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Abstract  9 
 10 
 11 
Understanding the drivers of community stability has been a central goal in ecology. 12 

Traditionally emphasis has been placed in studying the effects of biotic interactions on 13 

community variability, and less is understood about how the spatial configuration of habitats 14 

promotes or hinders metacommunity stability. To test the effects of contrasting spatial 15 

configurations on metacommunity stability, I designed metacommunities with patches 16 

connected as random or scale-free networks. In these microcosms, two prey and one protist 17 

predator dispersed, and I evaluated community persistence, tracked biomass variations, and 18 

measured synchrony between local communities and the whole metacommunity. After 30 19 

generations, scale-free metacommunities had lower global biomass variability and higher 20 

persistence, suggesting higher stability. Synchrony between patches was lower in scale-free 21 

metacommunities. Patches in scale-free metacommunities showed a positive relationship 22 

between variability and patch connectivity, indicating higher stability in isolated 23 

communities. No clear relationship between variability and patch connectivity was observed 24 

in random networks.  These results suggest the increased heterogeneity in connectivity of 25 

scale-free networks favors the prevalence of isolated patches in the metacommunity, which 26 

likely act as refugia against competition—the dominant interaction in this system—resulting 27 

in higher global stability. These results highlight the importance of accounting for network 28 

topology in the study of spatial dynamics. 29 

 30 
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  33 
Introduction 34 
 35 
 36 
Identifying the drivers of community temporal dynamics, including stability in response to 37 

perturbations, has been a central goal in ecology [1–4]. Whether these drivers are biotic, 38 

abiotic or some combination of both is largely context dependent, but understanding how and 39 

under which circumstances these drivers operate is the key to predicting how systems 40 

respond to different scenarios. In community ecology, the concept of “stability” can be 41 

defined in multiple ways. Given the difficulty of its study in empirical systems, the 42 

operational definitions of stability often differ from the mathematical definition. In a strict 43 

sense stability can be defined as the ability of a system to return to its initial conditions after a 44 

perturbation [5]. In practice, ecological studies also consider measures of community 45 

permanence [6], species persistence or turnover [5], and the temporal invariability of a 46 

community descriptor [3,7], as measures of stability. In this study I will use the latter two as a 47 

proxy for stability.  48 

Historically, much emphasis has been placed on studying biotic drivers of community 49 

invariability/stability. In particular, the effects of species interactions have been frequently 50 

studied under the diversity-stability relationship framework [2,8–11]. Findings in this field 51 

are diverse, but they emphasize the large role that interactions play in community function.  52 

Evidence regarding the effects of competition on community stability is varied. Some 53 

studies report little to no influence of competition or interaction strength on community 54 

variability, but note stronger effects at the population level (Ives et al. 1999). However, other 55 

sources report that competition decreases community stability (Yodzis, 1981, Allesina & 56 

Tang 2012). Experimental studies  have also revealed that interaction strength in competitive 57 

communities can not only alter the relationship between community biomass and stability, 58 

but also the range of variation of biomass [15]. Other interactions, such as predator-prey, 59 



have been described as stabilizing for communities when interaction strength is high, while 60 

mutualistic interactions are destabilizing [14]. 61 

Abiotic drivers of community stability have been seldom addressed as such. Most 62 

studies in this context have focused on environmental fluctuations as drivers and although 63 

many community-level properties can track changes in abiotic conditions over time [16], it is 64 

the species-specific responses to environmental fluctuations that affect diversity-stability 65 

relationships [12]. In such cases, compensatory dynamics can confer stability to communities 66 

under scenarios of environmental fluctuations [17]. 67 

Spatial dynamics can have stabilizing effects on metacommunities [18,19] and 68 

metaecosystems [20].  Although it was been shown that the pattern of habitat connectivity 69 

affect metacommunity persistence [21] and can modulate the importance of the different 70 

drivers of metacommunity dynamics [22,23] we currently lack a clear understanding of how 71 

it affects metacommunity stability. Thus, we are far from being able to draw general 72 

predictions if its effects under complex scenarios. Network topology is a key feature of 73 

spatial systems as it can dictate the connectivity pattern between local communities and 74 

determine—among other things—the “ease” at which elements can move through the 75 

network.  For example, random networks are characterized by having nodes (i.e., patches) 76 

with very similar number of connections, and therefore their “connectivity” frequency 77 

distribution (i.e., degree distribution) follows a Poisson distribution (Fig. 1; top panel) where 78 

most patches have an average number of connections and only a few are poorly or highly 79 

connected (Erdös & Rényi, 1960). Conversely, in a sparser scale-free network whose degree 80 

distribution approximates a power law (Fig. 1; bottom panel), most nodes are poorly 81 

connected and only a few are highly-connected hubs [25]. These topological differences can 82 

not only determine the network’s resilience and robustness against perturbations, but it also 83 

control the speed at which “information” (species) can spread. In an ecological scenario, we 84 



can think of organisms as information, and their movement should be easier in more 85 

homogeneous networks (i.e., random) than in those that are sparser (i.e., scale-free). 86 

Dispersal can affect stability through the synchronization of local dynamics [26]. Restriction 87 

in the movement of individuals can be the key to maintain asynchrony in metacommunities 88 

where local communities are at different stages of consumer-resource fluctuations [27]. 89 

Similarly in competitive metacommunities high levels of dispersal can lead to competitive 90 

exclusion [28,29]. Consequently, if spatial topology determines dispersal, we can expect 91 

lower stability in networks that facilitate inter-patch movement. 92 

In fact previous studies have shown that network topology has strong and contrasting 93 

effects on metapopulation [30] and metacommunity dynamics [31]. Some of the proposed 94 

mechanisms behind diversity-stability relationships have also been shown to have contrasting 95 

effects between communities and populations. Diversity can foster community stability but 96 

have neutral effects on populations [32]. Specifically, competition can enhance community 97 

stability but destabilize local populations [7,18]. In this context, understanding how network 98 

topology affects community stability and how patch metrics relate to variability, will help to 99 

identify those local communities that are more susceptible to extinction and consequently 100 

those that should be the target of protective measures for habitat conservation and 101 

management. 102 

To empirically assess the relationship between habitat configuration and 103 

metacommunity stability at the local and regional scale in a system with competitive and 104 

predator-prey interactions, I compared experimental metacommunities configured as random 105 

or scale-free networks. Given their differences in connectivity, I hypothesize that random 106 

metacommunities —the more homogeneous topology— will allow an easier dispersal of 107 

organisms across the system, decreasing stability at the local and global scale as a result of 108 

the increased likelihood of encountering enemies. Conversely, in scale-free 109 



metacommunities, where connectivity is sparser, the higher proportion of isolated patches 110 

will allow the persistence of local communities, increasing overall stability.  111 

 112 

Methods 113 

Experimental setup 114 

I selected two contrasting network topologies—Erdös-Rényi (from here on random) and 115 

scale-free—to represent a biologically plausible range of connectivity in natural 116 

metacommunities. Using the R package ‘igraph’ (v. 1.2.4.1) I created two different 24-patch 117 

realizations of each network topology and I used 24-well plates to recreate them as protist 118 

landscapes. Each of them was experimentally replicated four times (Fig. 1). For this, I filled 119 

each well (i.e., patch) with protist media (0.37 g Protist pellet and 0.07 g Herptivite in 1.4 L 120 

of well water bacterized with Proteus vulgaris, Serratia marcesens, Bacillus subtilis and 121 

Bacillus cereus) and connected them according to the layouts using glass capillary tubes 122 

filled with protist media. Each well plate—now considered a 24-patch metacommunity—123 

contained a food web module of three protist species, Paramecium tetraurelia, Paramecium 124 

bursaria and Dileptus anser. The two bacterivore species (P. tetraurelia and P. bursaria) 125 

were initially inoculated in a third of the local communities/wells at random and the predator 126 

D. anser was added after four days. Microcosms were allowed to develop as organisms 127 

dispersed for over 80 protist generations, during which time I measured the abundance of 128 

each species in each local patch by directly counting individuals with a stereomicroscope 129 

three times per week. 130 

To measure biomass, I took photographs of between 10 and 35 individuals of each 131 

species and estimated their surface area using ImageJ [33]. I calculated biomass using these 132 

surface area estimations, the value of the density of water and the abundance counts per 133 

patch. 134 



I defined species persistence as the length of time from the start of the experiment 135 

until the first extinction of a species in the metacommunity. A species was considered 136 

“extinct” when it was not observed for at least two consecutive samplings. 137 

 138 

Analysis 139 

To compare the curves of community biomass over time for the two types of networks I used 140 

profile analysis using the ‘profileR’ R package. This analysis allows to compare curves by 141 

checking for differences in parallelism and the similarity of response levels [34]. The 142 

parallelism portion of the analysis tests whether segments of the curve are oriented similarly 143 

between groups (e.g., are parallel). If the answer is positive, then a MANOVA is performed 144 

to test for equal levels, and find differences in the average value per group. 145 

To evaluate community variability, I used the data of the first 30 days of the 146 

experiment (roughly 30 protist generations), which is the period of time when predators were 147 

observed. There are multiple ways of defining community stability (see Lehman & Tilman 148 

[2000] for more details), but the most common are a measure of temporal variability —such 149 

as the coefficient of variation of a community descriptor such as biomass, or its reciprocal 150 

[4,7,16,18,35]—or a measure community persistence [5,36].  151 

I calculated the coefficient of variation (CV) of total biomass across time (pooling the 152 

biomass of all species) both at the metacommunity (per plate) and local level (per well).  I 153 

evaluated differences in the CV of pooled biomass (community-level estimation) and per-154 

species biomass between network topologies at the metacommunity scale using generalized 155 

linear mixed models (GLMMs) with network replicate as a random factor.  I measured 156 

community persistence as the number of days all species were counted as present in the 157 

system and I analyzed the differences using a GLMM with network replicate as a random 158 

factor. Additionally, I evaluated metacommunity synchrony by calculating the zero-lag 159 



correlations between the time series of community biomass of each local community and 160 

total biomass of all other patches, using the Gross et al. (2014) index included in the R 161 

package ‘codyn’ [38]. Differences between topologies in these two descriptors were 162 

evaluated using a generalized linear model since the GLMM approach showed that no 163 

variance was explained by the random factor.  164 

To characterize the patches and their location in the network I used two metrics that 165 

have been previously used to describe node position/importance within a metacommunity 166 

network [39–41]: degree and closeness centrality. Degree corresponds to the number of links 167 

(i.e., neighbors) between a focal patch and other patches in the network. Closeness centrality 168 

is measured as the reciprocal of the average shortest path length between a focal node and all 169 

the other nodes in the network. Therefore, higher values indicate nodes that are closer to 170 

others or “more central”. These relationships were also analyzed with GLMMs, in this case 171 

with patch metric and network as predictors, and network realization as random factor, and in 172 

the case where the random factor did not explain any variance, I used a GLM. Model 173 

specifications for all analyses are detailed in the supplementary material as well as the 174 

frequency distribution of these patch metrics in the networks used in the study (Figs. S1 and 175 

S2). 176 

 177 
 178 
Results 179 
 180 
All metacommunities showed some temporal variation of biomass. The peak biomass in all 181 

metacommunities occurred around day 5 and steeply declined afterwards (Fig. 2). Although 182 

both types of metacommunities followed a similar temporal trend, biomass was consistently 183 

higher in scale-free metacommunities. This was confirmed with profile analysis, which 184 

showed that the network-specific curves were parallel (Hotelling’s T2= 8.594, F11,4= 3.125, 185 

p=0.141) but with different elevations (F1,14=20.63, p=0.00046). 186 



On a global scale, inferred community stability was higher in scale-free 187 

metacommunities (Fig. 3) as they showed lower coefficients of variation than random 188 

metacommunities (GLMM network: 𝜒1
2= 9.0219, p = 0.002). Similarly, when comparing 189 

stability at the local level scale-free networks showed lower CV values than random 190 

(F1,14=19.06, p=0.00064). Differences in metapopulation level stability (i.e., measured 191 

separately per species) between networks were observed only for P. tetraurelia (GLMM 192 

network: 𝜒1
2= 10.551, p = 0.0011; Fig. S3).  193 

Metacommunities with different topologies also differed in species persistence (Fig. 194 

4A). In scale-free metacommunities the complete 3-species food web module was present in 195 

the system for about 10 generations longer than in random metacommunities (GLMM 196 

network: 𝜒1
2= 14.07, p = 0.0001). The reduction of spatial synchrony has been suggested as a 197 

promoter of metapopulation [42,43] and metacommunity persistence [44], in this study it 198 

could be one of the explanation for the differences in persistence of metacommunities with 199 

different topologies. Even though spatial synchrony in both types of metacommunities was 200 

generally low (calculations were very close to 0), scale-free metacommunities had lower 201 

values than random networks (F1,12 = 6.231, p = 0.0281; Fig. 4B). 202 

At the local scale, stability decreased in relation to patch closeness centrality only in 203 

scale-free metacommunities (F1, 380 = 0.747, p = 0.003), while no effect evident for random 204 

metacommunities (Fig. 5). Conversely, patch degree had no effect in the stability of local 205 

communities. 206 

 207 
Discussion 208 
 209 

Network topology had clear effects on overall metacommunity stability. Globally, 210 

metacommunities arranged as scale-free networks showed higher levels of functioning (i.e., 211 



as measured by biomass), lower temporal variability, and increased persistence time of all 212 

three species.  213 

Asynchrony between the dynamics of local patches can have stabilizing effects on 214 

communities [4,44]. Downing et al. (2014) studying aquatic food webs in mesocosms found 215 

that the stabilizing effects of species asynchrony in their experimental system are more 216 

evident when comparing open and closed systems, suggesting this feature is particularly 217 

relevant for metacommunities. In this experiment, spatial asynchrony was slightly higher in 218 

scale-free metacommunities. Comparing these results with a previous study focused on 219 

metapopulations where random and scale-free systems had high but similar values of 220 

asynchrony between local patches [30] reinforces the importance of interactions in these 221 

systems.  222 

Observing the dynamics of local communities also provides insights into the 223 

mechanisms driving these differences between topologies. In scale-free metacommunities, 224 

there is a positive relationship between patch isolation and stability, which translates into 225 

increased global stability likely due to the higher proportion of isolated patches in scale-free 226 

than in random metacommunities. These results are opposed to findings by McCann et al. 227 

(2005) whose models predict that fragmented or more isolated habitats should be more prone 228 

to the destabilizing effects of mobile predators. However, it is likely that in this experimental 229 

system isolation creates spatial refugia which dampen the effects of predators on prey. If this 230 

is the case, then it is reasonable to expect a decrease in the frequency of negative interactions 231 

in scale-free metacommunities. Given the nature of the data collected, I can only approach 232 

this by using different combinations of species co-occurrences as a proxy for frequency of 233 

interactions. Although it is an imperfect approximation, there was no difference in the 234 

frequency of co-occurrences between types of networks (Fig. S4, Table S1), suggesting that 235 



connectivity may not have directly affected the occurrence of the interactions but perhaps it 236 

modulated their strength.  237 

One of the main differences between random and scale-free networks is the 238 

differences in the level of connectivity. Random networks are more homogeneous and 239 

therefore the transmission of information between distant nodes—in this case dispersal of 240 

organisms between patches—is easier and faster than in scale-free networks. Gravel et al. 241 

(2016), in a modelling study where connectivity is not addressed explicitly, describe a 242 

relationship between stability and dispersal that increases to an asymptote in heterogeneous 243 

landscapes, which differs from the trends observed in this study. Even considering that 244 

habitat heterogeneity acts as a stabilizing force in metacommunities, and that this factor is 245 

absent in this study, it would still be reasonable to expect the same general trend but perhaps 246 

with lower stability values, which is not the case in this experiment. However, another aspect 247 

of these dynamics suggests that dispersal stabilizes meta-ecosystems by modulating 248 

interaction strength in a way that stability in a spatial system depends on interactions 249 

averaged across space instead of their local coefficients (Gravel et al. 2016). In this study, 250 

topology could modulate this relationship even further, producing the observed differences.  251 

The effects of weak interactions in communities can also be idiosyncratic. In general 252 

it has been proposed that they have stabilizing properties for communities compared to strong 253 

interactions [19,46–48]. Recent studies have shown that different trophic groups contribute 254 

differently to metacommunity stability. Particularly, competitive interactions in a food web 255 

can weaken spatial synchrony and affect stability [49]. In this case, and given the high 256 

frequency in which the competitor species co-occur in comparison to predator-prey co-257 

occurences —and unless interaction strength between predators and prey is high (in this case 258 

it is not, see Fig. S5)— it is possible that competition between the two prey species is 259 

stronger than predation. If this is true, then the increased isolation in scale-free 260 



metacommunities would likely create refugia against competition and not so much against 261 

predation. Competition has been described as a destabilizing force for communities [14], 262 

therefore the “protection” against it in scale-free networks through refugia, results in an 263 

overall positive effect on global stability. I suggest that the increased persistence of the 264 

predator in scale-free systems should be considered a consequence of the increased 265 

availability of prey but it does not contribute to overall stability per se. 266 

Other studies have shown that abiotic factors—such as precipitation—have an indirect 267 

effect on community variability acting through biotic interactions [16]. It has been suggested 268 

that spatial heterogeneity can alter the variability of interaction strength [20] and ultimately 269 

community stability and diversity [50], and in this study I show that spatial configuration can 270 

determine community stability by creating refugia against competition.  271 

Although the experimental setup used in this study only allows to draw limited 272 

conclusions regarding long-term community stability, the results presented here encompass 273 

over 30 protist generations and provide solid support for the idea of spatial configuration 274 

being a key factor in community functioning. 275 
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Figures 412 

 413 

Figure 1. Layouts of random and scale-free networks used in the experiment, and their idealized 414 

degree distribution on the right. Each network realization (i.e., layout) was replicated four times 415 

in the experiment. 416 
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 418 

 419 

Figure 2. Biomass variation over time, calculated at the metacommunity level for 420 

metacommunities connected as random (purple) and scale-free (pink) networks (𝑋  S.E.; n = 421 

4). Same color lines correspond to network-level replicates. 422 
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 424 

 425 

Figure 3. Metacommunity variability measured as the coefficient of variation (CV) of 426 

biomass in random (purple) and scale-free (pink) (n =4). Horizontal bars represent the mean. 427 

(A) CV corresponds to the variation in community biomass across the entire metacommunity 428 

(all habitat patches considered together), (B) shows the variation of biomass in local 429 

communities (i.e. patches), (C) CV of biomass for P. tetraurelia, (D) CV of biomass for P. 430 

bursaria, and (E) CV of biomass for D. anser. 431 



 432 

Figure 4. (A) Community persistence in random and scale-free metacommunities, calculated 433 

as the number of days all three species were observed present in the system (𝑋  S.E.; n = 4). 434 

(B) Metacommunity synchrony (calculated sensu Gross et al. 2014) in random and scale-free 435 

metacommunities (n = 4). Same color boxes correspond to network-level replicates. In each 436 

boxplot, bold horizontal lines show the median among network replicates, upper and lower 437 

hinges represent the first and third quartiles, and whiskers indicate the largest and smallest 438 

values. 439 
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 443 

Figure. 5. Local community variation and its relationship with patch degree (top panels) and 444 

patch closeness centrality (bottom panels) in random (left panels) and scale-free (right panels) 445 

metacommunities. Different symbols within each plot represent different replicate layouts 446 

and each data point represents the plate average of patches according to their corresponding 447 

network metric. 448 
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