsa-miR-1238. Alternatively, Zhou et al. demonstrated that hsa-miR-137, 
hsa-miR-520e, and hsa-miR-590-3p are indications of LS using a subset of the 
same LS tumor samples and normal tissue samples as Balaguer et al. (Zhou et al., 
2016).  

The reason for the difference in differentially expressed miR numbers 
between our study and the previous studies is likely explained by the study 
setting, used specimen type, and methodology. As a general note, since the 
individuals included in our study were cancer-free at the time of sample 
collection, their observed response may not demonstrate the same robustness as 
in cancer patients with diagnosed pathology at specific tissue sites. Moreover, it 
is worth noting that the c-miRs analyzed in this thesis were obtained from blood 
samples. We and others have observed that the c-miR abundancies are typically 
lower in serum and plasma when compared to those from tissue samples 
(Fehlmann et al., 2016). In addition, the differing detection procedures 
(microarray vs. small RNA sequencing) may have affected the magnitude of the 
observed c-miR expression (Chatterjee et al., 2015; Git et al., 2010). 

6.1.1 Upregulated circulating microRNAs in Lynch syndrome 

The most significant differentially expressed c-miR in the cancer-free LS group 
was oncogenic hsa-miR-155-5p. Hsa-miR-155-5p is a well-established CRC miR 
that is commonly more frequent in MSI than in MSS CRC (Earle et al., 2010; Lanza 
et al., 2007; E.K.O. Ng et al., 2009). Valeri et al. reported that hsa-miR-155-5p 
targets several MMR genes and that upregulation of hsa-miR-155-5p 
downregulates MLH1 and MSH2 in CRC cell lines (Valeri et al., 2010). 
Furthermore, Svrcek et al. observed that miR-155 upregulation was associated 
with sporadic MSI CRCs in patients with inflammatory bowel disease and that it 
correlated with distant non-cancerous mucosa (Svrcek et al., 2013). The authors 
suggested that pre-cancerous miR-155 upregulation may promote the 
proliferation of dMMR clones in the colonic mucosa of inflammatory bowel 
disease patients that are yet to undergo malignant transformation due to MSI. In 
alignment with those studies, the results of this thesis showed a modest 
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upregulation (log2 fold change < 1.00) of hsa-miR-155-5p. The gene enrichment 
analysis found TSG SMAD2 to be a key target gene, as seen in previous reports 
(Fleming et al., 2013; Louafi et al., 2010), which implies that hsa-miR-155-5p 
might have a role in the modulation of LS carcinogenesis in this cohort. 

The let-7 miR family is commonly regarded as tumor suppressors through 
direct negative regulation of RAS oncogenes, such as KRAS and NRAS (Esquela-
Kerscher & Slack, 2006; Roush & Slack, 2008). Ras proteins, as membrane-
associated GTPase signaling proteins associated with 10%–30% of human cancers, 
play a crucial role in controlling cellular growth and differentiation (Prior et al., 
2020). Activating mutations in RAS genes drive cellular transformation. Thus, 
miRs that regulate the expression of these oncogenic proteins are expected to 
curb cellular proliferation rates. In this thesis, the let-7 family c-miRs were 
observed to be significantly upregulated, which could hint at increased 
oncogenic stress in cancer-free LS carriers. A total of more than 120 
experimentally verified target genes, which were enriched in several cancer-
associated pathways, were found for these c-miRs (Study I). Of the most enriched 
target genes in the study, the oncogene NRAS was targeted by hsa-let-7a-5p and 
hsa-let-7c-5p, whereas TSG CDKN1A was targeted by hsa-let-7e-5p (Study I). 
Low expression of hsa-let-7i in primary CRC tumors has been reported to be 
associated with worsened prognosis and distant metastasis (Hur et al., 2015). 
These results indicate that the let-7 family c-miRs are primarily tumor 
suppressive in the studied LS cohort. 

Furthermore, hsa-miR-10b-5p, hsa-miR-27b-3p, hsa-miR-125a-5p, hsa-miR-
125b-5p, hsa-miR-126-3p, hsa-miR-141-3p, hsa-miR-200a-3p, and hsa-miR-206 
were also observed to be upregulated in this thesis. In support of our findings, 
hsa-miR-10b-5p, hsa-miR-200a-3p, hsa-miR-27b-3p, hsa-miR-141-3p, and hsa-
miR-125b are well established CRC miRs whose upregulation is associated with 
larger tumor size (Sheedy & Medarova, 2018), advanced epithelial-to-
mesenchymal transition in sporadic CRC (Pichler et al., 2014), advanced stage of 
sporadic and LS CRC, later age of onset (Moreno et al., 2019; Zhang et al., 2018), 
and poorer survival (Hur et al., 2015). Although not found in this thesis, hsa-miR-
23b and hsa-miR-24a, which belong to the same cluster as hsa-miR-27b-3p found 
in this thesis, have previously been shown to display upregulation in primary LS 
CRC tumors (Moreno et al., 2019). Interestingly, miR-125b is linked to non-
advanced neoplasms, such as tubular adenomas, and smaller tumor sizes, 
suggesting its likely involvement in an earlier stage of colorectal carcinogenesis 
(Yamada et al., 2015). Given that nine out of the 101 cancer-free LS carriers in our 
cohort developed CRC, this observation supports the findings of this thesis, even 
if hsa-miR-125b-5p was not included in the CRC risk prediction model. However, 
hsa-miR-125b-5p was a cancer predictive c-miR when the analysis was not 
stratified to CRC but considered all cancer cases, further supporting its potential 
role in the early development of LS CRC. This miR has also been detected as 
upregulated in earlier LS studies, thus providing evidence of potential early 
carcinogenesis in our cohort (Balaguer et al., 2011). 
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Yamaguchi et al. showed that hsa-miR-126 is downregulated in several 
different CRC types, including sporadic MSI and MSS tumors, as well as LS and 
familial adenomatous polyposis-derived tumors (Yamaguchi et al., 2014). They 
suggested that downregulation of this miR induces angiogenesis at the early 
stage of CRC carcinogenesis (Yamaguchi et al., 2014). Within this concept, by 
displaying upregulation, it appears that hsa-miR-126-3p might play an opposing 
role in LS. A previous study by Parasramka et al. reported that the forced 
upregulation of miR-206 significantly increased HCT116 cell proliferation 
(Parasramka et al., 2012). This finding aligns with our results, since the HCT116 
cell line is commonly used as a proxy for LS due to homozygous nonsense 
mutation in MLH1, which introduces high MSI, a hallmark of LS, to the cell line. 

In total, the magnitude of the observed c-miR upregulation was mild, which 
could be explained by the cancer-free status of the cohort. On the other hand, 
post-transcriptional gene regulation by miRs operates through mechanisms 
involving translational inhibition and mRNA destabilization, which results in 
reduced mRNA levels (Baek et al., 2008; Guo et al., 2010). Studies have shown 
that mRNA destabilization emerges as the primary effect of miRs when 
substantial target repression occurs (Eichhorn et al., 2014). However, in the 
majority of instances, the extent of miR-induced mRNA depletion is modest 
(Selbach et al., 2008), which is somewhat unexpected considering the broad roles 
that miRs play in various biological processes and pathologies. If targets are 
enriched for genes whose products participate in common signaling pathways, 
as indicated in the gene enrichment analyses (Study I), then the cumulative effect 
of typically modest interactions—often coupled with a small subset of strongly 
regulated target genes (Study I)—can elicit a stronger response than could be 
achieved through the direct regulation of any single gene in isolation. The 
simultaneous targeting of multiple genes may also facilitate more specific fine-
tuning through the regulation of distinct subnetworks (Bracken et al., 2015, 2016). 
Thus, even mild c-miR upregulation could have a significant impact on LS 
carcinogenesis, as strongly indicated by the CRC risk prediction model. 

6.1.2 Downregulated circulating microRNAs in Lynch syndrome 

A majority of c-miRs introduced in this thesis were downregulated in cancer-free 
LS carriers. Among these c-miRs, the most significantly downregulated c-miR in 
the LS population was hsa-miR-320a-3p, followed by hsa-miR-15a-5p, hsa-miR-
186-5p, hsa-miR-185-5p, and hsa-miR-3615, respectively. In support of our 
findings, hsa-miR-320a-3p has also been previously reported to display 
downregulation in LS primary CRC tumors and sporadic CRC primary tumors 
when compared to controls (Moreno et al., 2019). The downregulation of this miR 
has also been shown to correlate with advanced tumor stage and non-
invasiveness (Hur et al., 2015; Moreno et al., 2019). A downregulation of hsa-miR-
15a-5p is associated with better CRC survival (Mullany et al., 2018). In contrast 
to our findings, the upregulation of hsa-miR-185-5p in tissues and hsa-miR-186-
5p in saliva has been linked to sporadic advanced adenomas and early-stage CRC 
(Shi et al., 2023), as well as late-stage CRC (Rapado-González et al., 2019). In 
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alignment with this thesis, hsa-miR-3615 has previously been reported to display 
downregulation in MSI colorectal tumors when compared to their MSS 
counterparts (Slattery, Lee, et al., 2017). 

Of note, hsa-miR-15b-5p, hsa-miR-19b-3p, hsa-miR-23a-3p, hsa-miR-27a-3p, 
hsa-miR-32-5p, and hsa-miR-92a-3p were also observed to be downregulated. 
Interestingly, a previous study has shown that hsa-miR-15b-5p and hsa-miR-19b-
3p are upregulated in the serum of patients with sporadic advanced adenomas 
or CRC and possess a high discriminative capacity between CRC patients and 
controls (Marcuello et al., 2019). Hsa-miR-32-5p has been established as a 
prognostic miR with higher expression linked to worsened survival in The 
Cancer Genome Atlas (Weinstein et al., 2013; Yang et al., 2019). Raut et al. 
reported that a risk score based on plasma derived, including but not limited to, 
hsa-miR-23a-3p, hsa-miR-27a-3p, and hsa-miR-92a-3p, predicted sporadic CRC 
incidence in a prospective cohort with a median follow-up time of 6.8 years (Raut 
et al., 2021). Also, Vychytilova-Faltejskova et al. reported that the upregulation 
of hsa-miR-23a-3p could be involved in the early steps of sporadic CRC 
carcinogenesis, and a predictive model including hsa-miR-23a-3p and hsa-miR-
27a-3p could have early detection and prognosis prediction potential with high 
specificity and sensitivity (Vychytilova-Faltejskova et al., 2016). Previous studies 
have also shown that miR-23a-3p and miR-27a-3p function together within a 
cluster, and elevated levels of these miRs were observed in APC mutant/dMMR 
invasive adenocarcinomas (Jahid et al., 2012). Additionally, the same authors 
showed that miR-23a was upregulated in early-stage CRCs, while miR-27a was 
overexpressed in advanced-stage CRCs. In our study, hsa-miR-27a-3p targeted 
KRAS, among other genes. In contrast to these previous studies, the majority of 
those c-miRs were downregulated in cancer-free LS carriers. This observation 
could hint at the ongoing suppression of early-stage carcinogenesis, which was 
also supported by the gene enrichment analyses conducted in Study I of this 
thesis. 

However, it is important to recognize that there are differences between 
sporadic CRC and LS CRC carcinogenesis, primarily attributed to dMMR, which 
may have altered the observed c-miR responses (Balaguer et al., 2011; Moreno et 
al., 2019). LS cancers are hypermutated with a 100–1000-fold increase in 
microsatellite mutation rate due to high MSI (Bohaumilitzky et al., 2022; Parsons 
et al., 1993). Such cancers are known to provoke the immune system via 
consecutive neoantigen presentation and have been shown to be highly 
immunogenic, as well as associated with strong immune cell infiltration (Pastor 
& Schlom, 2021; Seth et al., 2018). In addition, studies have shown that tumor 
microenvironment infiltrating immune cells are present and highly reactive to 
neoantigens in LS CRC, but not in cancers that have no MMR deficiency (Kloor 
& Von Knebel Doeberitz, 2016; Roudko et al., 2021). Thus, immunogenic LS CRCs 
generally possess a better prognosis, and the patients display enhanced survival 
over sporadic CRC patients (Stigliano et al., 2008). Since c-miRs may partly 
originate from immune cells (Matsuzaki et al., 2023; Pritchard et al., 2012), it is 
tempting to speculate that the observed global dysregulation of the c-miR 
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landscape in LS could be due to the dMMR-driven enhanced immunogenicity. 
However, even if we did not have the opportunity to characterize the circulating 
immune cell landscape of our cohort, it has been reported that normal colonic 
mucosa of cancer-free LS carriers shows enhanced immune cell infiltration 
compared to controls (Bohaumilitzky et al., 2022). Whether such alterations 
mirror circulation and/or c-miR responses remains to be elucidated in future 
work. 

6.1.3 Circulating microRNAs and colorectal cancer risk in Lynch syndrome 

Several cancer risk models have previously been developed for sporadic CRC, 
primarily for prognostic (Yang et al., 2019; Zhan et al., 2021) and diagnostic 
(Pardini et al., 2023) purposes but also for classifying consensus molecular 
subtypes (Adam et al., 2022) and predicting incident CRC (Raut et al., 2021). Hsa-
miR-10b-5p was the only overlapping miR between those models and ours (Yang 
et al., 2019), whereas isoforms of hsa-miR-19b-3p (19a) and hsa-miR-27b-3p (27a) 
were also identified by Raut et al. in their risk prediction model (Raut et al., 2021). 
Other miRs that were not included in our model but were part of the 
aforementioned models and found to be dysregulated in LS in this thesis 
included hsa-miR-141-3p, hsa-miR-23a-3p, hsa-miR-92a-3p, and hsa-miR-155-5p. 

To our knowledge, this thesis introduced the first high-concordance serum-
based c-miR CRC risk prediction model that was able to separate cancer-free LS 
carriers from those who developed CRC during a prospective surveillance. 
Importantly, the cross-validation of the risk prediction model showed that the 
five c-miR risk sum score has potential for LS patient risk stratification across 
diverse cohorts with varying numbers of events and surveillance times. This 
observation is valuable because the variation in individual cancer risk is high 
among LS carriers, and the implementation of intense screening programs is not 
uniformly effective. 

Of the five c-miRs applied in our model, all except for hsa-miR-27b-3p 
displayed higher expression in LS carriers who developed CRC compared to 
those who did not. Furthermore, hsa-miR-200-3p displayed a positive correlation 
with hsa-miR-10b-5p and hsa-miR-27b-3p, while hsa-miR-27b-3p exhibited a 
negative correlation with hsa-miR-19b-3p and hsa-miR-3615. The target gene 
analysis of these c-miRs showed them to target well-established TSGs, such as 
TP53 (hsa-miR-19b-3p), TP53INP1 (hsa-miR-27b-3p), CDKN1/2A (hsa-miR-10b-
5p), SMAD2 (hsa-miR-27b-3p and hsa-miR-200a-3p), FOXO1 (hsa-miR-27b-3p) 
and TGFBR1/3 (hsa-miR-27b-3p), as well as oncogenes CREB1 (hsa-miR-10b-5p), 
EGFR (hsa-miR-200a-3p), and MAP2K3 (hsa-miR-19b-3p) (Sondka et al., 2018; 
Tate et al., 2019). These genes formed significantly interconnected hubs, which 
further indicated a similar role and biological connection among them. In 
addition, all of these genes were enriched in several cancer-relevant biological 
pathways. Even though mechanistic experiments on c-miR–mRNA interactions 
were not conducted, these findings suggest co-regulation among these c-miRs. 

The CRC risk prediction model outlined in this thesis demonstrates 
credibility, although some peculiarities remain. Hsa-miR-19b-3p and hsa-miR-
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27b-3p were not independently associated with CRC in our model. Interestingly, 
hsa-miR-27b-3p was actually associated with a lower risk of CRC incidence, 
which appeared counterintuitive. To speculate, this protective effect could be 
observed because the model considers the overall expression pattern and 
regulatory interactions of multiple miRs. Thus, even if hsa-miR-27b-3p likely 
promotes carcinogenesis by targeting the abovementioned TSGs, its impact on 
the overall cancer phenotype may be attenuated by other factors considered in 
the risk prediction model. For example, the negative correlation between hsa-
miR-27b-3p, hsa-miR-19b-2p, and hsa-miR-3615—coupled with the association 
of miR-19b with increased cancer risk in the model and its dual targeting of TSGs 
and oncogenes—indicates a potential antagonistic relationship between these c-
miRs in cancer development. It should also be noted that the dMMR phenotype 
may introduce anomalies to the c-miR response. 

Collectively, based on our cross-sectional and longitudinal analyses, along 
with bioinformatic investigations, the c-miRs identified in this thesis emerge as 
potential indicators of impending LS CRC. Consistent with findings from prior 
studies involving sporadic CRC patients and demonstrated by our risk 
prediction model, c-miRs show promise for patient risk stratification in LS. 
However, given the exploratory nature of our results and the limited testing of 
the risk prediction model in a small cohort composed mainly of MLH1 carriers, 
further validation with larger and more diverse cohorts is imperative. Even if the 
clinical utility of c-miRs remains to be elucidated in the future, this thesis 
provides a solid background for further investigation into their potential roles in 
CRC risk assessment and patient stratification. 

6.1.4 Circulating microRNAs and lifestyle habits 

The risk of various LS cancers is significantly elevated by sedentary behavior and 
excess body weight, while physical activity and maintaining a healthy body 
weight have been shown to mitigate these risks (Coletta et al., 2019; Dashti et al., 
2018; Power et al., 2024). As discussed in the literature review, previous studies 
have suggested that miRs may mediate the mechanisms through which exercise 
has beneficial effects on health and may prevent cancer (Dufresne et al., 2018; 
Garai et al., 2021). This thesis observed that the CRC-predicting c-miR signature 
showed no association with body weight or physical activity.  

This finding deviates slightly from our previous results. In Study II, when 
we modeled the overall LS cancer risk, including CRC, using a c-miR signature 
largely similar to the one introduced in this thesis, we observed a clear correlation 
between the risk sum score and BMI. Those results indicated potential links 
between c-miRs, lifestyle, and cancer through metabolic dysregulation occurring 
via p53, FOXO, and cellular senescence pathways. The signature for overall 
cancer risk in that study featured hsa-miR-125b and hsa-miR-3613, replacing hsa-
miR-27b-3p and hsa-miR-19b-3p, respectively. Hence, it appears that hsa-miR-
27b-3p and hsa-miR-19b-3p may contribute differently to overall cancer risk 
compared to their roles specifically within the context of CRC. Regarding the 
other c-miRs in our CRC model, hsa-miR-10b-5p and hsa-miR-200a-3p have 
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previously been linked with increased levels of plasma total cholesterol and 
dysregulated lipid metabolism (Mens et al., 2020; Ruiz-Roso et al., 2020). 
Alternatively, we observed hsa-miR-27b-3p to target FOXO1, a transcription 
factor known to regulate immune response and inflammation (D’Onofrio et al., 
2023). To speculate, this interaction could have a modulating effect on immune 
response (D’Onofrio et al., 2023; Dufresne et al., 2018). Since LS cancers are highly 
immunogenic, the potential immunosuppressive effect of hsa-miR-27b and its 
potential antagonistic relationship with hsa-miR-19b might have a confounding 
effect. However, without further research, this suggestion remains purely 
speculative. 

It should be noted that the average time period between lifestyle data and 
blood sample collection was two years, which could have influenced the findings 
presented in this thesis. However, this timeframe had no effect when we modeled 
the associations with overall cancer risk. Presumably, a more systematic 
approach, including matching collection time points and time series data, to 
model this potential interaction could be beneficial. Thus, further studies are 
needed to determine whether c-miRs could modulate the beneficial effects of 
lifestyle on the risk of LS CRC. 

6.2 Lifestyle habits and Lynch syndrome cancer risk 

The latest recommendations from the World Cancer Research Fund Continuous 
Update Project Expert Report advocate for the reduction of excess body weight, 
the increase in physical activity, and the minimization of alcohol and tobacco 
consumption to lower the risk of CRC (Clinton et al., 2020). While these lifestyle 
risk factors are known to be associated with CRC in the general population, their 
association with the development of CRC in LS has remained less well 
characterized. This thesis found that an overall increase in total body weight 
throughout the lifespan slightly elevated the risk of CRC in males. Regarding 
females, near-term weight increases are associated with a decreased risk of CRC. 

Body weight typically accumulates during an adult’s lifespan. However, 
aging is associated not only with increased body weight due to fat accumulation 
but also with changes in body composition (Sillanpää et al., 2014). Starting 
around age 30, muscle mass tends to decline, accelerating after 50, especially in 
females due to menopause (Juppi et al., 2020). Typically, males are predisposed 
to androgen-type fat accumulation throughout their lives (Szulc et al., 2017). 
Conversely, females tend to have gynoid-type fat distribution at pre-menopause 
until transitioning to androgen-type at post-menopause (Kirchengast et al., 1997). 
These age-related weight trends differ between sexes, which could potentially 
explain our varied findings. The link between weight gain and CRC risk may also 
be influenced by hormonal factors (Campbell, Newcomb, et al., 2007; 
Friedenreich et al., 2021), particularly estrogen levels from adipose tissue (Nelson 
& Bulun, 2001), which may provide some protection through the anti-
inflammatory action of estrogens (Straub, 2007). A recent meta-analysis found 
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that obesity may be less of a risk factor in LS–associated endometrial cancer, and 
the use of hormonal contraceptives was associated with a decreased risk of 
endometrial cancer (Power et al., 2024). However, the specific role of estrogen in 
cancer risk remains speculative, as this study did not explore hormone therapy 
or measured estrogen levels.  

In alignment with the findings of this thesis, a recent meta-analysis 
composed of seven eligible studies considering lifestyle habits and LS cancer risk 
found that obesity and lack of physical activity were associated with significantly 
increased CRC risk (Power et al., 2024). Similar results have been published 
previously. In 2019, a qualitative evidence synthesis without meta-analysis 
concluded that excess body weight is a significant risk factor for LS CRC, 
especially in males (Coletta et al., 2019). Interestingly, when examining overall 
cancer risk, it was observed in this thesis that males who consistently engaged in 
more intensive physical activities throughout adulthood had a significantly 
reduced cancer risk. However, when only CRC was considered the endpoint, no 
association was found in either males or females in this thesis. 

Physical activity may exert its beneficial effect partly by reducing excess 
body adiposity, which in turn enhances metabolic function and reduces chronic 
low-level inflammation (Friedenreich et al., 2021). Jokela et al. found that the LS 
cohort shows similarity with the sporadic CRC cohort regarding inflammation 
marker GlycA signatures, thus hinting at increased inflammation in LS already 
in a cancer-free state (Jokela et al., 2024). A recent study by Deng et al. composed 
of 21 LS patients showed that high-intensity physical activity reduced 
inflammation markers in the colon and blood and increased immune infiltration 
in the colonic mucosa (Deng et al., 2023), which has also been observed 
previously by Bohaumilitzky et al. (2022). Importantly, non-steroidal anti-
inflammatory drug usage may abrogate the increased cancer risk, especially in 
obese individuals (Burn et al., 2020; Movahedi et al., 2015), thus providing more 
evidence that inflammation has a key role in LS CRC prevention. Thus, it appears 
that physical activity could positively modulate LS cancer risk by further 
increasing immunogenicity and reducing inflammation. Evidence from the 
general population also endorses the immune-enhancing effect of physical 
activity in reducing the risk of cancers, including CRC (Friedenreich et al., 2010). 

Overall, our findings underscore the significance of maintaining a healthy 
weight and engaging in physical activity throughout life for cancer prevention, 
particularly among male LS carriers. Given the limited number of participants in 
our study, the observed association between body weight and heightened cancer 
risk suggests that the impact of these modifiable behavioral risk factors might be 
accentuated in LS carriers due to their strong genetic predisposition. Knowledge 
of modifiable risk factors is an important determinant of adherence to lifestyle 
recommendations (Hoedjes et al., 2023), indicating that it could be advisable to 
monitor these modifiable risk factors during routine healthcare visits. Adopting 
an optimal lifestyle may mitigate the significant genetic predisposition to cancer 
and contribute to cancer prevention. Additionally, online tools are available for 
calculating and illustrating individual cancer risk, such as PLSD (Møller, 2020) 
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and MyLynch (Knapp et al., 2023). These tools could be utilized to enhance 
motivation for maintaining a healthy lifestyle or making lifestyle changes. 

6.3 Critical considerations 

This thesis was conducted according to the best available resources. However, 
like many exploratory and pilot studies, this thesis has potential pitfalls. In 
general, it should be acknowledged that since the study population was 
comprised mainly of MLH1 carriers, the results of this thesis might have limited 
generalizability to other pathogenic MMR variant carriers. Conversely, since LS 
is a collection of four distinct diseases, by focusing mainly on MLH1, we were 
able to limit the possible confounding effects originating from the other variants. 

Regarding the methodology, there are issues related to c-miR research. A 
common issue with c-miRs is the identification of their primary and target 
locations. Therefore, it can only be speculated, for example, from which cell types 
or tissues the observed c-miRs are derived, which introduces a certain degree of 
uncertainty over the interpretations of the observations. Furthermore, serum 
may contain a different c-miR spectrum due to the coagulation process when 
compared to plasma (K. Wang et al., 2012), and different c-miR carriers may alter 
in their content (Karvinen et al., 2023). In this thesis, the different c-miR carrier 
profiles were not characterized. However, not requiring the separation of c-miR 
carriers to detect a signal could enhance the robustness of our findings in terms 
of biomarker discovery. Regarding the sequencing methodology, there is no gold 
standard that sequencing depth should be aimed at when assessing the 
differential expression of c-miRs. In this study, the aimed mean sequencing depth 
was 5 M reads per sample, but the achieved mean sequencing depth was 3.2 M 
reads due to underclustering issues in two out of the four sequencing runs. The 
underclustering (raw cluster density < 170 K/mm2) might have masked potential 
LS-associated c-miRs with low expression. 

Another potential pitfall of our study is the small sample, which hindered 
the validation of the CRC risk prediction model. Despite our best efforts to look 
for an external validation dataset, we unfortunately did not find a suitable 
candidate dataset nor had the opportunity to increase our sample size, and thus 
were unable to validate the Lasso model. Even though several miR datasets are 
available, for example, through The Cancer Genome Atlas, none of the existing 
studies had a similar study design as ours and considered sporadic CRC and not 
LS. Therefore, there is a clear need for more extensive external and internal 
validation of our findings. Moreover, since we had a small sample of sporadic 
CRC cases, we cannot exclude the possibility of differing c-miR landscapes 
between them and cancer-free LS carriers. 

In the retrospective lifestyle habit analysis, body weight and physical 
activity were evaluated using self-recall instruments. Despite a recent study 
indicating that cross-sectional self-reported measurements of BMI closely aligned 
with recent direct measurements (Davies et al., 2020), the recall of weight in the 
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more distant past has lower reliability (Dahl & Reynolds, 2013), and for some of 
the older participants in this thesis, the recall time was several decades. 
Furthermore, sex-based discrepancies may exist, with females tending to 
underestimate their weight and males tending to overestimate it (Tuomela et al., 
2019). Recalling physical activity from the distant past has also been shown to 
exhibit moderate reproducibility, yet this is inadequate at the individual level 
(Smith et al., 2013). Thus, recall bias might have influenced the risk estimates in 
this analysis. 

A major strength of this study is that we were able to conduct MMR, sex, 
and CRC stratified analyses with pre-diagnostic LS samples. This approach 
allowed for a detailed cross-sectional characterization of the c-miR landscape of 
cancer-free LS carriers, which is crucial when mining potential early-detection 
biomarkers. We were also able to conduct a prospective analysis that tested 
minimally invasive patient risk stratification in a high-risk cohort. Instead of an 
a priori chosen gene panel, we conducted a systemic-level investigation, which 
provided a more comprehensive view of how already identified c-miRs and their 
putative target genes contribute to distorted biological networks in cancer 
without potential selection bias. This approach also enabled the discovery of new 
putative LS CRC-associated c-miRs, as introduced in our risk prediction model. 
We used robust and up-to-date methodology to interrogate and analyze the c-
miR signatures and their associations with LS cancer risk and lifestyle habits. This 
is particularly important since the Cox proportional hazards regression 
analysis—widely recognized as the predominant method for modeling covariate 
information in survival analysis—may encounter limitations when applied to 
high-dimensional datasets with a low sample size-to-variables ratio. Instead, 
Lasso, which was used in our risk prediction model development, was 
introduced to eliminate this limitation (Tibshirani, 1996, 1997). Regarding our 
cohort, since the study subjects had undergone comprehensive screenings of LS-
predisposing mutations, with ascertainment utilizing Amsterdam (Vasen et al., 
1999) and Bethesda clinical criteria (Umar et al., 2004) and cascade testing, there 
were no potentially confounding effects from other potential hereditary CRC 
syndromes. Finally, to enhance reproducibility, all original articles were 
published under the gold open access model with comprehensive supplementary 
material, including the code supplementary files and sequencing data. Regarding 
the development and validation of the risk prediction model, we followed 
transparent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (Collins et al., 2015). 

6.4 Future perspectives 

Precision oncology is an approach to cancer treatment that involves tailoring 
medical care to individual patients based on their unique genetic, molecular, and 
clinical characteristics. This approach aims to optimize treatment outcomes by 
selecting therapies that are most likely to be effective for a particular patient 
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while minimizing potential side effects. Regarding LS, precision oncology is ever 
more needed, as the current evidence strongly shows that the individual cancer 
risk of a carrier relies heavily on which pathogenic variant they carry, as well as 
on the sex, age, and cancer history of an individual. Thus, a “one-size-fits-all” 
approach is no longer justified in treating LS malignancies. 

Fortunately, advances in genomic profiling technologies, such as high-
throughput sequencing, have enabled the comprehensive profiling of a patient’s 
tumor tissue or blood sample to identify specific genetic alterations, mutations, 
or other biomarkers associated with their cancer. Once these genomic alterations 
or biomarkers are identified, targeted therapies can be selected to specifically 
inhibit the activity of proteins or pathways that drive tumor growth or survival. 
These targeted therapies may include, for example, immune checkpoint 
inhibitors, such as PD-1 blockers, which are already demonstrated to be highly 
efficient in dMMR-driven cancers (Cercek et al., 2022). In addition to guiding 
treatment selection, precision oncology aims to identify predictive biomarkers 
that can help clinicians anticipate how a patient will respond to a particular 
treatment or find those at increased risk of developing cancer. For such purposes, 
miRs have been under intense investigation for over two decades, but only in 
sporadic cancer patients. This thesis was the first to investigate the biomarker 
potential of c-miRs in the context of LS patient risk stratification. The next step in 
the process would be to investigate whether there are correlations in the miR 
content between blood samples and tissue samples in a more diverse and larger 
LS cohort. 

The practice of medicine relies on clinical trials, which are at the core of 
finding suitable treatments and potential biomarkers for clinical use. A search 
term of “cancer” AND “microRNA” OR “miRNA” from clinicaltrials.gov 
resulted in 400 hits in total. Interestingly, among these trials are c-miRs, also 
introduced in this thesis. For instance, a clinical trial (NCT01849952) is currently 
underway to evaluate miR-10b expression in patients with various subtypes of 
brain cancer. Additionally, a preclinical trial involving the miR-10b inhibitor 
drug TTX-MC138 has recently begun (NCT05908773). Furthermore, the 
correlation between miR-141 expression and radiation resistance has been 
investigated in prostate cancer patients (NCT02391051). It appears evident that 
the potential of miR diagnostics continues to be explored extensively in cancer 
research. 

A more comprehensive understanding of how modifiable cancer risk 
factors are associated with the unique molecular characteristics of an individual 
is needed. The evidence discussed in this thesis shows rather clearly that optimal 
lifestyle habits regarding body weight and amount of physical activity reduce LS 
cancer risk. Therefore, lifestyle interventions could help reduce the LS cancer 
burden. In the context of precision oncology, monitoring how the patient’s risk-
associated molecular profile responds to the treatment during intervention 
would provide valuable information regarding the efficacy of the chosen therapy, 
the potential development of resistance mechanisms, and the need for 
adjustments in treatment strategies to optimize outcomes and minimize adverse 

https://clinicaltrials.gov/
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effects. This dynamic approach to treatment monitoring and adaptation is highly 
valuable for achieving personalized and effective cancer care. Based on the 
current literature and the results introduced in this thesis, c-miRs, alongside 
other markers that complement current screening and detection strategies, could 
have potential for such purposes, but more research is required. Given the 
significant role of the immune system in LS carcinogenesis, a logical next step in 
exploring the potential involvement of c-miRs in the interplay between lifestyle 
factors and LS cancer risk is to broaden our understanding of the immune cell 
landscape in LS. 

As a closing remark, with the continuing expansion of data quantity and 
computational capabilities, artificial intelligence and machine learning 
techniques are expected to revolutionize the field of oncology, as suggested by 
developments in the field of digital pathology (Unger & Kather, 2024). These 
technologies will enable the mining of vast genomic databases to identify 
candidate molecules with predictive, prognostic, and diagnostic potential for the 
treatment of various sporadic and hereditary cancers in the near future. This 
approach holds immense promise for advancing personalized cancer care by 
harnessing big data into computational models tailored to individual risk 
assessment. 
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7  MAIN FINDINGS AND CONCLUSIONS 

 
The main findings of this thesis are as follows: 

 
1. Cancer-free LS carriers displayed aberrant serum c-miR expression 

compared to the healthy control group, but no differential expression 
was observed between the cancer-free LS carriers and sporadic CRC 
patients. Through targeting enriched and validated oncogenes and TSGs, 
this c-miR landscape has the potential to track early-stage carcinogenesis 
in LS. 
 

2. A risk sum score composed of differentially expressed c-miRs, including 
hsa-miR-10b-5p, hsa-miR-19b-3p, hsa-miR-27b-3p, hsa-miR-200a-3p, 
and hsa-miR-3615, was associated with increased risk of developing 
CRC during a four-year surveillance in a high-concordance and cross-
validated risk prediction model. This finding highlights the risk 
stratification potential of c-miRs during surveillance. However, the c-
miR risk sum score was not associated with BMI and physical activity. 

 
3. Longitudinal weight gain was associated with increased overall cancer 

risk and CRC risk in male LS carriers. Near-term weight gain lowered 
the risk of CRC in female LS carriers. Physical activity was associated 
with decreased overall cancer risk in male LS carriers, but no association 
was observed with CRC risk. These results emphasize the importance of 
weight maintenance and physical activity throughout the lifespan in 
cancer prevention, especially in male LS carriers.  
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YHTEENVETO (SUMMARY IN FINNISH) 

Lynchin oireyhtymä (LS) on perinnöllinen syöpäalttiusoireyhtymä, joka altistaa 
yksilön useille syöville. LS johtuu ituradan geenimutaatiosta, joka vaikuttaa 
DNA-kopiointikorjausmekanismeihin lisäten oireyhtymän kantajien perimän 
mutaatiotaakkaa. Lisääntynyt mutaatiotaakka altistaa LS-kantajat suuremmalle 
riskille saada syöpiä nuorella iällä. Aiemmat tutkimukset viittaavat, että LS-syö-
päriskiä voidaan kuitenkin alentaa terveellisillä elämäntavoilla. LS-suolis-
tosyöpäennustetta voidaan myös parantaa merkittävästi säännöllisen ko-
lonoskopiaseurannan avulla. Tämän vuoksi oireyhtymän kantajat voivat käydä 
seulonnoissa koko elämänsä ajan. Nykyisen tutkimustiedon valossa kolonosko-
piaseuranta ei kuitenkaan merkittävästi ehkäise suolistosyöpää. Tämän vuoksi 
seurantamenetelmiä tulisi kehittää muun muassa seulomalla yksilöllisiä merkki-
molekyylejä, joiden avulla korkean riskin potilaita voitaisiin ohjata seulontoihin 
tehokkaammin. 

Verenkierron mikro-RNAt (c-miR) ovat pieniä molekyylejä, jotka säätelevät 
geenien ilmentymistä niiden kohdekudoksissa muun muassa vasteena sairauk-
siin ja fyysiseen aktiivisuuteen. Ne ovat myös tärkeä osa kudosten ja solujen vä-
listä viestintää, minkä vuoksi verenkierron c-miR-pitoisuudet voivat heijastaa 
kudoksissa tapahtuvia muutoksia. Tutkimukset osoittavat niiden pystyvän erot-
telemaan useita syöpätyyppejä toisistaan ja toisaalta ennustavan syövän kehitty-
mistä ei-perinnöllisissä kohorteissa. MiR-tutkimus on kuitenkin ollut erittäin vä-
häistä LS-kohorteissa huolimatta osoitetusta syöpähoitopotentiaalista. MiR:t 
ovat kiinnostava kohde tutkittaessa syövän sekä riskitekijöiden molekulaarisia 
yhteyksiä, koska miR:t toimivat sekä sairauksien diagnostiikassa että potentiaa-
lisina liikuntavaikutusten välittäjinä. 

Tässä väitöskirjatutkimuksessa seulottiin sekvensointimenetelmien sekä bi-
oinformatiikan avulla syöpävapaiden suomalaisten LS-kantajien (n = 101) c-miR-
profiilit vertaamalla niitä ei-perinnöllisten suolistosyöpäpotilaiden (n = 24) sekä 
terveiden verrokkien (n = 37) vastaaviin profiileihin. Pitkittäisasetelmassa tutkit-
tiin, voitiinko tunnistettujen c-miR:n avulla ennustaa suolistosyöpään sairastu-
mista. Lisäksi tehtiin retrospektiivinen elämäntapakysely (n = 465), jolla selvitet-
tiin, olivatko kehon paino tai fyysinen aktiivisuus yhteydessä LS-syöpäriskiin. 
Näiden elämäntapatekijöiden yhteyttä suolistosyöpää ennustaviin c-miR-profii-
leihin kartoitettiin myös. 

Tässä väitöskirjatutkimuksessa havaittiin syöpävapaiden LS-kantajien c-
miR-profiilien poikkeavan merkittävästi terveistä verrokeista muttei ei-perinnöl-
lisistä suolistosyöpäpotilaista. Näistä viisi miR:ta, hsa-miR-10b-5p, hsa-miR-19b-
3p, hsa-miR-27b-3p, hsa-miR-200a-3p ja hsa-miR-3615, muodostivat riskiennus-
tepaneelin, joka ennusti suolistosyöpään sairastumista seurannan aikana mutta 
ei ollut yhteydessä elämäntapatekijöihin. Lisäksi tämä väitöskirjatutkimus osoitti, 
että aikuisiän painonnousu lisää LS-kantajamiesten suolistosyöpäriskiä, kun taas 
lyhyen aikavälin painonnousun huomattiin alentavan LS-kantajanaisten suolis-
tosyöpäriskiä. Korkean intensiteetin fyysinen aktiivisuus aikuisiällä alensi 
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merkittävästi yleistä syöpäriskiä LS-kantajamiehillä, mutta fyysisen aktiivisuu-
den ja suolistosyöpäriskin välillä ei havaittu yhteyttä. 

Merkittävimmät tulokset osoittivat, että syöpävapaiden LS-kantajien c-
miR-profiilin muutokset kuvastavat aikaisen vaiheen suolistosyövän kehitty-
mistä ja ennustavat siihen sairastumista. Näin ollen c-miR-profiilit voivat tarjota 
potentiaalisen merkkimolekyylijoukon, jonka avulla voitaisiin ohjata korkean 
riskin potilaita tehokkaammin esimerkiksi kolonoskopiaseurantaan yhdistä-
mällä c-miR-tieto olemassa oleviin seulontatyökaluihin. Lisätutkimusta aiheesta 
kuitenkin tarvitaan tuloksien vahvistamiseksi. Tämä väitöskirjatutkimus vah-
visti myös aiempia havaintoja elämäntapojen ja syöpäriskin yhteyksistä osoitta-
malla, että terveelliset elämäntavat voivat suojata suomalaisia LS-kantajia syö-
viltä. Elämäntapojen ja suolistosyöpäriskin välisten molekulaaristen yhteyksien 
laajempi ymmärtäminen kuitenkin vaatii jatkotutkimuksia.  

Tämän yhteenvedon kirjoitushetkellä on käynnissä useita miR-profiileja 
hyödyntäviä kliinisiä kokeita, mikä viittaa miR-pohjaisen diagnostiikan herättä-
vän kiinnostusta syöpätutkimuksen parissa. Tietokoneiden kasvava laskenta-
teho ja tekoälyn kehitys ennakoivat lupaavaa tulevaisuutta syöpätutkimukselle 
mahdollistamalla massiivisten molekulaaristen aineistojen tehokkaan hyödyntä-
misen merkkimolekyylien seulonnassa. Kaiken kaikkiaan tämä väitöstutkimus 
tuotti merkittävää uutta tietoa, kuinka c-miR-profiileja voidaan mahdollisesti 
hyödyntää suolistosyöpien hoidoissa, ja miten elämäntavat vaikuttavat syöpäris-
kiin geneettisesti yhtenäisessä suomalaisessa LS-kohortissa. 
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Abstract

Circulating microRNAs (c-miRs) are small noncoding RNA molecules that migrate

throughout the body and regulate gene expression. Global c-miR expression patterns

(c-miRnomes) change with sporadic carcinogenesis and have predictive potential in

early detection of cancers. However, there are no studies that have assessed

whether c-miRnomes display similar potential in carriers of inherited pathogenic

mismatch-repair gene variants (path_MMR), known as Lynch syndrome (LS), who are

predisposed to highly increased cancer risk. Using high-throughput sequencing and

bioinformatic approaches, we conducted an exploratory analysis to characterize

systemic c-miRnomes of path_MMR carriers, sporadic rectal cancer patients and

non-LS controls. We showed for the first time that cancer-free path_MMR carriers

have a systemic c-miRnome of 40 differentially expressed c-miRs that can distinguish

them from non-LS controls. The systemic c-miRnome of cancer-free path_MMR

carriers also resembles the systemic c-miRnomes of cancer patients with or without

path_MMR. Our pathway analysis linked the found differentially expressed c-miRs to

carcinogenesis. A total of 508 putative target genes were identified for 32 out of

40 differentially expressed c-miRs, and 238 of them were enriched in cancer-related

pathways. The most enriched c-miR-target genes include well-known oncogenes and

tumor suppressor genes such as BCL2, AKT3, PIK3CA, KRAS, NRAS, CDKN1A and

PIK3R1. Taken together, our findings suggest that LS and sporadic carcinogenesis

share common biological pathways and alterations in these pathways can produce a

c-miR signature which can track potential oncogenic stress in cancer-free path_MMR

carriers. Therefore, c-miRs hold potential in monitoring the LS risk stratification pat-

terns during clinical surveillance or cancer management.
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What's new?

Systemic circulating microRNA expression patterns (c-miRnomes) are altered during sporadic

carcinogenesis and they have predictive potential in early cancer detection. However, their

potential in carriers of inherited pathogenic mismatch-repair gene variants associated with

Lynch syndrome remains understudied. Using high-throughput sequencing and bioinformatics,

the authors show that Lynch syndrome and sporadic carcinogenesis share common biological

pathways. Alterations in these pathways produce a c-miRnome signature that could help track

oncogenic stress in cancer-free Lynch syndrome carriers. The findings suggest that systemic c-

miRnomes could potentially facilitate the monitoring of Lynch syndrome carriers that require

more intensive surveillance or clinical management.

1 | INTRODUCTION

Lynch syndrome (LS) is an inherited cancer predisposition syndrome

caused by pathogenic gene variants in DNA-mismatch repair

(path_MMR) genes MLH1, MSH2, MSH6 or PMS2.1 By genetic or epi-

genetic silencing, deficient MMR (dMMR) significantly increases cellu-

lar mutation rates thus predisposing path_MMR carriers to increased

cancer risk and excessive cancer occurrence.1,2 Colorectal cancer is a

traditional hallmark cancer of LS that is commonly cured by surveil-

lance, followed by modern surgical and oncological management, with

over 90% 10-year overall survival.2,3 Despite the good recovery rate

in first cancers, the persons at risk will develop frequently more lethal

cancers still at relatively young age.4 This highlights the need for an

improved molecular assessment and identification of which patients

would require more intensive surveillance or clinical management.

MicroRNAs (miRs) are small (18-25 nucleotides) noncoding

RNA-molecules that regulate gene expression by translational

repression.5 MiRs play a role in regulation of >30% of the human

genes controlling critical biological processes such as cell prolifera-

tion, cell differentiation, and apoptosis.5-7 In cancers, miRs can be

regarded as tumor suppressive or oncogenic, thus resulting in down-

regulation or upregulation of the affected target genes, respec-

tively.7 Compared to tissue-based miRs, circulating-miRs (c-miRs)

migrate throughout the body within various body fluids and are part

of active intertissue crosstalk.8,9 Nowadays, profiling of the global c-

miR expression levels (c-miRnome) has become prevalent and miR

expression can be correlated with cancer type, stage, and other clini-

cal variables.10-13 Therefore, aberrantly expressed miRs could have

diagnostic, predictive, and prognostic potential in molecular profiling

and early detection of cancers.

LS cohort provides an ideal population for biomarker mining due to

well-predicted cancer risk of persons under frequent surveillance. The role

of miRs in LS have remained understudied even if various studies have

shown that c-miR expression patterns change with carcinogenesis in vari-

ous sporadic cancers. Balaguer et al have shown that miRs can be used in

tumor classification and discrimination of sporadic and hereditary tumors

with microsatellite instability,14 thus highlighting the potential role of miRs

as LS biomarkers. In support, Valeri et al, Liccardo et al and Zhou et al pos-

tulated that miRs could have functional roles in LS carcinogenesis, for

example, by targeting MMR-proteins15,16 and various tumor-suppressor

genes.17 However, these studies along with other reports have assessed

miR functions in the colorectum and colorectal cancer tissues and cells as

well as with microarray data in silico14-19 but not in circulation.

Instead of using a targeted panel of a priori chosen c-miRs, it is

beneficial to characterize the systemic c-miRnome of path_MMR car-

riers. This “omics-approach” provides a more comprehensive view of

how c-miRs could contribute to LS pathogenesis, and plausibly pave

way for future use of c-miRs in risk stratification and early detection

of LS cancers. Our exploratory study compared the systemic c-

miRnome of cancer-free path_MMR carriers with c-miRnomes of non-

LS controls (discovery cohort), sporadic rectal cancer patients and

path_MMR carriers with cancer (cancer cohort) using high-throughput

sequencing and bioinformatic approaches.

2 | MATERIALS AND METHODS

2.1 | Study subjects

Our study consisted of independent discovery and cancer cohorts.

The discovery cohort (n = 118) was composed of 81 currently cancer-

free (healthy) Finnish path_MMR carriers and 37 non-LS controls

whose c-miRnomes were sequenced. The cancer cohort (n = 37) was

composed of 13 path_MMR carriers who currently had cancer and

24 sporadic rectal cancer patients whose c-miRnomes were

sequenced.

All path_MMR carriers were enrolled in the study and blood sam-

pling was performed at their regular colonoscopy surveillance

appointments at Helsinki University Central Hospital in Helsinki and

Central Finland Central Hospital in Jyväskylä, Finland. They were also

registered participants in the nationwide Finnish Lynch Syndrome

Research Registry (LSRFi, www.lynchsyndrooma.fi, accessed

05/2021). The families and individuals were identified in the registry

based on clinical criteria (Amsterdam and Bethesda criteria)20,21 and

subsequently through cascade testing of the families and universal

testing of tumors. Adult members of LSRFi with confirmed path_MMR

variants (classes 4 and 5 by InSiGHT criteria)22 were eligible for the

study.

Sporadic rectal cancer patients were enrolled, and blood sampling

performed at the time of their initial appointment for surgery at surgi-

cal clinic at the local tertiary center responsible for management of
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rectal cancer in the Southern Finland area (Helsinki University Central

Hospital, unit of rectal surgery, Helsinki, Finland).

Non-LS control samples were acquired from Biobank of Eastern

Finland, Kuopio, Finland (n = 27) in 2020 or were part of the Estro-

genic Regulation of Muscle Apoptosis (ERMA) cohort (n = 10) consist-

ing of healthy 47-55-years old women.23 ERMA samples were

collected at University of Jyväskylä in Jyväskylä, Finland. Persons with

no cancers, blood disorders, acute or chronic infectious diseases,

rheumatoid arthritis and known BRCA or MMR-gene germline muta-

tions were eligible for the non-LS control group. Ethnicity throughout

the study population was widely white Caucasian.

2.2 | Sample collection

Path_MMR carriers' and sporadic rectal cancer patients' venous blood

samples were drawn after surveillance colonoscopy visits at fasted

state. All ERMA participants fasted overnight before blood sampling.

The duration of fasting is not reported for the samples obtained

through biobank (n = 27). Samples were taken from antecubital vein

to standard serum tubes (455 092, Greiner). To separate serum, the

whole blood samples were allowed to clot for 30 minutes at room

temperature, centrifuged at 1800g for 10 min and aliquoted.

2.3 | Small-RNA isolation and quality evaluation

c-miR isolations from blood serum were carried out using affinity

column-based miRNeasy Serum/Plasma Advanced Kit (217204, Qia-

gen) according to the manufacturer's instructions. Briefly, 0.5 mL of

thawed serum was used to isolate miRs. All the required solutions

were added in amounts recommended by the manufacturer. Cel-miR-

39 miR mimic (MS00019789, Qiagen) was added to each sample to

serve as a spike-in control for monitoring the miR purification and

amplification. Phase separation centrifugation was executed in

12 000g for 3 min at room temperature (Heraeus, Biofuge Pico and

Fresco 17, ThermoFisher) and rest of the centrifugations were

performed at 16000g whenever a range of 8000-20000g was recom-

mended. C-miRs were eluted to nuclease-free water. Prior to the

library preparation, RNA quality and recovery were checked by

RT-qPCR (CFX96-RT-qPCR, Bio-Rad) according to manufacturer's

protocol (MiScript Primer assays and II RT kit for cDNA synthesis and

MiScript SYBR Green PCR Kit for RT-qPCR, 218 161, Qiagen) from

which the recovery of cel-miR-39 spike-in control was confirmed.

2.4 | Small-RNA library preparation and
sequencing

Small-RNA Library preparations were executed with QIAseq miRNA

Library Preparation Kit (1103679, Qiagen) according to the manufac-

turer's instructions using multiplexing adapters. Briefly, the small RNA

fractions were first ligated to sequencing adapters from both 50 and 30

ends, reverse transcribed into cDNA using UMI-assigning primers and

purified using magnetic beads. A universal indexing sequence was also

added in the reverse transcription step, thus allowing samples to be

distinguished from each other. The samples were then amplified with

standard thermocycler (Eppendorf), purified, and eluted into nuclease-

free water. Quality assessment of the libraries was completed with

TapeStation 4200 (Agilent). The library sample concentrations were

measured with Qubit fluorometer (Invitrogen), quantified, diluted,

and pooled into a single mixture in equal amounts (1.8 pM per sam-

ple) prior to sequencing. Sequencing of the small-RNA libraries

were done with NextSeq 500 (Illumina) using NextSeq 500/550

High Output Kit v. 2.5 with 75 cycles (15057934, Illumina) to pro-

duce 75-base pair single-end reads with aimed mean sequencing

depth of >5 M reads per sample as recommended by the manufac-

turer (Qiagen).

2.5 | Raw data processing and alignment

Sequencing output data was converted to FASTQ-format using

bcl2fastq software (v.2.20, Illumina, USA). FastQC was used for qual-

ity controls.24 The QIAseq sequencing adapters were trimmed from

the 30 end of the reads with FastX-toolkit25 using default parameters

with minimum alignment length-M 19. Only clipped reads >20 bp in

length were selected for downstream analysis. After adapter clipping,

the reads were trimmed to 22 bp to enrich miR-sequences and then

quality filtered with FastX-toolkit. Only high-quality reads (Phred

score >25) were selected for alignment to reference genome. Before

alignment, all the four sample lanes were merged to obtain the overall

sample read count and to ensure better mapping quality. Samples that

had <1 M reads were excluded from the analyses. Subsequently, the

preprocessed reads were mapped to human mature miR-genome

(miRbase v.22)26 with Bowtie alignment tool for single end data with

v-mode and best strata parameters.27 Only uniquely mapped miR-

reads were selected for differential expression (DE) analysis.

2.6 | Differential expression analysis

DE analyses from raw c-miR counts were based on statistical proce-

dures of EdgeR28 and DESeq229 packages and conducted in R-studio

(v. 3.6.3)30 (Supplementary file S3). Briefly, DE analyses were per-

formed on c-miR raw read count matrices after the low expressed

genes were filtered out, normalized with the median of ratios method

and variance stabilized in DESeq2. C-miRs that had more than 1 count

per million in 70% of the samples in a group were selected for DE ana-

lyses. Filtered and normalized c-miR counts were used to set up a

design matrix in DESeq2 that adjusted for sex and potential batch

effect. Benjamini-Hochberg procedure in DESeq2 was used to correct

for multiple testing. C-miRs that had a false discovery rate (FDR)

<0.05 were considered DE.
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2.7 | Dimension reduction analysis

Dimension reduction of the DESeq2-normalized data was conducted

using the t-distributed stochastic neighbor embedding (t-SNE) method,

which is a nonlinear and unsupervised technique to simplify high dimen-

sional data for visualization in low-dimensional space.31 t-SNE analysis

was performed to identify and visualize possible clustering of subpopula-

tions within the dataset. Rtsne package in R-studio was used with output

dimensionality set to 2, perplexity set to 35 and theta set to 0.5.

2.8 | Target gene prediction and pathway analysis

Putative miR-target gene prediction was performed using mirWalk tool

that utilizes a random-forest-based approach, an ensemble learning

method based on multiple decision trees, to predict target genes.32,33

Only the predicted miR-target genes targeting 30 untranslated region

with experimental validation from miRTarBase34 and which were

included and verified in mirDB35 and TargetScan36 databases were

selected for downstream gene set enrichment analysis (GSEA).37 GSEA

of gene ontology biological processes (GO:BP) and Kyoto Encyclopedia

of Genes and Genomes (KEGG)38 pathways were also conducted with

mirWalk. MirWalk provides a standard enrichment analysis based on

hypergeometric tests. GO and KEGG terms with FDR-corrected P-values

of <.05 were considered enriched. Cancer Gene Census of the Catalog

of Somatic Mutations in Cancer (COSMIC-CGC)39 project database were

used for target gene investigation.

2.9 | Statistical analysis

Data regarding study subjects are presented using means and stan-

dard deviations. DE-analyses were based on statistical procedures of

DESeq2 package accounting for normalization and exclusion of out-

liers. Mann-Whitney U-test and Kruskal-Wallis-test was used in the

validation analysis and cell line experiment (Supplementary file S1,

Supplementary materials and methods), respectively. Pearson correla-

tion was used to compare gene fold correlation between the discov-

ery and validation cohorts (Supplementary file S1, Supplementary

materials and methods). In all analyses, P-value, or FDR <.05 were

considered to indicate statistical significance.

3 | RESULTS

3.1 | A pool of 228 c-miRs is shared between the
discovery and cancer cohorts

Descriptive characteristics of study subjects in the discovery cohort

and cancer cohort are presented in Table 1.

Human genome encodes approximately 2600 mature miRs (miR-

base, v.22).26 To inspect the systemic c-miR content in the discovery

and cancer cohorts, we performed small-RNA sequencing experiment

to characterize the serum c-miRnomes. We identified a total of 1349

distinct c-miRs in three separate sequencing runs with an average

sequencing depth of 3.2 M reads per sample (Supplementary file S1,

Supplementary materials and methods and Supplementary file S1,

Table S1 and Supplementary file S2, Table S1). After processing of

raw data and filtering of low expressed c-miRs, 228 c-miRs common

to both cohorts were identified (Supplementary file S1, Figure S1 and

Supplementary file S2, Table S2).

The most highly expressed c-miRs among path_MMR carriers

with or without cancer were hsa-let-7a-5p, hsa-let-7b-5p, hsa-miR-

122-5p, hsa-miR-16-5p and hsa-mir-223-3p (Supplementary file S1,

Figure S2). The most abundant c-miRs in non-LS control group were

the same as in path_MMR carriers with or without cancer

(Supplementary file S1, Figure S3). Among sporadic rectal cancer

group, the top c-miRs were otherwise the same except hsa-miR-

451a replaced hsa-miR-122-5p (Supplementary file S1, Figure S4).

All these top c-miRs in total accounted for approximately 50% of all

c-miR counts in all cohorts, thus displaying major overrepresentation

that could have possibly affected the c-miR pool size. In summary,

our sequencing analysis provided moderate coverage of c-miRnomes

in LS.

3.2 | Healthy path_MMR carriers have a c-
miRnome that differs from non-LS controls but
resembles the c-miRnomes of patients with sporadic
or hereditary cancer

The phenotype and cancer risk spectrum vary within LS cohort, for

example, due to path_MMR variant and sex.1 As our discovery

cohort consisted of males and females with all path_MMR variants

included, we first explored whether these traits influenced c-miR

expression in healthy path_MMR carriers. We used the pool of iden-

tified 228 c-miRs to form the count matrix for all DE-analyses

(Supplementary file S3). Hsa-miR-206 and hsa-miR-223-5p were

observed downregulated in males compared to females and thus sex

was added as a covariate to further analyses (Supplementary file S3).

We did not find DE c-miRs when path_MMR variants were compared

to each other or when path_MLH1 carriers were compared to all

other path_MMR variants combined (Supplementary file S3). These

results show that different path_MMR variants do not cause hetero-

geneity that would generate a recognizable c-miR profile, thus sug-

gesting a shared systemic response common to all path_MMR

variants. Furthermore, we also tested if the c-miR expression profile

is altered in persons who had had cancer or multiple cancers previ-

ously, but we did not find significant differences (Supplementary

file S3).

Alterations in the immune cell abundance of normal colorectal

mucosa in cancer-free path_MMR carriers separate them from those

with cancer.40 To see whether we can identify a LS-specific c-miR sig-

nature, our primary objective was to characterize systemic c-miRnome

of healthy path_MMR carriers, which has not been done previously.

We thus performed DE-analysis within the discovery cohort and RT-
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qPCR validation analysis within similar but independent validation

cohort (Supplementary file S1, Supplementary materials and methods)

to compare healthy path_MMR carriers to healthy non-LS controls

(Supplementary file S1, Figure S5). In DE-analysis, we found 40 out of

228 c-miRs to display aberrant expression in healthy path_MMR

carriers (Table 2). Of them, 15 were upregulated and 25 downregu-

lated in path_MMR carriers compared to non-LS controls, but the fold

changes remained low varying from minimum of �0.88 to maximum

of 1.25 (Figure 1A). Hsa-miR-155-5p, hsa-let-7c-5p and -let-7 e-5p

and -122b-3p had the most significant upregulation within healthy

path_MMR carriers (Table 2). Of the downregulated c-miRs, hsa-miR-

15a-5p was the most significantly downregulated followed by hsa-

miR-185-5p, -320a-3p and -186-5p, respectively (Table 2). Overall,

aberrant expression of multiple c-miRs in healthy path_MMR carriers

might indicate that some systemic alterations in c-miR-mediated

regulation of biological pathways associated with dMMR may be

ongoing even at cancer-free state in path_MMR carriers.

To understand this phenomenon further, we explored whether the

path_MMR carriers who currently have cancer also display unique c-miR

expression. By using tumor samples, Balaguer et al have shown that

miR expression can distinguish LS tumors from sporadic tumors with

microsatellite instability.14 To test if we can similarly reveal differences

in c-miRs, we first inspected c-miRnomes within the cancer cohort but

did not find any differences (Figure 1B and Supplementary file S1,

Table S2), thus suggesting a mutual c-miR response among the cancer

types. Furthermore, our second analysis scheme comparing healthy

path_MMR carriers to sporadic rectal cancer patients (Figure 1C and

Table 2), our third analysis scheme comparing healthy path_MMR car-

riers to path_MMR carriers with cancer (Figure 1D and Table 2) and our

fourth analysis scheme comparing path_MMR carriers with cancer to

healthy non-LS controls (Figure 1E and Supplementary file S1, Table S2)

were also unable to detect DE c-miRs. These observations imply that c-

miRnomes within our dataset cannot discern healthy path_MMR carriers

from cancer patients with or without dMMR.

Several DE c-miRs have been implicated to sporadic cancer

progression.41,42 To study this in our dataset, we compared spo-

radic rectal cancer patients to non-LS controls. We found that hsa-

miR-200a-3p, -10a-5p, -196a-5p and -200c-3p were significantly

upregulated in sporadic rectal cancer patients differentiating them

from non-LS controls (Figure 1F and Table 2). All of these c-miRs

have earlier been shown to associate with colorectal cancer, and of

them, hsa-miR-200a-3p was also significantly upregulated in

healthy path_MMR carriers compared to non-LS controls with fold

change of 0.88. In this analysis scheme, the fold change in hsa-miR-

TABLE 1 Descriptive characteristics of study subjects in the discovery cohort and cancer cohort

Discovery cohort Cancer cohort

Variable
Path_MMR,
healthy

non-LS,
healthy

Path_MMR,
cancer

Sporadic rectal
cancer patients

N 81 37 13 24

Sex (N [%])

Male 40 (49.4) 18 (48.6) 10 (76.9) 10 (41.6)

Female 41 (50.6) 19 (51.4) 3 (23.1) 14 (58.4)

Age, years (mean ± SD) 59.5 (10.7) 54.9 (10.7) 60.7 (15.3) 69.8 (9.9)

Body mass index, kg/m2 (mean

± SD)a
27.3 (5.7) 28.0 (6.2) 28.2 (3.4) 27.6 (6.3)

Path_MMR (N [%])

MLH1 50 (61.7) – 8 (61.5) –

MSH2 17 (21.0) – 2 (15.4) –

MSH6 12 (14.8) – 3 (23.1) –

PMS2 2 (2.5) – 0 (0.0) –

Previous cancers (N [%])

Yes 42 (51.9) – 10 (76.9) –

No 39 (48.1) – 3 (23.1) –

Cancer type (N [%])

Colorectal cancer – – 5 (38.5) –

Prostate cancer – – 3 (23.0) –

Other cancerb – – 5 (38.5) –

Rectal cancer – – – 24 (100.0)

aMissing data: Discovery cohort, n = 12 in path_MMR carriers; Cancer cohort, n = 3 in path_MMR carriers.
bOther cancer include esophageal cancer, n = 1; spinocellular cancer, n = 1; glioblastoma, n = 1; gastric cancer, n = 1 and thymic cancer, n = 1.
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200a-3p was 1.76, indicating significantly higher expression

compared to the healthy non-LS controls (Table 2).

Taken together, our findings imply that healthy path_MMR

carriers have a systemic c-miRnome that separates them from

healthy non-LS persons but resemble the c-miRnome of cancer

patients with or without dMMR. Thus, these findings suggest

that sporadic and dMMR-directed carcinogenesis share common

miR-targeted biological pathways where potential alterations

may produce a detectable c-miR signature in the healthy

path_MMR carriers.

TABLE 2 DE and non-DE c-miRs within and between the discovery and cancer cohorts

Healthy path_MMR

vs non-LS control

Sporadic rectal cancer

patients vs healthy path_MMR

Healthy path_MMR

vs path_MMR with cancer

Sporadic rectal cancer

patients vs non-LS control

c-miR log2FC FDR c-miR log2FC FDR c-miR log2FC FDR c-miR log2FC FDR

hsa-miR-155-5p 0.905 <0.001 hsa-miR-10a-5p 0.700 0.088 hsa-miR-127-3p 1.548 0.277 hsa-miR-200a-3p 1.755 <0.001

hsa-let-7c-5p 0.729 <0.001 hsa-miR-1180-3p 1.147 0.155 hsa-let-7b-5p �0.250 0.991 hsa-miR-10a-5p 0.981 0.003

hsa-let-7 e-5p 0.955 <0.001 hsa-miR-126-3p �0.395 0.155 hsa-let-7c-5p 0.191 0.991 hsa-miR-196a-5p 1.813 0.028

hsa-miR-122b-3p 1.252 0.001 hsa-miR-148b-3p �0.336 0.155 hsa-let-7d-3p �0.146 0.991 hsa-miR-200c-3p 1.133 0.028

hsa-miR-15a-5p �0.677 0.001 hsa-miR-196a-5p 1.414 0.155 hsa-let-7d-5p �0.325 0.991

hsa-miR-185-5p �0.483 0.001 hsa-miR-320a-3p 0.557 0.155 hsa-let-7 e-5p 0.331 0.991

hsa-miR-320a-3p �0.709 0.001 hsa-miR-320b 0.845 0.155 hsa-let-7f-5p 0.174 0.991

hsa-miR-186-5p �0.548 0.002 hsa-miR-486-5p 0.542 0.243 hsa-let-7i-5p 0.067 0.991

hsa-let-7a-5p 0.535 0.003 hsa-miR-320c 1.097 0.262 hsa-miR-100-5p �0.453 0.991

hsa-miR-10b-5p 0.500 0.003 hsa-miR-185-5p 0.344 0.288 hsa-miR-101-3p 0.171 0.991

hsa-miR-3613-5p �0.880 0.003 hsa-miR-223-3p 0.413 0.288 hsa-miR-103a-3p 0.246 0.991

hsa-miR-22-3p �0.522 0.004 hsa-miR-483-5p 0.774 0.319 hsa-miR-103b 0.239 0.991

hsa-miR-19b-3p �0.490 0.005 hsa-miR-2110 1.198 0.342 hsa-miR-106b-3p �0.216 0.991

hsa-miR-125a-5p 0.490 0.007 hsa-miR-222-3p 0.750 0.342 hsa-miR-106b-5p 0.535 0.991

hsa-miR-451a �0.714 0.007 hsa-miR-486-3p 0.475 0.462 hsa-miR-107 0.243 0.991

hsa-miR-125b-5p 0.600 0.009 hsa-let-7d-3p 0.462 0.462 hsa-miR-10a-5p �0.194 0.991

hsa-miR-15b-5p �0.525 0.009 hsa-miR-11 400 �0.824 0.462 hsa-miR-10b-5p �0.170 0.991

hsa-miR-32-5p �0.564 0.009 hsa-miR-134-5p �0.670 0.462 hsa-miR-11 400 0.549 0.991

hsa-miR-339-5p �0.806 0.009 hsa-miR-193a-5p 0.532 0.462 hsa-miR-1180-3p �0.864 0.991

hsa-miR-107 �0.464 0.012 hsa-miR-196b-5p 0.447 0.462 hsa-miR-1255b-5p 0.373 0.991

hsa-miR-484 �0.748 0.012

hsa-let-7f-5p 0.328 0.015

hsa-miR-206 0.994 0.015

hsa-miR-25-3p �0.375 0.015

hsa-miR-27a-3p �0.373 0.015

hsa-miR-486-3p �0.565 0.015

hsa-miR-141-3p 0.874 0.016

hsa-miR-3074-5p �0.537 0.020

hsa-miR-126-3p 0.328 0.021

hsa-miR-200a-3p 0.884 0.021

hsa-miR-221-3p �0.312 0.033

hsa-miR-424-5p �0.662 0.034

hsa-let-7i-5p 0.275 0.040

hsa-miR-23a-3p �0.437 0.040

hsa-miR-27b-3p 0.420 0.040

hsa-miR-486-5p �0.447 0.040

hsa-miR-19a-3p �0.441 0.046

hsa-miR-222-3p �0.647 0.046

hsa-miR-363-3p �0.537 0.049

hsa-miR-92a-3p �0.370 0.050

Note: N, healthy path_MMR = 81; N, path_MMR with cancer = 13; N, sporadic rectal cancer patients = 24; N, non-LS controls = 37. FDR <0.05 highlighted with bold.

Abbreviations: c-miR, circulating microRNA; FDR, false discovery rate; log2FC, logarithmic2 fold change.
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3.3 | Dimension reduction analysis of multiple
traits was unable to discern path_MMR carriers from
sporadic rectal cancer patients

We did not identify DE c-miRs between path_MMR carriers and spo-

radic rectal cancer patients. Therefore, by using the expression data of

all 228 c-miRs shared between the discovery and cancer cohorts, we

performed a dimension reduction analysis with t-SNE to identify pos-

sible subpopulations within path_MMR carriers and sporadic rectal

cancer patients. First, we investigated if phenotypic traits such as

being path_MMR carrier, current cancer status, cancer history or

path_MMR variant type, would reveal clustering of samples, but did

not find any clear patterns (Figure 2A-D). We also investigated if age

or BMI would be the discerning traits, but they also failed to reveal

any clustering (Figure 2E-G). Finally, sex and the sequencing batch did

not form clusters within our dataset (Figure 2H,I). Taken together, the

t-SNE analysis supported the DE c-miR findings and was not able to

differentiate path_MMR carriers from sporadic cancer patients, which

may be an indicative of shared c-miR-mediated regulation as seen in

the DE-analyses.

3.4 | Pathway analysis revealed putative c-miR-
target genes that are linked to biological processes
and pathways associated with cancer

To further evaluate our hypothesis that healthy path_MMR carriers

might have a c-miRnome that resembles the c-miRnome of cancer

cohort due to shared miR-targeted biological pathways, we next

investigated what are the target genes of the observed DE c-miRs.

We also inspected what biological processes and pathways these tar-

get genes associate with. With mirWalk, we used random-forest-

based approach to predict the target genes using databases with

experimental validation and high confidence of reported miR-target

gene interactions. MirWalk identified a total of 1731 miR-target gene

interactions with 508 distinct putative target genes for 32 out of

F IGURE 1 Healthy path_MMR
carriers have a c-miRnome that differ
from non-LS controls but resembles the c-
miRnomes of patients with sporadic or
hereditary cancer. (A) DE c-miRs in
healthy path_MMR carriers vs non-LS
controls. (B) DE c-miRs in sporadic rectal
cancer patients vs path_MMR carriers
with cancer. (C) DE c-miRs in healthy

path_MMR carriers vs sporadic rectal
cancer patients. (D) DE c-miRs in healthy
path_MMR carriers vs path_MMR carriers
with cancer. (E) DE c-miRs in path_MMR
carriers with cancer vs non-LS controls.
(F) DE c-miRs in sporadic rectal cancers
patients vs non-LS controls. Blue dash
lines indicate negative fold change of
expression, red dash line indicate positive
fold change of expression and gray dash
line indicate FDR <0.05. Downregulated
c-miRs are highlighted in red, upregulated
c-miRs are highlighted in cyan and
nonsignificantly expressed c-miRs are
highlighted in gray. Dots represents
c-miRs. c-miR, circulating microRNA;
FDR, false discovery rate
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40 observed DE c-miRs from discovery cohort analysis

(Supplementary file S2, Tables S3 and S4).

We then performed mirWalk-GSEA analysis on the 508 pre-

dicted target genes to explore what functional roles the DE c-miRs

might possess. The GSEA analysis revealed 195 distinct signifi-

cantly enriched biological processes (Supplementary file S2,

Tables S5 and S6). To identify the key biological processes, we then

narrowed the given output list based on FDR and the number of

involved target genes to the top 30 most significantly enriched bio-

logical processes (Supplementary file S2, Table S7). Most of the dis-

covered biological processes were linked to apoptosis, regulation

of transcription, cell cycle, cell proliferation, DNA damage and sig-

nal transduction (Figure 3A). We then conducted a small-scale cell

line experiment to investigate how c-miR over- and underexpres-

sion affect Human colorectal cell line (HCT116) viability

(Supplementary file S1, Supplementary materials and methods). We

chose hsa-miR-122b and -451a as representatives of over- and

underexpressed miRs found in healthy path_MMR carriers vs non-

LS control comparisons. HCT116 cell line was chosen to mimic LS

colorectal cancer. The cell line experiment hinted that overexpres-

sion of hsa-miR-122b could reduce cell viability via increased apo-

ptosis whereas underexpression of hsa-miR-451a also resulted in

reduced viability but did not induce apoptosis of HCT116 cells

(Supplementary file S1, Figure S6). We observed considerable over-

lap between the identified pathways since 208 out of 508 identified

distinct c-miR-target genes contributed to the top biological pro-

cesses (Supplementary file S2, Table S8). TGFBR1, CDKN1A, IGF1,

TRAF6 and BCL2 genes were present in most of the observed bio-

logical processes along with several other genes (Supplementary

file S2, Table S8). The performed in silico target analysis showed

that TGFBR1 was targeted by hsa-miR-27b-3p, CDKN1A and IGF1

were targets of hsa-let-7 e-5p, TRAF6 was targeted by hsa-miR-

125a-5p and BCL2 was targeted by hsa-miR-125b-5p and hsa-miR-

15b-5p (Supplementary file S2, Table S3). Of these c-miRs, all
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F IGURE 2 Dimension reduction analysis of multiple traits was unable to discern path_MMR carriers from sporadic rectal cancer patients.
(A) Path_MMR carriers and sporadic rectal cancer patients. (B) Cancer status. Healthy, cancer-free path_MMR carriers; path_MMR
cancer, path_MMR carriers with cancer; path SR cancer, sporadic rectal cancer patients. (C) Cancer history. Current cancer, has cancer currently;
Never, currently healthy, never had cancers; Previous cancer, currently healthy, had had cancer or multiple cancers; (D) path_MMR variant.
(E) Dichotomous age. Over 60, persons >60-years of age; Under 60, persons <60-years of age. (F) Nondichotomous age. Over 60, persons
>60-years of age; Between 50 and 60, persons between 50 and 60-years of age; Under 50, persons <50-years of age. (G) BMI. Over 25, persons
with BMI > 25; Under 25, persons with BMI < 25; NA, no reported BMI. (H) Sex. M, males; F, females. (I) Batch effect of three separate
sequencing runs in running order. All t-SNE plots are 2D constructions. Dots represent study subjects. BMI, body mass index
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except hsa-miR-15b-5p were upregulated in path_MMR compared

to controls (Table 3).

Next, we explored how the c-miR-target genes interact with

KEGG pathways. GSEA analysis of the same gene set discovered

88 significantly enriched KEGG biological pathways (Supplementary

file S2, Tables S9 and S10). Again, to focus on the possible key path-

ways, we narrowed the output list to the top 30 of the most signifi-

cant pathways based on similar parameters than in the previous

analysis (Supplementary file S2, Table S11). A great majority of the

discovered pathways linked to cancer, cancer signaling and cell aging

(Figure 3B). Of the 508 predicted target genes, 113 were involved in

the discovered top KEGG pathways (Supplementary file S2,

Table S12). AKT3, PIK3R1 and PIK3CA genes were involved in 27 out

of 30 KEGG pathways, whereas KRAS had 26 and NRAS had

24 hits, respectively (Supplementary file S2, Table S12). AKT3 was

targeted by hsa-miR-15b-5p, PIK3R1 was targeted by hsa-miR-107

and hsa-miR-486-5p, PIK3CA was targeted by hsa-miR-19a-3p, KRAS

was targeted by hsa-miR-27a-3p and NRAS was a target of hsa-let-7a

and -7c-5p (Supplementary file S2, Table S3). Of these c-miRs, all

except hsa-let7a and -7c, were downregulated in path_MMR

compared to controls (Table 3).

As these key target genes were interacting in the majority of the

identified cancer-associated biological processes and pathways, we

then explored and validated their potential carcinogenic roles. We

submitted the gene set to COSMIC-CGC database and found that

BCL2, AKT3, PIK3CA, KRAS and NRAS possess oncogenic functions,

whereas CDKN1A is a potential oncogene or tumor suppressor gene

and PIK3R1 functions as a tumor suppressor gene (Table 3). All these

genes have well-documented roles in multiple tumor types, including

colorectal cancer, and with most having functions in hallmarks of

cancer.43 Of the target gene set, TGFBR1, IGF1 nor TRAF6 were not

included in COSMIC-CGC database. These results support our

F IGURE 3 Pathway analysis revealed
putative c-miR-target genes that are
linked to biological processes and
pathways associated with cancer. (A) Top
30 most enriched biological processes
annotated to the identified target genes
of 32 out of 40 DE c-miRs found in
healthy path_MMR carriers. FDR, false
discovery rate; GO:BP, Gene Ontology:

biological process; Hits, number of target
genes annotated to the biological process.
*Signal transduction by p53 class
mediator resulting in cell cycle arrest.
(B) Top 30 most enriched KEGG pathways
annotated to the identified target genes
of 32 out of 40 DE c-miRs found in
healthy path_MMR carriers. c-
miR, circulating microRNA; FDR, false
discovery rate; KEGG, Kyoto
Encyclopedia of Genes and Genomes
pathway; Hits, number of target genes
annotated to the pathway
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hypothesis that the observed resemblance of the c-miRnomes

between path_MMR carriers and sporadic rectal cancer patients can

be due to shared biological processes and pathways that include well-

known oncogenes and tumor-suppressor genes.

Taken together, our in silico analysis shows that the c-miRs

in hsa-let-7 family, as well as hsa-miR-15b-5p, hsa-miR-19a-3p, hsa-

miR-27a-3p and -27b-3p, hsa-miR-107, hsa-miR-125b-5p and hsa-

miR-486-5p could target genes that are ubiquitous in cancer-

associated biological processes and pathways. These findings imply

that the altered c-miRnome expression pattern of cancer-free

path_MMR carriers may hold predictive value by tracking potential

oncogenic stress caused by dMMR-driven distortions.

4 | DISCUSSION

Our study pioneered in characterizing the systemic c-miRnomes of

path_MMR carriers. By utilizing high throughput sequencing, a total

of 228 distinct c-miRs common to all study subjects were detected.

Of these, we showed healthy path_MMR carriers to have an exclusive

c-miRnome of 40 DE c-miRs that differs from non-LS-controls, but

that does not differ from the c-miRnome of cancer patients with or

without dMMR. Our c-miR expression analysis combined with in silico

tools revealed that the observed resemblance in the c-miRnomes is

possibly caused by distortions in several biological networks that are

governed by well-known oncogenes and tumor suppressor genes,

thus suggesting that c-miRnome could be used to track potential

oncogenic stress at cancer-free state.

There is a growing interest in exploiting miRs as cancer bio-

markers. Balaguer et al studied miRs that were extracted from

tumors of path_MMR carriers and sporadic colorectal cancer patients

with verified microsatellite instability and normal tissue sam-

ples.14,18 They used a set of >700 miR-probes with microarray anal-

ysis and detected hundreds of DE miRs among the tissue samples,

showing that LS tumors can be separated from sporadic tumors with

microsatellite instability, as well as that suspected LS samples dis-

cern from confirmed LS samples. Aligned with their study, we also

showed that different path_MMR variants do not display unique c-

miR expression thus implying a shared systemic response. However,

we could not pinpoint DE c-miRs that would distinguish path_MMR

carriers from sporadic cancer patients although we did, as well as in

numerous other studies, detect a c-miR signature unique to sporadic

cancer patients when compared to healthy non-LS controls. The

observation that path_MMR carriers do not differ from sporadic can-

cer patients in their c-miRnome was also supported by our t-SNE

analysis that did not reveal any clustering within our dataset based

on several variables. The reason behind the substantial difference in

DE c-miR numbers between our and the study by Balaguer et al is

likely explained by the study setting, used specimen type and meth-

odology. In our study, the DE c-miRs were sequenced from the cir-

culation of cancer-free persons where such a robust c-miR signature

is not presumably detected when compared to miRs at the site of

pathology.

Furthermore, Balaguer et al detected several DE miRs with diag-

nostic potential in LS, including hsa-miR-125b-5p, -137, -622, -192

and -1238, whereas Zhou et al displayed that hsa-miR-137, -520 e

and -590-3p are indicatives of LS by using a subset of path_MMR can-

cer tumor samples and normal tissue samples from the study by

Balaguer et al.17 We did not find significant overlapping of DE miR

content between our c-miRs and tumor-miRs from those studies,

except for hsa-miR-125b-5p, that was also identified by Balaguer

et al. Aberrant expression of hsa-miR-125b-5p has been reported for

multitude of cancer types and it has been implied to serve as a

circulating cancer biomarker by targeting apoptosis-regulating

oncogene BCL2.44

The most significant DE c-miR in our setting was hsa-miR-

155-5p, followed by hsa-let-7c-5p and -7 e-5p, -122b-3p and 15a-5p,

which all except hsa-miR-15a-5p were upregulated in healthy

path_MMR carriers. Valeri et al demonstrated that hsa-miR-155-5p

targets several MMR-genes and that overexpression of hsa-

miR155-5p downregulates MLH1 and MSH2 in colorectal cancer cell

lines.15 Within this concept, our DE findings also support the role of

hsa-miR-155p modulation in LS pathogenesis even though the per-

formed in silico analysis could not identify MMR-genes as targets of

hsa-miR-155-5p. miRs in hsa-let-7 family have been suggested to

increase colorectal cancer risk in path_MMR carriers with proficient

MMR by lowering the expression of TGFBR1 haplotype.45 We found

hsa-let-7 family to target TGFBR3 and hsa-miR-27b-3pto target

TGFBR1. We did not find experimentally verified target genes for hsa-

miR-122b-3p. However, we could see that overexpression of hsa-

miR-122b might result in reduced cell viability, plausibly due to

increased apoptosis. Previous studies have linked hsa-miR-15a-5p to

sporadic endometrial cancer46 and colorectal cancer,47 both being

hallmark cancers of LS. In our analysis, hsa-miR-15a-5p was seen to

target several genes, including known oncogenes and tumor suppres-

sor genes such as CCND1, CDK6 and DICER1, thus suggesting bio-

marker potential also in LS.

MiRs have critical functions across various biological processes

and pathways involved in carcinogenesis. We found 508 putative tar-

get genes for 32 out of 40 observed DE c-miRs that associate with

several pathways common to cancer. In addition to above mentioned

c-miRs, we also identified several other c-miRs that could be key regu-

lators in dMMR-driven carcinogenesis. The performed in silico analy-

sis indicated that all these c-miRs target several well-known

oncogenes and tumor suppressor genes such as KRAS, NRAS, PIK3RI,

and PIK3CA, that were significantly enriched in our pathway analysis.

Supported by our DE-analysis, the observation that these identified

DE c-miRs target known oncogenes and tumor suppressors, could

indicate upregulation of the oncogenes and consequently downregu-

lation of the tumor suppressor genes. However, since we studied cell-

free c-miRs without possibility to investigate expression levels of their

putative target genes, this suggestion remains hypothetical. Unfortu-

nately, c-miRs are not easily tracked where tracking of c-miRs would

provide us clues to what tissues they will be affecting and where to

seek further signs of cancer development. Matching pairwise tissue

samples to observed c-miRs could help elucidate these issues but we
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had no possibility to do so. Nevertheless, our exploratory findings

indicate that path_MMR carriers display oncogenic stress even when

they are cancer-free, but more studies are needed to verify our results

and to show if they have true power as a biomarkers of early cancer

development. A future goal is to determine whether the longitudinal

change or development of c-miRnomes appears in conjunction with

cancer incidence and treatment. The biological basis for aberrant c-

miR expression between path_MMR carriers and non-LS controls

remains a clinical question to be elucidated also in the future work.

A major strength of our study is that the study subjects had under-

gone comprehensive screenings of LS-predisposing mutations, with

ascertainment utilizing Amsterdam and Bethesda clinical criteria and

cascade testing. Also, instead of a priori chosen gene panel, we con-

ducted a systemic level investigation of c-miRnome, which provides a

more comprehensive view of how already identified c-miRs and puta-

tive target genes contribute to distorted biological networks in sporadic

and hereditary cancer. For example, our findings allow construction of

c-miRnome-target gene collection to be explored for potentially dis-

torted biological networks associated with dMMR. Also, it can be used

for establishing candidate hypotheses to drive further research and for

further exploratory c-miR analyses of potential contributing gene clus-

ters not previously discovered. Finally, the bioinformatic analyses in our

study were performed in precise detail according to the latest knowl-

edge using state-of-the-art tools and algorithms.

Our study has potential pitfalls. Although largest to date, the

study sample was relatively small especially in the cancer cohort,

which could have reduced the statistical power of DE-analyses.

Regarding the methodology, there is no conclusive rule which

sequencing depth should be aimed at when assessing DE of c-miRs. In

our study, the aimed mean sequencing depth was 5 M reads per sam-

ple, but the achieved mean sequencing depth was 3.2 M reads due to

underclustering issues in sequencing. The underclustering might have

affected c-miR detection by favoring highly expressed c-miRs and

thus resulting in overpresentation of these c-miRs and underpresenta-

tion or masking of c-miRs with low expression and potential cancer-

or dMMR-relevant functions. A common issue with c-miRs is the iden-

tification of their primary and target locations, and alike in many other

studies, we did not track the observed c-miRs to certain locations,

which introduce a certain degree of uncertainty over the interpreta-

tions of the observations. Unfortunately, our efforts to validate DE

findings with RT-qPCR were not completely successful when using an

independent validation cohort, although we observed a trend of paral-

lel expression in both cohorts in eight out of nine validation c-miRs.

Overall considerable variation in c-miR expression levels were

detected with both methods and cohorts, which could explain why

significant differences between groups in the smaller validation cohort

were not detected. Furthermore, we cannot completely exclude the

possibility that varying ascertainment site for sample collection may

have increased between sample variation and could thereby have

affected our analyses.

To conclude, our exploratory study was the first to characterize

the systemic c-miRnomes of path_MMR carriers. We showed that sys-

temic c-miRnome can be used to track potential oncogenic stress in

cancer-free path_MMR carriers thus paving way for the future investi-

gation of c-miRs in monitoring the risk stratification patterns during

the risk-reducing clinical surveillance and possible cancer

TABLE 3 Key target genes of DE c-miRs in healthy path_MMR carriers compared to non-LS controls

Key

target gene Gene name Hits COSMIC-CGC Role in cancer c-miR

GO:BP

TGFBR1 Transforming growth factor-beta receptor type 1 10 NA hsa-miR-27b-3p "
CDKN1A Cyclin dependent kinase inhibitor 1A 8 Oncogene, tumor suppressor

gene

hsa-let-7 e-5p "

IGF1 Insulin growth factor 1 7 NA hsa-let-7 e-5p "
TRAF6 TNF receptor-associated factor 6 7 NA hsa-miR-125a-5p "
BCL2 B-cell CLL/lymphoma 2 6 Oncogene, fusion hsa-miR-125b-5p " hsa-miR-15b-

5p #
KEGG

AKT3 V-akt murine thymoma viral oncogene homolog 3 27 Oncogene hsa-miR-15b-5p #
PIK3R1 Phosphoinositide-3-kinase. Regulatory subunit 1

(alpha)

27 Tumor suppressor gene hsa-miR-107 # hsa-miR-486-5p #

PIK3CA Phosphoinositide-3-kinase. Catalytic. alpha

polypeptide

27 Oncogene hsa-miR-19a-3p #

KRAS KRAS Proto-Oncogene, GTPase 26 Oncogene hsa-miR-27a-3p #
NRAS NRAS Proto-Oncogene, GTPase 24 Oncogene hsa-let-7a-5p " hsa-let-7c-5p "

Note: Arrows indicate up- (") or downregulation (#) of c-miR in DE-analysis. Hits indicate the number of top GO:BP or KEGG-pathways where the gene is

present.

Abbreviations: c-miR, circulating microRNA; COSMIC-CGC, The Catalogue of Somatic Mutations in Cancer and Cancer Gene Census database; GO:

BP, Gene Ontology:biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes pathway.
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management. Our study also produced novel insight that allows con-

struction of a c-miRnome-target gene collection to be explored for

potentially distorted biological networks and c-miRnome-target gene

interactions in LS.
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E R R A T UM

Correction to “Systemic circulating microRNA landscape
in Lynch syndrome”

Sievänen T, Korhonen T-M, Jokela T, et al. Systemic circulating microRNA landscape in Lynch syndrome. Int J Cancer. 2023; 152(5): 932–944.

doi:10.1002/ijc.34338

In the paper by Sievänen et al. 2023, the authors discovered an error in the analytical code for the study, which affected Table 2, Figure 1,

Figure 3 legend, supporting information and some sentences in the Abstract, Methods, Results and Discussion.

This work originally used the bowtie aligner with default options for reference strand selection to analyze sequencing data, which was later discovered

by the authors to align the microRNA (miR) reads in some instances to the reverse complements of the miRs present in the miRbase. Despite a slight

change in the results, i.e., hsa-miR-122b-3p is no longer identified in our dataset, the applied reanalysis did not change the conclusions of this article.

The corrected Table 2 is listed below:

TABLE 2 DE and non-DE c-miRs within and between the discovery and cancer cohorts.

Healthy path_MMR vs non-LS

control

Sporadic rectal cancer patients vs

healthy path_MMR

Healthy path_MMR vs path_MMR

with cancer

Sporadic rectal cancer patients vs

non-LS control

c-miR log2FC FDR c-miR log2FC FDR c-miR log2FC FDR c-miR log2FC FDR

hsa-miR-155-5p 0.900 <0.001 hsa-miR-10a-5p 0.689 0.098 hsa-miR-127-3p 1.556 0.272 hsa-miR-200a-3p 1.742 <0.001

hsa-let-7c-5p 0.728 <0.001 hsa-miR-1180-3p 1.156 0.151 hsa-let-7a-5p �0.014 0.997 hsa-miR-10a-5p 0.973 0.003

hsa-let-7e-5p 0.957 <0.001 hsa-miR-126-3p �0.391 0.151 hsa-let-7b-5p �0.240 0.997 hsa-miR-200b-5p 2.149 0.009

hsa-miR-15a-5p �0.680 0.001 hsa-miR-148b-3p �0.339 0.151 hsa-let-7c-5p 0.201 0.997 hsa-miR-200c-3p 1.123 0.022

hsa-miR-185-5p �0.487 0.001 hsa-miR-196a-5p 1.410 0.151 hsa-let-7d-3p �0.147 0.997 has-miR-196a-5p 1.807 0.022

hsa-miR-320a-3p �0.715 0.001 hsa-miR-320a-3p 0.556 0.151 hsa-let-7d-5p �0.323 0.997

hsa-miR-186-5p �0.552 0.001 hsa-miR-320b 0.839 0.151 hsa-let-7e-5p 0.335 0.997

hsa-let-7a-5p 0.538 0.004 hsa-miR-486-5p 0.544 0.233 hsa-let-7f-5p 0.180 0.997

hsa-miR-3613-5p �0.878 0.004 hsa-miR-200b-3p 1.402 0.259 hsa-let-7 g-5p 0.011 0.997

hsa-miR-10b-5p 0.496 0.004 hsa-miR-223-3p 0.415 0.259 hsa-let-7i-5p 0.072 0.997

hsa-miR-22-3p �0.526 0.004 hsa-miR-320c 1.080 0.259 hsa-miR-101-3p 0.183 0.997

hsa-miR-19b-3p �0.491 0.005 hsa-miR-185-5p 0.344 0.268 hsa-miR-103a-3p 0.256 0.997

hsa-miR-451a �0.715 0.007 hsa-miR-483-5p 0.776 0.285 hsa-miR-106b-3p �0.207 0.997

hsa-miR-125a-5p 0.482 0.008 hsa-miR-222-3p 0.752 0.310 hsa-miR-106b-5p 0.542 0.997

hsa-miR-339-5p �0.818 0.009 hsa-miR-2110 1.197 0.323 hsa-miR-107 0.180 0.997

hsa-miR-15b-5p �0.526 0.009 hsa-let-7d-3p 0.460 0.451 hsa-miR-10a-5p �0.190 0.997

hsa-miR-125b-5p 0.591 0.010 hsa-miR-11,400 �0.827 0.451 hsa-miR-10b-5p �0.166 0.997

hsa-miR-32-5p �0.564 0.010 hsa-miR-134-5p �0.679 0.451 hsa-miR-11,400 0.548 0.997

hsa-miR-107 �0.464 0.011 hsa-miR-193a-5p 0.534 0.451 hsa-miR-1180-3p �0.851 0.997

hsa-miR-484 �0.755 0.011 hsa-miR-25-3p 0.323 0.451 hsa-miR-122-5p 0.032 0.997

hsa-miR-27a-3p �0.378 0.012

hsa-miR-206 0.994 0.016

hsa-miR-25-3p �0.376 0.016

hsa-let-7f-5p 0.328 0.017

DOI: 10.1002/ijc.34828
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The corrected Figure 1 is shown below:

TABLE 2 (Continued)

Healthy path_MMR vs non-LS

control

Sporadic rectal cancer patients vs

healthy path_MMR

Healthy path_MMR vs path_MMR

with cancer

Sporadic rectal cancer patients vs

non-LS control

c-miR log2FC FDR c-miR log2FC FDR c-miR log2FC FDR c-miR log2FC FDR

hsa-miR-141-3p 0.866 0.017

hsa-miR-126-3p 0.320 0.024

hsa-miR-200a-3p 0.883 0.024

hsa-miR-221-3p �0.318 0.029

hsa-miR-424-5p �0.670 0.033

hsa-miR-23a-3p �0.444 0.040

hsa-miR-27b-3p 0.415 0.044

hsa-miR-486-5p �0.451 0.044

hsa-miR-222-3p �0.655 0.045

hsa-let-7i-5p 0.273 0.048

hsa-miR-19a-3p �0.438 0.050

hsa-miR-363-3p �0.537 0.050

hsa-miR-92a-3p �0.373 0.050

N, healthy path_MMR = 81; N, path_MMR with cancer = 13; N, sporadic rectal cancer patients = 24; N, non-LS controls = 37.

FDR <0.05 highlighted with bold. FDR = false discovery rate; log2FC = logarithmic2 fold change; c-miR = circulating microRNA.
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The value 40 should be changed to 37 in Figure 3 legend. The corrected legend is below:

FIGURE 3 Pathway analysis revealed putative c-miR-target genes that are linked to biological processes and pathways associated with cancer.

(A) Top 30 most enriched biological processes annotated to the identified target genes of 32 out of 37 DE c-miRs found in healthy path_MMR

carriers. FDR, false discovery rate; GO: BP, Gene Ontology: biological process; Hits, number of target genes annotated to the biological process.

*Signal transduction by p53 class mediator resulting in cell cycle arrest. (B) Top 30 most enriched KEGG pathways annotated to the identified tar-

get genes of 32 out of 37 DE c-miRs found in healthy path_MMR carriers. c-miR, circulating microRNA; FDR, false discovery rate; KEGG, Kyoto

Encyclopedia of Genes and Genomes pathway; Hits, number of target genes annotated to the pathway.

In the abstract, the number of DE miRs identified in cancer-free path_MMR carriers compared to the non-LS controls should be from 40 to 37.

In the Methods section paragraph 2.5 the corrected sentences should read:

Subsequently, the pre-processed reads were mapped to human mature miR-genome (miRbase v.22)26 with Bowtie alignment tool for single-end

data with v-mode and best strata parameters (-v 2 -k 1 - - best - - norc).27 The one best mapping for each miR-read was selected for differential

expression (DE) analysis.

In the Results section paragraph 3.2, the correct sentences should read:

• In DE-analysis, we found 37 out of 228 c-miRs to display aberrant expression in healthy path_MMR carriers (Table 2). Of them, 14 were upre-

gulated and 23 downregulated in path_MMR carriers compared to non-LS controls, but the fold changes remained low varying from minimum

of �0.88 to maximum of 0.99 (Figure 1A). Hsa-miR-155-5p, hsa-let-7c-5p and -let-7e-5p had the most significant upregulation within healthy

path_MMR carriers (Table 2).

• We found that hsa-miR-200a-3p, -10a-5p, -196a-5p, -200b-3p and -200c-3p were significantly upregulated in sporadic rectal cancer patients

differentiating them from non-LS controls (Figure 1F and Table 2).

• In this analysis scheme, the fold change in hsa-miR-200a-3p was 1.74, indicating significantly higher expression compared to the healthy non-

LS controls (Table 2).

In the Results section paragraph 3.4, the corrected sentences should read:

• MirWalk identified a total of 1731 miR-target gene interactions with 508 distinct putative target genes for 32 out of 37 observed DE c-miRs

from discovery cohort analysis (Supplementary file S2, Tables S3 and S4).

• We chose has-miR-451a as representative DE miRs found in healthy path_MMR carriers vs non-LS control comparisons. HCT116 cell line was

chosen to mimic LS colorectal cancer. The cell line experiment hinted that underexpression of hsa-miR-451a results in reduced cell viability

but did not induce apoptosis of HCT116 cells (Supplementary file S1, Figure S6).

In the Discussion section, the correct sentences should read:

• Of these, we showed healthy path_MMR carriers to have an exclusive c-miRnome of 37 DE c-miRs that differs from non-LS-controls, but that

does not differ from the c-miRnome of cancer patients with or without dMMR.

• The most significant DE c-miR in our setting was hsa-miR-155-5p, followed by hsa-let-7c-5p and -7e-5p and hsa-miR-15a-5p, which all except

hsa-miR-15a-5p were upregulated in healthy path_MMR carriers.

• We found 508 putative target genes for 32 out of 37 observed DE c-miRs that associate with several pathways common to cancer.

In the Discussions section, this sentence: “We did not find experimentally verified target genes for hsa-miR-122b-3p. However, we could see that

overexpression of hsa-miR-122b might result in reduced cell viability, plausibly due to increased apoptosis.” was removed.

The Supporting Information has been corrected in the online version of the article.

We apologize for these errors.
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Circulating miRNA Signature Predicts Cancer
Incidence in Lynch Syndrome—A Pilot Study
Tero Siev€anen1, Tiina Jokela1, Matti Hyv€arinen1, Tia-Marje Korhonen1, Kirsi Pylv€an€ainen2,
Jukka-Pekka Mecklin2,3, Juha Karvanen4, Elina Sillanp€a€a1,2, Toni T. Sepp€al€a5,6,7,8, and
Eija K. Laakkonen1

ABSTRACT
◥

Lynch syndrome (LS) is the most common autosomal
dominant cancer syndrome and is characterized by high
genetic cancer risk modified by lifestyle factors. This study
explored whether a circulating miRNA (c-miR) signature
predicts LS cancer incidence within a 4-year prospective
surveillance period. To gain insight how lifestyle behavior
could affect LS cancer risk, we investigated whether the
cancer-predicting c-miR signature correlates with known
risk-reducing factors such as physical activity, body mass
index (BMI), dietary fiber, or NSAID usage. The study
included 110 c-miR samples from LS carriers, 18 of whom
were diagnosed with cancer during a 4-year prospective
surveillance period. Lasso regression was utilized to find
c-miRs associated with cancer risk. Individual risk sum
derived from the chosen c-miRs was used to develop amodel
to predict LS cancer incidence. This model was validated
using 5-fold cross-validation. Correlation and pathway anal-
yses were applied to inspect biological functions of c-miRs.
Pearson correlation was used to examine the associations of

c-miR risk sum and lifestyle factors. hsa-miR-10b-5p, hsa-
miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and
hsa-miR-3615 were identified as cancer predictors by Lasso,
and their risk sum score associated with higher likelihood of
cancer incidence (HR 2.72, 95% confidence interval: 1.64–
4.52, C-index ¼ 0.72). In cross-validation, the model indi-
cated good concordance with the average C-index of 0.75
(0.6–1.0). Coregulated hsa-miR-10b-5p, hsa-miR-125b-5p,
and hsa-miR-200a-3p targeted genes involved in cancer-
associated biological pathways. The c-miR risk sum score
correlated with BMI (r¼ 0.23, P < 0.01). In summary, BMI-
associated c-miRs predict LS cancer incidence within 4 years,
although further validation is required.

Prevention Relevance: The development of cancer risk
prediction models is key to improving the survival of patients
with LS. This pilot study describes a serummiRNA signature–
based risk prediction model that predicts LS cancer incidence
within 4 years, although further validation is required.

Introduction
Lynch syndrome (LS) is the most common inherited cancer

predisposition syndrome, with an estimated prevalence of

1:300 (1, 2). Distinct LS phenotypes are caused by germline
mutations in DNA mismatch repair (MMR) genes MLH1,
MSH2, MSH6, and PMS2 (2). The impaired MMR manifests
as an increased risk of multiple cancers, and depending on the
cancer type, the risk is modified by lifestyle factors such as
physical activity, body weight, consumption of dietary resistant
starch, and NSAID usage (2–8). LS cancer spectrum includes
various cancer types, colorectal cancer and endometrial cancers
being most common (6). As the cancer risk varies greatly
among pathogenic MMR variant carriers (6), it is pivotal to
innovate risk stratification biomarkers that could be used to
identify LS carriers who may develop cancer in the near future.
Circulating miRNAs (c-miR) are short, noncoding RNA

molecules that function as intercellular messengers by migrat-
ing throughout the body (9). They play a crucial role in cancer
biology by regulating core cellular processes, such as prolifer-
ation and apoptosis, through the suppression of target gene
translation (10). Multiple studies have reported c-miRs as
potential biomarkers for various sporadic cancers (11–15) by
demonstrating differential expression (DE) between the c-miR
signatures of patients with cancer and healthy controls. Inmost
of these prior studies, the analysis of c-miR signatures has been
limited to patients who have already received a colorectal
cancer diagnosis, making it challenging to ascertain their
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potential utility in risk stratification. Interestingly, a recent
study by Raut and colleagues showed that altered c-miR
expression could predict sporadic colorectal cancer incidence
several years prior the diagnosis (16). However, it has remained
unclear whether this observation extends to LS.
In LS, the risk of various cancers is significantly elevated by

sedentary behavior and excess body weight, while physical
activity, maintaining a healthy body weight, and the consump-
tion of dietary resistant starch andNSAIDs have been shown to
mitigate these risks (3, 7, 8). Although it is well acknowledged
that adopting an optimal lifestyle can reduce cancer incidence,
the underlying molecular mechanisms remain less elucidated.
c-miRs, due to their capacity to modulate pathophysiologic
responses to changing lifestyle behaviors (9) and their ability to
exhibit DE profiles between sedentary and physically active
individuals (17), offer potential insights into how lifestyle
behaviors influence LS-associated cancer risk.
We were first to report that the c-miR signature of cancer-

free LS carriers is associated with carcinogenesis by displaying
aberrant expression compared with healthy population but
similar expression when compared with patients with sporadic
rectal cancer (18). To build on that, the primary aim of this
study was to investigate whether c-miRs can be used in LS
cancer risk prediction during a 4-year prospective surveillance
period. Considering the modulatory role of c-miRs in lifestyle
habits, our secondary aim was to explore whether any of the LS
cancer predictive c-miRs are associated with physical activity,
body weight, dietary fiber, or NSAID usage.

Materials and Methods
The study flow chart and general outline is detailed in Fig. 1.

Patients and sample collection
The clinical data of our study were derived from the nation-

wide Finnish Lynch SyndromeResearchRegistry (LSRFi, www.
lynchsyndrooma.fi, accessed November 2022). Age, sex, MMR
mutation status, family cancer history, and all cancer diagnoses
with the cancer type and date of each diagnosis were confirmed
from hospital medical records and national cancer registries
upon recording in the LSRFi. To date, LSRFi includes 1,800 LS
carriers from 400 families and contains clinicopathologic
information on all cancers of the registered individuals. In the
current study, we reviewed baseline medical records of Finnish
cancer-free LS carriers whose c-miR expression profile was
characterized (n ¼ 110). Ethnicity throughout the study pop-
ulation was White Caucasian.
LS carriers were enrolled in the study, and whole blood was

collected at their regular colonoscopy surveillance appoint-
ments at Helsinki University Central Hospital in Helsinki and
Central FinlandCentralHospital in Jyv€askyl€a, Finland.Non-LS
control samples were acquired from Biobank of Eastern Fin-
land, Kuopio, and a previously studied Estrogenic Regulation of
Muscle Apoptosis cohort consisting of healthy 47–55 years
old women. To separate serum, the whole blood samples were

allowed to clot for 30minutes at room temperature, centrifuged
at 1,800 � g for 10 minutes and aliquoted. Methods of sample
collection, preanalytic preparation, c-miR extraction, library
preparation, and sequencing have been described previously in
detail (18).

Data collection and ethical issues
High-throughput c-miR expression data of cancer-free LS

carriers (n ¼ 86) as well as of healthy non-carrier control
samples (n ¼ 37) were generated as described earlier (18).
Briefly, c-miRs were extracted using affinity column-based
approach (miRNeasy Serum/Plasma advanced kit, Qiagen),
ligated to sequencing adapters from both 50 and 30 end, reverse
transcribed into cDNA using unique molecular identifier
(UMI)-assigning primers, and purified with magnetic beads
(Qiaseq miRNA Library preparation kit, Qiagen). Sequencing
of the c-miR libraries were done with NextSeq 500 (Illumina)
using NextSeq 500/550 High Output Kit v. 2.5 with 75 cycles
aiming for depth of 5M reads per sample. Quality controls
throughout the RNA isolation, library preparation, and
sequencing protocols were conducted with qRT-PCR (Bio-
Rad), TapeStation 4200 (Agilent) and Qubit fluorometer (Invi-
trogen), respectively. To increase the cohort size, we performed
small RNA sequencing (RNA-seq) experiment on additional 24
LS carriers using the same analysis pipeline as described (18).
Thus, the current study composed of 110 cancer-free LS
carriers who are registered in the LSRFi and 37 healthy non-
carrier control samples. Healthy non-carrier control samples
were included only in the DE analysis to confirm previously
reported LS-associated c-miR signature.
The corresponding lifestyle data of the cancer-free LS carriers

in the current study were collected as described previously in
detail (3). Briefly, questionnaires for anthropometric, socioeco-
nomic, and lifestyle data collection were sent to adult Finnish
LS carriers whose contact information was available in LSRFi
in 2017 and 2020. Alongside with the lifestyle data collection,
dietary habits data of the same persons were collected by a
validated semiquantitative food frequency questionnaire (19).
The average time period between the questionnaires’ data
collection andblood samplingwas 2.0 (0.3�3.9) years.Awritten
informed consent was obtained from all participants, and the
Helsinki and Uusimaa Health Care District (HUS/155/2021)
and Central Finland Health Care District Ethics Committee
(KSSHP D# 1U/2018 and 1/2019 and KSSHP 3/2016) approved
the study protocol. The study was conducted according to the
guidelines of the Declaration of Helsinki.

Missing data
There were no missing c-miR data. Missing lifestyle and

dietary data [physical activity: 30.9%; body mass index (BMI):
4.5%; dietary fiber intake: 29.0% and NSAID usage: 29.0%;
Supplementary Table S1] occurred due to incomplete ques-
tionnaire responses. Missing data were assumed to occur at
random and multiple imputation with 50 iterations was used
to create and analyze 50 multiply imputed datasets using mice”
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R-package (20) with default settings. All lifestyle variables as
well as sex, age, pathogenic MMR-variant, cancer status, and
c-miR expression were used for imputation of each lifestyle
variable, and results were pooled using “pool” function in
“mice”.

DE analysis
DE analysis between cancer-free LS carriers and healthy

non-carrier controls was performed with “DESeq2” R-package
(ref. 21; RRID:SCR_000154) using raw c-miR counts (Supple-
mentaryMaterials andMethods S1). Sex and sequencing batch
were added to the DE analysis design formula to account for
their potential confounding effect. Normalization and variance
stabilization transformationswere donewithDESeq2 by apply-
ing median of ratios method (21) and “rlog” function, respec-

tively. Low count c-miRs were filtered prior to DE analysis.
Filtering was done with “filterByExpr” function in “edgeR”
R-package (22) that excluded c-miRs with <1 count permillion
in 70% of samples. Benjamini–Hochberg procedure with FDR
0.05 was used to correct for multiple testing. Hierarchical
clustering based on Euclidean distances and the “complete”
method was applied to verify DE findings. “hclust” function in
“stats” base R-package was used for the hierarchical clustering
analysis.

Covariates
c-miRs
c-miR expression data were derived from small RNA-seq

experiments and measured as counts relative to sample library
size where counts represent molecules in blood serum. DESeq2

Figure 1.

The study flow chart and general outline.A, Serum samples of 110 cancer-free LS carriers and 37 non-carrier controlswere sequenced to confirm previously identified
LS specific c-miR signature. B, LS clinical datawere derived from LSRFi to assess the cancer status of cancer-free LS carriers after 4 years of prospective surveillance.
Of the 110 cancer-free LS carriers, 18 had developed cancer during the surveillance period. Then, c-miR expression datawerematchedwith the corresponding clinical
and lifestyle data to investigate whether the c-miR signature can predict LS cancer risk during the surveillance. Lifestyle data were collected 2017 or 2020 with a
questionnaire. Blood sample was taken at regular colonoscopy visit between 2018 and 2020. The average time period between lifestyle data collection and blood
samplewas 2.0 (0.3–3.9) years.C,Lasso-regularizedCox regressionwas used to select themost importantpredictor c-miRs from theentire cohort. Lasso-obtainedc-
miRs were used to compute c-miR risk sum score. Arrows indicate upregulation (") and downregulation (#) of the c-miR in LS carriers when compared with healthy
non-carriers. D, c-miR risk sum score was used in LS cancer risk prediction with 5-fold cross-validation and to inspect associations with lifestyle data. c-miR ¼
circulating miRNA; Lasso¼ Least absolute shrinkage and selection method; LS¼ Lynch syndrome; LSRFi¼ Finnish Lynch Syndrome Research Registry. This figure
was created with BioRender.com.
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normalized and variance stabilized c-miR counts were used for
all analyses.

Physical activity
Physical activity was assessed by a self-reported question-

naire. The questionnaire included four questions about the
frequency, intensity, and duration of leisure time physical
activity and commuting activity. On the basis of the responses,
the metabolic equivalent task hours per day for leisure time
physical activity was calculated.

BMI
Body weight and height were measured by the clinician

during the study subjects’ regular colonoscopy appointment.
If body weight and height information were missing, we used
the last known self-measured weight and height measurement.
BMI was calculated as weight in kilograms divided by the
height squared in meters (kg/m2) according to World Health
Organization guidelines.

Dietary fiber
Dietary fiber including resistant starch amount was derived

from self-reported food frequency questionnaire and assessed
as grams per day.

NSAID usage
Study subjects self-reported whether (yes/no) they used

NSAIDs, such as acetylsalicylic acid, ibuprofen or ketoprofen
products frequently.

Construction and validation of the LS cancer risk
prediction model
Least absolute shrinkage and selection method (Lasso;

ref. 23) regularized Cox regression was used to find predictor
c-miRs from the pool of identified LS-associated DE c-miRs
using the entire study sample. Optimal value for the Lasso
regularization parameter lambda was chosen with 10-fold
cross-validation. The expression levels of the Lasso-obtained
c-miRs were used to compute an individual risk sum score
(linear predictor) for all the participants by using formula:

Risk sum score ¼ Expr(miRA) � b(miRA) þ Expr(miRB) �
b(miRB) . . .,

where Expr(miR) represents the normalized and variance
stabilized c-miR expression and b(miR) indicates the regres-
sion coefficient in Lasso-Cox regression model (16). By using
univariate and multivariate Cox regression models, the c-miR
risk sum score was then applied to predict the risk of cancer
incidence.We used the entire study sample (n¼ 110) for fitting
the risk prediction model. The predictive performance of the
risk prediction model was validated with 5-fold cross-
validation and the model concordance evaluated with Harrel
C-index (scale 0.5–1.0) where 0.5 indicates poor performance
and 1.0 indicates excellent performance (ref. 24; Supplemen-
tary Materials and Methods S1).

The surveillance time used for risk prediction was deter-
mined from the timepoint of initial serum sampling (2018–
2020) until the latest update of LSRFi (November 2022). The
response variable in the risk predictionmodel was the age at the
time of cancer diagnosis (event) or the age at the final update
date of LSRFi (censoring). HR and 95% confidence intervals
(CI) of the c-miR risk sum score were estimated for unadjusted
model as well as for sex and MMR-variant adjusted model.
Proportional hazards assumption was tested using Schoenfeld
residuals (Supplementary Fig. S1). Regarding the risk predic-
tion model development and validation, we followed Trans-
parent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPOD) reporting check-
list (25). We used “glmnet” R-package (26) for the cross-
validation procedure as well as for Lasso-regularized Cox
regression. “survival” R-package was used for Cox regression
modeling (27).

Pathway analysis
We identified potential targets genes of the Lasso-obtained c-

miRs from miRTarBase (28) by using miRWalk online
tool (29). We considered only the genes with experimental
validation in MiRTarBase (28) to exclude low evidence targets.
The obtained target gene list was applied to overpresentation
analysis with hypergeometric tests using Search Tool for
Retrieval of Interacting Genes/Proteins (STRING; ref. 30) and
Reactome (31) databases.

Statistical analysis
All statistical analyses were performed in R-programming

environment (v.4.2.2) using RStudio and in-house R-scripts.
Levene test was used to inspect homoscedasticity. Study subject
characteristics are presented as means and SDs for continuous
variables and as number of study subjects and percentages for
categorical variables. Regarding Table 1, Welch two-sample t
test was used for continuous variables whereas x2 test was
applied for categorical variables. Because of skewed nature of
RNA-seq data, Spearman method was applied to inspect
correlations between the Lasso-obtained c-miRs. Pearson
method was applied to examine correlations between the
multiple imputed lifestyle data and c-miR risk sum score.

Data availability
The sequence data generated in this study are publicly

available in Sequence Read Archive (SRA) at PRJNA1088397.

Results
Study subject characteristics
The study subjects’ clinical characteristics are described

in Table 1. Most had a pathogenic MLH1 germline variant
(67.3%) followed by MSH2 (17.3%), MSH6 (13.6), and PMS2
(1.8), respectively. Of the 110 study subjects, 18 (13males and 5
females) developed cancer during the prospective surveillance.
The mean surveillance time for those who developed cancer
was 1.3 years whereas for those who remained cancer-free it
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was 3.5 years. Half of the diagnosed cancers were colorectal
cancers and the other half consisted of several other cancer
types (Supplementary Table S2). No loss to follow-up occurred.

Confirmation of LS-associated c-miR signature
We have previously identified a c-miR signature that dis-

tinguished LS carriers from healthy non-carrier population.
However, as the LS cohort used in the present study included 24
new cases, we reprocessed the data to seek for more LS-
associated c-miRs and to verify our previous finding. DE
analysis resulted in 37 DE c-miRs between cancer-free LS
carriers and healthy non-carrier controls (Fig. 2A; Supple-
mentaryTable S3).We found 14upregulatedDE c-miRs and 23
downregulated DE c-miRs (Fig. 2B). These 37 DE c-miRs were
confirmed as LS-associated and thus chosen for the down-
stream analyses.

The expression levels of hsa-miR-10b-5p,
hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p,
and hsa-miR-3615 are associated with increased risk
of cancer incidence
Several multi c-miR panels have been reported to have

predictive or prognostic value in sporadic cancer risk assess-
ment. Thus, we wanted to investigate whether the expression of

any of the LS-associated DE c-miRs showed potential in LS
cancer risk prediction during the prospective surveillance. Out
of the 37 DE c-miRs, Lasso selected hsa-miR-10b-5p, hsa-miR-
125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and hsa-miR-
3615 as the best predictors that separated those LS carriers who
developed cancer from those who remained cancer-free during
the surveillance (Fig. 3A). The expression of all these c-miRs
was higher in those LS carriers who developed cancer during
the surveillance comparedwith those LS carriers who remained
cancer-free, although only hsa-miR-3613-5p displayed statis-
tical significance (Fig. 3B). Of them, only hsa-miR-10b-5p was
independently associated with an increased cancer risk (HR
6.58, 95% CI: 1.43–30.21, b ¼ 1.88; Supplementary Table S4).
The full model showed good concordance (C-index ¼ 0.72;
Supplementary Table S4).
Because efficient miR-based biological regulation relies on

additive effects of multiple miRs (32), we wanted to investigate
the pooled performance of the selected c-miRs on predicting LS
cancer risk. We observed that c-miR risk sum score was
significantly associated with increased risk of cancer incidence
(HR 2.72, 95% CI: 1.64–4.52, b ¼ 1.00, C-index ¼ 0.72) also
after adjusting for sex and MMR-variant (HR 2.71, 95% CI:
1.62–4.52, b ¼ 1.00, C-index¼ 0.77; Fig. 3C). A 5-fold cross-
validation of this risk prediction model resulted in average

Table 1. Study subject characteristics.

Parameter Total cohort
Cancer during
surveillance

Cancer-free after
surveillance P-value

N (%) 110 18 (16.4) 92 (83.6)
Sex, N (%) 0.071

Male 57 (51.8) 13 (72.2) 44 (47.8)
Female 53 (48.2) 5 (27.8) 48 (52.2)

MMR status, N (%) 0.777
MLH1 74 (67.3) 14 (77.8) 60 (65.2)
MSH2 19 (17.3) 2 (11.1) 17 (18.5)
MSH6 15 (13.6) 2 (11.1) 13 (14.1)
PMS2 2 (1.8) — 2 (2.2)

Physical activity, MET/hours/day (SD)a 4.4 (� 4.5) 7.6 (� 7.2) 3.7 (� 3.6) 0.094
BMI, kg/m2 (SD)a 27.8 (� 5.8) 27.9 (� 4.4) 27.7 (� 6.1) 0.875
Dietary fiber intake, g/daya (SD) 23.4 (� 10.0) 21.1 (� 9.8) 23.9 (� 10.0) 0.379
NSAID usage, N (%)a 0.736

Yes 26 (33.3) 3 (25.0) 23 (34.8)
No 52 (66.7) 9 (75.0) 43 (65.2)

Age at the start of surveillance, yearsa (SD) 57.5 (� 11.8) 57.6 (� 14.3) 57.7 (� 11.4) 0.967
Age at the end of surveillance, yearsa (SD) 60.7 (� 12.0) 58.9 (� 14.4) 61.0 (� 11.5) 0.575
Surveillance time, yearsa (SD) 3.1 (� 1.1) 1.3 (� 1.1) 3.5 (0.6) <0.001
Cancer history, N (%) 0.636

Yes 54 (49.1) 10 (55.6) 44 (47.8)
No 56 (50.9) 8 (44.4) 48 (52.2)

Cancer, N (%) 18 (16.4) 18 (16.4) —

CRC 9 (50.0) 9 (50.0) —

Otherb 9 (50.0) 9 (50.0) —

Abbreviations: BMI: body mass index; CRC: colorectal cancer; MET: metabolic equivalent task; MMR: mismatch-repair gene; NSAID: non-steroidal anti-inflammatory
drug; SD: standard deviation.
aMissing values, total cohort: Physical activity, n ¼ 34; BMI, n ¼ 5; dietary fiber intake, n ¼ 32; NSAID usage, n ¼ 32. Missing values, cancer: Physical activity, n ¼ 6;
dietary fiber intake, n ¼ 6; NSAID usage, n ¼ 6. Missing values, cancer-free: Physical activity, n ¼ 28; BMI, n ¼ 5; dietary fiber intake, n ¼ 26; NSAID usage, n ¼ 26.
bOther cancers included bladder cancer (n ¼ 1), breast cancer (n¼ 1), esophageal cancer (n ¼ 1), glioma (n ¼ 1) gastric cancer (n ¼ 1), prostate cancer (n ¼ 3), and
spinocellular cancer (n ¼ 1).
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C-index of 0.75 (0.60–1.00; Fig. 3D) thus presenting good
concordance (Supplementary Table S5). The mean c-miR risk
sum scorewas higher in those LS carriers whodeveloped cancer
(mean¼ 44.0) comparedwith those who did not (mean¼ 43.1;
P < 0.01).
We also conducted two sensitivity analyses that included

eitherMLH1 carriers (N¼ 74 of whom14 developed cancer) or
colorectal cancer cases (N ¼ 101 of whom 9 developed colo-
rectal cancer; Supplementary Tables S6–S11). Lasso selected
hsa-let-7e-5p, hsa-miR-10b-5p, and hsa-miR-3613-5p as the
best predictors to separate those who developed cancer from
those who did not in the MLH1 subgroup. Regarding the
colorectal cancer cases, hsa-miR-10b-5p, hsa-miR-19b-3p,
hsa-miR-200a-3p, hsa-miR-27b-3p, and hsa-miR-3615 were
selected as the best predictors. Although a risk sum score in
both sensitivity analyses was independently associated with
increased cancer incidence after adjusting, an enhanced risk
prediction performance was seen only in colorectal cancer–
stratified model (C-index ¼ 0.84) but not inMLH1model (C-
index ¼ 0.56) when compared with the unstratified model.
Taken together, risk prediction models composed of hsa-

miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-
3613-5p, and hsa-miR-3615 could classify between those LS
carriers who developed cancer during the surveillance period
and those who did not, also when stratified for MLH1 or
colorectal cancer. Higher prediagnostic expression levels of
these c-miRs are associated with increased risk of cancer
incidence.

Pathway analysis links coregulated hsa-miR-10b-5p,
hsa-miR-125b-5p, and hsa-miR-200a-3p to cell cycle
regulation, programmed cell death, cellular senescence,
and transcriptional regulation
The targeting of multiple genes within a specific pathway, as

well as the additive effects of coregulated c-miR clusters, are key
elements of effective c-miR regulation (32). First, we conducted
a correlation analysis to inspect whether the Lasso-obtained c-
miRs present possible coregulation. Hsa-miR-10b-5p correlat-
ed with hsa-miR-200a-3p (rho¼ 0.28, P < 0.01) and with hsa-
miR-125b-5p (rho ¼ 0.29, P < 0.01), hsa-miR-200a-3p corre-
lated with hsa-miR-125b (rho ¼ 0.41, P < 0.001) whereas hsa-
miR-3613-5p correlated only with hsa-miR-3615 (rho ¼ 0.31,
P < 0.01) thus displaying correlation and expression concor-
dance (Fig. 4A). hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-
miR-200a-3p were upregulated in LS whereas hsa-miR-3613-
5p and hsa-miR-3615 were downregulated when compared
with the healthy non-carrier controls, respectively (Fig. 2B).
To gain insight on relevant biological processes of hsa-miR-

10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-
5p, and hsa-miR-3615, we first predicted their putative target
genes usingmiRWalk.We found 128 unique target genes for all
the c-miRs expect for hsa-miR-3613-5p (Supplementary
Table S12). The most important gene nodes are presented
in Fig. 4B. These nodes had significant interactions among
each other (P < 0.001) which provided support for biological
connection. Of them, BCL2, EGFR, CDKN1A, CDKNA2A,
STAT3, SMAD2, CREB1, ETS1, and CD44 had the most

Figure 2.

Confirmation of LS-associated c-miR signature.A,Heatmapwith hierarchical clustering of DE c-miRs (n¼ 37) that separated cancer-free LS carriers and non-carrier
controls. Orange color indicates c-miR upregulation in LS groupwhereas blue color indicates c-miR downregulation in LS group. The scale represents normalized and
variance stabilized c-miR counts. LS samples are annotated with pink color and non-carrier controls with gray. B, Volcano plot of DE c-miRs that separated cancer-
free LS carriers and non-carrier controls. Only the upregulated (orange) and downregulated (blue) c-miRs in LS group are annotated. Gray dots represent non-DE
c-miRs. Y-axis indicates �log10 FDR whereas X-axis indicate log2 fold change of c-miR expression.

Siev€anen et al.

Cancer Prev Res; 17(6) June 2024 CANCER PREVENTION RESEARCH248



Figure 3.

hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and hsa-miR-3615 are associated with increased risk of cancer incidence. A, Left panel
presents a Lasso feature selection graph where every colored line indicate one of the 37 DE c-miRs found between cancer-free LS carriers and non-carrier
controls. Regression coefficient is presented as a function of the tuning parameter lambda. Right panel shows the partial likelihood deviance as a function of
lambda. The area between the dashed lines presents the optimal lambda value (l ¼ �2.5) after 10-fold cross-validation. B, Boxplots present expression
differences of the Lasso-obtained c-miRs between LS carriers who got cancer (pink) and cancer-free LS carriers (green). All of the Lasso-obtained c-miRs were
upregulated in those who developed cancer during the surveillance. The expression values on the Y-axis are presented as normalized and variance stabilized c-
miR counts. C, Unadjusted and sex and MMR-variant-adjusted LS cancer risk prediction models. HRs, 95% CIs, and model C-indices are shown. D, A total of
5-fold cross-validated LS cancer risk prediction model. Number of samples and events are shown for the training folds (80% of data) whereas C-indices are
shown for the validation fold (20% of data). Orange color indicates the mean C-index (0.75) across all folds.
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Figure 4.

Pathway analysis linked coregulated hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-200a-3p to cell cycle regulation, programmed cell death, cellular
senescence, and transcriptional regulation. A, Heat map of correlations among the Lasso-obtained c-miRs hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-
3p, hsa-miR-3613-5p, and hsa-miR-3615. hsa-miR-10b-5p correlated with hsa-miR-125b-5p (P < 0.01) and hsa-miR-200a-3p (P < 0.01), hsa-miR-125b-5p
correlated with hsa-miR-200a-3p (P < 0.01) whereas hsa-miR-3613-5p correlated with hsa-miR-3615 (P < 0.01). P < 0.05 was considered significant. The scale
represents the magnitude of correlation. Blue indicates low correlation and orange indicate high correlation. B, The most important gene nodes included
EGFR, CDKN1A, CDKNA2A, STAT3, SMAD2, CREB1, ETS1, and CD44 and were observed to have significant interactions (P < 0.001) with each other.
Edge thickness indicates the strength of data support between the nodes. C, Pathway analysis of 86 experimentally verified target genes of hsa-miR-10b-5p,
hsa-miR-125b-5p, and hsa-miR-200a-3p were significantly enriched (FDR < 0.05) in several pathways linked to cell cycle regulation, programmed cell death,
cellular senescence, and transcriptional regulation.
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interactions. hsa-miR-10b-5p targeted tumor suppressor genes
CDKN1A, CDKNA2A, and CREB1, hsa-miR-125b-5p targeted
oncogenes BCL2 and STAT3, proto-oncogene ETS1 as well as
CD44, hsa-miR-200a-3p targeted oncogene EGFR and tumor
suppressor gene SMAD2, that further supported possible cor-
egulation of these c-miRs. The complete gene node map is
presented in Supplementary Fig. S2.
Next, we conducted a pathway analysis on the experimen-

tally confirmed c-miR target genes reported in MiRTar-
Base (28). A total of 86 out of 128 of the found target genes
were significantly enriched in several pathways related to cell
cycle regulation, programmed cell death, cellular senescence as
well as transcriptional regulation (Fig. 4C). The observed
pathways, such as those linked to DNA damage response and
programmed cell death, are also in line with the acknowledged
biology of cancers. These pathways along with cellular senes-
cence pathways were targeted by coregulative and upregulated
hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-200a-3p
(Supplementary Table S13). In summary, hsa-miR-10b-5p,
hsa-miR-125b-5p, and hsa-miR-200a-3p showed potential
coregulation by displaying reciprocal correlation and by tar-
geting genes involved in several biological pathways relevant to
cancers.

c-miR risk sum score correlates with BMI
c-miRs modulate multisystemic adaptations in the human

body in response to lifestyle behavior. Therefore, we inves-
tigated whether the five c-miR risk sum score was associated
with lifestyle factors that are reported to reduce LS cancer
risk, or age which is a significant cancer risk factor in LS. Of
the chosen lifestyle factors, only BMI showed significant
correlation with the c-miR risk sum score (Table 2). Using
the multiple imputed datasets did not show significant
differences to a complete-case analysis (Supplementary
Table S14). These findings indicate that the expression levels
of hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a, hsa-
miR-3613-5p, and hsa-miR-3615 might be affected by BMI
thus suggesting potential link between lifestyle, c-miRs and
LS cancer risk.

Discussion
Our pilot study was the first to assess whether a c-miR

expression signature could be used in LS cancer risk predic-
tion during a 4-year prospective surveillance period. We also
investigated whether this signature associates with lifestyle
factors and age. Using Lasso regression and bioinformatics
approaches, we showed that a risk sum score composed of
hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-
miR-3613-5p, and hsa-miR-3615 associates with an increased
risk of LS cancer incidence. We also observed that this c-miR
risk sum score correlates positively with BMI.
Identifying reliable biomarkers has the potential to aid in risk

stratification of high-risk patients (33). Integrating these bio-
markers with clinicopathologic factors could enhance the
accuracy of patient selection criteria for risk-based screening
programs. In the current study, Lasso-Cox model successfully
separated LS carriers whodeveloped cancer from thosewho did
not by using a c-miR signature. Our finding suggests that c-miR
expression can classify high-risk cases in LS population, also
when stratified for MLH1-variant or colorectal cancer, but
further validation is required. This observation is valuable
because the variation of cancer risk is high among LS car-
riers (34), and the implementation of intense screening pro-
grams is not uniformly effective (35). Therefore, a more
nuanced approach is needed to identify those patients who
are most likely to benefit from the screenings.
Cross-validations of the risk prediction models showed that

c-miR risk sum scores have risk prediction potential also in
randomly generated subsets with varying surveillance time
and number of events. This finding is supported by previous
research. For example, hsa-miR-10b-5p, hsa-miR-125b-5p,
and hsa-miR-200a-3p, that were upregulated in those who
developed cancer within the LS cohort, are well-recognized
sporadic colorectal cancer miRs with multiple roles and
reported biomarker potential (13, 14, 36–38). hsa-miR-3613-
5p has been established as a colorectal cancermiR (39) whereas
hsa-miR-3615 has been previously reported to display down-
regulation in microsatellite unstable colorectal tumors, which
are hallmark tumors of LS, when compared with their micro-
satellite stable counterparts (40).
Furthermore, these five c-miRs displayed correlation as

well as higher expression in those LS carriers who developed
cancer compared those who did not, thus suggesting poten-
tial coregulation and biological connection. In support,
we found that four out of the five c-miRs (hsa-miR-10b-
5p, hsa-miR-125b-5p, hsa-miR-200a-3p, and hsa-miR-3615)
have been experimentally shown to target several well-
established oncogenes and tumor suppressor genes, includ-
ing BCL2, EGFR, CDKN1A, CDKN2A, CREB1, STAT3, and
SMAD2 (41). Also, these genes formed interconnected
nodes, which indicates similar role and biological connection
among them and provide more support for the suggested
coregulation of these c-miRs. All of these genes are part of
cancer-relevant biological pathways, such as those in apo-
ptosis, DNA damage, and cellular senescence (42).

Table 2. Pearson correlations of c-miR risk sumscore andphysical
activity, BMI, dietary fiber consumption, NSAID usage, and age.

r 95% CI P-value

Physical activity 0.03 [�0.19, 0.26] 0.76
BMI 0.23 [0.04–0.43] 0.01
Dietary fiber intake 0.04 [�0.18, 0.26] 0.71
NSAID usage �0.03 [�0.25, 0.18] 0.75
Age �0.14 [�0.33, �0.05] 0.14

Note: Lifestyle data were collected 2017 or 2020 with a questionnaire. Blood
sample was taken at regular colonoscopy visit. The average time-period
between lifestyle data collection and blood sample was 2.0 (0.3–3.9) years.
P-value significant at 0.05 level.
Abbreviations: r ¼ Pearson correlation coefficient; 95% CI ¼ 95% confidence
interval; BMI¼ bodymass index; NSAID¼ non-steroidal anti-inflammatory drug
usage.
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Wikberg and colleagues observed that major changes of miR
patterns occur mainly 3 years prior to sporadic colorectal
cancer diagnosis by showing a temporal pattern of increase
in miR-21-5p expression by using prediagnostic and postdiag-
nostic plasma samples (43). Raut and colleagues reported that a
risk sum score of seven c-miRs was highly predictive for
sporadic colorectal cancer risk in a prospective cohort with
a follow-up time up to 14 years and median follow-up of
6.8 years (16). However, the c-miR signature we identified did
not include any of themiRs observed by Raut and colleagues In
contrast to sporadic colorectal cancer that develops commonly
in 10–15 years, the development of LS colorectal cancer is
significantly accelerated, often taking only 1 to 3 years to
progress to carcinoma with or without pre-existing adeno-
ma (44), which may explain the discrepancies between our
study and the study by Raut and colleagues. As LS carriers in
our study were diagnosed with cancer in 1.3 years on average
from the serum sampling, it is possible that the observed c-miR
signature originates from tumors. However, it is also possible
that the observed c-miR levels may reflect risk rather than
tumor presence because our sample was not limited to colo-
rectal cancers. Nonetheless, these studies as well as our bioin-
formatics analyses show promising results for using c-miRs in
LS cancer risk prediction.
Interestingly, we found a positive correlation between the c-

miR risk sum and BMI suggesting a potential link between
excess body weight, c-miRs, and cancer risk. In support to our
findings, hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-
200a-3p have been previously linked with increased levels of
plasma total cholesterol, dysregulated lipid metabolism, and
overweight/obesity in general (45–47). Mens and colleagues,
reported that upregulation of hsa-miR-10b-5p and hsa-miR-
125b-5p associate with increased total cholesterol (45). Con-
versely, Ortega and colleagues reported a positive correlation
between decreased levels of hsa-miR-125b and BMI after
surgery-induced weight loss in obese patients (46). Ruiz-
Roso and colleagues showed upregulated miR-200a to regulate
lipid metabolism–related genes in a mouse model (47),
although we did not find hsa-miR-200a-3p to target those
genes. Moreover, Dogan and colleagues reported 1,558 miR-
target gene interactions in obesity, including miR-125b, that
were also detected in multiple cancer types. They also showed
that metabolism and growth signaling pathways are shared by
obesity and obesity-related cancer (48). Of the pathways
reported by Dogan and colleagues, p53-signaling pathway was
also identified in our study as a key pathway targeted by the c-
miRs of the risk sum score. In addition, cellular senescence and
FOXOpathways emerged in our analysis. These pathways have
been reported to associate with cancer metabolism and obesity
via alteration of energy metabolism and adipose tissue (49, 50).
However, it is important to note that c-miRs have multifaceted
roles in metabolism, and their profiles change with disease
progression. Without mechanistic studies, it is challenging to
exclude the potential confounding effects of disease and genet-
ics in our findings. Asmetabolomic abnormality is an acknowl-

edged cancer hallmark (42), these c-miRs could be promising
targets to study when assessing the interactions of metabolic
dysregulation and cancer.
Amajor strength of our study is that we were able to conduct

an analysis using prediagnostic samples from a high-risk
cohort under frequent surveillance. We also used robust meth-
odology to interrogate c-miR signatures and their associations
with LS cancer risk. All of the analyses were conducted carefully
with state-of-the-art methods and tools. By utilizing Lasso
regression, we were able to choose the most promising c-
miRs and integrate them along with the surveillance time into
well-established tool used for risk prediction, thus allowing
comprehensive biomarker signature investigation. Missing
values were handled with multiple imputation that is reported
to have negligible bias whenmissingness occurs randomly (51).
Finally, we followed TRIPOD checklist to enhance transpar-
ency in our risk prediction model development and validation
as well as to improve reproducibility of these results.
As in many pilot experiments, the potential pitfall of our

study is the small sample and effect size. Despite our best efforts
to look for an external validation dataset, we unfortunately did
not find a suitable candidate dataset nor had the opportunity to
increase our sample size. For these reasons, we could not
validate our predictor selection model. Because the majority
of LS carriers are not most likely identified (44), and due to lack
of resources, it is difficult to gather enough samples as well as it
is costly to obtain enough small RNA-seq data for a more
comprehensive investigation. An international collaboration
study would be beneficial for such purposes. We also acknowl-
edge that because the study population was comprised mainly
of MLH1 carriers, our results might have limited generaliz-
ability to other pathogenic MMR variant carriers. Finally, the
average time period of 2.0 years between the lifestyle question-
naire data collection and blood sampling is also a potential
limitation of this study.
To conclude, we report that a risk sum score composed of

hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-
miR-3613-5p, and hsa-miR-3615 has potential in LS cancer
risk prediction, and thusmay serve as a stratification biomarker
signature for finding LS carriers at increased cancer risk in the
future. However, more experiments with larger sample size are
needed to confirm our findings. The molecular mechanisms
underlying the associations of body weight, LS cancer risk and
c-miRs remain to be elucidated in future studies.
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Simple Summary: Lifestyle modifies cancer risk in the general public. How lifestyle modifies
cancer risk in individuals carrying the inherited pathogenic gene variants in DNA mismatch repair
genes (Lynch syndrome) remains understudied. We conducted a retrospective study with cancer
register data to investigate associations between body weight, physical activity, and cancer risk
among Finnish Lynch syndrome carriers (n = 465, 54% women). The results of our study indicated
that longitudinal weight gain increases cancer risk, whereas being highly physically active during
adulthood could decrease cancer risk in men. Further, women were observed to be less prone to
lifestyle-related risk factors than men. The results emphasize the role of weight maintenance and
high-intensity physical activity throughout the lifespan, especially in men with Lynch syndrome.

Abstract: Lynch syndrome (LS) increases cancer risk. There is considerable individual variation in LS
cancer occurrence, which may be moderated by lifestyle factors, such as body weight and physical
activity (PA). The potential associations of lifestyle and cancer risk in LS are understudied. We
conducted a retrospective study with cancer register data to investigate associations between body
weight, PA, and cancer risk among Finnish LS carriers. The participants (n = 465, 54% women) self-
reported their adulthood body weight and PA at 10-year intervals. Overall cancer risk and colorectal
cancer (CRC) risk was analyzed separately for men and women with respect to longitudinal and
near-term changes in body weight and PA using extended Cox regression models. The longitudinal
weight change was associated with an increased risk of all cancers (HR 1.02, 95% CI 1.00–1.04)
and CRC (HR 1.03, 1.01–1.05) in men. The near-term weight change was associated with a lower
CRC risk in women (HR 0.96, 0.92–0.99). Furthermore, 77.6% of the participants retained their
PA category over time. Men in the high-activity group had a reduced longitudinal cancer risk of
63% (HR 0.37, 0.15–0.98) compared to men in the low-activity group. PA in adulthood was not
associated with cancer risk among women. These results emphasize the role of weight maintenance
and high-intensity PA throughout the lifespan in cancer prevention, particularly in men with LS.

Keywords: epidemiology; hereditary non-polyposis colorectal cancer; lifestyle
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1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in Europe,
with an estimated 499,667 new cases in 2018, and is the second most common cause of
cancer mortality [1]. Approximately 3–5% of all CRC cases may be due to hereditary cancer
syndrome, also known as Lynch syndrome (LS) [2], which is caused by pathogenic germline
variants in DNA mismatch repair genes (path_MMR): MLH1, MSH2, MSH6, or PMS2 [3].
Individuals with path_MMR variants are at considerably greater risk of developing CRC
(40–80%), endometrial cancer (40–60%) and various other cancers compared to the general
population [4,5]. However, cancer risk is highly variable among different mutation carriers
and thus far it is not known why not all path_MMR carriers develop cancer, whereas others
develop cancer at a young age and/or suffer from multiple different types of cancers
during their lifespan.

There is strong evidence derived from the general population that increased physi-
cal activity and reduced body adiposity are associated with decreased cancer risk [6–12].
Recent research suggests that LS CRC risk can also be moderated by these lifestyle fac-
tors [13–17], but the number of studies that investigate the associations between lifestyle
and LS cancer risk are scarce. Currently, there are only two studies that we are aware
of that have assessed the association of physical activity and LS cancer risk [13,14] and
they have not taken into consideration the fact that this potential association may vary
during a lifespan. In addition, the evidence regarding the associations of cancer risk and
obesity and overweight is contradictory among women with LS [15], and thus, the risk
analyses should be performed separately for both sexes. It is of great importance to identify
modifiable behavioural factors of LS cancer risk to motivate variant carriers to change
suboptimal conduct or maintain a healthy lifestyle. Lifestyle modification could efficiently
aid in reducing individual cancer risk despite a strong genetic predisposition.

In this study, we hypothesized that the interplay between genetic factors and lifestyle
is associated with variable cancer risk in a distinct high-risk population. Two founder
mutations in MLH1 are found in a major proportion of Finnish LS families [18–20], which
offers a possibility for investigating lifestyle factors as a modifier of cancer risk in a relatively
homogenous LS population and hence may limit the influence of genetic discrepancies. The
aim of this retrospective study with longitudinal lifestyle and cancer register data was to
investigate associations between body weight and physical activity on CRC and overall
cancer risk among adult Finnish path_MMR men and women. We modeled the recalled
levels of weight and physical activity as time-dependent variables in the relative risk model.

2. Results

2.1. Descriptive Statistics

Descriptive data on path_MMR variants, cancer history, and lifestyle and socioeco-
nomic characteristics are presented in Table 1. Of the 465 participants, 215 (46.2%) were men
and 250 (53.8%) were women. The mean age at the time of data collection was 56.4 years
vs. 57.4 years, respectively.

Table 1. Descriptive demographic, genetic, cancer history, socioeconomic, and lifestyle-related characteristics of the
study population.

Background Variable

Men Women

Cancer Healthy Cancer Healthy

N = 101 N = 114 N = 122 N = 128

Age at data collection (years (SD)) 64.2 (11.2) 49.5 (14.0) 65.4 (9.6) 49.7 (14.0)
Age at first cancer (years (SD)) 45.9 (10.4) 48.6 (29–79)
Age at first CRC (years (SD)) 45.6 (11.1) 48.4 (29–79)

Cancers diagnosed (n (%))
CRC 89 (88.1) 77 (63.1)

Endometrial cancer 17 (16.8) 57 (46.7)
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Table 1. Cont.

Background Variable

Men Women

Cancer Healthy Cancer Healthy

N = 101 N = 114 N = 122 N = 128

Other cancers a 30 (24.6)
MMR gene affected (n (%))

MLH1 50 (49.5) 56 (49.1) 50 (41.0) 64 (50.0)
MLH1 other than exon 16 deletion 24 (23.8) 26 (22.8) 35 (28.7) 34 (26.6)

MSH2 15 (14.9) 22 (19.3) 26 (21.3) 13 (10.2)
MSH6 10 (9.9) 10 (8.8) 11 (9.0) 17 (13.3)
PMS2 2 (2.0)

Socioeconomic characteristics

Education (n (%))
Basic education 20 (19.8) 13 (11.4) 36 (29.5) 16 (12.5)

Upper secondary degrees 46 (45.6) 60 (52.6) 51 (41.8) 63 (49.4)
Polytechnic degree 13 (12.9) 18 (15.8) 11 (9.0) 19 (14.8)
University degree 22 (21.8) 23 (20.2) 24 (19.7) 30 (23.4)

Occupational status (n (%)) #

Worker/employee 40 (39.6) 76 (66.7) 47 (39.2) 92 (72.4)
Retired 45 (44.6) 18 (15.8) 56 (46.7) 22 (17.3)
Other b 16 (15.8) 20 (17.5) 17 (14.2) 13 (10.3)

Marital status (n (%))
Living alone 20 (19.8) 22 (19.3) 40 (32.8) 32 (25.0)

Married/cohabitation 81 (80.2) 92 (80.7) 82 (67.2) 96 (75.0)

Perceived health and physical fitness

Self-rated health (n (%))
Poor 16 (15.8) 13 (11.4) 15 (12.3) 19 (14.8)

Average 39 (38.6) 27 (23.7) 49 (40.2) 32 (25.0)
Good 46 (45.5) 74 (64.9) 57 (46.7) 77 (60.2)

Self-rated physical fitness (n (%))
Poor 22 (21.8) 18 (15.8) 16 (13.1) 21 (16.4)

Average 39 (38.6) 29 (25.4) 50 (41.0) 40 (31.3)
Good 40 (39.6) 67 (58.8) 56 (45.9) 67 (52.3)

Lifestyle variables

Alcohol consumption (portions/week (SD)) # 4.8 (6.5) 4.8 (5.3) 2.3 (3.5) 3.0 (4.3)
Smoking status (n (%)) #

Never 43 (42.6) 45 (39.5) 61 (50.0) 64 (50.0)
Former 47 (46.5) 48 (42.1) 52 (42.6) 46 (35.9)
Current 11 (10.9) 21 (18.4) 8 (6.6) 17 (13.3)

Use of anti-inflammatory drugs (n (%)) #

No 83 (85.6) 89 (78.1) 88 (72.7) 84 (65.6)
Yes 14 (14.4) 25 (21.9) 33 (27.3) 44 (34.4)

Current physical activity (n (%)) #

Low 28 (28.0) 23 (20.2) 23 (18.9) 21 (16.4)
Medium 32 (32.0) 24 (21.1) 44 (36.1) 47 (36.7)

High 40 (40.0) 67 (58.8) 55 (45.1) 60 (46.9)
BMI (kg/m2 (SD)) # 27.2 (5.3) 26.6 (4.2) 27.1 (5.8) 27.6 (11.6)

BMI categories (n (%)) #

Underweight 2 (2.0) 2 (1.8) 1 (0.8) 2 (1.6)
Normal weight 40 (40.0) 38 (33.3) 48 (40.7) 56 (44.1)

Overweight 34 (34.0) 57 (50.0) 39 (33.1) 34 (26.8)
Obese 24 (24.0) 17 (14.9) 30 (25.4) 35 (27.6)

Waist circumference (cm (SD)) # 100.5 (14.4) 97.8 (11.0) 90.6 (14.4) 88.6 (14.5)
# Missing data: occupational status n = 3, alcohol consumption n = 3, smoking status n = 2, anti-inflammatory drugs n = 5, BMI and
BMI categories n = 6, current physical activity n = 1, waist circumference n = 8. a other cancers included breast cancer, ovarian cancer,
prostate cancer and skin cancers; b other included students, unemployed, and persons on parental leave. BMI = body mass index; CRC =
colorectal cancer.
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Almost half of the men (47.0%) and women (49.0%) had had one or more cancers prior
to lifestyle data collection. The most common cancer was CRC, with a higher prevalence
in men (88.1%) compared to women (63.1%). The mean age at the first cancer incidence
was 45.9 years in men and 48.6 years in women, and 45.6 years and 48.4 years at the age of
the first CRC, respectively. MMR-gene variant frequencies for the entire study population
were 47.3% for MLH1, 25.6% for MLH1 other than ex 16, 16.3% for MSH2, 10.3% for MSH6,
and 0.4% for PMS2.

Healthy participants were more often working, whereas participants with cancer were
more often retired. Women with cancer had a lower level of education and they were
more commonly living alone compared to their healthy counterparts. Self-rated health
status and fitness, as well as current physical activity level, was in general better among
participants who had not had cancer. In addition, other lifestyle variables were moderately
similar among participants with and without cancer.

Table 2 describes the cumulative cancer event history of the entire study population
during retrospective follow-up separately for both sexes. Among both men and women,
most of the cancer events occurred from the age of 40 years to 70 years.

Table 2. Summary of individuals at risk for cancer, events, and censorings occurring at the beginning
of 10-year periods for men and women.

Sex Period At Risk
All Cancers CRC

Events Censored Events Censored

Men

(20, 30) 215 0 0 0 0
(30, 40) 199 5 11 5 11
(40, 50) 156 30 29 25 34
(50, 60) 89 65 61 55 71
(60, 70) 48 83 84 69 98
(70, 77) 8 98 109 80 127

77 0 98 117 80 135

Women

(20, 30) 250 0 0 0 0
(30, 40) 242 1 7 1 7
(40, 50) 190 25 35 19 41
(50, 60) 117 67 66 40 93
(60, 70) 55 100 95 55 140
(70, 80) 14 117 119 63 173
(80, 85) 1 120 129 65 184

85 0 120 130 65 185
Period: A 10-year interval (years). At risk: participants at risk (n) at each 10-year interval. Events: cumulative n of
occurred cancer events. Censored: cumulative n of censored participants. CRC = colorectal cancer. Note: for time
interval lower limit includes the indicated value and the value for the upper limit is excluded.

2.2. Body Weight History

Table 3 describes the changes in mean body weight during the retrospective follow-up.
The mean body weight increased throughout the lifespan in both sexes. Furthermore, the
mean individual change in body weight was positive in each 10-year interval, both among
men and women during the adult lifespan. From the age of 40 years onwards, average
individual weight increased with respect to recalled weight at the age of 20 years and
ranged between 8 kg and 12 kg per year for men and between 8 kg and 13 kg for women.
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Table 3. Means and standard deviations for weight measurements (kg) and individual weight change in 10-year periods
among participants with Lynch syndrome.

Sex N Period
At Risk, Start of Period Individual Change, Near-Term Individual Change, Longitudinal

Mean SD Mean SD Mean SD

Men

215 (20, 30) 72.65 11.93 - - - -
199 (30, 40) 77.06 12.68 5.06 5.99 5.06 5.99
156 (40, 50) 79.56 14.91 3.76 7.05 8.23 10.29
89 (50, 60) 79.67 12.43 4.03 6.73 10.61 10.52
48 (60, 70) 77.05 11.76 0.72 4.10 8.22 9.25
8 (70, 77) 83.40 15.37 4.60 7.09 12.20 12.28

Women

250 (20, 30) 59.16 11.28 - - - -
242 (30, 40) 62.88 13.48 3.96 6.59 3.96 6.59
190 (40, 50) 66.30 14.78 3.98 5.86 7.53 8.72
117 (50, 60) 68.30 13.65 2.83 6.11 9.33 10.29
55 (60, 70) 68.98 11.58 2.85 4.41 9.39 9.24
14 (70, 80) 73.91 12.84 4.73 9.02 13.18 11.97
1 (80, 85) 79.00 - a 0.00 - a 20.00 - a

a The variation is estimable only for one case. Period: A 10-year interval (years). Longitudinal change: change in body weight (kg) relative
to the body weight at the age of 20 years. Near-term change: change in body weight (kg) relative to the body weight at the previous 10-year
interval before diagnosis or censoring. Mean (kg). SD = standard deviation (kg). Note: for time interval lower limit includes the indicated
value and the value for the upper limit is excluded.

Table 4 presents the associations between adult life body weight and cancer risk. For
consistency, all results in the text regarding body weight and cancer risk are presented only
from models adjusted for height, MMR gene, education, alcohol consumption, smoking
status, and the use of anti-inflammatory drugs.

Table 4. Hazard ratios for associations of body weight and cancer risk in participants with Lynch syndrome.

Setting

Unadjusted Model Adjusted Model *

Cancer
Events

Observations HR (95% CI) p-Value
Cancer
Events

Observations HR (95% CI) p-Value

Men
All cancers

Longitudinal change 77 610 1.02 (1.00–1.03) 0.048 74 579 1.02 (1.00–1.04) 0.022
Near-term change 77 185 0.99 (0.97–1.00) 0.345 74 174 0.99 (0.97–1.01) 0.424
Colorectal cancer

Longitudinal change 60 610 1.02 (1.00–1.03) 0.023 57 579 1.03 (1.01–1.05) 0.004
Near-term change 60 185 1.00 (0.98–1.01) 0.695 57 174 1.00 (0.98–1.02) 0.861

Women
All cancers

Longitudinal change 95 758 0.99 (0.97–1.00) 0.290 91 720 1.00 (0.98–1.02) 0.887
Near-term change 95 221 0.98 (0.97–1.00) 0.059 91 209 0.98 (0.96–1.00) 0.059
Colorectal cancer

Longitudinal change 50 758 0.99 (0.96–1.01) 0.258 48 720 0.99 (0.96–1.02) 0.454
Near-term change 50 221 0.98 (0.95–1.00) 0.106 48 209 0.96 (0.92–0.99) 0.015

* Model adjusted for height, MMR-gene, education, smoking, alcohol consumption, and use of anti-inflammatory drugs. Longitudinal
change: longitudinal change in body weight from the age of 20 years until the first cancer diagnosis or censoring. Near-term change:
age-stratified change in body weight relative to the body weight at the previous 10-year interval before diagnosis or censoring. p-values
statistically significant at <0.05 level. Statistically significant hazard ratios are highlighted in bold. Cancer events: number of occurred
cancers. Observations: number of observations across each 10-year interval. HR = hazard ratio. CI = confidence interval.

2.2.1. Risk of All Cancers

A change in longitudinal weight throughout the lifespan, calculated per one-kg
weight increase, was associated with a 2% increased risk of cancers in men (HR 1.02,
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95% CI 1.00–1.03), whereas no such association was observed in women. Moreover, near-
term weight change had no impact on the risk of all cancers in either sex.

2.2.2. Risk of CRC

Longitudinal weight gain increased the CRC risk by 3% in men only (HR 1.03,
95% CI 1.01–1.05). Among women, near-term weight gain within the 10-year interval
before cancer diagnosis was associated with a 4% decreased risk of CRC (HR 0.96, 95% CI
0.92–0.99). No associations between near-term weight gain and CRC risk were observed
in men.

2.3. Physical Activity during Adulthood

Table 5 describes changes in the intensity of physical activity during the retrospec-
tive follow-up. In both sexes, a great majority retained their activity category over time.
However, when the category changed, it was more common among men to move from the
organized physical activity participation category to the lower activity category.

Table 5. Frequencies and cross-period tables for participation in organized physical activity in 10-year periods among
participants with Lynch syndrome.

Sex Period Physical Activity N (%)
Near-Term Change Longitudinal Change

Low Activity High Activity Low Activity High Activity

Men (20, 30) Low activity 155 (76) - - - -
High activity 50 (24) - - - -

(30, 40) Low activity 153 (81) 131 (94) 22 (44) 131 (94) 22 (44)
High activity 37 (19) 9 (6) 28 (54) 9 (6) 28 (56)

(40, 50) Low activity 129 (86) 121 (98) 8 (30) 104 (95) 25 (62)
High activity 21 (14) 2 (2) 19 (70) 6 (5) 15 (38)

(50, 60) Low activity 77 (91) 70 (100) 7 (47) 59 (97) 18 (75)
High activity 8 (9) 0 (0) 8 (53) 2 (3) 6 (25)

(60, 70) Low activity 43 (96) 42 (100) 1 (33) 31 (100) 12 (86)
High activity 2 (4) 0 (0) 2 (67) 0 (0) 2 (14)

(70, 77) Low activity 8 (100) 8 (100) 0 (-) 6 (100) 2 (100)
High activity 0 (0) 0 (0) 0 (-) 0 (0) 0 (0)

Women (20, 30) Low activity 180 (76) - - - -
High activity 58 (24) - - - -

(30, 40) Low activity 166 (72) 151 (87) 15 (26) 151 (87) 15 (26)
High activity 64 (28) 22 (13) 42 (74) 22 (13) 42 (74)

(40, 50) Low activity 121 (68) 114 (87) 7 (15) 111 (92) 31 (53)
High activity 58 (32) 17 (13) 41 (85) 10 (8) 27 (47)

(50, 60) Low activity 86 (77) 75 (96) 11 (32) 82 (95) 13 (50)
High activity 26 (23) 3 (4) 23 (68) 4 (5) 13 (50)

(60, 70) Low activity 40 (78) 38 (97) 2 (17) 38 (95) 5 (45)
High activity 11 (22) 1 (3) 10 (83) 2 (5) 6 (55)

(70, 77) Low activity 10 (83) 10 (100) 0 (0) 10 (100) 1 (50)
High activity 2 (17) 0 (0) 2 (100) 0 (0) 1 (50)

Period: A 10-year interval (years). Physical activity: physical activity group at the beginning of the 10-year interval. Longitudinal change:
change in physical activity group (n) relative to the physical activity group at the age of 20 years. Near-term change: change in physical
activity group (n) relative to the physical activity group at the previous 10-year interval. Note: for time interval lower limit includes the
indicated value and the value for the upper limit is excluded.

The associations between physical activity and cancer risks are presented in Table 6.
For consistency, all results in the text regarding physical activity and cancer risk are
presented only from adjusted models.
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Table 6. Hazard ratios for associations of physical activity and cancer risk in participants with Lynch syndrome.

Setting

Unadjusted Model Adjusted Model *

Cancer
Events

Observations HR (95% CI) p-Value
Cancer
Events

Observations HR (95% CI) p-Value

Men
All cancers

Longitudinal change 91 683 0.44 (0.19–1.04) 0.063 86 648 0.37 (0.15–0.98) 0.044
Near-term change 91 205 0.69 (0.29–1.64) 0.403 86 192 0.74 (0.27–2.01) 0.557
Colorectal cancer

Longitudinal change 73 683 0.57 (0.25–1.33) 0.194 68 648 0.52 (0.20–1.36) 0.181
Near-term change 73 205 0.93 (0.39–2.24) 0.874 68 192 0.99 (0.36–2.73) 0.983

Women
All cancers

Longitudinal change 110 823 1.31 (0.86–1.97) 0.206 107 789 1.26 (0.79–2.00) 0.341
Near-term change 110 238 1.42 (0.89–2.25) 0.138 107 227 1.34 (0.80–2.23) 0.268
Colorectal cancer

Longitudinal change 59 823 1.16 (0.65–2.10) 0.612 57 789 1.28 (0.65–2.52) 0.471
Near-term change 59 238 0.92 (0.49–1.72) 0.797 57 227 0.99 (0.48–2.02) 0.973

* Model adjusted for MMR-gene, education, smoking, alcohol consumption, and use of anti-inflammatory drugs. In all analyses, the
reference group was Low activity. Longitudinal change: longitudinal change in physical activity from the age of 20 years until the first
cancer diagnosis or censoring. Near-term change: age-stratified change in physical activity level relative to the physical activity level at the
previous 10-year interval before diagnosis or censoring. p-values statistically significant at the <0.05 level. Statistically significant hazard
ratios are highlighted in bold. Cancer events: number of occurred cancers. Observations: number of observations across each 10-year
interval. HR = hazard ratio. CI = confidence interval.

2.3.1. Risk of All Cancers

Men in the high activity group were found to have a reduced longitudinal cancer risk
of 63% (HR 0.37, 95% CI 0.15–0.98) compared to men in the low activity group. There were
no longitudinal associations between physical activity and cancer risk observed in women.
In the near-term, participating in physical activity had no impact on cancer risk in either
men or women.

2.3.2. Risk of CRC

There was no association between physical activity and the risk of CRC.

3. Discussion

We conducted a retrospective study with longitudinal data collection and cancer
register data among Finnish path_MMR carriers to elucidate the associations between
changes in adult body weight, physical activity, and cancer risk. Our results suggest that
associations between lifestyle and cancer risk differ between men and women and may
vary during the course of life. We found that an overall increase in total body weight
throughout the lifespan slightly elevated the risk of cancers, including CRC, in men. We
also observed that men who continued to participate in more intensive physical activities
over their adult life were at lower risk of all cancers.

In Western societies, body weight typically accumulates during the adult lifespan
and growing levels of obesity predispose individuals to multiple health complications.
Obesity is acknowledged as one of the most important risk factors of non-communicable
diseases [9,21,22]. It is well established in the general population that excess body weight
and adiposity, particularly in overweight individuals, is an important risk factor for several
cancers [8] and the risk could be reduced by lowering excess body mass [23]. In the
population of path_MMR carriers of the current study, participants increased their body
weight during their adult years, and 61% of men and 55% of women were overweight or
obese. Obesity and overweight may be more harmful for men, as we found that a trend of
body weight accumulation during adult years was associated with an increased cancer risk
in men but not in women. This is in agreement with other reports which have investigated
weight accumulation in relation to the risk of LS cancer [17,24].

Unfortunately, in most of the studies, including ours, a lifelong change in body
composition could only be determined by changes in body weight. However, aging is not
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only associated with an increase in body weight that is related to fat accumulation but also
to changes in body composition [25]. Beginning from the age of 30 years, muscle mass
tends to decrease and the decline accelerates after the age of 50 years, particularly among
women due to menopause [26]. Concurrently, the amount and distribution of body fat may
change, thereby resulting in the accumulation of fat—particularly in visceral areas—which
increases cancer risk through several already identified biological pathways. The best-
characterized association is between abdominal obesity and disturbed insulin metabolism,
which may influence cancer risk through cell proliferation and apoptosis [10,27]. Age-
related trends in body weight accumulation are different between men and women, which
may explain our dissimilar findings regarding weight accumulation and cancer risk. In
general, men are more prone to increased android-type fat distribution—that is, abdominal
fat distribution—throughout their lifespan [28]. In contrast, women tend to be more
prone to gynoid-type fat distribution during their premenopausal years and then shift
to androgen-type fat accumulation in their postmenopausal years [29]. In our study, the
weight accumulation was lower among women, but we cannot exclude the potential
confounding role of menopause on the association between body weight and cancer
risk as our data did not include information regarding the menopausal status of the
female participants. Based on the population averages of menopause age being between
50 years and 53 years, we can estimate that 67% of women participating in this study were
post-menopausal, but the considerable individual variation observed makes this estimate
imprecise [30]. Nevertheless, visceral adiposity has been associated with higher cancer
risk in both sexes, although in women the risk estimates appear to differ between pre- and
post-menopausal women [31].

Intriguingly, we also found that near-term weight increase had a CRC-protective effect
in women. To speculate, it is possible that hormonal factors might have influenced the risk
estimates. The primary source of endogenous estrogen in post-menopausal women has
been suggested to be adipose tissue [32,33]. Therefore, higher adiposity could maintain
a higher systemic estrogen level, which in turn may provide some protection through
(for instance) the anti-inflammatory action of estrogens [34]. However, this is highly
speculative. There is evidence that exogenous estrogen use can be cancer protective,
neutral or to increase the risk of different cancers [35–37]. In the current study, we did not
investigate the potential role of hormone therapy, nor did we have the ability to measure
estrogen levels; thus, we cannot exclude the role of systemic estrogen level. Therefore, as
the great majority of CRC-diagnosed women in our study were over 60 years of age, there
remains a possibility that the plausible protective effects of estrogen derived from adipose
tissue might have masked the effect of weight gain on colorectal cancer risk.

Our results suggest that performing more vigorous guided physical activity exhibit
a cancer-preventive effect in men, as those who continued at higher levels of physical
activity were at a 63% lower cancer risk when compared to less active men performing
non-guided physical activity. To date, we are aware of only two previous studies that
have assessed the impact of physical activity on LS cancer risk [13,14]. Both designs were
retrospective like our study but did not assess risk estimates separately for men and women.
Kamiza et al. (2015) [13] reported that among 301 Taiwanese individuals (51.8% women)
carrying path_MLH1 and path_MSH2 regular vigorous leisure time physical activity over a
year prior to cancer diagnosis decreased CRC risk by 38% when compared to those who
did not indulge in any such activity. Although we did not observe associations between
physical activity and cancer risk in the near-term like Kamiza et al. (2015) [13], similarly to
their findings, our results also suggested that performing vigorous physical activity could
reduce cancer risk.

Further, the study by Dashti et al. (2018) [14] comprised 2042 path_MMR carriers
(57% women). As in our study, they modeled longitudinal and near-term changes in
physical activity separately. Unlike our study, Dashti et al. (2018) [14] did not find an
association between physical activity and cancer risk when assessed over several age
periods, even though a trend of lowering the risk of CRC was observed. In addition,
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they used MET-h/week to assess the amount of physical activity, but we did not do so.
Near-term cancer risk assessment, which was used in the current study, may be particularly
effective for identifying specific suboptimal lifestyle changes that could be associated with
carcinogenesis and precede cancer occurrence. Dashti et al. (2018) [14] found higher levels
of near-term physical activity (>35 MET-h/week) to be protective against such a risk,
whereas we did not find an association between near-term physical activity and cancer risk
(any cancer or CRC).

We did not find longitudinal or near-term evidence linking physical activity to cancer
risk in path_MMR women, which may be due to differences in physical activity behavior
between men and women, including the intensity and type of physical activity, as well
as the timing of physical activity exposure in life. For example, throughout the follow-
up, female participants mainly reported participating more frequently in guided leisure
time physical activity than men, who reported performing competitive sports more often
(Table S4). Overall, our results highlight the potential role of physical activity in cancer
prevention among path_MMR carrier men, as already advocated in clinical guidelines for
LS [38]. Although most path_MMR carriers suffer from cancer at some point of their life,
this is an important finding.

Various reports in the extant literature have suggested several mechanisms that link
physical activity with a reduced cancer risk [11]. For example, physical activity produces
multiple beneficial changes in cardiorespiratory systems [39], and being physically active
also helps with weight control, as well as with reducing excess adiposity [12]. These
combined effects might have a beneficial impact on biological mechanisms that interact
directly or indirectly with cancer, such as improved insulin sensitivity and reduced chronic
low-level inflammation, which is also linked with favorable immunomodulation [40,41].
However, the existing evidence originates from sporadic cancer patients who could dif-
fer from path_MMR carriers with respect to disease mechanisms, carcinogenesis, and
biological regulation.

As described previously, the association of decreased cancer risk and healthy lifestyle
in the general population has been observed in large population-based studies. Since
the influence of healthy behaviour on decreased cancer risk was observed in our study
with a limited number of participants, it could be possible that the effect of the modifiable
behavioral risk factors—physical activity and body weight—is emphasised in path_MMR
carriers due to their strong genetic predisposition to cancers. Therefore, it is important
to follow these modifiable risk factors among path_MMR carriers during their regular
healthcare visits. An optimal lifestyle could partially compensate for the strong genetic
predisposition to cancers and thus help in cancer prevention. Nowadays, individual cancer
risk can be calculated and demonstrated via online tools (www.plsd.eu, accessed 9 January
2021), which can be used to improve motivational support for healthy lifestyle maintenance
or lifestyle changes.

A major strength of the current study is that the study cohort comprised participants
who had undergone comprehensive screenings of LS-predisposing mutations, with as-
certainment utilizing Amsterdam and Bethesda clinical criteria and cascade testing, and
those who had been offered colonoscopy surveillance at 2–3-year intervals. Our body
weight and physical activity data collection encompassed the entire adult lifespan and
was carefully analyzed by considering potential time-varying risks, sex differences, and
potential confounders regarding cancer incidence. The observation period was initiated
from the age of 20 years, instead of birth, to avoid the detection of changes in body weight
which were merely due to natural growth and maturation. In doing so, we were also able
to exclude the time-period when cancer incidence tends to be extremely low even among
path_MMR carriers. We also chose to model the change in cancer risk in the near-term
setting (during the age-period of cancer or censoring) as it could be more accurate than lon-
gitudinal change, which could be influenced by poor recall. We also used time-dependent
covariate values, which allow us to account for changes in predictor values over time.
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However, there are also several limitations. Weight and physical activity were assessed
using self-recall instruments. Even though a recent study found that cross-sectional self-
reported measurements of BMI were reasonably close to recent direct measurements [42],
the recall of weight in the more distant past has lower reliability [43] and for some of our
older participants, the recall time was several decades. Moreover, there might also be
sex-based discrepancies, as women tend to underestimate their weight and men tend to
overestimate it [44]. Finally, Smith et al. (2013) [45] found the recall of physical activity
of the distant past to be moderately reproducible, but poor at the individual level. Taken
together, we cannot exclude the possibility that recall bias might have influenced the
risk estimates.

4. Materials and Methods

4.1. Study Sample

The study cohort included those carriers of path_MMR who were registered in the
Finnish Lynch Syndrome Research Registry (LSRFi; www.lynchsyndrooma.fi, accessed
16 June 2020) and provided consent for research-related contacts. LSRFi is a nation-wide
research registry (est. 1982) operating in Jyväskylä and Helsinki that organizes surveillance
and cancer prevention for LS families. Currently, the registry consists of clinical and
family history data of over 300 LS families and over 1700 pathogenic variant carriers under
frequent surveillance. Individuals were identified in the registry before the genetic testing
became available, based on clinical criteria (Amsterdam and Bethesda criteria) [46,47],
and subsequently through cascade testing of the families and universal testing of tumors.
Adult members of LSRFi with confirmed path_MMR variants (classes 4 and 5 by InSiGHT
criteria) [48] were eligible for the study.

4.2. Cancer Register Data

Age, sex, and all cancer diagnoses with the cancer type and date of each diagnosis,
mutation status, and family cancer history were confirmed from hospital medical records
and national cancer registries upon recording in the LSRFi. With regard to analyses,
participants in the cancer group were required to have at least one past cancer diagnosis
in the medical registries although he/she could have been healthy at the time of data
collection. The healthy group included only path_MMR carriers who had remained cancer
free until data collection.

4.3. Questionnaire Data Collection

Questionnaires for anthropometric, socioeconomic, and lifestyle data collection were
sent to 1038 adult path_MMR carriers whose addresses were available in LSRFi in Decem-
ber 2016 and July 2020. Of them, 480 (response rate 46.2%) returned the questionnaire.
However, 15 participants did not carry the path_MMR variant and therefore they did not
fulfil the eligibility criteria and were excluded from the study. Then, the final study sample
included 465 participants.

4.4. Descriptive Variables
4.4.1. Socioeconomic Characteristics

The education level was categorized according to the Finnish schooling system into
four categories: basic education (including elementary or comprehensive school), upper
secondary education (including vocational school and high school level degrees), poly-
technic degree, and university degree. Occupational status included the categories of
worker or employee, retiree (including both disability and old age pensioners), and other
(including students, unemployed people, and people on parental leave). Marital status was
categorized as living alone or married/cohabitating.
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4.4.2. Perceived Health and Physical Fitness

Self-rated health and physical fitness were collected using standard five-scale ques-
tions. Due to the low number of responses in a few categories, answers were re-categorized
into poor (also including very poor), average, and good (also including very good) for
statistical analysis.

4.4.3. Lifestyle Variables

The level of alcohol consumption was identified by two questions assessing the
frequency of alcohol use and the number of alcohol portions consumed per occasion. One
portion refers to 10–14 g alcohol, which one may obtain, for example, from a single serving
of 0.33 liters of beer or a similar light alcoholic beverage, from 12 cL of wine, or from
4 cL of spirits. Furthermore, the subjects’ smoking status was defined as never smoker
if they reported being non-smokers and having never been a smoker, or smoked <100
cigarettes during their entire life; as former smoker if they reported currently being non-
smokers but were regular smokers in the past; or as current smoker if they reported being
current and regular smokers. Participants were also asked whether or not they used any
anti-inflammatory drugs regularly during the surveyed time period (yes/no). Current
leisure-time physical activity was assessed via the seven-option scale question [49,50]. The
scale options were re-categorized into low (light walking and outdoor activities 1–2 times
per week), medium (some light walking and outdoor activities several times a week, or
engaging in brisk physical activity 1–2 times per week causing some shortness of breath and
perspiration), and high (brisk physical activity 3–5 times a week causing some shortness of
breath and perspiration or fitness training several times a week causing heavy perspiration
and being out-of-breath during exercise or playing competitive sports and maintaining
regular fitness).

4.4.4. Anthropometrics

Anthropometrics were self-measured. Participants were asked to report their height
and to measure their body weight before breakfast and without clothes. If weight could not
be measured, participants were asked to fill in the last weight measurement known. BMI
was calculated as weight in kilograms divided by the height squared in meters (kg/m2).
Participants were categorized into four BMI groups—underweight (BMI < 18.5), normal
weight (BMI 18.5–24.9), overweight (BMI 25–29.9), and obese (BMI ≥ 30)—according to
the WHO classifications. Measuring tape was sent with the questionnaire to examine the
waist circumference, along with written instructions. Waist circumference was measured
without clothing in a standing position, 2 cm above the umbilicus.

4.5. Outcome Variables for Life-Long Exposures

To measure body weight history during adulthood, participants recalled their body
weight in kilograms at age 20, 30, 40, 50, 60, and up to 70+ years.

Physical activity during adulthood was assessed via four-option scale questions
through which participants recalled the level of regular physical activity they had at
different adult age ranges throughout their lives [51]. Participants reported their past
physical activity at age ranges 20–29, 30–39, 40–49, 50–59, 60–75, and 75+ years up to their
current age period at the time of measurement. The four response options for each age-
period were (1) no regular physical activity, (2) regular independent leisure-time physical
activity (all non-organized occupational or leisure-time physical activity, i.e., commuting,
school/work activities), (3) regular goal-oriented competitive sport and training related to
that sport, and (4) other regular supervised physical activity (physical activity that was
organized in a sport club, etc., but was not related to competitive sports participation).
These four categories were re-categorized into low activity (options 1 and 2) and high
activity (options 3 and 4). The same re-categorization was applied to each age range.
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4.6. Statistical Analysis

Means and standard deviations were used as descriptive statistics for continuous
measurements, frequencies, and percentages of categorical data. The proportional hazards
model, extended for time-dependent covariates, was used in modeling the association
of weight and physical activity on cancer incidence in (1) longitudinal and (2) near-term
settings. We used age as the time variable and determined cancer status at the end of
follow-up. Thus, follow-up time extended from study entry at the age of 20 years to
exit-age due to cancer diagnosis (event) or remaining free of cancer (censored). As we used
time-dependent measurements of weight and physical activity, we utilized the counting
process approach [52] for the analysis of the relative risk of cancer related to these exposures.
Data were divided into 10-year intervals and each interval was represented by the weight
and physical activity measurements of that interval. Due to sex-related differences, we
reported models separately for men and women and we also constructed separate models
for cancers of any type and CRC; we also used a joint weight/physical activity model
to examine the possible interaction between these two exposures. Further details of the
models, data management, and model diagnostics can be found in the Supplementary
Materials. We reported hazard ratios from the crude unadjusted model, as well as a model
adjusted for the affected MMR-gene variant, height, education, smoking, alcohol use, and
the use of anti-inflammatory medication. Nested random effects were used to adjust for
individuals within the family structure.

5. Conclusions

To conclude, our results suggest that men with path_MMR were particularly suscep-
tible to lifestyle exposures that may be either protective or hazard increasing. We found
that weight gain in adulthood increased the risk of cancer in men, whereas participating
in more intense physical activity across the lifespan may have a cancer-preventive effect.
According to our results, women were not as prone to lifestyle-related risk factors. The
sex-based difference in the associations could be explained by differences in weight gain,
which was smaller in women, and by sex-related factors modifying body composition over
time. Taken together, our results emphasize the importance of weight maintenance and
high-intensity physical activity throughout the lifespan in cancer prevention in men with
path_MMR. The results of our study could be used in developing a cancer risk quantifica-
tion methodology based on the consideration of various risk factors that are modifiable by
the individuals themselves.
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