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A B S T R A C T   

Background: Accurate detection of gait events is crucial for gait analysis, enabling the assessment of gait patterns 
and abnormalities. Inertial measurement unit (IMU) sensors have gained traction for event detection, mainly 
focusing on initial contact (IC) and toe-off (TO) events. However, effective detection of other key events such as 
heel rise (HR), feet adjacent (FA), and tibia vertical (TBV) is essential for comprehensive gait analysis. 
Research question: Can a novel IMU-based method accurately detect HR, TO, FA, and TBV events, and how does 
its performance compare with existing methods? 
Methods: We developed and validated an IMU-based method using cumulative mediolateral shank angular ve-
locity (CSAV) for event detection. A dataset of nearly 25,000 gait cycles from healthy adults walking at varying 
speeds and footwear conditions was used for validation. The method’s accuracy was assessed against force plate 
and motion capture data and compared with existing TO detection methods. 
Results: The CSAV method demonstrated high accuracy in detecting TO, FA, and TBV events and moderate ac-
curacy in HR event detection. Comparisons with existing TO detection methods showcased superior perfor-
mance. The method’s stability across speed and shoe variations underscored its robustness. 
Significance: This study introduces a highly accurate IMU-based method for detecting gait events needed to divide 
the gait cycle into seven phases. The effectiveness of the CSAV method in capturing essential events across 
different scenarios emphasizes its potential applications. Although HR event detection can be further improved, 
the precision of the CSAV method in TO, FA, and TBV detection advance the field. This study bridges a critical 
gap in IMU-based gait event detection by introducing a method for subdividing the swing phase into its sub-
phases. Further research can focus on refining HR detection and expanding the method’s utility across diverse 
gait contexts, thereby enhancing its clinical and scientific significance.   

1. Introduction 

Accurate detection of gait events is a crucial part of automated gait 
assessment. Gait events refer to specific moments in gait cycle that mark 
important transitions and actions during walking. They enable re-
searchers and clinicians to analyze detailed temporal parameters and 
gait patterns across distinct phases, facilitating the measurement of 
abnormalities or asymmetries in walking [1]. 

In recent years, inertial measurement unit (IMU) sensors have gained 
popularity in event detection [2]. The focus has primarily been on initial 
contact (IC) and toe-off (TO), which can be used to separate gait cycles 
and delineate distinct phases such as stance, swing, and double and 
single-limb support. For a more nuanced IMU-based analysis of stance 

and swing subphases it is essential to detect also the heel rise (HR), feet 
adjacent (FA), and tibia vertical (TBV). These five gait events, along with 
the opposite foot IC and TO events, allow us to divide the gait cycle into 
seven gait phases: loading response (Opposite TO), mid-stance (HR), 
terminal stance (opposite IC), pre-swing (TO), initial swing (FA), 
mid-swing (TBV), and terminal swing (IC) [1,3] with the events serving 
as the respective ending points of each phase. 

Currently, a common approach for IMU-based gait analysis involves 
attaching IMU sensors, equipped with a triaxial accelerometer, gyro-
scope, and sometimes a magnetometer, to the shank [2,4–8]. This 
placement is closely influenced by the movement from the knee and 
ankle joints [1] and provides valuable information about various gait 
parameters, such as the shank-to-vertical angle [9,10]. The development 
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of methods that use IMU data from this type of easily accessible location 
promotes the advancement of user-friendly and ambulatory gait analysis 
systems [11]. 

The detection of IC and TO events is commonly performed by iden-
tifying the two distinct local minima in shank angular velocity (SAV) 
around the mediolateral axis of the sensors, referred to as mediolateral 
SAV [12]. However, while this method has demonstrated high accuracy 
in detecting IC, its ability to detect TO has faced criticism [13,14]. 
Alternative methods for TO detection using SAV [14,15] and acceler-
ometer anteroposterior signals [16–18] have been proposed. Recently, 
Romijnders [19] employed a deep learning approach to detect both IC 
and TO events, which showed promising results. 

Only a few studies [14,20] have proposed methods that use 
shank-based IMU data for detecting HR event. Some studies [21,22] 
have employed IMU data from the foot for HR detection. However, the 
accuracy and precision of these methods have generally been rather low, 
except in [21], where two IMUs were used (instep and heel). 

Most importantly, there is a gap in the found literature regarding the 
detection of swing phase events, FA (swinging foot comes adjacent to 
stance foot) and TBV (tibia reaches vertical position during swing), from 
IMU-based data. Neither our survey on existing literature nor a recent 
review [2] on IMU-based gait event and phase detection methods 
identified any prior approaches for validating these events against a 
reference system. Bridging this gap would significantly advance the 
increasingly popular field of shank-attached IMU-based gait analysis. 

Therefore, the objective of our study was to develop and validate a 
new IMU-based method that uses SAV to detect HR, TO, FA, and TBV 
events. In addition, our objective was to compare the performance of our 
method with previously proposed detection methods for TO using a new 
prospectively collected dataset. To validate our method, we used force 
plates and an optical motion capture (OMC) system, which are consid-
ered the ’gold standard’ for measuring temporal gait parameters. Our 
dataset comprises nearly 25,000 gait cycles from a group of healthy 
adults walking at slow, normal, and fast speeds in shoes and barefoot, as 
well as with three different heel heights. As an outcome, we aimed to 
introduce an accurate and robust model for detecting gait events, 
enabling the separation of the gait cycle into seven phases. 

2. Methods 

2.1. Experimental set-up 

A total of fifteen healthy volunteers (5 males and 10 females) with an 
age of 23.7 ± 3.5 years (mean ± std), height of 170 ± 10 cm, and weight 
of 70 ± 14 kg participated in the study. The gait of each participant was 
simultaneously measured using three different gait measurement tech-
nologies: two shank-worn IMUs, two force plates, and an OMC system. 
Measurements were performed at a biomechanics laboratory along a 12- 
meter walkway. Before participating in the study, all participants pro-
vided a signed informed consent. The study was performed in confor-
mity with the Declaration of Helsinki (2013), and ethical approval was 
obtained (Approval number: 199/13.00.04.00/2022). 

Walking speed was controlled with photocell timing. The target 
speeds for slow, normal, and fast walking were 4, 5 and 6.5 km/h, 
respectively (corresponding to 1.11, 1.39, and 1.81 m/s). Data were 
recorded while each participant performed a targeted number of walks 
back and forth along the walkway. The scenarios were normal, fast, and 
slow walking with shoes and barefoot in addition to three different heel 
heights (2 mm, 6 mm, and 10 mm) while walking in shoes at a normal 
speed. The data were collected in a randomized order for each 
participant. 

2.2. Optical motion data acquisition 

We collected reference kinematic data at 187.5 Hz using a Vicon 
OMC system (Vicon Motion Systems Ltd, Oxfordshire, UK) equipped 

with 11 Vicon Vero cameras. Sixteen reflective markers were placed on 
the pelvic area and lower limbs following the Plug-in-Gait lower body 
model. Data were processed using Vicon Nexus 2.14. 

The acquired reference kinematic data were used to detect HR, FA, 
and TBV events. These events have been defined in detail in [1,3]. The 
FA event was detected as the moment when the toe marker of the 
swinging limb surpassed the heel marker of the opposite limb. The TBV 
event was identified as the moment when the ankle marker of the 
swinging limb passed the knee marker of the same limb. These events 
separate the initial swing, mid-swing, and terminal swing phases [1,3]. 

The transition from mid-stance to terminal stance phase is defined as 
the moment the heel begins to lift from the ground. We detected HR 
from the vertical motion signal of the heel marker. The signal was first 
filtered with a 4th order zero-lag Butterworth lowpass filter with a 10 Hz 
cutoff frequency. The event was detected as the sample when the marker 
acceleration first exceeded 1.9 m/s2 after the opposite foot FA event 
(Fig. 1). 

In Fig. 1a, we can observe how the vertical position of the heel starts 
to accelerate at the time of the HR event, indicating lift-off. The vertical 
position difference between the detected HR event and feet adjacent 
event (≈25 %) is 8 mm, 7 mm, and 7 mm for fast, normal, and slow 
speeds, respectively. However, some of this difference can be attributed 
to the shoe sole’s elasticity and shape, as noted in [23]. The consequent 
gradually accelerating upward shift in the vertical position of the heel 
marker during stance introduces complexity to the accurate timing of 
the HR event. Consequently, the threshold 1.9 m/s2 was determined on 
the basis of careful manual observation of the acceleration signal pattern 
behavior and comparison with heel marker position data. 

2.3. Force plate data acquisition 

For accurate identification of IC and TO events, we used two cen-
trally positioned AMTI (Advanced Mechanical Technology Inc.) force 
plates along a 12-meter walkway. The force plate data were sampled at 
1125 Hz. We applied a 10 N threshold to the vertical ground reaction 
force. 

We validated each step using the OMC system’s heel and toe markers. 
A step was considered valid if the foot’s position, as indicated by these 
markers, fell within the force plate’s positional limits 200 ms after IC 
detection and 300 ms before TO detection. 

2.4. IMU data acquisition 

IMU kinematic data were collected using two Vicon Blue Trident 
sensors. These sensors were attached with Vicon straps to the lateral side 
of each shank, just above the lateral malleolus similarly as in [16,18]. To 
achieve the correct alignment, the sensor’s vertical axis was parallel to 
the longitudinal axis of the shank segment, while the anteroposterior 
axis aligned with the walking direction, following the imaginary line 
connecting the back of the heel and the second metatarsal head. In this 
study only the angular velocity signal around the mediolateral axis were 
used. The sampling rate was set to 225 Hz, and the data were resampled 
to match the sampling rate of the force plates. Vicon Nexus 2.14 motion 
capture software was used to control the sensors and acquire the data. 
To ensure accurate and reliable measurements, a standard calibration 
procedure [24], as instructed by the manufacturer, was implemented for 
all IMUs used in this study. 

2.5. Data synchronization 

The system setup included a Vicon Lock Lab control box for con-
necting the devices to the system and synchronizing the collected data 
from cameras and force plates. The IMU sensors were connected to the 
Vicon Nexus software via a Bluetooth connection, enabling automatic 
synchronization with other signals. 

M. Salminen et al.                                                                                                                                                                                                                              



Gait & Posture 111 (2024) 1–7

3

2.6. Data analysis 

All post-processing and analysis were performed using the Python 
3.10 (https://www.python.org/) programming environment. 

Our analysis and model development used a dataset comprising 
velocity-controlled trials. These trials included a balanced number of 
strides per participant, foot, and scenario while excluding variations in 
heel height (Table S2). The included strides closely matched the target 
speed for each scenario (Table S3). Additionally, leave-one-out cross- 
validation was employed, meaning the developed model was trained 
excluding each participant’s data, and results were reported using only 
the respective participant’s data [25]. 

Accuracy of the method was evaluated by measuring true error and 
agreement against the reference methods. Agreement was evaluated 
with Bland-Altman plots [26] and intra-class correlation coefficient 
(ICC). ICC estimates and their 95% confident intervals were calculated 
based on a single-rater, absolute-agreement, 2-way mixed-effects model 
[27,28]. 

2.7. IMU-based gait event detection 

IMU-based gait events were derived using algorithms based on the 

mediolateral angular velocity signal (SAV). Our method detects these 
events using two signal zero-crossings located on either side of the large 
angular velocity peak, which indicates the motion during swing (Fig. 2). 
We refer to the zero-crossing before the peak with a positive slope as ZP 
and the zero-crossing after the peak with a negative slope as ZN. The IC 
event was detected as the first local minimum after ZN in the unfiltered 
signal [15]. To estimate other events, we employed our CSAV method. 
The method is based on the cumulative (negative) mediolateral shank 
angular velocity between ZN and ZP during stance, referred to as 
CSAVST, and the cumulative (positive) angular velocity between ZP and 
ZN during swing, referred to as CSAVSW (Fig. 2). 

First, the total accumulated signal was calculated for both CSAVST 
and CSAVSW phases separately. Then, the CSAVref_event values were ob-
tained as the cumulative SAV of the phase at the time of the events 
detected by force plates or OMC. CSAV%ref_event was calculated by 
dividing CSAVref_event by the total CSAV of the corresponding gait phase. 
The mean CSAV%ref_event values for each event were then determined 
using the speed-controlled dataset. 

Specifically, HR and TO events occurred during the CSAVST phase, 
whereas the CSAVSW phase included FA and TBV events. For HR and TO 
events, the mean CSAVST% values were calculated to be 46.0 % and 
95.7 %, respectively. Similarly, the CSAVST% values were determined to 

Fig. 1. a) Mean heel marker vertical position throughout the gait cycle for each walking velocity. The vertical lines indicate the mean cycle point of the HR event. b) 
The HR event is detected when the vertical acceleration of the heel marker exceeds 1.9 m/s2 during stance. The figure includes data from two trials of both fast and 
slow walking speeds, as well as four trials of normal walking speed, for each participant while wearing shoes. 

Fig. 2. Mediolateral angular velocity of a typical gait cycle, featuring heel rise (HR), toe-off (TO), feet adjacent (FA), and tibia vertical (TBV) events detected using 
the CSAV-method. Additionally, the zero-crossings, denoted as ZP and ZN, are highlighted as they define the CSAV-phases. 
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be 20.0 % for the FA event and 73.1% for the TBV event. Based on the 
developed method, the event occurs at the first sample when the CSAV- 
value exceeds the mean CSAV%ref_event multiplied by the total CSAVphase 
of each stride. 

Furthermore, motivated by the significant dependencies found in our 
earlier study [29] between gait characteristics and SAV waveform, we 
investigated the impact of gait characteristics also on CSAV event 
detection. We examined the Pearson correlation between the error of 
CSAV-based events and available parameters: stride time, limb length, 
ZN and ZP cycle point, stride velocity, and stride length (Fig. S1). The 
analysis revealed significant dependencies between HR detection error 
and stride time (cc = -0.48, p < 0.0001), as well as between MS detec-
tion error and ZP cycle point (cc = 0.62, p <0.0001). These parameters 
had a notable effect on the detection accuracy (Fig. S2). 

We incorporated the identified corrective factor into the detection 
algorithms for HR and FA events. The algorithms for detecting HR, TO, 
FA, and TBV events can be found in Eqs. (1)–(4), respectively. 

tHR = argmin(t,CSAVST (t) <

= CSAVST ∗ 0.460)–(0.156s − 0.154 ∗ stride time) (1)  

tTO = argmin(t,CSAVST (t) <= CSAVST ∗ 0.957) (2)  

tFA = argmin(t,CSAVSW(t) >

= CSAVSW ∗ 0.200) − ( − 0.254s+ 0.384s ∗ ZPcp) (3)  

tTBV = argmin(t,CSAVSW(t) >= CSAVSW ∗ 0.731) (4)  

3. Results 

In total, 4860 successful walking trials were completed, yielding 
24,519 OMC-captured full strides, in addition to 8524 separate IC and 
8146 TO events captured with force plates. The captured data and their 
key information are described in the supplementary material (Table S1). 

The mean error for IC across all speeds and footwear conditions was 
− 1.6 ± 6.3 ms (Table 1). For HR, TO, FA, and TBV events, which were 
detected with the CSAV method, the mean errors were − 0.9 ± 29.3 ms, 
− 0.5 ± 7.4 ms, − 0.9 ± 6.4 ms, and 0.4±9.0 ms, respectively. Notably, 
the 95 % limits of agreement for events other than HR (-62.2, 56.9 ms) 
were between − 13.3 and 19.6 ms, with mean absolute error remaining 
consistently low (< 7.1 ms). The agreement between the reference 
methods and CSAV-methods was high, as indicated by ICCs exceeding 
0.988 for events other than HR (0.896). 

In a comparative analysis, two of the TO detection methods 
demonstrated substantial overall agreement with the force plate-based 
method, with ICC values 0.945 and 0.982. However, two out of the 
four methods exhibited bias and lower ICC scores: 0.740 and 0.803 
(Table 1). 

Bland-Altman plots, illustrating mean values of each participant’s 
both feet in different footwear and speed conditions, consistently 
demonstrated excellent agreement between CSAV-methods and refer-
ence methods (Fig. 3). The limits of agreement, set as mean ± 1.96*SD, 
are visualized with Bland-Altman plots on the right side. Boxplots on the 
left side show true error in different scenarios, with whiskers repre-
senting measured 95 % limits of agreement. Additionally, Fig. 4 pro-
vides a visual representation of mean cycle points for events detected 
with both CSAV-method and reference method. 

4. Discussion 

We evaluated the performance of the CSAV method in detecting four 
key events using a cross-validated dataset. These events, along with 
previously validated IC event are essential for dividing the gait cycle into 
its seven main phases and analyzing the nuances of gait using wearable 
IMU technology, which allows ambulatory measurements and does not 
require expensive measurement infrastructure. The robustness of the 
CSAV method, demonstrated by its consistency in capturing events 
across varying speeds and shoe conditions (Fig. 3, Fig. 4), underscores its 
performance in healthy participants. 

Our results demonstrate that the CSAV method achieves high accu-
racy in detecting TO, FA, and TBV events (Table 1, Fig. 3). Moreover, the 
CSAV methods showed high agreement with the reference system-based 
methods, as evidenced by high ICC scores (Table 1) and Bland-Altman 
plots (Fig. 3). However, for HR event detection, we observed lower 
agreement with reference compared to other events. It is worth noting 
that our detection method for IC aligns with the high accuracy reported 
in previous studies [13,16,18]. 

Given the significance of precise TO detection and the existence of 
alternative methods proposed in prior studies [12,14–16], we conducted 
a comparative analysis. The results indicate that while particularly the 
method proposed in [14] exhibited high accuracy in TO detection, our 
CSAV-based TO detection method outperforms all compared methods in 
terms of both true error and agreement with force plate-based methods 
(Table 1). It also compares well with the deep learning approach results 
reported in [19]. 

It is important to acknowledge the challenges associated with HR 

Table 1 
Event detection algorithm agreement with reference method. CSAV detection algorithms are indicated by event name and previously proposed toe-off detection al-
gorithms are shown at the bottom. Dataset: cross-validated, including barefoot walking and walking in shoes at slow, normal, and fast speeds. The mean error indicates 
the difference between the reference and CSAV-based event timings. ICC indicates agreement against reference method.  

Algorithm Mean (SD) reference 
method event time (s) 

Mean (SD) proposed 
method event time (s) 

Mean error (SD) 
[ms] 

Mean absolute 
error [ms] 

95 % limits of 
agreement [ms] 

ICC n 

Initial contact -  0.00 (0.01)  -1,6 (6.3) 4,7 [-10.7, 11.0] 0.997 [0.995, 
0.998]  5073 

Heel rise 0.42 (0.05)  0.42 (0.05)  -0,9 (29.3) 22,2 [-62.2, 56.9] 0.896 [0.892, 
0.901] 

16,128 

Feet adjacent 0.79 (0.08)  0.79 (0.08)  -0,5 (7.4) 5,1 [-13.3, 13.3] 0.996 [0.996, 
0.996]  16,118 

Tibia vertical 0.91 (0.09)  0.91 (0.09)  -0,9 (6.4) 5,1 [-14.2, 11.6] 0.998 [0.998, 
0.998]  16,161 

Toe-off 0.66 (0.06)  0.66 (0.06)  0,4 (9.0) 7,1 [-15.1, 19.6] 0.988 [0.987, 
0.989]  5143 

TO Arminian  
[12]   

0.61 (0.05)  -42 (16.7) 42,1 [-90.7, − 16.0] 0.740 [-0.037, 
0.929]  4937 

TO Trojaniello  
[16]   

0.66 (0.06)  1.0 (19.3) 16,1 [-43.7, 26.7] 0.945 [0.941, 
0.948]  5235 

TO Bötzel [14]   0.66 (0.06)  -1.3 (11.6) 9.2 [-26.0, 20.4] 0.982 [0.978, 
0.985]  4937 

TO Allseits  
[15]   

0.7 (0.06)  39.5 (10.6) 39.5 [21.3, 61.3] 0.803 [-0.024, 
0.951]  5235  
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event detection, as indicated by the lower agreement and higher 
dispersion of error (Table 1). In addition, the finding that HR error 
correlates the most with stride time points to the inability of CSAV-based 
HR detection to adjust to different gait styles. Our assumption is that the 
CSAV method may be less accurate in detecting stance phase events 
because of the constrained motion of the shank during stance. In 

contrast, the swing phase, characterized by consistent and flowing mo-
tion driven by momentum, gravity, and muscle control [1], is where the 
CSAV method is highly accurate. 

Nonetheless, the CSAV method performs well in HR detection 
compared with previously reported methods [14,20–22]. However, the 
use of different evaluation methods (OMC, pressure sensing insoles, 

Fig. 3. Event detection error in different scenarios (bf = barefoot walking, shoe = walking in shoes). The analysis is based on cross-validated results from barefoot 
and shoe scenarios. Bland-Altman plots (right) visualize the agreement between reference method and CSAV-method. 
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visual detection) as reference introduces challenges in result compara-
bility and underscores the overall difficulty of HR event detection. 
Further refinement and implementation of alternative detection 
methods are necessary to improve shank-attached IMU-based HR event 
detection accuracy. 

Regarding the detection of FA and TBV events, the CSAV method 
achieves high agreement with OMC-based methods. This is particularly 
important because no other IMU-based validated methods for detecting 
these two events were found in the literature search. The high detection 
accuracy observed in all swing motion-related events, including TO, is 
intriguing. It highlights the general nature of highly consistent gait 
patterns during swing and introduces a novel approach to measuring 
this consistency. 

This study has some limitations. First, although many strides were 
measured in various scenarios, the number of participants was relatively 
small. Nonetheless, the detection accuracy exhibited minimal deviation 
between the participants (Table 1), indicating accurate event detection 
in a normal gait. The participant group consisted of healthy young in-
dividuals, which limits the generalizability of the findings to the path-
ological gait. Therefore, larger and more diverse studies are required to 
validate these findings across different populations and gait conditions. 
Additionally, it’s important to recognize the presence of soft tissue 
artifact in such measurements. 

5. Conclusion 

The findings of this study highlight the stability and accuracy of the 
developed CSAV method in detecting key gait events. While the per-
formance of HR event detection can still be improved, the CSAV method 
demonstrates its effectiveness in capturing toe-off, feet adjacent, and 
tibia vertical events across different footwear and speed scenarios. These 
results contribute to the advancement of shank motion-based gait event 
detection techniques and their potential applications in gait analysis. 
Future research can improve HR event detection and validate the CSAV 
method in diverse gait contexts. 
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