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ABSTRACT 

A method was developed to monitor qualitatively the transport of lignin-like high-molecular-mass 

materials (HMMs), such as lignins and humic substances. This method was used to monitor HMMs 

discharged by two mills producing kraft and mechanical pulps, respectively. Several water and 

sediment samples were collected up and downstream of these mills. The method included the 

separation of HMMs from water samples by ultrafiltration followed by the alkaline CuO oxidation 

of the separated HMMs. Freeze-dried sediment samples were oxidised as such. The degradation 

products formed were analysed by RP-HPLC and the ratios of 4-hydroxyacetophenone to vanillin 

or all 4-hydroxyphenyl compounds to guaiacyl-type compounds were used to study the transport of 

HMMs from different sources. The results were compared to those obtained using pyrolysis

GC/MS. Attempts were also made to analyse the oxidation products using GC/MS instead of 

HPLC, but the use of HPLC has some advantages over GC/MS and is therefore preferred. Principal 

component analysis was used to select the compounds suitable for monitoring the transport of 

HMMs. Several chlorinated and non-chlorinated compounds were synthesized as model compounds 

for the identification of CuO oxidation products of HMMs. The structures of the model compounds 

were verified by mass spectrometry and their chromatographic behaviour discussed. 



1 INTRODUCTION 

Characterization of the different HMMs is a prerequisite for being able to monitor the transport of 

HMMs produced by a pulp mill. When using degradation methods, like CuO oxidation, this means 

finding the characteristic degradation products which can be used to selectively distinguish the 

HMMs produced by industry from naturally occurring humic substances. 

The quantitation of the products formed in oxidation does not necessarily give any straightforward 

information on the material oxidised. In the case of CuO oxidation a large part of the material 

remains as HMMs and is discarded in preparing the sample for analysis. Also, using UV detection 

in HPLC, it is possible to detect only UV-absorbing species, i.e., compounds containing multiple 

conjugated double bonds. Therefore, comparing the peak areas of selected oxidation products is a 

useful way of identifying HMMs. In the case of gas chromatography, the detection methods are 

usually less selective and a higher proportion of the oxidation products can be detected. In this case, 

the restrictions for detecting a specific compound lie in the ability of the derivatising agent used to 

react with the compound in question and in that of the chromatographic system to separate it from 

other compounds. In pyrolysis, a larger proportion of the material is transformed into pyrolysis 

products. On the other hand, the type and amounts of products depend more on the pyrolysis 

conditions than when using cupric oxide (CuO) oxidation and the pyrolysis products resemble the 

original structure less than do the CuO oxidation products. 

The aim of this study was to develop a method to follow the transport of HMMs in the receiving 

waters of a pulp mill. The basic idea was to apply CuO oxidation to the HMMs separated from 

water and sediment samples, and after analysis of their oxidation products consider their origin. 

Samples were taken from two watercourses having two different sources of industrial HMMs: a 

kraft pulp mill in Aanekoski using bleaching with chlorine dioxide and a mechanical pulp mill in 

Lohja using dithionite bleaching. Two degradation methods (Py-GC/MS and CuO oxidation) were 

tested using the samples collected from the Aanekoski watercourse. In the case of the Lohjanjarvi 

watercourse, the CuO oxidation products of the collected samples were analysed using both RP

HPLC and GC/MS. The HMMs from the Aanekoski watercourse have previously been 

characterised using various analytical methods. 1 
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2 LIGNINS AND HUMIC SUBSTANCES 

Lignins and humic substances are macromolecular materials occurring in nature. The exact structure 

of these materials remains umesolved.2'
3 Humic substances can be divided into several different

groups, all of which have been exhaustively reviewed by Peuravuori.4 These substances are formed 

in the nature from decaying plant materials in humification processes. One of the most remarkable 

characteristics of humic compounds is their wide distribution. They can be found in almost all land 

and water environments. 5

Humic substances have many similarities with lignins. Native lignins are essential components in 

arborescent gymnosperms and angiosperms, and their amounts in wood stems, for example, range 

from 15 % to 36 %.6 A variety of different lignin-type materials are released into the receiving water 

systems from pulp mills. Chlorolignins, formed in the bleaching of pulp with chlorine, the so-called 

"TCF lignins", formed in total chlorine-free (TCF) bleaching and "ECF lignins", formed in 

elemental chlorine-free (ECF) bleaching, still bear a close resemblance to the native lignins in wood 

materials. 7 

In this report, HMMs are defined as materials separated from water samples using a membrane with 

a cut-off value of 1000 Da in ultrafiltration, or similar material existing in sediment samples as 

such. It is usually considered that compounds of this molecular mass range are non-bioaccumulative 

and non-toxic because of their large molecular size and water solubility.8
'
9 However, it has recently

been reported that chlorolignin is bioaccumulative in certain organisms and the major toxicant in 

Echinoderm bioassays of bleached pulp mill effluents. 10 It is also possible that the chlorolignin may

decay in the receiving waters, forming hazardous compounds. 11-13 

During the last ten years considerable process improvements have taken place in the pulp industry. 

Perhaps the most important of these concern the changes in bleaching processes. Bleaching stages 

based on chlorine gas have been replaced by ECF or by TCF bleaching sequences in many plants in 

Northern Europe and in North America. Bleaching with chlorine gas ceased in Finland in 1993. 14 

This development offers interesting new challenges for scientists in attempts to find out the effects 

of the low-molecular-mass compounds produced by the new bleaching methods. Generally, the 

HMMs produced by these bleaching methods have received much less attention than the low

molecular-mass compounds. Recently, Mikkelson and Paasivirta have identified more than 300 

different low molecular weight compounds in TCF and ECF wastewater samples. 15 



3 

2.1 Ultrafiltration 

Before ultrafiltration the so-called "particulate fraction" is usually separated from the sample.16 This 

is traditionally done using a 0.45 µm filter membrane, but can more conveniently be done using a 

prefiltration membrane pack in the ultrafiltration apparatus. Prefiltration is followed by the actual 

ultrafiltration, where fractions of HMMs can be separated from the sample using membrane packs 

of a certain cut-off molecular mass. If the aim is only to separate a presentable fraction of HMMs, it 

is adviseable to use the membrane pack with the lowest cut-off value. The process of ultrafiltration 

concentrates the HMMs in a small amount of water, which has to be washed with deionised water in 

order to get rid of residual low-molecular-mass compounds. Finally, the small amount of water 

containing the desired compounds is frozen and lyophilised. The latter step is the most time

consuming in the separation process and it yields the HMMs as a light, usually brown powder. 

Compared to other methods used to separate HMMs from water, ultrafiltration is an efficient 

method enabling larger sample sizes than in many other methods. Ultrafiltration has previously 

been used in the separation and fractionation of HMMs from natural waters, 16•20 pulp mill 

effluents,21 process waste waters,22
•
24 chlorinated natural humic water25 and black liquor,26 m 

studying the aggregation properties of aquatic fulvic acids27 and to determine the sources of 

dissolved organic carbon in lake water.28 Also, the dependence of chlorolignin removal on pH29 and 

the interactions between chlorolignin and the ultrafiltration membranes30 have been studied. 

2.2 Degradation ofHMMs to low-molecular-weight compounds using CuO oxidation 

The various oxidants applicable to the oxidation of lignin-like materials can be classified by their 

effects on these materials. Strong oxidants (like permanganate) destroy the aromatic rings, and 

produce low-molecular-mass acids. On the other hand, mild oxidants do not break the ring and 

oxidation occurs at the side chain. The group of mild oxidants contains nitrobenzene, oxygen and 

several metal oxides, such as CuO. All of the mild oxidants are used in alkaline conditions. Alkaline 

CuO oxidation was first used in 1942 to digest solids in sulphite spent liquors. 31 It has since been 

applied to several different HMMs, in order to degrade them into low-molecular-mass compounds 

that are easy to analyse compared to the original HMMs (see references in Paper III). The oxidative 

methods used to degrade humic substances have been reviewed by Christman et al. 
32

•
33 

Some attempts to resolve the mechanism of CuO oxidation have also been conducted.34
-
36 

Compared to other methods applied to degrade HMMs, CuO oxidation appears to be more 
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selective.37 The reactions in CuO oxidation take place in _. those groups of humic or lignin

compounds that are able to form phenoxy radicals and only ineffectively degrade other aromatic 

structures. Oxidation products consist mainly of phenolic aldehydes, ketones and acids.38•
39 Most 

works related to CuO or nitrobenzene oxidations deal with the oxidation of lignin to obtain 

phenolics (mainly vanillin) for commercial purposes. These two oxidation methods have recently 

been reviewed. 40 The yields of oxidation products in these applications are generally about 30 %.

Usually the reagent used is copper(Il)sulphate, which is transformed to CuO hy hentine;. 

Temperatures from 160 to 190 °C and reaction times from 120 to 240 minutes are used. The amount 

of sodium hydroxide used is 65 - 70 ml of 2 - 2.5 molar solution per gram of HMMs and 4 - 14 

moles CuO is used per a structural unit of lignin, which is in tum defined as having a molecular 

weight of 195 g/mol. 

The use of CuO oxidation in the structural characterisation of various HMMs has been described in 

several studies.41
-
46 CuO oxidation has also been used to study coal formation,47 lignins from

various plants,48
-
52 chlorolignins,53

-
58 lignosulphonic acids,59 humic and fulvic acid fractions

separated from peat60
•
62 and other humic materials,37

'
39

'
63

•
69 peat,70 sediments,11

•
7
B bitumen separated

from composted materials, 79 Iignins degraded by fungi, 80 forest floor dissolved organic matter

(DOM),81 and even drilling fluid constituents82 or organic polymeric material of a meteorite.83 

However, few reports have appeared on the CuO oxidation of HMMs separated from water 

samples84
•
88 or on the analysis of oxidation products using HPLC.89 

2.3 Synthesis of model compounds 

In order to verify the identity of oxidation products a large number of model compounds were 

required. The appearance of chlorovanillins and chlorovanillic acids among the nitrobenzene90 and 

CuO56
-
58 oxidation products of chlorolignin prompted the synthesis of these and related model

compounds in order to study their existence in CuO oxidation products. Many of them were 

obtained commercially, but for some the only way was to synthesise authentic model compounds. 

The routes used were relatively simple but the purification steps were in some cases rather arduous. 

For example, the purification of some products formed by direct chlorination (e.g., the preparation 

of 2,5-dichloroprotocatechualdehyde) were difficult and time-consuming because the impurities 

were usually isomers of the desired compounds. 
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2.4 Chromatographic analysis of hydroxybenzaldehydes, -benzoic acids and -acetophenones 

Many of the phenolics obtained as oxidation products in CuO oxidation exist in nature. Analysis of 

naturally occurring phenolics have been conducted by several authors by HPLC44
•
91

•
102 or GC.95

•
103 

Vanillin and related flavour compounds have also been analysed in various food materials104
•
106 and 

beverages 101
•
109 using HPLC. The analysis of lignin degradation products by HPLC has been a

subject of several investigations68
•
89

•
96

'
110

•
113 but it has received less attention than the corresponding 

analysis using GC.41
•
45

,
49

•
114

•
120 However, even though the separation and analysis of chlorinated

hydroxybenzaldehydes and benzoic acids have been widely studied using GC, 121
•
128 the

chlorinated guaiacyl and syringyl compounds possibly occurring among chlorolignin oxidation 

products have received less attention.129 The photodiode array detection (DAD, mistakenly referred

to as PAD in Papers I to IV) technique in HPLC offers a possibility to identify oxidation products 

on the basis of their UV spectra. 130 However, this can be applied to only those compounds that have 

significant UV absorbance. Modem capillary electrophoretic techniques have recently received 

some attention as possible methods for the analysis of different phenolics131
'
132 and there will no 

doubt be interesting work done in this field in the future. 

2.5 Mass spectrometry 

Mass spectra were used to confirm the structures of the synthesized model compounds and to study 

whether the identification of isomeric oxidation products could be based on their mass spectra. The 

mass spectra of non-chlorinated model compounds exist in the literature, 133 but the mass spectra of 

chlorinated model compounds have not previously been studied in detail. 

2.6 Py-GC/MS of the HMMs 

In the 1970's analytical pyrolysis was shown to give additional information on the chemistry of 

humic substances and other macromolecular organic matter and has since been applied to the study 

of such materials.3
•
134

•
139 However, the new pyrolysis-GC/MS (Py-GC/MS) methods developed in

the late 1980s and applied in the early 1990s in studies of the aforementioned materials have shown 

that the information obtained can be misleading, and if not analysed with caution, can lead to 

misinterpretations about the actual structure of the macromolecules studied. 140
•
144 The use of

improper pyrolysis conditions can lead to aromatisation of the aliphatic structures and thus distort 

the product distribution. The pyrolytic methods used in lignin analyses have been reviewed by 

Meier and Faix145 and the corresponding analyses of humic substances by Bracewell et a/.146 There
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are numerous applications of pyrolytic methods in the analysis of wood147-149 and other plants,150

aquatic HMMs,151-155 compounds in process waters,156 soil fractions,157-160 coal161 and halogenated

HMMs.162-16s

2. 7 Size exclusion chromatography

In size exclusion chromatography (SEC) the separation of molecules is based on the molecular size 

of compounds in the analyte. SEC methods can be classified as gel filtration chromatographic 

(GFC) or gel permeation chromatographic (GPC) methods, depending on whether the moving phase 

is aqueous or organic, respectively. Direct analysis of DOM in natural waters has earlier been 

conducted in our laboratory.166' 167 Aquatic humic substances25'168-171 and lignins24 have been analysed

using various SEC methods. 

3 EXPERIMENT AL 

3.1 Samples and separation ofHMMs 

Six water and three sediment sarnplt:s from tht: Aant:koski watercourse were collected in March 

1993 and March 1994 (Papers III and IV) and thirteen water samples were collected from the 

Lohjanjarvi watercourse (Paper V) between September and November 1996. Ultrafiltration was 

used to separate the HMMs from the water samples. In the case of the Aanekoski watercourse two 

membranes and one prefiltration membrane were used and three fractions obtained from each water 

sample. In the separation of HMMs from the samples of the Lohjanjarvi watercourse one extra 

washing stage was used. This was done because some of the samples were sea water containing 

higher amounts of inorganic salts. Also, only one membrane was used and therefore only one 

fraction was obtained from these samples. In Paper III the sediment samples were freeze-dried and 

oxidised as such. The extraction of HMMs from the same sediment samples using 2 M sodium 

hydroxide was performed as described in Paper IV. 

3.2 Degradation methods 

The method used in CuO oxidation was a modification of the method of Hedges and Ertel.51 The

Py-GC/MS experiments were carried out using a system consisting of a CDS Pyroprobe 1000 

pyrolyser, a HP 5870 Series plus GC and a HP 5892 mass selective detector (MSD). The conditions 

were as described (Paper V). 
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3.3 Preparation of model compounds 

The model compounds synthesized (Papers I-III) can be divided into five groups (A to E, see 

below), based on the method of the synthesis used. References mentioned after a method refer to the 

general procedure of the synthesis and those mentioned after the name of the compound to the data 

found in the literature referring to the compound in question. Compounds marked with an asterix 

(*) are compounds for which no synthetical reference was found in the literature. 

Cl 

OH 

5-chlorovanillin

Cl 

Cl 

OH 

trichlorovanillin 

Br 

OH 

5-bromovanillin

Cl 

Cl OH 

OH 

chlorosyringaldehyde 

OH 

dichlorosyringaldehyde 

OH 

2,5-dichloroproto
catechualdehyde* 

OH 

6-chloro-5-hydroxyvanillin* 

OH 

dichloro-5-hydroxyvanillin* 

Fig. 1. The model compounds synthesized by direct chlorination or bromination. 

A. 1. Direct chlorination17
2•

173 or bromination 174 of benzaldehydes and benzoic acids or

chlorination of their derivatives were used to prepare the following compounds (Fig. 1 ): 

5-chlorovanillin, 172 trichlorovanillin, 172 5-bromovanillin, 174 chlorosyringaldehyde, 129 dichlorosyring

aldehyde, 129 2,5-dichloroprotocatechualdehyde, * 6-chloro-5-hydroxyvanillin* and 2,6-dichloro-5-



8 

hydroxyvanillin. * First the starting material was dissolved in a solvent that enhances chlorination 

and does not dissolve the chlorinated product, so that the material can be separated by filtration after 

chlorination. Then, to bring about the chlorination, either chlorine gas was bubbled through a 

solution of the starting material or a calculated amount of sulphuryl chloride was added to the 

solution. Bromination was done accordingly, adding a calculated amount of bromine to the acetic 

acid solution of the starting material. 

A. 2. Chlorination of triacetates. 6-chlorovanillin172 and 5,6-dichlorovanillin172 were synthesized

by chlorinating the triacetates of vanillin and 5-chlorovanillin, 172 respectively (Fig. 2). In both cases,

chlorine gas was used in the chlorination.

C

l�O

C

Hi 

OH 
6-chlorovanillin

::

�

OCHi 

OH 
5 ,6-dichlorovanillin 

Fig. 2. The model compounds synthesized by the chlorination of triacetates. 

B. Limited methylation175
'

176 of dihydroxy compounds to monomethylethers was used to prepare 

the following compounds (Fig. 3): 2-chlorovanillin, 1
7
2 2,5-dichlorovanillin172 and 2,6-dichloro

vanillin. 1
7
2 A calculated amount of dimethyl sulphate was added to the alkaline solution of the 

starting material. After mixing for 15 minutes, the solution was acidified and the products separated 

using column chromatography on silica gel. 

Cl 

OH 
2-chlorovanillin

CHO 

Cl 

Cl 

OH 
2,5-dichlorovanillin 

CHO 

Cl 

OH 
2,6-dichlorovanillin 

Fig. 3. The model compounds synthesized by the limited methylation of dihydroxybenzaldehydes. 

/
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C. Demethylation of compounds177 containing methoxyl groups was used to prepare the following

protocatechualdehydes and gallaldehydes (Fig. 4): 5-bromo-,178
'
179 2-chloro-,177 5-chloro-,177 6-

chloro-, 177 2,6-dichloro-, * 5,6-dichloro- 180
•
181 and trichloroprotocatechualdehyde, * chlorogall

aldehyde* and dichlorogallaldehyde. * Boron tribromide was added to a slurry of the starting

material in dichloromethane and the mixture was allowed to react for six hours. After this period,

methanol was added to the solution and it was refluxed for half an hour.

Br OH 

OH 

5-bromoprotocatechualdehyde

Cl 

OH 

Cl 

OH 

OH 

2-chloroprotocatechu
aldehyde

Cl Cl 

OH 

OH OH 

6-chloroprotocatechualdehyde 2,6-dichloroprotocatechu-

Cl Cl 

Cl OH 

OH 

trichloroprotocatechu
aldehyde* 

aldehyde* 

Cl 

HO OH 

OH 

chlorogallaldehyde* 

Cl OH 

OH 

5-chloroprotocatechu
aldehyde

Cl 

Cl OH 

OH 

5,6-dichloroproto
catechualdehyde 

Cl 

OH 

OH 

dichlorogallaldehyde* 

Fig. 4. The model compounds synthesized using demethylation with boron tribromide. 

D. Oxidation of benzaldehydes to benzoic acids using either a direct182
•

184 or an indirect

method.185 The HPLC separation and synthesis 186
"
187 of some chlorinated vanillic acids have been

reported earlier. The above methods were applied to the synthesis of 5-bromovanillic acid, 185 2-

chlorovanillic acid, 185 5-chlorovanillic acid, 185' 188 6-chlorovanillic acid, 185 2,5-dichlorovanillic acid185 



10 

and 5,6-dichlorovanillic acid185 (Fig. 5). In the direct method, an alkaline solution of hydroxy

benzaldehyde was treated with silver(I)oxide and the hydroxybenzoic acid formed was separated 

from the acidified solution either by filtration or by extraction. In the indirect oxidation, the oximes 

were first prepared by refluxing the aldehydes with hydroxylamine hydrochloride. Oximes were 

then converted to the acetates of corresponding vanillonitriles, which could be hydrolysed to 

vanillic acids. 

5-bromovanillic acid

Cl�
H 

�
OCH, 

OH 

6-chlorovanillic acid 

2-chlorovanillic acid

;;
c,

Cl�OCH3 

OH 

2,5-dichlorovanillic acid 

5-chlorovanillic acid

Cl

*

COOH 

Cl 
O 

OCH, 
OH 

5,6-dichlorovanillic acid 

Fig. 5. The model compounds synthesized using the oxidation ofhydroxybenzaldehydes. 

E. Other methods. 5-hydroxyvanillin189
-
196 was prepared from 5-iodovanillin using the method of 

Nishinaga and Matsuura 197 (Fig. 6). To produce the desired compound, 5-iodovanillin was refluxed

with copper(II)sulphate under a nitrogen atmosphere and the product was separated by extracting

the resulting solution several times with diethyl ether.

CHO 

OH 

vanillin 

ICl, HCl 
50 hours 

CHO 

I 

OH 

5-iodovanillin

Fig. 6. The synthesis of 5-hydroxyvanillin. 

CuSO4, NaOH, N2 
reflux 

HO 

CHO 

OH 

5-hydroxyvanillin
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Fries rearrangement 198
'

1 99 was used to prepare 6-chloroacetovanillone200
•
201 (Fig. 7). The acetate of 5-

chloroguaiacol was heated with aluminium(III)chloride and the mixture of reaction products was 

separated by column chromatography. 

Cl

� 

Cl ¥' O(COCH3)
7., 
¥' SO2Ch., 0 AICh., 

H2SO4 CCl3H 
OCH3 OCH3 OCH3 OCH3 

OH OCOCH3 OCOCH3 OH 
guaiacol guaiacol acetate 5-chloroguaiacol acetate 6-chloroacetovanillone

Fig. 7. The synthesis of 6-chloroacetovanillone. 

5-formylvanillin202 was prepared by the formylation of guaiacol2°3 (Fig. 8). Guaiacol was heated

with hexamethylenetetramine and paraformaldehyde. First acetic acid and later sulphuric acid were

added to the mixture. The product was separated from the resulting solution by extraction and

recrystallised from toluene.

QlOCHi 
OH 

guaiacol 

C6H12N4, HCHO 
CH3COOH, H2S04 

Fig. 8 The synthesis of 5-formylvanillin. 

HOCiOCHi 
OH 

5-formylvanillin

Dehydrodivanillin204
•
206 and dehydrodiacetovanillone* were prepared according to the method of 

Drumond et a!.
207 (Fig. 9). Vanillin was dissolved in water and a small amount of acetone was added 

to enhance solubility. K
2
S

2O8 
and iron(Il)sulphate were added and the solution was allowed to mix 

for one week. The crude product was separated by filtration and purified with recrystallisation from 

acetic acid. 



2 

OH 

vanillin, R = CHO 
w;elovanillone, R - -� COCH3 

12 

OH OH 

dehydrodivanillin, R = CHO 
ud1yJruJiac.etovanillone*, R = COCH3 

Fig. 9. The syntheses of dehydrodivanillin and dehydrodiacetovanillone. 

3.4 Gas chromatographic separation of model compounds and oxidation products 

Vanillin, chlorinated vanillins, 5-bromovanillin, syringaldehyde and chlorinated syringaldehydes 

were separated as their acetyl derivatives (Paper III). The hydroxyl groups can be easily acetylated 

or silylated to produce volatile derivatives. In the case of hydroxybenzoic acids the analysis using 

HPLC was preferred because the carboxyl groups can not be acetylated and silylation complicates 

the prediction of the structure as based on the mass spectra. Several gas chromatographic conditions 

were tested for the separation experiments (Paper I), for the Py-GC/MS experiments ofHMMs from 

the Aanekoski watercourse (Paper IV) and for the analysis of oxidation products from the 

Lohjanjarvi watercourse (Paper V). Chromatographic conditions are described in detail in the 

corresponding papers. 

The structures of the model compounds synthesized (Papers I and 11) were confirmed by mass 

spectrometry (MS). In addition to MS, further verification of the structures were obtained by NMR 

spectroscopy of chlorovanillins208
•
209 and some related compounds, such as protocatechualdehydes.210 

However, because NMR spectroscopy can not be used to identify compounds from complex 

mixtures of oxidation products, the detailed analysis of the NMR-spectra is not reported here. In 

addition to the direct inlet mass spectra, the mass spectra of their acetylated derivatives were 

obtained using GC-HRMS. All the mass spectra were obtained by the electron impact (El) mode. In 

some cases, the analysis of mother and daughter ions were used to determine the origin of a 

particular peak. Previously, the fragmentations of vanillin and syringaldehyde based on the 

fragmentation of deuterated model compounds have been presented.211 Also, the mass spectra of 

protocatechualdehyde,212 trimethylsilyl (TMS) derivatives of several non-chlorinated hydroxy-
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benzoic acids and hydroxybenzaldehydes,213 and 4-hydroxybenzaldehyde together with all its 

chloroderivatives214 have been published earlier. 

3.SHPLC

In the HPLC analysis sample preparation was much easier as no prior derivatisation was needed. 

Moreover, the problems rising from the inadequate derivatisation of some compounds could be 

avoided. HPLC separations were carried out using a Waters liquid chromatographic system 

equipped with a DAD. The column used was Spherisorb ODS 5. The conditions in separating the 

dihydroxy and trihydroxy compounds synthesized (Paper II) were almost the same as those used in 

the analysis of oxidation products of HMMs from the Aanekoski watercourse (Papers III and IV) 

and Lohjanjarvi watercourse (Paper V). 

3.6 GPC 

GPC was used to analyse the tetrahydrofurane extracts obtained from the sediments of the 

Aanekoski watercourse (Paper IV). Four 300 mm x 7.8 mm Waters Styragel™ HR columns (HR 

0.5, HR 1, HR 2 and HR 3) coupled from highest to lowest pore size so that the exclusion limit was 

30,000 Da and the same HPLC system as described above were used. 

3. 7 Principal component analysis

The analytical data (from the pyrolysis and cupric oxide oxidations in Paper IV and from the cupric 

oxide oxidations in Paper V) were scaled to unit variance prior to the multivariate calculations. A 

number of principal components (PCs) was calculated using the singular value decomposition. All 

chemometric calculations were done using MATLAB215 software on a personal computer. 

4 RESULTS AND DISCUSSION 

4.1 Preparation of model compounds 

The direct chlorination of different 3,4-disubstituted benzaldehydes gave an illustrative example of 

the substitution-directing effect of methoxyl groups and phenolic hydroxyl groups. In vanillin, the 

hydroxyl group in position para (or 4) to the formyl group causes substitution to take place at 

position 5, or ortho to the hydroxyl group. In the case of 3,4-dihydroxybenzaldehyde (proto

catechualdehyde) chlorination easily proceeds to the dichloro stage. However, the resulting 2,5-
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dichloroprotocatechualdehyde is rather impure, the resulting mixture containing small amounts of 

all monochloro and dichloro compounds. 

The c1cetyfation of the phenolic hydroxyl group and formyl group causes substitution to take place at 

position 6. In isovanillin, where the hydroxyl group is in position 3, substitution takes place at 

position 2, again next to the hydroxyl group and in some extent at position 6, para to the hydroxyl 

group. In the chlorination of veratraldehyde (3,4-dimethoxybenzaldehyde ), substitution takes place 

at position 6, the reaction being much slower than when an activating phenolic hydroxyl group is 

attached to the benzene ring. Also, the number of chlorine atoms in the compound has an effect on 

the reactivity. The oxidation of polychlorinated aldehydes is difficult compared to the oxidation of 

non- or monochlorinated benzaldehydes. 

The compounds studied can also be grouped according to their most important functional groups 

(benzaldehydes, benzoic acids or phenyl ketones) or according to the type of lignin they represent 

(4-hydroxyphenyl, guaiacyl and syringyl compounds). Almost all of the compounds synthesized are 

monomeric aromatic compounds with two to six substituents. An exception tu this are the two 

dimeric guaiacyl compounds, dehydrodivanillin and dehydrodiacetovanillone. In addition to the 

chlorinated and non-chlorinated compounds, one brominated compound (5-bromovanillin) was 

synthesized to be used as an internal standard in the quantitative analysis. The chlorinated 

compounds previously used as model compounds for the oxidation products of chlorolignin will 

also be of importance in the future, because ECF bleaching continues to produce HMMs containing 

chlorine and large amounts of chlorolignins still contaminate the sediments downstream of pulp 

mills. 

4.2 Mass spectrometry of model compounds 

The mass spectra of chlorinated vanillins and protocatechualdehydes have similarities with the mass 

spectra of chloroguaiacols216 and chlorocatechols,217 respectively. The most important features of the 

spectra can be summarised as follows: 

Isomeric chlorinated vanillins and protocatechualdehydes are difficult to distinguish from other 

isomers of the same molecular mass on the basis of their electron impact (EI) mass spectra. 

However, the absence of the [M-CH3-CO-HC!f ion in the spectrum of 6-chlorovanillin at m/z 107 

can be used to distinguish this compound from the other monochloro isomers. The same difference 
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can be observed in the mass spectra of three different monochlorinated protocatechualdehydes. The 

peak m/z 107 is more intense in the mass spectra of 2-chloro- and 5-chloroprotocatechualdehydes 

than in the spectra of the corresponding chlorovanillins. 

CHol� C=O+ 

+ 
-H• -CO

V - 1 - 28
R2 R1 R2 R1 R2 R1 

OH OH OH 

Compound (R
1 
,R

2) [Mt (I,.1) [M-l t (Ire1) [M-1-28t (I,.1) 

V anillin (R
1

=OCH3, R
2

=H) 152(100) 151 (98) 123 (15)

5-chlorovanillin (R
1

=OCH
3
,R

2
=Cl) 186 (100)* 185 (96) 157 (8)

Syringaldehyde (R 1
=R

2
=OCH3) 182 (100) 181 (57) 153 (4)

5-hydroxyvanillin (R
1

=OCH3,R2
=OH) 168 (100) 167 (91) 139 (23)

Protocatechualdehyde (R
1

=OH,R
2

=H) 138 (98) 137(100) 109 (56)

5-chloroprotocatechualdehyde (R
1
=OH,R

2
=Cl) 172 (85)* 171(100) 143 (40)

Gallaldehyde (R
1

=R
2

=OH) 154 (98) 153 (100) 125 (51)

*The most intensive peaks of isotope pattems are selected and the m/z values of these ions rounded
to the closest even number. The m/z values ofions [M-lt and [M-l -28t are presented accordingly.

Fig. 10. Cleavage of a hydrogen radical followed by cleavage of a carbon monoxide in some 

selected model compounds. 

The abundance of the molecular ion peak in the mass spectrum of an acetylated phenolic model 

compound is usually below 5 % ofthe intensity ofthe base peak, which in turn is usually formed by 

the loss of one or several ketene molecules from the molecular ion ([M-CH2
=C=Of), depending on 

the niumber of acetylated groups. The molecular ions fragment further following the pathways 

presented in Figures 10 and 11 . 
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CHo]� CHO 

OH 

Compound (R
2

) M (I,e1)

Vanillin (R2
=H) 152(100) 

5-chlorovanillin (R
2

=Cl) 186 (100)* 

Syringaldehyde (R
2

=OCH3) 182(100) 

5-hydroxyvanillin (R
2

=OH) 168 (100) 

-CO
-28

M-15 {I,01)

137 (7)

171 (6) 

167 (15) 

153 (9) 

M-15-28 (I,01)

109 (25)

143 (24) 

139 (12) 

125 (39) 

*The most intensive peaks of isotope pattems are selected and the m/z values of these ions rounded
to the closest even number. The m/z values ofions [M-lt and [M-1-2St are presented accordingly.

Fig. 11. Cleavage of methyl radical föllowed by cleavage of CO in some model compounds. 

4.3 Gas chromatographic separation of model compounds and oxidation products 

The separation of chlorovanillins and syringaldehydes as their acetyl derivatives using GC and 

GC/MS can quite easily be accomplished (Paper 1). With compounds having two or three phenolic 

hydroxyl groups, separation may be difficult due to incomplete derivatisation, low volatility and 

thermal degradation. For such compounds HPLC separation can be recommended (Paper II). 

4.4 HPLC 

The HPLC separation can be recommended för compounds having more than one phenolic 

hydroxylic group or för thermally labile ones. Also, in the case of complex mixtures containing both 

aliphatic and aromatic compounds, detection based on the UV absorption can considerably simplify 

the analysis, as only aromatic compounds have significant absorbance. On the other hand, 

differences in response may cause difficulties in the interpretation of results. 1n this study it was 

noted that the responses of the compounds analysed at wavelenght 280 nm behaved as follows: 

benzaldehyde < syringaldehyde < vaniilin < 4-hydroxybenzaldehyde and guaiacol < vanillic acid < 

acetovanillone < vanillin. Thus, the addition of a förmyl group has an enhancing effect to the 

response of the compound. On the other hand, the addition of a methoxyl group or methyl group or 

the oxidation of a formyl group to carboxylic acid have the opposite effect. 
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4.5 Pyrolysis-GC/MS 

The results of the pyrolysis experiments with the sediments and HMMs separated from the water 

samples of the Aanekoski watercourse support the results obtained analysing the CuO oxidation 

products of these samples. However, it is easier to follow the transport of HMMs produced by pulp 

mills using CuO oxidation. This may partly be due to the reaction and analysis conditions used, so 

that pyrolysis combined with the derivatisation of pyrolysis products would probably give better 

results. 

4.6GPC 

Gel permeation chromatography oftetrahydrofurane extracts from sediments gave more information 

on the HMMs in sediments that was supposed. The differences in the UV absorption and in MP 

values, indicating the position of the highest peak in the chromatogram, hint that this method could 

also be used to follow the transport ofHMMs. However, this clearly can not be proved on the basis 

of only three samples (Fig. 2 in Paper IV). 

4.7 Samples 

The six water samples and three surface sediment samples studied in Papers III and IV were 

collected in March 1993 and March 1994 by the Central Finland Regional Environment Centre. The 

whole volumes of the water samples were used in the ultrafiltration and most of the HMMs thus 

obtained were used in the CuO oxidations with a small amount saved for the Py-GC/MS

experiments. In Paper IV the dry weights and the contents of organic matter of the sediment 

samples were also determined and the amounts of carbon, nitrogen and hydrogen in the samples was 

also measured. The methods used were standard methods widely used in the wood processing 

industry. These determinations and the SEC analysis could not be applied to the HMMs separated 

from the water samples owing to their low amounts. The 12 water samples analysed in Paper V 

were collected in September to November 1996 by the Environmental Centre of Finland and the• 

effluent sample was donated by the pulp mill. The whole volumes of the river, lake and seawater 

samples and most of the effluent samples were used in the ultrafiltration. All the HMMs obtained 

from the seawater samples and most of the other HMMs were used in the CuO oxidations. 

It is recommended that the flow rates of a watercourse be analyzed in order to be able to collect the 

samples representing the HMMs produced at any one time. This would eliminate differences due to 

results based on different types of HMMs released by the plant. Further still, a suitable sampling 
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season should be selected, because rates of sedimentation and degradation are different at different 

temperatures. HMMs from other sources may also cause problems in the interpretation of results so 

that the method should be applied only in cases where there are not too many sources of HMMs 

present. 

4.8 Transport of HMMs in the nature 

The ratios of different oxidation products are reproducible, even when the total amounts of 

oxidation products produced in cupric oxide oxidation often differ between different oxidations of 

the same starting material. The variation in total amounts may partially be caused by factors such as 

different amounts of humidity, inorganic material or other non-oxidised material in the sample. 

Also, measuring the exact weights of samples för oxidation may be difficult owing to their 

hygrophilic nature and small amounts. The various HMM materials have also a different tendency 

towards oxidation. Cupric oxide oxidation is thereföre a useful method if one wishes to tel1 whether 

a sample contains HMMs produced by industry, but the quantitation of different materials becomes 

diflicult. Fortunately, the HMMs produced by pulp mills oxidise more readily than the natural 

HMMs and their presence in a HMM sample can be pinpointed fairly accurately, especially if 

suitable uncontaminated samples are available för comparison. 

On the hasis ofthe results in Papers III, IV and V, the HMMs produced by the Äänekoski mill seem 

to be less susceptible to environmental degradation and transport further than the industrial HMMs 

in the case of the Lohjanjärvi watercourse. On the other hand, this may partly be caused by the 

larger volume and larger dilution in Lake Lohjanjärvi than in the river that receives the water in the 

Äänekoski watercourse. Because the presence of chlorine containing compounds is such a clear 

indication of contamination by pulp plant waste water, the analysis based on oxidation products 

containing chlorine is easier than one based on non-chlorinated oxidation products. 

5 CONCLUSIONS 

In addition to the model compounds synthesized in Papers I, II and III and the mass spectrometric 

and NMR spectroscopic data obtained on them, the most important results relate to the transport of 

HMMs in the receiving waters. First of all, the method used, even though time-consuming and in 

need of modifications, enables the transport of these materials to be followed qualitatively. 

Secondly, the quantitative analysis of different HMMs is complicated mainly by their low amounts 
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in the receiving waters, especially in sea water samples and by their different behaviour in CuO 

oxidation. On the basis of our results it is evident that the dissolved lignin residues degrade more 

readily than humic materials in cupric oxide oxidation. Therefore, in oxidising samples where both 

materials are present, the exact amounts of different HMMs can not be obtained based on the 

amounts of oxidation products. 

The literature cited and the experiments conducted point to the need for further studies of the 

following topics: 

a) SEC of materials extracted from sediments seems to give interesting results. This method could

also be applied to aqueous DOM (dissolved organic material). This requires that the DOM is 

separated using a method that does not fractionate it in the way ultrafiltration does. 

b) The conventional Py-GC/MS used indicated differences between different types of samples, but

the results could not be applied to following the transport ofHMMs in the receiving waters. The use 

of pyrolysis with tetramethyl ammonium hydroxide (TMAH) methylation in the analysis ofHMMs 

separated from water was not attempted here but remains to be tested. 

c) A more detailed comparison of the different oxidation methods and the study of oxidation

mechanisms would help to clarify the original structure of the material oxidised. 

d) Calibration methods should be developed to obtain the relative amounts of different types of

HMMs based on the relative amounts of selected oxidation products. 

e) Identification of new compounds from the CuO oxidation products of lignin and humic

substances could be accomplished using HPLC/MS and CE/MS. 

f) Synthesis of additional model compounds should be carried out to answer the needs caused by

new bleaching methods (like TCF, ozone and oxygen bleaching). 

g) The use of different capillary electrophoretic (such as capillary zone electrophoresis - CZE and

micellar electrokinetic chromatography - MEKC, etc.) and capillary electrochromatographic (CEC) 

methods in the analysis of CuO oxidation products should be tested. The possible advantages are 

higher resolution, shorter analysis time, better background and possibly also lower sample amounts 

needed. In fact, CZE of CuO oxidation products has already given promising results. 218 
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